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REPRESENTABLE OPERATORS AND THE
DUNFORD-PETTIS THEOREM

Klaus Floret

The aim of this article is to present a modern approach to the Dunford-
Pettis theorem about the representation of linear, continuous operators on
L, with values in a Banach space by densities; as will be seen this result
is nothing else but a Radon-Nikodym theorem. Moreover, a systematic in-
vestigation of these “representable” operators will be given, as well as some
remarks about the réle of the Radon-Nikodym property of Banach spaces
in the theory of operator ideals. It is not possible to give all proofs: if not
otherwise stated the reader may find the missing proofs in [6], in particular
in section 3 and appendices B - D.
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Notation:

Let E, F, G be normed spaces

Bg: closed unit ball of E

L(E,F):={T: E — F| linear, continuous }

E':= L(E, ) (topological) dual of E

(z,2’) := z'(z) (duality bracket) whenever z € E and z’ € E'

kg : E < E" the canonical embedding into the bidual

B(E,F;@G) :={®: E x F — G | bilinear, continuous }

E = F: E and F are metrically isomorphic

(2, Z, u) = (9, u) measure space with the o-algebra L being u-complete.
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1. The projective tensor product

1.1 Let E and F be vector spaces (over the field JK = IR or T of scalars),
then the algebraic tensor product E®F has the following universal property:
For every vector space G and every bilinear mapping ® : E x F — G there
is a unique linear operator &L : E @ F — G such that ®(z,y) = ®X(z® y)

®
ExF G

G
EQF oL

The operator ®L is called the linearization of ®. If £ and F are normed
spaces then there is a unique norm #( - ; E, F) on E ® F' such that for all
normed spaces G and bilinear ® : E X F — G the following holds:

(a) ® is continuous if and only if its linearization ®* is continuous.

(b) In this case: ||@|| = ||®%||

where ||®|| := sup {||®(z,y)llc | z € Bg,y € Br}. Notation: E @, F
for E @ F equipped with this norm and E®,F for the completion. The
universal property says:

B(E,F;G) £ L(E ®, F,G).

Since every operator T' € L(E, F') defines a unique bilinear continuous form
¢t € B(E,F; K) by

W(a:a y) = (Tt,y)pa,)?
and T ~» or is also an onto isometry L(E, F') — B(E, F;IK) one has in
particular

(E ®x F) = B(E,F; K) = L(E, F").

1.2. The norm x on E ® F can be calculated as follows:

N
z= Ez,@yn;NGN,

n=1

N
x(s; B, F) sini {z: lizall llyall
n=1

z, € E, y,.eF}.




It is a non-trivial result (originally due to Grothendick) that for every 2 €
E®,F there is an absolutely convergent series (2, ® yn) in EQ,F with
limit z. Moreover,

x(2; B, F) = inf {3~ Jleall llvnl
n=1

o0
z= Z T, @ y,.}.
n=1

for every z € E®,F. Note, that x(z ® y; E, F) = ||z|| |lyll.

1.3. If T; € L(E;, F;) then there is a unique linear map S : E,QFE,; — Fi®@F,
satisfying
S(.’B] ® 32) = T\.’D] ® ngg;

this map is denoted by T; ® T,. It is straightforward to see that
1Ty ® Tz : Ey ®x Ez — Fy @« || = ||Th]| IT2]]-

Moreover, the formula given in 1.2. for 7 shows easily that if Q; : E; A4 F;
are metric surjections (i.e. F; has the quotient norm with respect to Q;)
then

Qi®Q:: Ey®r E; = F1 8. I3

is a metric surjection as well. This is why the norm = is called the projective
norm on the tensor product £ ® F.

1.4. If p is a measure and E a Banach space then L;(p) ® E is the sub-
space of (classes of) those Bochner integrable functions in L;(x; E) which
have finite dimensional range (u-almost everywhere). The following result
will be crucial.

PROPOSITION: For all f € L\(1) ® E one has

w(Fila(w), F) = [ 1f()llsn(dw)

This means that Ly(p) ®x E is an isometric subspace of Ly(u, E). Since it
is even dense in the Banach space Ly(u, E) it follows that

Ll (”1 E) é Ll (I‘)étE-
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See also Alencar’s article (2] in this volume for a proof of these facts.
2. The weak version of the Dunford-Pettis theorem

2.1. If the Radon-Nikodym theorem holds for a measure y (these measures
are called localizable) it says that Ly(u)' = Lo (), the latter being the space
of classes of measurable functions which are locally p-almost everywhere
equal to a bounded function. In other words: if ¢ : Li(u) — K is linear
and continuous then there is a unique § € Lo(¢) such that

(0, ) = [ flw)g(w)n(dw)
for all f € Ly(#). Recalling from 1.1. and 1.4. the relations

L(Ly(p), E") = (L1(n) ®x E) = (Li(p, E)Y

one sees that representing operators L; — E’ by “densities” might be noth-
ing else than determining the dual of Ly(u, E).

2.2. Let M,(E', E) be the vector space of all functions g : @ — E’ such
that

(a) g is o(E', E)-measurable, i.e. (g(-),z)g £ is measurable for all
z€E
(b) sup {|lg(w)llz | w € N} < co.

One can verify that for each g € M,(E', E) and each f € Ly(u,E) the

function
{9(-), f()e e

is integrable; now it is obvious that ¢,

(o ) = [(9(w), S(w))n(dw)

defines a linear continuous functional on L,(x, F). It is the aim to show
that the mapping

Mn(E'1 E) — (Ll(l‘vE)), = £(L1(ﬂ),E’)
FAT N My



with an absolutely convergent series in L;(u)®,E (see 1.2.). This implies
that it is enough to find a g € M, (E', E) satisfying

0,k ®3) = [(g(w),e)h(wn(dw)
for all z € E and h € Ly(). Fix z € E; then ¢, defined by
(per B) := () h ® 7)
is linear and satisfies

Kpzr B < llpll (R ® 25 Ln, E) = Il IR l|=]I-

It follows that ¢. € Ly(p) and ||o:|| < |lell |lzll; therefore there is a
unique §; € Lo (p) (with norm ||¢.||) representing ¢,. Using a lifting Ay
one chooses the representative Ao (§z) € Loo(p) of the class g, and sees that

(0, @) = (o, B) = [ Aea(e)(w) h(w)ns(d).

It is obvious that z ~» ¢, is linear; since L] and L, are linearly isometric,
the linearity of Ao implies that for each w € {2 the mapping

9Ww) : E - K; (9(w),z) := Aoo(dz)(w)
is linear. Moreover, by the very properties of Ao

{g(w), 2)| = oo (=) (w)] < [1G:ll = lleell < lleol] Il

which means that g(w) € E' and ||g(w)||er < |||l It is clear that this
function g : 2 — E’ is a function as wanted. O

2.3. For T € L(Lr(p), E") = (L1(s, E))’ ( see 2.1.) this representation gives

(Th,2) = (pr,h @ 2) = [(9(w), h{w)a)u(dw)

hence the



DUNFORD-PETTIS THEOREM (weak version): Let y be a strictly
localizable measure, E a Banach space and T € L(Ly(u), E'). Then there is
a g € M,(E' E) with ||g(w)||er < ||T|| for all w €  such that

(Thya) = [ (9(w), ) hw)u(dw)
for all kh € Ly(p):
The function g will be called a o(E’, E)-density of T.

2.4. Let (E;, E;) be a dual system (think at (E', E) or (E, E')) then a
function f : Q — E; is called o( Ey, E,)- Pettis integrable if

(a) For all z, € E,; the function (f(-),z,) is integrable
(b) For each integrable A there is z4 € E, such that for all z, € E,

(@area) = [ (£(),2a)n(dw)

In this case the element z4 is unique and zq is called the o(E,, E,)-Pettis
integral of f:

" /ﬂ f(w)u(dw) (o(Er, Eg)—Pettis integral)

It is immediate to see that each Bochner integrable function f :  — F is
o(E, E")-Pettis integrable with the same integral.
Using this notation, the Dunford-Pettis theorem reads

Th = /ﬂ h(w)g(w)u(dw) (o(E', E)—Pettis integral)

for all A € L;i(p). Under which circumstances this integral can be inter-
preted as a Bochner integral?

3. Representable operators

3.1. The o(E', E)-density g : @ — E’ in the weak version of the Dunford-
Pettis theorem is uniformly bounded and o( E’, E)-measurable. Pettis’ mea-
surability criterion says that a function g is u-measurable (i.e. g is the point-
wise limit of a sequence of u-step functions) if it is o( E’, E)-measurable and
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has separable range almost everywhere (i.e. there is a norm-separable sub-
space F such that g(w) € F for p-almost all w € ). Assuming now that u
is a finite measure and the density has separable range a.e., then for each
h € Li(p) the product h - g is y-measurable and ||h(w)g(w)|| £ c|h(w)],
hence A - g is Bochner integrable and the integral in the Dunford-Pettis the-
orem is a Bochner integral.

3.2. This phenomenon will be studied now systematically. For this sup-
pose, from now on, that u is a finite measure.

DEFINITION: Let E be a Banach space. An operator T € L(Ly(p), E)
is called Riesz representable (in short: representable) if there is bounded
p-measurable function g :  — E such that

Tf = /n fgdp  (Bochner integral)
for all f € Ly(p).

The function g is called a Riesz density for T. The very properties of
Bochner integrals imply that if g is a Riesz density of T : L, — E and
S:E — F, then Sog is a Riesz density of So T.

If g is yu-measurable and bounded one denotes

llglleo := I Nlg()llE llLe = esssup [If(-)lle -

One can show, that if g is a Riesz density of T € L(L,(u),E) then
171} = llglloo-

REMARK:
(1) If g1 and g, are Riesz densities for T then g, = g, p-a.ec..
(2) 9(w) € T(Ly) p-a.e..

Proof: For (1) note that g, —g; is a Riesz density for the operator T'—T = 0
hence [|g1 — g2|| = ]|0]| = 0. For the second statement consider

L(k) % E 2 Elrg;

then Q o g is a Riesz density of Qo T = 0, hence Qo g = 0 p-a.e. by (1);
this is the statement (2). O



3.3. The arguments in 3.1. show that the weak version of the Dunford-
Pettis theorem gives the

PROPOSITION: If E is a Banach space with separable dual E' then ev-
ery operator T : Li(u) — E' is Riesz representable.

A famous result "of Davis-Figiel-Johnson-Pelczynski [4] states that every
weakly compact operator T' (i.e. the image of the unit ball is weakly rela-

tively compact) factors through a reflexive space; clearly, if T has separable
range then this reflexive space can be choosen to be separable as well. So if
T € L(Ly, E) has separable range and is weakly compact it factors

Iy <% B
U v
G G separable

— and a Riesz density of U gives one for T =V o U :

COROLLARY: Every weakly compact operator T : Ly(u) — E with sep-
arable range is Riesz representable.

3.4. Before continuing, it is worthwhile to see an operator which is not
representable — and some of the structural consequences of this fact. Take
the space ¢y of zero-sequences and the operator

f:L;([0,21r]z — o
[~ (f(n))nen

of Fourier-coefficients:
~ 1 27 | i
Jm) i= o= [ J(t) explint)ds
(f(n)) € co by the Riemann-Lebesgue lemma.

If g were a Riesz density of F or of ko 0 F : Ly — ¢g — £, then (looking
at components) one would obtain that

g(t) = (\/%_x exp (int)) (-

neN



almost everywhere; g (as a measurable function) is separably-valued a.e.
but the function on the right side is not! It follows that the following three
operators are not representable:

(1) F: L[0,27] = ¢
(2) &g © F : L1[0,27] — £,
(3) id : L,[0,2x] — L,[0,2x] (identity map).

Not that g(t) = ((27)~/2 exp(int))nen defines a 0(£e, £;)-density of k., 0 F
- with values in £, \ co.

COROLLARY: The Banach spaces co and L,[0,2x] are not isomorphic
to the dual of any Banach space.

Proof: Since ¢o and Ly[0,2x] are separable this is an immediate conse-

quence of proposition 3.3. and the existence of non-representable operators.
(@)

The result about L,[0, 2x] is an old celebrated result of Gelfand.

3.5. The following lemma will lead immediately to the strong version of
the Dunford-Pettis theorem.

LEMMA: Let A be an operator ideal and E a Banach space. If every
operator T € A(Ly1(pu), E) with separable range is representable then every
operator T € L(L1(u), E) is representable.

Sketch of the proof: The following, non-obvious fact will be used: repre-
sentable operators throw weakly compact sets into compact sets.

For the lemma it is enough to show that every T : L,(u) — E has separable
range. Since the step functions are dense in L;(p) and compact sets are
separable it suffices to show that

{T(x4) | A C Q p—integrable}
is relatively compact = relatively sequentially compact. So take a se-

quence of integrable A, C 2 and consider the o-algebra A4, generated by
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{An | n € IN}. Then T, defined by
To(f) := T(E(f | Ad))

(conditional expectation) is an operator in A, and has a separable range
(since the Ap-measurable, integrable functions form a separable subspace of
L,): by assumption, Ty is separable. The unit ball of L, is weakly compact
in Ly hence the set {X4,} is weakly compact and {To(X4a.) = T(Xa.)} is
therefore relatively compact, which implies that (T°(X4,)) has a convergent
subsequence. O

3.6. Applying this lemma to the operator ideal W of weakly compact op-
erators, the corollary 3.3 gives the

DUNFORD-PETTIS THEOREM (strong version): Let u be a finite
measure and E a Banach space. Then every weakly compact operator
T : Ly(u) — F is Riesz representable.

One can show that every operator L;(u) — ¢, is representable — even that
each representable operator factors through ¢, (Lewis-Stegall theorem). So
any surjective T' : L;[0,1] — ¢, shows that representable operators need not
be weakly compact.

3.7. An interesting structural consequence is the following

PROPOSITION: Ly(p) has no reflezive, infinite dimensional, comple-
mented subspaces (u a finite measure).

Proof: Let F C Ly(u) be a complemented, reflexive subspace and P a
projection. Then P is weakly compact since the unit ball of F is weakly
compact and hence representable. Therefore B = P(BF) is even compact
(see the fact mentioned at the beginning of the proof of 3.5) and therefore
the Banach space F is finite dimensional. O

4. An application to operator-valued measures

4.1. Let A be a o-algebra of subsets of a set {2, u a (non-negative) fi-
nite measure on A and M : A — L(E, F) a o-additive function (=: vec-
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tor measure) where £ and F' are Banach spaces. Note the special cases
L(E,K)=E' and L(K, F) = F.

PROPOSITION: There is an operator T : Ly(u) s L(E, F) such that
M(A) = T(Xa)

for all A € A if and only if for all x € E and y' € F the signed measure
{(M(-)z,y") pp is p-absolutely continuous with densily in Loo(p) .

Proof: The condition is clearly necessary. Conversely, define

N N
T(E AnXAn) 1= E AnM(Az)

n=1 n=1

which — as usual - is a good definition. If g, ,» € Lo (p) is a Radon-Nikodym
density of (M(-)z,y") with respect to u one obtains for each step function
h € Ly(u)

(TF)a,t) = [ h(0)gage(w)u(d)

and hence - -
KT (R)z,y")| < llAlle, 11Fzy]lLe-

It follows from the uniform boundedness principle that
{T(R) € L(E,F) | h step function, |k]|z, < 1}

is uniformly bounded in £(E, F). This implies that T is continuous and
hence extendable to a continuous, linear operator Ly(u) — L(E,F). O

4.2. So the search for “densities” g such that
M(4) = [ g(wn(dw) € L(E, F)

(as a certain Pettis integral or Bochner integral) is reduced to the repre-
sentability of operators. Using

(E B F)I = (Eé,F)’ - ['(E,F')

and the weak and strong Dunford-Pettis theorem one obtains the

12



THEOREM:

(1) Let p be a strictly localizable measure on a set 0, E and F normed
spaces and T : Ly(p) — L(E,F') a linear and continuous operator,

then there is a function D : Q — L(E, F') such that
(a) (D(-)z,y) is p-measurable for allz € E andy € F
(b) For all h € Ly(p)

TH = / () D(w)pe(dw)

as a o(L(E, F'), E®,F)-Pettis integral; in particular: the integral is a
o(L(E,F"),E ® F)-Pettis integral
() [ID()I| < [IT| for all w € Q.

(2) If p is finite and L(E,F') separable or reflexive, then D is u-
measurable and the integral in (1) (b) is @ Bochner integral.

Just some examples for the Bochner integrability of the density — in other
words, when T is a representable operator (E, F Banach spaces):

(1) If every operator E — F" is compact, £’ and F" are separable and
one of these spaces has the approximation property, then

L(E,F') = K(E, F') = E'®F"

(€ the injective tensor product, K the ideal of compact operators) is sepa-
rable.

(2) L(E, F") is reflexive if and only both spaces E and F are reflexive
and L(E, F') = K(E, F").

Pitt’s theorem states that
L(tmlq) s K(lmlq)

whenever 1 < ¢ < p < oo - hence every T : Ly(u) — L(4,,4,) is repre-
sentable. Note that £(£3,£;) = (I5®41;)" is neither separable nor reflexive.

4.3. Using the embedding L(E, F) C L(E,F") one obtains for operators
T:Ly(p) = L(E,F) ao(L(E, F"), EQ,F')-density. The example with the
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Fourier transform in 3.4. (put E := KK, F := ¢y, F" = {,,) shows that in
general, the density cannot be chosen to have values in L(E, F).

5. The Radon Nikodym property of Banach spaces

5.1. A Banach space E has the Radon-Nikodym property if, for each finite
measure p, each operator T : L,(u) — E is representable; actually it is
enough to check this for the Lebesgue measure on [0,1] (a nice direct proof
of this fact was recently given by Botelho [3]). Taking into account the
relation between operators and vector-valued measures established in 4.1.
one can show that for these spaces a Radon-Nikodym theorem for certain
vector-valued measures holds — with Bochner integrable “derivative”. I do
not want to go into the details of this measure-theoretic aspect and refer
the reader to the monography of Diestel and Uhl [7], [8] and Alencar [2].

5.2 In the scalar case the Radon-Nikodym theorem means L] = Lo, - and,
as a consequence, L, = Ly for 1 < p < oo.

PROPOSITION: Let E be a Banach space and 1 < p < co. Then

Ly(p, E) = Ly(p, E')

holds isometrically for all finite measures pu (or only the Lebesgue measure
on [0,1]) if and only if E' has the Radon-Nikodym property.

5.3. From section 3 the following can easily be derived:

PROPOSITION:
(1) Separable dual spaces have the Radon-Nikodym property.
(2) Reflexive spaces have the Radon-Nikodym property.
(8) E has the Radon-Nikodym property if and only if every separa-
ble closed
subspace has it.

Proof: (1) is a reformulation of proposition 3.3., (2) a direct consequence of

the strong Dunford-Pettis theorem. The last statement follows from lemma
3.5 applied to the ideal A = L of all operators. O
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The spaces ¢g, £, C[0, 1], L, [0, 1] do not have the Radon-Nikodym property
(by the example in 3.4.); also L(¢,, £;) does not have it since it contains co.
In [7], p. 217-219 the reader can find a long list of equivalent formulations
of the property — and a list of spaces which have or which do not have it.
In the rest of this survey I want to point at the importance of the Radon-
Nikodym property for the theory of operator ideals.

6. Nuclear Operators

6.1. An operator T : E — F is called nuclear if there are z;, € E’ and
yn € F with 350, ||z5]] ||yall < oo and

Tz= )" (v.,2)ys

n=1

for all z € E. Denote by z'®y the one-dimensional operator

(='@y) () := (', 2)y

for all z € E; it follows that ||2’'Qy|| = ||2’|]| |ly]l. With this notation
T € L(E,F) is nuclear if and only of it has a representation

T= Z z! QYn
n=1
the series being absolutely convergent in L(E, F). Taking
N(T) :=inf{3_ [lz3ll llyall

n=1

T= E 3:;@.%&}
n=1

one obtains that the space N(E, F) of all nuclear operators with the norm
N is a Banach space. It is easy to see that (A, N) is a Banach operator
ideal. The bilinear map
E'xF — N(E,F)
(z',y) ~ 2'Qy
is continuous, hence its linearization extends to the completion of the =-

tensor product

J: E'®.F — N(E, F).
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The represenation of elements is E'®, F' given in 1.2. shows that x is onto
and even a metric surjection; if follows that

J(Z Tn ® Yn) = Z Z, QY-

n=] n=1

It is a most important, but unpleasant fact, that J is not injective in gen-
eral! This is why the different notation ® and ® for tensors and operators
was used. Clearly, J restricted to E’ ® F is injective, but not an isomor-
phism (into) of normed spaces. J is injective if E' or F' has approximation
property. Fortunately, most of the usual spaces are known to have the ap-
proximation property, but £(l;, ;) does not!

Nuclear operators are very important in Analysis in particular for questions
where eigenvalues are involved or when would like to use the trace of oper-
ators in infinite dimensional Banach spaces; I cannot give details. However,
it is usually quite difficult to decide whether a given operator is nuclear or
not! This is why one needs general theorems in this direction.

6.2. f T : Li(p) — E (p a finite measure) is nuclear then there are
Gn € L) = L, and y, € E with ¥ ||gnlle ||za]| < o0 and

Th=3" [ houdu- 20 = [ h(w) 35 g0()en u(do)

n=1 n=1

for each h € L. Since |[galli < #(R)||Gnlloo it follows that

9) = 3 gal@)ea

n=1

defines (a.e.) a Bochner integrable functions which clearly is a Riesz density
for the operator T.

REMARK: Nuclear operators Ly(u) — E (p a finite measure) are repre-
sentable.

One may interprete this reasoning in another way:

@ : N(Ly(4), E) = Loo(1)B2E — Ly(4)®+E = Ly(p, E)

16



and ®(T) is just the Riesz density of T'. (Note that Lo (u) has the approx-
imation property which implies that the map in the middle is injective, see
6], p.66).

Now suppose that the operator T : L; — E is representable with a Riesz
density § € Ly(p, E) = Ly(¢)®, E (the function g is even bounded!). Look-
ing at

Ly(p)@+E = Ln(p)"®E = Loo(p) ®co E = N(Loo(tt), E)

one sees that § corresponds to a certain nuclear operator Lo (u) — E.
Denoting by I : Leo(#) < Li(u) the canonical embedding and using an
expression § = ¥ Gn ® Zn € L1(p)®+E one gets for h € Loo(p)

T oD = [Kulsintds) = 3 [ hwgmwh(do)z, =

Z(;;” -a")LooyLl *Tn

n=1
which means Tol = 322, §,Qz, and T'o/ is nuclear: T being representable
implies that T'o I : L, — E is nuclear. The converse of this is also true:

THEOREM (Grothendieck): Let u be a finite measure and E a Banach
space. ThenT : Li(u) — E is representable if and only if Tol : Loo(p) — E
is nuclear.

There are two important additional details for this result:

(1) If g is a Borel-Radon measure on a compact space K then I may be
replaced by the canonical map I : C(K) — Ly(K, p).

(2) lITl| = l|glle and N(T o I) = ||glh = fq llg(w)llzp(dw) for the Riesz
density g of T'. (Here I is either L., — L, or C(K) — L,)

6.3. This nice result has powerful consequences for the theory of operator
ideals. Just one example. An operator T' € L(E, F) is called integral if it
admits a factorization



for some finite measure p. It is called Pietsch intgral if the factorization
can be choosen such that S takes values in F instead of F”. Notation:
PI(E,F) and Z(E,F). Since F' is complemented is " one has

PI(E, F') = I(E, F')

but in general integral operators are not Pietsch integral: Alencar [1] ob-
served that there is a Banach space E (necessarily without the approxima-
tion property) and an operator T' € I(E, F') such that 7" even is nuclear,
but T is not Pietsch integral. On the other hand, it is easy to see that every
nuclear operator is Pietsch integral.

THEOREM: A Banach space F' has the Radon-Nikodym property if and
only if PI(E,F) = N(E,F) for all Banach spaces E.

Proof: Assume F to have the Radon-Nikodym property and T' € PI(E, F)
then

E 4L F
R -/ ]
i 2dlag,

S is representable hence Grothendieck’s theorem 6.2. gives that So T is
nuclear and therefore also T' = S o I o R. Conversely, take T' € L(L;(u), F)
then the operator U

U Leo(p) > () 5 F.
is Pietsch integral hence nuclear: again Grothendieck’s theorem gives that

T is representable. Since p and T were arbitrary, F' has the Radon-Nikodym
property. O

6.4. One can show that Z(E,F') = (E ®. F)' holds - this was
Grothendieck’s original definition of integral operators ( see also Alencar

[2]). When is the natural map
J:E'®,F — N(E,F)—I(E,F)=(EQ®,F)

surjective? Using PI(E, F') = I(E, F') the above theorem shows that this
is true if F’ has the Radon-Nikodym property; J is injective if F’ has the
approximation property.
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COROLLARY: Let F' have the approzimation property. F' has the
Radon-Nikodym property if property if and only if

E'®,F' = (EQ®, F)
for all Banach spaces E.

It follows from 5.8. that E'®,F' = (E ®, F)’ holds of F” is separable or re-
flexive (and has the approximation property). This duality relation between
the injective and projective tensornorms is an important tool in Functional
Analysis.

7. Historical Note

The study of representable operators and vector-valued Radon-Nikodym
theorems goes back to the work of Dunford, Pettis and Phillips in the late
thirties. Later on, in his thesis 1955, Grothendieck gave a powerful push
to the theory (and even extended it to spaces more general than Banach
spaces, see also Defant [5]) when he studied, what he called “propriété de
Phillips”. The important monography of Diestel and Uhl, 1977, presents
nearly all about the topic what was known at that time (see also [8]). The
present survey offers no new results — only the presentation is different from
the former ones.
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