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Abstract: We discuss some of the recent results we obtained in our stud-
ies concerning the status of the so called “Special Principle of Relativity”
(SPR) and the “General Principle Relativity” (GPR).

To start we must agree on the mathematical and physical meaning of
these principles.

Now, take three books at random on Special, or General Relativity, or
Relativistic Field Theory as e.g., Anderson [1], Friedman [2] and Bergman
[3]. You will find the following statements as being the SPR.

PR;: All (Special Relativistic) Theories have the Poincaré Group as its in-
variance (or symmetry) group (Anderson).

PR;: All inertial frames are physically equivalent or indistinguishable
(Friedman).

PR3: The laws of all physical theories are represented by mathematical

equations that have the same form, i.e., are covariant in all inertial frames
(Bergman).

Now, go on and try to read and compare the concepts of invariance as




used, e.g., by Weinberg [4], Ohanian [5], Bergamn [3], Anderson [1], Treder
et al [6], etc. You will become very confused since no agreement exists. Also
what is the precise meaning of physical equivalence of all inertial reference
frames in PRy?

In order to obtain a rigorous mathematical and physical meaning of the
SPR and the GPR and to see if these are really true laws of Nature we have
recently [7,8] give a general formulation of spacetime theory T as a “species
of structure” in the sense of Bourbaki together with a physical interpretation
of the structure. It is then possible to clarify the concepts of passive and
active covariance of 7" under the action of the manifold mapping group
(Gp). For each T we define also an invariance (or symmetry) group G T,
and in general G;T" # Gp. This group (GT) is defined once we realize that
for each 7 € Mod T each explicit geometrical object defining the structure
can be-classified in absolute or dynamical. All spacetime theories possess also
implicit geometrical objects that do not appear explicitly in the structure.
These implicit objects are not absolute nor dynamical. Among them are the
reference frame fields, i.e., time-like vector fields X € TU,U C M, where
M is a 4-dimensional manifold which is part of ST, for each 7 C Mod T,
called spacetime. We give a physically motivated definition of equivalent
reference frames and introduce the concept of the equivalence group of a
class of reference frames of kind X according to T', GxT. We define that
T admits a Weak Principle of Relativity (WPR) only if GxT # identity
for some X. If GxT = G;T for some X we say that T admits a Strong
Principle of Relativity (PR).

We also define the precise meaning of the covariance group™ of a
system of differential equations in R*. We introduce also Maxwell-Lorentz
Electrodynamics Ty that has a model,

TimMe = (M,g,D, F, J,{o,m,e})

where (M, g, D) is a Lorentzian manifold modelling space-time, {o,m, ¢}
is the set of all charged particles, FF € A*(T*M) , J € A (T*M) and the

proper arioms are

R(D)=0, D(g)=0 , (6F = —J ; dF =0)

(*) We analyse some of these notions generalizing the approach of Anderson for the
first time in [9]
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where R is the Riemann tensor. These axioms imply that mD, o, = ec, | F
(10,11].

[It is interesting to quote that we can identify a Lorentzian metric in the
Newtonian spacetime structure and then we can also formulate Maxwell’s
equation in intrinsic form. These result as above. However the motion’s
equation is not mD, 0, = eo,|F. It contains a new term coupling of o.
with the absolute vector fielf of Newtonian spacetime.[']

The absolute objects of Ty are D and g. From this we can show that it
holds,

Proposition (A): (i) The invariance group of Thpg is the Poincaré group.
(ii) The covariance group of the standard formulation of Ths g is the
Poincaré group.
(iii) The equivalence group of the class of inertial frames according to
Tmie is the Poincaré group.

It is the coincidence of the these groups in the Proposition (A) that
generated the non trivial confusion concerning the concepts of covariance,
invariance and the proper meaning of a Principle of Relativity in a spacetime
theory T'. In particular, from Proposition (A) we can show the equivalence
of PRy, PR, and PRy [7,8].

Now, we said that each spacetime theory T' possess intrinsic geometri-
cal objects that do not appear explicity in the structure. The most impor-
tant kind of intrinsic objects are the reference frames fields (rf) in (M, g, D).

A rf is defined as time-like vector field Q € TU , U C M such that each
integral line is an observer and such that

9(Q,Q)=1

Given U C M, there are, of course, an infinity of charts (coordinate

systems) (z*) : U — R* of the maximal oriented atlas of M covering U.
We have,

Definition: A chart in V € U C M is said to be a naturally adapted
coordinate system to a reference frame Q € TU (nacs/Q) if in the natural
coordinate base of TV associated with the chart the space-like components




of @ are null.

Observation: Note that given a rf @ there are in general an infinity of (
nacs/Q). Each ( nacs/Q) define a coordinate gauge [12, 13].

For a given spacetime theory 7" we can use all possible coordinate
gauges. Coordinates after all are labels; not the physics!

Obviously in certain particular problem the use of a specific coordinate
gauge can simplify its resolution. In particular in Special Relativity (SR)
the Einstein-Lorentz coordinate gauge (t,z') where ¢ are measured by a set
of standard clocks at rest in @ and z are distances along three orthogonal
directions have a preferred status [14, 15]. But in SR we can use other
coordinate gauges like Marinov gauge or Galileo gauge [13].

It is very important that we can give an intrinsic classification of refer-
ence frames ) according to their acceleration, rotation, shear and expansion,
and according to their synchronizability [14]. We have

"Proposition: Letld e TU , U C M bearfin(M,g,D)and letu = g(U, )
be the one-form field (u € T*U) physically equivalent to &. Then,

(Du),=a®u+a+w+§0h

where, a = g(A, ) . A = (DJU); is the acceleration; w € H; ® H}
is an antisymmetric tensor called rotation temsor; ¢ € H; ® H; is a
tensor with zero trace relative to h, = g|u,, called the shear tensor,
6 = (div u), is called the expansion and,

T:M = U] D] 5 U] = H

H, is called the rest space of the instantaneous observer (i.0.)*. The direct
sum is called the associated orthogonal decomposition. h, is the metric
in H, determined by the instantaneous observer (z,U;) and h(X,Y) =
9=(pX,pY) , VX, Y €T M ; p:T:M — H,.
In a natural coordinate basis we have
1
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It is important to observe that if we choose in T,U a moving frame

(u') X1, X, X3) we get
6" =Yoo ; Wij = 5(7?1' £ 7;'):') ) Oij = -2—('7?_,' +'Y_?.') o 505,-,- i 0=

which shows clearly the physical meaning of the components of the connec-
tion in a moving frame.

Observation: We note that the rotation tensor has a very simple defini-
tion in terms of differential forms, being equivalent in physical contain to a
vector field ) orthogonal to U. Indeed, let u = g(U, ) and Q = du A u.

Definition: The rotation vector associated to I is
2 =g(+(duAu), )

where g is the metric of the contangent bundle.
The classification of reference frames according to their synchronizatibility

is:
Let be a = ¢g(Q, ). We have the

Definiton: [14, 16]

(i) @ is locally synchronizable if and only if da A a = 0.

(i1) @ is locally proper-time synchronizable if and only if da = 0.

(ili) @ is synchronizable if there are mappings [/ : M — R and
z°: M — R, such that f > 0 and a = fdz°.

(iv) Q is proper-time synchronizable if and only if a = dz°.
It is clear that (ii) = (i), and (iv) = (ii) and the reciprocals are valid only
locally.

Definition: When @ is synchronizable (proper-time syncronizable) what-
ever function z° like in Definition 3 is called a time function (proper-time
function).




The reference frames @ introduced above are mathematical instru-
ments. This means that a given frame does not need to-have a material
support in all points of the world manifold. An example will ilustrate this
point. Let V, = (M, g, D) be a flat Lorentzian manifold, namely Minkowski
spacetime. Let i = 3/8t be an inertial frame(*), defined of course for all
z € M. Let now (t,r,,2) be the cilindrical coordinates naturally adapted
to 2. Then g is

g=dt®@dt —dr @dr —r’d¢ @ dp — dz ® dz.

Let
J

d
=1 = teiy-i2 g e ey O
Q= (1 —w'r’) Bi+w(1 wr‘) Y
beareferencefrarnedeﬁnedinUE(-—oo<t<oo;0<r<i ; 0< o<
2r,—o0 < z<00) (UCM).
Then

a=g(Q, )=(1-w'r?) 4t —wrl(l - w?r*)"dg
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(1 — w2r?)i/2

It follows that @ is not synchronizable. The rotation vector associated to
Qis @ = 1g(x(da A a), ) =(1 — w?r?)""% §/8z (where § is the metric
of the cotangent bundle T*U , U C M). This means that @ is rotating
with constant angular velocity w relative to the z-azis of :. Now, @ can be
materialized in U C M by a solid rotating disc, but it is obvious that in U
the frame 1, cannot have material support. The rf @) defined by eq.(12) is
also an example where it does not exist a (nacs/Q) such that the time-like
coordinate of the system can have the meaning of proper-time registred by
standard clocks at rest in Q ,Vz € U.

The above discussion shows very clearly that, in general, different ref-
erence frames cannot be physically equivalent. In particular, the General
Principle of Relativity cannot have the meaning of physical equivalence of
all reference frames. (We will return to the GPR below).

Here we want to look again at PR, : ( All physical systems have the

(*) For an inertial frame it is Di = 0. Inertial frames exist iff R(D) = 0
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Poincaré Group as its invariance group ). We can show [17] that in order
for PR, to be valid no inertial reference frame can couple with the fields
describing a given physical system. If one inertial frame couples, then all
must couple, otherwise a breakdown of Lorentz invariance occurs.

The so called Lorentz Aether Theories [12,13](*) are theories which
contain a spacetime structure given by the 4-uple A = (M, g, D, V) where
(M, g, D) is Minkowski space and V is a preferred time-like vector field (a
reference frame) that couples with the other geometrical objects that define
a given particular Lorentz Aether Theory. (LAT)

In LAT, due to the coupling of V it is possible to devise ezperiments
for obtaining an internal synchronization procedure in an inertial frame
moving with respect to V that is absolute. The precise meaning of this state-
ment is the following. Let (T,z) be a (nacs/V) and (tp,zp) a (nacs/Q).
Then given two events e;,e; € A,

T(er) =T(ez) = tm(er) = tmlez) (a)

Observation: It is obvious that if in Q we use as a (nacs/Q) (tg,zg), the
standard Einstein-Lorentz coordinate gauge of Special Relativity, then

te(er) # tm(er) ()

In [12, 13] we showed that there are several possible hypothesis in LAT for
the angular velocity of the roto-translational motion of solid bodies that
implies in the absolute synchronization (eq(a)).

Even more, already in [20] we showed that in LAT it is to be expected
that solid bodies when in roto-translational motion does not go instanta-
neously in their Lorentz-deformed version. This point lLas also been con-
sidered by Atkins [21] and more recently by Winterberg [22]. The issue has
been also discussed by Cavalleri [23] who even said that there is an exper-
iment being done (he don’t say where ...) that finally will permits us to
distinguish LAT from SR.

Here we must also mention that there are two experiments already
done that use a solid in roto-translational motion. These are Marinov’s

(*) See also for a recent review [28] and for experimental proposals and discussion of
rotor experiments see [19]




coupled mirror experiment [24] and Sherwin’s experiment [25]. As all of
you know Marnov’s claims that he realizes an absolute synchronization,
then disproving Special Relativity. Sherwin’s [25] experiment is based on
ideas similar to the ones behind Marinov’s experiment and do not show any
breakdown of Lorentz invariance. This is probably the experiment “quoted”
by Cavalleri. If Marinov’s experiment is correct it shows the breakdown of
the “Special Principle of Relativity” (be it PR;, PR; or PR3) since it is an
obvious theorem within SR that there does not exist any internal synchro-
nization procedure that realizes absolute synchronization. Even more it can
be also shown that (in SR) it does not exist any “Lorentz invariant clock”
in nature [26].

We now analyse General Relativity (GR) and the General Principle of
Relativity (GPR).

In all spacetimes (M, g, D) (modelling gravitational fields) of GR in-
ertial reference frames do not exist. Indeed for i to be inertial: Di = 0 &
R(D) = 0 and R(D) # 0 in GR.

Suppose we try to present the GPR as the statement,

GPR:;:. The laws of all physical theories are represented by mathematical

equations that have the same form i.e., are generally covariant in all possible
reference frames (Bergman, [3], Torreti [27]).

GPR; has no physical contain since as shown by Kretschmann [28]
any (spacetime) Theory can be made covariant by introducing some extra
absolute objects.

Consider now the statement,

GPRy: All r.f. are physically equivalent from the point of view of the laws
that describe all physical phenomena nature.

GPR, is obvious a false statement since the above discussion shows
that in general different reference frames are not equivalent.

Indeed in [17] and [29] we show that there are models of GR where even
locally inertial reference frames t¢(Diie = 0, dagAap =0 , ap = g(ie, ))

are not
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are not physically equivalent. Anderson [1] states the GPR as the statement,
GPR;: The invariance group of GR is the manifold mapping group Gu.

With this statement and taking into account that in GR there are
no absolute objects then the laws of “GR Theories” can be represented by
“few” generally covariant equations involving only the dynamical objects of
the theory. GPR; is then of great heuristical value.

Nevertheless our discussion in [7,8] shows that for general invariance to
be true it is necessary that “identical boundary conditions” can be realized
for the set of differential equations representing a given physical phenomena
in all reference frames. If this is realized in nature it is something that pure
mathematics can said anything. Only real experiments can show if general
invariance is true or no.

We conclude this paper with two observations:

(A) There are now several papers in the literature that study the possibility
of a breakdown of Lorentz invariance, e.g.,
(i) A. Zee, “Perhaps proton decay violates Lorentz invariance”, Phys.
Rev. D 25, 1864-1867 (1982).
(i1) H.B. Nielsen, “Lorentz Non-Invariance”, Nuclear Phys. B 211,
289-296 (1983).
Many other possibilities and even some experimental data suggesting
the breakdown of Lorentz invariance is discussed by Santilli (11 Grande
Grido - Ethical Probe on Einstein’s Fellows in USA, Hadronic Press
1984).

(B) There are now several experiments in electrodynamics that have been
presented at the Conference “Foundations of the Mathematics and
Physics in the XX Century, Perugia, Sept. 27-29 (1989)” by Papas,
Graneau, Wesley suggesting that the electrodynamics is not Lorentz
invariant.

It is then possible that we are finding the limit of validity of the SPR.
Also no GPR exists in Nature!
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