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Abstract.
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Abstract

In this note we study the disappearance of the numerically irrelevant
solutions, for non-linear elliptic eigenvalue problem:

—Au=Af(u) in Q, u=0 ou AN

Where (1 is a smooth bounded domain of the plane and the function f
changes its sign and does not satisfy the so-called area conditions.

0. Introduction

The numerically irrelevant solutions “NIS”, occur in the approxima-
tion by finite differences of the solutions of a class of non-linear elliptic
eigenvalue problems, when one proceeds in the context of the Topological
Degree theory.

The type of non-linear problem, indicated in the abstract is

(0.1) —Au=Af(u) in Q, u=0 ou 9N

where §) is a bounded smooth domain of the plane, A a real positive param-



eter and f : [0, oo) — IR a function satisfying the following conditions:

( a) fislocally Lipschitz continuous
b) f has exactly 2m non — negative simple zeros
80 =0<8; <...< S3;n-1, wWhereit change its
sign, as follows
(=1)'f(s) >0 for s € (si, si41), 1=0,1,...,2
\ (m - 1)

we will say that the function f in (0.2), satisfies the positive area condition
on [szi—1, S2i41) wherei =1,...(m —2), if

(0.3) Flsaigs) > Flsi1) with F(t) = /o' f(s)ds.

The discrete analogue of (0.1) obtained by finite difference, with n suitable
grid points at Q is

(0.4) Az = MW f(z), z € R"

Thus A is a M-matrix ([15], [16]) arising in the discretization of the differ-
ential operator —A, h is the mesh size and f(z) = (f(21), ...,f(za)) is
the Nemitskii operator associated with the scalar function f.

Peitgen, Schmitt and Saupe ([11]), made a careful investigation of the
solutions of (0.4) using the Topological Degree and Global Bifurcation theo-
ries when the nonlinearity f essentially satisfies (0.2). The first two authors
([12]) gave a classification of the NIS in three types and prove briefly for the
one dimensional case, the disappearance of the first type as the mesh size
h — 0. The NIS of the first type accur when F(t) < 0 for all t € (33, S2m)
and its norm is between s3 and $;,,—1 (section 4, [12]).

In this note we will give alternative Proofs for some of their propositions
[1.7; 1.8]. Our proofs are simpler and hold even under weaker assumptions.
Mantaining the same context we show the existence of the NIS, as well as
the disappearance of the first type of NIS, for two dimensional case.
Section 1 is devoted to study the existence of the NIS and the section 2 is
devoted to show the disappearance of the NIS wich have norm between s;
and 8341 and F(s2i41) < F(s1). (This is a optimal condition [5]).

(0.2) <
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1.- Existence of numerically irrelevant solutions

Notations 1.1

R={zeR":2;,20Vi=1,...,n}, R} = interior (RR})
llzlloo = max{lail; i =1,...,n}, |lzll = (3 ail)*?
i=1

Definition 1.2

A real n x n matrix; A = [a;7] is said to be a M-matrix if:

a) a;>0,a;<0 for i#j
b) E';;? |aij| < ai;, where the inequality is
(1.2) strict at least one i
(Hence 37, a;; > 0 with strict inequality
for some 1)
| ¢) A isirreducible.

we state without proof the following proposition. The reader can see
the proof in [16].

Proposition 1.3

If A= [a;j] is a M-matrix. Then
a) A is nonsingular and it has a unique positive eigenvalue \; of multiplicity

one and its correponding eigenvector belong to I%’;,
b) A7'(IR}) C IR} and A7'(RR} - 0) C R}. O



The next proposition is a consequence of the Topological Degree The-
ory in the finite dimensional case. It will be needed in the proofs of the
subsequent propositions.

Proposition 1.4

Let f: IR — IR be a continuous function, f as in (0.4) and A = [a;;]
is a n X n matrix.
Let V be open bounded subset in IR".
Suppose that 0 g f(0V) and deg (—f, V,0) # 0. then there exists a X > 0
such that the equation

-~

(1.3) Az = Af(z), z € R"
has a solution zy € V for all A > .

Proof

There exists positive constants R, 7 such that

~

||Az|| £ R and ||f(z)]]2 7 Vz € aV.

Hence with X > R/t we have ||Az|| < MIf(@)|l YA > X and Vz € 9V.
Writing ¢t = 1/A : tAz — f(z) # 0 Vt € [0, 1/)] and Vz € 8V then
deg (tA— f, V,0) =deg (—f, V,0) # 0. In view of this, for each A > A
there exists a solution z, of (1.3) that belongs to V. O

Proposition 1.5

Let f : R — IR be a continuous function, that has exactly k zeros
8; < 83 < ... < 8. Moreover we assume that f changes its sign at the
zeros i.e. there exists € > 0 such that.
fOf(r)<0ifs;—e<t<s;i <t <s;+¢€ Then
a) The Nemitskii operator associated with f, has k™ zeros, which are

F740) = f~1(0) x ... x f71(0) (n times).

b) For each z €_ f71(0) and for any open bounded neighborhood V' of
z with (V = {z}) N f~1(0) = ¢, then deg (—f, V,0) = £1.




Proof

When in addition f is a C' function, then deg (- f, v,0)
(-1 sgn (det F(z)) = (1) I, sgn (f(ss)), where z
(8,‘1,...,8.‘"), i,’ € {1,...,k}.

Hence deg (—f, V,0) = +1.
For the general case see ([11]).

Corollary 1.6

With the same hypotheses of proposition 1.5 it can be shown that for
each 2 € f~1(0) there exists solutions z) of (1.3) such that zy — 2 as
A — +o00.

Proof

Since f° =1(0) is a finite discrete subset of IR", open bounded neighbor-
hood can be taken in such way that they are pairwise disjoint . The rest
follows easily from this fact. O
In the next two propositions we will show the behaviour of the solutions
of (0.4) in regard to the nonlinearity f. The hypothesis needed are weaker
than those used in lemma 2.7 [11].

Proposition 1.7

Let f: IR — IR be a continuous function, such that f(s) > 0 for s < 0.
Let A = [a;;] be a M-matrix. Then if z is a solution of (0.4) it follows that
T € R}.

Proof

Let z = (24,...,2,) be a solution of (0.4) for a A > 0 fixed.
Let z; =min {z;:j=1,...,n}. Then

.’t,’(zn: a.-,-) > ia.-jz,- = Ah’f(:c.-)'

s=1 y=1

As A is a M-matrix, z; can not be negative. O
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Proposition 1.8

Let f be as in (0.2) and define f(s) > 0 for s < 0. Let A = [a;;] be a
M-matrix. Then there is no solution z of (0.4) such that ||z||c = 6 where
6 > 0and f(6) <0.

Proof

Suppose that (0.4) has a solution z with ||z|| = @ where & > 0 and
1(0) <.
Since f is locally Lipschitz continuous, it follow that there exists ¢ > 0 such
that f(s)+os is strictily increasing on [0, 6]. Hence taking w = (0, 9,...,0)
we have:

(A + Mh2oD)(w — z) > \R*(F(w) + ow — (f(z) + 02)) € .

By proposition 1.3 it follows that # > z; Vi = 1,...,n contradicting the
assumption. (This is the discrete version of lemma 6.2 [1]). O

Peitgen and Schmitt (theorem 3.2 [12]) give the following proposition
which can be shown using the preceeding propesitions.

Proposition 1.9

Let A, f be as in proposition 1. 8 Then for each large A the equation
(0.4) has a least (2m)™ solutions in R" and they are close to the zeros of f

which are in R’;. Furthermore these solutions have the following properties:
a) for each ¢t = 1, 2,...,2m there are :" — (1 — 1)" solutions with norm close
to s;.

b) There are (z + 1)® — (i 4+ 1)" solutions z such that s; < ||z||e < ;41 for
i=24,6,...,2(m-2).

c) There is at least one solution z such that 0 < ||z||e < 81

d) There is no solution z such that s; < |[|z]le < 8i41 for ¢ =
1, 3,5,...,2m—1.

e) There are (2m)™ — (2m — 1)" solutions z such that ||z]|e > S2m.-




Proof

By corollary 1.6 there exist A > 0 such that for all A > X, the equation
(0.4) has solutions for each small ball centered at each zero of f that belong

o -
to IR} . Hence for each A > X the number of solutions is equal to the number

of zeros of fin ﬂ%’;
But B; = {z € f7(0) N R} : ||2|le < s;} has the cardinal #(B;) = j".
Hence
a) For each A > 1}, the equation (0.4) has #(B; — B;_y) =" — (i — 1)"
solutions with norm close to s;.
b) For each A > X, (0.4) has #(Biy1— Bi—1) = (i +1)" — (i —1)" solutions
with norm between s; and s;41, 1 =2, 4,...,2(m — 2).

The rest in similar (part d follows from proposition 1.8). O.

2- Disappearance of NIS in the nonlinear elliptic eigenvalue
problems.

First we will study the one dimensional case, that is the NIS for non-
linear elliptic eigenvalue problem that we give below.

(2.1) —u"=Af(u) intheinterval (0, 1) and u(0)=u(l)=0

where f : IR — IR is a continuous function.
It is a known fact that u is a solution of (2.1) if only if u is a solution of the
following integral equation:

(2.2) u(®)= A [ G(t, 5)f(u(s))ds

where G(t, s) is the Green function for the operator —d?/td? subject to
Dirichlet boundary conditions on [0, 1].

(2.3) Let x, = {f) = L k=0, 1,...,n+ 1} be a partition or grid of
interval [0, 1]. Then the discrete analogue of (2.1) is

g { —u(tep1) + 2u(t) — u(te-1) _ M(u(ty), k=1,2,...,n

u(to) = u(t,.+’:; =0, where hA=1/(n+1).



Letting u(tx) = z, we have

(2.5) —Tke1 + 2Tf — Tg—y = Xhzf(:n‘), X7
> Tog =Tp41 = 0

which is writen as Az = Ah?f(z) and as before, we see that A is a
M-matrix and f the Nemitskii operator associated with the scalar function

i g
Next proposition is the discrete analogue of the equivalence that there is
between the problems (2.1) and (2.2).

Proposition 2.1

Let G(t, s) be as in (2.2) and Z = (20,..-,2p41)s T = (Y05 -+ s Yns1)-
Then ¥ is solution of (2.5) if only if ¥ is solution of the following equation

(26) ye=nh ZG(th 31')21', k=0,1,...,n+1

f=1

Proof

It is easy to verify that

(2.7) —G(th-ﬂa .s,-) + 2G(tk, 3.‘) - G(tk_l, 3,‘) = h_l6;k, Vi,
2T N R

From this and the symmetry of G(t, s), everything follows. O
Proposition 2.2
If T = (zo,...,Zn41) is a solution of (2.5), then

Jores — 2l < A(gax|f(s)), ¥ E=0,1,...,n

where p = ||z||co



|

Proof

As 7 is solution of (2.4)

fewn =il = 3 IGhns, 3) = Glth, s
2h*(ax S (o)) [(k + Dk + (n = K)(n = k + 1)

Yi=0,...,n

IA

Hence the resolut follows. O.

Let II, be as in (2.3). For each solution Z = (o, ..., Za4+1) of (2.5) we
define the interpolant function

(2.8) z(s) = Ez,-cp;(s), where ;(s) = : tign—s if t;<s<tip

1 [ $-tin if t1<8Lt
=1 0 esle where

let us note that z(s) is a continuous function such that z(0) = z(1) = 0

and ||zl = 0rgtat<x1|:1:(t)| = ||Z||co- Using the similar ideas of the paper of

Lees and Schultz ([9]), we will prove the next proposition.
Proposition 2.3

Let {Il,,} be a partitions sequence of the interval [0, 1]. Suppose
that for each II,, the corresponding discrete problem (2.4) has a solution
" = (ag',...,Zm,,) such that ||Z™||, < R, with R independet of m. Then
a) The sequence of interpolant functions z™ for Z™, described in (2.8), has
a convergent subsequence, converging uniformly in [0, 1] to a continuous
function z°.

b) z° is a solution of (2.1) and ||z°%||e < R.
Proof

a) Let Il,, = {ty = kh, k=0, 1,...,m + 1} be a partition, Z" and
z™ as in the hyphotesis. Then for t, s € [0, 1] with ¢, < t, s < 34, by
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proposition 2.2 we have

l™(£) = 2™ (s)| = [ ||t = 8| < (max | F(s)])]t ~ o
Hence the same inequality holds for all ¢, se[0, 1].

Taking into account this last inequality and the fact that ||z™|| < R for
all m; we can use the Arzela-Ascoli theorem and assume that there exists
a subsequence (denoted in the same way) 2™ and a continuous function z°
such that ™ — z° uniformly on [0, 1].

b) We now prove that z° is a solution of (2.2). For this purpose will
be sufficient to show that

2%(t) = T[z°)(¢) = A /01 G(t, s)f(z(s))ds forall te [0, 1].

For t =0, 1 it is immediate. Then we take a t € (0, 1).

Since f is uniformly continuous on [0, R] and G(t, -) has a L'-norm uni-
formly bounded by 1/8, we have that

(2.8) T[z™] — T[2°] uniformly on [0, 1], in particular T[z™](t) —
Tie%s)--.

Our next objective is to show that T[z™](t) — z°(¢).

Fixed t € (0, 1), let € > 0.

Since G(t, ) f(z™(-)) is a continuous function on [0, 1] and the meshzise
[|IIn]] — 0, it follows that there is a positive number m, [depending on
t, €], such that

(2.9) IT[z™)(t) — D_AG(t, s;)f(z™(s:))| < /5 Vm > m,.

As the sequence {Il,,} is uniform, for each II,,, there exist a unique
tr € I, such that t € [ty,, tk, +h) and 8, < t,,, <...<t<...<
b b B o g, o §.

Since G(- , -) is Lipschitz continuous on [0, 1] % [0, 1], there exists a m3 > 0
such that

(210) IZh[G(t, 8,') = G(tkm, 8,‘)]](3:’"(3,')“ < 6/5 Vm > mj

Considering now the continuity of z° and the uniform convergence of z™ to
z° on [0, 1], there is another positive number m4 such that

(2.11) |z™(tk,,) — 2°(t)| < €/5 Ym > m,.

10



Using (2.9) and (2.11) we have then that T'(z™](t) — z°t) and by (2.8)
Ti=%(t) = 2%(t). D

According to Laetsch [10] or Browr and Budin (3] if u is a solution of
(2.1) then u also satisfies

2.12)  [W@)])% = MF(|lulle) — F(u(t))] forall te (0, 1)

Hence if F(s3i41) < F(s1) then (2.1) has no solutions u such that sy <
[|ulleo < 82i41. Thus the numerical solutions z of (2.5) will be NIS (of the
first type).

In the final part of the one dimensional case we now show the disappearance
of the NIS, when the meshzise convergs to zero.

Proposition 2.4

Let f.bea,s in (0.2) and F(s9i41) < F(s) forsomei =1, 2,...,(m—2).
Let A, = inf{A > 0: for every grid II,,, (2.5) has a solution T with
$2i < ||Z]|oo < 82i41}. Then A\, = +o00.

Proof

Let us suppose by a contradiction that A\, < +o00. Then there is a
A < A such that for every grid Il,, (2.5) has a sequence Z™ of solutions
with sy < ||Z"|| < s2i41. Letting R = s3i41 in the proposition 2.3 then
there exist a solution z° of (2.1) with sy; < ||2°||ec < S$2i41 Which is a con-
tradiction to (2.12). O

In order to study the disappearance of the NIS in the bidimentional
case, one has to require properties on the domain ) and the finite difference
Scheme, that will give us the discrete analogue (0.4) with all necessary fea-
tures described in the preceding propositions. With this purpose in mind
we take those restrictions stated in Allgower and Jeppson [2] or Forsythe
and Wasow [7].

On the other hand. Theorem 1 of a paper of Dancer and Schimitt ([5])
that to be given below, has the same performance of the equality (2.12).
According to theorem 1 and the section 6 of [5], we state without proof the
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following proposition:

Proposition 2.5
Let f be as in (0.2) and suppose that it does not satisfy the positive area
conditions on [s1, 82i41] where i = 1,...,(m — 2), i.e. F(s2i41) < F(s).
Then (0.1) has no positive solution u such that sy; < ||u]|ee < 89i41 O

According to [2], Z = (z1,...,2,) will be a slolution of the equation
(0.4) i.e. .
AZ = MR f(7)
if only if Z is solution of
(2.13) Ty = )\hz ZG};(P),, Q.')f(.‘t,')
i=1
where zx = u(P;) and Gi(Py, Q;) = ap;' are the components of the matrix

A71, called Green’s matrix ([2], [7]).

A similar fact is know for the continuous case i.e. u is a solution of
(0.1) if only if u is a solution of

(2.14) u(P) = [ G(P, Q)f(u(@))dQ.

(under assumptions that f has sufficient smoothness and that ) satisfies
some conditions which assure the existence of the Green’s function G).
Next we state without proof the following proposition ([7]).

Proposition 2.6

Let Q be a bounded, finitely connected, open region in the plane, with
a four times continuously differentiable boundary 9Q). Let G(P, Q) the
Green’s function and Gi(P, Q) as in (2.13). Then

(2.15) G(P, Q) — Ga(P, Q) = 0(h)

uniformly for P in the grid 2, if @) is bounded away from 9€) indepen-
dently of h and ||P — Q|| > (const)vh > 0. O
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From all this, one can to get now a similar proposition to 2.2 and 2.3,
because they are independent of the dimension.
Hence we have the following proposition.

Proposition 2.7
Under the assumptions of proposition 2.5. The numerical solutions of

(0.4) such that
82i < |[T™|]oo < 82041

are NIS and disappears when the meshzise convergs to zero. O
Remark 2.8

It is a interesting problem to look for a relation between the meshsize

glmire and the parameter A for each solution z™ of (0.4), when the
m

nonlinearity f does not satisfy the so-called area condition and when f
satisfies it.
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