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Abstract

In this paper we discuss the foundations of Mechanics based on
the concept of convolutive sets. We show that there exist an infinity
of expressions for the action which satisfy the laws of Mechanics. It
follows that it is possible to formulate a general class of theories of
Mechanics, of which the Classical Mechanics is only one particular
example. We discuss how to formulate these theories, leaving their
explicit construction for another paper. Among such theories there
is one that is formally identical to Quantum Mechanics but does not
involve the concept of probability.

1 Introduction

Mechanics is the part of Physics that studies motion through the formulation
of a physical theory. We shall see that this is not just a trivial sentence:
indeed, the essence of the present paper is to understand what that definition
of Mechanics does mean. The problems we meet are that, in order it to
make sense, the concepts of motion and physical theory should already be
defined; but they entail delicate questions: especially the concept of motion.
A satisfactory definition of a physical theory can be given (sec.3), but that
of motion deserves a careful discussion. Thus, we can properly say that the
objective of this paper is to understand the meaning of:

Ph.D. student in Applied Mathematics



Definition 1 Mechanics is the part of Physics that studies motion through
the formulation of a physical theory.

The reality of motion has always been an object of intense philosophical
inquiry, especially at the time of the Greek philosophers. To quote two
well-known examples, there are the views of (a) Heraclitus, according to
whom the “kinesis” fills the entire reality, and (b) Parménides, defended
by Zeno through his four arguments, according to whom there is no reality
in the motion. Nowadays the interest on this question remains, mainly,
for physicists. One reason is the advent of Quantum Mechanics and the
debate about its interpretation. Even for those physicists to whom the
philosophical questions arising from the reality of motion present no interest,
the question “what is motion” has a fundamental importance. In fact, an
objective answer to that question has to be given since the study of a not
well-defined object is questionable.

Several related topics are discussed in sec.2. Some ideas discussed in
a previous work (1l are widely used, mainly the ones of conjunctive and
convolutive sets. Definitions are given in order to disentangle some con-
cepts involved in the notion of motion (particularly those concerning the
dynamical variables and the independent variables) and of its spacetime
representation. Next, we ask about the nature and the properties of motion
(which are the basic questions of Mechanics according to def.1) and search
for answers in the laws of Mechanics. The conclusion that there is not a
unique answer to these questions (sec.3) is one consequence of our approach.
Rather than disappointing, this is indeed a welcome fact and we exploit it
accordingly.

In fact, what we do is to search for an expression for the action such that
it satisfies our formulation of the law of Mechanics as a kind of variational
principle. This is a crucial step and accordingly we do not start with a
definition of the action as the time integral of the lagrangian (the action
functional) for a given path (more on this issue is discussed in sec.4). Since
a price has to be paid in order to get advantages, it is necessary to use some
quantities which do not have a standard denomination in the literature. We
try to avoid confusions whenever they can arise, by calling attention to the
different mathematical nature of the objects we consider.

From our approach it naturally emerges the possibility of formulating
an infinity of other theories of Mechanics besides the Classical one: i.e.,
we have a class of theories of Mechanics. These are interpreted according
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to !l and once we define conjunctive dynamics and convolutive dynamics we
see that Classical Mechanics describes the former while the other theories,
called Generalized Mechanics, describe particular cases of the latter (sec.5).

We discuss also in this paper how to formulate this general class of
theories of Mechanics, leaving the explicit construction for another paper [2.
Then the real importance of our formulation of the Generalized Mechanics
does appear: there exists one theory among these that is formally 1dentical
to Quantum Mechanics but does not involve the concept of probability.
Then, we discuss the relation between Generalized Mechanics and Quantum
Mechanics. Ref.[1] provides the basis for this paper and (4. These works,
and the inspiring one of Bernardes !, put in evidence the generality of the
idea of convolutive sets [!l, according to which they are interpreted.

2 What is Motion ? Some Definitions and
a Question

The first thing about motion that we naturally have in mind and ask is:
motion of what? Roughly speaking, motion is a translation of bodies in
space. Therefore, if there is a motion then there exists some kind of system,
for example a body, which is in motion. This naive conception of motion
could work for some purposes, but physicists cannot be satisfied with it.
The problem is not whether it is or not general enough to include other
situations we would like to see included (such as propagation of waves, flow
of energy, etc.), but that of (dangerously) drawing a too simple picture of
motion from this conception.

The relation between the concepts of motion and system can be said
to be of the “chicken and egg” type. In fact, the dichotomy between the
motion and the system is not justifiable, except at the linguistic level. We
can easily see that one supposes the other, and vice-versa, looking at the
following two simple situations: (a) when we say that there exists a motion
we believe that there exists a system which is in motion; (b) when we say
that there exists a system, for example, a body, we believe that, once we
are looking at it, we can close our eyes and at a later time open them and
still find this system, and in doing this we suppose the motion in the sense
that this body is either at rest, which is a particular state of the motion,
or in another state of motion. A reasoning like the latter is used explicitly



in particle physics where we infer the existence of particles from tracks in
bubble chambers. Bohm ) has already recognized this “chicken and egg”
problem and discuss it through what he calls the holomovement. A general
discussion involving the presence of “chicken and egg” problems in scientific
topics is provided by Bernardes [%.

On the other hand, even being this dichotomy unjustifiable, it must be
respected. One of the consequences of the “scientific analysis” method is
the use of a language based on the concepts of noun and conjunction, i.e.,
the ordinary language. Motion and system are nouns, which means that
they are entities of autonomous conceptual existence. It must be clear that
(a) being different nouns does not mean that they are unrelated, and (b) be-
ing different nouns implies that to them there must be ascribed different
adjectives (the adjectives qualify the nouns). The use of this terminology
(due to Bernardes and already used in (!}, and which is, in our opinion, very
intuitive and directly related to the linguistic nature of the problem ©*!) can
be made clear by another simple example: wine and grape are different
nouns and have autonomous conceptual existence; to them there is room
for different adjectives, for example, a dry wine, a rotten grape, etc., and
they are related, since wine is made from the fermented juice of grapes. In
other words [, we are considering the terms motion and system and not the
values that each term has . In any case, what matters is to understand
that once (a) there exists a kind of “cyclic” relation between motion and
system, and (b) both concepts have autonomous existence, then one of them
must be taken as the primitive one. Which one of these concepts is to be
taken as the primitive one is somewhat arbitrary, i.e., we think that it just
is a matter of choice, since what could be classified as “real” is the relation
between them!. Bohm ¥ supposes the motion, or better speaking, his more
general notion of holomovement, as the primitive notion (“ ... the holo-
movement is undefinable ... ”) and the system as an aspect of it (“ ... the
word “electron” should be regarded as no more than a name by which we
call attention to a certain aspect of the holomovement ... 7). We adopt a
different view. In any case, what matters is to understand the “wholeness”
of the situation and, once we take one concept as primitive, we define the

1t is appropriate to say that, in a general case, the process of category formation is
not so simple, and that categorization involves both an arbitrary and a phenomenological
aspect (see ref.[7]). However, the nature of this process does not matter to our purposes
and is beyond our interests.

{
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other and close this kind of vicious circle.

We consider the concept of system as a primitive notion. By system we
mean particles and fields, that is, physical systems, but since the consider-
ation of fields can be naturally done once we understand that of particles,
we consider throughout this paper only particles and for simplicity only one
particle. The consideration of the concept of system as a primitive notion
is in accordance with our intuitive conception of motion as translation of
bodies in space. But for a first account of what is motion we need another
element. This is a spacetime theory 8.

In order to put this explicitly, let us consider in more detail the idea of
the motion. Motion comes to mind through an act of perception () from
an observer in a reference frame and is realized when, excluding obvious
exceptions easily considered, in the same reference frame a given body is
in different positions at different times. Thus, the definition of motion first
requires the understanding of what is an observer, a reference frame and
space and time, i.e., we need a spacetime theory. Once we accept a model
for a spacetime theory, all these concepts are well-defined. Each of these
models contains a structure called spacetime, which consists of a Hausdorff,
connected, paracompact 4-dimensional real manifold and geometrical ob-
jects (for example, the metric field) defined in this manifold characterizing
its geometry. In all spacetime theories, including the newtonian theory of
space and time, an observer is a timelike curve pointing to the future and
a reference frame is a timelike vector field such that each one of its integral
lines is an observer. More details can be found in ®. Since we will not
consider in this paper the relativistic case, we adopt as a model for space-
time the galilean spacetime [ which is an affine manifold. It can be viewed
as a fiber bundle 1'% with IR as the base space, IR? as the typical fiber
and Galilei group as the structural group. These considerations provide the
precise definitions we need for the above concepts.

Now, to make our ideas work, we must take care of and note the fact
that two different nouns are involved in that act of perception, that is, the
motion and the system. These are different nouns and, even being related,
we must respect this difference when we discuss the attributes of a noun.
This is the requirement of linguistic nature already discussed %, In order
to put this down explicitly, let us denote motion by M and system by S.
In (!l we saw that, if 7 is a property of a noun, then r(noun) is an adjective
that defines a state of this noun. Since we have here two different nouns,



we state:

Definition 2 Let 7y be a property of the motion (M) and g a mea-
sure (1. We call mp(M) a state of the motion and the state variable !
ém = Em(M) = p o my(M) a dynamical variable (DV).

Definition 3 Let 7g be a property of the system (S§) and x a measure. We
call 75(S) a state of the system and the state variable {5 = £5(S) = pong(S)
an independent variable (IV).

Definition 4 Let 7},,..., 7}, be the set (a conjunctive (!} set)? of all the
properties of motion (possibly an infinity) and f) : D — IR certain map-
pings ( = 1,...,n) (D is a set that is to be defined). We say that the
dynamics of motion is given when it is given an element T € D (that de-
fines the state of motion) such that ¢4, = p o miy, (M) = fO(T), ie, T
qualifies completely the noun motion.

Definitions 2 and 3 satisfy our linguistic requirement of giving different
names to different things. The relation between these definitions and our
usual notions of DV and IV is easily seen (and will be clarified in what
follows). The use of the adjectives dynamical and independent are justified
in each case. In the former we are considering a concept related to change
and in the latter a concept which we choose as primitive and basic. This
agrees with our intuitive ideas. Whatever relation may exist between them,
it must be found later and not be imposed a priori. The role of def.4
will become clear later (and specially in (). Note that T instead of being
defined as an element of D could be defined as a minimal set, if it exists,
of DV €3, (7 = 1,...,k)(k < n), and that it remains to define the set D in
def.4. However, the nature of this set is a particularity of a given theory of
Mechanics (def.10), as we will see.

Remark 1 Before we continue, a brief digression is useful. In [} we have
defined a measurable property and, according to this, DV and IV are mea-
surable properties. But (since there are very interesting points “ involving
the etymological root of the word “measure”) to avoid confusions we must
once and for all say what it means here. So, to define a measure we need
to define a measurement (1. According to that definition of a measurement,

Whenever we write set we mean a conjunctive set.



it could be not only a “true” measurement — in the physical sense of an
interaction between what is to be measured and a measuring apparatus -
but in the case of a “true” measurement any two ones must give the same
result [obviously, in these two ones what is to be measured is supposed to be
prepared in the same way and the measurement is supposed to be an ideal
one (no experimental errors) and made under the same conditions]®. We did
not need this distinction in M, but here it is necessary in order to formulate
a physical theory. In the sense of 1! a measurable property can properly be
said to be an enumerable property and measuring is to “enumerate” (that
is, to ascribe numbers). According to that sense, it is not necessary for a
measurable property to satisfy the condition that any two measures give
the same result: but this is necessary for a physical property*. To set up
this distinction we state

Definition 5 Let 7 be a measurable property and p; and p; any two mea-
sures. If puy o = pg o w then 7 is called an observable property (non-
observable property otherwise) and the state variable pyor = pyom = pyon
an observable.

From this definition it follows the obvious proposition: If =; and 7, are
observables properties and for given measures p; and u; we have p; 0m =
jtj 0 73, then m; and 7, are the same observable property. The proof follows
from def.5 and that of a measure as a bijection 1. Note that yu; and yu; are
measures that are made using the same measuring apparatus and on the
same object.

3This statement needs a brief explanation. A scientific fact requires objectivity and
reproducibility to be recognized as such. This means that, once we are studying a
scientific fact, any two measures of a related quantity must a priori be equal. The
differences that eventually appear in different results are in practice due to experimental
errors (because of several reasons like noise and finite size of the measuring apparatus m),
However, what matters is the belief that the sources of these errors are not in what is
being measured; because, if this is the case, then it is not a scientific fact, according to
the above criteria. Thus, that statement follows.

4Of course, it must be defined what is meant by a physical property. In order to avoid
unnecessary (for our purposes) discussions about the nature of a physical property (and
thus of physical reality, which is the question at the basis of the Bohr-Einstein debate) we
mean by a physical property simply a property which can be studied by means of Physics
and is thus constrained to satisfy the requirements of objectivity and reproducibility of
a scientific fact.



Now, we look for the relation between 7y, and 7g or between {3y and
&s. This relation exists, because there is a relation between M and S as ex-
pressed by the above act of perception. We need, however, something more
polished for our purposes. A full arrangement of this idea will naturally
yield our demanded relation. For what follows, in a coordinate representa-
tion 1%, a point of the galilean spacetime is written as (t,z) € IR x IR%.

Definition 6 Let 7s = x be the property of § of having a location in space,
the IV 2 = pu o x(8) be its position, ¢ a parameter and z; be the position of
S at instant ¢. Let the proposition z,(S) = z¥ be true, where z¥ € R3 is
the numerical value of z. If for an instant ¢ > to the proposition z,(S) = z
is false, then we say that a motion (M) occurred. If for this t, say t,,

2, (S) = z#, we write®* M = {n,0}(S) for a motion between t, and t,.

Def.6 is valid for any §. Then we may consider M independently of
S and def. 6 as a “representation” of M. This is a very important point
since with it a general theory of M (which is the objective of Mechanics
- def.1) can be formulated with no reference to S except for the spacetime
representation of M given by def.6 — that is, we can represent motion in
spacetime — and also because this fits the points above discussed concern-
ing M and §. Def.6 also exhibits a representation of M in the so called
(extended) configuration space, which proves to be very natural and con-
venient, specially when we have other degrees of freedom besides the three
translational ones considered in this paper. The configuration space U is a
differentiable manifold whose dimension is equal to the number d of degrees
of freedom of the system. When time is included, we have the eztended
configuration space V = U x IR. In this paper we have d = 3 degrees of
freedom, U = IR? and V = R3 x R = R3*1.

Now, remember that ¢ is a varying continuous parameter. In order to
simplify the notation and the ideas that follow, we will consider ¢ as a
discrete parameter t; (¢ € IN), and take the continuum limit at the end of
the results. Also, instead of def.6, it is better to consider

Definition 7 Let M be the set {{i,7}(S) | 1,7 € IN, 1 # j, all §}, called
the motion. By a spacetime representation of M we mean a bijection R(S) :

5From now on, we will omit the superscript # on z and the reference to S on {n,0}
whenever no confusion arises.



M = V x V (here R(S) : M — R3*! x R3**), {i,j} » R{i,j} =
(%o, 5 25, 15).

Now, given {n,0} € M and {1,0}, {2,1},...,{n,n—1} € M and accord-
ing to the principle of fragmentation (PF) (see !l and references therein)
the set {n,0} can be described by its elements {1,0},...,{n,n — 1}, i.e.,

in, 0} =[{1,0}; {2,1},...«, {n,n— 1}];

The question that must be put forth, according to (1, is then: Is the
set {n,0} a conjunctive set, {n,0} = UpiZs{k + 1,k}, or a convolutive set,
{n,0} = 220 {k+1,k} ? According to ['l, the answer depends on the prop-
erty which we are considering. If we denote this property by =, then it must
be clear that we want to describe 7 {n,0} by defining it from = {1,0}, 7{2,1},
...,m{n,n — 1} (it must be stressed that we do not know beforehand the
expression for 7{n,0}) and that it is 7{1,0},#{2,1},...,7{n,n — 1} that
are already defined (because they are related to the properties of the system
whose notion is taken as the primitive one)®. In the case of a conjunctive
set relative to m, we have (uom){n,0} = SiZo(u o ®){k + 1, k}, while for
a convolutive set relative to = this equality does not hold: (o 7){n,0} #
Srza(uom){k+1,k}. This is discussed in more details in the next section.

3 The Laws of Mechanics and “the Answer”

There are several formulations of the laws of Mechanics, of which the most
beautiful are expressed in terms of a variational principle. However, it is
not this “anthropomorphic” character that makes the variational principle
more useful or important. It is because of its relation to the representation
of a motion that we consider a variational principle as the expression of the
laws of Mechanics. Furthermore, and this is a crucial step, we only suppose
that there exists a variational principle, searching for it by means of general
considerations. The reasons why we do so will become clear in what follows.

In order to fix notations, let us consider functions f : M — IR such that
f=foR1:V xV = R,(zi,ti;zj,t;) — f(zi,ti; zj,¢5). If instead of z;

6 An illustrative example of what we are meaning by this is given by the way we show
that fractal sets are an example of convolutive sets in Ref.[1].



and z; we have different values z} and 2, we can define fi(z;,t;;2;,t;) =

f(zi + histi; 25 + by, t;), h = (hi, k;) = (2} — 2,2} — z;), and

A fu(zis ti; 25, 85) = (fu = F)(zir ti; 25, 25) = fulzir ti; 25, 85) — f(zi, 5 25, 85).
The differential of f, denoted by df, is the linear part of Afj, i.e.,

(a € R)

h
Afu(zi tis 25, t5) = dfa(ei tis 25,15) + R(h), lim IITEl") =8
Afhyvoha (i, b 25, 85) = dfn, (Ti, b5 25, 85) + adfn, (24, 15 25, 25).

This definition is easily generalized to functions from Banach space into
another Banach space (1%: for example, f : IR™ — IR™; but for our purposes
we need to consider only functions with values in IR or €.

Let h = (2!, — z,, 2y — o) and such that A = 0 means that the values of
z, and zq are given and fixed. Therefore, we state

Postulate 1 (The Laws of Mechanics) Let there be a motion between
zg at to and z, at t,, i.e., {n,0} € M, which according to the PF can be
described by its elements {k + 1,k}(k = 0,1,...,n — 1). Then there exists
a non-observable property of motion A : M — , called the @-action (or
the @' -principal function), such that:

(i) for the set {n,0} and {n,0} — A{n,0} it holds:

dA{n,0} |h=0=0;

(ii) for the elements {k + 1,k} and {k + 1, k} — A{k + 1, k} it holds:
A{k + 1,k} =iZ{k + 1, k},
where 7 is the IR-action such that:
I{k + 1,k} = Leu(Aty),

where £ is the value assumed in a point z) between z; and z;4, by
a continuous function which characterizes the system, and pu(Aty) is
the measure of the interval Aty = tg4q — ti.

10



It is important to note that, because the action is not an observable
property, it does not need to be IR-valued (whenever no confusion arises,
we call the C-action simply the action — more on this issue is discussed in
remark 4). Note that it is the IR-valued action of the elements {k + 1, k}
that we define by relating it to the properties of the system. The use of a
(-valued action instead of a IR-valued one in condition (ii) is a matter of
convenience. On the other hand, we have not defined an expression for the
(-valued action of {n,0}. Our objective is to find such an ezpression for
A{n,0} from the ones of A{k + 1,k} and such that A{n,0} satisfies the
condition (i) above.

The postulate 1 follows the spirit of the scientific analysis method as
discussed in (1. We suppose the fragmentation when we “break” {n,0} into
its parts {1,0},...,{n,n — 1} and analysis when we study these parts and
their relationship. Now, the question of last section can be reformulated as:

Question 1 Relative to the action A, is the set

{n,0} = [{1,0},{2,1},...,{n,n — 1}]
a conjunctive set or a convolutive set 77

In other words, we want to know how to write A{n,0} from A{1,0},
A{2,1},..., A{n,n - 1}.

First, let us consider A = AoR™', A{n,0} = A(z,, t,; 2o, to) = A(n,0),
A{k + 1,]&7} = A(Tkgryths1; Thyle) = A(k <+ l,k),(k = 0,1,...,a — 1).
Note that only the values z, and z, are given and fixed, the other values
Ty, Ta,...,T,—; are not yet defined. So, in general we write the ansatz

A(n,0) = 7 (O[1,...,n — 1] (F2 (w[A(1,0), A(2,1),...,A(n,n = 1)]))),

where O[1,...,n—1] is an operation — to be defined - acting over the values
of zy,...,2,-1 that tells us which values are to be chosen (for example, take
z; = 10,29 = 21,...,2,-1 = 2 or take z; = +1 or —1 if k is odd or even,

etc.); and where F,, F; and w are functions, which are also to be defined.
Note that they must be regarded as parts of a whole operation W(1,...,n—1].
Note also that

w[A(1,0), A(2,1),...,A(n,n —1)] =

"In ref.[1] we have defined conjunctive and convolutive sets only in relation to IR-
valued properties. However, the generalization to €-valued properties is trivial.
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e W[A(.'L'l, tl; Zo, tO)» A(z% t2; Iy, tl)) vy A(xna tn; Tn-1, tn—l)] =
= w[A'(zo, 21, - - -, Zn)] = wW[A(Z0, 21 - - -, Z0)),

that is, in the limit ¢ — 0 we have a functional® A[y], where v : R 3
[to,ta) — U,t — z(t) | z(to) = zoand z(t,) = z,. It is important to
bear in mind that the above expression for A(n,0) is only a convenient
way of writing the dependence of A(n,0) on A(1,0),...,A(n,n —1). This
convenience will become clear later (see Remark 3, which explains why we
explicitly consider the functions F; and w, instead of only one function that
plays the role of the composite function F; o w).

We expect however the operation O[1,...,n — 1] and the functions 7,
F; and w to be not completely arbitrary. One immediate consequence of
the hypothesis of homogeneity of space is that the operations over each
Ty, ...,Tn—1 must be the same, i.e., O[1,...,n — 1] can be written as the
same operation /\ over zx, O[l,..,n—1] = A ... A. This operation must

1 n—1
also satisfy otherkphysical hypotheses and be restricted to values of z; that
satisfy some possible constraints of the system. We must also have, because
A is C-valued, that 7, : @ — X and F, : X — @ for some set X, and
w : @ — €. Therefore, because we take t as a discrete parameter, we shall
write
A(n,0) = p_%f,/\... A\ Fawl[A(1,0), A(2,1),...,A(n,n — 1)]
1 n—1

= AAFw(AR]) (1)
[

where we have considered the limit ¢ = Aty = tp4q — tx — 0, (k =

0,1,...,n-1) and used this expression in order to define the right hand side.

Depending on the definition of the operator W[l,...,n—1] = FA ... AR
1 n—1

it may, or not, be necessary to introduce some normalization factor in order

for this limit to exist, but we do not need to consider this point as yet.
Another immediate requirement that A(n,0) has to satisfy is postulate
1. This is what we intend to do: find an expression for the action such
that it satisfies the laws of Mechanics as expressed by postulate 1. Before
doing this, we must recognize another exigency. If for the action A(n,0)

8Although A(k + 1,k) and A[y] are different mathematical objects, the use of the
same letter to denote them is customary and should not cause confusion.
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we must have dA(n,0) |,=o= 0, then what can be said about dA(k + 1, k)
(remember that dA(k + 1,k) = idI(k + 1, k), where I(k + 1,k) € IR accord-
ing to condition (ii) of postulate 1)? If we pay attention to the fact that
in postulate 1 we have z, and z, given and fixed, we immediatly see that,
because z,, Z3,...,Z,_; are not given and not fixed (as yet), the same con-
dition must not hold for the individuals dA(k+ 1, k). This is due to the fact
that dA(1,0),...,dA(n,n—1) are not independent at all. The value of each
dA(k + 1, k) depends on hy = (z}y, — Ti41, T, — &) and then only (n —1)
terms dA(k + 1, k) from a total of n can assume a value independently from
the others. Then, we impose

n—1 n—1
S dAn (k+1,k) =i Y dln(k +1,k) = 0. (2)
k=0 k=0

Remark 2 It must be clear that we cannot impose Y"3—p ardAp, (k+1,k) =
0 (ax € IR) because of: (a) the linearity of dA (by definition) axdAs, (k +
1,k) = dA,,n, (k+1, k), and (b) the non-independence of Ay (k = 0,1,...,n—
1). Remember that with z, and z, given and fixed, we have hg = (0, z] —z,)
and h,_; = (z},_;, — £,-1,0). When we choose a value for z — z,, say ry,
we have hg = (0,r,) determined and h, = (ry,z5 — z3); for 2§ — z, = ry
we have h; = (ry,ry) determined and h; = (ry,2% — z3), and so on. Now,
when we choose z!,_, — z,_; = r,_; we have not only h,_; = (rp_3,75_1)
determined but also h,—; = (r,—1,0). With axdAs, = dAg,, then hy =
(0.13] = doho = ay(D,r1), K, = (r},1h) = aihy = &y, v9), ..., B ;"=
(rh-1,0) = ap—1hn-1 = an-1(rn-1,0), from which we must have ag = a; =
... =ay_1 = a. As at least one of the a,’s must be non-zero (definition of
linear dependence), then a; = a # 0 for k£ = 0,1,...,n — 1, which yields

(2).

We are nearly in the condition to use expression (1) for postulate 1. To
do this we need some hypotheses. One reason is clear: since we have not
made any hypothesis concerning linearity, W([1,....n — 1] = AA ... AR

1 n-1
could be in general a non-linear operation and this non-linearity could come

from A or from F, and F; or from both. Other reasons will appear after
their introduction. These hypothesis are, for f and g suitable functions,
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Hypothesis (a): ) is a linear operation over zy,
k
/"\[91(%) + cga(ze)) = /z.\gl(xk) s c{\ﬂz(zk);

Hypothesis (b): 91/\ s /\92(f(ho,h1 ''''' hn_l)(.‘ro, ZTyyeeoyln-1y xn)) = 0,

1 n-1
th h’h ey hn—l Sl (f(ho,h;.....h,._;)(zo’ TyyeovyTp-y, xn)) o 0;

Hypothesis (c): g(zx) > 0 = Ag(zs) > 0;
k

Hypothesis (d): F; and F, are diffeomorphisms, F, :@ - T, F, :C -,
a.nd fl = f.g—l,}'-g =.7‘-‘—1

Note that, even with these hypotheses, we are still situated at a very
general level. They are very general (or obvious, as for hypothesis(b)), and
we still work with a non-linear operation. The hypothesis (a) says where
the non-linearity (if it exists) comes from. The hypothesis (c) will be clear
when used (it will be necessary in [¥), the same being the case for hypothesis
(d).

Now we can use eq.(1) for postulate 1. We have, using hypothesis (a),

dAx(n,0) lhmo= FIN ... \F}(dw[A(1,0), A2,1), ..., A(n,n — 1)]) =

n—-1

Ow Ow
ﬂ/l\ .n/-\lf; [mdAho(LO) 4+ ...+ WI—)JA;‘“_‘(H,H — l)] — 3 1

With hypothesis (b) and using (2) for instance in dAy,(1,0), we have

0w ow
[aA(& T BA(I,O)] dAn(2,1) + ...
0w Bw
- ol 4p [5A(n,n -1) B aA(l,O)} dA,_,(n,n—1)=0.

Remembering that dA,, (k + 1,k) # 0, it follows that w must satisfy the
system of differential equations

ow  Ow ow Ow
0A(1,0)  0A(2,1)’ " 8A(1,0)  dA(n,mn—1)

14



" The general solution of this well-known system can be easily found by a
change of variables, from A(1,0),...,A(n,n—1) to Ay = A(1,0)+ A(2,1)+
..t A(nyn — 1), A} = A(L,0) — A(2,1),...,4;_, = A(1,0) — A(n,n — 1).
Denoting by W the function w written in the variables A’, we obtain a
system whose determinant of the matrix of the coefficients is always non-
vanishing, and the solution is the trivial one 9W/0A] = ... = OW/0A,_, =
0. Then our general solution is a function of variable Aj alone, i.e.,

w[A(1,0), A(2,1),...,A(n,n—1)] =

w[A(1,0) + A(2,1) + ... + A(n,n — 1)), (3)
where we have seen that
n-1 n—1
E A(k H- 1, k) T Z A(xk+l1tb+l;zks tk) = A(zO, Ty 92:%)
k=0 k=0

in the limit Af, = ¢ — 0 is a functional of the paths v joining z4 and z,,
v: IR 3 [to,tn] — U,t — z(t) | z(to) = zo,z(tn) = T,. Moreover, and this
is the principal conclusion we draw from (3), it is a local functional ('),

Remark 3 This result is a justification for what we said in the beginning
of this section, i.e., that the expression we wrote for A(n,0) is only a con-
venient way of writing the dependence of A(n,0) onA(1,0),...,A(n,n—1).
The only role played by w is to permit us to arrive at (3), that is, to conclude
that A[y] = lim,—o A(zo, Z1,...,2,) is a local functional. The “localization
property” of this functional is a very important one. Now, since the con-
sideration of the function w had achieved its purposes, we can join it in F;
and rewrite the hypothesis (d) or simply take it equal to the identity. So,
from now on we will take w = 1.

In order to write an expression for this functional in the limit ¢ — 0
it is necessary to define a measure u(¢) (condition (ii) of postulate 1). We
adopt a Lebesgue-Stieltjes measure ' yp(t) defined from a given generating
function F(t) and define

I(k + 1,k) = Lup(e),

where now we write £} for the value assumed in a point z}, between z, and
Zk41 by a function £° which we suppose to be continuous. It is this function
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L° that characterizes the mechanical system. Furthermore, if we remember
def.6, we conclude that £° must be a function of z and z = dz/dt (and
maybe t) since it is necessary to give the value of z at two distinct times
to define a motion. With the additional hypothesis that F'(¢) is absolutely
continuous and defining £ = L°F'(t), where durp(t) = dF(t) = F'(t)dt, we

write
> n—leo tn 0 s t"d %
15%’; 0 up(e) = /t dup(t)C(z, ,t) = [ 4L(2, 3, 1).

In the next section we show that L(z,z,t) is the usual lagrangian of the
system; therefore it is IR-valued, as assumed in postulate 1.

Definition 8 Let I' be the set of all paths v : IR 3 [to,t,] — U,t — z(t) |
z(to) = o, z(tn) = Zn. The functional I : ' — IR,y — I[y],

n—1 e
Ily] = lim ’g be= [o dtL(z, 1), (4)

is called the IR-action functional (L : TU x IR — IR is called the lagrangian
(TU is the tangent bundle) and A[y] = iI[y] is the @-action functional).

Remark 4 Note that the quantity that is related to the system through
the lagrangian in def.8 is called the action functional and the one related to
the motion in postulate 1 is called the action. This is a very important dis-
tinction and must not cause confusion. What might cause some confusion is
the fact that, in Physics, what we have called the action functional is some-
times simply called the action, a denomination which does not take into
account the mathematical nature of this object’. We will see in the next
section that what we call the action is sometimes called the action function
or the principal function'®. In any case, our denomination must not cause
confusion because we are considering in each case different mathematical

%For example: Landau and Lifshitz 3] call it simply action, Sudarshan and
Mukunda (4] properly call it the action functional and Arnold %] also makes this correct
distinction but not in an insistent way.

OFor example: in Classical Mechanics (remember that we do not have considered
Classical Mechanics as yet) it is called action function by Arnold (] and Hamilton’s
principal function by Saletan and Cromer [15).
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objects. The same holds for the IR-action functional and the €-action func-
tional. What we must have in mind, and this is a very important point, is
that we are considering the same property, in one case for the set and in
the other for the elements of this set. When we say “the action” we refer
to a property called action of the set {n,0} and the same for each element
{k + 1,k} of this set. When we say “the action functional” we refer to a
quantity defined from this property of each one of those elements {k + 1, k}
and which has the particular property of being a local functional.

Finally, introducing (4) in (3) and then in (1) and using hypothesis
(d) (the justification of it is given in the next section), we obtain a final
expression for A(n,0). We can summarize our results for this expression for
A(n,0) as a proof for the

Proposition 1 There exists an infinity of expressions for the C-action A(n,0)
such that it satisfies the laws of Mechanics as expressed by postulate 1 and
which can be written in the general form

An,0) =limF'A\... AF (z-j AGi + l,i)) = FIINF(ARD,  (5)

n-1  \i=0 &)

where /\ and F satisfies the hypothesis (a)-(d) and A[4] is the @-action func-
tional éiven by A[y] = iI[y] where I[y] is the IR-action functional (def.8).

All the efforts of this section where made towards an answer to ques-
tion 1. This answer is provided once we know how to write A(n,0) from
A(1,0),...,A(n,n—1) and we have hoped that the requirement of the action
to satisfy the laws of Mechanics tell us how to do this. But this has given us
only the proposition 1. This, however, must be viewed as a welcome fact,
that we will discuss in the next sections.

In any case, given an expression for the action we can formulate a physi-
cal theory in order to describe the motion. As we said, this will be discussed
in the next sections, but before doing this we must explain what is meant
here by a physical theory, i.e.,

Definition 9 (Bernardes’) A physical theory is a general scheme, from
which we can formulate propositions about observable properties and such
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that it is based on axiomatic propositions which involve at least one non-
observable property'!.

Definition 10 A physical theory that satisfies the laws of Mechanics as
expressed by postulate 1 is called a theory of Mechanics.

Remark 5 From definitions 1, 9 and 10 we see that a theory of Mechanics
must formulate propositions about the observable properties of the motion
(def.2 and def.5) from a general scheme provided by the laws of Mechanics.
According to def.4, this scheme must provide a way to know T € D. On the
other hand, since the concept of system is taken as a primitive notion, the
description of the system is provided by the description of motion (remember
sec.2). In other words, in a general case the system is to be described by
an element T that belongs to a set D whose definition depends on a given
theory of Mechanics (more on this issue is discussed in (?).

4 Conjunction and Classical Mechanics

We saw in the preceding section that, given an expression for the action, we
can formulate a physical theory in order to describe the motion. Proposi-
tion 1 does not, however, give a unique answer to question 1. We must have
another tool in order to decide for one expression for the action among the
infinite many provided by (5).

At this point, any choice among the ones in (5), that is, any hypothesis
concerning the nature of the set {n,0}, is not a necessary one. The necessary
condition provided by the laws of Mechanics is equally satisfied by any
expression in (5).

Let us see one example. One choice among those is provided by the
acceptance of

Definition 11 (The Principle of Conjunction (PC)—in mechanics)
12 Relative to the action, the set {n,0} = [{1,0},{2,1},...,{n,n — 1}] is

Note that Bernardes’ definition distinguishes theory and phenomenology, with the
latter being a scheme which involves only observables properties.

12The PC plays a fundamental role in what could be called Classical Physics. In what
follows we discuss its role in Mechanics; in Thermodynamics this is done in the work of
Bernardes [3] which contains a full account of it.
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a conjunctive set, i.e.:

(0,0} = U{k + 1k} <= A(n,0) = 3 A(k + 1, k).
k=0 k=0

Now we have

Proposition 2 The theory of Mechanics that satisfies the hypothesis of
the validity of the PC is Classical Mechanics (CM).

To prove this proposition, remember first that /\ in (5) is a linear oper-

ation over the allowed values of z; that are compatfble with the constraints
of the system. In order to have A(n,0) = 723 A(k + 1,k) this opera-
tion must select only one value z¥ among all the allowed ones, since then
A(n,0) = F1F(Sizs Ak +1,k)) = ©i2g A(k+1, k). We do not yet know
what this value is, but in the limit ¢ — 0 we will have A(n,0) = A[y] |,=5
where 7 is a given path which constitutes the set of the values z¥. In other
words, the operation /\ says that we must take among all the paths y € T

i
the path 4. In order t[o]know which path is it, we use postulate 1. Then we
have dA(n,0) |s=0= d(A[Y]) |]y=5= 0 and because A is a linear operation,
d(A[h])) |,=5= (6A[7]) |,=5 (where we use é§ to denote the differential of a
functional as it is customary '!); and for the path 7, (§A[y]) |,=s= 0. As we
see from the definition of A['y] i1[v], eq.(4), the condition (6A[y]) |y=5= 0
implies the condition (61[y]) |y=5= 0, that is the Hamilton principle of CM
(of course, in CM it does not matter if we start working with A[y] or I[v];
thus, we shall not be worried with this point).

The condition (6§A[y]) |,=5= 0 is the necessary condition ) for the
differentiable functional A[y] to have an extremum for ¥y = 5. Then 0 =
(6A[Y]) |.,=.7=e§t(5A['y]) b d(egr(tA['y]) and, for the )\ operation, A = ext.

M 9]

Definition 12 The operation /\ = ext is called Hamilton operation.
[
The Hamilton operation is an operation over all the paths v € ' which
selects among them the one that gives the extremum'® of A[y]. Thus ext

3Indeed, we have in general a stationary value of A[y] or a minimum for sufficiently
small time intervals, as well-known; but throughout this paper and (2] we omit such
details and consider it simply as an extremum.
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consists in selecting among all the allowed values of z; the value zf = z(t),
where I' 3 5 : t — Z(t). We can say that CM is the theory of Mechanics
that is based on the choice of A to be the Hamilton operation, and that such
a choice has as its foundation the acceptance of the validity of PC. Note
that this choice explains hypothesis (c) of sec.3, since it could be — ext (the
negative of egyct), some redefinitions being enough for this. Note also that
A(n,0) =e21ctA[7] = ieg'(tl['y] = 1I(n,0), where I(n,0) is what is usually call
Hamilton’s principal function or the action function. Our (-action could
properly be called the @-Hamilton’s principal function.

This particular choice has particularly remarkable consequences. They
are well-known facts in the realm of CM, but we must now look at them
as mere consequences of the choice we made of the A operation to be the
Hamilton operation. Let us discuss now some points that are quite impor-
tant for us:

PC Acceptance Consequence (a): We saw that def.6 forwards a natural
and convenient representation of the motion in the configuration space and
in def.7 we have defined its representation, R{n,0} = (z,, t,; Zo, to). It does
not say anything about what happens between #, and t,. It only introduces
a language that permits us to speak about the motion. This language is
based on the concepts of paths. Now, it is the law of Mechanics that says
something about the motion and how to use this language to speak about
it. Once accepted the PC we arrive at CM, and then the action is given
by the value of the action functional for a path 4 which gives its extremum
among all the possible paths v € I' between (zg, o) and (z,,t,). Thus, in
CM we can represent the motion in the configuration space as a given path
(the so called actual path) among all paths joining those points.

PC Acceptance Consequence (b): Being a theory of Mechanics, CM
can formulate propositions about the observable properties of motion which
are DVs. Because of consequence (a) we can describe the motion at any
instant ¢ as a point (z,¢) in the configuration space, where z is an IV (see
def.6). This leads us to “identify” in CM the concepts of DV and IV. Also, as
it is well-known, it is enough to know the action (for example by a solution
of Hamilton-Jacobi equation) to solve any mechanical problem. According
to def.4 the action defines the dynamics of motion. On the other hand, it
is also enough to know what is the path 7 (for example by a solution of the
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Lagrange equations) which gives the extremum of the action functional. So,
a function t + z(t) also defines the dynamics of motion in CM. Then, all
the DV are determined once we know z(t), which is an IV. Therefore, al-
though the concepts of DV and IV are different, there is an “identification”
of them in CM because their values are equal.

PC Acceptance Consequence (c): The above consequences lead to an-
other result. Instead of asking for a value of a DV we can in CM ask for a
value of an IV. Because the [Vs describe the system, CM can be viewed in
this sense as a genuine theory of the system; that is, we can define (apart
from mass) a particle in CM as the mapping 7 : IR — U,t — z(t). The use
of the adjective “genuine” is justified by the discussion we made in sec.2
and by remark 5. In CM all the propositions that we formulate about the
motion are propositions about the system because of consequence (b). Any
other theory of Mechanics also describes the system (remark 5) but not
“genuinely”, in the sense that its propositions are to be refered to DVs and
not to [Vs (remember that the IVs are parts of a language that we intro-
duce in order to speak about the motion and which refer to properties of
the system).

Now, since the action defines the dynamics of motion, we state

Definition 13 If the motion is such that the action is a conjunctive prop-
erty, i.e., {n,0} = [{1,0},{2,1},...,{n,n—1}] is a conjunctive set relative
to the action, then we will say that the motion has a conjunctive dynamics.

5 Convolution and Generalized Mechanics

The preceeding discussions put forth some questions. For example: (a) Is
the PC hypothesis valid 7 (b) Is there any other choice of A instead of the
Hamilton operation ?

The answer to question (a) is immediate. First, experiences has shown
that CM has a limited validity. If there is something wrong with CM, then
it seems reasonable that the problem is in the acceptance of PC. In fact, all
our other hypotheses seem very natural and we have shown in [}l that there
exist sets (fractal sets) which can be considered as not being conjunctive
sets.
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If the answer to (a) is negative, then we expect the answer to (b) to
be affirmative. We show that this is indeed the case in (4. There exist an
infinity of possibilities. A remarkable fact is provided by one of these: it
will lead us to a theory that is formally identical to Quantum Mechanics.
This will be discussed in 2.

However, none of those points are necessary for what we intend to do
here. It is enough for us answering the question: Is it necessary, at the point
we arrived at the end of sec.3, to make any choice of A ? Surely the answer
is no! Proposition 1 offers to us not one possibility but an infinity. We can
formulate not one theory of Mechanics, but a large class of them.

Proposition 1 defines a class of theories of Mechanics. Given an operation
A, by (5) we know how to write an expression for the action. Moreover, this
might be such that we do not have A(n,0) = $72) A(k+ 1, k). In this case
the set {n,0} = [{1,0},{2,1},...,{n,n — 1}] is a convolutive set relative
to the action, {n,0} = *xiZg{k + 1, k}, where * denotes convolution 1],

Definition 14 Any theory of Mechanics such that the set {n,0} = [{1,0},
{2,1},...,{n,n — 1}] is a convolutive set relative to the action, is called a
Generalized Mechanics(GM).

Definition 15 If the motion is such that the action is a convolutive prop-
erty, i.e., {n,0} = [{1,0},{2,1},...,{n,n— 1}] is a convolutive set relative
to the action, then we will say that the motion has a convolutive dynamics.

Once we recognize the possibility of formulating a class of theories of
Mechanics we must ask: How to do it ? In other words, we must answer

Question 2 In a GM, what are the variables that play the role of DV, that
is, what are the observables of motion if it has a convolutive dynamics ?

Question 3 How do these DVs evolve with time, that is: what are the
equations of motion in GM ?

The answer to these questions is given in (4. To such an end, we need
the help of another postulate that we will discuss now.

Postulate 2 Every GM has a Classical Limit.
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Proposition 3 A necessary condition for a GM to have a Classical Limit
is to be congruous with CM.

First, let us explain what is meant by a congruity between two GM. In
fact, congruity is used to express an obvious linguistic requirement. Suppose
we have two operations A, and A, and the correspondent expressions for
the actions A, and A,; A; (A,) is the action (the principal function) in
GM1 (GM2). Let 7 be a property of motion such that in GM1 the DV ¢,
is given from A, by ¢; = f(A;). We have here a DV ¢; that have a certain
name (call it “name”). Thus there is the proposition: “name” is obtained
from the action by f. Now in GM2 we have the DV §, that corresponds
to the property = and whose name is “name” because 7 is the same. Thus
in GM2 we have {; = f(A;). Because f is the same we say that GM1 and
GM2 are congruent.

Now consider a GM and CM. In the Classical Limit /\ — egr(t and égp —

bl
om in a certain limit that depends on A. If éom = f( e;y(tA['y]) and égp =
g}
9(/\A[7]) then in the Classical Limit égm — ¢( e¥t.A['y]) = U e;y(tA['y]).
2]
But ext: A[y] »—»egstA[*y] = Acwm is clearly onto, since every Acy is the
image under ext of some functional A[y] (that is, if there is a motion, then

there exists some system which is in motion), and then g = f, i.e., CM and
GM are congruent. This condition is clearly non-sufficient, since we cannot
conclude from it that A — ext in a certain limit

g}

Remark 6 Note that we did not give much importance to F in (5); but
now hypothesis (d) concerning it in sec.3 is clear. It is a necessary one for
CM as we saw in proposition 2 and now for postulate 2. A convenient way
to skip taking into account is to define

d=FoA (6)

14From this it follows that the exigency of congruity between a GM and CM is more
general than the one of having a classical limit. Thus, with postulate 2 we intend to con-
sider only systems with a classical analog. This is not, however, a restrictive assumption
since it is the exigency of congruity that is used in practice in b].
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and work with ® instead of A. Thus, from (5) we have

®(n,0) = hm/\ AP (Z A(k+1,k) ) = AF(AQ)). (7

n-1 k=0 2]

On the other hand, although the use of ®(n,0) instead of A(n,0) seems
natural (mainly because A is a linear operation), the need to know F can-
not be avoided, because it is for A[y] (not ®[y]) that we have defined an
expression via lagrangian. In spite of this, it should not be regarded as an
additional difficulty since F can be easily found. Suppose that we have a
motion between zq at ty and z, at t,, that is, {n,0} € M, characterized
by ®(n,0), and then a motion between z, at ¢, and z, at t,, {s,n} € M,
characterized by ®(s,n). The whole situation can be viewed as a motion
between z at ¢ty and z, at t,, {s,0} € M, characterized by ®(s,0). Thus,
it is legitimate to suppose that ®(s,0) can be obtained from ®(n,0) and
®(s,n), that is, the motion between z, at {5 and z, at ¢, can be described
from the ones between z¢ at {y and z, at t, and between z, at t, and
z, at t,. In other words, we suppose that the set of all ®(z,;) constitutes
a semigroup’®, i.e., that we have an associative composition law m such
that m : (®(s,n), ®(n,0)) — m(®(s,n),®(n,0)) = ®(s,0). Now from the
expression for these quantities we must get

{{lj{}/\ /\f(fA(ka)hm/\ /\}'(ZAk-Hk))}

1 k=0 n+1 s—1 k=n

~tig A AAA - /\f<zA(k+1 k)).

P n-1nn4l  s-1
Since on the right hand side we have an operation /\ which does not appear

in the arguments of m, it is legitimate to suppose that m involves /. Thus,
we suppose m to be such that it holds

/\[hm/\ /\f(ZA k41, k)] [hm/\ /\.F(ZA(I:-H k)]

i s 1 k=0 n+1 s—1 k=n

15In fact, it constitutes a group, as we will see in [, but we do not need to consider
that point here.
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~lig ... /\/\/\.../\f(gA(kH,kH?A(Hl,k)).

i n—=1n n41l s—1

Once we suppose that the individual limits exist and that the order of the
A’s may be changed, we arrive at the following condition, that 7 must
satisfy:

F (i Ak + l,k)) F (f Ak + l,k)) =

k=0 k=n
=f(EA(k+1,k)+§A(k+1,k))- (8)
k=0 k=n

From this condition we conclude that F must be an exponential function,
and that

n-1
®(n,0) = im A... A\ exp (E Ak + l,k)) = Aexp(4h]).  (9)
P, - k=0 b
It is this expression that we shall study in (2.
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