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Two Results on Maximal Subsemigroups 
of Lie Groups 

Luiz San Martin 

Abstract: It is proved here that the subsemigroup of positive matrices in 
Si( n, IR,) is maximal connected. Also, let g be a simple non-compact Lie alge-
bra and k C g a maximal compactly embedded subalgebra. If G is a connected 
Lie group with Lie algebra g, and J( the connected subgroup whose Lie subal-
gebra is k, then any coset Kg,g (/ K, generates G as a semigroup. Therefore 
K is maximal as a subsemigroup of G. This result was already obtained by 
Neeb [3], through different methods. 

1. Introduction 

The two results presented in this paper are about subsemigroups of Lie 
groups, more specifically of semi-simple Lie groups. Both of them were proved 
in [2] for Sf.(2, IR), the special linear group in dimension 2. In Theorem 1 
below we show that the subsemigroup Sf.(n)+ of positive matrices in Sl(n, IR) 
is essentially maximal: It is maximal connected, and the only proper subsemi-
group containing it is Si( n )± = Si( n )+ U J Sl( n )+, where J is some " negative" 
matrix in Sf.(n, IR). This result extends Proposition V.4.30 in [2]. 

For the second one, let g be a simple noncompact Lie algebra and k a 
maximal compactly embedded subalgebra. Let G be a connected Lie group 
whose Lie algebra is g and denote by K the connected subgroup of G whose 
Lie algebra is k. ln Theorem 3 bellow we show that any coset Kg, g </ J( 
generates G as a semigroup. Of course, the sarne result holds for cosets of the 
type gK, g (/ K. An irnmediate consequence of this is that K is maximal as 
a subsemigroup of G , that is, any subsemigroup of G containing K properly 
is e· itself. From this maximality of K when G is simple one gets quickly the 
subsemigroups of G containing /{ when G is only semi-simple ( see Corollary 
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1). This result was already obtained by Neeb [3], through different methods 
then ours. ln [2], Theorem V.4.41 a proof is given for the case when g is 
sl{2, IR), the three dimensional simple Lie algebra. 

The technique for proving the above mentioned theorems comes from 
the results in [4], concerning invariant control sets for subsemigroup actions 
on homogeneous spaces. We record the relevant facts in section 2 bellow. The 
main one is in Proposition 2b, where a criteria is given in order that a sub-
semigroup of a semi-simple Lie group is the group itself. Based on this, the 
essential of the proofs stays on checking that certain subsemigroups satisfy 
the given conditions . This method leads, in the Sf{2, IR) case, to alternative 
proofs for those offered in [2] . 

2. Background 

For latter use we record here some facts about transitivity and invariant 
control sets for semigroup actions. We restrict attention here to semigroups in 
Lie groups. Thus let G be a Lie group and S a subsemigroup of G. Make S 
act on M = G/H,H a closed subgroup, as a semigroup of diffeomorphisms. 

An invariant control set for S on M ( abbreviated S-i.c.s.) is a subset 
C e M which satisfies 

i) dSx = dC for all X E e, 
ii) C is maximal with property i). 

Here d means closure whereas Sx = {gx : g E S} stands for the orbit of x 
under S. 

It is not hard to show (see e.g. [1], Lemma 3.1) the existence of invariant 
control sets if M is compact, which we assume from now on. Also, it is easy 
to see that ii) is a consequence of i) if C is known to be closed. 

We say that S acts transitively on M provided Sx = M for every x EM. 

Our main concern, in what follows, with the invariant control sets comes 
from the information which can be obtained regarding the transitivity of S. 
Such information is easier to get when S has non empty interior in G (which 
is the only case we consider). The reason is that when intS =f 0, both Sx 
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and s-1 x have non empty interior in M, for every x E M, so the approximate 
transitivity stated in property i) above can be turned into transitivity. 

For S with int S -=/=- 0, it is possible to prove the following facts: 
1) Any S-i.c.s. is closed and has non empty interior, 

2) S has just one invariant control set iff C = n1;eMd(Sx) -=/=- 0. ln this case C 
is the invariant control set. 

As a consequence we have: Let Si, i = 1, 2, be subsemigroups with non 
void interior and suppose that C(Si), i = 1, 2, is the only Si-i.c.s. on M. Then 
S1 C S2 => C(S1) C C(S2) 

3) Let C be a S-i.c.s. on M , and set 

C0 ={xEC:3gEintS with g-1 xEC}. (*) 

Then C0 is an open and dense subset of C. Moreover 0 0 is S-invariant (i.e. 
Sx C C0 if x E C0) and S is transitive inside Co (i .e. for every x1 y E Co, 
there exists g E S with gx = y). Also1 C0 = int C in case 1 E d int S (see (4] 
Proposi tion 2.1). 

A consequence of this fact - which is not hard to show directly - is that 
S is transitive if M itself is an invariant control set for S. ln fact, in this case, 
C0 = M, as follows readily from ( *). 

Regarding the transitivity of S on M, the following statement gives a 
sufficient condition in terms of invariant control sets 

Proposition 1: Suppose G is connected and let S C G be a subs<'migroup 
with non empty interior. Let C be a S-i.c.s. on M. Let also C' be an invariant 
control set on M for s-1 = {g : 9-1 E S}. Suppose that intCnintC' -=/=- 0. 
Then C = C' = M. 

Proof: Let C0 (resp. Cb) be the subset of C (resp. C') that is invariant by S 
(resp. s-1) as in ( *) above. By assuµiption, Co n Cb -=/=- 0. 

. Take x E C0 n Cb, and y E Cb. Then there exists g E S such that 
g-1y = x, i.e., gx = y. This shows that y E C0 and hence that Cb C C0 . 

Using the sarne argument we get the reverse inclusion and thus that C0 = Cb. 
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We have then that C0 is invariant by both S and s-1 and hence by the group 
generated by S, whi eh is G because G is connected and intS /: 0. Since G is 
transitive on M, we have the result. D 

The results to follow are specifc for subsemigroups of non-compact semi-
simple Lie groups and their action on the Furstenberg boundaries of the group. 
They were proved in [4]. 

Proposition 2: a) Let G be a connected, semi-simple and non-compact Lie 
group, and supose that P is a parabolic subgroup. Let M = G / P be the cor-
responding Furstenberg houndary. Then any subsemigroup S C G with non 
empty interior has one and only one invariant control set on M; denoted by 
C(S, G/P) or just C(S). 

b) Suppose Pmin is a minimal parabolic subgroup and let B = G/ Pmin be the 
maximal boundary . Suppose moreover that G has finite centre. Then G itself 
is the only of its subsemigroups with non void interior which is transitive on 
B . 

Finally, we have the following statement about transitivity of semigroups 
on fibre bundles. 
Proposition 3: Let 7r : M1 -+ M2 he a fibre bundle with G acting on M1 
and M2 transitively and equivariantly (i.e. 1!: o g = g o 1r ). Let S C G be a 
subsemigroup and suppose that 

a) S is transitive on M2 , and 
b) for some Xo E M2, S is transitive on the fibre (M1 )xo = 1r-1{x0}. 

This means that for all p, q E (M1)xo there exists 9 E S with gp = q. 
Then S is transitive on M 1 . 

Proof: Take y E M2 and p, q E (M2)y• Choose 91,92,g3 E S with 

The existence of g1 and g3 follows from the transitivity of S on M2. The choice 
of 92 is possible because S is transitive on (Mi)x0 and g1p,g31q E (M1)xo · We 
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have 
939291P = q, 

showing that S is transitive on any fibre {M1)v· Take now P1iP2 E M1 and 
put Xi = 1r(p~), i = 1, 2. There exists h1 E S with h1 x 1 = x2, because of the 
transitivity of S on M 2 , and there exists h2 E S with h2h1P1 = p2, because S 
is transitive on the fibre {M1)x2 • This shows the claim. D 

3. Maximality of Si( n )+ 

ln order to state precisely what we mean by Sf(n)+ being maximal, we 
let 

o+= {(xi, ... ,xn) E IRn: Xi 2:: O} 

be the positive orthant in IRn, and put o- = -O+ as for the negative one. 
By definition Sl( n )+ is the subsemigroup of those elements of Sl( n, IR) which 
preserves o+ 

Sl(n)+ = {g E Sl(n,IR): gO+ e o+}. 

We denote by Si( n )± the subsemigroup of Si( n , IR) which preserves o+ U o-. 
It decomposes into two connected componnents as 

where J is any negative matrix in Sf.( n, IR), that is to say J (o+) C o- and 
J( o-) C o+. If n is even, one can take J = -1 and in case n is odd, one can 
take for instance J with diagonal bloks 

, 

with sizes 2 and n - 2 respectively, and with 

A= ( O -1) 
-1 O ... 

and 'B = -1. To see this note that for g E Sf.(n)± one has either g(O±) C Q± 
or g(O±) e o:i:, because o+ ando- are the connected components of o+uo-. 
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ln the first case g E Sl( n )+ and in the second one J g E Sl( n )+. 
Alternatively Sl(n)± can be defined as the subsemigroup of Sl(n, IR) , 

which in its action on the projective space JR,pn-1 , preserves the subset 
JPO+, which corresponds to the positive orthant through the canonical map 
m;n _ {O} _. JR,pn-1. 

Theorem 1: Let S be a subsemigroup of Sl(n, IR,) containing Sl(n)+ prop-
erly. Then S = Sl( n )=!: or Sl( n, lR.). Therefore Sl( n )+ is a maximal connected 
subsemigroup. 

This result was proved for n = 2 in [2] (see Proposition V. 4.30). The 
proof offered there is specific for Sl(2, IR,). Before going on into the general 
case we present here an alternative proof for n = 2, which is a guide for the 
general one. 

The maximal Furstenberg boundary of Sl(2, IR,) is the projective space 
lR.P1, with canonical action. Taking into account Proposition 2b, in order 
to get the theorem (for n = 2) it is enough to show that S is transitive on 
JR,P1 provided S contains Sl(Z)+ properly and S does not leave invariant 
JPO+. To see this, note that the invariant control sets on JR,P1 for Sl(z)+ 
and r = {g-1 : g E Sl(2)+} are respectively JPO+ and the subset of JR,P1 

corresponding to {(x1, x2) E IR-2 - {O} : x1x2 ,::; O}. On the other hand, let 
C(S) be the S-i.c.s. on IR,P1 . Then JPQ+ C C(S) because Sl(2)+ e S, and 
C(S) is not contained in JPO+ if S is not contained in Sl(2)±. Since r e s-1 , 

we see that intC(S) n int C(s-1 ) =/ 0. Therefore, by Proposition 1, S is 
transitive on IR,P1 , and the result follows. 

The proof for arbitrary n is similar. The maximal Furstenberg boundary 
of Sl(n, IR,) is the flag manifold B = JF'n(l, ... , n - 1), so Theorem 2 follows 
by showing that S is transitive on B provided S contains Sl(n)+ properly and 
is not contained in Sl( n )±. 

ln order to show this transitivity of S we describe first the invariant 
control sets on JR,pn-l and on JF'n(l, . . . , n - 1) for Sl(n)+ and for its inverse 
sem1group 

r = {g- 1 : g E Sl(n)+}. 

We have that C(Sl(n)+, mpn-1) = JPO+, because JPO+ is invariant 
by Sl( n )+, and Sl( n )+ contains the subgroup of diagonal matrices which is 
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transitive on the interior of JPQ+. The other invariant control sets we need 
are given by the following lemmas. 

Lemma 1: Put B = JFn(l, ... , n - 1) and let 7r : B m,pn-l be the 
canonical projection. Then 

Lemma 2: C(r, m,pn-1) is the complement of the interior of JPQ+. 

From these two lemmas the proof of Theorern 1 follows almost the sarne 
way as in the 2-dirnensional case: Let S be a subsemigroup containing Sl(n)+ 
properly and not contained in Si( n )±. Then JPQ+ e C ( S, m,pn-l) because 
Sl(n)+ C S, and C(S,IRPn-1) is not contained in JPQ+ because otherwise we 
would have S C Sf(n)±. Now, let x E C(S,IRPn-1) - JPQ+. By Lernma 2 
we have that x E intC(f,JR,pn-1). Since the interior of Sl(n)+ meets every 
neighborhood of the identity in Sl(n, IR,), and 

int(Sf(n)+x) e int(Sx) e intC(S,IRPn-I), 

we conclude that 

Hence by Proposition 1; we see that S is transitive on m,pn-1. 

We apply now Proposition 3 with the fibration JFn(l, ... , n - 1) 
JRpn-1 . By Lemma 1, Sl(n)+ is transitive on at least one fibre of"this fibre 
bundle (actually on every fibre over the interior points of JPQ+). Of course, 
the sarne staternent holds for S. Since S is transitive on m,pn we conclude 
that S is transitive on the maximal flag rnanifold JFn(l, ... , n - 1). Therefore 
S , Sl(n , IR). o 

Lemrna 1 was proved in [4] (see example 4.5). 
\ 

proof of Lemma 2: For v E JRn - {O} we denote by [v] its class in JR,pn-1 . 

Let { e1, ... , en} be the standard basis in JRn. We start by noting that [ e;] E 
C(r, 1!1-pn-l ), i = 1, ... 'n. ln fact, taking e.g. i = 1, let H = diag (.À1, ... l .Àn) 
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with >..1 + · · · + Àn = O and >..1 > · · · > Àn. Then exp tH E Sl(n)+ n r, all 
t E IR. Also, in projective space we have 

lim(exptH)x = [e1] 
t-+oo 

for x in an open and dense subset of IRPn-I. Since int r # </>, this shows 
that [e1] E c/fx, every x E IRpn-t, and therefore that [e1] E C(f). Applying 
a similar argument to the other basic elements we see that [ei] E C(f), i = 
1, ... , n. 

Now, let A be the group of diagonal matrices in Sl(n, IR). It has 2n-l 
open orbits in m,pn-1 . These are the sets corresponding to the interior of the 
orthants and their union is dense in JR,pn-1 . Since A e r, C(f) is a union 
of orthants. So in order to prove the Lemma it is enough to show that f[e1] 
meets the interior of every orthant other than the positive one. 

ln order to check this we put, for x E mn-1, 

The set {[vx] E m,pn-I : x E m,n-l} is open dense in m,pn-1 , so it meets every 
orthant in JR,pn- 1. We must show that for any orthant O in mn-1 , aside from • 
the positive one,. there are g E r and x E O such that ge1 = Vx· This is done 
by induct ion on the number i =O, ... , n - 2 of positive entries of the elements 
of O. 

For i = O, take x E JR_n-l with all entries strictly negative. Then 

because 

-1 = ( 1 Ü ) g -X 1 E Sl(n)+, 

and we have ge1 = V:i:. 
To see that the induction goes on, take x E mn-l with non zero entries 

such that at least two of then, say Xr and Xs, are strictly negative. Assume 
that there exists g E r · with ge1 = Vx. 
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Now, for k, l = 1, ... , n let Ekl stand for the n x n matrix whose 
(k, 1)-entry is 1 and the other ones are zero. We have 

Therefore 1 + aEk1 E f if a O, k :j:. l. Taking x as above, we have 

where the entries of y are the sarne as those of x apart from the r - th one 
which is Xr + ax3• Since Xr, X3 < O, there exists a < O such that Xr + ax3 > O, 
showing that the induction procedure works. This proves the Lemma. D 

Remark: Contrary to the two dimensional case, the invariant control set for 
r on ffi'n (1, ... , n - l), n 3, does not complement the in varian t control set for 
Sl(n)+. Toseethis,letasbefore,1r: IFn(l, ... ,n -1)-----+ JRpn-l bethecanoni-
calprojection. Forx E C(f,JRpn-1 ),1r-1 {x}isthesetofflags ½ C ••• C Vn-l 
with dim ¼ = i and x C V2. If V2 does not meet the positive orthant, the sarne 
happens with g½,g E r, because the complement of the positive orthant is 
invariant by r (as shown by Lemma 2). Therefore 1r-1(C(f,JRpn-1)) contains 
a proper f-invariant subset, so C(r, IFn(l, ... , n - l)) does not complement 
the invariant control set for Sl(n)+ which is 1r-1 (JPO+). Despite this, the 
invariant control sets for S l( n )+ and r are complementary to each other on 
JRpn-l, and the proof of Theorem 2 is achieved with the aid of the fibration 
technique stated in Proposition 3. 

4. Maximality K 

Let G be a connected, noncompact, semi-simple Lie group and g its Lie 
algebra. Let also k be a maximal compactly embedded subalgebra of g and 
denote by K the connected subgroup of G with Lie algebra k. The following 
result and its corollary extends to arbitrary semi-simple Lie groups Theorem 
V.4.41 of [2]. 

Theorem 2: Suppose g is simple and let S be a subsemigroup of G containg 
K. 
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Then either S = K or S = G. 

Corollary 1: Let g = g1 EB • • • EB g., be the decomposition of semi-simple g into 
simple ideals. Let ki C g i be maximal compact in gi such that k = k1 EB • • • EB k.,, 
and denote by Ki the connected subgroup with Lie algebra k;. Let S be a 
semigroup containing K. 

We have, 

a) If G is simply connected then S is of the form 

with A; = K; or G;, where G; is the subgroup corresponding to gi. 

b) ln general S is a normal subgroup with Lie algebra a; ffi • • • EB a., with ai = k; 
or g;. 

Part a) of this Corollary is immediate from the Theorem, whereas part 
b) follows from a). 

We prove next Theorem 2. Actually the technique for proving it shows 
the following slightly more general result. 

Theorem 3: Suppose G is simple and let g fJ J(. Then the coset I< g generates 
G as a semigroup. Similarly for the coset gK. 

Of course, any semigroup which contains J< properly must constain a 
coset Kg, g fJ I<, so Theorem 2 follows from Theorem 3. 

ln order to prove Theorem 3, we start by reducing it to the case where 
G has finite centre. 

Denote by Z( G) the centre of G, and let S be the semigroup generated 
by Kg,g fJ K . We have that S/Z(G) is a semigroup in G/Z(G) which contains 
the coset (I</Z(G))g',g' = gZ(G) fJ I</Z(G). Assuming the result for G with 
finite centre, we have that S/Z(G) = G/Z(G). Now, gZ(G) = Z(G)g C S 
because Z(G) e I<. Also, g- 1 Z(G) n S-:/ <p because S/Z(G) = G/Z(G). Let 
m0 E Z(G) be such that g-1m0 E S. Pick m E Z(G) . Then 
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so Z(G) e S. This together with S/Z(G) = G/Z(G) shows that S = G (e.g. 
by applying Proposition 3 to the :fibration G--+ G/Z(G) which is equivariant 
with respect to the left action of G). 

This been so, we assume from now on that G is a simple Lie group with 
finite centre, and let S be the semigroup generated by Kg ,g (/. K. 

Let B = G / P be the maximal Furstenberg boundary of G and take 
bi, b.i E B. Then there exists u E K such that u(gb1 ) = b2 , because K is 
transitive on B. It follows that S is transitive on B. 

By virtrue of Proposition 2b, Theorem 3 will be proved as soon as it is 
checked that S has non empty interior in G. 

We show next that (Kgt has non empty interior in G, for some integer 
n. This will follow from the implicit function theorem after noting that (Kg )1' 
is the image of Kg x • • • X Kg under the product map 

Pn : G7' --t G. 
(g1, • · · ,9n) --+ 91 • • · 9n 

The subset Kg x • • • x Kg is a submanifold of 0:1, and the restriction qn of Pn 
to it defines a differentiable map qn : Kg x • • · x J( g --+ G. In order to show 
that its image has non empty interior, it is enough to check that its differential 
has full rank at some point. We have 

Lemma 3: The image of the differential of qn at ( s1, .. . , sn) E Kg x • • • x Kg 
is _the subspace 

where s = s1 ., .. sn. Here Rs stands f9r the right action as well as its differen-
tial ;md Ad denotes the adjoint repre.sentation of G in g. 

Proof: The image of the i - th partia! derivative of qn at ( s1, . .. , sn) is 
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where L stands for the left action and its differential. Writing Lh = Rh o Ad( h) . 
and taking into account the commutativity of the right and left actions, the 
above subspace is rewritten as 

Adding up on i we get the Lemma. o 

The assumption in Theorem 3 that G is simple is required for the proof 
of the next statement. 

Lemma 4: Suppose g fl K. Then there exists are integer m and a.nd m-tuple 
(ti, ... , tm) E Kg X • • • X Kg such that 

Proof: For (s1 , . .. ,sn) E Kg x • • • x Kg put 

Choose (t1, .• . , tm) E Kg x • • • X Kg such that V(ti, ... , tm) has maximal 
dimension between the subspaces of the type V(s1, ... , sn), arbitrary n. We 
have 

for s E Kg. Since V(t1 , ... , tm) is of maximal dimension, k C 
Ad(s)V(ti, .. . , tm) or equivalently 

Repeating this argument successively, with V(s1, ... , s,., t1, ... , tm) instead of 
V(s , t1, ... , tm), we get that 
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Ad(s;-1 .. . si1 )k C V(t1,.,. ,tm), 
for arbitrary s1, ... , sr E Kg. This shows that the subspace, say W, spanned 
by k and {Ad(s-1)k: s E (Kgr} is contained in V(t1, ... ,tm)• 
Clearly, Ad(g-1 )W C W , 0r equivalently, by the finite dimensionality 

Ad(g)W = W. 

Similarly, for u E K, Ad(g-1u-1)W = W. It follows that 

Ad(u)W = W,u E K. 

This shows that g = W. ln fact , let g = k EB s be the Cartan decomposition of 
g having k as subalgebra. We have 

W=kEBWns 

because k C W. Since g f/. K and J{ is the normalizer of k in G, W n s =/ 
{O}. Therefore W n s = s because W n s is Ad(K)-invariant and the adjoint 
representation of ]( on s is irreducible, dueto the assumed simplicity of g. We 
conclude that g C V(t1, . .. , tm), which shows the Lemma. D 
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