SIMULTANEOUS APPROXIMATION AND INTERPOLATION IN p-ADIC ANALYSIS

João B. Prolla

RELATÓRIO TÉCNICO Nº 56/91

Abstract. Let Q_p denote the field of p-adic numbers. Let S be a zero-dimensional compact Hausdorff space and let $C(S; Q_p)$ be the Banach space of all continuous functions from S into Q_p equipped with the supremum norm. In this paper we prove a Weierstrass-Stone type theorem for subsets of $C(S; Q_p)$ and apply it to the problem of simultaneous approximation and interpolation.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação IMECC - UNICAMP Caixa Postal 6065 13.081 - Campinas - SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade do autor.

Simultaneous approximation and interpolation in p-adic Analysis

João B. Prolla IMECC - UNICAMP Caixa Postal 6065 13081 Campinas, SP, Brazil

Abstract: Let Q_p denote the field of p-adic numbers. Let S be a zero-dimensional compact Hausdorff space and let $C(S; Q_p)$ be the Banach space of all continuous functions from S into Q_p equipped with the supremum norm. In this paper we prove a Weierstrass-Stone type theorem for subsets of $C(S; Q_p)$ and apply it to the problem of simultaneous approximation and interpolation.

Let S be a zero-dimensional compact Hausdorff space and let \mathbb{Q}_p be the field of p-adic numbers. Recall that \mathbb{Q}_p is the completion of the rational field \mathbb{Q} with the p-adic absolute value: $|0|_p = 0$, and if $x \in \mathbb{Q}$, $x \neq 0$, then $|x|_p = p^{-k}$, where $k \in \mathbb{Z}$ is such that $x = p^{-k}ab$, and a and b cannot be divided by p (p is a fixed prime number). We denote $C(S; \mathbb{Q}_p)$ the vector space of all continuous functions f from S into \mathbb{Q}_p , equipped with the topology of uniform convergence given by the supremum norm

$$||f|| = \sup\{|f(x)|_p; x \in S\}$$

for every $f \in C(S; \mathbb{Q}_p)$. In this paper we prove a Weierstrass-Stone type theorem for subsets of $C(S; \mathbb{Q}_p)$ which generalizes the results of Dieudonné [2]. In a forthcoming paper [5] we will extend our present results to the case of any non-Archimedean absolute valued division ring $(\mathbb{K}, |\cdot|)$.

Let us start recalling the definition of a multiplier of A, where $A \subset C(S; \mathbb{Q}_p)$. A function $\varphi \in C(S; \mathbb{Q}_p)$ is called a multiplier of A if $|\varphi(x)|_p \leq 1$, for all $x \in S$, and $\varphi f + (1 - \varphi)g$ belongs to A for every pair, f and g, of elements of A. The set M of all multipliers of A contains the constant functions 0 and 1, and moreover,

- (1) $\varphi \in M$ implies 1φ belongs to M;
- (2) $\varphi \in M$ and $\psi \in M$ implies $\varphi \psi \in M$.

A set M satisfying properties (1) and (2), and $|\varphi(x)|_p \leq 1$, for al $x \in S$ and $\varphi \in M$, is said to have **property** V.

We say that a subset $M \subset C(S; \mathbb{Q}_p)$ separates the points of S if given any two distinct points s and t of S, there is a function $\varphi \in M$ such that $\varphi(s) \neq \varphi(t)$. On the other hand, we say that M strongly separates the points of S if for every ordered pair $(s,t) \in S \times S$, with $s \neq t$, there exists $\varphi \in M$ such that $\varphi(s) = 0$, $\varphi(t) = 1$, and $|\varphi(x)|_p \leq 1$, for all $x \in S$.

The following result, known as Kaplansky's Lemma, will play a fundamental rôle in what follows. (See Proposition 1 below.)

Lemma 1. Let K be a compact subset of \mathbb{Q}_p and let $a \neq 0$ be given in \mathbb{Q}_p . There exists a polynomial q with coefficients in \mathbb{Q}_p such that q(0) = 0, q(a) = 1, and $|q(x)|_p \leq 1$ for all $x \in K$.

Proposition 1. If A is a unitary subalgebra of $C(S; \mathbb{Q}_p)$ which is separating over S, then A is strongly separating over S.

Proof. Let $(s,t) \in S \times S$ be given with $s \neq t$. Since a subalgebra is a vector subspace, A is a vector subspace containing the constants and therefore there is $a \in A$ such that a(s) = 1 and a(t) = 0. By continuity, the set K = a(S) is a compact subset of \mathbb{Q}_p . By Kaplansky's Lemma, there is a polynomial q such that q(1) = 1, q(0) = 0 and $|q(x)|_p \leq 1$, for all $x \in K$. The function $\varphi = p \circ a$ belongs to A and satisfies $\varphi(s) = 1$, $\varphi(t) = 0$ and $|\varphi(y)|_p \leq 1$ for all $y \in S$.

Lemma 2. Let $M \subset C(S; \mathbb{Q}_p)$ be a non-empty subset with property V, which contains the constant function 1 and is strongly separating over S. Let N be a clopen subset of S. For each $\delta > 0$, there is $\varphi \in M$ such that $||\varphi - \xi_N|| < \delta$, where ξ_N is the characteristic function of N, i.e., $\xi_N(t) = 1$ for all $t \in N$, and $\xi_N(t) = 0$ for all $t \notin N$.

Proof. If N=S, the constant function $\varphi(t)=1$, for all $t\in S$, satisfies our requirements. Assume $K=S\backslash N$ is non-empty. Fix $x\in S$, $x\not\in N$. For each $t\in N$, there is $\varphi_t\in M$ such that $\varphi_t(t)=0$, $\varphi_t(x)=1$ and $|\varphi_t(s)|_p\leq 1$, for all $s\in S$. By continuity, there exists a neighborhood W(t) of t such that $|\varphi_t(s)|_p<\delta$, for all $s\in W(t)$. By compactness of N, there are $t_1,\ldots,t_n\in N$ such that $N\subset W(t_1)\cup\ldots\cup W(t_n)$. Let

$$\varphi_x = 1 - \varphi_{t_1} \cdot \varphi_{t_2} \cdot \ldots \cdot \varphi_{t_n}.$$

Then $\varphi_x \in M$, $\varphi_x(x) = 0$ and $|1 - \varphi_x(t)|_p < \delta$ for all $t \in N$. By continuity, there exists a neighborhood W(x) of x such that $|\varphi_x(t)| < \delta$ for all $t \in W(x)$. By compactness of K, there are $x_1, \ldots, x_m \in K$ such that $K \subset W(x_1) \cup \ldots \cup W(x_m)$. Let $\varphi = \varphi_{x_1} \cdot \varphi_{x_2} \cdot \ldots \cdot \varphi_{x_m}$. Clearly $\varphi \in M$. We claim that

$$(1) |1 - \varphi_{x_1}(t) \cdot \ldots \cdot \varphi_{x_k}(t)|_p < \delta$$

for all $t \in N$, k = 1, 2, 3, ..., m. For k = 1, inequality (1) is clear. Assume

that (1) has been proved for k. Then, for each $t \in N$,

$$\begin{split} &|1-\varphi_{x_{1}}(t)\ldots\varphi_{x_{k+1}}(t)|_{p} = \\ &= |1-\varphi_{x_{k+1}}(t)+\varphi_{x_{k+1}}(t)-\varphi_{x_{1}}(t)\ldots\varphi_{x_{k}}(t)\varphi_{x_{k+1}}(t)|_{p} \\ &= |1-\varphi_{x_{k+1}}(t)+\varphi_{x_{k+1}}(t)(1-\varphi_{x_{1}}(t)\ldots\varphi_{x_{k}}(t))|_{p} \\ &\leq \max\{|1-\varphi_{x_{k+1}}(t)|_{p},\;|\varphi_{x_{k+1}}(t)|_{p}\cdot|1-\varphi_{x_{1}}(t)\ldots\varphi_{x_{k}}(t)|_{p}\} \\ &\leq \max\{|1-\varphi_{x_{k+1}}(t)|_{p},\;|1-\varphi_{x_{k+1}}(t)\ldots\varphi_{x_{k}}(t)|_{p}\} < \delta. \end{split}$$

This ends the proof of our claim (1). Making k=m, we get $|1-\varphi(t)|_p < \delta$ for all $t \in N$. On the other hand, if $t \notin N$, then $t \in K$ and $t \in W(x_i)$ for some $i=1,\ldots,m$. Hence $|\varphi_{x_i}(t)| < \delta$, while $|\varphi_{x_j}(t)| \le 1$ for all $j \ne i$. Hence $|\varphi(t)| < \delta$. This completes the proof that $||\varphi - \xi_N|| < \delta$.

Theorem 1. Let W be a non-empty subset of $C(S; \mathbb{Q}_p)$ such that the set of all multipliers of W separates strongly the points of S. Let $f \in C(S; \mathbb{Q}_p)$ and $\varepsilon > 0$ be given. The following are equivalent:

(1) there is some $g \in W$ such that $||f - g|| < \varepsilon$,

(2) for each $x \in S$, there is some $g_x \in W$ such that $|f(x) - g_x(x)|_p < \varepsilon$.

Proof. Clearly, $(1) \Rightarrow (2)$. Conversely, assume that (2) is true. For each $x \in S$, let

$$N(x) = \{t \in S; |f(t) - g_x(t)|_p < \varepsilon\}.$$

Then N(x) is a clopen neighborhood of x in S. By compactness of S there are x_1, x_2, \ldots, x_m in S such that $S = N(x_1) \cup N(x_2) \cup \ldots \cup N(x_m)$. Let

$$k = \max\{||f - g_{x_1}||, ||f - g_{x_2}||, \dots, ||f - g_{x_m}||\}.$$

Let N_2, N_3, \ldots, N_m be clopen subsets defined as

$$N_2 = N(x_2) \backslash N(x_1),$$

$$N_3 = N(x_3) \backslash (N(x_1) \cup N(x_2)),$$

$$\dots$$

$$N_m = N(x_m) \backslash \left(\bigcup_{j=1}^{m-1} N(x_j) \right).$$

Choose $\delta > 0$ so small that $\delta k < \varepsilon$. By Lemma 2, there are $\varphi_2, \varphi_3, \ldots, \varphi_m \in M$ such that $||\varphi_i - \xi_i|| < \delta$, where ξ_i is the characteristic function of N_i (i = 1)

2, 3,..., m). Define $N_1 = N(x_1)$ and

$$\psi_2 = \varphi_2,$$

$$\psi_3 = (1 - \varphi_2)\varphi_3,$$

 $\psi_m = (1 - \varphi_2) \cdot (1 - \varphi_3) \dots (1 - \varphi_{m-1}) \varphi_m.$

Clearly, $\psi_i \in M$, for all i = 2, 3, ..., m. Now

$$\psi_2 + \psi_3 + \ldots + \psi_m = 1 - (1 - \varphi_2) (1 - \varphi_3) \ldots (1 - \varphi_m).$$

Define $\psi_1 = (1 - \varphi_2) \ (1 - \varphi_3) \dots (1 - \varphi_m)$. Then $\psi_1 \in M$ and $\psi_1 + \psi_2 + \dots + \psi_m = 1$. Notice that $|\psi_i(t)|_p < \delta$ for all $t \notin N_i (i = 1, 2, \dots, m)$. This is clear for $i = 2, 3, \dots, m$, since $|\varphi_i(t)|_p < \delta$ for all $t \notin N_i$. On the other hand, if $t \notin N_1$, then $t \in N_j$ for some $j = 2, \dots, m$. Hence $|1 - \varphi_j(t)|_p < \delta$ and therefore $|\psi_1(t)| = |1 - \varphi_j(t)|_p \Pi_{j \neq i} |1 - \varphi_i(t)|_p < \delta$, because $|1 - \varphi_i(t)|_p \le 1$ for all $i \neq j$.

Let $g = \psi_1 g_1 + \psi_2 q_2 + \ldots + \psi_m g_m$, where we have written $g_i = g_{x_i} (i = 1, 2, \ldots, m)$. Then

$$g = \varphi_2 g_2 + (1 - \varphi_2) [\varphi_3 g_3 + (1 - \varphi_3) [\varphi_4 g_4 + \ldots + (1 - \varphi_{m-1}) [\varphi_m g_m + (1 - \varphi_m) g_1] \ldots]].$$

Hence $g \in W$. Let $x \in S$ be given. There is exactly one integer $1 \le j \le m$ such that $x \in N_j$. Then

$$|\psi_j(x)|_p \cdot |f(x) - g_j(x)|_p < \varepsilon$$

because $|\psi_j(x)|_p \leq 1$ and $N_j \subset N(x_j)$. For all $i \neq j$, we have $x \notin N_i$. Hence $|\psi_i(x)|_p < \delta$ and

$$|\psi_i(x)|_p \cdot |f(x) - g_i(x)|_p \le \delta k < \varepsilon$$

for all indices $i \neq j$. Hence

$$|f(x) - g(x)|_{p} = |\sum_{i=1}^{m} \psi_{i}(x)(f(x) - g_{i}(x))|_{p}$$

$$\leq \max_{1 \leq i \leq m} \{|\psi_{i}(x)|_{p} \cdot |f(x) - g_{i}(x)|_{p}\} < \varepsilon.$$

Let us recall the definition of the distance of an element $f \in C(S; \mathbb{Q}_p)$ from W:

$$dist(f; W) = \inf\{||f - g|| ; g \in W\}.$$

Theorem 2. Let W be a non-empty subset of $C(S; \mathbb{Q}_p)$ such that the set M of all multipliers of W strongly separates the points of S. For each $f \in C(S; \mathbb{Q}_p)$ there exists $x \in S$ such that

$$dist(f; W) = dist(f(x); W(x)).$$

Proof. If $\operatorname{dist}(f;W)=0$, then $\operatorname{dist}(f(x);W(x))=0$ for every $x\in S$. Suppose now that $\operatorname{dist}(f;W)=d>0$. By contradiction, assume that $\operatorname{dist}(f(x);W(x))< d$ for every $x\in S$. Hence, for each $x\in S$, there is some $g_x\in W$ such that $|f(x)-g_x(x)|_p< d$. Consequently, f and d>0 satisfy condition (2) of Theorem 1. By Theorem 1, there exists $g\in W$ such that ||f-g||< d, a contradiction, since $d=\operatorname{dist}(f;W)$.

Theorem 3. Let A be a unitary subalgebra of $C(S; \mathbb{Q}_p)$ which is separating over S. Then A is uniformly dense in $C(S; \mathbb{Q}_p)$.

Proof. Let W = A. Notice that every element $\varphi \in A$, such that $|\varphi(x)|_p \le 1$ for all $x \in S$, is a multiplier of W. By Proposition 1, the set M of all multipliers of W is strongly separating over S. Let now $f \in C(S; \mathbb{Q}_p)$ be given. By Theorem 2, there exists $x \in S$ such that

$$dist(f; A) = dist(f(x); A(x)).$$

Since A contains the constants, $A(x) = \mathbb{Q}_p$. Hence $\operatorname{dist}(f(x); A(x)) = 0$, and therefore $\operatorname{dist}(f; A) = 0$. This shows that A is uniformly dense in $C(S; \mathbb{Q}_p)$.

Corollary 1. (Weierstrass Theorem) Let S be a non-empty compact subset of \mathbb{Q}_p . For every $f \in C(S; \mathbb{Q}_p)$ and every $\varepsilon > 0$, there exists a polynomial q with coefficients in \mathbb{Q}_p such that $|f(x) - q(x)|_p < \varepsilon$, for all $x \in S$.

Remark. Theorem 3 and its Corollary 1 were proved by J. Dieudonné in 1944. (See Dieudonné [2].) In 1958, K. Mahler gave a constructive proof of Dieudonné's Weierstrass theorem (Corollary 1 above) for the case S is the

ring of p-adic integers $\{\lambda \in \mathbb{Q}_p ; |\lambda|_p \leq 1\}$. (See Mahler [3].) However, Mahler's proof is based on some properties of the cyclotomic extension of \mathbb{Q} . In 1974, R. Bojanic presented another proof of Mahler's result, which is entirely analytic. (See Bojanic [1].)

A non-empty subset $A \subset C(S; \mathbb{Q}_p)$ is called an interpolating family for $C(S; \mathbb{Q}_p)$ if, for every $f \in C(S; \mathbb{Q}_p)$ and every finite subset $F \subset S$, there exists $g \in A$ such that f(x) = g(x) for all $x \in F$.

Theorem 4. Let A be a uniformly dense linear subspace of $C(S; \mathbb{Q}_p)$. Then, for every $f \in C(S; \mathbb{Q}_p)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. Let $F = \{x_1, \ldots, x_n\}$. Let $\mathbb{K} = \mathbb{Q}_p$. Define a linear mapping $T: C(S; \mathbb{K}) \to \mathbb{K}^n$ by

$$Tg = (g(x_1), \ldots, g(x_n))$$

for each $g \in C(S; \mathbb{K})$. By density of A and continuity of T, we have

$$T(C(S; I\!\!K)) = T(\overline{A}) \subset \overline{T(A)}.$$

Now T(A) is a linear subspace of \mathbb{K}^n and therefore T(A) is closed. Hence

$$T(C(S; \mathbb{K})) = T(A)$$

and A is an interpolating family for $C(S; \mathbb{K})$. Therefore a_1, \ldots, a_n can found in A such that

$$a_i(x_j) = \delta_{ij}$$
 , $1 \le i, j \le n$.

Choose $\delta > 0$ so that $\delta < \varepsilon$ and $\delta k < \varepsilon$, where $k = \max\{\|a_i\| : 1 \le i \le n\}$. By density of A there is some $g_1 \in A$ such that $\|f - g_1\| < \delta$. Let

$$v_i = f(x_i) - g_1(x_i)$$
 , $1 \le i \le n$.

Define $g_2 = \sum_{i=1}^n v_i a_i$. Then $g_2 \in A$ and $g_2(x_j) = v_j$ for all $1 \le j \le n$. Finally, let $g = g_1 + g_2$. Then $g \in A$ and $g(x_j) = f(x_j)$, $1 \le j \le n$. Moreover,

$$||f - g|| \le \max(||f - g_1||, ||g_2||) < \varepsilon,$$

since $||f - g_1|| < \varepsilon$ and $||g_2|| \le \delta \max\{||a_i||; 1 \le i \le n\}$.

Corollary 2. Let A be a unitary subalgebra of $C(S; \mathbb{Q}_p)$ which is separating over S. Then, for every $f \in C(S; \mathbb{Q}_p)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. By Theorem 3, A is a uniformly dense linear subspace of $C(S; \mathbb{Q}_p)$. It remains to apply Theorem 4.

Theorem 5. Let $A \subset C(S; \mathbb{Q}_p)$ be an interpolating family for $C(S; \mathbb{Q}_p)$ such that the set of multipliers of A strongly separates the points of S. Then, for every $f \in C(S; \mathbb{Q}_p)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A \text{ such that } ||f - g|| < \varepsilon \text{ and } f(x) = g(x) \text{ for all } x \in F.$

Proof. Let $W = \{g \in A : f(x) = g(x) \text{ for all } x \in F\}$. Since A is an interpolating family, $W \neq \emptyset$. Notice that every multiplier of A is also a multiplier of W. Let $x \in S$ be given. Consider the finite set $F \cup \{x\}$. Since A is an interpolating family for $C(S; \mathbb{Q}_p)$, there exists $g_x \in A$ such that $f(t) = g_x(t)$ for all $t \in F \cup \{x\}$. Therefore $g_x \in W$. Notice that $|f(x)-g_x(x)|_p=0<\varepsilon$. By Theorem 1 there exists $g\in W$ such that $||f-g|| < \varepsilon$. Notice that $g \in W$ implies $g \in A$ and f(x) = g(x) for all $x \in F$.

Corollary 3. Let A be the set of all functions $g \in C(S; \mathbb{Q}_p)$ of the form

$$g(x) = \sum_{i=1}^{n} \varphi_i(x)a_i, \quad x \in S,$$

where φ_i is the characteristic function of some clopen subset $K_i \subset S$; $a_i \in$ \mathbb{Q}_p ; $i=1, 2, \ldots, n$, and $n \in \mathbb{N}$. Given any $f \in C(S; \mathbb{Q}_p)$, any $\varepsilon > 0$ and any finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. Clearly, A is an interpolating family for $C(S; \mathbb{Q}_p)$, admitting all characteristic functions of clopen subsets of S as multipliers. It remains to apply Theorem 5. Or else reason as follows: A is a unitary subalgebra which is separating over S and apply Corollary 2.

References

- [1] R. BOJANIC, A simple proof of Mahler's Theorem on approximation of continuous functions of a p-adic variable by polynomials, J. Number Theory 6 (1974), 412-415.
- [2] J. DIEUDONNÉ, Sur les fonctions continues p-adiques, Bull. Sci. Math. 68 (1944), 79-95.
- [3] I. KAPLANSKY, The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356-357.
- [4] K. MAHLER, An interpolation series for continuous functions of a p-adic variable, J. reine angewandte Math. 199 (1958), 23-24 and 208 (1961), 70-72.
- [5] J. B. PROLLA, On the Weiertrass-Stone Theorem in absolute valued division rings, to appear.

RELATÓRIOS TÉCNICOS — 1991

- 01/91 Um Método Numérico para Resolver Equações de Silvester e de Ricatti Vera Lucia da Rocha Lopes and José Vitório Zago.
- 02/91 "Regge-Like" Relations for (Non-Evaporating) Black Holes and Cosmological Models Vilson Tonin-Zanchin and Erasmo Recami.
- 03/91 The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force Equation J. R. Zeni and Waldyr A. Rodrigues Jr.
- 04/91 Tensornorm Techniques for the (DF)-Space Problem Andreas Defant and Klaus Floret.
- 05/91 Nonreversibility of Subsemigroups of Semi-Simple Lie Groups Luiz San Martin
- 06/91 Towards a General Theory of Convolutive Sets (With Applications to Fractals) Jayme Vaz Jr.
- 07/91 Linearization of Holomorphic Mappings of Bounded Type Jorge Mujica.
- 98/91 Topological Equivalence of Diffeomorphisms and Curves M. A. Teixeira.
- 09/91 Applications of Finite Automata Representing Large Vocabularies Cláudio L. Lucchesi and Tomasz Kowaltowski.
- 10/91 Torsion, Superconductivity and Massive Electrodinamics Cartan's Torsion Vector and Spin-0 Fields — L. C. Garcia de Andrade.
- 11/91 On The Continuity of Fuzzy Integrals G. H. Greco and R. C. Bassanezi.
- 12/91 Optimal Chemical Control of Populations Developing Drug Resistance M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.
- 13/91 Strict Monotonicity of Eigenvalues and Unique Continuation Djairo G. de Figueiredo and Jean-Pierre Gossez.
- 14/91 Continuity of Tensor Product Operators Between Spaces of Bochner Integrable Functions Andreas Defant and Klaus Floret.
- 15/91 Some Remarks on the Join of Spheres and their Particular Triangulations — Davide C. Demaria and J. Carlos S. Kiihl.
- 16/91 Sobre a Equação do Telégrafo e o Método de Riemann L. Prado Jr. and E. Capelas de Oliveira.
- 17/91 Positive Solutions of Semilinear Elliptic Systems Ph. Clément, D. G. de Figueiredo and E. Mitidiere.
- 18/91 The Strong Coupling Constant: Its Theoretical Derivation from a Geometric Approach to Hadron Structure Erasmo Recami and Vilson Tonin-Zanchin.

- 19/91 Time Analysis of Tunnelling Processes, and Possible Applications in Nuclear Physics Vladislavi S. Olkhovsiky and Erasmo Recami.
- 20/91 Procedimento, Função, Objeto ou Lógica? M. Cecília Calani Baranauskas.
- 21/91 The Relation Between 2-Spinors and Rotations W. A. Rodrigues Jr. and J. R. Zeni.
- 22/91 Boundaries for Algebras of Analytic Functions on Infinite Dimensional Banach Spaces R. M. Aron, Y. S. Choi, M. L. Lourenço and O. W. Paques.
- 23/91 Factorization of Uniformly Holomorphic Functions Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 24/91 Métrica de Prohorov e Robustez Mario Antonio Gneri.
- 25/91 Cálculo de Funções de Green para a Equação de Schrödinger pelo Método de Expansão Tipo Sturm-Liouville — L. Prado Jr. and E. Capelas de Oliveira.
- 26/91 On the Weierstrass-Stone Theorem João B. Prolla.
- 27/91 Sull'Equazione di Laplace nell'Universo di De Sitter E. Capelas de Oliveira and G. Arcidiacono.
- 28/91 The Generalized Laplace Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 29/91 The Projective D'Alembert Equation E. Capelas de Oliveira and G. Arcidiacono.
- 30/91 The Generalized D'Alembert Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 31/91 A General Algorithm for Finding the Minimal Angle between Subspaces Alvaro R. De Pierro and Alfredo N. Iusem.
- 32/91 Scalar Curvature on Fibre Bundles Maria Alice B. Grou.
- 33/91 Sur la Dimension des Algèbres Symétriques Rachid Chibloun, Artibano Micali et Jean Pierre Olivier.
- 34/91 An Inverse Column-Updating Method for Solving Large-Scale Nonlinear Systems of Equations José M. Martínez em Mário C. Zambaldi.
- 35/91 Parallel Implementations of Broyden's Method Francisco A. M. Gomes and José M. Martínez.
- 36/91 Equivalência Elementar entre Feixes A. M. Sette and X. Caicedo.
- 37/91 Unique Ergodicity for Degenerate Diffusions and the Accessibility Property of Control Systems Luiz San Martin.
- 38/91 Unobservability of the Sign Change of Spinors Under a 2π Rotation in Neutron Interferometric Experiments — J. E. Maiorino, J. R. R. Zeni and W. A. Rodrigues Jr.
- 39/91 Disappearance of the Numerically irrelevant Solutions (NIS) in Non-Linear Elliptic Eigenvalue problems — Pedro C. Espinoza.
- 40/91 Positive Ordered Solutions of a Analogue of Non-Linear Elliptic Eigenvalue Problems Pedro C. Espinoza.
- 41/91 On von Neumann's Variation of the Weierstrass-Stone Theorem João B. Prolla.

11

- 42/91 Representable Operators and the Dunford-Pettis Theorem Klaus Floret.
- 43/91 Simultaneous Approximation and Interpolation for Vector-Valued Continuous Functions João B. Prolla.
- 44/91 On Applied General Equilibrium Analysis José A. Scaramucci.
- 45/91 Global Solutions to the Equations for the Motion of Stratified Incompressible Fluids José Luiz Boldrini and Marko Antonio Rojas-Medar.
- 46/91 A characterization of the set of fixed points of some smoothed operators Alfredo N. Iusem and Alvaro R. De Pierro.
- 47/91 Lyapunov Graphs and Flows on Surfaces K. A. de Rezende and R. D. Franzosa.
- 48/91 On the Multiplicative Generators of Semi-Free Circle Actions J. Carlos S. Kiihl and Claudina Izepe Rodrigues.
- 49/91 A Priori Estimate and Existence of Positive Solutions of Nonlinear Cooperative Elliptic Equations Systems Marco Aurelio S. Souto.
- 50/91 On a Class of Theories of Mechanics Part I Jayme Vaz Jr.
- 51/91 Complexification of Operators Between Lp-Spaces Klaus Floret.
- 52/91 Function Spaces and Tensor Product Raymundo Alencar.
- 53/91 The Weierstrass-Stone Theorem in Absolute Valued Division Rings João B. Prolla.
- 54/91 Linearization of Holomorphic Mappings on Infinite Dimensional Spaces Jorge Mujica.
- 55/91 On The Velocity Independent Potentials E. A. Notte Cuello and E. Capelas de Oliveira.
- 56/91 Simultaneous Approximation and Interpolation in p-Adic Analysis João B. Prolla.