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ABSTRACT - The space of the strictly absolutely (s; ri, ... , rn)-summing 
multilinear mappings between Banach spaces is introduced along with a natu-
ral ( quasi-) norm on it. For Hilbert spaces and s = r 1 = ... = r n E [2, +oo) 
it is shown that such space is isomorphic to the space of the Hilbert-Schmidt 
multilinear mappings. If s, rk E [l, +oo], k = 1, . .. , n this space is charac-
terized as the topological dual of a space of quasi-nuclear mappings. Other 
properties are considered and a relationship with a topological tensor product 
is stablished. 

1. INTRODUCTION 

ln [9] A. Pietsch introduced the space of absolutely (s; r1, ... , rn)-summing 
n-linear functionals on Banach spaces and asked if it would coincide with the 
space of the Hilbert-Schmidt n-linear functionals on Hilbert spaces for some 
values of s and rk , k = 1, ... , n. Motivated by this question we introduce 
the space of the strictly absolutely (s; ri, ... , rn)-summing n-linear mappings 
between Banach spaces endowed with a natural norm for s 2:: 1 ( s-norm for 
s E (O, l ))and show that it is isomorphic to the space of Hilbert-Schimidt n-

linear mappings between Hilbert spaces when r1 = ... = r n = s E [2, +oo) 
(see section 5). It is obvious that this result does not answer the problem 
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posed by Pietsch, but shows that, under a particular point of view, the abso-
lutely summing linear mappings have as their natural n-linear generalizations 
the strictly absolutely summing mappings. These mappings are considered in 
section 2 along with severa! examples and properties. 

ln section 3 we consider Banach spaces E 1 , ... , En, F and endow Ei @ ... ® 
En ® F with a ( quasi-) norm in such a way that its topological dual is iser 
metric to the space of the strictly absolutely ( s; r1, .. . , r n)-summing n-linear 
mappings from E1 X ... X En into F' , when s E [1, +oo]. 

Section 4 is dedicated to the study of the (s; r 1 , ... , rn)-quasi-nuclear map-
pings from E 1 x ... x En into F. If E{, . . . , E~ have the bounded approxima-
tion property and s, rk E [1, +oo], k = 1, . .. , n ,we show that the vector space 
of these mappings endowed with a natural linear topology has its topological 
dual isometric to the space of all strictly absol utely ( s'; r~, ... , r~) -summing 
mappings from E~ x ... x E~ into F' . This result is analogous to the connec-
tion between absolutely summing n-linear mappings and multilinear mappings 
of nuclear type stablished in [8]. 

ln section 5 we study the space of the Hilbert-Schmidt n-linear mappings 
between Hilbert spaces, its properties and, as already mentioned, its relati-
onship with spaces of strictly absolutely summing rnappings. The multilinear 
Hilbert-Schmidt mappings were introduced by Dwyer in his doctoral disserta-
tion [2]. 

For results on linear operators between Banach spaces there are some very 
good texts. We mention Pietsch [10] as one of them. 

Now we fix some the notations we use in this paper . For Banach spaces 
E1, . .. , En and F over Jl( ( IR or <C) we denote by ,C( E1, ... , En; F) the Ba-
nach space of all continuous n-linear mappings from E1 x ... X En into F , 
under the norm 

Here BEt denotes the clos~d unit ball of Ek centered at O. If c.p1,; 1s 

2 



m the topological dual Ek of E-1" k = 1, . . . , n and b E F we de-
note by cp1 X ... X 'Pnb the element of .C.(Ei, ... , En; F) defined as being 
<pi(x1) .. . 'Pn(xn)b at the point (x1, ... , Xn) - These mappings generate the 
vector space .C.1(E1, ... , En; F ) of the n-linear mappings of finite type. 

If sE(O,+oo) wedenotebyl.(.N»;F) (orl.(Wn) for F=IK) thevector 
space of all families (y;);eN" of elements of F such that 

ll(Y;);eN"II• = [ L IIY;lls]¼ < +oo. 
jEN" 

For s > 1 li · lls is a norm and for s E {O, 1) a s-norm. ln any case 
we have a complete metrizable topological vector space. We denote by 
l 00(Wn; F)(l00(1Nn) for F = JK) the Banach space of ali bounded families 
(y;);eN" of elements of F under the norm 

ll(Y;);eN"lloo = sup IIY;ll-
jEN" 

The Banach subspace of i 00(1Nn; F) of the families (y;);eN" such that 

_lim IIY;II = O 
]J:-00 

1:::1, ...... 

is denoted by eo(lNn;F) (or eo(.Nn) for F = K) . Here as usual W<' wótc 
j = (j1 , . .. , in) E JNn . For n = 1 it is usual to omit JlVn in all the preceding 
notations. ln some cases we consider finite families (Y;);eN::_ of elements of 
a Banach space. Here lNm = {1, .. . , m} and we apply the symbol li · lls to 
these families as we ha.ve done in the non-finite case. The vector space of all 
sequences (y; );eN of elements F such that 

is denoted by f':(F). It is a complete metrizable topological linear space un-
der li · llw,s for s E (O, +oo] . 

3 



ln Hilbert spaces < x, y > denotes the inner product of the vectors x and 
y. 

As usual, if s E [1, +oo], s' is the element of [1, +oo] such that s-1 + 
(s') - 1 = 1 . 

2. STRICTLY ABSOLUTELY SUMMING MULTILINEAR MAP-
PINGS 

ln this section we consider s, r, rk E (O, +ooJ such that s r, s rk, k = 
1, ... , n. 

2.1. DEFINITION - A mapping TE .C(E1, ... , En; F) is strictly absolutely 
(s; ri, ... , rn)-summing if there is C O such that 

n 

1l(T(x1J11 •· • ,XnJn);eNnll., e II ll(xk,;)7=1llw,r,. (1) 
k=l 

for m E JN, x1c.; E Ek , k = l, ... , n and j = 1, ... , m. 

The vector space of ali such mappings is denoted by 
.C~!;;1•··•,rn)(E1 , ... ,En; F) and the smallest C satisfying (1) is indicated by 
11Tllaaa,(.,;r1 , ... ,rn). This defines a s-norm for s E (O, 1) and a norm for s 1. 
ln any case we have a complete metrizable topological vector space. 

We recall that the vector space C~"/1 ••...rn) ( E1 , .. . , En; F) of ali absolutely 
(s; r1, . .. , rn) -summing mappings from E1 x ... x En into F was introduced 
by A. Pietsch in [9] and consists of the T E .C(Ei, ... , En; F) such that there 
is D O satisfying: 

n 

ll(T(x1J, • • •, Xn,;))f=1 li., D II IJ(xkJ)1=1llw,r1, (2) 
k=l 

for m E IN,xk,j E Ek,k = l, ... ,n and j = 1, .. . ,m . The smallest D with 
the preceding property ºis denoted by IITllas,(s;r1, ... ,rn)· This gives a s-norm 
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for s E (O, 1) anda norm for s E [l,+oo] making the space metrizable and 
complete. We note that in this case it is enough to consider s, ri, .. . , rn E 
(O, +oo] such that 

1 1 1 -<-+ .. . +-
s - r1 rn 

When r1 = ... = rn = r we may replace (s; r1 , ... , rn) by (s; r) in all the 
preceding notations. If s = r we replace (r; r) by r and, when r = s = 1, 
we omit (1,1) in the previous notations. 

It is clear that every strictly absolutely (s; ri, . .. , rn) -summing mapping 
is absolutely (s; r1, ... , rn)-summing and 

for each TE .C~~;;1 ···•,rn)(E1, ... , En; F) . 
A result of Defant and Voigt (see [1] for a proof) states that 

.CaiE1, ... , En; II<) and .C(E1, ... , En; IK) are identically isorrietric. 

2.2. EXAMPLES 

(1) There is TE .C(eo, eo; ll{) = .C0 .,(eo, eo; K) such that 

00 

L IT(e;,ek)I = +oo 
j,k=1 

where (e;);eN E fi(eo) is the canonical Schauder basis of eo (see [7]). Hence 
T _ is not strictly absolutely summing. 

(2) For an infinite dimensional Banach space E we fix c.p E E', c.p =f- O, and 
define T cp from E x E into E by 

Tcp(x,y) = c.p(x)y (Vx, y E E). 
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(a) Tu, E _c(a;ri,r,)(E E · E) for s > TL k = l 2 T aa ' 1 - ,., 1 • 

$ ll<pll ll(x;)f=11lw,r1 ll(Y;)f=11lw,r, 

hence IIT'Plla•,(•;r1 ,r2 ) $ ll'Pll• 

(b) T<p i .Ci:~;ri,r2 (E,E;E) for 1 $ r1 < r2. 

We choose (y;)f=1 E~ (E)\lr2 (E) and (x;)f=1 E~ (E) with rp(x1) =/ O. 
Hence 

(3) Every n-linear mapping of:finite type is strictly absolutely (s;r1 , .. .. ,r71) -

summing and 

as a consequence of Hõlder's inequality. 

2.3. PROPOSITION - For a continuous n-linear mapping T from 
E1 x . .. x En into F the following conditions are equivalent: 

(1) T is strictly absolutely { s; r1 , .. . , r 71)-summing. 

( 3) The mapping 
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given by 

is well defined, n-linear and continuous 

ln this case 

PROOF - It is clear that (3) implies (2) and (3) implies (1) with 

Since we can casily prove that (1) implies (2) and (1) implies (3) with 

it is enough to show that (2) implies (3). But this is a consequence of the 
Closed-Graph Theorem since we show easily that Tw is separately continuous, 
hence continuous, when we assume (2). 11 

The following result has some interesting consequences. 

2.4. PROPOSITION - If s ?:'.: rk, r 1 ?:'.: rk for k = 1, ... , n and T E 
.C( E1, ... , En; F) are such that 

T E .c(s ;r i) (E . .c(r1 ;r2, .. ,,rn) (E E . F)) 1 as 1, sas 2, ···, n, 

with 
T1(x1)(x2, ... , Xn) = T(x1, X2, ... , Xn) 

for each Xk E Ek, k = 1, ... , n, theri T is strictly absolutely ( s : r 1 .. . , r n)-
summing and 
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PROOF - For m E JN, x1cJ E E1c, k = 1, ... , n and j = 1, ... , m 
m 1 

[ IIT( X1,ji, • • • , Xn,;J li"'] 1 

,,. .. 1 
kal, ... ,n 

n 

IIT1lla.,,(s;r1) II ll(x1c,;)j=lllw,r,. 
k=l 

The proof for s = +oo is analogous. 

2.5. CONSEQUENCES 

for p E [2, +oo ). 

for 1 < r' < p < 2. 

ln fact: (1) follows from 2.4 and the Grothendieck's Theorem stating that 
.Cas(f1 ;l,2) = .C(f1; f2) (see (3]). On the other hand (2) and (3) are conse-
quences of 2.4 and the result of Lindenstrauss and Pelczynski of the equa.-
lity between • .C:as(C-O;fp) and .C(C-O;fp) for p E [1,2] (see [6]). Finally (4) 
follows from 2.4 and the following result proved by Schwartz and K wapien 
.C(C-O;fp) = .c:s(C-O;fp) for 2 < p < r < +oo (see [11] and [5]). 
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The following two propositions are proved easily and give ways of coP"'truc-
ting new examples of strictly absolutely summing mappings. 

2.6. PROPOSITION - If T E .Ci~;;i,···•r")(E1, ... , En; F), SE .C(F; G) and 
R-1c E .C(Dki Ek), k = 1, ... , n, then S o To (R1 , ... , Rn) is strictly absolutely 
(s; r1 , ... , rn)-summing and 

n 

11s o To (R1, . .. 'Rn)ll.,a.,,(.,;r1, ... ,rn) < 11s11 IIT1l.,a.,,(.,;r1,••··Tn) II IIRkll 
k=I 

2.7. PROPOSITION - If TE C(Ei, ... ,En;F),Sk E .C~~~;rk)(Dk;Ek), k = 
1, ... , n , then To ( S1, . .. , Sn) is strictly absolutely ( s; r1, ... , r n)-summing for 
s > max {s1, . . . , sn} ?.nd 

n 
IITo(S1, • • •, Sn)ll.,a.,,(.,;r1, .. . ,rn) < IITII II IISkllaa,(.,;rk) 

k=I 

2.8. COROLLARY - If E1c has the Orlicz property for k = 1, ... , n, then 
.C(E1, ... , En; F) = .Ci!~1>(E1, ... , En; F) and 

n 

IITll.,aa,(2;1) < IITII rr O(E1c) 
k=l 

for every T n-linear continuous. Here O(Ek) = 11 idEk ll as,(2;l) is the Orlicz 
constant for k = 1, .. . , n. 

PROOF - It follows from 2.7. and the fact that idE,. E C~~;l)(Ek; Ek) if Ek 
has the Orlicz property, k = 1, .. . , n. 

As a consequence of 2. 7 and the results of Grothendieck, Lindenstraus5 
Pelczynski and Schwartz-Kwapien mentioned in the proof of 2.5 we have 

2.9. , CONSEQUENCES - (1) If TE C(lz , ... ,lz; F) and Sk E C(l1 ;l2), k = 
l, ... ,n then To(S1, . .. ,Sn) E Ci~;;)(f1,•••, l 1;F) for s > 1. 
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(2) If p E (1, 2], T E C(lp, . .. ,R,P; F) a.nd Sk E C( eo; lp) for k = 1, 2, ... , n. 
then T o ( S1, ... , Sn) E Ci!;;) ( Co, . .. , eo; F) for every s > 2. 

(3) If 2 < p < r < +oo,T E C(lp,••·,lp;F) and Sk E C(eo;lp),k = l, ... , n . 
then To ( S1, ... , S.n) E Ci!;;)( Co, .. . , eo; F) for s > r. 

3. STRICTLY ABSOLUTELY SUMMING MAPPINGS VERSUS 
TENSOR PRODUCTS 

For s E (1,+oo),0 < rk < s,k = l, .. . ,n and u E .Ei@ ... ® En ® F we: 
consider 

n 

P(.,;r1 , ... ,rn)(u) = inf ll(..\;);eN::.11.,, ll(b;);eN::,lloo II ll(xk,j)J!:1llw,r1c 
k=l 

where the infimum is taken over all representations of u of the form 

U = L ÀjXlJi @ •• • @ Xn,Jn @ ~--
iEN:l. 

with À; E JK, XkJ E Ek, b; E F, k = 1, ... , n, j = 1, . .. , m a.nd m E N. 

We denote by tn the element of (0,1] given by 

1 1 1 1 ---+-+ +-tn - s' T1 • • • r n • 

3.1. PROPOSITION - li ê denotes the injective tensor norm, P(.,;r1 , ... ,r,.) is 
a tn-norm and ê < P(.,;r1 , ... ,r,.) . 

PROOF - If 

U = L ÀjX1,j1 @ . . • @ Xn,in @ b; 
JeN::. 
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we have 

sup I L À;<,01(x1,;1) •· •'Pn(Xn,Jn)b;I 
'P1,EBE~ jEN{:. 
J:sl , ... 111 

n 
< 11(-XJ)JeN::,II.,, II ll(xk,j );eNmllw,rkll(bJ)jeN;:.lloo 

k=l 

For u, v in E1 ®· . . ®En®F and ô> O it is possible to find representations 
of u and v of the form 

such tha.t 

U = L À;X1,;1 ® ... ® Xn,in ® b; 
jEN,'J. 

V= L T/jYIJ1 ® · • • ® Yn,in ® Cj 
iEN; 

!n. 

11(,\;)JeN,r:. I!.,, :s; [(1 + ô)p(.,;r1, ... ,rn)(u)] •' 

!D. 

ll(7Ji)ieN;I!.,, :s; [(1 + ô)p(.,;r1 , . ..,rn)(v)] •' 

!D. 

ll(xk,j)j=lllw,rk :s; [(1 + ô)P(s;r1, ... ,rn}(u)] rk 

!n. 

ll(Yk,i)f=1llw,rk :s; [{1 + S)p(.,;r1, ... ,rn)(v)] rk 
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we have 

sup J L À;<p1(x1,;1 ) • • • 'Pn(Xn,Jn)bil 
'Pr,EBE~ jEN:l, 
t=l , ... ,n 

n 

< ll{Ãj)jeN;. lls1 II ll(xk,j );eNm llw,r,. li (b;);eN::, ll co 
k=l 

For u, v in E1 ® ... ® En ® F and ô > O i t is possi ble to find representations 
of u and v of the form 

such that 

U = L ÀjXI,ji ® . • . ® Xn,jn ® b; 
jEN[A 

V= L T/jYIJ1 ® • • • ® Yn,in ® Cj 
jeN; 

!n. 

ll(,X;)JeN::.11.,, [(1 + ô)P(s;r1, ... ,rn)(u)] •' 

!n. 

ll('IJi)ieN;II.,, < [{l + ô)P(s;r1, ... ,rn)(v)] •' 

!n. 

ll(xk,j)j=Illw,rr, [(1 + ô)P(s;r1,..,,rn)(u)] rk 

!n. 

ll(Yk,i)f::1l1 w,rr, [{1 + ô)p(.,;r1, ... ,rn)(v)] rr, 
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Hence we have 

[P< •;ri, ... ,,..) ( u + t1)] e. 

< [;~,11 JÁ; I" + •~: J,,, I" f · g [:,,~ (t, Jcp( z t.;) J'• + t. Jcp(y,,;) J'•) f 
< (1 + c5)'" [(P(•;r1 , ... ,r,.)(u))'• + (P(•;r1, ... ,r,.)(t1))'-] · 

For s = +oo we have an analogous inequality. 
Hence the triangular inequa.lity is proved for the tn power of fl(s;r 1 , . .. ,r,.). 

The other conditions are easily verified. 

3.2. PROPOSITION - The topological dual of (E1 ® .. . ®En ®F, P(s;r1 , . .. ,,..) ) 

is isometric to C~!;:1•····"•>.(.Ei, . . . , En; F') through the mapping B defined by 

for every P(a;rs, ... ,,. .. rcontinuous linear functional t/, on E1 ® ... ® En ® F, z1: E 

E1c,k=l , .. . ,n and beF. 

PROOF - (1) First we consider B(v,} defined as above. lt is clear that 
B('I/J) E C.(E1,• ••,En;P). For e> O,m EN a.nd x1c.; E E1.,k = l, .. . ,n 
and j = 1, . . . , m we ca.n find b; = b(i1 , ... ,jm) E F, llb;II = 1 such that 

For a convenient·choice of À; E I(, l>-;I = 1 we can write 
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Hence we ha.ve 

[P(•; .. 1 . . ...... )(u + v)]'-

< t ];;.: I>-; , .. + ;];;; ,,,; , .. ] ; • !! l!1:,~ (t, l'PC ">J >r· + t, i'PCY,.; w·)] 
< (1 + 5)t,. [(P(•; .. 1 , . . . , ... )(u))t• + (P(•;r1 •... , ... )(v))t•] . 

For s = +oo we have a.n analogous inequality. 
Hence the triangular inequa.lity is proved for the tn power of />(s; .. 1 , . . . ,r.) . 

The other conditions are ea.sily verified. 

3.2. PROPOSITION - The topological dual of (E1 ®• . . ®En ®F, P(•;ri •.... r.) ) 

is isometric to C~:;;1•····"•>.(.Ei, ... , En; F') through the mapping B defined by 

, B{v,)(z1, ... ,XnJ(b) = 1/,(x1 ® ... ® Zn ® b) 

for every P(•~1 ......... rcontinuous linear functional tf, on E1 ® . . . ® En ® F, x1c E 
E1c,k=l, ... ,n and bEF. 

PROOF - (1) First we consider B(v,} defined as above. lt is clear that 
B(1/,) E C(E1, ... ,En;P). For e> O,m EN and :t1c..; E E1c,k = l, ... ,n 
and j = 1, .. . , m we can find b; = b(i1 , ... ,jm) E F, llb;II = 1 such that 

For a convenient·choice of À; E K , l.\;I = 1 we can write 

12 



® = ê + L jÀj1P(l1/J(x1J1 ® • • • ® Xn,in ® b;l''-1x1,j1 ® • • • ® Xn,jn ® b;)I 
jeN::, 

l 

< ê + 111/JII [ L l1/J(X1J1 ® · · · ® Xn,jn ® b;)l(s-l)s']? 
jEN::, 

n 

· II li( XkJ )j=1 llw,r., li (b; );eN::, lloo 
k=l 

Since ( s - l )s1 = s and ê > O is arbitrary the preceding inequalities give 

n 

ll(B(1/J)(x1,ji,··•,xn,jn));eN::,lla 111/JII II ll(xk,j)j=tllw.ri, 
k=l 

For s = +oo we have analogous inequality. 
Hence B(?/J) is strictly absolutely (s; r1, ... rn)-summing and 

(2) If T is strictly absolutely ( s; r1, ... , r n)-summing from E1 X ••. X En into 
F1 we define a linear functional on E1 ® ... ® En ® F by 

for 

1/Jy(u) = L À;T(x1Jp . .. , Xn,in )bj 
jEN:;. 

U = L À;x1,j1 Q9 • • • (8) Xn,in Q9 bj 
jEN:;, 

n 
< IIT llsas,(s;r1 , .. . ,rn) li(,\; );eN::, ll s1 TI li ( Xk,j )f=Jw,rk li (bj \eN::, ll cx: 

k=l 
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Hence tl>T 1s P(,;r1 , ... ,rn)-continuous and 

3.3. REMARK - The tn-norm P(,;r1, ..• ,rn) is a norm if 

1 1 1 -=-+ . .. +-
s T1 Tn 

ln this case we have P(,;r1 ... ,rn) < 1r, where 1r denotes the projetive tensor 
norm on E1 ® ... ® En ® F . 

4. QUASI-NUCLEAR MAPPINGS 

ln this section, unless it is stated explicitly otherwise, we consider s E 
(O, +oo] and r,. E [1, +oo] such that s < r,., k = 1, ... , n. H we take 

1 1 1 1 
-=-+-+ ... +-
tn S ri r'n 

we have tn E (O, 1] . 

4.1. DEFINITION - A mapping TE .C(E1, •••,En;F) 1s (s;r1 , ... ,rn)-
quasi-nuclear if it has a representation of the form 

T = I: Àj</'lJi X ••• X </>n,in b; 
jEN" 

where (À;);eN" E l.,(JNn) if s < +oo and in C-O(Nn) if s = +oo, (<p1<,;);eN E 
l~ (E~) for k = 1, ... , n and (b;);eN" E l 00(Nn; F). 

" 
The vector space of all such mappings is denoted by 

.c(s;ri, ••• rn)(E E F) d "d ·t th f, 11 • t qN 1, .. . , ni an we cons1 er on 1 e o owing n-norm 
n 

IITllqN ,(a;r1, ... ,rn) · inf li( Àj );eNn lls II li( </>k,j )~1 llw,r~ ll(b; );eNn lloo 
k=l 
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Hence t/JT is P(r,r1 , ... ,,.,.)-continuous and 

3.3. REMARK - The tn-norm P(a;r1 , ... ,r,.) is a norm if 
1 1 1 -=-+ ... +-s T1 Tn 

ln this case we have P(a;r1 ... ,r,.) < 1r, where 7r denotes the projetive tensor 
norm on E1 ® ... ® En ® F . 

4. QUASI-NUCLEAR MAPPINGS 

ln this section, unless it is stated explicitly otherwise, we consider s E 

(O, +oo) and rk E [1, +oo] such that s S rk, k = 1, ... , n. If we take 
1 1 1 1 ---+-+ +-tn - S ri • • • 

we have tn E (O, 1] . 

4.1. DEFINITION - A mapping T E .C(E1, ... , En; F) 1s (s; r1, ... , rn)-
quasi-nuclear if it has a representation of the forro 

T = I: Àj<PlJi X • • • X '{)nJn b; 
jENn 

where (À;);eN" E l 11(11Vn) if s < +oo and in eo(Nn) if s = +oo, ('PkJ);eN E 
(E~) for k = I, ... , n and (b;);eNn E l 00(Nn; F). 

k 

The vector space of ali such mappings is denoted by 
C~j[1 •··•'"n)(E1, . .. , En; F) and we consider on it the following tn-norm 

n 

l1TllqN,(t1;r1 1 ••• ,r,.) . inf ll{À; );eNn lls II 11('-Pk,j )~1 llw,r~ ll(b; );eNn lloo 
k=l 
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where the infimum is taken over all the possible representations as described 
in 4.1. As usual we replace (s; ri, ... , rn) by (s; r) if r1 = ... = rn = r and 
(s; r) by r if s = r in the preceding notations. When s = r = 1 we omit 1 
in the notations. In all cases we have complete metrizable topological vector 
spaces. 

In order to justify the use of the term "quasi-nuclear" we recall that for 
s E (O, +oo] and rk E [1, +oo], k = 1, ... , n such that 

1 1 1 1 1<-=-+-+ ... +-- t I I n s r1 r n 

we considered in [8] the following concept. 

4.2. DEFINITION - A mapping T E I,(E1, ... , En; F) is of nuclear type 
(s; r1, ... , rn) if it has a representation of the form 

00 
T = L Àj'{)l,j X • • • X 'Pn,jbj 

j=l 

where ( Àj )~1 E f 3 for s < +oo and is in Co if s - +oo, ( 'Pk,j )~1 E 
(EO, k = 1, ... , n and (bj)~1 E l 00 (F) . 

The vector space of all these mappi ng·, 1s deno-
ted by ,C~;r1 , ... rn) (E1, ... , En; F) and it is a complete metrizable topological 
vector space under the tn-norm 

n 

IITIIN,(s;r1, ... ,rn) = inf 1l(>.j)~11la 111l('Pk,j)~1llw,r~ll(bj)~1ll00 
k=l 

where the infimum is taken for all possible representations of T as described 
in 4:2. The simplification of the notations is made as in the quasi-nuclear case. 
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4.3. REMARKS 

(1) .,.(•;r1,••··r,.)(,;,· E ·F) e .,.(•;r1, ••• ,r,.)(E E ·F) 
i..,N -41, • • ·, n, i..,qN 1, • • ·, n, 

with 

for every T of nuclear type (s; r1, ... r 11). 

for <pk E Ek, k = 1, ... , n and b E F. 

(3) .CN(E1, ... , E,.; F) = .C9N(E1, ... , E,.; F) isometrically 

(4) li TE .C~iJ1•···•r,.)(E1, .. . ,E,.;F),Sk E .C(Dk;Ek),k = 1, ... ,n and R E 
.C(F; G), then R.o To (S1, ... , Sn) is (s; r1 , . . . , r,.)-quasi-nuclear and 

n 

IIR o To (S1, ••• ' Sn)llqN,(a;r1,-•.,rn) $ IIRII II 11sk11 l1TllqN,(a;r1, ... ,r,.) 
k::1 

(5) If (A;);eN,. is in l,(lV") for s < +oo or in eo(Nn) for s = +oo, the 
n-linear mapping Dp .. );enn defined on lrt X . . . X lr~ with values in l1(N") 
by • 

Dp .. ,),eNR ((6,;)f:1, . .. '(ln,;)f:1) = (-\;6,;1 .. . en,;n-);eNn 
is (s; r1, ... , rn)-quasi-nuclear and 

The following result gives another characterization of quasi-nuclear ·map-
pmgs. 
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4.4. PROPOSITION - For T E .C(Ei, ... , En; F) the following conditions 
are equivalent 

(1) T is (s; r1, ... , rn)-quasi-nuclear. 

(2) There are Ak E .C(E1r;lr~),k - l, ... ,n,Y E .C(l1(Nm);F) and 
(.X;);eN" E l.(JV") such that 

ln this case 
n 

IITllqN,(•;r1,•••,rn) inf IIYII II IIA1.II 11(-X;);eNn li., 
k=l 

with the infimum taken over all possible factorizations as described in (2). 

PROOF - It is clear that (2) implies (1) by 4.3.(4) and 4.3.(5). 
ln order to show that (1) implies (2) we consider a representation of T as 

in 4.1 and define 

(Vx E Ek, k = 1, ... , n) 

and 

Y(({;);eNn) = E ~;b; 
jEN" 

an·d the result follows by Holder's inequality. 

4.5 . REMARK - It i1:1 clear that every T E .C1(E1, ... , En; F) has a :finite 
representation 

T = L À;<p1,j1 X •• • X '{)n, Jnbj • 
iEN::, 
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It is also clear that we ha.ve a. tn-norm on .CJ(E1 , .. . , En; F) defined by 

n 
IITllqNf,(a;r1, ... ,rn) = inf ll(~j)jeN;,Ja II ll(cp1.J)j=lllw,rkll(bj);eN:,lloo 

k=l 

where the infiro.um is taken over all finite representation of T as above. We 
know that 

for every TE .C1(E1 , ... , En; F). We would like to know cases where there is 
equa.lity. 

4.6. PROPOSITION - If Ei, ... , En are finite dimensional, then 

PROOF - ln this case .C{E1, ... ,En;F) = .c,(E1, •.. ,En;F) is complete 
for both tn-norms. Hence by the open mapping theorem these tn-norms are 
equivalent and there is C O such that 

for every T in .C 1 ( E1, ... , En; F) . For each € > O we choose a representa.tion 

T = L Uj<p1,j1 X • • • X cpn,inYi 
jeNn 

such that 
n 

ll(uj)jEN"lla ll(Yj)jeNnlloo II Jl(cpk,j)jeNllw,rk (1 + ê)l1TllqN,(a;r1,.:.,r,.) • 
k=l 

We have 
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[IITllqN/,(a;ri,. .. ,r .. )]t.. < [11 ·e~n Uj<f>l.i1 X • •• X 't'n,inY;llqN/,(.,;ri,--,rn) r,. 
1 m 

+ [11 _Í: <7j<f>t.ii X ••• X <f>nJnYillqN/,(r,r1 ,•-··r,.)r,. 
,,>m 

bl,. .. ," 

+cln [11 _:E <7;<p1J1 X • •• X <f>nJnY;llqN,(.,;r1,--,rn)rn 
1,>m 

kzl, ... ,n 

for m large enough. 

4.7. PROPOSITION - H T E C~"};1 ··-,rn)(E1 , .. . , En; F) and Sk E 

c,(Dk; Ek) for k = 1, .. . , n, then 
n 

IIT O (S1, • • ·, Sn)llqN/,(.,;r1 , ... ,r,.) < 1lTllqN,(.,;r1,-•·•rn) II IISkll • 
k=l 

PROOF - H Jk denotes the natural injection from Sk(Dk) into Ek we 
can write sk = Jk o sk with 11sk11 = IISkll - Hence T o (J1, . .. 'Jn) is 
in C1(S1(Di), . .. ,Sn(Dn);F) . Now we apply 4.6 and 4.3.(4) to have the 
result. 

4.8. PROPOSITION - If E~, . . . , E~ have the bounded approximation pro-
perty, then 

IITll qN f,{3;r1, ... ,r,.)' = IITllqN,(s;r1, ... ,r,.) 

for every TE C1(E1, ... , En; F). 
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PROOF - We prove the result for n = 2. For n > 2 and n;::: 1 the proofs 
are analogous. Since T1 E C1(E1; C(E2; F)), where T1(x1)(x2) = T(x1, x2) 
for Xk E Ek, k = 1, 2 and T is of finite type, for every ê > O there 
is S1 E C1(E1; E1) such that T1 o S1 = T1 and IIS1II :::; (1 + ê).À1 (be-
cause E~ has the .\1-approximation property for some .À1 > O). Hence 
T(S1(x1), x2) = T(x1, x2) for Xk E E-1c, k = 1, 2. By the sarne type ofreasoning 
T2 E C1(E2; C.(E1 ; F)), when Ti(x2)(x1) = T(x1, x2) for Xk E Ek, k = 1, 2 
and there is S2 E C.1(E2; E2) such that T20S2 = T2 with 11S2II :::; (l+ê)À2. We 
have T(x1, S2 (x2)) = T(xi, x2) for x1: E Ek , k = 1, 2 . Thus T =To (Si, S2) 
and by 4.7. we have 

Hence 

]ITllqNJ,(.t;r1,r2) :::; ]ITllqN,(.t;r1.r2)IIS1II 11S2II 

:::; (1 + ê)2.Ã1À2IITllqN,(.t;r1 .r2) • 

With the sarne argument used in the proof of 4.6 we have 

4.9. COROLLARY - If E~, ... , E~ have the bounded aproximation property, 
then C~"JJ1 

, ••• rn) ( E1 , .. . , En; F) is isometric to the completion of ( E~ ® ... ® 
E~ ® F, P(.,',r;, ... ,r~)) for s, rk E [1, +ool, k = 1, .. . , n 

4.10. PROPOSITION - If EL .. . , E~ have the bounded approximation pro-
perty, then the topological dual of C~"JJ1 •···•r") (E1 , ... , En; F) is isometric to 
,..(.,';r; , ••• ,r~) (E' E'. F') f [ ]k h h h ,._,qN 1, ... , n' or s, rk _E 1, +oo = 1, . . . , n, t roug t e map-
ping 
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for tp in the topological dual of C.~'J!1 •···•r .. )(E1, ... , En; F), C()k E Ek, k -
1, ... , n and b E F. 

PROOF - It is a consequence of 4.9 and 3.2. 

We recall that in [8] we proved that the topological dual of 
t"(a;ri, ••• ,r,.)(E E F) • • t • t c.<a';r~, ••• ,r!.)(E' E' F') th h 

.1..,N 1, ... , ni 1S lS0ffie flC O cu 1,··· , ni roug 
the mapping 8 as defined in 4.10, when E~, ... , E~ have the bounded ap-
proximation property and s, r1c E (1, +oo}, /e = 1, . . . , n. This fact, 4.10 
and 2.2.(2) show that in general the spaces C.~;ri,•••,"n\E1, ... , Eni F) and 
r(r.rt,··•,rn)(E E F) diª t '-qN 1, . . . , ..,r. : are ueren . 

5. HIBERT-SCHMIDT MULTILINEAR MAPPINGS 

ln this section E1 , ... , En and F are Hilbert spaces. ln this case, as we are 
going to show that, there is a dose relationship between the Hilbert-Schmidt 
and the strictly absolutely summing mappings. 

5.1. PROPOSITION - lf TE C.(Ei, ... ,En;F) and (u1cJ);EJ1o is an ortho-
normal basis for E1c, k = 1, . . . , n, the value 

IIT(u1.;1,···,un,;n)ll2 

;,.e;,. 
k= l, ... ,n 

{fínite or not) is independent of the orthonormal basis chosen for E1c, k =--
: , . .. ,n. 

P ROOF - Fo; n = 1 Parseval's equa:lity gives 

I: l1T(u1.;)ll2 = I: IIT*(v;)ll2 

jEJ1 jEJ 
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where (v;);eJ is a.n orthonormal basis for F. The case n > l is proved 
by fixing n - l va.riables .a.nd applying the linear result to the remaining 
variable . • 
5.2. DEFINITION - A mapping TE ,C(Ei, ... , Eni F) is said to be Hilbert-
Schmidt is there is a.n orthonormal basis ( UJ.j );EJ,. for E,., k = l, ... , n such 
that 

1 

IITIIHs = [ _L IIT(u1,;1 , • •• ,un,;n)ll 2]2 < +oo 
,,.eJ,. 
bl, ... ,n 

We denote by Cys(E1, . . . , En; F) the vector space of all such mappings. 
It is easy to show that it is a Hilbert space under the norm li · IIHs defined by 
the inner prod uct 

(T, S) = L (T( Ut,jp • • •, Un,,in), S( Ul,jp • • • , UnJn)} 
;,.eJ,. 

lr•1 , ... ,n 

5.3. PROPOSITION - The Hilbert spaces Cys(E1, .. . , En; F) is isometric 
to Cys(E1; Cys(E2, ... , En; F)). 

PROOF-
For TE ,C(Ei, .. . , En; F) we consider T1 E ,C(E1; C(E2, .. . , En; F)) . If T is 
Hilbert-Schmidt, (u1.,;);eJ,. is an orthonormal basis for Ek, k = 1, . .. , n and 
(v;);eJ is an orthonormal basis for F, we can write for each x E E1 

L IIT1(x )( U2,; 2 ,. • •, Un,;Jll2 

i1cEJ1c 
k,?:2 

L I L {x,u1,;1 }(T(u1,;11 ••• ,un,;n),v;)l2 

.i1cEJ1,, .i1EJ1 

k~2 
• jEJ 
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Hence T1(x) is Hilbert-Schrnidt and IIT1(x)IIHs :S IITl!Hsllx!I. Now it is clear 
that 

I: [IIT1( u1,;1 )11Hs]2 = [IITIIHs]2 
i1 EJ1 

and T1 E LHs(E1; LHs(E2, . . . , En; F)) with IIT1IIHs = IITIIHs • If S E 
,C(E1 , . . • ,En;F) is such that S1 E LHs(E1;LHs(E2, ... ,En;F)) it is easy 
lo see that 

ikEJk 
k:1, ... ,n 

Hence S is Hilbert-Schmidt and IISIIHs = IISil!Hs. 

5.4. COROLLARY -
(a.) LHs(E1, . .. , En; F) and LHs(Ei, ... , Ek; LHs(Ek+i, . .. , En; F)) are iso-
metric. 

ã .5. PROPOSITION - LHs(E1, ... , Eni F) and .C~as(E1, ... , En; F) are 
:dentically isometric. 

PROOF - (a) If T E C;as(E1, ... , En; F) and (uk,;);ok is an orthonormal 
basis for Ek, k = 1, .. . ,n, then ll(uk,;);okllw,2 = 1 for each k and we have 
'!° Hilbert-Schmidt with IITIIHs :S IITllsas,2 • 
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(b) We assume TE .CHs(E1 , . . . ,Eni F). For n = 1 we consider x; E E 1 , j = 
1, . . . , m and an orthonormal hasis ( vkhe1 for F. Then 

l 1 

[r::r=1 IIT(x;)ll2]2 = [r::ke/ Ef=l l{x;,T*(vk))l2) 
2 

< [EkEI IIT*(vk)W] ½ sup [I: l{x;, 'f>)l2] ½ 
,pEBf1 j=l 

= IITIIHs1l(x;)f=1llw,2 · 

Hence TE .C~a_,(E1; F) and IITll.,u,2 $ IITIIHs• 
For n > 1 we assume the result true for k $ n - 1 . Since 

T1 E .CHs(E1; .Cns(E2, ... , En; F) by 5.3., we have T1 in 
.C;ª_,(E1; .Cns(E2, ... , En; F)) e .C~ª_,(E1; .C~11.,(E2, ... , En; F)) with 
IIT1ll.,aa,2 < IIT1llns = IITllns- By 2.4. we have T in .C;a,(E1, ... ,En;F) 
and IITll,aa,2 $ IIT1ll.,aa,2 $ IITllns-

For p E (1, +oo) we can show some interesting connections hetween Hilbert-
Schmidt and strictly absolutely p-summing multilinear mappings. 

5.6. PROPOSITION - There is d> O such that for p E (1,+oo) every T 
in .Cns(E1, ... , En; F) is strictly absolutely p-summing and 

PROOF - We use induction on n . 
For n = 1 there are (x.)ieN orthonormal in E1,(y1)ieN orthonormal in 

F and (>.i)ieN E .f.2 sucb that T(xi) = ÀiYi for each i E JN and 

H ( u;)f=1 is a finíte sequence in E1 and (ri)ieN is the sequence of Rademacher 
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5.mctions, we consider 
00 

IITIIHsv(t) = Í: ri(t).Xixi E E1 
i=l 

for every t E [O, lJ. Now, by the Kruntchine's inequality (see [4]; see also [10], 
page 41 ), we have 

m 

IITIIHsll(u;)f=1 llw,1 IITIIHs sup L l(u;, v(t)}I 
tE[0,1] j=l 

Hence T E CsaiE1; F) and dllTll.,a., $ IITIIHS· Also T E Í,~4 _,(E1; F) with 
dllTll.,as,p $ dllTll .,a., $ IITIIHs for P 1. 

Now we assume the result true for n $ k, k 1 and prove it for k + 1. 
If T E L:Hs(Ei, . .. , Ek+1i F), then T1 E L:Hs(E1; L:Hs(E2, . .. , Ek+ii F)) 

oy 5.3. By our induction hypothesis 
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Before we prove next result we consider m E JN and Dm = {-1, l}m with 
a measure µ defined by µ(e) = 2-m for every e = (ei, ... , em) in Dm. We 
denote by 'Trk the k-th projection from Dm onto {-1, l}. It follows that 

if j = k 
if j:/;k 

5.7. PROPOSITION - For p E (2,+oo) there is bp > O such that 
.C~08 (E1, . . . , En; F) = .CHs(Ei, ... , En; F) and 

for every T strictly absolutely p-summing. 

PROOF - Part of this result follows from 5.6. Now we consider T E 
.C~0 8 (E1, . . . , En; F) and an orthonormal basis (uk,;)jer"' for Ek, k = 1, ... , n. 
For each finite subset Jk of h with m elements we consider ( 'Uk,i );eJ" ordered 
linearly and write uk,1, . . . , Uk,m , k = 1, ... , n. We take 

m 

wk(e) = I: e;ukJ 
j=l 
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:or e E Dm and k = 1, . . . ,n, and write 

[ t IIT(u1,j1, .... un,;Jll2r 
Jk=l 

k:atl, ... ,n 

l 

= [fv:::. IIT(w1(e<1>),. •., Wn(e(n)))ll2dµ(e<1) .•. dµ(e<n>)] 
2 

l 

< [fv:::. IIT(w1(e<1>), ... , Wn(e(n)))Wdµ(e<1) ... dµ(e(n))] P 

l 

IITllsas,p nk=l SUPcpeBEJinm l'f'(wk(e))IPdµ(e)] p 

l 

< IITllsas,p llk=l bpsupcpEBEi [L~1 l'f'(Uk,;)12] 
2 = IITllsas,p(bpr 

v;here the last inequality was obtained through the Khintchine's inequality. 
Hence TE CHs(E1, ... , En; F) and 

ã.8. REMARKS 
: ), Pietsch in [9) asked if there would be some ( s; r1, ... , r n) such that 

r(s;r1 , •• ,,rn) (E E . 1T/) _ r (E E . Tr/) L,as I,·•·, n,.H'- -L,HS I,···, n,.H1. 

..... hen n 2. It is easy to see that T<p in 2.2(2) is not Hilbert-Schmidt but is 
::,~õTi ,r2 )(E, E; E) whenever s r1 . If we consider strictly absolutely summing 
::nappings 5. 7 gives an affi.rmative answer to the Pietsch question. 

:. For n = 1, since J:,~s(E; F) C ~!.,(E; F) if p E [1,2] we have 5.7 true 
e-~ for p E [1, +oo). For n 2 and p E [1, 2) we do not know if 5.7 is still 
-.:e. 
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5.9. DEFINITION - The following inner product is considered on E1 ® . .. ® 
En 

p q 

{u, V}H = L L {X1j, Y1j } • • • {Xnj, Yn,k} 

where 
i=I k=l 

p 

'U = L X1j ® . . . ® Xnj 
i=l 

q 

and V = LY1j ® • • • ® Ynj • 
j=l 

The space E1 ® . . . ® En with this inner product is denoted by E1 ®H 

... ®H En and its completion by E1 ®H .. · ®HEn. The corresponding norm is 
denoted by li · !IH . 

5.10. REMARK - H (ekj);eJ1: is an orthonormal basis for Ek, k = 1, . .. ,n, 
then (e1,;1 ® ... ® en,;J 11:EJ1: is an orthonormal basis for E1 ®H .. · ®HEn. 

bl, ... ,n 
As consequence of this remark we can prove 

5.11. PROPOSITION - H T E .C(E1 , ... , En; F) and T0 denotes the cor-
responding linear mapping from E1 ® . . . ® En into F, then the following 
conditions are equivalent: 
(1) T is Hilbert-Schmidt. 
(2) T® E .CHs(E1®H . . · ®HEn; F). 
Here T0 denotes the extension of T0 to E1 ®H . . . ©HEn . ln this case 
IITIIHs = IIT@IIHs. 

5.12. PROPOSITION - The Hilbert spaces .Cys(E~, ... , E~; F') and 
[.CHs(E1, . .. , En; F)]' are isometric through the mapping B given by 

B(tj, )(x; , ... , x~) = L tj,(x~ X ... x J;)JJ 
jEJ 

for xí_ E Ek, k = l, . .. , n, where (/; );.eJ is an orthonormal basis of F and 
(f;);EJ is the co~responding dual basis for F' . 
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PROOF - If we prove the result for F = II( we use it and 5.4(b) to have the 
.sometries 

Hence we have to prove only the case F = II( . 
It is clear that 

s an orthonormal basis for CHs(E1, .. . ,En; II() if (ekJ\eJk denotes the dual 
~s of an orthonormal basis ( ek,i );eJk for Ek, k = l, ... , n. We have 

T = L T( e1,Íl, ••• , e11,1J( e~,11 X .•• X e:,1J 
jkEJk 

lc=l, ... ,n 

L IB( 7P )( e~,11 , • • •, e:,1Jl2 = 111112 • 
ikEJk 

k=l, ... ,n 

This given B( 'ljJ) Hilbert-Schmidt and IIB( 1P) IIHs = 11111 -
0n the other hand if S E Cns(E~, ... , E~; K) we define t/is E 

:-es(E1, ... , En, F ; II{)]' by 

t/is(T) = L T( el,jp ••• , en,in) S( e~,ii X ••. X e~,;J 
Ík El1, 

k=l, ... ,n 

~- d have B(t/is) = S with 

l1Ps(T)I IITllnsllSIIHs • 

• . :3. COROLLARY - The Hilbert spaces (E10H . . -©HEn)' and 
~®H •. · ®HE~) are isometric. 
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PROOF - By 5.12 and 5.11 we ha.ve the isometries 

5.14. PROPOSITION - The following Hilbert spaces are isometric: 
.Cns(E1, ... , En; F), .lns(Ei, . .. , EnlK)®nF a.nd (E~®n . . . ®HE~)®eF. 

PROOF - By 5.4(b ), 5.13 a.nd 5.11 we ha.ve the isometries 

.Ces(E1, ... , En; F) ~ Les(E1, ... , En, F'; lK) 

~ (E1®H . . . ®eEn®eF)':: (E1®e ... ®nEn)'®HF 

and this last Hilbert space is isometric to .lns(E1, . . . , En; K)®eF and 
E, - - E'- F 1®H···®H n@H · 

5.15 . REMARK - The results of this section and section 4 give a linear 
homeomorphism between [.les(E1, ... , En; F)]' and [.C:N(E1, ... , En; F)]' for 
p E (1, 2]. But we must note that .c:N(E1, ... , En; F)' is not normed for 
n > 2 . 
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