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STRICTLY ABSOLUTELY SUMMING
MULTILINEAR MAPPINGS

Mirio C. Matos
IMECC - UNICAMP
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13.081 - Campinas, S.P., Brasil

ABSTRACT - The space of the strictly absolutely (s;rq,...,r,)-summing
multilinear mappings between Banach spaces is introduced along with a natu-
ral (quasi-) norm on it. For Hilbert spaces and s=r, =... =1, € (2, +00)
it is shown that such space is isomorphic to the space of the Hilbert-Schmidt
multilinear mappings. If s,ry € [1,400], k = 1,...,n this space is charac-
terized as the topological dual of a space of quasi-nuclear mappings. Other

properties are considered and a relationship with a topological tensor product
is stablished.

1. INTRODUCTION

In [9] A. Pietsch introduced the space of absolutely (s;ry,...,r,)-summing
n-linear functionals on Banach spaces and asked if it would coincide with the
space of the Hilbert-Schmidt n-linear functionals on Hilbert spaces for some
values of s and rg, k = 1,...,n. Motivated by this question we introduce
the space of the strictly absolutely (s;rq,...,r,)-summing n-linear mappings
between Banach spaces endowed with a natural norm for s > 1(s-norm for
s € (0,1))and show that it is isomorphic to the space of Hilbert-Schimidt n-
linear mappings between Hilbert spaces when ry = ... = r, = s € [2,400)
(see section 5). It is obvious that this result does not answer the problem



posed by Pietsch, but shows that, under a particular point of view, the abso-
lutely summing linear mappings have as their natural n-linear generalizations
the strictly absolutely summing mappings. These mappings are considered in
section 2 along with several examples and properties.

In section 3 we consider Banach spaces E;,...,E,, F and endow E;®...®
E, ® F with a (quasi-) norm in such a way that its topological dual is iso-

metric to the space of the strictly absolutely (s;ry,...,r,)-summing n-linear
mappings from E; x ... x E, into F’, when s € [1,4o0].
Section 4 is dedicated to the study of the (s;ry,...,r,)-quasi-nuclear map-

pings from E; x...x E, into F. If Ej,..., E' have the bounded approxima-
tion property and s, € [1,+400], k= 1,...,n ,we show that the vector space
of these mappings endowed with a natural linear topology has its topological
dual isometric to the space of all strictly absolutely (s’;r4,...,r.)-summing
mappings from Ej x...x E/ into F'. This result is analogous to the connec-
tion between absolutely summing n-linear mappings and multilinear mappings
of nuclear type stablished in [8].

In section 5 we study the space of the Hilbert-Schmidt n-linear mappings
between Hilbert spaces, its properties and, as already mentioned, its relati-
onship with spaces of strictly absolutely summing mappings. The multilinear
Hilbert-Schmidt mappings were introduced by Dwyer in his doctoral disserta-
tion [2].

For results on linear operators between Banach spaces there are some very
good texts. We mention Pietsch [10] as one of them.

Now we fix some the notations we use in this paper . For Banach spaces
Ey,...,E, and F over K (IR or @) we denote by L(E;,...,E,; F) the Ba-
nach space of all continuous n-linear mappings from E, x ... x E, into F,
under the norm

17| = sup{iT (21, ..., 2a)ll; 21 € Bp,,k =1,...,n}

Here Bpg, denotes the closed unit ball of E, centered at 0. If Yr 18



in the topological dual E; of E;, k = 1,...,n and b € F we de-
note by ¢; X ... X p,b the element of L(E,,...,E,;F) defined as being
©@1(%1) ... pn(z,)b at the point (zi,...,2,). These mappings generate the
vector space L(FEh,...,Eq,; F) of the n-linear mappings of finite type.

If s € (0,+00) we denote by £,(IN"; F') (or £,(IN™) for F = IK) the vector
space of all families (y;)jew= of elements of F such that

Iwssemvelle =1 32 llgsll]* < +oo.
JEN™
For s 21 | - || is 2 norm and for s € (0,1) a s-norm. In any case
we have a complete metrizable topological vector space. We denote by
Lo (IN*; F)(£oo(IN®) for F = IK) the Banach space of all bounded families
(y;)jervn of elements of F' under the norm

I(w5)ienmlloo = sup fly;].
JEN™
The Banach subspace of £(IN*; F) of the families (y;)jen= such that

Jim g =0
k=1,...n

is denoted by co(IN*; F) (or ¢o(IN") for F = K). Here as usual we write
7 =01, +-yJn) € IN*. For n =1 it is usual to omit IN® in all the preceding
notations. In some cases we consider finite families (y;)jenn of elements of
a Banach space. Here IV,, = {1,...,m} and we apply the symbol | - |; to
these families as we have done in the non-finite case. The vector space of all
sequences (y;)jew of elements F such that

I(¥5)ienllws = sup [[(e(¥;))ienlls < +o0
‘PGBF:

is denoted by £7(F). It is a complete metrizable topological linear space un-
der || - ||w,s for s € (0,+o0] .



In Hilbert spaces < z,y > denotes the inner product of the vectors z and
Y.

As usual, if s € [1,400], s’ is the element of [1,400] such that s~ +
(st =iy

2. STRICTLY ABSOLUTELY SUMMING MULTILINEAR MAP-
PINGS

In this section we consider s,r,r; € (0,+o00] such that s > r,s > ri, k =
| U

2.1. DEFINITION - A mapping T € L(E,,...,E,; F) is strictly absolutely
(8371, ...,Tn)-summing if there is C > 0 such that
I(T (@105 - s Znsn)ienvnlls < C T W(@ri) it s (1)
k=1
for me N,z ;€ E, , k=1,...,n and j=1,...,m.

The vector space of all such mappings is denoted by
LGmeama)(Ey, ..., Eq; F) and the smallest € satisfying (1) is indicated by
Tl sas,(sirs,....ra) - This defines a s-norm for s € (0, 1) and a norm for s > 1.
In any case we have a complete metrizable topological vector space.

We recall that the vector space L& m)(E, ... E,;F) of all absolutely
(8;71,...,7s) -summing mappings from E; x ...x E, into F was introduced
by A. Pietsch in [9] and consists of the T' € L(Ey, ..., E,; F) such that there
is D > 0 satisfying:

T2l < D TT U)o @)

for m € IN,z; € Ex,k=1,...,n and j=1,...,m. The smallest D with
the preceding property is denoted by ||T'|us(s;ry,..,rs)- This gives a s-norm
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for s € (0,1) and a norm for s € [1,+o00] making the space metrizable and
complete. We note that in this case it is enough to consider s,ry,...,rn €
(0,4+0c0] such that

1 1 1
Seaa T
S ™ Ty
When r; =...=r, =r we may replace (s;ry,...,7,) by (s;r) in all the

preceding notations. If s = r we replace (r;r) by r and, when r=s =1,
we omit (1,1) in the previous notations.

It is clear that every strictly absolutely (s;ry,...,r,) -summing mapping
is absolutely (s;ri,...,rs)-summing and

”T” < ”Tuas,(-ﬂ,rh---.rn) <= ”Tusaa,(s;ﬂ.n-,rn)

for each T € Limmm)(By ..., E; F).
A result of Defant and Voigt (see [1] for a proof) states that
Los(Fry. .., En; IK) and L(Ey, ..., E,; K) are identically isometric.

2.2. EXAMPLES

(1) There is T € L(cp, co; IK) = L,,(co, ¢o; K) such that

00

Y- |T(ej,ex)| = +o0

7,k=1

where (e;)jen € £¥(co) is the canonical Schauder basis of ¢ (see [7]). Hence
T is not strictly absolutely summing.

(2) For an infinite dimensional Banach space E we fix ¢ € E',p # 0, and
define Ty from E x E into E by

To(z,y) = p(2)y (Vz,y € E).



(a) Ty € LE&m7)(E,E; E) for s >ri,k=1,2

(T (25, 93))71lls < N(¥5)7zalleo 11(23)7m1 o il

< liell 1(25) 7w 1(¥5)7zllwirs

hence "T‘P"aa,(a;ﬁ,rz) = u‘P“

(b) T ¢ Li2m72(E, E;E) for 1 <1y <ra.
We choose (35)52 € € (ENGn(E) and (z3)32, € £5(E) with p(ar) #0-

Hence

[ i) =[S oter] * S ] -

7,k=1

(3) Every n-linear mapping of finite type is strictly absolutely (s;ri,...,7n)- |
summing and

llpr X -+ X @bllsas,(sirs,era) = leall - - lieall 0]

as a consequence of Holder’s inequality.

2.3. PROPOSITION - For a continuous n-linear mapping T' from
E, X ...x E, into F the following conditions are equivalent:

(1) T is strictly absolutely (s;ry,...,r,)-summing.

(2) For every (zi;)R, € &2 (Ex),k=1,...,n
I[(T(mh.‘il yeeey -'L‘n,jn))jer_-’" "8 < +o0
(3) The mapping

£ (1) x ... x £ (En) — L(IN™; F)



given by

Tu((#1,1)52105- - > (2n.3)520) = (T(T1525- -+ Tnju))ietve

is well defined, n-linear and continuous

In this case
”THBM,(-‘J;TI,---,M) = ”Tw”'

PROOF - [t is clear that (3) implies (2) and (3) implies (1) with
1T\ sasy(sirssrsrm) < 1Tl -

Since we can casily prove that (1) implies (2) and (1) implies (3) with
1Tl < 1T || sass(ose1ymmra) 5

it is enough to show that (2) implies (3). But this is a consequence of the
Closed-Graph Theorem since we show easily that T, is separately continuous,

hence continuous, when we assume (2). g
The following result has some interesting consequences.

2.4. PROPOSITION - If s > rg,ry 2 rp for Kk = 1,...,n and T €
L(E,,...,E,; F) are such that

Ty € LG By; L") (B, . .., E,; F))

with

Tl(I]_)(ig,..-.,.'Bn) — i [T TR <
for each zx € Er,k = 1,...,n, thed T is strictly absolutely (s:ry ...,r,)-
summing and

”T“sas,(s;rl,--.,rn) < “Tl”as,(-‘r';rx)

7



PROOF - For m € N,z ; el k=1 wandg=1.

i

[ i |Fig R P 3u,j,,)||’] -

=1
k=1,....n
m r m % J;
AZ[ T Imera)enm -mal?]}
ASES ety
m r - n s i
< {3 [T Measiprarern) T Mokt s |
f=1" k=2
< N llassirs) I N@ri) e lume
k=1
The proof for s = 400 is analogous. g
2.5. CONSEQUENCES
(1) Lsas(ly,le; K) = L(4,4; K).
(2) L2 ,(co,lp; K) = L(co,Lp; K) for p€[2,+00).
(3) L1as(c0; co; ) = L{co, co; K)-
(4} L3, (e85 K} = Lico, {; K) for 1< <p<2

In fact: (1) follows from 2.4 and the Grothendieck’s Theorem stating that
Los(£1;45) = L(£;¢;) (see [3]). On the other hand (2) and (3) are conse-
quences of 2 4 and the result of Lindenstrauss and Pelczynski of the equa-
lity between Em(cg,!.’) and L(co;€,) for p € [1,2] (see [6]). Finally (4)
follows from 2.4 and the following result proved by Schwartz and Kwapien
L(co;4,) = LT (co;8p) for 2 < p <r < +oo (see [11] and [5]). g



The following two propositions are proved easily and give ways of construc-
ting new examples of strictly absolutely summing mappings.

2.6. PROPOSITION - If T € LUmwm)(E,,...,E,; F),S € L(F;G) and
Ry € L(Dg; E),k=1,...,n, then SoT o (Ry,...,Ry,) is strictly absolutely
(871 ..., 7y)-summing and

|SoTo (R, --- ar)”sas.(S;fa,---.rn) < ”S” "T”ms,(a;rl.--..rn) H "Rk“ .
k=1

2.7. PROPOSITION - If T € L(Ey,...,En; F), Sk € LE™(Dy; Ex), k =

1,...,n, then To(Sy,...,Sy) is strictly absolutely (s;1,...,7s)-summing for
s > max {s;,...,8,} and

”TO(Sh sy Sn)”ms,(a;r;,...,rn) S "T” k[_[ ”Sk”a.s,(s;rk] -
=1

2.8. COROLLARY - If E; has the Orlicz property for k =1,...,n, then
L(EBy,...,E; F)= LOBNE,,...,E,;F) and

“T"saa.(Z;l) < HTU H O(Ek)
k=1

for every T n-linear continuous. Here O(E;) = || idg,|[|as,251) is the Orlicz
constant for k=1,...,n.

PROOF - It follows from 2.7. and the fact that idg, € ﬁﬁ‘l)(Ek; Ey) if Ey
has the Orlicz property, k=1,...,n. g

As a consequence of 2.7 and the results of Grothendieck, Lindenstrauss
Pelczynski and Schwartz-Kwapien mentioned in the proof of 2.5 we have

2.9. CONSEQUENCES - (1) If T € L(f3,...,4; F) and Sk € L(h;b2), k=
1,...,n then To(S,...,S,) € LED(Ly,...,4; F) for s >1.

sas



(2) If p€[1,2],T € L(L,,...,4; F) and Sy € L(cg;4,) for £ =1,2,...,n.
then T o (Sy,...,S) € LED (cq, ..., co; F) for every s > 2.
B)HE2<p<r<+400,T€L(L,...,4;F) and Si € L(cg;4),k=1,...,n,
then T o (Si,...,8.) € L& (co,...,co; F) for s >r.

3as

3. STRICTLY ABSOLUTELY SUMMING MAPPINGS VERSUS
TENSOR PRODUCTS

For se[l,40],0 < <s,k=1,....,n and U € £, ®...Q E, Q@ F we

consider

n

P(sirsrr)(®) = 10F [[(Aj)jenalls 1(85)iemnllo TT (ki) it llwre
k=1

where the infimum is taken over all representations of u of the form
u= ) NZ1; ® ... ® Tus ®h:
JENG

with A; € K, z¢; € Ex,bj € F,k=1,...,n,j=1,...,mand me IN.

We denote by t, the element of [0,1] given by
1 1 & 1 il 1
ta & 1 Ta
3.1. PROPOSITION - If ¢ denotes the injective tensor norm, p(sy,,..r,) 1S

a t,-norm and € < P(airy,..ra) -

PROOF - If

u= Y Azy; ®... @z, @

JENZE

10



we have

e(u) = sup | D Ajpr(Z15) - Pal(Znia)bil
k=]1,...,n
< NOG)iennllsol(@r(@s) - - - @n(@nin))iens sl (05)iena lloo

< )senlls y I(x)se ol N(B3)ieng o

and 6(tl) S p(S;fl r---rrﬂ)(u) 2

For u,v in F1®...QF,®F and § > 0 it is possible to find representations
of u and v of the form
U= z ijl,jl ®¢"®$ﬂ,jn®bj
JENZ,
v= ) ity ® .- ® Yy, ®C
JENE
such that

o-__b"‘

1Os)senglle < [0+ ptemrm(w)]
[ndiensglle <[4+ 8ot )]

k

ks llors < [+ 8)p(ers )

1(85)ienallo = 1 = ll(ci)ienylleo

11



we have

e(u) = sup | D Ajpr(Zrq) - - Pnl(Tnia)bi]
‘PkEBEL jEND,
kx=1,..n
< NOy)senalloll(@r(@) - - - Pa(nin))ienallsl (0i)ieng lleo

< 1O sensle T I(es)semnllursl(65)iens oo

k=1

a.nd 5(“) S p(s;rl,...,fﬂ)(u) .

For u,v in E1®...®E,®F and 6 > 0 it is possible to find representations
of u and v of the form

u= Y A% ®...0 Zn, @b
JENT

V= E M¥1,5 ®'°'®ynvjn ®CJ
JEND
such that

.
1Os)senle < [(1+ 9P @)

in

Imhergher < [(1 + 8)p(sin ,...,f,.)(v)] )

s albars < [0+ 8ot ()]

tn
.

1wk s < [+ Doty @]

1(85)jema lloo = 1 = [|(ci)ienyllo

11



Hence we have

tn
[p(l;r; i) (u -+ v)]

< [E M+ T lﬂil"]a ; EL?}!I:; (f: le(ze )™ + g"}’(yk,i)lﬂ)]g

jENA i€N? =1
< (1+6) [(p(.;.-, verra) (W)™ + (P(a;f,,...,f.)("))“] -

For s = 400 we have an analogous inequality.
Hence the triangular inequality is proved for the ¢, power of p(sr,, . ru)-
The other conditions are easily verified. g

3.2. PROPOSITION - The topological dual of (E1®...QE.QF , p(siry,...r))
is isometric to L{&7irm)(E, ..., E,; F") through the mapping B defined by

- B(¥) (21,320 j{(b) = (21 ® ... @ 2. ® b)

for every p(;,....r.)-continuous linear functional ¥ on E;®...QE, @ Fiz, €
E,n,k=1,...,n and b€ F.

PROOF - (1) First we consider B(w) defined as above. It is clear that
B(y) € L(Ey,...,En; F'). For € > 0,m € IN and z;:j € Ex,k=1,...,n
and j =1,...,m we can find b; = bj1,...,Jm) € F, ||bj]]| =1 such that

2 "B('I’)(Ila'n sy zﬂsjn)".

JEND

se+ Z ]B(‘b_)(zlhﬁa see )zn,.in(b.f)l' =Q

JENR

For a convenient choice of A; € K,|A;| =1 we can write



Hence we have

in
[P(n;rl....,r..)(u + V)]

<[ w3 m]” [ (Sletear + Sear)]*

JEND i€EN, l‘ =1

<(1+ a)t.. [(P(O:rx...-,r-) ("))t' + (P(s;n--m"-)(v))‘n] i

For s = +0co we have an analogous inequality.
Hence the triangular inequality is proved for the t, power of (e, .-
The other conditions are easily verified. g

3.2. PROPOSITION - The topological dual of (Ey®...Q E,QF , p(s;ry,....ra))
is isometric to L{71)(E,,..., Eq; F') through the mapping B defined by

- B(¥)z1,...,20)(0) = (21 @ ... @ 2. @ b)

for every p(sy,.,....r.)-continuous linear functional % on E, ®...Q E,® F,z; €
Ey,k=1,...,n and be F.

PROOF - (1) First we consider B(3) defined as above. It is clear that
B(I/)) € L(E;,...,En;F')l For ¢ > 0,m € IN and ZTk; € Eynk=1,.
and j=1,...,m we can find b; = bj1,...,jm) € F,||bj]] =1 such that

> 1B =145+ s Zaga) I

JENZ

e+ 2 IB(‘:”_)(“’I.J';: b ’zm.in(b.f)" =

JENR

For a convenient choice of \; € K,|\;| =1 we can write

12



@=c+ Y Dv(|¢(zrs ® .. ® Tujo ® b 215, ® .. @ Tpy Jn ® b))
JEND,

-

<e+ Il T Wlors @ - B2 ©8)[D]

jENG

TI Mrs)imillure 1(bi)ieng lloo
k=1
Since (s —1)s’ = s and € > 0 is arbitrary the preceding inequalities give

B @1g0r- - » Znga))senlls < 191 II 185 Rl -

For s = +00 we have analogous inequality.
Hence B(%) is strictly absolutely (s;ry,...r,)-summing and

| B(%)lsas,(sirrsra) < 1#Nl -

(2) If T is strictly absolutely (s;ry,...,r,)-summing from E; X...x E, into
F' we define a linear functional on E; ®...@ E, ® F' by

prlu) = 37 T Br50 5% )0

JENG,

U= E ,\jazl,jl @...80 T j, ®b_.,' :
JENZ
e have

Wr()l < Nsemalls 1T(@15,- -2 2ns)ienalls 1(b)senyllos

< T Nsassisirsrera) M Vierva s TT 1@k 7y N [1(85)5evm o

k=1

13



Hence %7 i5 p(siry,...,rn)-continuous and

"'ibT” < ”T”aas.(am.---.rn)- |
3.3. REMARK - The t,-norm p,,,. ., isa norm if
1 1 1
e
K] ™ Ta
In this case we have p(sr,..r,) < 7, where 7 denotes the projetive tensor

normon EF,®...0FE,® F .

4. QUASI-NUCLEAR MAPPINGS

In this section, unless it is stated explicitly otherwise, we consider s €
(0,400] and ri € [1,+00] such that s <7y, k=1,...,n. If we take

11,1, 1
b & %

we have %, € (0,1] .

4.1. DEFINITION - A mapping T € L(E,,...,En; F) is (8;71,-..,Tn)-
quasi-nuclear if it has a representation of the form

T= Z AiPriy X oo X Pnjnbs
JENT
where (A;)jenn € £(IN") if s < +o0o and in ¢o(IN®) if s = +00, (prj)jew €
E}_‘i(Ei) for k=1,...,n and (b;);enn € lo(IN™; F).

The vector space of all such mappings is denoted by
Eg';\}""“"‘)(El, ...y En; F) and we consider on it the following ¢,-norm

IT g (ssrs rriray-= I0F [[(A5)ienmlls TT (k5 )52 et 1 (B5)iemvn lloo

k=1

14



Hence %r is p(sr,,...r,)-continuous and

Nzl < T lsas(sirscira) m
3.3. REMARK - The t,-norm p(,s,,.r,) is a norm if

1 1 1
e N
L T Tha
In this case we have p(sr,..r,) < 7, where 7 denotes the projetive tensor

normon F,®..QE,QF .

4. QUASI-NUCLEAR MAPPINGS

In this section, unless it is stated explicitly otherwise, we consider s €
(0,400] and ri € [1,+00] such that s <7, k=1,...,n. If we take

1 1 1

i E+...+;

i

+

| =

we have i, € (0,1] .

4.1. DEFINITION - A mapping T € L(E,...,E;; F) 18 (s;71,-.-,Tn)-
quasi-nuclear if it has a representation of the form
T= 3 NP X .o X P, b
JEN™
where (/\j)jeNﬂ € E,(JN") if s < 400 and in Co(Nﬂ') if s=4o0, (‘Pk,j)jeN €
E:fi(E;:) for k=1,...,n and (b;);enn € Loo(IN™; F).

The vector space of all such mappings is denoted by

ﬁg}}n ""T")(El, eevyEq; F) and we consider on it the following i,-norm

I War (sirs vy = I0E (A7) emnlls TT NPk )52 e 1 (B5)semvm oo
k=1

14



where the infimum is taken over all the possible representations as described
in 4.1. As usual we replace (s;ry,...,m,) by (s;r) if 1y =...=r, =r and
(s;7) by r if s =r in the preceding notations. When s = r = 1 we omit 1
in the notations. In all cases we have complete metrizable topological vector
spaces.

In order to justify the use of the term “quasi-nuclear” we recall that for
s € (0,+c0] and 7y € [1,400],k=1,...,n such that

1
Tn

1
P e
.. 8

we considered in [8] the following concept.

4.2. DEFINITION - A mapping T € L(Ey,...,E.; F) is of nuclear type
(8371,...,7y) if it has a representation of the form

[ e]
T=3 Xig1i X ... X onjb;

J=1

where (X;)2; € £, for s < +oo and is in ¢ if s = +o00,(ps;)2; €
& (Ey),k=1,...,n and (b)), € £eo(F).

The  vector space of all these mappings is  deno-

ted by £Efr;"""r“)(E1, ..., By F) and it is a complete metrizable topological
vector space under the t,-norm

I (o374 ir) = I0E [1(X5)524 ]l H 1(Pr,3) 5%l 1(0)521 lloo

where the infimum is taken for all possible representations of T' as described
in 4.2. The simplification of the notations is made as in the quasi-nuclear case.
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4.3. REMARKS
(1) £gir1,...,fn)(El, ey En;F) & [,g;v"'l ..... r")(El, X ’En; F)

with
ITI < N7 llon ssrsmrm) S NT NN (s571,m00w)

for every T of nuclear type (s;7r1,...7s)-

lipr X .. X Pnbllan,(sira,vcrm) = el - - - llenll 113l
for pr € Ej,k=1,...,n and be F.

(3) Ln(Ery ..., En; F) = Lon(En,. .., En; F) isometrically

(4) ¥ T € LGN Ey,...,En; F), S € L(Dy; Ei),k = 1,...,n and R €
L(F;@), then RoT o(S;,...,5,) is (s;7y,...,Ts)-quasi-nuclear and

IR0 T o (S, . Sa)llom(eirssern) < NBI TT ISkl 1T llon(sirs,ira)
k=1

(5) If (A;)jenn is in £,(IN™) for s < +oo or in ¢(IV*) for s = o0, the
n-linear mapping D)), y» defined on £s x ... x £y with values in £;(IV")
by

Dorjyjemn ((61,3)5215 - -5 (€n3)520) = Aibun - - - €nisn)ievm

is (s;ry,...,Ty)-quasi-nuclear and

1 D) e0m e (oira i) S H(Ai)iemvnlls -

The following result gives another characterization of quasi-nuclear map-
pings.
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4.4. PROPOSITION - For T € L(E,,...,E,; F) the following conditions
are equivalent

(1) T is (s;7r1,...,Ts)-quasi-nuclear.

(2) There are Ay € L(Ewly),k = 1,...,nY € L(&L(IN™);F) and
(A;)jenn € £,(IN*) such that
T = Y ° D()J‘)J'eyn o (Alr === ’An)

In this case

ITllon sirs,oir) < inf Y]] kI:I IAkll 11(2)senv1ls
=1

with the infimum taken over all possible factorizations as described in (2).

PROOF - It is clear that (2) implies (1) by 4.3.(4) and 4.3.(5).
In order to show that (1) implies (2) we consider a representation of T' as
in 4.1 and define

Ax(z) = ({pk‘j(:?:));'il (V2 € By, k=1,...,n)

and

§J)JEN") Z EJ (V(‘fj)jGN“ = El(wn))

JEN™

and the result follows by Holder’s inequality. g

4.5. REMARK - It is clear that every T € L;(Eh,...,E,; F') has a finite
representation

= Z Aj({’l.j; X...X(pﬂ,jnbj ~
JENG,
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It is also clear that we have a t,-norm on L;(E,...,E,; F) defined by
T Waw s.(ssrsrirm) = IBE (A5 )senmlls TT (005 ) Tt g 1l (Bs) e v lloo
k=1

where the infimum is taken over all finite representation of T as above. We
know that

||T"qN!(3;rl I"'Irﬂ) S ”T“qur(s;rl l"‘lrn)
for every T € L4(E,,...,Ey; F). We would like to know cases where there is

equality.

4.6. PROPOSITION - If E,,..., E, are finite dimensional, then

"T"qN f(#5r1searn) = "T"qN,(sm.-.-.rnJ

for every T € Li(E,...,E,; F).

PROOF - In this case L(Ey,...,E.;F) = L4(E,,...,E,; F) is complete
for both t,-norms. Hence by the open mapping theorem these t,-norms are
equivalent and there is C > 0 such that

T llm s(sirsrm) S CUT g (s37110r0)

for every T in Ly(E,,...,E,; F). For each € > 0 we choose a representation
T= ), 0iPrj X - X Pnjnl;
JENT

such that

n

l(o5)ienvalls N(¥s)iennlloo IT I(pri)ienllus < (14 )T on sirsyera) -
k=1

We have

18



tn tn
[”T“qu:(';fl--Jn)] < [" Z 0015 X oo e X P Yj "qu-{S:fl .--.rn)]
jENT

tn
E ;P15 X -+ X P Yi "qu.(a;u .---,rn)]
jg>m
k=1,...n

<(1+¢) [llTIqu.(m-o---’"’] )

+ 0

tn
+C* [“ E OiP1g X .- X (Pﬂdnyj"qN:(-‘;”len)]

Jg>m
k=1

.....

for m large enough. g

4.7. PROPOSITION - I T € LY7"NE,,...,E,;F) and S €
£f(Dk;Ek) for k= 1,...,11, then

IT 0 (S1,-- - s Sallawsitsirsrmirn) < WTlan,(sirasira) 11 ISkl -
k=1

PROOF - If J; denotes the natural injection from Si(Di) into Ej we
can write Sy = Jy o Sp with ||Si]| = ||Skll. Hence T o (Jy,...,Jn) is
in Ly(S1(D1),...,5:(Dxn); F). Now we apply 4.6 and 4.3.(4) to have the
result. g

4.8. PROPOSITION - If Ej,..., E, have the bounded approximation pro-
perty, then

T'l|orv 581 peegra) = ”T"qN (85715-s7n)
for every T € Li(Ey,...,E,; F).
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PROOF - We prove the result for n = 2. For n > 2 and n =1 the proofs
are analogous. Since Ty € L;(Ey; L(Ey; F)), where Ty(z1)(z3) = T(z1,22)
for zx € Ep,k = 1,2 and T is of finite type, for every ¢ > 0 there
is Sy € Ly(Ey; Ey) such that Ty 05 = Ty and ||Sif < (1 +¢)h (be
cause E! has the \j-approximation property for some A; > 0). Hence
T(S1(z1), z2) = T(z1, 22) for x4 € Eg, k = 1,2. By the same type of reasoning
Ty € Li(Ey; L(Ey; F)), when To(z;)(z1) = T(z1,22) for z4 € By, k = 1,2
and thereis S, € L;(E,; E;) such that T505, = T, with ||Szf| < (1+€)A2. We
have T(zy, S3(x2)) = T(zy, ;) for z € E,k=1,2. Thus T =T 0 (55, 52)
and by 4.7. we have

"T"qu,(S;r;,re) < "T“qN,(sm.fz)nslll "52"
< (1 + 6)2A1A2"T”1N,(—9:f1r72) 2

Hence

“T"qN fi(ssr172) <l "T” gN,(sir1,72)"

With the same argument used in the proof of 4.6 we have

"T"qu,(s;n.rz] < ”T“qN.(s;rn.rz)- B

4.9. COROLLARY - If Ef,..., E! have the bounded aproximation property,
then Cg}}’r""'r“)(El,. .., En; F) is isometric to the completion of (B} ® ... ®
E.QF, pisyt,.rmy) for s,re € 1,400,k =1,...,n

s
oo

4.10. PROPOSITION - If Ejf,..., E’ have the bounded approximation pro-
perty, then the topological dual of Egﬁ"""’“)(El,...,En;F ) is isometric to
Eg;\,;rl""'r“)(E{, .., El; F') for s,r; € [1,400]k = 1,...,n, through the map-
ping

B(%)(p15-- > 0n)(b) = $(1 X ... X ¢yd)
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for ¢ in the topological dual of Cf,ﬁ""""')(En---:En}F )¢ € ELk =
1,...,nand bE F.

PROOF - It is a consequence of 4.9 and 3.2. g

We recall that in [8] we proved that the topological dual of
£ (B, ... En; F) is isometric to £57™)(E! ... E';F") through
the mapping B as defined in 4.10, when Ej,..., E] have the bounded ap-
proximation property and s,ry € [1,4o0o],k = 1,...,n. This fact, 4.10
and 2.2.(2) show that in general the spaces £§J"‘"""“’(E1,...,E,,;F) and
L") By,. .., E,: F) are different.

5. HIBERT-SCHMIDT MULTILINEAR MAPPINGS

In this section E,,...,FE, and F are Hilbert spaces. In this case, as we are
going to show that, there is a close relationship between the Hilbert-Schmidt
and the strictly absolutely summing mappings.

5.1. PROPOSITION - i T € L(E,,...,E,; F) and (uk;)jes, is an ortho-
normal basis for Ex, k= 1,...,n, the value

Z "T(ul.ju seey u,.'j“)"?

Ik€Jk
k=1,..., n

(finite or not) is independent of the orthonormal basis chosen for Ej, & -

LK

PROOF - For n =1 Parseval’s equality gives

2 NT )P = D17 (i)l

j€n ijeJ

21
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where (v;);es is an orthonormal basis for ¥'. The case n > 1 is proved
by fixing n — 1 variables and applying the linear result to the remaining
variable. g

5.2. DEFINITION - A mapping T € L(E,,...,E,; F) is said to be Hilbert-
Schmidt is there is an orthonormal basis (u;)jes, for Ex,k =1,...,n such

that
1

ITlis = | X 1T @10 ung )] < +o0

We denote by Lgs(En,...,E,; F) the vector space of all such mappings.
It is easy to show that it is a Hilbert space under the norm || ||gs defined by
the inner product

(T,S) = Z (T (1,505 -3 Ynign)s S(Utgys - - + 5 Unyja))

Jk€Jx
k=1,..., n

5.3. PROPOSITION - The Hilbert spaces Lys(Es,...,Eq; F) is isometric
to ﬁys(Eﬁ .CHs(Ez, s T F)) .

PROOF -

For T € L(E,,...,E,; F) we consider Ty € L(Ey; L(E,,...,Ep; F)). If T is
Hilbert-Schmidt, (ux;);jes, is an orthonormal basis for Ex,k=1,...,n and
(vj)jes is an orthonormal basis for F', we can write for each z € E,

E ”Tl(x)(u?.iz: very uﬂ,jn)”2

"3

- Z | Z (E!ul.jx)(T(uIJu"'!un.in)’vj)P
jkEJk .'i:G.h
E>2
jeJ
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< llzll* W7 Nas)’

Hence Ty(z) is Hilbert-Schmidt and ||Ty(z)||gs < ||T||us||z]|. Now it is clear
that

> UTa(us i) llas)? = (1T ms)?

HnEN
and Ty € L:Hs(EﬁﬁHs(Ez,...,En;F)) with ”TIHHS = "T”HS- If S €
L(Ey,...,Es; F) is such that S; € Lys(Ey; Lus(Es,. .., Ey; F)) it is easy
to see that

Yo WSt i)llasl? = Y IS(urgy, - tnjallus)

heEh IR €T

k=1,...,n

Hence S is Hilbert-Schmidt and ||S||gs = ||Sillrs- m

5.4. COROLLARY -
(a) Lus(En,y...,En; F) and Lys(Ey, ..., Ey; Lus(Bryyy---,En; F)) are iso-

metric.
(b) Lys(Ey,...,En, F';K) and Lys(E,,...,E,; F) are isometric.

5.5. PROPOSITION - Lyg(E,...,E.; F) and L2 (E,...,Eq; F) are

sas
identically isometric.

PROOF - (a) If T € L2, ,(Ey,...,En; F) and (ug;)jes, is an orthonormal

basis for Ex, k=1,...,n, then ||(uk;);es|lwz =1 for each k and we have
T Hilbert-Schmidt with ||T||zs < ||T)]sas,2 -
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(b) We assume T € Lgs(E,,...,E,; F). For n =1 we consider z; € E,, j =
1,...,m and an orthonormal basis (v;)res for F. Then

1
2

[P = [Sier D s o]

p [Sles o]’

1
2
su
weBE; =1

< [Sier T @I}

= [IT|asl(5)7z1 w2 -

(Er; F) and ||T||sas,2 < [|T||s-

For n > 1 we assume the result true for ¥k <n —1. Since
Ty € Lus(EBr; Lus(Ey,...,Eqy; F) by 5.3., we have Ti in
L2, (Ey; Lus(Ea,. .., Eq; F)) C C2 (Ey; L2 (Es,...,En; F))  with
Tillsas2 < I Thllgs = |IT)|us- By 2.4. we have T in L2 (E,,...,E,; F)
and [|T|sas2 < ||T1]lsas2 < ||T]|5rs- o

Hence T € L2

sas

For p € [1,+00) we can show some interesting connections between Hilbert-
Schmidt and strictly absolutely p-summing multilinear mappings.

5.6. PROPOSITION - There is d > 0 such that for p € [1,400) every T
in Lys(E,...,Ey; F) is strictly absolutely p-summing and

dn”T”sas.p < ”T”HS

PROOF - We use induction on n.
For n = 1 there are (z;);ey orthonormal in E,,(y;)ien orthonormal in
F and (X;)ienv € {2 such that T'(z;) = M\;y; for each i € IN and

ITllas = ll(Aienllz -

If (u;)7, is afinite sequencein E; and (r;)ien is the sequence of Rademacher
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functions, we consider

oo

T ||asv(t) = Y ri(t)hiz; € B

i=1

for every t € [0,1]. Now, by the Khintchine’s inequality (see [4]; see also [10],
page 41), we have

Tz 1(ws) 7z b 2 1T (las D El (uj, v(t))]

i=1

>Z[ [Zr, )X (u, 23) | dt
> 43 [3 Wifus, 2 } S

j=1"i=1 =1

AT sesp < dlITlses < [IT]lzzs for p> 1.
Now we assume the result true for n < k, k > 1 and prove it for k+ 1.
T € ,CHS(E-l, - 5Ek+l; F), then T1 S EHS(E]_, L‘,Hs(Eg, o os ,Ek+1; F))
by 5.3. By our induction hypothesis

Hence T € Los(Ey; F) and d||T||ses < ||T|lus- Also T € L%, (Ey; F) with

Ey '_TL’ [’HS(Eh"':Ek+1;F) Lias(EZ:'-':Ek+1;F)
with J o Ty € L7, (Ey; 2. (Eay..., Byyy; F)) and

dkH”J 0 T||sasp < d[dk“J”]“T”saw

< dI|T1”sasm et HTlllHS-
qence by24 T € ﬁsas(El?“'iEk+1;F)

dH|T | lsasp < AT © Tillsasy < [ Talls = 1T Mlrs - m
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Before we prove next result we consider m € IN and D,, = {—1,1}™ with
a measure y defined by p(e) = 2~™ for every e = (€1,...,€x) in D,. We
denote by m; the k-th projection from D, onto {—1,1}. It follows that

[, wem@ia == & I3}

5.7. PROPOSITION - For p € [2,400) there is b, > 0 such that
£8,,(Byy- . En F) = Ls(By, .., Eu; F) and

dn”TH-’al‘F < HT”HS < (bv)n”T“ﬂu.p

for every T strictly absolutely p-summing.

PROOF - Part of this result follows from 5.6. Now we consider T €
L? (Ey,...,E.; F) and an orthonormal basis (uk;)jer,, for Ex,k=1,...,n.
For each finite subset Ji of I with m elements we consider (ug;)jes, ordered
linearly and write ugy,...,urm , k=1,...,n. We take

m
wi(e) = ) ejup;

i=1
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for ec D,, and k=1,...,n, and write

[ S 1T semmil]

JE=1
k=1,...,n

~ [ID;;, 1T (w1(e®), ..., wa(e™))|[2dpu(e® .. .dy(e("))] :

i

< [fo;;, || (wy(eM), . ..., wa(e™))|Pdp(e™ ... dp(e("))] ¢

< 1T T 59P c, [fn lon(EPA(E)]

1
2
S ”Tllsas,P H2=1 bP SUPWEBE; [E.;ll lﬁo(uk,i)lz] = ”T”sas.P(bp)n

where the last inequality was obtained through the Khintchine’s inequality.
Hence T € Lys(E, ..., Eq; F) and
THzs < (8)" 1T sasp - m
5.8. REMARKS
'1), Pietsch in [9] asked if there would be some (s;ry,...,7r,) such that
E{(;;r; '“.'rn)(Ela ceey E’n; E{) — EHS(EH .« sisy E‘n: E{)

when n > 2. It is easy to see that T in 2.2(2) is not Hilbert-Schmidt but is
Ll=mm) (B, E; E) whenever s > ry. If we consider strictly absolutely summing
mappings 5.7 gives an affirmative answer to the Pietsch question.

2) For n = 1, since L2,(E;F) C L3,(E; F) if p € [1,2] we have 5.7 true

even for p € [1,-+00). For n > 2 and p € [1,2) we do not know if 5.7 is still

true.
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5.9. DEFINITION - The following inner product is considered on E; ®...®
E,

P

q
(u: ”)H = Z Z zlJv qu (:Fn,j,yn,k)

1=1 k=1

where

» 9
u=)21;8...0%,; and v=) 41,;®...®Yn;-

j=1 7=1
The space E; ® ... ® E, with this inner product is denoted by E; Qg
...®n E, and its completion by E;®y...®gE,. The corresponding norm is
denoted by || - ||z

5.10. REMARK - If (ex;)jes, 1s an orthonormal basis for Ei, k£ =1,...,n,
then (e, ®...® €n;.) nesn is an orthonormal basis for E:®y...QyE,.
k:'.l.

5.11. PROPOSITION - If T € L(E,,...,E,; F) and Tg denotes the cor-
responding linear mapping from F; ® ... @ E, into F, then the following
conditions are equivalent:

(1) T is Hilbert-Schmidt.

(2) T@ & ﬁHs(Elé)H e @HE."; F).

Here Ty denotes the extension of Tg to Ei®p...®@pE.. In this case
1TMlas = 1T5lms -

5.12. PROPOSITION - The Hilbert spaces Lys(E.,...,E.;F') and
[Lus(Fn,..., Eq; F)]' are isometric through the mapping B given by

B) (21 2n) = 2ow(zy X ... x fi) ]

i€
for z; € Ei, k=1,...,n, where (f;)jes is an orthonormal basis of F' and
(ff)jes is the corresponding dual basis for F.
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PROOF - If we prove the result for ' = JK we use it and 5.4(b) to have the
sometries

[CHS(EI:-"':Eﬂ; F)]' & [LHS(Eli"'iEnap;K)]f

~ Lus(E,,...,E.,F; K) % Lys(E,,...,E.; F').

Hence we have to prove only the case F = IK .
It is clear that

’ ' )
(cl,jg X im X en'jn)k;_k]e.r,,

is an orthonormal basis for Lys(Ey,...,E,; K) if (e;c‘j)je_]k denotes the dual

basis of an orthonormal basis (ex;)jes, for Ex, k=1,...,n. We have
i . . / 1
T-—-— Z T(Cl,”,...,en!:n)(el,jl > S en'j“)
k€T
k=1,...,n

oorevery T € Lys(E,..., Eq; K). Hence for ¢ € [Lys(E,. .., En; K))

>, IB)er - e ) = 111

I€J
k=1,..n

This given B(3) Hilbert-Schmidt and ||B(¥)||gs = ||¢]|.
On the other hand if S € Lyg(El,...,E.;IK) we define ¥s €
:Egs(El, ...,EN,F;K)]’ by

BT = N0 Bl i) Bl Ll el e )

J T,Jn
IkEJy
k=1,...n

and have B(ys) = S with

[%s(T)| < 1T msllS|las - w

5.13. COROLLARY - The Hilbert spaces (F1®y...®yE,) and

E2y...QyE!) are isometric.
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PROOF - By 5.12 and 5.11 we have the isometries

(Er®x - .. ®nE.)" = [Lus(Ey,. .., En; K))

> Lus(E, ..., Ey; K) = (Ei®u ...QnE,) . u

5.14. PROPOSITION - The following Hilbert spaces are isometric:
‘CHS(Eh veey En; F): LHS(Ela ey Enx)éHF and (Eiéﬁ s éHE:;)éﬂF -

PROOF - By 5.4(b), 5.13 and 5.11 we have the isometries
CHS(Elv---’En;F) = L:HS(EI:" '1Eu:F’; K)

> (E\®y ... QuE.®uF) = (E\Qp ...RuE,)®uF

and this last Hilbert space is isometric to Lys(FEy,-..,Eqn; K)@gzF and
®n...QuE.QuF. g

5.15. REMARK - The results of this section and section 4 give a linear
homeomorphism between [Lys(En,..., En; F)) and [L2y(E, ..., Eq; F)) for
p € (1,2]. But we must note that L7y(E,...,E,;F)' is not normed for
ne2.
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