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Abstract 

ln this note we study the disappearance of the numerically irrelevant 
solutions, for non-linear elliptic eigenvalue problem: 

-6u = Ãf(u.) in n, u = O ou an. 
Where n is a smooth bounded domain of the plane and the function f 
changes its sign and does not satisfy the so-called area. conditions. 

O. Introduction 

The numerically irrelevant solutions "NIS", occur in the a.pproxima-
tion by finite differences of the solutions of a. cla8s of non-linear elliptic 
eigenvalue problems, when one proceeds in the context of the Topological 
Degree theory. 

The type of non-linear problem, indica.ted in the abstract is 

(0.1) -~u=>./(u) in n, u=O ou 80. 

where n is a bounded smooth domain of the plane,>. a real positive param-
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eter and f : [O, oo) -+ IR a. function satisfying the following conditions: 

(0.2) 

a) f is locally Lipschitz continuous 
b) f has exactly 2m non - negative simple zeros 

s0 = O < s1 < ... < s:2m-1, where it change its 
sign, as follows 
(-l)'J(s) > O for s E (si, Si+i), i = O, 1, ... ,2 
(m - 1). 

we will say that the functjon / in (0.2), satisfies the positive area condition 
on [s2i-l, S2i+1] where i = 1, ... (m - 2), if 

(0.3) F(s2i+i) > F(s2i-1) with F(t) = lt J(s)ds. 

The discrete analogue of (0.1) obtained by finite difference, with n suitable 
grid points at n is 
(0.4) Ax = Àh2 j(x), x E JRn 
Thus A is a M-matrix ([15), [16]) arising in the discretization of tbe differ-
ential operator -ti., h is the mesh size and f(x) = (f(x1), ... ,f(xn)) is 
the Nemitskii operator associa.ted with the scalar function J. 

Peitgen, Schmitt and Saupe ([11]), ma.de a careful investigation of the 
solutions of (0.4) using the Topological Degree and Global Bifurcation theo-
ries when the nonlinearity / essent.ially satisfies (0.2). The first two authors 
([12]) gave a classification of the NIS in three types and prove briefly for the 
one dimensional case, the disappearance of the first type as the mesh size 
h -+ O. The NIS o[ the first type accur when F(t) < O for all t E (s2 , s2m) 
and its norm is between s3 and s 2m-l (section 4, [121). 
ln this note we will give alternative Proofs for some of their propositions 
[l. 7; 1.8]. Our proofs are simpler and hold even under weaker assumptions. 
Mantaining the sarne context we show the existence of the NIS, as well as 
the disappearance of the first type of NIS, for two dimensional case. 
Section 1 is devoted to study the existence of the NIS a.nd tbe section 2 is 
devoted to show the disappeara.nce of tbe NIS wich have norm between s2i 
and s2i+t and F(s2i+i) F(s 1). (This is a optirnal condition (51). 
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1.- Existen.ce of nurnerically irrelevant solutions 

N otations 1. 1 

o = {x E JRn: Xi~ O Vi= l, ... ,n}, lR+ = interior (lR+) 
n 

llxUoo = max{lx.-.l; i = l, ... ,n}, llxll = (E}xil2)112 

i=l 

Definition 1.2 

(1.2) 

A real n x n matrix; A= [aâ] is said to be a M-matrix if: 

a) 
b) 

e) 

Oii > O, a;; $ O for i j 
E'J,,.1 la;; 1 :::; a,i, where the inequality is 

;,;. ; 
strict at least one i 

(Hence LJ=l a;; O with strict inequality 
for some i) 

A is irreducible. 

we state without proof the following proposition. The reader can see 
the proof in [16}. 

Proposition 1.3 

If A= [ai;) is a M-matrix. Then 
a) A is nonsingular and it has a unique positive eigenva.lue >.1 of multiplicity 

o 
one and its correponding eigenvector belong to~-

º b) A-1(.lR~) e JIG_ and A-1(~ - O) e IR+· 
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The next proposition is a consequence of the Topological Degree The-
ory in the finite dimensional case. It will be needed in the proofs of the 
subsequent propositions. 

Proposition 1.4 

Let J : IR -. IR be a continuous function, j as in (0.4) and A = [a.;] 
is a n x n matrix. 
Let V be open bounded subset in JFr. 
Suppose that O í/. /( 8V) and deg ( - J, V, O) j O. then there exists a X O 
such that the equation 

(1.3) 

has a solution x.x E V for ali >. > X. 

Proof 

There exists positive consta.nts R, r such that 

IIAxll :SR and lll(x)II T Vx E av. 
Hence with X> R/r we have IIAxll < .Xll](x)II V>.~ X and Vx E 8V. 
Writing t =: 1/).. : tAx - l(T:) -::/ O Vt E [O, 1/X] and Vx E av the~ 
deg (tA - f, V,O) =deg (-f, V,O)-/:- O. In view of this, for each). ~). 
there exists a solution X>, of (1.3) that belongs to V. 

Proposition 1.5 

Let J : IR -+ IR be a continuous function, that has exactly k zeros 
s1 < s2 < ... < Sk, Moreover we assume that f changes its sign at the 
zeros i .e. there exists e > O such that. 
f(t)f(r) < O if s; - e:$ t <Si< T s, + e. Then 
aj The Nemitskii operator associated with f, has kn zeros, which are 
1-1 (0) = 1-1 (0) x ... x J-1 (0) (n times). 

b) For each z E J-1 (0) and for any open bounded neighborhood V of 
i- with (V - {z}) n f- 1(0) = 4,, then deg (- j, V, O) = ±1. 
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Proof 

When in addition / is a. C1 function, then deg (- f, V, O) -
(-l)n sgn (det f'(z)) = (-1)" IIJ=t sgn (/'(si;)), where z 
(sin•·•,s iJ, ij E {1, ... ,k}. 
Hence deg (-f, V, O) = ±1. 
For the general case see ([111). 

Corollary 1.6 

With the sarne hypotheses of proposition 1.5 it can be shown that for 
each z E J- 1(O) there exists solutions xÀ of (1.3) such that xÀ _. z as 
À-+ +oo. 

Proof 

Since /-1 (0) is a finite discrete subset of R", open bounded neighbor-
hood can be taken in such way that they a.re p&irwise disjoint . The rest 
follows easily from this fact. D 
ln the next two propositions we will show the behaviour of the solutions 

1 of (0.4) in regard to the nonlinearity /. The hypothesis needed are weaker 
tha.n those used in lemma. 2.7 (11). 

Proposition 1.1 

Let /:IR-+ IR be a continuous function, such that f(s) > O for s < O. 
Let A= (ai;] be a M-matrix. Then if x is a solution of (0.4) it follows that 
X E 1fl+. 

Proof 

Let x = (x1, ... , Xn) be a solution of (0.4) for a À > O fixed. 
Let Xi = min { x; : j = 11 ••• , n}. Then 

n n 

x,(L ai;) L ai;x; = >.h2 f(x,) 
j=l j=I 

As A is a M-matrix, Xi can not be negative. O 

5 



Proposition 1.8 

Let f be as in (0.2) and define f(s) > O for s < O. Let A= [ai;] be a 
M-matrix. Then there is no solution x of (0.4) such that llxll00 = O where 
O > O and /(O) 5 O. 

Proof 

Suppose that (0.4) has a solution x with llxlloo = (J where O > O and 
f(B) O. 
Since f is locally Lipschitz continuous1 it follow that there exists u > O such 
that f(s)+us is strictily increasing on [O, O). Hence taking w = (O, 0, ... , 0) 
we have: 

- - o 
(A+ ).h2ul)(w - x) >.h2 (J(w) + uw - (J(x) + ux)) E IR~. 

By proposition 1.3 it follows that 0 > xi Vi = 1, ... , n contradicting the 
assumption. (This is the discrete version of lemma 6.2 [1]). O 

Peitgen and Schmitt (theorem 3.2 [12)) give the following proposition 
which can be shown using the preceeding propositions. 

Proposition 1.9 

Let A, f be as in proposition 1.8. Then for each large ). the equation 
o -

(0.4) has a least (2m r solutions in JR~ and they are dose to the zeros of f 
o 

which are in IR;. Furthermore these solutions have the following properties: 
a) for each i = 1, 2, ... , 2m there are in - (i- 1r solutions with norrn dose 
to Sj. 

b) There are (i + ir - (i + ir so]utions X such that s, < llxlloo < Si+1 for 
i = 2, 4, 6, ... , 2(m - 2). 
e) There is at least one solution x such that O< llxll 00 < s1 

d) There is no solution x such that Si < llxlloo < Si+i for i -
1, 3, 5, ... , 2m - 1. 
e) There are (2mt - (2m - ir solutions X such that llxloo > S2m• 
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Proof 

By corollary 1.6 there exist X> O such that for all ,\ > X, the equation 
(0.4) has solutions for each small ball centered at each zero of f that belong 

o -to IR;, Hence for each ). ,\ the number of solutions is equal to the number 
~ o 

of zeros of f in ~-
But Bj = {z E 1-1(0) n m:: llzlloo $ Sj} has the cardinal #(Bj) = jn. 
Hence 
a) For each ,\ :X, the equation (0.4) has #(Bi - B,_1 ) = in - (i - It 
solutions with norm dose to s;. 
b) For each). X, (0.4) has #(Bi+1 - Bi_t) = (i + lt-(i -1)" solutions 
with norm between Si and s;+t, i = 2, 4, ... , 2( m - 2). 

The rest in similar (part d follows from proposition 1.8). D. 

2- Disappearance of NIS in the nonlinear elliptic eigenvalue 
problems. 

First we will study the one dimensional caset that is the NIS for non-
linear elliptic eigenvalue problem that we give below. 

(2.1) - u" = >.J(u) in the interval (O, 1) and u(O) = u(l) = O 

where f : IR - IR is a continuous function. 
1t is a known fact that u is a solution of (2.1) if only if u is a solution of the 
following integral equatíon: 

(2.2) u(t) =). fo 1 G(t, s)f(u(s))ds 

where G(t, s) is the Green function for the operator -cP/tcP subject to 
Dirichlet boundary condi tions on [O, 1]. 
(2.3) Let 11"n = {tk = _k_ : k = O, 1, ... , n + l} be a partition or grid of 

n+l 
interval [O, 1 ]. Then the discrete analogue of (2.1) is 

(2.4) { 
-u(tk+1) + 2u(tk) - u(t1e-1) _ \f( (t )) L _ 1 2 h2 - A u l: , /1; - ' ' ••• , n 

u(to) = u(t .. +1) == O, where h = 1/(n + 1). 
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(2.5) 

Letting u( t,:) = x,:, we have 

{ -X1:+1 + 2x,: - Xk-1 = Xh 2 f(xk), k = 1, ... , n 
Xo = Xn+l = Q 

which is writen as Ax = J..h 2 f(x) and as before, we see tha.t A is a. 
M-matrix and f the Nemitskii operator associated with the scalar function 
f. 
Next proposition is the discrete analogue of the equiva.lence that there is 
between the problems (2.1) a.nd (2.2). 

Proposition 2.1 

Let G(t, s) be as in (2.2) and z = (zo, ... ,zn+d, y = (Yo, ... ,Yn+i). 
Then fi is solution of (2.5) if only if y is solution of the following equation 

{2.6) 

Proof 

n 

Yk = h E G(tk, si)zi, k = O, 1, ... , n + 1. 
i=l 

It is easy to verify that 

(2. 7) -G(tk+I, s;) + 2G(t," s;) - G(tl:-1, s;) = h- 16;," Vi, 
k = I, 2, ... , n. 

From this and the symmetry of G( t, s ), everything follows. D 

Proposition 2.2 

H x = (xo, ... , Xn+i) is a solution of (2.5), then 

where p = llxll00 
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Proof 

As x is solution of (2.4) 
n 

lx11+1 - x1tl - hl I:[G(t11+1, -'i) - G(t1r, -'i)]/(xi)I 
i=l 

·< !h3 ( rnax 1/(s)I) [(k + l)k + {n - k)(n - k + 1)) 2 O~•~P 
V k = 0, ... ,n. 

Hence the resolut follows. 

Let IIn be as in (2.3). For each solution x = (xo, ... , Xn+1) of (2.5) we 
define the interpolant function 

n l { S - ti-1 if ti-1 =5 S =5 ti 
(2.8) x(sJ = LXi'-Pi(s), where '-Pi(s) = h ti+t - s if ti =5 s =5 ti+l 

i=l O esle where 

let us note that x(s) is a continuous function such that x(O) = x(l) = O 
and llxlloo = max lx(t)I = llxlloo- Using the similar ideas of the paper of 

O<t<l 
Lees and Schu]tz-([9]), we will prove the next proposition. 

Proposition 2.3 

Let {Ilm} be a partitions sequence of the interval [O, l]. Suppose 
that for each IIm the corresponding discrete problem (2.4) has a solution 
? = ( a:;1, ... , x;;!+t) such that I j? 11 00 =5 R, with R indepeodet of m. Then 
a) The sequence of interpolant functions xm for ? , described in (2.8), has 
a convergent subsequence, converging uniformly in (O, 1] to a continuous 
function xº. 

b) x0 is a solution of (2.1) a.nd llxºlloo =5 R. 

Proof 

a) Let IIm = {t1t = kh, k = O, 1, ... , m + 1} be a partition, x"' and 
xm as in the hyphotesis. Then for t, s E (O, 1) with tlt =5 t, s =5 t1t+1 by 
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proposition 2.2 we have 
xm -xm 

lxm(t) - xm(s)I = 1 k+\ "llt - si~ (orr.~~lf(s)l)lt- si 

Hence the sarne inequality holds for all t, se[O, 1). 
Taking into account this last inequaJity and the fact that llxmlloo R for 
all m; we can use the Arzela-Ascoli theorem and assume that there exists 
a subsequcnce ( denoted in the sarne way) xm and a continuous íunction x0 

such that xm -+ xº uniformly on [O, l]. 

b) We now prove that x 0 is a solution of (2.2). For this purpose will 
be sufficient to show that 

xº(t) = T[xº](t) = .À fo1 G(t, s)f(x(s))ds for all t E [O, 1]. 

For t = O, 1 it is immediate. Then we take a t E (O, 1). 
Since J is uniformly continuous on (O, R] and G(t, ·) has a L1-norm uni-
formly bounded by 1/8, we have that 
(2.8) T[xm] -+ T[xº] uniformly on [O, 1}, in particular T[xm](t) -+ 

T[xº](t) . 
Our next objective is to show that T[xm](t)-+ xº(t). 
Fixed t E (O, 1), let e > O. 
Since G(t, •) /(xm(·)) is a continuous function on (O, 1] and the meshzise 
III1mll -+ O, it follows that there is a positive number m2 [depending on 
t, t:], such that 

(2.9) IT[xm)(t) - E hG(t, si)f(xm(si))I < e/5 Vm m2. 
i 

As the sequence {Ilm} is uniform, for each Ilm, there exist a uníque 
tk E Ilm such that t E [tkm, tkm + h) and t1cm < t1cm+1 < • •, < t < • • • < 
tkm + h, i.e. tkm -+ t. 
Since G( · , ·) is Lipschitz continuous on [O, 1] x [O, 1], there exists a. ma > O 
such that 

(2.10) 1 Eh[G(t, si) - G(t1cm, si)]f(xm(si))I < e/5 Vm m3 
1 

Considering now the continuity of xº and the uniform convergence of xm to 
xº on [O, 1], there is a.nother positive number m4 such that 

(2.11) 
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Using (2.9) and (2.11) we have then that T(xm](t) -+ xº(t) and by (2.8) 
T[xº](t) = xº(t). 

According to Laetsch [10) or Browr and Budin [3] if u is a solution of 
(2.1) then u also satisfies 

(2.12) [u'(t)]~ = .X[F(llulloo) - F(u(t))] for all t E (O, 1) 

Hence if F( s 2i+l) < F( s1 ) then (2.1) has no solutions u such that s2i < 
llulloo < s2i+i• Thus the numerical solutions x of (2.5) will be NIS (of the 
first type). 
ln the final part of the one dimensional case we now show the disappearance 
of the NIS, when the meshzise convergs to zero. 

Proposition 2.4 

Let f be as in (0.2) and F(s2i+i) F(s1) for somei= 1, 2, ... ,(m-2). 
Let À. = inf { À > O: for every grid IIm, (2.5) has a solution x with 
S2i < llxlloo < S2i+d· Then À. = +oo. 

Proof 

Let us suppose by a contradiction that À. < +oo. Then there is a 
). < ).. such that for every grid IIm (2.5) has a sequence pn of solutions 
wi th S2i < llx'11 li < s2i+1. Letting R = S2i+1 in the proposi tion 2.3 then 
there exista solution x 0 of (2.1) with s2; < llxºll 00 < s2i+1 which is a con-
tradiction to (2.12). D 

ln order to study the disappearance of the NIS in the bidimentional 
case, one has to require properties on the domain f! and the finite difference 
Scheme, that will give us the discrete analogue (0.4) with all necessary fea-
tures described in the preceding propositions. With this purpose in mind 
we take those restrictions stated in Allgower and Jeppson [2] or Forsythe 
and Wasow [7]. 
On the other hand. Theorem 1 of a paper of Dancer and Schimitt ([5]) 
that to be given below, has the sarne performance of the equality (2.12). 
According to theorem 1 and the section 6 of [5], we state without proof the 
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following proposition: 

Proposition 2.5 
Let J be as in (0.2) and suppose that it does not satisfy the positive area 
conditions on (s1 , s2i+i] where i = 1, ... , (m - 2), i.e. F(s2i+i) s; F(s1). 
Then (0.1) has no positive solution u such that S2i S: llulloo $ s2,+1 O 

According to (2], x = (x1, ... , Xn) will be a slolution of the equation 
{0.4) i.e. 

Ax = >.h2 !(x) 
if only if x is solution of 

n 

{2.13) x1i = >.h2 L G,.(P1i, Qi)f(x,) 
i=l 

where x,. = u(P1i) and G,.(P1i, Qi) = a;1 are the components of the matrix 
A- 1 , called Green's matrix ([2), [71). 

A similar fact is know for the continuous case i.e. u is a solution of 
{0.1) ií only if u is a solution of 

(2.14) u(P) = ln G(P, Q)J(u(Q))dQ. 

( under assumptions that J has sufficient smoothness and that n satisfies 
some conditions which assure the existence of the Green's function G). 
Next we state without proof the following proposition ([71). 

Proposition 2.6 

Let n be a bounded, finitely connected, open region in the plane, with 
a four times continuously differentiable boundary an. Let G(P, Q) the 
Green's function and G,.(P, Q) as in (2.13). Then 

{2.15) G(P, Q) - G,.(P, Q) = 0(h) 

uniformly for P in the grid n,. if Q is bounded away from an indepen-
dently of h and IIP - QII 2:: (const)v'h > O. D 
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From all this, one can to get now a similar proposition to 2.2 and 2.3, 
because they are independent of the dimension. 
Hence we have the following proposition. 

Proposition 2. 7 

Under the assumptions of proposition 2.5. The numerica.l solutions of 
(0.4) such that 

S2i < l lx"' l loo < S2i+1 

are NIS and disappears when the rneshzise convergs to zero. D 

Remark 2.8 

It is a interesting problern to look for a. rela.tion between the meshsize 
h = - 1- a.nd the para.meter .À for each solution xm of (0.4), when the 

m+1 
nonlinearity f does not satisfy the so-called area condition and when f 
satisfies it. 
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