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REPRESENTABLE OPERATORS ANO THE 
DUNFORD-PETTIS THEOREM 

Klaus Floret 

The airn of this à.rticle is to present a modem approach to the Dunford-
Pettis theorern about the representation of linear, continuous operators on 
L1 with values in a Banach space by densities; as will be seen this result 
is nothing else but a Radon-Nikodym theorem. Moreover, a systernatic in-
vestigation of these "representable" operators will be given, as well as sorne 
rernarks about the rôle of the Radon-Nikodyrn property of Banach spaces 
in the theory of operator ideais. It is not possible to give all proofs: if not 
otherwise stated the reader rna.y find the missing proofs in [6], in particular 
in section 3 and appendices B - D. 
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Notation: 

Let E, F, G be norrned spaces 
BE: closed unit bali of E 
.C(E, F) := {T: E -+ FI linear, continuous } 
E':= .C(E, ff{) (topological) dual of E 
(x,x1 := x'(x) (duality bracket) whenever x E E and x' E E' 
"E : E E" the canonical ernbedding into the bidual 
B(E,F;G) := {4>: Ex F-+ G I bilinear, continuous} 
E b F : E and F are rnetrically isornorphic 
(fl, E,µ) = (fl, µ) measure space with the o--algebra E being µ-complete. 
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1. The projective tensor product 

1.1 Let E and F be vector spaces (over the field D<= IR or C of scalars), 
then the algebraic tensor produd E®F has the following universal property: 
For every vector space G and every bilinear mapping : E X F -+ G there 
is a. unique linear opera.tor ~L : E® F-+ G such that ~(x, y) = ~L(x ® y) 

ExF G 
! .;. 

E®F 

The operator ~L is ca.lled the linearization of ~. If E and F are normed 
spaces then there is a uni que norm ,r( · ; E, F) on E ® F such that for a.li 
normed spaces G and bilinear : E x F -+ G the following holds: 

(a) is continuous if a.nd only if its linea.riza.tion ~L is continuous. 
{h) ln this case: 11~11 = ll~LII 

where 11~11 := sup {ll~(x, y)lla I x E BE, y E BF }. Notation: E®• F 
for E® F equipped with this norm and E®.F for the completion. The 
universal property says: 

B(E, F;G) J: C(E®. F, G). 

Since every operator T E C( E, F') defines a uni que bilinear continuous form 
'PT E B(E,F;K) by 

'PT(x,y) == (Tx,y)F•,F 
a.nd T 'PT is also a.n onto isometry C(E,F')-+ B(E,F;JK) one has in 
particular 

(E®• F)' = B(E, F; JK) = C(E, F'). 

1.2. The norm 1r on E® F can be calculated as follows: 
N N 

1r(z; E, F) = inf {~ llx"II IIY,.11 1 z =]; x" ® y"; N EN, 

Z,a E E, Yn E F }· 
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It is a non-triviaJ result (originally dueto Grothendick) that for every z E 
E®'l(F there is an absolutely convergent series E(xn ® Yn) in E®1r.F with 
limit z. Moreover, 

'll'(z; E, F) = inf {,~ .llxnll llYnll l Z = E_ X,.® Yn }· 

for every z E E@~F. Note, that 1r(x ® y; E, F) = lfxll llYII-

1.3. If Ti E C(Ei, Fi) then there is a unique linear map S: E1®E2 - F1®F2 
satisfying 

S(x1 ® x2) = T1x1 ® T2x2; 
this map is denoted by T1 ® T2. It is straightforward to see that 

Moreover, the formula given in 1.2. for 'li' shows easily that if Qi : Ei Fi 
are metric surjections (i.e. Fi has the quotient norm with respect to Qi) 
then 

Qi ® Q2 : E1 ®1r E2 ---+ F1 ®1r F']. 
is a. metric surjection as well. This is why the norm 1r is called the projective 
norm on the tensor product E® F. 

1.4. lf µ is a measure and E a Banach space then L1(µ) ® E is the sub-
space of (classes of) those Bochner integrable functions in L1(µ; E) which 
have finite dimensional range (µ-a.lmost everywhere). The following result 
will be crucial. 

PROPOSITION: For ali j E L1 (µ) ® E one has 

1r(f; L1(µ), F) = k llf(w)JIEµ(dw). 

This means that L1(µ) ®?f E is an isometric subspace of L1 (µ,E). Since it 
is even dense in the Banach space L1 (µ, E) it follows that 
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See also Alencar's article (2] in this volume for a proof of these facts. 

2. The weak version of the Dunford-Pettis theorem 

2.1. If tbe Radon-Nikodym theorem holds for a measure µ (these measures 
are called localizable) it says that L1(µ)' b L00(µ), the latter heing the space 
of classes of measurable functions which are locally µ-almost everywhere 
equal to a bounded function. ln other words: if '{) : L1 (µ) -+ 1K is linear 
and continuous then there is a unique g E L00(µ) such that 

('P,f) = j J(w)g(w)µ(dw) 

for ali f E L1 (µ). Recalling from 1.1. and 1.4. the relations 

one sees that representing operators L1 -+ E' by "densities" might be noth-
ing else than determining the dual of L1 (µ, E). • 

2.2. Let M,(E', E) be the vector space of all functions g : n -+ E' such 
that 

(a) g is o-(E',E)-measurable, i.e. (9( ·),x}E'.E is measurable for ali 
X E E 

(b) sup {jjg(w)IIE' 1 w E n} < 00. 

One can verífy that for each g E Mµ(E', E) and each J E L1(µ, E) the 
function 

is integrable; now it is obvious that '{),, 

defines a linear continuous functional on L1 (µ, E). lt is the aim to show 
that the mapping 

M 11(E', E) _. (L1(µ, E))'= .C(L1(µ), E') 
g -- '{)g 
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with an absolutely convergent series in L1 (µ)®,..E (see 1.2.). This implies 
that it is enough to finda g E Mµ,(Et, E) satisfying 

{<p,h ® x} = j(g(w),x)h(w)µ(dw) 

for all x E E and h E L1(µ). Fix x E E; then 'P:r defined by 

is linear and satisfies 

It follows that 'P:r E L1(µ)' and ll'P:rll :S ll'PII llxll; therefore there is a 
unique 9:r E L00 (µ) (with nonn ll'P:rll) representing 'Px· Using a lifting >.00 

one chooses the representative >.00 (9:r) E C00 (µ) of the class 9x and sees that 

It is obvious that x 'Pz is linear; since L; and L00 are linea.rly isometric, 
the linearity of ,\00 implies that for each w E n the mapping 

g(w): E-+ IK; (g(w),x) := Áoo(Yz)(w) 

is linear. Moreover, by the very properties of ,\00 

which means that g(w) E E' and llg(w)IIE• :S ll'PII- It is clea.r that this 
function g: n -+ E' is a function as wanted. O 

2.3. For TE .C(L1(µ), E') 1 (L1(µ, E))' ( see 2.1.) this representation gives 

{Th,z) = (<pT,h ®x) = j {g(w),h(w)x}µ(dw) 

hence the 
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DUNFORD-PETTIS THEOREM (weak ve.rsion): Let µ be a strictly 
localizable measure, E a Banach space and T E C( L1 (µ),E'). Then there is 
a g E Mµ(E', E) with llg(w)IIE' IITII for ali w E íl such that 

(Th,x) = lo (g(w),x) h(w)µ(dw) 

for ali h E L1 (µ): 

The function g will be called a <7(E', E)-density o/ T. 

2.4. Let (E1, E 2) be a dual system (think at (E' , E} or (E, E')) then a 
function f : íl --+ E1 is called <7(E1 , E2 )-Pettis integrable if 

( a) For all x2 E E2 the function (f ( • ), x2) is integrable 
(b) For each integrable A there is x,4 E E 1 such that for all x 2 E E2 

(xA,x2} = L (f(w),x2}µ(dw) 

ln this case the element XA is unique and xo is called the <7(Ei, E2)-Pettis 
integral of /: 

xn = lo J(w)µ(dw) (u(E1 , E2)-Pettis integral) 

It is immediate to see that each Bochner integrable function J : íl --+ E is 
u(E, E')-Pettis integrable with the sarne integral. 
Using this notation, the Dunford-Pettis theorem reads 

Th = k h(w)g(w)1,(dw) (u(E',E)-Pettis integral) 

for all h E L1(µ) . Under which circumstances this integral ca.n be inter-
preted as a Bochner integral? 

3. Representable operators 

3.1. The u(E', E)-density g : íl --+ E' in the weak version of the Dunford-
Pettis theorem is uniformly bounded and u(E', E)-measurable. Pettis' mea-
surability criterion says that a function g is µ-measurable (i.e. g is the point-
wise limit of a sequence of µ-step functions) if it is <7(E', E)-measurable and 
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has separable range almost everywhere (i.e. there is a. norm-separa.ble sub-
space F such that g(w) E F for µ-almost all w E !1). Assuming now that µ 
is a. finite measure and the density has separable range a.e., then for each 
h E C1(µ) the product h • g is µ-measurable and llh(w)g(w)II < clh(w)I, 
hence h • g ís Bochner integrable and the integral in the Dunford-Pettis the-
orem is a Bochner integral. 

3.2. Th.is phenomenon will be studied now systematically. For this sup-
pose, from now on, that µ is a finite measure. 

DEFINITION: Let E be a Banach space. An operator TE C{L1(µ),E) 
is called Riesz representable ( in short: representable) if there is bounded 
µ-measurable function g : n -+ E such that 

T f = lo f gdµ (Bochner integral) 

for all f E L1(µ). 

The function g is called a Riesz density for T. The very properties of 
Bochner integra.Is imply that if g is a Ríesz density of T : L1 -+ E a.nd 
S : E ----+ F, then S o g is a Ríesz density of S o T. 
H g is µ-measurable and bounded one denotes 

llglllX) := li llu(·))IIE IILoo :::; ess sup 11/(·)IIE • 
One can show, that if g is a. Riesz density of T E C(L1(µ), E) then 
IITII :::; IIYIIO()• 

REMARK: 
(1) If 91 and 92 are Riesz densities for T then 91 = 92 µ-a.e .. 
(2) g(w) E T(L1) µ-a.e .. 

Pro of: For ( 1) note that 91 - 92 is a Riesz densi ty for the operator T-T = O 
hence 1191 - g2II = IIDII = O. For the second statement consider 

L1(µ) I+ E s E/T(L1) 

then Q o g is a Riesz density of Q o T = O, hence Q o 9 = O µ-a.e. by (1 ); 
this is the statement (2). O 
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3.3. The arguments in 3.1. show that the weak version of the Dunford-
Pettis theorem gives the 

PROPOSITION: If E is a Banach space with separable dual E' then ev-
ery operator T : L1 (µ) -+ E' is Riesz representable. 

A famous result ·of Davis-Figiel-Johnson-Pelczyó.ski [4] states that every 
weakly compact operator T (i.e. the image of the unit ball is weakly rela-
tively compact) factors through a reflexive space; clearly, if T has separable 
range then this reflexive space can be choosen to be separable as well. So if 
TE C(L1 , E) has separable range and is weakly compact it factors 

T - E 
V 

G G sepa.rable 

- and a Riesz density of U gives one for T = V o U : 

COROLLARY: Every weakly compact operator T: L1 (µ)-+ E with sep-
arable range is Riesz representable. 

3.4. Before continuing, it is worthwhile to see an operator which is not 
representable - and some of the structural consequences of this fact. Take 
the space Co of zero-sequences and the operator 

:F: L1([0, 21r]) -. 
l 

of Fourier-coefficients: 

Co 
(/(n))neN 

- 1 12,r f(n) := r,c f(t)exp(int)dt; 
v271" o 

(/(n)) E Co by the Riemann-Lebesgue lemma. 
H g were a Riesz density of :For of K.00 o :F: L1 _. Co <-+ l.00 , then (looking 
a.t components) one would obtain that 

g(t) = ( exp (int)) E loo 
y271" nEN 
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a.lmost everywhere; g (as a measurable function) is separably-valued a.e. 
but the function on the right side is not! 1t follows that the following three 
operators are not representable: 

(1) :F: L1[0,21r]-+ eo 
(2) "-co O :F: L1(0, 21r] -+ l 00 

(3) id: Li(0,21r]-+ L1[0,2n-] (identity map). 

Not that g(t) = ((21r)-112 exp(int))nEN defines a u(l00 ,l1)-density of K.C() o:F 
- with values in l 00 \ e.o. 

COROLLARY: The Banach spaces Co and L1 [0, 21r] are not isomorphic 
to the dual of any Banach space. 

Proof: Since Co and L1[0, 2,r) are separable this is an immediate conse-
quence of proposition 3.3. and the existence of non-representa.ble operators. 
o 

The result a.bout L1[0, 21r) is an old celebra.teci result of Gelfand. 

3.5. The following lemma. will lead immediately to the strong version of 
the Dunford-Pettis theorem. 

LEMMA: Let A be an operator ideal and E a Banach space. lf every 
operator T E A( L1 (µ),E) with separable range is representable then every 
operator TE C(L1(µ), E) is representable. 

Sketch of the proof: The following, non-ohvious fact will be used: repre-
sentabl e operators throw weakly compact sets into compact sets. 
For the lemma. it is enough to show that every T : L1 (µ) -+ E has separable 
range. Since the step functions are dense in L1 (µ) and compact sets are 
separable it suflices to show that 

{T(XA) 1 A C 11 µ-integrable} 

is relatively compact = relatively sequentially compact. So take a se-
quence of integrable An C 11 and consider the u-a.lgebra Ao generated by 

10 



{An I n E JN}. Then T0 defined by 

To(f) := T(E(J I Ao)) 

(conditional expectation) is an operator in A, a.nd has a separable ran'ge 
(since the Ao-measurable, integrable functions forma separable subspace of 
L1): by assurnptiçm, T0 is sepa.rable. The unit ball of L00 is weakly compact 
in L1 hence the set {XAn} is wea.kly compact and {To(XA,.) = T(XAn)} is 
therefore relatively cornpa.ct, which implies that (T(xA,.)) has a. convergent 
subsequence. D 

3.6. Applying this lemma to the operator ideal W of weakly compa.ct op-
erators, the corollary 3.3 gives the 

DUNFORD-PETTIS THEOREM (strong version): Let µ be a finite 
measure ~nd E a Banach space. Then every weakly compact operator 
T: L1(µ)--+ F is Riesz representable. 

One can show that every operator L1(µ) --+ l 1 is representable - even that 
each representable operator factors through l 1 (Lewis-Stegall theorem). So 
any surjective T: L1[0, 1]--+ l 1 shows that representable operators need not 
be weakly compact. 

3. 7. An interesting structural consequence is the following 

PROPOSITION: L1 (µ) has no reflexive, infinite dimensional, oomple-
mented subspaces (µ a finite measure). 

Proof: Let F C L1 (µ) be a cornplemented, reflexive subspace and P a 
projection. Then P is weakly compact since the unit ball of F is weakly 
compact and hence representable. Therefore BF = P(BF) is even cornpact 
(see the fact mentioned at the beginning of the proof of 3.5) and therefore 
the Banach space F is finite dimensional. O 

4. An application to operator-valued measures 

4.1. Let Â be a u-algebra of subsets of a set n, µ a. (non-negative) fi-
nite measure on A and M : A --t C(E, F) a u-adclitive function ( =: vec-
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tor measure) where E and F are Banach spaces. Note the special cases 
C(E, JK) = E' and ,C,(JK, F) = F. 

PROPOSITION: There is an operator T: L1(µ) _. .C(E, F) such that 

M(A) = T(XA) 

for ali A E A if and only if Jor ai/ x E E and y' E F the signed measure 
{M(·)x,y~F,F' is µ-absolutely continuous with density in .C00 (µ). 

Proof: The condition is clearly necessary. Conversely, define 

N N 
T(L ÀnXAJ := L ÀnM(An) 

n=l n=l 

which - as usual - is a good definition. If 9%,'II' E ,C,00 (µ) is a Ra.d.on-Nikodym 
density of (M(·)x,y1 with respect toµ one obtains for ea.ch step function 
h E .C1(µ) 

{T(h)x, y') = ln h(w)gz,11'(w)µ(dw) 

and hence 

It follows from the uniform boundedness principle tha.t 

{T(h) E ,C,(E, F) 1 h step function, llhllL1 l} 

is uniformly bounded in .C(E, F). This implies that T is continuous and 
hence extendable to a continuous, linear operator L1(µ) .C(E,F). 

4.2. So the search for "densities" g such tha.t 

M(A) = L g(w)µ(dw) E .C(E, F) 

(as a certain Pettis integral or Bochner integral) is reduced to the repre-
senta.bility of operators. Using 

a.nd the wea.k and strong Dunford-Pettis theorern one obta.ins the 
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THEOREM: 
(1) Let µ be a strictly localizable measure on a set n, E and F normed 

spaces and T : L1(µ) -+ C(E, F') a linear and continuous operator, 
then there is a function D : n -+ C(E, F') such that 
( a) (D(· )x, y) is µ-measurable for ali x E E and J1 E F 
(b} For ali h E L1(µ) 

Th = jh(w)D(w)µ(dw) 

as a (l(C(E, F'), E®1rF)-Pettis integral; in particular: the integral is a 
(l(C(E, F'), E® F)-Pettis integral 
(e) IID(w)II $ IITII for all w E n. 

(2) lf µ is finite and C(E, F') separable or reftexive, then D is µ-
me~urable and the integral ín (1) (b) is a Bochner integral. 

Just some examples for the Bochner integrability of the density - in other 
words, when Tis a. representable operator (E, F Banach spaces): 

(1) If every operator E-+ F' is compact, E' and F' a.re separable and 
one of these spaces has the approximation property, then 

(e the injective tensor product, K, the ideal of compact operators) is sepa-
rable. 

(2) C(E, F1 is reflexive if a.nd only both spaces E and F are reflexive 
and C(E, F') = IC(E, F'). 

Pitt's theorem states that 

whenever 1 $ q < p < oo - hence every T : L1(µ) -+ C(l.,,l9) is repre-
sentable. Note that .C(l

2
, l

2
) = (1

2
®1rl

2
)' is neither sepa.rable nor reflexive. 

4.3. Using the embedding C(E, F) C C(E, F") one obtains for operators 
T: L1(µ) -+ C(E, F) a (l(C(E, F"), E®1rF')-density. The example with the 
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Fourier transform in 3.4. (put E := ll(, F := Co, F" = l 00 ) shows that in 
general, the density cannot be chosen to have values in C(E, F). 

5. The Radon Nikodym property of Banach spaces 

5.1. A Banach space E has the Radon-Nikodym property if, for each finite 
measure µ, each operator T : L1 (µ) -+ E is representable; actually it is 
enough to check this for the Lebesgue measure on [O, 1) (a nice direct proof 
of this fact was recently given by Botelho (3)). Taking into account the 
relation between operators and vector-valued measures established in 4.1. 
one can show that for these spaces a Radon-Nikodym theorem for certain 
vector-valued measures holds - with Bochner integrable "derivative". I do 
not want to go into the details of this measure-theoretic aspect and refer 
the reader to the monography of Diestel and Uhl [7], [8] and Alencar [2]. 

5.2 ln the scalar case the Radon-Nikodym theorem means L~ = L00 - and, 
as a consequence, L~ = Lp, for 1 p < oo. 

PROPOSITION: Let E be a Banach space and 1 :5 p < oo. Then 

L,,(µ, E)' = L,,, (µ, E') 

holds isometrically for all fmite measures µ ( or only the Lebesgue measure 
on [O, 1]) if and only if E' has the Radon-Nikodym property. 

5.3. From section 3 the following can easily be derived: 

PROPOSITION: 
(1) Separable dual spaces have the Radon-Nikodym property. 
(2) Reflexive spaces have the Radon-Nikodym property. 
(3) E has the Radon-Nikodym property if and only if every separa-

ble closed 
subspace has it. 

Proof: (1) is a reformulation of proposition 3.3., (2) a direct consequence of 
the strong Dunford-Pettis theorem. The last statement follows from lemma 
3.5 applied to the ideal A = C of all operators. D 
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The spaces e.o, l 001 C(O, 1), L1 (0, 1) do not have the Radon-Nikodym property 
(by the example in 3.4.); also .C,(l2 , l 2) does not have it since it conti!oins e.o. 
ln [7), p. 217-219 the reader can find a long list of equivalent formulations 
of the property - and a list of spaces which have or which do not have it. 
ln the rest of this survey I want to point at tbe importance of the Radon-
Nikodym property for the theory of operator ideais. 

6. Nuclear Operators 

6.1. An operator T : E -+ F is called nuclear if there are x~ E E' and 
Yn E F with E~=l llx~II IIYnll < 00 and 

(X) 

Tx = I: (y:, x}yn 
n=l 

for all x E;: E . Denote by x19!EI the one-dimensional operator 

(x'~) (x) := (x', x)y 

for a.11 x E E; it follows that llx'~II = llx'II IIYII- With this notation 
TE .C,(E, F) is nuclear if and only of it has a representation 

(X) 

T = I: X~~n 
n=l 

the series being absolutely convergent in .C,(E, F). Taking 

one obtains that the space N(E, F) of all nuclear operators with the norm 
N is a Banach space. It is easy to see that {N, N) is a Banach operator 
ideal. The bilinear map 

E' X F - N(E,F) 
(x', y) "'-t x'~ 

is continuous, hence its linearization extends to the completion of the 1r-

tensor product 
J: E'®.F-+ N(E, F). 
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The represenation of elements is E'@-,;F given in 1.2. shows that ,r is onto 
a.nd even a metric surjection; if follows that 

00 00 

J(}: X~® Yn) = }: X~~n· 
n=l n=l 

It is a most important, but unpleasant fact, that J is not injective in gen-
eral! This is why the different notation ® and for tensors and operators 
was used. Clearly, J restricted to E' ® F is injective, but not an isomor-
phism (into) of normed spaces. J is injective if E' or F has approximation 
property. Fortunately, most of the usual spaces are known to have the ap-
proximation property, but .C(/2 , 12 ) does not! 

Nuclear operators are very important in Analysis in particular for questions 
where eigenvalues are involved or when would like to use the trace of oper-
ators in infinite dimensional Banach spaces; I cannot give details. However, 
it is usually quite diflicult to decide whether a given operator is nuclear or 
not! This is why one needs general theorems in this direction. 

6.2. H T : L 1(µ) -+ E (µ a finite measure) is nuclear then there are 
9n E Li = Loo a.nd Yn E E with L ll9nlloo llxnll < 00 and 

Th = E J hgndµ • Xn = J h(w) I:9n(w)xn µ(dw) 
n=l n=l 

for each h E L1. Since ll9nlh < µ(n)ll9nlloo it follows that 
00 

g(w) := }: 9n(w)x" 
n=l 

defines (a.e.) a Bochner integrable functions which clearly is a Riesz density 
for the opera.tor T. 

REMARK: Nuclear operators L1(µ)-+ E (µ a finite measure) are repre-
sentable. 

One ma.y interprete this reasoning in another way: 
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a.nd 4'(T) is just the R.iesz density of T. (Note that L00(µ) has the approx-
imation property which implies that the map in the middle is injective, see 
[6], p.66). 

Now suppose that the operator T : L1 --+ E is representable with a Riesz 
density g E L1(µ, E)= L1 (µ)®.E (the function g is even bounded!). Look-
ing at 

one sees that g corresponds to a certain nuclear operator L00 (µ) --+ E. 
Denoting by I : L00 (µ) L1 (µ) the canonical embedding and using an 
expression g = L9n ® Xn E L1(µ)®1rE one gets for h E Loo(µ) 

(To J)(h) = j h(w)g(w)µ(dw) = I: j h(w)gn(w)µ(dw)xn = 
n=l 

n=l 

which means To I = E~=t 9n~Xn and To I is nuclear: T being representable 
implies that T o I : L00 --+ E is nuclear. The converse of this is also true: 

THEOREM (Grothendieck): Let µ be a finite measure and E a Banach 
space. Then T: L1 (µ)--+ E is representable if and only i/To/ : L00 (µ) -t E 
is nuclear. 

There are two important additional details for this result: 
{1) If µ is a Borel-Radon measure on a compact space K then I may be 
replaced by the canonical map J: C(K)--+ L1(K, µ). 
(2) IITII = ll9lloo and N(T o I) = ll9lh = fo llg(w)IIEµ(dw) for the Riesz 
density g of T. (Here I is either L00 --+ L1 or C(K) --+ L1 ) 

6.3. This nice result has powerful consequences for the theory of operator 
ideais. Just one example. An operator T E C.(E, F) is ca.lled integral if it 
admita a factorization 

E 
R 

I 
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for some finite measure µ. It is called Pietsch intgral if the factorization 
can be choosen such that S takes values in F instead of F". Nota.tion: 
PI(E,F) and I(E,F). Since F' is complemente.d is F"' one has 

PI(E, F') = I(E, F') 

but in general integral operators are not Pietsch integral: Alencar [l) ob-
served that there is a Banach space E (necessarily without the approxima-
tion property) and an operator T E I(E, F) such that T' even is nuclear, 
but Tis not Pietsch integral. On the other hand, it is easy to see tha.t every 
nuclear operator is Pietsch integral. 

THEOREM: A Banach space F has the Radon-Nikodym property if and 
only if PI(E, F) = N(E, F) for ali Banach spaces E. 

Proof: Assume F to have the Ra.don-Nikodym property and TE PI(E,F) 
then 

E -!. F 
R s 

I Loo -+ L1 
S is representable hence Grothendieck,s theorem 6.2. gives that S o T is 
nuclear and therefore also T = S o I o R. Conversely, take T E .C( L1 (µ ), F) 
then the operator U 

U: Loo(µ) .!_.Li(µ)-!. F. 

is Pietsch integral hence nuclear: again Grothendieck's theorem gives tha.t 
Tis representable. Since µ and T were arbitrary, F has the Ra.don-Nikodyrn 
property. D 

6.4. One can show that I(E, F') = (E ®e F)' holds - this was 
Grothendieck's original definition of integral operators ( see also Alencar 
[2)). When is the natural map 

J: E'®-,;F'-+ N(E, F') I(E, F') = (E ®e F)' 

surjective? U sing PI( E, F') = I( E, F') the above theorem shows that this 
is true if F' has the Ra.don-Nikodym property; J is injective if F' has the 
approxima.tion property. 
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COROLLARY: Let F' have the approximation property. F' has the 
Radon-Nikodym property if property i/ and only i/ 

E'®1rF' =(E®• F)' 
for all Banach spaces E. 

It follows from 5.8. that E'®1rF' = (E®.: F)' holds of F' is separable or re-
flexive (and has the approximation property). This duality relation between 
the injective and projective tensornorms is an important tool in Functional 
Analysis. 

7. Historical Note 

The study of representable operators and vector-va.lued Radon-Nikodym 
theorems goes back to the work of Dunford, Pettis a.nd Phillips in the late 
thirties. ·Later on, in his thesis 1955 1 Grothendieck gave a powerful push 
to the theory (and even extended it to spaces more general than Banach 
spaces, see also Defant [5]) when he studied, wbat he called "propriété de 
Phillips", The important monography of Diestel and Uhl, 1977, presents 
nearly ali about the topic what was known at that time {see also [8]). The 
present survey offers no new results - only the presentation is different from 
the former ones. 
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