ON THE MULTIPLICATIVE GENERATORS OF SEMI-FREE CIRCLE ACTIONS

J. Carlos S. Kiihl

and

Claudina Izepe Rodrigues

RELATÓRIO TÉCNICO Nº 48/91

Abstract. This paper deals with the bordism groups of manifolds with semi-free S^1 actions. These groups are denoted by $SF_n(S^1)$. We study the multiplicative structure by using a J-homomorphism map. We also study the construction K, which gives a set of multiplicative generators, and we present an algebraic interpretation of this geometric construction. Finally, as an application, we analyze the homomorphisms $r_p: SF_*(S^1) \rightarrow$ $SF_*(\mathbb{Z}_p)$ from the bordism group of semi-free S^1 -actions on the bordism group of \mathbb{Z}_p actions induced by the restriction functors.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação IMECC – UNICAMP Caixa Postal 6065 13.081 – Campinas – SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade dos autores.

Setembro - 1991

On the multiplicative generators of

semi-free circle actions

J. Carlos S. Kiihl and Claudina Izepe Rodrigues

1. Introduction

This paper deals with the bordism groups of manifolds with semi-free S^1 -actions. These groups are denoted by $SF_n(S^1)$. We study the multiplicative structure by using a J-homomorphism map. We also study the construction K, which gives a set of multiplicative generators, and we present an algebraic interpretation of this geometric construction. Finally, as an application, we analyze the homomorphisms $r_p: SF_*(S^1) \to SF_*(\mathbb{Z}_p)$ from the bordism group of semi-free S^1 -actions on the bordism group of \mathbb{Z}_p -actions induced by the restriction functors.

2. Semi-free S^1 -actions.

Let $SF_n(S^1)$ be the bordism group of semi-free S^1 -actions on the *n*dimensional closed manifolds, and let $SF_*(S^1) = \bigoplus_{n\geq 0} SF_n(S^1)$ be the N_* module obtained. Analogously, we have the bordism groups $N_n(S^1)$ of free S^1 -actions on *n*-dimensional closed manifolds and $N_*(S^1) = \bigoplus_{n\geq 0} N_n(S^1)$.

There is the Smith homomorphism

$$\Delta: N_*(S^1) \to N_*(S^1)$$

which is a N_* -module homomorphism with degree -2. (see [3]).

Proposition 2.01. If $\Delta[M^{2n+1}, T] = 0$ for $[M^{2n+1}, T]$ in $N_{2n+1}(S^1)$, then there is an unique $[X^{2n}]$ in N_{2n} such that $[M^{2n+1}, T] = [X^{2n}] [S^1, S^1]$.

Proposition 2.02. If $[M^{2n+1}, T]$ is a free S^1 -action on the closed (2n + 1)manifold M^{2n+1} and if $W^{2n+1} \subset M^{2n+1}$ is a regular compact submanifold such that $W^{2n+1} \cup T(W^{2n+1}) = M^{2n+1}$ and $\partial W^{2n+1} = W^{2n+1} \cap T(W^{2n+1})$ then $\Delta[M^{2n+1}, T] = [\partial W^{2n+1}, T|\partial W^{2n+1}].$

Let $SF_*(S^1) \otimes_{N_*} N_*(S^1) \to N_*(S^1)$ be the pairing given by: if $[V^m, \tau] \in SF_m(S^1)$ and $[M^n, T] \in N_n(S^1)$ then $[V^m \times M^n, \tau \times T]$ is a free S^1 -action and we take $[V^m, \tau] [M^n, T] = [V^m \times M^n, \tau \times T]$ to define the pairing.

Lemma 2.03 If $\gamma \in SF_{2m}(S^1)$ and $\alpha \in N_{2n+1}(S^1)$ then $\Delta(\gamma \alpha) = \gamma \Delta(\alpha)$. Proof. Let $[M^{2n+1}, T]$ be a semi-free S^1 -action on a closed (2n+1)-manifold. So, by (2.02), if $W^{2n+1} \subset M^{2n+1}$ is a compact regular submanifold such that $W \cup TW = M$ and $W \cap TW = \partial W$ then $\Delta[M^{2n+1}, T] = [\partial W^{2n+1}, T|_{\partial W^{2n+1}}]$. Thus, since $V^{2m} \times W^{2n+1} \subset V^{2m} \times M^{2n+1}$, we have $(V \times W) \cup T'(V \times W) = (V \times W) \cup (\tau V \times TW) = (V \times W) \cup (V \times TW) = V \times (W \cup TW) = V \times M$, where $T' = (\tau, T)$ and $\partial(V \times W) = (\partial W \times W) \cup (V \times \partial W) = V \times \partial W = V \times (W \cap TW) = (V \times W) \cap (V \times TW) = (V \times W) \cap (\tau V \times TW)$. Therefore, we have $\Delta[V \times M, \tau \times T] = [\partial(V \times W), \tau \times T|_{\partial(V \times W)}] = [V \times \partial W, \tau \times T|_{V \times \partial W}] = [V, \tau] [\partial W, T|\partial W]$, i. e., $\Delta(\delta \alpha) = \gamma \Delta(\alpha)$.

Now let $\mathcal{B}_n(S^1)$ be the bordism group of semi-free S^1 - actions on *n*manifolds with boundary wich are free on the boundary. We have the N_* module homomorphisms $j : SF_n(S^1) \to \mathcal{B}_n(S^1)$ which assigns $[M^n, T]$ to $[M^n, T]$, since $\partial M^n = \emptyset$; and $\partial : \mathcal{B}_n(S^1) \to N_n(S^1)$ which associates $[V^n, T]$ to $[\partial V^n, T|_{\partial V^n}]$.

Theorem 2.04. The sequence

 $0 \to SF_n(S^1) \xrightarrow{j} \mathcal{B}_n(S^1) \to N_{n-1}(S^1) \to 0$

is exact and it splits. (see [5], 8.3).

Let $M_n(S^1) = \bigoplus_{k\geq 0}^{[n/2]} N_{n-2k}(BU_k)$ be the classifying space for the kdimensional bundles. We denote $M_*(S^1) = \bigoplus_{n\geq 0} M_n(S^1)$.

Theorem 2.05. There is the isomorphism

 $F: \mathcal{B}_n(S^1) \to \bigoplus_{k\geq 0}^{[n/2]} N_{n-2k}(BU_k)$

given by: $[M^n, T]$ is associated to $\sum_k [\nu^k \to F^{n-2k}]$ where F^{n-2k} is the fixed point set component and ν^k is the normal boundle corresponding. \Box

Theorem 2.06. $M_*(S^1)$ is a graded polynomial algebra on N_* with generators the classes $[\lambda \to CP(n)]$, $n \ge 0$, i. e., the canonic line bundles over $CP(n) \Box$

Theorem 2.07. $N_*(S^1)$ is a N_* module with base given by the elements $\{[S^{2n+1}, S^1]\}_{n>0}$.

Remark. Any element in $N_{2n+1}(S^1)$ can be written in an unique way as $\sum_{r=0}^{n} [X^{2r}][S^{2(n-r)+1}, S^1]$, and any element in $N_{2n}(S^1)$ can be written in an unique way as $\sum_{r=0}^{n-1} [X^{2r+1}][S^{2(n-r)-1}, S^1]$.

Let *i* in $M_2(S^1)$ be a semi-free S^1 -action on the unitary disk given by the scalar product, then $\partial(i) = [S^1, S^1]$ and we have the following lemma.

Lemma 2.08. The diagram

is commutative.

3. Products in $\bigoplus_{n>0} N_{2n+1}(S^1)$.

We define a product in $\bigoplus_{n\geq 0} N_{2n+1}(S^1)$ the following way: suppose that $\alpha \in N_{2n+1}(S^1)$ and $\beta \in N_{2m+1}(S^1)$. Let α' be in $M_{2n+2}(S^1)$ and $\beta' \in M_{2m+2}(S^1)$ such that $\partial(\alpha') = \alpha$ and $\partial(\beta') = \beta$. Let be $K = \max(m, n)$ and $k = \min(m, n)$. We define

$$\alpha\beta = \Delta^{K+1}(\alpha'\beta') \in N_{2k+1}(S^1).$$

In case n = m, this define a ring structure with unity on $N_{2n+1}(S^1)$, where the unity element is $[S^{2n+1}, S^1]$.

Lemma 3.01. If n < m then $\alpha \Delta \beta = \alpha \beta$ and if $n \ge m$ then $\Delta(\alpha \beta) = \alpha \Delta \beta$.

Proof. First consider n < m and select $\beta'' \in M_{2m}(S^1)$ with $\partial(\beta') = \Delta\beta$. Thus, $\Delta(\partial(\beta''i) + \beta) = 0$. So, by (2.01), there is an unique $[V^{2m}]$ in N_{2m} such that $\partial(\beta''i) + \beta = [V^{2m}] [S^1, S^1]$. Then, $\partial(\beta''i) + [V^{2m}] [S^1, S^1] = \beta$. Since $\partial(i) = [S^1, S^1]$, we have $\partial(\beta''i + [V^{2m}]i) = \beta$. Thus, $\alpha\beta = \Delta^{m+1}\partial(\alpha'\beta''i + [V^{2m}]\alpha'i) = \Delta^{m+1}\partial(\alpha'\beta''i) + \Delta^{m+1}\partial([V^{2m}]\alpha'i) = \Delta^m\partial(\alpha'\beta'') + [V^{2m}]\Delta^m\partial(\alpha') = \alpha\Delta\beta + [V^{2m}]\Delta^m\alpha$. Now, since n < m and $\alpha \in N_{2n+1}(S^1)$, we have that $\Delta^m \alpha = 0$.

Next, in case $n \geq m$, we have $\partial(\beta'') = \Delta\beta$. Then $\Delta(\partial(\beta''i + \beta)) = 0$. Therefore, there is $[V^{2m}] \in N_{2m}$ with $\partial(\beta''i) + [V^{2m}] [S^1, S^1] = \beta$. Since $\partial(i) = [S^1, S^1]$, we obtain $\partial(\beta''i + [V^{2m}]i) = \beta$. Thus, $\Delta(\alpha\beta) = \Delta^{n+2}\partial(\alpha'\beta''i + [V^{2m}]\alpha'i) = \Delta^{n+1}\partial(\alpha'\beta'' + [V^{2m}]\alpha') = \Delta^{n+1}\partial(\alpha'\beta'') + [V^{2m}]\Delta^{n+1}\partial(\alpha') = \alpha\Delta\beta + [V^{2m}]\Delta^{n+1}\alpha$. Since $n \geq m$ and $\alpha \in N_{2n+1}(S^1)$, we have that $\Delta^{n+1}\alpha = 0$. Therefore, $\Delta(\alpha\beta) = \alpha\Delta\beta$.

Lemma 3.02. For any pair α , β we have $\Delta(\alpha\beta) = \Delta\alpha\Delta\beta$. proof. Suppose that n < m. Then $\alpha\beta = \alpha\Delta\beta$ by (3.01). Thus, $m-1 \ge n$ and $\Delta(\alpha\Delta\beta) = \Delta\alpha\Delta\beta$. Therefore, $\Delta(\alpha\beta) = \Delta\alpha\Delta\beta$. Finally, if n = m, $\Delta(\alpha\beta) = \alpha\Delta\beta$ and $\Delta\alpha\Delta\beta = \alpha\Delta\beta$. Hence, $\Delta(\alpha\beta) = \Delta\alpha\Delta\beta$.

Lemma 3.03. If α , β and $\delta \in N_{2n+1}(S^1)$ then $\alpha(\beta\delta) = (\alpha\beta)\delta$. proof. Choose α' , β' and $\delta' \in M_{2n+2}(S^1)$ such that $\partial(\alpha') = \alpha$, $\partial(\beta') = \beta$ and $\partial(\delta') = \delta$. Then $\alpha(\beta\delta) = \alpha\Delta^{n+1}\partial(\beta'\delta') = \alpha\Delta(\Delta^n\partial(\beta'\delta')) = \alpha\Delta^n\partial(\beta'\delta')$. (by (3.01)). Thus, successively, we obtain $\alpha(\beta\delta) = \alpha\partial(\beta'\delta')$. So, by definition, $\alpha\partial(\beta'\delta') = \Delta^{2n+1+1}\partial(\alpha'(\beta'\delta')) = \Delta^{2n+2}\Delta((\alpha'\beta')\delta') = \partial(\alpha'\beta')\delta = \Delta^{n+1}\partial(\alpha'\beta')\delta = (\alpha\beta)\delta$.

Theorem 3.04. The product $\alpha\beta$ defines a ring structure on $\bigoplus_{n\geq 0} N_{2n+1}(S^1)$. proof. We must show that the associative law is true in general for $\alpha \in N_{2n+1}(S^1)$, $\beta \in N_{2m+1}(S^1)$ and $\delta \in N_{2p+1}(S^1)$. We can suppose $m \leq p$, then, by (3.01), we have $\alpha(\beta\delta) = \alpha(\beta\Delta^{p-m}\delta)$, since $\beta\Delta^{p-m}\delta = \beta\Delta(\Delta^{p-m-1}\delta) = \beta\Delta^{p-m-1}\delta = \beta\Delta(\Delta^{p-m-2}\delta) = \beta\Delta^{p-m-2}\delta = \ldots = \beta\delta$. Case I. If $n \leq m$, then $\alpha(\beta\delta) = \alpha\Delta^{m-n}(\beta\delta) = \alpha\Delta^{m-n}(\beta\Delta^{p-m}\delta) = \alpha(\Delta^{m-n}\beta\Delta^{m-n}\Delta^{p-m}\delta) = \alpha(\Delta^{m-n}\beta\Delta^{p-n}\delta) = (\alpha\Delta^{m-n}\beta)\Delta^{p-n}\delta = (\alpha\beta)\delta$.

Case II. If n > m, then $\alpha(\beta\delta) = \Delta\alpha(\beta\delta) = (\Delta^{n-m}\alpha)(\beta\delta) = (\Delta^{n-m}\alpha)(\beta\delta) = (\Delta^{n-m}\alpha\beta) = \Delta^{p-n}\delta = (\alpha\beta)\delta$.

Remark. For $\alpha \in N_{2n+1}(S^1)$, since $\partial(i^{m+1}) = [S^{2m+1}, S^1]$ and $\Delta^{m+1}\partial(\alpha' i^{m+1}) = \partial(\alpha') = \alpha$, we have that $\alpha[S^{2m+1}, S^1] = \alpha$ for $n \leq m$. If n > m, we have $\alpha[S^{2m+1}, S^1] = \Delta^{n+1}\partial(\alpha' i^{m+1}) = \Delta^{n-m}\alpha$. In particular, $N_{2n+1}(S^1)$ is a subring of $\bigoplus_{n\geq 0} N_{2n+1}(S^1)$ with unity $[S^{2n+1}, S^1]$, and $\Delta: N_{2n+1}(S^1) \to N_{2n-1}(S^1)$ is a ring homomorphism.

4. The stable bordism homomorphism.

We are going to introduce the ring $\mathcal{R} \stackrel{invlim}{\longrightarrow} (N_{2n-1}(S^1) \stackrel{\Delta}{\leftarrow} N_{2n+1}(S^1))$. An element in \mathcal{R} is a sequence $\{\alpha_n\}_0^\infty$ with $\alpha_n \in N_{2n+1}(S^1)$ and $\Delta(\alpha_n) = \alpha_{n-1}, \forall n \ge 1$.

Next, we define the homomorphism $\overline{J}: M_*(S^1) \to \mathcal{R}$, where $M_*(S^1) = \bigoplus_{k \ge 0} \bigoplus_{j=0}^k N_{2k-2j}(BU_j)$, in the following way: Let be $A \in M_{2k}(S^1)$, then $\overline{J}_n(A) = \Delta^k \partial (Ai^{n+1})$. Observe that $\overline{J}_n(A)$ belongs to $N_{2n+1}(S^1)$. The sequence $\{\overline{J}_n(A)\}_0^{\infty}$ belongs to \mathcal{R} , since $\Delta \overline{J}_n(A) = \Delta^{k+1} \partial (Ai^{n+1}) = \Delta^k \partial (Ai^n) = \overline{J}_{n-1}(A)$. Finally, we define $\overline{J}(A) = \{\overline{J}_n(A)\}_0^{\infty}$. Note that $\overline{J}_n(A) = \Delta^{k-n-1} \partial (A)$, if $k \ge n+1$.

The homomorphism \overline{J} is stable with relation the multiplication by *i*, i. e., $\overline{J}(Ai) = \overline{J}(A)$.

Theorem 4.01. The stable homomorphism

 $\overline{J}: \bigoplus_{k\geq 0} \bigoplus_{j=0}^k N_{2k-2j}(BU_j) \to \mathcal{R}$ is multiplicative.

proof. One needs only to consider pairs A, B in $M_{2k}(S^1)$ and components $0 \leq n < k$, since \overline{J} is stable. In this case, $\overline{J}_n(A)\overline{J}_n(B) = \Delta^{k-n-1}\partial(A)\Delta^{k-n-1}\partial(B) = \Delta^{k-n-1}(\partial(A)\partial(B))$. By definition, $\partial(A)\partial(B) = \Delta^k\partial(AB) = \Delta^{2k}\partial(ABi^k) = \Delta^{2k}\partial(ABi^{n-1+1}) = \overline{J}_{k-1}(AB)$. Therefore, $\overline{J}_n(A)\overline{J}_n(B) = \Delta^{k-n-1}(\partial(A)\partial(B)) = \Delta^{k-n-1}(\overline{J}_{k-1}(AB)) = \overline{J}_n(AB)$.

Taking the ring $M_*(S^1) = \bigoplus_{k \ge 0} \bigoplus_{j=0}^k N_{2k-2j}(BU_j)$, we are going to consider the quocient ring F obtained factoring the ideal constituted by the elements $A + A_i$, where A belongs to $M_*(S^1)$. There is a natural induced ring homomorphism $\overline{J}: F \to \mathcal{R}$.

5. The structure of \mathcal{R} .

Since $N_*(S^1)$ is a N_* -module with base given by $\{[S^{2n+1}, S^1]\}_{n>0}$, we

can describe the product in $N_{2n+1}(S^1)$ directly. If $\alpha = \sum_{r=0}^n [X^{2r}] [S^{2(n-r)+1}, S^1]$ and $\beta = \sum_{r=0}^n [Y^{2r}] [S^{2(n-r)+1}, S^1]$, consider $\alpha' = \sum_{r=0}^n [X^{2r}] i^{n-r+1}$, and $\beta' = \sum_{r=0}^n [Y^{2r}] i^{n-r+1}$, so

$$\alpha'\beta' = \sum_{r=0}^{n} \left(\sum_{r+s=l} [X^{2r}] [Y^{2s}]\right) i^{2(n+1)-l},$$

and

$$\alpha\beta = \Delta^{n+1}\partial(\alpha'\beta') = \sum_{r=0}^{n} (\sum_{r+s=l} [X^{2r}] [Y^{2s})[S^{2n+1-l}, S^1].$$

We can use this to identify \mathcal{R} with the ring $N_*^{(2n)}(\theta)$ of formal power series on the graduated ring $N_*^{(2n)}$. We assign $\{\alpha_n\}_0^\infty$ to $\sum_{0}^{\infty} [X^{2r}]\theta^r$, where $\alpha_n = \sum_{0}^{n} [X^{2r}] [S^{2(n-r)+1}, S^1].$

We have $\Delta \alpha_{n+1} = \alpha_n$, and the product $\alpha_n \beta_n$ is the rule to multiply formal power series. Thus, we have $\overline{J}: F \to N(\theta)$.

Lemma 5.01. The image of

$$SF_{2m}(S^1) \to M_{2m}(S^1) \to F \to N(\theta)$$

is the ideal generated by θ^m , and $\overline{J}([M^{2m}, T]) = [M^{2m}]\theta^m + \text{terms}$ with power bigger than m.

proof. Let $[M^{2m}, T]$ be given, consider the normal bundle to the fixed point set $[\xi \to F]$ in $M_{2m}(S^1)$. So, $\partial([\xi \to F]) = 0$ in $N_{2m-1}(S^1)$, and $\overline{J}_n([\xi \to F]) = \Delta^{m-n-1}\partial([\xi \to F]) = 0$ for $0 \le n \le m-1$. Thus, $\overline{J}_m([\xi \to F]) = \Delta^m \partial([\xi \to F]i^{m+1})$ in $N_{2m+1}(S^1)$. Consequently, $\overline{J}_m([\xi \to F]) = \partial([\xi \to F]i) = [S(\xi \oplus 1_C), S^1]$. Since $\Delta([S(\xi \oplus 1_C), S^1]) = 0$, then, by (2.01), there is an unique $[X^{2m}]$ such that $[S(\xi \oplus 1_C), S^1] = [X^{2m}]$ $[S^1, S^1]$. Next, since $[CP(\xi \oplus 1_C)] = [M^{2m}]$, we have that $[S(\xi \oplus 1_C), S^1] = [M^{2m}]$ $[S^1, S^1]$. Thus $\overline{J}([\xi \to F]) = [M^{2m}]\theta^m$ + terms with power bigger than m. \square

Lemma 5.02. Let $[\xi \to F]$ be in $M_{2m}(S^1)$. If $\overline{J}([\xi \to F]) = \beta \theta^m + \text{ terms}$ with power bigger than m, then there is a manifold with semi-free S^1 -action

 $[M^{2m}, T]$ such that β is in the class of M^{2m} and $[\xi \to F]$ is the normal bundle to the fixed point set of $[M^{2m}, T]$.

proof. We have $0 = \overline{J}_{m-1}([\xi \to F]) = \Delta^{m-m+1-1}\partial([\xi \to F]) = \partial([\xi \to F])$. On the other hand, $\partial([\xi \to F]) = [S(\xi), S^1]$. Therefore, $[S(\xi), S^1] = 0$. Now, suppose that $\partial[V^{2m}, \tau] = [S(\xi), S^1]$, where $[V^{2m}, \tau]$ is in $N_{2m}(S^1)$. Next, consider $M^{2m} = (D(\xi) \cup V^{2m})/S(\xi) \equiv \partial V^{2m}$ and $T = S \cup \tau$. The normal bundle to the fixed point set of $[M^{2m}, T]$ is $\xi \to F$, hence $\beta = [M^{2m}]$.

Lemma 5.03. Let 1_C be in $M_2(S^1)$. Then $\overline{J}(1_C) = 1$. **proof.** Since $\overline{J}_n(1_C) = \Delta \partial (1_C i^n) = \Delta \partial (i^{n+2} = \Delta [S^{2n+3}, S^1] = [S^{2n+1}, S^1] \in N_{2n+1}(S^1), \forall n \geq 0$, we have that $\overline{J}(1_C) = 1$.

Lemma 5.04. Let $[V^{2s}]$ be in N_{2s} and $A \in M_{2k}$. Then $\overline{J}([V^{2s}]A) = [V^{2s}]\theta^s \overline{J}(A)$. proof. We have $\overline{J}_n([V^{2s}]A) = \Delta^{s+k}\partial([V^{2s}])Ai^{n+1}) = \Delta^{s+k}[V^{2s}]\partial(Ai^{n+1}) = [V^{2s}]\Delta^{s+k}\partial(Ai^{n+1})$. Since $\Delta^{s+k}\partial(Ai^{n+1})$ is in $N_{2n+1-2s}(S^1)$, and 2(n-s) + 1 is odd, we have $\Delta^{s+k}\partial(Ai^{n+1}) = \sum_{r=0}^{n-s} [X^{2r}][S^{2(n-s-r)+1}, S^1]$. Therefore, $\overline{J}_n([V^{2s}]A) = [V^{2s}]\sum_{r=0}^{n-s} [X^{2r}][S^{2(n-s-r)+1}, S^1] = \sum_{r=0}^{n-s} [X^{2r}][V^{2s}][S^{2(n-s-r)+1}, S^1]$. Thus, $\overline{J}_n([V^{2s}]A) = \sum_{r=0}^{\infty} [X^{2r}][V^{2s}]\theta^{s+r} = [V^{2s}]\theta^s \sum_{r=0}^{\infty} [X^{2r}]\theta^r = [V^{2s}]\theta^s \overline{J}(A)$.

Now, we are going to define the operator $\mathcal{K} : SF_*(S^1) \to SF_*(S^1)$. Let $[M^n, T]$ be a semi-free S^1 -action. Consider $D^2 \times M^n$ and the actions T_1 and T_2 defined by:

$$T_1: (t, (z, m)) \mapsto (tz, m), \text{ and}$$

 $T_2: (t, (z, m)) \mapsto (tz, T(t, m)).$

Restricting T_1 and T_2 to $S^1 \times M^n$, we get the induced actions $[S^1 \times M^n, T_1]$ and $[S^1 \times M^n, T_2]$. There exists a diffeomorphism $\varphi : [S^1 \times M^n, T_1] \rightarrow [S^1 \times M^n, T_2]$ given by $(s, x) \mapsto (s, T(s, x))$. Thus, the action $[S^1 \times M^n, T_1]$ is equivariantly diffeomorphic to $[S^1 \times M^n, T_2]$. Taking the disjoint union $[D^2 \times M^n, T_1] \cup [D^2 \times M^n, T_2]$, we can get the closed manifold M^{n+2} and the S^1 action τ_1 on M^{n+2} , using the identification of $[S^1 \times M^n, T_1]$ with $[S^1 \times M^n, T_2]$

through φ . Finally, we define

$$\mathcal{K}[M^n, T] = [M^{n+2}, \tau_1].$$

The fixed point set of τ_1 is $F_1 = \text{Fix}(T) \cup M^n$, where Fix (T) is the fixed point set of T and the normal bundle to Fix (T) is $\eta \oplus 1_C \to \text{Fix}(T)$, where η is the normal bundle to the Fix (T) on M^n . Moreover, the normal bundle to M^n is the trivial complex bundle 1_C .

Using an inductive process, one can assign to $[M^n, T]$ a sequence of semifree S^1 -actions $[V(n, k), \tau_k]$. To do this, consider $[V(n, 0), \tau_0] = [M^n, T]$ and $[V(n, 1), \tau_1] = \mathcal{K}[M^n, T]$. Now, we get $[V(n, 2), \tau_2]$ applying the above construction to $[V(n, 1), \tau_1]$. Thus, applying this construction, successively, k times, we get $[V(n, k), \tau_k]$, where the fixed point set is $F_k = \text{Fix}$ $(T) \cup (\bigcup_{0}^{k-1}V(n, j))$. Futhermore, the normal bundle η_k to F_k is $\eta \oplus 1_C^k$, where η is the normal bundle to the Fix (T) on M^n , and $1_C^k = \bigoplus_{0}^{k-1} 1_C^{k-j}$, with 1_C^{k-j} the trivial complex bundle over V(n, j).

Lemma 5.05. If η is the normal bundle to the fixed point set of $[M^n, T]$, then $[V(n, k)] = [CP(\eta \oplus 1_C^{k+1})] + \sum_{j=0}^{k-1} [CP(k-j)][V(n, j)]$.

Lemma 5.06. Let λ_n be the canonic complex line bundle over CP(n). Then

$$\overline{J}(\lambda_n) = 1 + \sum_{i=0}^{\infty} [V(n+1, i)] \theta^{n+i+1}.$$

proof. Let T_0 be a semi free S^1 -action on CP(n + 1) defined by $T_0: [z_0, z_1, \ldots, z_n] \mapsto [sz_0, z_1, \ldots, z_n]$, where s belongs to S^1 . The normal bundle to the fixed point set is $\lambda \oplus 1_C^{(n+1)}$, where λ is the canonic complex line bundle to CP(n) and $1_C^{(n+1)}$ is the trivial complex bundle to CP(0). Now, we are going to consider the manifolds with semi free S^1 -action $[V(n + 1, k), \tau_k]$, where $[V(n + 1, 0), \tau_0] = [CP(n + 1), T_0]$. The fixed point set of $[V(n + 1, k), \tau_k]$ is $[\nu \oplus 1_C^k \to F] + [1_C^k \to V(n + 1, 0)] + [1_C^{k-1} \to V(n + 1, 1)] + \ldots + [1_C \to V(n+1, k-1)]$, where $\nu \to F$ is the bundle $(1_C^{(n+1)} \to CP(0)) \cup (\lambda \to CP(n))$.

Taking k = 2, we see that the fixed point set of $[V(n + 1, 2), \tau_2]$ is $[\nu \oplus 1_C^2 \to F] + [1_C^2 \to V(n + 1, 0)] + [1_C \to V(n + 1, 1)]$. Since $\overline{J}[V(n + 1, 2), \tau_2] = [V(n + 1, 2)]\theta^{n+3}$ + terms with power bigger than n + 3, and $\overline{J}[V(n + 1, 2), \tau_2] = \overline{J}[\nu \oplus 1_C^2 \to F] + \overline{J}[1_C^2 \to V(n + 1, 0)] + \overline{J}[1_C \to V(n + 1, 2)]$

V(n + 1, 1)], we get $[V(n + 1, 2)]\theta^{n+2}$ + terms with power bigger than $n + 2 = \overline{J}[\nu \to F] + [V(n + 1, 0)]\theta^{n+1} + [V(n + 1, 1)]\theta^{n+2}$. Therefore, $\overline{J}[\nu \to F] = [V(n + 1, 0)]\theta^{n+1} + [V(n + 1, 1)]\theta^{n+2} + [V(n + 1, 2)]\theta^{n+3} + \text{terms}$ with power bigger than n + 3.

On the other hand, $\overline{J}[\nu \to F] = \overline{J}[1_C^{n+1} \to CP(0)] + \overline{J}(\lambda_n)$. Hence, $\overline{J}(\lambda_n) = 1 + [V(n+1, 0)]\theta^{n+1} + [V(n+1, 1)]\theta^{n+2} + [V(n+1, 2)]\theta^{n+3} + \text{terms}$ with power bigger than n + 3. Finally, in general we have the result, that is, $\overline{J}(\lambda_n) = 1 + \sum_{i=0}^{\infty} [V(n+1, i)]\theta^{n+i+1}$. \Box

6. Algebraic interpretation of the geometric construction \mathcal{K} .

As in [1], in this section we are going to express $SF_*(S^1)$ as a direct sum of certain submodules.

Let $[CP(n), T_0]$ be in $SF_{2n}(S^1)$, where $T_0 : [z_0, \ldots, z_n] \mapsto [sz_0, z_1, \ldots, z_n]$, $s \in S^1$. The fixed point set of this semi free S^1 -action is $(1_C^n \to CP(0)) \cup (\lambda \to CP(n-1))$. Therefore, one can write $[CP(n), T_0] = \alpha_n + \alpha_1^n$, where $\alpha_n = [CP(n-1), \lambda]$. Thus, $\alpha_n = [CP(n), T_0] + \alpha_1^n$. Since $M_*(S^1)$ is a polynomial algebra over N_* generated by the elements α_n in $M_{2n}(S^1)$, for $n \ge 1$, we have that the elements $[CP(n), T_0]$, for $n \ge 2$, together $\alpha_1 = i$ in $M_2(S^1)$, constitute another system of polynomial generators for $M_*(S^1)$. We are going to denote by Q the polynomial subalgebra of $SF_*(S^1)$ generated by $[CP(n), T_0]$; and by Q_{2m} the intersection $Q \cap SF_{2m}(S^1)$. Thus, $M_*(S^1) = Q[i]$. By (5.01), $SF_{2m}(S^1)$ consist of polynomials P in i over Q for which $\overline{J}(P)$ belongs to the ideal generated by θ^m .

Lemma 6.01. Given an element y in $M_{2m}(S^1)$, there is an unique polynomial F in $N_*[i]$, with no constant terms, such that y + F belongs to $SF_{2m}(S^1)$. **proof.** Since $M_*(S^1) = Q[i]$, we have that $y = q_0 + q_1i + q_2i^2 + \ldots + q_{m-1}i^{m-1} + q_mi^m$, where q_j is in $Q_{2(m-j)}$. Thus, since $\overline{J}(i) = 1$ and \overline{J} is stable, we have that $\overline{J}(y) = \overline{J}(q_0) + \overline{J}(q_1i) + \overline{J}(q_2i^2) + \ldots + \overline{J}(q_{m-1}i^{m-1}) + \overline{J}(q_mi^m) = \overline{J}(q_0) + \overline{J}(q_1) + \ldots + \overline{J}(q_{m-1}) + \overline{J}(q_m)$. Next, since q_j belongs to $Q_{2(m-j)} = Q \cap SF_{2m}(S^1)$, then $\overline{J}(q_j) = [W_{2j}^{2(m-j)}]\theta^{m-j} + [W_{2j}^{2(m-j)+2}]\theta^{m-j+1} + \ldots + [W_{2j}^{2(m-1)}]\theta^{m-1} + [W_{2j}^{2m}]\theta^m +$ terms with power bigger than m, where $[W_{2j}^{2(m-j)}]$ is in $N_{2(m-j)}$. Thus, $\overline{J}(y) = [W_{2m}^0] + ([W_{2m}^2] + [W_{2(m-1)}^2])\theta + \ldots + (\sum_{k=0}^{j} [W_{2(m-k)}^{2j}])\theta^j + \ldots + (\sum_{k=0}^{m-1} [W_{2(m-k)}^{2(m-1)}])\theta^{m-1} + [W_{2(m-k)}^{2(m-1)}])\theta^{m-1} + (\sum_{k=0}^{j} [W_{2(m-k)}^{2(m-1)}])\theta^{m-$

 $(\sum_{k=0}^{m} [W_{2(m-k)}^{2m}])\theta^{k} + \text{ terms with power bigger than } m. \text{ Let } F = [W_{2m}^{0}]i^{m} + ([W_{2m}^{2}] + [W_{2(m-1)}^{2}])i^{m-1} + \ldots + (\sum_{k=0}^{j} [W_{2(m-k)}^{2j}])i^{m-j} + \ldots + (\sum_{k=0}^{m-1} [W_{2(m-k)}^{2(m-1)}])i \text{ be}$ in $N_{*}[i]$. Then, we have $\overline{J}(y + F) = (\sum_{k=0}^{m} [W_{2(m-k)}^{2m}])\theta^{m} + \text{ terms with power}$ bigger than m, i. e., $\overline{J}(y + F)$ is in the ideal generated by θ^{m} . Therefore, by (5.01), y + F belongs to $SF_{2m}(S^{1})$. \Box

Let $\varepsilon: Q \to N_*$ be the aumentation homomorphism. Thus, we have the following lemma.

Lemma 6.02. Let q_j be in $SF_{2(m-j)}(S^1)$, for $0 \leq j \leq m$. Then $\mathcal{K}q_j$ is in $SF_{2(m-j+1)}(S^1)$, where we denote by $\mathcal{K}q_j$ the element $i(q_j + [W_j^{2(m-j)}])$, and $[W_j^{2(m-j)}] = \varepsilon(q_j)$

proof. Since i_{q_j} is in $M_{2(m-j+1)}(S^1)$, there is an unique element F in $N_*[i]$, with no constant term, such that $iq_j + F$ belongs to $S_{2(m-j+1)}(S^1)$.

Now, we are going to verify that $F = [W_{2j}^{2(m-j)}]\theta^{m-j+1} + \text{terms}$ with power bigger than m - j + 1. We know that $\overline{J}(q_j) = [W_{2j}^{2(m-j)}]\theta^{m-j} + [W_{2j}^{2(m-j+1)}]\theta^{m-j+1} + \text{terms}$ with power bigger than m - j + 1. Thus, $\overline{J}(iq_j + [W_{2j}^{2(m-j)}]i) = [W_{2j}^{2(m-j+1)}]\theta^{m-j+1} + \text{terms}$ with power bigger than m - j + 1. Therefore, $\overline{J}(\mathcal{K}q_j)$ is in the ideal generated by θ^{m-j+1} , and this fact imply that $\mathcal{K}q_j$ belongs to $SF_{2(m-j+1)}(S^1)$. \Box

Remark 6.03. Denoting by $\mathcal{K}^2 q_j$ the element $i\mathcal{K}q_j$, by (6.02), we have that $\mathcal{K}^2 q_j$ is in $SF_{2(m-j+2)}(S^1)$. Thus, successively, $\mathcal{K}^n q_j = i\mathcal{K}^{n-1}q_j$ belongs to $SF_{2(m-j+n)}(S^1)$, and $\mathcal{K}^n q_j = i^n q_j + [W_{2j}^{2(m-j)}]i^n$.

Lemma 6.04. Let q_j be in $SF_{2(m-j)}(S^1) \cap Q$, j = 0, ..., m. If $y = q_0 + q_1 i + q_2 i^2 + ... + q_{m-1} i^{m-1} + q_m i^m$ belongs to $SF_{2m}(S^1)$, then $y = q_0 + \mathcal{K}q_1 + \mathcal{K}^2q_2 + ... + \mathcal{K}^m q_m$ and $\varepsilon(q_j) = 0$.

proof. We can write $y = q_0 + \mathcal{K}q_1 + \mathcal{K}^2 q_2 + \ldots + \mathcal{K}^{m-1}q_{m-1} + \mathcal{K}^m q_m + [W_2^{2(m-1)}]i + [W_4^{2(m-2)}]i^2 + \ldots + [W_{2(m-1)}^2]i^{m-1} + [W_{2m}^0]i^m$, where $[W_{2j}^{2(m-j)}] = \varepsilon(q_j)$. Since y is in $SF_{2m}(S^1)$, and q_0 , $\mathcal{K}q_1$, $\mathcal{K}^2 q_2, \ldots, \mathcal{K}^m q_m$ belong to $SF_{2m}(S^1)$, we must have

 $(\sum_{j=1}^{m} [W_{2j}^{2(m-j)}]i^{j}) \text{ in } SF_{2m}(S^{1}). \text{ Next, since } \overline{J}([W_{2j}^{2(m-j)}]i^{j}) = [W_{2j}^{2(m-j)}]\theta^{m-j} \text{ and} \\ m-j < m, \text{ we conclude that } W_{2j}^{2(m-j)}, \ j = 1, \dots, m, \text{ are boundary manifolds.} \\ \text{Thus, } (\sum_{j=1}^{m} [W_{2j}^{2(m-j)}]i^{j}) = 0. \text{ Therefore, } y = q_{0} + \mathcal{K}q_{1} + \mathcal{K}^{2}q_{2} + \ldots + \mathcal{K}^{m}q_{m}. \Box$

Denoting by $Q_{2(m-j)}^+ = ker(Q_{2(m-j)} \to N_{2(m-j)})$, we have the following theorems.

Theorem 6.05. $SF_{2m}(S^1)$ is the direct sum of Q_{2m} and $\mathcal{K}^m Q^+_{2(m-n)}$, for $m \ge n > 0$; and \mathcal{K}^n embed $Q^+_{2(m-n)}$ in $SF_{2m}(S^1)$. \Box

Theorem 6.06. The N_* - module $SF_*(S^1)$ is the direct sum of Q and N_* -submodules $\mathcal{K}^n Q^+$, for n > 0; and \mathcal{K}^n embed Q^+ in $SF_*(S^1)$, where $Q^+ = ker(Q \to N_*)$.

7. \mathbb{Z}_{P} -actions, p an odd prime.

We denote by $[M^n, T]$ a closed manifold M^n together a *p*-periodic diffeomorphism T, p an odd prime. We have the following bordism groups: the bordism group of free \mathbb{Z}_p -actions $N_*(\mathbb{Z}_p)$, the bordism group of semi free \mathbb{Z}_p actions $SF_*(\mathbb{Z}_p)$, and the bordism group of semi free \mathbb{Z}_p -actions on manifolds with boundary which is free on the boundary $M_*(\mathbb{Z}_p)$.

Theorem 7.01. We have the exact sequence

 $\dots \to N_n(\mathbb{Z}_p) \to SF_n(\mathbb{Z}_p) \xrightarrow{j_*} M_n(\mathbb{Z}_p) \to N_{n-1}(\mathbb{Z}_p) \to \dots$

where $M_n(\mathbb{Z}_p) = \oplus N_{n-2k}(BU(k_1) \times \ldots \times BU(k_{(p-1)/2}))$. (see [4], 38.3.)

Consider the homomorphism $\overline{\varepsilon} : N_*(\mathbb{Z}_p) \to N_*$ defined by $\overline{\varepsilon}[M^n, T] = [M^n/T]$. Let $\widetilde{N}_*(\mathbb{Z}_p)$ the reduced group, i. e., $\widetilde{N}_*(\mathbb{Z}_p) = ker\overline{\varepsilon}$.

Theorem 7.02. The sequence

 $0 \to N_n \xrightarrow{i_*} SF_n(\mathbb{Z}_p) \xrightarrow{j_*} M_n(\mathbb{Z}_p) \xrightarrow{\partial} \widetilde{N}_{n-1}(\mathbb{Z}_p) \to 0$

is exact. The homomorphism i_* is defined by $i_*[M^n] = [M^n \times \mathbb{Z}_p, 1 \times \sigma]$, where σ is the *p*-periodic map which permuts the elements of \mathbb{Z}_p .

Theorem 7.03. $\widetilde{N}_*(\mathbb{Z}_p)$ is a N_* -module generated by the elements $\{[S^{2k-1}, \rho]\}$, where $\rho = \frac{2\pi i}{n}$.

The N_* -modules $SF_*(\mathbb{Z}_p)$ and $M_*(\mathbb{Z}_p)$ are graduated rings with multiplication induced by the cartesian product $[M_0, T_0][M_1, T_1] = [M_0 \times M_1, T_0 \times T_1]$.

Denoting by I the image of i_* , then I is the ideal of $SF_*(\mathbb{Z}_p)$ generated by $[\mathbb{Z}_p, \sigma]$, since j_* is a ring homomorphism. Therefore $\widehat{SF}_*(\mathbb{Z}_p) = SF_*(\mathbb{Z}_p)/I$ is a ring and we have the following theorem.

Theorem 7.04. The sequence

$$0 \to \widehat{SF}_*(\mathbb{Z}_p) \xrightarrow{j_*} M_*(\mathbb{Z}_p) \xrightarrow{\partial} \widetilde{N}_*(\mathbb{Z}_p) \to 0$$

is exact. \Box

Consider the set $\{\overline{\alpha}_{2k-1} : k = 1, 2, ...\}$ of generators of $\overline{N}_*(\mathbb{Z}_p)$, where $\overline{\alpha}_{2k-1} = [S^{2k-1}, \rho]$ and $\rho = \exp(2\pi i/p)$. There are closed manifolds M^{4k} , k = 1, 2, ..., where $\overline{\beta}_{2k-1} = p\overline{\alpha}_{2k-1} + [M^4]\overline{\alpha}_{2k-5} + [M^8]\overline{\alpha}_{2k-9} + ... = 0$, for k = 1, 2, ..., in $\widetilde{N}_*(\mathbb{Z}_p)$. Thus, $\widetilde{N}_*(\mathbb{Z}_p)$ is isomorphic as a N_* -module to the quotient of the N_* -free module generated by the elements $\overline{\alpha}_1, \overline{\alpha}_3, \overline{\alpha}_5, ...,$ by the submodule generated by $\overline{\beta}_1, \overline{\beta}_3, \overline{\beta}_5, ...$

Now, we consider the following diagram

where r_p is the homomorphism sending the S^1 -action [M, S] to the restriction \mathbb{Z}_{p^-} action.

Since $N_*(S^1)$ is a N_* -free module generated by $\alpha_{2k-1} = [S^{2k-1}, S]$, where S is the S¹-action on S^{2k-1} given by $s(t, (z_0, \ldots, z_{2k-1})) = (tz_0, tz_1, \ldots, tz_{2k-1}), t \in S^1$; and $M_*(S^1)$ is a polynomial algebra generated by $\lambda_i : [\lambda \to CP(i)]$, we are going to define a N_* -submodule B of $M_*(S^1)$

in the following way: the kernel of r_p'' is the N_* -free module generated by $\beta_k = p\alpha_{2k-1} + [M^4]\alpha_{2k-5} + [M^8]\alpha_{2k-9} + \ldots$, where $r_p''(\beta_k) = \overline{\beta}_{2k-1} = 0$ in $\widetilde{N}_*(\mathbb{Z}_p)$. Let $\widehat{\beta}_k$ be defined by: $\widehat{\beta}_k = p\lambda_0^k + [M^4]\lambda_0^{k-2} + [M^8]\lambda_0^{k-4} + \ldots$ in $M_*(S^1)$, and let B be the N_* -free module generated by $\widehat{\beta}_1$, $\widehat{\beta}_3$, $\widehat{\beta}_5$,..., which is a submodule of $M_*(S^1)$. Since $\overline{J}(\widehat{\beta}_k) = 1 + [M^4]\theta^2 + [M^8]\theta^4 + \ldots$, where \overline{J} is the Boardman homomorphism, and denoting by x_n a basic n-dimensional element of N_* , we have that

$$\overline{J}(x_{2k-2}\hat{\beta}_1) = x_{2k-2}\theta^{k-1} + \dots$$

$$\overline{J}(x_{2k-6}\hat{\beta}_3) = x_{2k-6}\theta^{k-3} + x_{2k-6}[M^4]\theta^{k-1} + \dots$$

$$\overline{J}(x_{2k-10}\hat{\beta}_5) = x_{2k-10}\theta^{k-5} + x_{2k-10}[M^4]\theta^{k-3} + \dots$$

$$\vdots$$

$$\overline{J}(x_4\hat{\beta}_{k-2}) = x_4\theta^2 + x_4[M^4]\theta^4 + \dots$$

So, any combination of the elements above has power of $\theta \leq k-1$. Therefore, it follows that there isn't element in $SF_{2k}(S^1)$ with image nozero in B. Hence, we have that $j(SF_*(S^1)) \cap B = (0)$.

Theorem 7.05. The homomorphism $r_p: SF_*(S^1) \to \widehat{SF}_*(\mathbb{Z}_p)$ is 1-1. proof. we have the following commutative diagram

where r is given by inclusion on the first factor. Therefore, r is 1 - 1. This imply that r'_p is 1 - 1, and finally r_p is 1 - 1, since $r'_p \circ j = j_* \circ r_p$ and j, j_* are 1 - 1. \Box

Remark. 7.06. For p = 3, we have that r'_p is an isomorphism because $M_*(S^1) \simeq \bigoplus N_*(BU(r))$, $M_*(\mathbb{Z}_3) \simeq \bigoplus N_*(BU(r))$ and the map r is an isomorphism. Thus, since $B \cap \overline{J}(SF_*(S^1)) = (0)$, we have that $j_*(\widehat{SF}_*(\mathbb{Z}_3)) \simeq j(SF_*(S^1)) \oplus B$, and $\widehat{SF}_*(\mathbb{Z}_3) \simeq j(SF_*(S^1)) \oplus B$, since j_* is 1 - 1. Therefore, $SF_*(\mathbb{Z}_3) \simeq N_* \oplus j(SF_*(S^1)) \oplus B$.

We are going to denote by $(\mathbb{Z}_p)_n^k$ the set of classes in the bordism group N_n which are represented by a *n*-manifold which is the fixed point set of a

closed (n + k)-manifold with a semi-free \mathbb{Z}_p -action. We have that $(\mathbb{Z}_p)_n^k$ is a subgroup of N_n , $(\mathbb{Z}_0)_n^0 \simeq N_n$ and $(\mathbb{Z}_p)_*^k = \bigoplus_{n \ge 0} (\mathbb{Z}_p)_n^k$ is an ideal of N_* .

Theorem 7.07. $(\mathbb{Z}_p)_n^2 \simeq N_n$.

1

proof. Let $\hat{\beta}_k = p\lambda_0^k + [M^4]\lambda_0^{k-2} + [M^8]\lambda_0^{k-4} + \dots$ be in $M_*(\mathbb{Z}_p)$. Since $\partial(\widehat{\beta}_k)$ in $\widetilde{N}_*(\mathbb{Z}_p)$ is a boundary, we have that $\hat{\beta}_k$ belongs to the image of j_* . In particular, $\hat{\beta}_1 = p\lambda_0$ belongs to the image of j_* . Therefore, $[x_n]p\lambda_0$ belongs to the image of j_* , where x_n is a *n*-dimensional generator, $n \neq 2^r - 1$, of N_* . Thus, there is a semi free \mathbb{Z}_p -action $[M^{n+2}, T]$ with fixed point set $[x_n] + \ldots + [x_n]$ (*p*-times), where p is an odd prime. Since $[x_n] + \ldots + [x_n] = [x_n]$, we have that $[x_n]$ is in $(\mathbb{Z}_p)_n^2$. Hence, $(\mathbb{Z}_p)_n^2 \simeq N_n$.

References

- J. C. Alexander, The bordism ring of manifold with involutions. Proc. Amer. Math. Soc. 31 (1972), 536-542.
- J. M. Boardman, On maniofolds with involution. Bull. Amer. Math. Soc. 73 (1967), 136-138.
- 3 P. E. Conner, Lectures on Boardman's theory, (mimeographed notes), University of Virginia, 1966.
- 4 P. E. Conner and E. E. Floyd, Differentiable Periodic Maps. Springer-Verlag, Berlin and New York, 1964.
- 5 J. C. S. Kiihl, Bordismo e Involuções. Universidade de Campinas, 1985.
- 6 F. Uchida, Bordism algebra of involutions. Proc. Japan Acad. 46 (1970), 615-619.

RELATÓRIOS TÉCNICOS — 1991

- 01/91 Um Método Numérico para Resolver Equações de Silvester e de Ricatti Vera Lucia da Rocha Lopes and José Vitório Zago.
- 02/91 "Regge-Like" Relations for (Non-Evaporating) Black Holes and Cosmological Models — Vilson Tonin-Zanchin and Erasmo Recami.
- 03/91 The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force Equation J. R. Zeni and Waldyr A. Rodrigues Jr.
- 04/91 Tensornorm Techniques for the (DF)-Space Problem Andreas Defant and Klaus Floret.
- 05/91 Nonreversibility of Subsemigroups of Semi-Simple Lie Groups Luiz San Martin.
- 06/91 Towards a General Theory of Convolutive Sets (With Applications to Fractals) — Jayme Vaz Jr.
- 07/91 Linearization of Holomorphic Mappings of Bounded Type Jorge Mujica.
- 08/91 Topological Equivalence of Diffeomorphisms and Curves M. A. Teixeira.
- 09/91 Applications of Finite Automata Representing Large Vocabularies Cláudio L. Lucchesi and Tomasz Kowaltowski.
- 10/91 Torsion, Superconductivity and Massive Electrodinamics Cartan's Torsion Vector and Spin-0 Fields — L. C. Garcia de Andrade.
- 11/91 On The Continuity of Fuzzy Integrals G. H. Greco and R. C. Bassanezi.
- 12/91 Optimal Chemical Control of Populations Developing Drug Resistance M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.
- 13/91 Strict Monotonicity of Eigenvalues and Unique Continuation Djairo G. de Figueiredo and Jean-Pierre Gossez.
- 14/91 Continuity of Tensor Product Operators Between Spaces of Bochner Integrable Functions — Andreas Defant and Klaus Floret.
- 15/91 Some Remarks on the Join of Spheres and their Particular Triangulations — Davide C. Demaria and J. Carlos S. Kiihl.
- 16/91 Sobre a Equação do Telégrafo e o Método de Riemann L. Prado Jr. and E. Capelas de Oliveira.
- 17/91 Positive Solutions of Semilinear Elliptic Systems Ph. Clément, D. G. de Figueiredo and E. Mitidiere.
- 18/91 The Strong Coupling Constant: Its Theoretical Derivation from a Geometric Approach to Hadron Structure — Erasmo Recami and Vilson Tonin-Zanchin.

- 19/91 Time Analysis of Tunnelling Processes, and Possible Applications in Nuclear Physics — Vladislavi S. Olkhovsiky and Erasmo Recami.
- 20/91 Procedimento, Função, Objeto ou Lógica? M. Cecília Calani Baranauskas.
- 21/91 The Relation Between 2-Spinors and Rotations W. A. Rodrighes Jr. and J. R. Zeni.
- 22/91 Boundaries for Algebras of Analytic Functions on Infinite Dimensional Banach Spaces — R. M. Aron, Y. S. Choi, M. L. Lourenço and O. W. Paques.
- 23/91 Factorization of Uniformly Holomorphic Functions Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 24/91 Métrica de Prohorov e Robustez Mario Antonio Gneri.
- 25/91 Cálculo de Funções de Green para a Equação de Schrödinger pelo Método de Expansão Tipo Sturm-Liouville L. Prado Jr. and E. Capelas de Oliveira.
- 26/91 On the Weierstrass-Stone Theorem João B. Prolla.
- 27/91 Sull'Equazione di Laplace nell'Universo di De Sitter E. Capelas de Oliveira and G. Arcidiacono.
- 28/91 The Generalized Laplace Equation in Special Projective Relativity - E. Capelas de Oliveira and G. Arcidiacono.
- 29/91 The Projective D'Alembert Equation E. Capelas de Oliveira and G. Arcidiacono.
- 30/91 The Generalized D'Alembert Equation in Special Projective Relativity - E. Capelas de Oliveira and G. Arcidiacono.
- 31/91 A General Algorithm for Finding the Minimal Angle between Subspaces Alwaro R. De Pierro and Alfredo N. Iusem.
- 32/91 Scalar Curvature on Fibre Bundles Maria Alice B. Grou.
- 33/91 Sur la Dimension des Algèbres Symétriques Rachid Chibloun, Artibano Micali et Jean Pierre Olivier.
- 34/91 An Inverse Column-Updating Method for Solving Large-Scale Nonlinear Systems of Equations — José M. Martínez em Mário C. Zambaldi.
- 35/91 Parallel Implementations of Broyden's Method Francisco A. M. Gomes and José M. Martínez.
- 36/91 Equivalência Elementar entre Feixes A. M. Sette and X. Caicedo.
- 37/91 Unique Ergodicity for Degenerate Diffusions and the Accessibility Property of Control Systems Luiz San Martin.
- 38/91 Unobservability of the Sign Change of Spinors Under a 2π Rotation in Neutron Interferometric Experiments — J. E. Maiorino, J. R. R. Zeni and W. A. Rodrigues Jr.
- 39/91 Disappearance of the Numerically irrelevant Solutions (NIS) in Non-Linear Elliptic Eigenvalue problems Pedro C. Espinoza.
- 40/91 Positive Ordered Solutions of a Analogue of Non-Linear Elliptic Eigenvalue Problems — Pedro C. Espinoza.
- 41/91 On von Neumann's Variation of the Weierstrass-Stone Theorem João B. Prolla.

- 42/91 Representable Operators and the Dunford-Pettis Theorem Klaus Floret.
- 43/91 Simultaneous Approximation and Interpolation for Vector-Valued Continuous Functions — João B. Prolla.
- 44/91 On Applied General Equilibrium Analysis José A. Scaramucci.
- 45/91 Global Solutions to the Equations for the Motion of Stratified Incompressible Fluids — José Luiz Boldrini and Marko Antonio Rojas-Medar.
- 46/91 A characterization of the set of fixed points of some smoothed operators Alfredo N. Iusem and Alvaro R. De Pierro.
- 47/91 Lyapunov Graphs and Flows on Surfaces K. A. de Rezende and R. D. Franzosa.