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Abstract 
ln this paper we discuss the foundations of Mechanics based on 

the concept of convolutive sets. We show that there exist an infinity 
of expressions for the action which satisfy the laws of Mechanics. It 
follows that it is possible to formulate a general class of theories of 
Mechanics, of which the Classical Mechanics is only one particular 
example. We discuss how to formulate these theories, leaving their 
explicit construction for another paper . Among such theories there 
is one that is formally identical to Quantum Mechanics but does not 
involve the concept of probability. 

1 Introd uction 
Mechanics is the part of Physíc.c; that studies motion t.hrough the formulation 
of a physical theory. We shall see that this is not just a trivial sentence: 
indecd , the essence of thc prcsent paper is to understand what that definition 
of Mcchanics does mean. The problcms we meet are tha.t, in order it to 
makc> sense, the concepts of motion and physical theory should already bC' 
defined; but they entail delicatc questions: especially the concept of motion. 
A satisfactory definition of a physical thcory can be given (sec.3), but that 
of motion deserves a careful discussion. Thus, we can properly say that the 
objective of this paper is to understand the meaning of: 

Ph.D . student in Applied Ma.thematics 
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Definition 1 Mechanics is the part of Physics tha.t studies motion through 
the formulation of a. physical theory. 

The reality of motion has a.lways been an object of intense philosophical 
inquiry, especially at the time of the Greek philosophers. To quote two 
well-known examples, there are the views of (a) Heraclitus, according to 
whom the "kinesis" fills the entire reality, and (b) Parménides, defended 
by Zeno through his four arguments , according to whom there is no reality , 
in the motion. Nowadays the interest on this question remains, mainly, 
for physicists. One reason is the advent of Quantum Mechanics and the 
debate about its interpreta.tion. Even for those physicists to whom the , 
philosophical questions arising from the reality of motion present no interest, 
the question "what is motion" has a fundamental importance. ln fact, an 
objective answer to that question has to be given since the study of a not 
well-defined object is questionable. 

Several related topics are discussed in sec.2. Some ideas discussed in 
a. previous work (Il are widely used, mainly the ones of conjunctive and 
convolutive seis. Definitions are given in order to disentangle some con-
cepts involved in the notion of motion (particularly those concerning the 
dynamical variables and the independent variables) and of its spacetime 
representation. Next, we ask about the nature and the properties of rnotion 
(which are the basic questions of Mecha.nics according to def.l) and search 
for answers in the la.ws of Mecha.nics. The conclusion that there is not a 
uníque a.nswer to these questions (sec.3) is one consequence of our approach. 
Rather than disappointing, this is indeed a welcome fact and we exploit it 
accordingly. 

ln fact, wha.t we do is to sea.rch for an expression for the action such that 
it satisfies our formulation of the law of Mechanics as a kind o[ va.ria.tional 
principie. This is a crucial step and accordingly we do not start with a 
definition of the action as the time integral o[ the lagrangian ( the action 
functional) for a given path (more on this issue is discussed in sec.4). Since 
a price has to be paid in order to get a.dvantages, it is necessary to use some 
quantities which do not have a. standard denomination in the literature. We 
try to avoid confusions whenever they can arise, by calling attention to the 
different mathematical nature of the objects we consider. 

From our approach it naturally emerges the possibility of formula.ting 
a.n infinity of other theories of Mechanics besides the Classical one: i.e., 
we have a class of theories of Mechanics. These are interpreted according 
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to [l] and once wc define conjunctive dynarnics and convolutive clynamics we 
see that Classical Mechanics describes the former while the other theories, 
called Generalized Mechanics, describe particular cases of the latter (sec .. 5). 

\Ve discuss also in this paper how to formulate this general class of 
theories of Mcchanics, leaving the cxplicit construction for another paper !21. 
Thcn thc:> real importance of our formulation of the Generalized Mechanics 
does appear: there exists one theory amoug thcse that is formally idcntical 
to Quantum Mechanics but does not involve the concept of probability. 
Then, we discuss the relation between Gencralizcd Mechanics an<l Quantum 
Mechanics. Ref. [1] provides thc basis for this paper and !2]. These works, 
and the inspiring one of Bernardes [31, put in evidcnce the generality of tht=> 
idea of convolutive sets [11, according to which they are interpreted. 

2 What is Motion ? Some Definitions and 
a Question 

The first thing about motion that we naturally have in mind and ask is: 
motion of what? Roughly speaking, motion is a translation of bodies in 
space. Therefore, if there is a motion then there exists some kind of system, 
for example a body, which is in motion. This naive conception of motion 
could work for some purposes, but physicists cannot be satisfied with it. 
The problem is not whether it is or not general enough to include other 
situations wc would like to see included (such as propagation of wave;, flow 
of energy, etc.), but that of (dangerously) drawing a too simple picture of 
motion from this conceµtion. 

The rclation between the concepts of motion and system can be said 
to be of the ·'chicken and egg" type. ln fact. the dichotorny betwecn lhe 
motwn and lhe system is not justifiable, except at the linguistic levei. We 
can easily see that one supposcs the other, and vice-versa, looking at the 
following two simple situations: ( a) when we say that there exists a motion 
we believe that therc exist.s a system which is in motion; (b) when we say 
that there exists a systern for exarnple, a body, we believe that, once we 
are looking at it, we can close our eyes and at a later time open thern and 
still find this system, and in doing this we suppose the motion in the sense 
that this body is cither at rest, which is a particular state of the motion, 
or in another state of motion. A reasoning like the latter is used explicitly 
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in particle physics where we infer the existence of particles from tracks in 
bubble chambers. Bohm [4] has already recognized this "chicken and egg" 
problem and discuss it through what he calls the holomovement. A general 
discussion involving the presence of "chicken and egg" problems in scientific 
topics is provided by Bernardes [5]. 

On the other hand, even being this dichotomy unjustifiable, it must be 
respected. One of the consequences of the "scientific analysis" method is 
the use of a language based on the concepts of noun and conjunction, i.e., 
the ordinary language. Motion and system are nouns, which means that 
they are entities of autonomous conceptual existence. It must be clear that 
(a) being diíferent nouns does not mean that thcy are unrelated, and (b) be-
ing different nouns implies that to them thcre must be ascribed different 
adjectives ( the adjectives qua.lify the nouns ). The use of this terminology 
( due to Bernardes and already used in [ll, and which is, in our opinion, very 
intuitive and directly related to the linguistic nature of the problem [51) can 
be made clear by another sirnple example: wine and grape are dífferent 
nouns and have autonomous conceptual existence; to them there is room 
for different adjectives, for example, a dry wine, a rotten grape, etc., and 
they are related, since wine is made from the fermented juice of grapes. ln 
other words [l], we are considering the terms motion and system and not the 
va.lues that each term has [5]. ln any case, what mat ters is to understand 
that once (a) there exists a kínd of "cyclic" relation between motion and 
systern, and (b) both concepts ha.ve a.utonomous existence, then one of thern 
must be taken as the primitive one. Which one of these concepts is to be 
taken as the primitive one is somewhat arbitrary, i.e., we think that it just 
is a matter o{ choice, since what could be classified as "real" is the relation 
between them1 . Bohm [41 supposes the motion, or better speaking, bis more 
general notion of holomovement, as the primitive notion (" . . . the holo-
movement is undefinable ... ") and the system as an aspect of it (" ... the 
word "electron" should be regarded as no more than a name by which we 
call attention to a certain aspect of the holomovement ... "). We adopt a 
different view. ln any case, what matters is to understa.nd the "wholeness" 
of the situation and, once we take one concept as primitive, we define the 

1 It is appropriate to say that, in a general case, the process of category formation is 
not so simple, and that categorization involves both an arbitrary and a phenornenological 
aspect (see ref.[7]). However, the nature of this process does not matter to our purposes 
and is beyond our interests. 
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other and close thjs kind of vicious circle. 
We consider the concept of syslem as a primitive notion. By system we 

mean particles and fields, that is, physical systems, but since the consider-
ation of fields can be naturally dane once we understand that of particles, 
we consider throughout this paper only particles and for simplicity only one 
particle. The consideration of the concept of system as a prirnitive notion 
is in accordance with our íntuitive conception of motion as translation of 
bodies in space. But for a first account of what is motion we need another 
eJernent. This is a spacetime theory [sJ_ 

ln arder to put this explicitly: let us consider in more detail thc idca of 
the motion. Motion comes t.o mind through an a.ct o( perception [11 from 
an observer in a reference frame and is realized when, excluding obvious 
exceptions easily considered, in Lhe sarne reíerence frame a given body is 
in different positions at different times. Thus, the definition of moti011 first 
requires the underst,anding of wha.t. is an observer. a reference frame and 
space and time, i.e., we need a spacelime theory. Once we accept a model 
for a spacetime theory, aU these concepts are well-defined. Each of these 
models contaíns a structure ca.lled spacetime, which consists of a Hausdorff, 
connected, paracompact 4-dimensíonal real manifold and geometrical ob-
jects (for example, the metric field) defined in this ma.nifold characterizing 
its geometry. ln all spacetime theories. including the newtonian theory of 
space and time, an observer is a timelike curve pointing to the future and 
a reference frame is a timelike vector field such that each one of its integral 
lines is an observer. More details can be found in (s]_ Since we will not 
consider in this paper the rela.tivist.ic case, we a<lopt as a model for space-
tirne the galilean spacetime f9l which is an affine manifold. It can be viewed 
as a fiber bundle (ioJ with fil as the base space, JR 3 as the typical fiber 
and Galilei group as the structurai group. These considerations provide the 
precise definitions we need for the above concepts. 

Now, to make our ideas work, we must take care of and note the fact 
tbat two different nouns are involved in that act of perception, that is, the 
motion and the system. These are different nouns and, even being re1ated, 
we must respect this difference when we discuss the attributes of a noun. 
This is the requirement of linguistic nature already discussed [i.5]_ ln order 
to put this down explicitly, let us denote motion by ;v( and system by S. 
ln [l] we saw that if 1r is a property of a nouni then 1r(noun) is an adjective 
that defines a state of tbis noun. Since we have here two different nouns, 
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we state: 

Definition 2 Let 7rM be a property of the motion (M) and µ a mea-
sure l1l. We ca.11 ;rM(M) a state of the motion and the state variable (i] 
eM = eM(M) =µo 7rM(M) a. dynamical variable (DV). 

Definition 3 Let 1Cs be a property of the system (S) and µ a measure. We 
call 1rs(S) a state of the system a.nd the state variable es = es(S) = µ01rs(S) 
an independent variable (IV). 

Definition 4 Let 1rlt, ... ,,rM be the set (a conjunctive 11] set)2 of all the 
properties of motion (possibly a.n infinity) and J(i) : V IR certain map-
pings (i = 1, ... , n) (V is a set that is to be defined). We say that the 
dynamics of motion is given when it is given an element T E 1) (that de-
fines lhe state of motíon) such that eit = µ o 1rk(M) = J(i)(T), i.e., T 
qualifies completely the noun motion. 

Definitions 2 and 3 satisfy our linguistic requirement of giving different 
names to different things. The relation between these definitions and our 
usual notions of DV and IV is easily seen ( and will be clarified in what 
follows). The use of the adjectives dynamical and independent are justified 
in each case. ln the former we are considering a concept related to change 
and in the latter a concept which we choose as primitive and basic. This 
agrees with our intuitive ideas. Whatever relation may exist between them, 
it must be found ]ater and not be imposed a priori. The role of def.4 
will become clear !ater (and specially in 121). Note that T instead of being 
defined an element of V could be defi.ned as a minimal set, if it exists, 
of DV ek, (j = 1, ... , k)(k < n), and that it remains to define the set V in 
def.4. However, the na.ture of this set is a particularity of a given theory of 
Mechanics ( def.10), as we will see. 

Remark 1 Before we continue, a brief digression is useful. ln 111 we have 
defined a measurable property and, according to this, DV and IV are mea-
surable properties. But (since there are very interesting points 14] involving 
the etymological root of the word "measure") to avoid confusions we must 
once and for all say what it mea.ns here. So, to define a measure we need 
to define a measurement [t]. According to that definition of a measurement, 

2Whenever we write set we mean a conjunctive set. 
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it could be not only a ('true" measurement - in the physical sense of an 
interaction between what is to be measured and a measuring apparatus -
but in the case of a "true" measurement any two ones must give the sarne 
result [obviously, in these two ones what is to be measured is supposed to be 
prepared in the sarne way and the measurement ís supposed to be an ideal 
one (no experimeutal crrors) and made under thc samf' conditions]3 . We did 
not need this distincLion in (ll, but here it is necessary in order to formula.te 
a physical theory. ln the scnse of [Il a mcasurable propert) can propcrly be 
sai d to be an enumerable properLy anel measuring is to "ennmernte" ( tha.t 
is) to ascribe numbers). According to that sense, it is not nccessary for a 
rneasurable property to satisf y the condi tion that any two measures give 
the sarne result: but this is necessary for a physical property4. To set up 
this distinction we state 

Definition 5 Let 1r be a measurable property and µ1 and µ2 any two mea-
sures. If µ1 o 1r = µ2 o 1r then 1r is called an observable property ( non-
observable property otherwise) and the state variable µ o 1r = µ1 o 1r = µ2 o 1r 
an observable. 

From this definition it follows the obvious propositíon: If 1r1 and 1r2 are 
observables propertíes and for given measures JL; and µ3 we have ;i1 o 71' 1 = 
µ; o 1r2 , then 1r1 and 1r2 are the sarne observable property. The proof follows 
from def.5 and that of a measure as a bijection [l)_ '.'Jote that ;i1 and flJ are 
measures that are made using the same measuring apparatus and on the 
same objecL 

3This st.atement needs a brief explanation. A scientific fact rcquires objectivity and 
reproducibility to be recognized as such. This means that, once we are studying a 
scientific facl, any two measures of fl. related quantity must a priori be equal. The 
differences that eventually appear in different results are in practice due to experimental 
errors (beca.use of severa! reasons like noise and finite size of ihe measuring apparatus [11). 
However, what matters is the belief that the sources of these errors are nol in what is 
being measured; because, if this is the case, then it is not a scientific fact, according to 
the above criteria. Thus, that statement follows. 

40{ course, it must be defined what is meant by a physical property. ln order to avoid 
unnecessary (for our purposes) discussions about the nature of a physical property (and 
thus of physical reality, which is the question at the basis of the Bohr-Einstein debate) we 
mean by a pbysical property simply a property which can be studied by means of Physics 
and is thus constrained to satisfy the requirements of objectivity aod reproducibility of 
a scientific fact. 
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N ow, we look for the relation between 1r M and 1r 5 or between ÇM and 
ç5. This relation exists, because there is a relation between M and S as ex-
pressed by the above act of perception. We need, however, sornething more 
polished for our purposes. A full arrangement of this idea will naturally 
yield our demanded relation. For what follows, in a coordinate representa-
tion 1101, a point of the galilean spacetime is written as (t, x) E IR x IR3. 

Definition 6 Let 1r5 = x be the property of S of having a location in space, 
the IV x =µo x(S) be its position, t a parameter and x1 be the position of 
S at instant t. Let the proposition x10 (S) = x[ be true, where x[ E IR3 is 1 

the numerical value of x. If for an instant t > t0 the proposition x 1(S) = xt 
is false, then we say that a motion (M) occurred. If for this t, say tn, 
Xtn (S) = x!, we write5 M = { n, O}(S) for a motion between t0 and tn. 

Def.6 is valid for any S. Then we may consider M independently of 
S and def. 6 as a "representation" of M. This is a very important point 
since with it a general theory of M (which is the objective of Mechanics 
- def. l) can be forrnulated wi th no reference to S except for the spacetime 
representation of M given by def.6 - that is, we can represent motion in 
spacetime - and also because this fits the points above discussed concern-
ing M and S. Def.6 also exhibits a representation of M in the so called 
( extended) configuration space, which proves to be very natural and con-
venient, specially when we have other degrees of freedorn besides the three 
translational ones considered in this paper. The configuration space U is a 
differentiable manifold whose dimension is equal to the number d of degrees 
of freedom of the systern. When time is included, we have the extended 
configuration space V = U x IR. ln this paper we have d = 3 degrees of 
freedom, U = JR3 and V= JR3 x IR= m3+1. 

Now, remember that t is a varying continuous para.meter. ln order to 
simplify the notation and the ideas th.at follow, we will consider t as a 
discrete para.meter t, (i E JN), and take the continuum limit at the end of 
the results. Also, instead of def.6, it is better to consider 

Definition 7 Let M be the set {{i,j}(S) 1 i,j E JN, i f-j, all S}, called 
the motion. By a spacetime representation of M we mean a bijection R(S) : 

5From now on, we will omit the superscript # on z and the reference to S on { n, O} 
whenever no confusion arises. 
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M --+ V x V (here R(S) M --+ JR3+1 x JR3+1 ), {i,j} 1-t R{i,j} 
(xi, tjj Xj, ij)-

Now, given {n, O} EM and {1 1 O}, {2, IL ... 1 {n, n-1} E M and accord-
ing to the principle of fragmentation (PF) (see [l) and references therein) 
the set {n, O} can be described by its element,s {1, O}, ... 1 { n, n - 1}, i.e., 

{ n, O} = [ { 1, O}, { 2, 1}, ... , { n, n - 1}]. 

The question that must be put forth , according to 111, is then: 1s the 
set {n,O} a conjunctive sel. {n.O} = UZ::6{k + l,k}: ora convolutivc set. 
{ n, O} = *k:6 { k + 1. k} ? According to [iJ, the answer depends on the prop-
erty which we are consiclering. If we denote this property by 1r, then it must 
be clear tha.t we want to describe 1r { n, O} by defining it from 1r { 1, O}; 1r{2, 1} . 
. . . , 1r { n, n - l} (it musL be stressed that we do not know beforehand the 
expression for 1r{n,O}) and that it is 1r{l,0},1r{2,l}, ... ,ir{n,n- l} that 
are already defined (because they are related to the properties of the system 
whose notion is taken as the primitive one)6 . ln the case of a conjunctive 
set relative to 7f, we have (!Lo 1r){n,O} = Lk;~(µ o 1r){k + 1, k}, while for 
a convolutive set relative to 1r this equality does not hold: (p o 1r){n,O} ::J. 
I:~J (µ o 1r) { k + l, k}. This is discussed in more details in the next section . 

3 The Laws of Mechanics and "the Answer" 
There are severa] formulations of the laws of Mechanics. of which the most 
beau tiful are expressed in t.erms of a variational principJe. However, it is 
not this "anthropomorphic'' charact.er that makes the variational principie 
more useful or importanL It is beca.use of its relation to the representation 
of a motion that we consider a variational principie as the expression of the 
laws of Mechanics. Furthermore, and this is a crucial step, we only suppose 
that there exists a variational principie, searching for it by rneans of general 
considerations. The reasons why we doso will become clear in what follows. 

ln order to fix notations 1 let us consider functions f : M - IR such that 
f = f o n- 1 : V x V --+ IR, (xi, ti; Xj, ti) 1--+ J(x;, ti; xi, ti)- If instead of x; 

6 An illustrative examp!e of what we are meaning by this is given by the way we show 
that fractal sets are an example of convolutive sets in Ref.[l]. 
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and x; we ha ve diff erent values x~ a.nd xi, we can define f h ( x;, t;; x;, t;) = 
f(x, + h;, t;; x; + h;, t;), h = (h;, h;) = (x~ - x;, xi - x;), and 

!)..fh(X;, t;; Xj, t;) = (jh - /)(x;, t;j x;, t;) = Íh(x;, t;; Xj, t;) - f(x;, t;; Xj, t;). 

The differential of f, denoted by df, is the linear part of 6.f h, i.e., 
(a E IR) 

dfh1+ah2 (x;, ti; x;, t;) = dfh1 (x;, t;; x;, t;) + cxdfh-i (x;, t;; x;, t;). 

This definition is easily generalized to functions frorn Banach spa.ce into 
another Banach space 1101: for example, J : JRm - .m.n; but for our purposes 
we need to consider only functions with values in IR or (C. 

Let h = ( x~ - Xn, x~ - x0) and such that h = O rneans that the va.lues of 
Xn and x0 are given and fixed. Therefore, we sta.te 

Postula te 1 (The Laws of Mechanics) Let there be a. motion hetween 
x0 at t0 and Xn at tn, i.e., { n, O} E M, which according to the PF ca.n be 
described by its elements {k + 1, k }(k = O, 1, ... , n - 1). Then there exists 
a non-observable property of motion A : M - (C, ca.lled the <C-action ( or 
the <E-principal Junction), such that: 

(i) for the set {n,O} a.nd {n,O} 1-+ A{n,O} it holds: 

dA{n,O} lh=o=O; 

(ii) for the elements {k + 1, k} and {k + 1, k} 1-t A{ k + 1, k} it holds: 

A { k + 1, k} = iI { k + 1, k} , 

where I is the IR-action such that: 

where f1c is the value assumed in a point x~ between x1c and xk+ 1 by 
a continuous function which characterizes the system, and µ(6.t1c) is 
the measure of the interval 6.t1c = t1c+1 - t1c. 
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It is importa.nt to note tha.t, beca.use the action is not an observable 
property, it does not need to be .lR-va.lued (whenever no confusion arises, 
we call the <X-action simply the action - more on this issue is discussed in 
rema.rk 4). Note that it is the .lR-valued action of the elements {k + 1, k} 
that we define by relating it to the properties of the system. The use of a. 
<X-valued action instead of a JR-valued one in condition (ii) is a matter of 
convenience. On the other hand, we have not defined an expression for the 
<X-valued action of { n, O}. Our objective is to find such an exp1'ession for 
A{ n, O} from the ones of A{ k + 1, k} and such that A{ n, O} satisfies the 
condition (i) above. 

The postulate 1 follows the spirit of the scientific analysis method as 
discussed in [11. We suppose the fragmentation when we "break" { n, O} into 
its parts {l, O}, ... , {n, n -1} and analysis when we study these parts and 
their relationship. Now , the question of last section can be reformulated as: 

Question 1 Rela.tive to the action A, is the set 

{n,0} = [{l,0},{2,1}, ... ,{n,n - l}) 

a. conjunctive set or a convolutive set ?7 

ln other words, we want to know how to write A{n,0} from A{l,O}, 
A{2,l}, ... ,A{n,n- l}. 

First, let us consider A= Aon- 1 , A{n,0} = A(xn, ln; x0 , t 0 ) = A(n,O), 
A{k + 1, k} = A(xk+i , tk+l; Xk, tk) = A(k + 1, k), (k = O, 1, . . . , n - 1). 
Note that only the values Xn and x0 are given a.nd fixed , the other va.lues 
x1 , x2, ... , Xn-l are not yet defined. So, in general we write the ansatz 

A(n, O) = F 1 (0[1 , . .. , n - 1) (Fz (w[A(l, O), A(2, 1), ... , A(n, n - l)]))) , 

where O[l, ... , n- 1] is an opera.tion - to be defined - acting over the values 
of x1, . .. , Xn-t that tells us which values are to be chosen (for exarnple, take 
X1 = l 0,x2 = 21, ... ,Xn-1 = 2 or take Xk = +1 or -1 if k is odd or even. 
etc.); and where F i, F 2 and w are functions, which are also to be defined. 
Note that they must be regarded as parts of a whole operation W[l, ... , n-1]. 
Note also that 

w[A(L 0), A(2,l), ... , A(n, n - 1)] = 
71n ref.( l) we have defi ncd co njunctive and convoJutive sets only in relation to JR-

valued properties. llowever, the generalization to <r-valued properties 1s t riv ial. 
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= w[A(xi, t1; Xo, to), A(x2, t2; X1, t1), ... , A(xn, tn; Xn-t, tn-1)) = 
= w[A'(xo, Xi, •.. , Xn)) = w[A(xo, X1, ••• , Xn)), 

that is, in the limit t --t O we have a functional8 A[,], where , : IR 3 
[to, tn) --t U, t ._. x(t) 1 x(to) = Xo and x(tn) = Xn. It is important to 
bea.r in mind that the above expression for A( n, O) is only a convenient 
way of writing the dependence of A(n,O) on A(l,O), .. . ,A(n,n -1). This 
convenience will become clear later (see Remark 3, which explains why we 
explicitly consider the functions :F2 and w, instead of only one function that 
plays the role of the composite function :F2 o w). 

We expect however the operation O[l, ... , n - 1) and the functions :F1, 

:F2 and w to be not completely arbitrary. One immediate consequence of 
the hypothesis of homogeneity of space is that the operations over each 
x1, ... , Xn-l must be the sarne, i.e., O[l, ... , n - l] can be written as the 
sarne operation /\ over Xk, O[l, ... , n - l] = /\ ... /\. This operation must 

1c 1 n-1 
also satisfy other physical hypotheses and be restricted to va.lues of x,. that 
satisfy some possible constraints of the system. We must a.lso have, because 
A is <L'-valued, that :F2 : «: --t X and :F1 : X --t «: for some set X, and 
w : «: --t <V. Therefore, beca.use we take t as a. discrete para.meter, we sha.11 
write 

A(n, O) = lim:F1f\ ... /\ :F2w[A{l, O), A(2, 1), ... , A(n, n - l)] 
(--+0 

1 n-1 = :F1f\:F2w(A[,]) {l) 
bl 

where we have considered the limit l = l;lt1c = h+1 - t,. -. O, (k = 
O, 1, ... , n-1) and used this expression in order to define the right hand side. 
Depending on the definition of the operator W[l, ... , n-1] = :F1/\ ... /\ :F2 

1 n-1 
it may, or not, be necessary to introduce some norrnalization factor in order 
for this limit to exist, but we do not need to consider this point as yet. 

Another immediate requirement that A( n, O) has to satisfy is postulate 
1. This is what we intend to do: find an expression for the action such 
that it satisfies the laws of Mechanics as expressed by postulate 1. Before 
doing this, we must recognize another exigency. lf for the action A(n,O) 

sAlthough A(k + l,k) and A[,] are different mathematical objects, the use of the 
sarne letter to denote them is customary and should not cause confusion. 
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we must have dA(n, O) lh=o= O, then what can be said about dA(k + 1, k) 
(remember that dA(k + 1, k) = idl(k + 1, k), where I(k + 1, k) E m. accord-
ing to condition (ii) of postulate 1)? If we pay attention to the fact that 
in postulate 1 we have Xn and x0 given and fixed, we immediatly see that, 
because x 1, x2 , ... , Xn- l are not gi ven and not fixed ( as yet), the sarne con-
dition must not hold for the individuals dA(k+ l, k). This is dueto the fact 
that dA(l, O) , ... , dA(n, n- l) are not independent at all. The value of each 
dA(k + 1, k) depends on hk = (x~+ 1 - Xk+I, x~ - xk) and then only (n - 1) 
terms dA( k + l, k) from a total of n can assume a value independently from 
the others. Then, we impose 

n-1 n-1 L dAhk ( k + l k) = i L dhk ( k + l, k) = o. (2) 
k=O k=O 

Remark 2 It must be clear that we cannot impose L~:~ akdAh_..(k +l, k) = 
O (ak E fil.) because of: (a) the linearity of dA (by definition) akdAht(k + 
1, k) = dAa,.h,.(k+l, k), and (b) the non-independence of hk (k = O, 1, ... , n-
1). Remember that with Xn and x0 given and fixed, we have h0 = (O, x~ -xi) 
and hn-1 = (x~_ 1 - Xn-1,0). When we choose a value for x~ - x1 , say r 1 , 

we have h0 = (O, ri) determined and h1 = (r1, x~ - x2); for x; - x2 = r 2 

we have h1 = (r1 ,r2) determined and h2 = (r2,x;-x3), and so on. Now, 
when we choose x~_1 - Xn-l = rn-l we have not only hn-2 = (rn-2• rn_i) 
determined but also hn-1 = ( rn-1. O). With akdAht = dAatht. then h~ = 
(0,r~) = aoho = ao(0,r1), h~ = (r; ,r~) = a1h1 = a1(r1,r2), ... , h~_ 1 = 
(r~_i,0) = an-1hn-1 = an-1(rn_ 1 ,0), frorn which we must have ao= a1 = 
... = ªn-t = a . As at least one of the ak 's must be non-zero ( definition of 
linear dependence ), then ak = a =/- O for k = O, l, .... n - l, which yields 
(2). 

We are nearly in the condition to use expression (l) for postulatc l. To 
do this we need sorne hypotheses. One reason is clear: since we have not 
rnade any hypotbesis concerning linearity, W[l, .. . , n - 1] = :F1/\ ... /\ :F2 

l n-1 
could be in general a non-linear operation and this non-linearity could come 
from /\ or from :F1 and :F2 or from both. Other reasons will appear after 
their introduction. These hypothesis are, for / and g suitable functions, 
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Hypothesis (a): A. is a linear operation over xk, 
k 

A.[91(xi:) + cg2(xk)] = /v,1(x1c) + cf\g2(x1c); 
k k k 

Hypothesis (b): 9tÂ.··· Â.92(/(ho,h,, ... ,h.,-i)(xo,X1,-••,xn-1iXn)) = O, 
1 n-1 

Yho, h1, ... , hn-1 ==> (J(ho,hi, ... ,h.,_i)(Xo, Xi, •.• , Xn-1, Xn)) = O; 

Hypothesis (e): g(x1c) ~O==> f\g(x1c) O; 
k 

Hypothesis ( d): :F1 and :F2 are diffeomorphisms, :F1 : (C -t (C, :F2 : (JJ -t (lJ, 
and :F1 = :F:;1, :F-2 = :F1- 1 . 

Note that, even with these hypotheses, we a.re still situated at a very 
general level. They are very general ( or obvious, as for hypothesis{b)), and 
we still work with a non-linear operation. The hypothesis (a) says where 
the non-linearity {if it exists) comes from. The hypothesis (e) will be clear 
when used (it will be necessary in 121), the sarne being the case for hypothesis 
(d). 

Now we can use eq.(l) for postulate 1. We have, using hypothesis (a), 

dAh(n, O) lh=o= :P,_/\ ... /\ .r~ (dw[A(l, O), A(2, 1 ), ... , A(n, n - 1)]) = 
1 n-1 

Pi~ .. •/:/:; [ ôA~~, O) dAho(l, O)+ ••• + ôA(n~: _ l) dAh,.-i (n, n - l)l = O. 

With hypothesis (b) and using (2) for instance in dAho (l, O), we have 

[ ôw Ôw l 
8A(2,1) - âA(l,O) dAhi( 2 ,l) + .•• 

[ âw Ôw l 
... + 8A(n, n - 1) - 8A(l, O) dAh .. -i (n, n - l) = O. 

Remembering that dA1i,k ( k + 1, k) =J O, it follows tha.t w must satisfy the 
system of diff erential equations 

ôw ôw ôw ôw 
ôA(l, O) = ôA(2, 1)' ••• ' ôA(l, O) = ôA(n, n - 1)' 
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The general solution of this well-known system can be easily found by a 
change of variables, from A(l, O), ... , A(n, n-1) to A~= A(l, O)+ A(2, 1) + 
... + A(n, n - l), A~ = A(l, O) - A(2, 1), ... , A~_1 = A(l, O) - A(n, n - 1). 
Denoting by W the function w written in the variables A', we obtain a 
system whose determinant of the matrix of the coefficients is always non-
vanishing, and the solution is the trivial one 8W/8A~ = ... = 8W/8A~_ 1 = 
O. Then our general solution is a function of variable A~ alone, i.e., 

w[A(l,O),A(2,1), ... ,A(n,n-1)] = 
w[A(l, O)+ A(2, 1) + ... + A(n, n - 1)], 

where we have scen that 
n-1 n-1 

L A(k + l, k) = L A(x.H1, tk+1; Xk, tk) = A(xo, xi, ... , Xn) 
k=O k=O 

(3) 

in the limit fltk = t -+ O is a functional of the paths I joining x0 and Xn, 
1 : IR 3 [to,ln]-+ U,t 1--+ x(t) 1 x(to) = Xo,x(tn) = Xn, Moreover, and this 
is the principal conclusion we draw from (3), it is a local functional 1111. 

Remark 3 This result is a justification for what we said in the beginning 
of this section, i.e .. that the expression we wrote for A( n, O) is only a con-
venient way of writing the dependence of A(n, O) onA(l, O), ... , A(n, n- 1). 
The only role played by w is to permit us to arrive at (3), that is, to conclude 
that A[,)= lime-o A(x0 , X1, ... i xn) is a local functional. The "localization 
property" of this functional is a very irnportant one. Now, since the con-
sideration of the function w had achieved its purposes, we can join it in F 2 

and rewrite the hypothesis (d) or simply take it equal to the identity. So, 
from now on we will take w = 1. 

ln order to write an expression for this functional in the lirnit t -+ O 
it is necessary to define a measure µ(t) (condition (ii) of postulate 1). We 
adopt a Lebcsgue-Stieltjes measure !121 µp(t) defined from a given generating 
function F( t) and define 

where now we write for the value assurned in a point x~ between Xk and 
Xk+1 by a function .Cº which we suppose to be continuous. It is this function 
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C° that characterizes the mechanical system. Furthermore, if we remember 
def.6, we conclude that Cº must be a function of x and x = dx/dt (and 
maybe t) since it is necessary to give the value of x at two distinct times 
to define a motion. With the additional hypothesis that F(t) is absolutely 
continuous and defining C = Cº F'(t), where dµF(t) = dF(t) = F'(t)dt, we 
write 

ln the next section we show that C( x, x, t) is the usual lagrangian of the 
system; therefore it is IR-valued, as assurned in postulate 1. 

Definition 8 Let r be the set of all paths , : IR 3 [t0 , tn] --+ U, t 1--+ x(t) 1 
x(to) = Xo, x(tn) = Xn- The functional J ; r --+IR,/ --+ J[,], 

(4) 

is called the IR-action Junctional (C : TU x IR--+ IR is called the lagrangian 
(TU is the tangent bundle) and AI,] = il[,J is the {C-action Junctional). 

Remark 4 Note that the quantity that is related to the system through 
the lagrangian in def .8 is called the action functional and the one related to 
the rnotion in postu]ate 1 is called the action. This is a very important dis-
tinction and rnust not cause confusion. What migh t cause some confusion is 
the fact that, in Physics, what we have called the action functional is some-
times simply called the action, a denomination which does not take into 
account the rnathematical nature of this object9 . We will see in the next 
section that what we call the action is sometirnes called the action function 
or the principal function 10 . ln any case, our denomination must not cause 
confusion because we are considering in each case different mathematical 

9For example: Landau and Lifshitz [13) call it simply action, Sudarshan and 
Mukunda [14] properly call it the action functional and Arnold [9] also makes this correct 
distinction but not in an insistent way. 

1°For example: in Classical Mechanics (remember that we do not have considered 
Classical Mechanics as yet) it is caJled action function by Arnold [9] and Hamilton 's 
principal function by Saletan and Cromer [lS)_ 

16 



objects. The sarne holds for the .lR-action functional and the a:-action func-
tional. What we must have in mind, and this is a very important point, is 
that we are considering the sarne property, in one case for the set and in 
the other for the elements of this set. When we say "the action" we refer 
to a property called action of the set { n, O} and the sarne for each element 
{ k + 1, k} of this set. When we say "the action functional" we refer to a 
quantity defined from this property of each one of those elements { k + 1, k} 
and which has the particular property of being a local functional. 

Finally, introducing (4) in (3) and then in (1) and using hypothesis 
(d) (the justification of it is given in the next section), we obtain a final 
expression for A(n, O). We can sumrnarize our results for this expression for 
A(n,O) as a proof for the 

Proposition 1 There exists an infinity of expressions for the<V-action A(n, O) 
such that it satisfies the laws of Mechanics as expressed by postulate 1 and 
which can be written in the general form 

A(n, O)= !~_,=--i /\ ... /\ F (E A(i + 1, i)) = .r-1 /\F(A[,]), (5) 
I n-1 i=O (-y] 

where /\ and F satisfies the hypothesis (a)-(d) and Ab] is the(V-action func-
1 

tional given by A[,] = il[,] where /[,] is the IR-action functional ( def.8). 

All the efforts of this section where made towards an answer- to ques-
tion 1. This answer is provided once we know how to write A( n, O) frorn 
A( 1, O), ... , A( n, n - 1) and we ha ve hoped that the requirement of the action 
to satisfy the laws of Mechanics tel1 us how to do this. But this has given us 
only the proposition 1. This, however, must be viewed as a welcome fact, 
that we will discuss in the next sections. 

ln any case, given an expression for the action we can formulate a physi-
cal theory in order to describe the motion. As we said, this will be discussed 
in the next seclions, but before doing this we must explain what is meant 
here by a. physical theory, i.e., 

Definition 9 (Bernardes') A physical theory is a general scherne, frorn 
which we can formulate propositions about observable properties and such 
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that it is based on axiomatic propositions which involve at least one non-
observable property11 . 

Definition 10 A physical theory that satis:fies the laws of Mechanics as 
expressed by postulate 1 is called a theory of Mechanics. 

Remark 5 From definitions 1, 9 and 10 we see that a theory of Mechanics 
must formulate propositions about the observable properties of the motion 
(def.2 and def.5) from a general scheme provided by the laws of Mechanics. 
According to def.4, this scherne rnust provide a way to know T E 'D. On the 
other hand, since tbe concept of system is taken as a primitive notion the 
description of the system is provided by the description of motion (remember 
sec.2). ln other words, in a general case the system is to be described by 
a.n element T that belongs to a set 1) whose definition depends on a. given 
theory of Mechanics (more on this issue is discussed in [21). 

4 Conjunction and Classical Mechanics 
We saw in the preceding section that, given an expression for the action, we 
can formulate a physica.1 theory in order to describe the motion. Proposi-
tion 1 does not, however, give a unique answer to question l. We must have 
another too) in order to decide for one expression for the a.ction among the 
infinite many provided by (5). 

At this point, any choice a.mong the ones in (5), that is, any hypothesis 
concerning the nature of the set { n, O}, is nota necessary one. The necessa.ry 
condition provided by the laws of Mechanics is equally satisfied by any 
expression in (5). 

Let us see one example. One choice among those is provided by the 
acceptance of 

Definition 11 (The Principie of Conjunction (PC)-in mechanics) 
12 Rclative to the action, the set {n,O} = [{1,0}, {2,1}, ... ,{n,n -1}] is 

11 Note that Bernardes' definition distinguishes theory and phenomenology, with the 
latter being a scheme which involves only observables properties. 

12The PC plays a fundamental role in what could be called Classical Physics. ln what 
follows we discuss its role in Mecha.nics; in Thermodynamics this is clone in the work of 
Bernardes (3) which contains a full account of it. 
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a. conjunctive set, i.e.: 
n-1 n-1 

{n,O} = LJ{k+ 1,k} <==> A(n,O) = í:A(k+ 1,k). 
k=O k=O 

Now we have 

Proposition 2 The theory of Mechanics that satisfies the hypothesis of 
the validity of the PC is Classical Mechanics (CM). 

To prove this proposition, remember first that /\ in (5) is a linear oper-
k 

ation over the allowed values of Xk that are compatible with the constraints 
of the system. ln order to have A(n,O) = I::::JA(k + l,k) this opera-
tion must select only one value xf among all the allowed ones, since then 
A( n, O) = ;:-- 1 F(I::,;,:6 A( k + 1, k)) = I::;:6 A( k + 1, k ). We do not yet know 
what this value is, but in the limit t O we will have A( n, O) = A[,] l..,.=i' 
where i' is a given path which constitutes the set of the values xf. ln other 
words, the operation /\ says that we must take among all the paths , E r 

hl 
the path i'- ln arder to know which path is it, we use postula.te 1. Then we 
have dA(n, O) lh=o= d(A[,]) 1-r=i'= O and beca.use /\ is a linear operation, 
d(A[,)) 1-r=i'= (6A[,]) 1-r=i (where we use 6 to denote the differential of a 
functional as it is customary [111); and for the path i', ( 6A[,]) 1-r=i= O. As we 
see from the definition of A[,]= iJ[,], eq.(4), thc condition (6A[,]) 1-r=i'= O 
implies the condition ( 61[,]) l-r=i= O, that is the Hamilton principie of CM 
(of course, in CM it does not matter if we start working with A[,] or J[,]; 
thus, we shall not be worried with this point). 

The condition (6A[,]) 1-r=i= O is the necessary condition [n] for the 
differentiable functional A[,] to have an extremum for , = i'- Then O = 
(c5A[,]) l-r=i=ext(6A(,]) = d(extA[,]) and, for the /\ operation, /\ =ext. 

,.., ,.., bl hl ,.., 

Definition 12 The operation /\ = ext is called Hamilton operation. 
bl ..,. 

The Hamilton operation is an operation over all the paths, E r which 
selects among them the one that gives the extremum13 of A[,]. Thus ext 

k 

13Indeed, we have in general a stationary va.lue of A[-y] or a. minimum for sufficiently 
small time intervals, as well-known; but throughout this paper and (21 we omit such 
details and consider it simply as an extremum. 
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consists in selecting among all the allowed values of xk thc value xf = x(tk), 
where r 3 i : t - x(t). We can say that CM is the theory of Mechanics 
that is based on the choice of A to be the Hamilton operation, and that such 
a choice has as its foundation the acceptance of the validity of PC. Note 
that this choice explains hypothesis (e) of sec.3, since it could be - ext (the ..., 
negative of ext), some redefinitions being enough for this. Note also that ..., 
A(n, O) = extA[,] = i extJ[,] = il(n, O), where I(n, O) is what is usually call 

..., 'Y 
Hamilton 's principal function or the action function. Our <I'-action could 
properly be called the (E-Hamilton 's principal function. 

Thjs particular choice has particularl,} remarkable consequences. They 
are wcll-known facts in tbe realrn of CM, but we must now look at t.hem 
as mcre conscquences of the choice we made of the /\ operation to be the 
Hamilton opcra.tion. Let us discuss now some points that are quite impor-
tant for us: 

PC Acceptance Consequence (a): We saw that def.6 forwards a natural 
and convenient representation of the motion in the configuration space and 
in def.7 we have dcfi.ned its representation, R{n, O} = (xn, ln; x0 , t0 ). It does 
not .say anything about what. happens between t0 and tn. It only introduces 
a language that pcrmits us to speak about the motion. This language is 
based on the concepts of paths. Now, it is the law of Mechanics that says 
something about the motion and how to use this language to speak about 
it. Once accepted the PC we arrive at CM, and then the action is given 
by the value of the action functional for a path 7 which gives its extremum 
among ali the possible paths , E r between (x0 , t0 ) and (xn, tn). Thus, in 
CM we can represent thc motion in the configuration space as a given path 
(the so called actual path) among all paths joining those points. 

PC Acceptance Consequence (b): Being a theory of Mechanics, CM 
can formulate propositions about the observable properties of motion which 
are DVs. Beca.use of consequence (a) we can describe the motion at any 
instant t as a point (x, t) in the configuration space, where x is an IV (see 
def.6). This leads us to "identify" in CM the concepts of DV and IV. Also, as 
it is well-known, it is enough to know the action (for example by a solution 
of Hamilton-Jacobi equation) to solve any rnechanical problem. According 
to def.4 the action defines the dynamics of motion. On the other hand, it 
is also enough to know what is the path , (for example by a solution of the 
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Lagrange equations) which gives the extremum of the action functional. So, 
a function t - x(t) also defines the dynamics of motion in CM. Then, all 
the DV are determined once we know x(t), which is an IV. Therefore, al-
though the concepts of DV and IV are different, there is an "identification'' 
of them in CM because their values are equal. 

PC Acceptance Consequence (e): The above consequences lead to an-
other result. Instead of asking for a value of a DV we can in CM ask for a 
value of an IV. Because the IVs describe the system, CM can be viewed in 
this sense as a genuine theory of the system; that is, we can define ( apart 
from mass) a particle in CM as the mapping,: IR -t U, t - x(t). The use 
of the adjective "genuine" is justified by the discussion we made in sec.2 
and by remark 5. ln CM all the propositions that we formulate about the 
motion are propositions about the system because of consequence (b). Any 
other theory of Mechanics also describes the system (remark 5) but not 
"genuinely", in the sense that its propositions are to be refered. to DVs and 
not to IV s ( remember that the IV s are parts of a language that we intro-
duce in order to speak about the motion and which refer to properties of 
the system). 

Now, since the action defines the dynamics of motion, we state 

Definition 13 If the motion is such that the action is a conjunctive prop-
erty, i.e., { n, O} = [{ 1, O}, { 2, 1}, ... , { n, n - 1}] is a conjunctive set relativc 
to the action, then we will say that the motion has a conjunctive dynamics. 

5 Convolution and Generalized Mechanics 
The preceeding discussions put forth some questions. For example: (a) Is 
the PC hypothesis vali d ? (b) Is there any other choice of A instead of the 
Hamilton operation ? 

The answer to question (a) is immedia.te. First, experiences has shown 
that CM has a limited validity. If there is something wrong with CM, then 
it seems reasonable that the problem is in the acceptance of PC. ln fact, all 
our other hypotheses seem very natural and we have shown in [l) that there 
exist sets (fractal sets) which can be considered as not being conjunctive 
sets. 
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If the answer to (a) is negative, then we expect the answer to (b) to 
be affirmative. We show that this is indeed the case in 121. There exist an 
infinity of possibilities. A remarkable fact is provided by one of these: it 
will lcad us to a theory that is formally identical to Quantum Mechanics. 
This will be discussed in 121. 

However, none of those points are necessary for what we intend to do 
here. It is enough for us answering the question: Is it necessary, at the point 
we arrived at the end of sec.3, to make any choice of /\? Surely the answer 
is no! Proposition 1 offers to us not one possibility but an infinity. We can 
formulate not one theory of Mechanics, buL a large class of thcm. 

Proposition l defines a class of theories of Mechanics. Given an operation 
/\, by (5) we know how to write an expression for the action. Moreover, this 
might be such that we do not have A(n, O) = 1:::,:5 A(k + l, k). ln this case 
the set {n,0} = [{l,0},{2,1}, ... , {n,n- l}] is a convolutive set relative 
to the action, { n, O} = *k,:J { k + 1, k}, where * denotes convolution [lJ. 

Definition 14 Any theory of Mechanics such that the set {n, O} = [{l, O}, 
{2, 1}, ... , { n, n - 1}] is a convolutive set rela tive to the action, is called a 
Generalized Mechanics(GM). 

Definition 15 If the motion is such that the action is a convolutive prop-
erty, i.e., {n, O} = [{1, O}, {2, l}, ... , {n, n-1}] is a convolutive set relative 
to the action, then we will say that the motion has a convolutive dynamics. 

Once we recognize the possibility oí formulating a class of theories of 
Mechanics we must ask: How to do it ? ln other words, we must answer 

Question 2 ln a GM, what are the variables that play the role of DV, that 
is: what are the observables of motion if it has a convolutive dynamics ? 

Question 3 How do these DVs evolve with time, tha.t is: what are the 
equations of motion in GM ? 

The answer to these questions is given in [21. To such an end, we need 
the help of another postulate tha.t we will discuss now. 

Postulate 2 Every GM has a Classical Limit. 
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Proposition 3 A necessary condition for a GM to have a Classical Limit 
is to be congruous wi th CM. 

First, let us explain what is meant by a congruity between two GM. ln 
fa.ct, congruity is used to express an obvious linguistic requirement. Suppose 
we have two operations /\1 and /\2 and the correspondent expressions for 
the actions A1 and A 2; A 1 (A2 ) is the action (the principal function) in 
GMl (GM2). Let 1r be a property of motion such that in GMl the DV (1 

is given from A1 by ç1 = f(A1). We have here a DV 6 that ha.ve a certain 
name (call it "name"). Thus there is the proposition: "name" is obtained 
from the action by J. Now in GM2 we have the DV 6 that corresponds 
to the property 1r and whose name is "name" beca.use 1r is the sarne. Thus 
in GM2 we have ç2 = /(A2). Beca.use f is the sarne we say tha.t GMl and 
GM2 are congruent. 

Now consider a GM and CM. ln the Classica.l Limit /\ - ext and ÇGM ---+ 
f-y) -y 

foM in a certain limit that depends on Â· If ÇCM = J( extA[,)) and ÇGM = 
bl .., 

g(f\A[,]) then in the Classical Limit ÇGM ---+ g( extAb]) = f( extA[;]). .., .., 
But ext: Ah] ....+ extA[;] = AcM is clearly onto, since every AcM is the .., .., 
image under ext of some functional A[,] (that is, if there is a motion, then .., 
there exists some system which is in motion), and then g = f, i.e., CM and 
GM are congruent. This condition is clearly non-sufficient, since we ca.nnot 
conclude from it that /\ -+ ext in a certain 

hl .., 

Remark 6 Note that we did not give much importance to :F in (5); but 
now hypothesis (d) concerning it in sec.3 is clear. lt is a necessary one for 
CM as we saw in proposition 2 and now for postula.te 2. A convenient way 
to skip taking into account is to define 

4>:::FoA (6) 

14From this it follows that the exigency of congruity between a GM and CM is more 
general than the one of having a classical limit. Thus, with postulate 2 we intend to coo-
sider only systems with a classical analog. This is not , howeverl a restrictive assumption 
since it is the exigency of congruity that is used in practice in 21. 
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and work with <I> instead of A. Thus, from (5) we have 

<I>(n, O) = lim /\ ... /\ :F (I: A(k + 1, k)) = J\F(A[r]). (7) 
t:-+0 

1 n-1 k=,.O b] 

On the other hand, although the use of <I>(n, O) instead of A(n, O) seems 
natural (mainly because /\ is a linear operation), the need to know :F can-
not be avoided, because it is for A[-y] (not <I>b]) that we have defined an 
expression via Jagra.ngian. ln spite of this, it should not be regarded as an 
additional difficulty since :F can be easily found. Suppose that we have a 
motion between Xo at t0 and Xn at tn, tbat is, {n, O} E M, characterized 
by <I>(n,0), and then a motion between Xn at tn and Xs at ts, {s,n} EM, 
characterized by <I>(s, n). The whole situation can be viewed as a motion 
between x0 at t0 and Xs at ts, {s, O} E M, characterized by <I>(s, O). Thus, 
it is legitima.te to suppose that <I>(s, O) can bc obtained from <I>(n, O) and 
<I>(s, n), that is, the motion between x0 at t0 and Xs at ts can be described 
from the ones between x 0 at t0 and Xn at t,. and between Xn at tn and 
X: 3 at t 5 • ln other words, we suppose that the set of all <I>(í,j) constitutes 
a semigroup15 , i.e., that we have an associa.tive composition law m such 
that m : (4>(s, n), <I>(n, O)) t-+ m(<I>(s, n), <I>(n, O)) = <I>(s, O). Now from the 
expression for these quantities we must get 

m{!~f\- .. f\:F(I:A(k+l,k)) ,!~/\ ... f\:F(Í:A(k+l,k))} = 
1 n-1 k=O n+l .t-1 k=n 

=lirnj\ ... j\f\f\ ... f\.r(I:A(k+ l,k)). 
(-+0 

1 n-1 n n+l .t-1 k=O 

Since on the righi hand side we have an operation J\ which does not appea.r 
n 

in the arguments of m, it is legitimate to suppose that m involves j\. Thus, 
n 

we suppose m to be such that it holds 

/\ /\ ... /\ :F (Í: A(k + 1, k))] [!i.!!J /\ ... /\ :F (i A(k + 1, k))] = 
n 1 n-1 k=O n+l .,_1 k:::;n 

151n fact, it constitutes a group, as we will see in Í2l, but we do not need to consider 
that point here. 
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= lirnf\ ... /\/\/\ ... f\:F ('f A(k + 1,k) + f A(k + l,k)). 
f-0 1 n-1 n n+l a-1 k=O k=n 

Once we suppose that the individual limits exist a.nd that the order of the 
A's may be cha.nged, we arrive at the following condition, tha.t :F must 
satisfy: 

F (~ A(k+ l,k)) F (t., A(k+ l,k)) = 

=F(EA(k+l,k)+ ÊA(k+l,k)). (8) 

From this condition we conclude that :F must be an exponential function , 
and tha.t 

4>(n, O) = !~/\ ... J\ exp ('f: A(k + l, k)) = /\ exp (A[,y)). (9) 
1 n-1 k=O b) 

It is this expression that we shall study in [21. 
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