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Abstract. Let R be a commutative ring with 2 being a unit in R. We give a complete
description of all cyclic quartic extemsions of R having a2 normal basis. We also give a
description of the group NB(Z/4Z,R) of all the R{Z /4Z)-isomorphism classes of these
cychic quartic extensions of R.

Introduction

Throughout this paper R is a commutative ring with 2 being a wnit in R. By a
cyclic quartic extension A of R we mean a commutative Galois extension of R in the
sense of (1] with a cyclic Galois group (o) generated by an R-automorphism o of A
whose order is 4. Such an A is an R[{o )}-module in a natural way and we say that
A has a normal basis over R if A is a free R[(o )}-module of rank 1. The purpose of
this paper is to study cyclic quartic extensions of R which have normal basis.

For any commutative ring T we will denote by T the multiplicative group of
all the units of T and by 7™? the subgroup of the squares of the elements of 7.

Let § = R[X]/(X?+1) = R[s], where 1 denotes the coset of X modulo (X2+1).
In §1 we construct for every pair (u,v) € R* x §* a cyclic quartic extension A,, of R
which has a normal basis and, conversely, we show that any cyclic quartic extension of
R which has a normal basis is isomorphic to one extension of this type. We also prove
that under certain conditions A, isisomorphic to the R-algebra R[Z]/(Z*4+bZ%+¢)
for some b, ¢ € R* with ¢(b® — 4c) € R*?. In particular, all cyclic quartic extensions
of R can be described by this way when R is an LG-ring (2] such that |R/P| > 5
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for every maximal ideal P of R. We also establish conditions for A,, 16"be either a
field. a connected ring, a local ring or an integral domain.

In §2, as an application of the main results of §1, we prove that the group
NB(Z [AZ ,R) of all the R[Z [4Z)-isomorphism classes of cyclic quartic extensioas of
R having a normal basis is isomorphic to a quotient of the group R* x 5.

Throughout this paper a cyclic quartic extension A of R with Galois group (o)
will be denoted by (A4,0). Unadorned ® will mean ®g.

s 8 ’lt"l:;str-ctm of a cyclic quartic extension with normal
is

The R-algebra § = R[X]/(X?+1) = Rfi], where i = X 4+ (X?+1), is a (Galois)
quadratic extension of R with Galois group generated by the obvious R—automorphism.
We will denote by N the norm mapping from § to R, ie., N(ro+ ryd) = 13 + ri.

Let (u,v) € R* x S*, where v = ro+ rj3. We put a = N(v) € R" and D, =
. R[X]/(X?-a) = R[z], where z = X + (X? - a). Denote by M = Reg® Re, a free R-
module of rank 2 with a basis {ep, €,} over R and set A,, = D, ® M as R-module.
Hence, A, is a free R—module of rank 4 with a basis {1, z, €5, &3} over R. It is
easy to check that the following relations define on A, an structure of commutative
R-algebra:

P =a, g=w(l+a rz), € =ul-a'rz), evey =e unz,
Teg=rmpep + ™16y and  ze; = ryep — roey.

Also, the mapping p : Au, — Ay, defined by pig = id, p(z) = —2, plev) = ¢ and
pley) = —ep is a (well-defined) R-algebra automorphism of A,. whose order is 4.

Lemma 1.1. (Ay,,2) is a cydic quartic extension of R which has a aormal basis.

Proof. From the above definitions it trivially follows that the fixed subring A%, =
ft € Au, : p(t) =t} equals R. Now,let a =4""(14+2+eg— ;) and @; = p'(e), 0 <
1 < 3. Clearly {a; : 0 < i < 3} is a normal basis of A,, over R and the following
relations hold:

mtea+amptas=1, (ap+e)-(ay+as)=z and
(an —a3)* + (@1 —@3)* =27 (e + €]) = u
The determinant of the circulant matrix m(a) = (" *(a)), 0 < i,7 < 3, is
det(m(a)) = [(ao+az)’ (@1 +a3)%] [(ao—a2)* +(a1 —a3)?) = zu € A;,. Hence, m(a)
Thus, we get T3 p’(;)B; = 8. The proof is complete by ([1], Theorem 1.3.b)).



Before proving the next theorem we recall that two commmutative ring extensions

(A,0) and (B, 7) of R with fixed R-automorphisms ¢ and 7, respectively, are iso-
morphic if there exists an R-algebra isomorphism ¢ : A — B such that poo = rop.

Now we have the main result of this section.

Theorem 1.2. Let (A,0) be a commutative ring extemsion of R with an
R-automorphism ¢ of A. Then, (A,r) is a cyclic quartic extension of R having
a normal basis if and only if (A, o) is isomorphic to (A, y,p) for some (u,v) € B x 5~

Proof. Let (A,0) be a cyclic quartic extension of R and let D be the fixed subring
A"" of A. Then, by the results in [1] it follows that A is a quadratic extension
of D with Galois group (¢?), D is a quadratic extension of R with Galois group
(glp), D = R@® X(D) as R-modules and A = D @ X(A) as D-modules. where
X(D)={t€ D:o(t) = —t} and X(A) = {t€ A:0%(1) = —t}.

Now, suppose that {a; = ¢*(a): 0 < i < 3} is a normai basis of A over R.
Then, by Proposition 3.1 of [4], det(c*t7(a)) = —[(@o+@2)? — (&1 +a3)%] [(a0 — &2)* +
(ay — a3)?] € A”. We also may assume that 7o o = 1.

By setting = = (ap + a3) — (@3 + a3), 22 = a, € = (@g — ay) + (& — @3) and
e = ofeo) we easily get @ € R*, X(D) = Rz, D = Riz] ~ RIX]/(X? -a) and X(4) =
Reg® Re;. Also, since o(z) = —z, 0*(zey) = —zeq, 0°(€3) = €3, o%(ege1) = ege; and
o(ege1) = —epey, it follows that zeg € X(A), €2 € D and ege; € X(D). From these
conditions, by using the relations aey = z(zep), zej = (zeg)ep and z(eger) = (zep)ey,
we get unique elements rg, 1y € R and u € B such that

zeg = roeg+rmyey, ze; = —o(Teg) = ryep — rpey,

a = r34+ri=N(v), for v=rg+ri€Ss",

¢ = u(l+alrez), ef = o(eg) = w(l—a'rer) and
eger = a ‘urz.

Therefore, (A, o) is clearly isomorphic to the cyclic quartic extension (A, . p)
of R.
The converse holds by Lemma 1.1.

Remark 1.3. It is clear that the pair (u,v) € B” x 5° constructed ia the above the
orem depends on the choice of the normal basis. Also, the pair which corresponds to
(Awwyp) defined in Lemma 1.1 with respect to the basis given in the lemma is clearly
(=,0).

From now on we will keep the above notations. i (A,o) and a normal basis
{o; = o'(@) : 0 < i < 3} of A over R with T2 ya; = 1 are given, the basis
{1, z, eg, €1} as constructed in the above theorem will be called the canonical basis



associated with (A, o, a).
Now we have

Proposition 1.4. A,, = Rleg] if and only if rery € B°. Moreover, in this case
€} = 2uel —a~'(nu)? and p(eg) = £(rory )~ (73 +a)eo —£a(roryu) ! ¢, where £ € R”
is some solution of the equation ¢ = 1.

Proof. From the equations stated in the beginning of this section it trivially follows
that

& = 2uej — a~'(ru)’
2 rouz = ¢ — €] = (e — pleo))(eo — p¥(e0)) and
da”'ryuz = dege; = (eo — p’(e0) N pleo — p¥(e0)))-

On the other hand, by ([4]. Corollary 2.2) A, = Rleo] if and only if (eo—p*(e0)) €
AL, for 1 <i<3 Then the first part follows since 2, u, ¢ and z are units in Ay,.

Also, since A, is a quadratic extension of D, = AZ, with Galois group (p?),
if ry € R* we similarly get A,, = D,[eg] = D, ® D,ep.

Now, assume ror; € R*. Since p(eg) = ¢ € X(Ay,) = Dyep, there exists
d € D, such that p(eg) = dey. Moreover, from €} = u(1 +a 'rpz) and p*(eg) = —eo
we easily get dp(d) = —1 and d*(1+a 'rpz) = 1 — a~'rpz. Put d = dp + dyz, with
do,dy € R. Then, we have dj—dja = ~1, d}+dodirg =0 and dirg+dod; =0. H P is
a maximal ideal of R and do € P, then ¢, € P and so —1 € P. Consequently, do isa
‘wnit in R and it follows d; = —dor, ' and do = err;’ where € € R" satisfies £ = 1.
Thus pfeo) = r; 'e(ro — z)ep. From € = u(1 + o 'roz) we get z = a(rou) (el — u)
and hence p(eq) = &(ror1)”(r3 + a)eo — £a(roryu) ™" €3, which completes the proof.

A slight reformulation of the above proposition gives the following interesting

Corollary 1.5. If ror; € R* then there exist b, ¢ € R* such that o8 —4c) € R and
Ave =~ R[Z)/(Z* + bZ? + ¢) = R[z], where z = Z + (Z* + bZ? + c). Moteover, under
this isomorphism the R-automorphism p of A,, corresponds to the R-automorphism
o of R[z] given by o(z) = A™'(b? — 2¢)z + A~ 'bz>, where A € R” is some solution of
the equation A? = ¢(b? — 4¢).

Proof. It is enough to write (in Proposition 1.4) —2u = b and o *{ryu)’ = ¢ and to
consider the mapping ep + z from A., to Rfz].

The following proposition gives the converse of Corollary 1.5.



Proposition 1.8. Suppose that b, ¢ € R and A = R[Z)/(Z* + 2%+ ¢c) = Rz}, where
2=24+(2'+8Z%4+¢). f b,c€ R and c(b® - 4c) € R™?, then A is a cyclic quartic
extension of R with Galois group generated by ¢ : z— A~1(5* — 2¢)z + A~'2>, where
A € R" isa solution of the equation A? = ¢(b?—~4c). Furthermore, A has a normal basis
over R and (A, o) is isomorphic to (A, p) with 8 = —2"'% and v = (2¢)"') 1.

Proof. Let A € R° a solution of the equation A* = o(b® — 4¢) and put t =
A7HB? - 2¢)2 + A7'h=3 € A.  We can easily check that * = —(b + 2z*) and
t* 46124 ¢ = 0. From this it follows that o defimed by ojgr = id and o(z) = t is a (well-
defined) R-algebra homomorphism of A. Then, o¢?(z) = A~(#? — 2¢ + bo(2?))o(2) =
=2"%(2¢ +b2%)(# — 2c + b2%)z = —A~3($? — Ac)cz = —z. Therefore, 0* = id and 0 o
is an R-automorphism of order 4. Also, by usingo?(z) = —z and o(z%) = —(b+ z?)
we easily see that the fixed subring A” equals R.

Put y = =A7'8(z2+27%), fo = z and f; = o(2). It follows that f§ — /7 =
2271y, 3 = (4)"* and f3f? = c. Hence, (fo— o(fo)) fo— *(fo))( fo o*(fo)) €
A". Then, (A, o) is a cyclic quartic extension of R by ([1], Theorem 1.3 (f)).

Finally, since {1, v, fo, f1} is a basis of A over R we get a normal basis by
writing @ = 47)(1+ y+ fo — f1) and considering {o*(a): 0 < i < 3}. The last daim
is immediate.

In general, there exist cyclic quartic extensions (A, ¢) of R having normal basis
such that for any representation (A, o) ~ (A, p) the corresponding v = rp 4 nyi
satisfies rory ¢ R*. Take, for example, R = JF; or F5, A= RXRXRXR and ¢ the
cyclic shift, where JF, denotes the finite field with p elements.

Nevertheless, there is an interesting case in which we can always get a represen-
tation of the type given in Proposition 1.6. Following [2] R is called an LG-ring if
whenever a polynomial f € R[Xj,...,X,)] represents a unit over Rp, for every max-
imal ideal P of R, then f represents a unit over R. LG-rings include semilocal
rings or, more generally, rings which are von Neumann regular moduio their Jacobson
radical.

Corollary 1.7. Assume that R is an LG-ring such that |R/P]| > 5, for every maximal
ideal P of R. Then every cyclic quartic extension of R is of the type described in
Proposition 1.6.

Proof. Since R is an LG-ring, every cyclic quartic extension (4, ¢) of R has a nor-
mal basis ([4], Theorem 3.2). Thus, given a normal basis {a; = o*(a): 0 < i <3} of
A over R, with T2 ya; =1, let {1, z, ep, €1} be the canonical basis associated with
(A, 0, @) and (u,v) € R* X S* the corresponding pair, v = rg + nys.

Assume rory ¢ R*. We show is always possible to obtain another canonical basis
{1, v, fo, fi} of A over R for which yfo = sofo + #1/1, with sps, € R*. This fact
completes the proof.



For, take y = z, fo = doto + W&y, and f; = o(fo) = —loyee + Joty,
where Mo, Ay € R. The set {1,p, fo, 1]} is a basis of A over R if and only if
A= .\’,+A§=M(: —:) € R°. Moreover, in this case {1, 9, fo, /1] is the
canonical basis associated with (A, 0, ), where 8 ="4"'(1 + y + fo — /). Also,
we can check that gjy = sofo + 81 f; with h:;\"}r.(l%—a\?)‘i'?ﬁ%*l]n‘ 5 =
A7 ry(A% = A?) ~ 2r0d0A1]. So. im order to get our aim it suffices to verify that the poly-
nomial f = (X3 + X])[rof X3 — X7)+ 2r1 XoX] [ri( X2 — X7) — 270 X0.X1] € RINo. Xj]
represents a unit over Ryp, for every maximal ideal P of"R. Simce r = rg+ ri1 € §°
and |[R/P| > 5. we have f # 0 (mod PR[Xg, X;]) for such a P and the resuit easily
follows.

In the rest of this section we will deal with the conditions for a cyclic quartic
extension of R having a normal basis to be a field (resp. a connected ring. a local ring,
an integral domain). Firstly, we need the following

Lemma 1.8. Assume that R is a connected ring and let (A,0) be a cyclic quartic
extension of R. Theu.A" ~ R x R if and only if there exists a (Galois) quadratic
extension D of R such that A~ D x D.

Proof. Suppose that A” ~ R x R. We may assume A" = R x R = Re, ® Re;, with
& = (1,0) and g9 = (0,1), and o(e;) = £2. Then, A = Ae, ® Ay, 0|4, : A1 Aey
and 02| 4, : As; = Agy. It is not difficult to see that D = Ae,; is a quadratic exvension
of Req~ R, with the Galois group (0?).

For the converse we may also assume A = Dx D. Smce D isa{Galois) quadratic
extension of R let r denotes the generator of the corresponding Galois group of D.

Firstly, we show that D is either a connected ring or D ~ R x R. Suppose that
D is not connected. Thus, D = Dy ® Ds, where ¢; and £; are non—zero idempotents
of D such that £y +£; = 1. Since R is connected it easily follows that 7(g1) = &2 and
consequently R ~ Re; >~ Re,. Furthermore, De; is a Galois extension of Re; 1 = 1,2,
by ([5], Proposition 1.3). Also, D is a projective R-module of rank 2, so each De; isa
projective Re;-module of rank 1. Consequently, it follows from ([1}. Lemma 1.6) that
De; = Re;, i =1,2. Then, D = De; @ Dey = Rey ® Reg~ R x R.

Now.if D~ Rx R then A= Rey @ Rea ® Rey @ Rey, where £, €9, £3 and g4
are minimal idempotents of A, and o is a cyclic permutation (of order 4) of them. In
this case we have A” ~ R x R. If D is connected, the unique idempotents of A are
0=(0,0), 1=(1,1), & =(1,0) and &3 = (0,1). So, A = Dey ® De; and o is deter-
mined by olp, o(¢;) and o{e3). Since olp : D — A is an R-algebra homomorphism,
there exists an idempotent £ € A such that o|p = £id + (1 —&)r ({1}, Theorem 3.1).
We have o(g;) = €2, o(€3) = £; and either olp = e1id + &27 or o|p = £2id + &7,
because in the other cases we get 02 = id, a contradiction. Now, it easily follows that
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Corollary 1.8. Let (A, o) be a cyclic quartic extension of R. Then, 4 is a connected
ring (resp. a field, a local ring) if and only if A" is a connected ring (resp. a field, a
Jocal ring).

Proof. Assume that A is not connected and D = A" is comnected. Since A is a
(Galois) quadratic extension of D, by similar arguments to those used in the proof
of the preceding lemma we get A >~ D x D. Thus, D = A" ~ R x R which is a
contradiction.

If A” is a field, then A is a connected quadratic extension of a field and so A
is a field.

Finally, if A" is a local ring, then R is also a local ring. H P is the maximal
ideal of R, a straightforward argument (reduction module P) assures us that A is a
local ring with maximal ideal PA.

The converses are obvious.

The proof of the following corollary is easy and it will be omitted here.

Corollary 1.19. Let (u,v) € " x 57, with N(v) = a. Then,

(i) Ay is a connected ring if and only if R is a connected ring and a ¢ R*2.

(i) Ay,s is a field if and only if R is a field and a ¢ R™2.

(iii) Ay is a local ring if and only if R is a local ring with maximal ideal P
and a+ P ¢ (R/P)2.

(iv) Ay, is an integral domain if and only if R is an integral domain and a ¢ F*?,
where F is the field of fractions of R.

2. The group NB(Z/AZ, R)

We denote by NB(Z /4Z, R) the set of all R|Z [4Z]-isomorphism classes [A, o]
of cyclic quartic extensions of R having normal basis. On NB(Z /AZ, R) we define
the usual operation #:

[A,0] + [B, 7] =[(A® B)° " ®,0®id].

Clearly, (A ® B)"'®", o ® id) is a cyclic quartic extension of R. Also, if {a; =
o'(a):0 < i<3) and {B; = r*(B) : 0 < i < 3) are normal bases of A and B over R,
respectively, then {v; = (¢*®id)(7) : 0 < i < 3} is a normal basis of (A® B)” '®" over
R, for 7 = T30 (a)® 7°(B). It is known that + endows NB(Z/4Z,R) with an
abelian group structure. Actually, NB(Z /4Z, R) is a subgroup of the Harrison group



T(Z/AZ,R) [3] of the R|Z |4Z)}-isomorphism classes of cydic quartic extensions of
R.

The purpose of this section is to give a description of NB(ZJ4Z,R) by using
the results obtained in the former section.
We begin this section with the following

Lemma 2.1. Let (A, o) and (B, 7) be isomorphic cyclic quartic extensions of R.
Let {ai=0'(a): 0<i<3)}and {f = r(8): 0< i< 3} be normal bases of
A and B over R, respectively, and assume that ):1.9.-=)3_.p,~=1. H (u,v)
and (u,7v,) are the corresponding pairs in R* x 5§~ obtained as in Theorem 1.2 for
(A, o, @) and (B, 7, 3), respectively, then there exist A € R* and w € §* such that
(w.m1) = (N(w), Aw?)(w,v).

Proof.
We may assaume (B, ) = (A, o). Then there exist \; € R, 0 < i < 3, such that
B; = Lo Ai—jfmean@i, for 0< j < 3. So, det(Arifmoas)) = [0 + M) — (M + Xa)’]

[P0 = 2)* + (M = X3)%] € R. Also, from Tooai = Tooh = 1 we get
© Tiok =1 Hemee, p = Do+ M) -(M+X) = (Qo+M)-(h+X)fer
and = (Ao —Ag) — (M — Aa)i € 5. Put A= u¥(w)~". ,

Suppose that {1, z, eg, &1} and {1, y, fo, f1} are the canonical bases associated

with (A, o, @) and (A, o, B), respectively. Then we have the following equations:

z = (ap+az) — (o +a3), y=(8o+ B2)—(B1—FBa)
eo = (a0 — a3) + (e — a3), fo = (Bo— fa2) + (B - Bs)
zey = roeg+ rrey, Yo = Sofo+ sk,
=u(l4+a'rox) and f2=w(1+b  s0m)

where v = rop+ m8, v = 89 + 515, N(v) = a and N(v) = b. By replacing here
B; = Lo Aivjtmoday@i, 0< j <3, we easily get

30 = pN(w) 7 [((Ao — 2)* = (A1 = Aa)*)ro+ 2000 — M2)(Ar — A3)ry],

1 = pN(9)7"[((d0 — 22)” — (M = X3)*)r1 = 2% — X)X — Aa)ro] and

u = N(w)u.
Therefore, (u1,91) = (N(w)n, pN(w) 'w?v) = (N{w), \w?)(u, 7). The proof is com-
plete.

Let W(R*,5%) = {{N(w), w?): X € R*, w € §}. Clearly, W(R",S5*) is a sub-
group of R* x §* and we denote by W(R,S) the quotient group R* x $*/W(R",5%).
An element of W(R, S) will be denoted by [u,v], for (u,v) € R* x §°. The following
lemma gjives some elementary properties of W(R, 5).



lemama 2.32.
(i) [w. of* = [\.1]. for aav [x. 9] € W(R,S5).
(i) If =1 € £~ ther WIR.5)~ B /K.
(3ii) W(R.S) is trivial if and ouly if &~ = R*Y.
{iv) WIR,S) bas expovent 2if and only if £ = N(ST) ¢ X"
(v) W(R.S5) bas expovent { if and only if R™* ¢ N(S™)

Proof. (i) For ix.ri€ £~ x 5 take w = Yol v~ 2 € § and ) = N{o) ' e B~
Then. we hawe jw.cl* = js'.r'] = [Niwp!, Aede] = [1, 1}

(ii) Assume that -] = (* € R? and Jet ¢ : R© — W(R,S) be the mapping
defined by @A) =1, 0], where & = 27'(1 4+ A) +27'((1 — AN, for A € &~ Clearly
@ ™ a group homomorphism

We show that kere = . I fact, if A € kery then [l m| =
there exist 4 € R~ and x € §° soch that », = uw’? and N(w) = 1. Conse
quently, we bawe A = Nim) = 2*Nw)P = g’ and 9: = 28 = Jw' = Aw'
Consider the R-aigebra homomorphism # : § — R given by #si) = (. Thus we
have A? = 2791 4+ A% + 27M((1 - A3 = Meya) = HAw') = Adw)!, which im-
phies A = Hw* € B~ Cosversely. if A = y*' € R, then [1. 0] = [}, 4’| =
1L e v,) = [1,(x 1 0,2)7) = [1.1). simce N{x'5,2) = 1. So, ) € kerp.

Finally, given [w,ei € W(R.S), put ) = *HPWN(v)™' € B, 5 =
Ev)N(vl™!' € B and © = 5, = 71+ 871) = 2710(1 — s~')i € 5*. Then
we have N{w) = a7}, 0 = CHo)N(v) ' (5,4 Pv = pe’r and pA) = [l,m] =
[N(w)u,pc’c] = jn.9l. Thes ¢ i surjective and indwoes a growp momorphism
E[R*=W(R.S).

(i) Assume that WIR,S) = (T). 1]}. Then, for amy = € R, (2w;%) € W(R.S)
and so there exist A € £~ and v € 5 swch that N(w) = 2% and iw’ = 4. I
® =g + i weeasily get 4l = g7 and hence 2w = 2. Thus v = uf € &7 and 50
E° = R™?. The converse follows trivially from (i).

(iv) Assume that £~ = N(ST) G K. Let [u,0] € WIR,S) with r = g+ ry1
and ¢ = N(o)=p* € B Take A= 2?6 ' € X and & = (wpj }(rg—rs) € 5.
Then N(®) = v~ and we ensily get [ ¢]’ = [«’. r¥] = [Nfwh’ Aw’v?] = {1. 1]. The
assertion follows from (it

Converseiy. suppose that W(R.S) har exponent 2. Let r = rp + 12 € § with
N(v) =a and take A =272 R and w= (ro+ 7))+ (rg—r)s € 5. Thus
N(w) = 2a € £ (s0 w€ ™) and (1. 1] = [1. o = {1, ¢%] = [N(w). Aw*?] = [2a. 1].
Following the same way as in (iii) we get a € K2, This obviously gives V(5) =
YR

(v) It s a trivial coweeguence of (i), (iii) and (iv).

1, 1] and

For any cydic quartic extension (A, o) of R, which has a normal basis, choose
ome of such bases {a; = o4{a):0< i< 3) of A over R with T3 sa; = 1. Denote
by (u4,v4) the corresponding pair in X* X 5~ obtained from (A, o, a) as wswally. We



defiwe 9. AB(Z/AZ Ry~ WIR,5) by W[A. o)) = [na.iry] This s » well-defimed
mapping by Lemma 2.1. Now we have the maia resaly of this sectioa.

Theorem 2.3. The mapping ¢ : NB(Z/AZ,R) = W(R.S) s an omorphism of
abelian groups.

Proo(. We firstly show that ¢ m» a growp bomomorphisn. Given [A,2], [B,r] €
NB(ZAZ.R), )t (o, = o*(@) D < i< 3) and {B = r(d):0<i<3) be normal
bases of A and B over R, respectively, with 5 ca, = ™ _ 4. =1L 5. (1. =(¢'8®
d)7):0<i<3) with =33, s " {a)@7(S)is a normal basisof C = (AQRBY '
over R and T3 o9 = 1. Consider {1, 2, en,en), {1,3, fo. /1) and {1, 2, g0 1] the
camomnical bases asmociated with (A, o, a), (B, r. 3) and (C, ¢ ® id, 7), respectively.
Let (mg,24), (2p,75) and (we,»c) the corresponding pairs m £ x §°. By a direct
computation we easily see that : = 20y, & =2 '@ o~ H)-a1®(fa+ fi)], wc =
ngup and ac = myvp. Thus, ¢({A.0] ¢ [B,7]) = w[C.0 B id]) = [wc,3%c]| =
[mamm,—v40p] = lns 104]inp, i vg] = H|A.0))(]B. ).

: Qeacly, # s surjective since W[A__; ., 2]) = (x,7] for amy [w,9] € W(R.S)
Memark 1.3). .

Fnally, we show that ¢ is mjective. Suppose that [A, 0] € kerd. Thms
fuaiva] = (1,1) and there exist A € K amd w € 5 sach that Nlwpmy = 1
and Meloy = —i. Put ® = pgi+ mys and defime Ay = 41 + AN(w) + 25}, M =
47N - AN(w) = 21}, Mg = 471 + AN(®) - 2} amd g = <71 - AN(w) 4 2m).
Then T2k =1, ® = (Og=da)={ M —A)i amd AN(w)=(de+As)~(M+X) € K.
H follows that the circwlant matrix (A;sqmeta) 0 < &y 7 < 3. is invertible and it ak
lows = to define another normal basis {f, = 0"(f) : 0 < i <3} of A over R with
T2 o8 =1, where f = T3, Jin;. Consequently, a pair (wy, »y) is obtaimed im 2° x S~
from (A, o, 8). Now. the proof of Lemma 2.1 gives us (3y,5,) = (N(w), Aw? g, 04) =
{1, —%). Therefore. the corresponding camomical basis {1, 3, fp, /3] aswociated with
(A 0. 9) satisfies y° = N(—4) = LG = fl = L,y = -fi, vh = —jo and
Johh = =y. Smee 8 =47 (1494 fo— /i) it is now easy to verify that (B, 5v, 51, s}
is a 9t of pairwise orthogonal idempotents of A whose vum cowals 1. fewee. (A, o)
s warurally isomorohic to (R x R x R x R. cvchic shift) ana the proof is comvpiete.

A9 2 consequence of Lermma. 2.2 and Theorem 2.3 we bave the following corollary,
whose part (i) is well-kvown.

Corollary 2.4.
) —1€ R? thea VB(Z/4AZ . R\~ /R~
(ii) NB(Z/4Z.R) is trivial if and only if &~ = K.
() NB(Z)4Z,R) bas expomest 2 if and ouly il ¥ = N(5) G X
(iv) NB(Z/4Z . R) has expoment 4 if and only if R G N(5™).
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