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1. Introduction
Many real-life problems require the solution of large systems of nonluitar equa-
thoms: -

Fiz)=0

(1.1) F=(f-.. .5

where F : B* — R*,is a nonlinear C"-function. and its Jacobian matrix J(z) is
sparse (see [10. 27, 30]). The best known method for solvimg this type of problems is
Newton's method. This is an iterative method, where the swccessive approxamations
1o the soloton of (1.1) are calculated accordmg to the followmsg formmla:

(1.2) 0 = r* — J(z* F(2*).

Hence. at each neraios of Newton's method, &m%-nbeakﬁd,
and the near m x m svstern

(1.3) J(z*)s = —F(z")

must be solved, m order to obtain %" When analytic derivatives are mot. available.
they mav be estimated uwsing finite differences (see [5]).

Quasi-Newton methods [I-4, 7-10. 16, 21-24, 26. 28, 32| were also mtroduced
to deal with sitwations where amalvtic derivatives are mot available or are very
expensive to calculate. They obey the formmulae:

(1.4) Bys = —F(z"),

(1.5) =4

At each iteration of 2 Quasi-Newton method. only the function vaiwes F(z*) are
calculated and the Imear svstem (1.4) is solved. The new matrix By,; is obtamed
from By usimg recurrence relations which only mvolve r*. z%+'_ F(z*) and F(r**")
(see [10]). Uswally, Byy; is chosen as ome of the matrices which satisfy the “secant
eguation”:

(1.6} Buszs =y = F(z"**) — Fiz").

The best. known Quasi-Newton method for small dense problems is Broyden's first
method [1, 3. 9. 10]. This method uses 2 rank-one correction matrix to obtam By,
froms B

(3.7) B“,z&.*i’.._ni_‘.ﬁ
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Using (1.7) and the Sherman-Morrison formula [15, page 3], By, may be ob-
tained from B using O(n?) flops. Moreover, a Q-R factorization of B4, may be
obtained from a Q-R factorization of B, using O(n?) flops, (see [26]). Hence, if (1.4),
(1.5), (1.7) are used, not only the time for computing derivatives is saved, but also
the computational work for solving linear systems may be considerably reduced, in
relation to the computational work needed to solve (1.3) (O(n®) flops). For this
reason, in many cases. Broyden's first method may be more efficient than Newton’s
method, even when derivatives are easily available. in spite of its lower speed of
convergence.

The situation in the large sparse case is somewhat different. In fact. if B, is
a sparse matrix. and (1.7) is used, Bi4y generally turns out to be a dense matrix,
which may have iittle relation to true Jacobian matrices. Brovden [2] and Schubert
|28. 24] developed a variant of Broyden’s first method where matrices B; keep the
same pattern of sparsity as J(z¥), satisfving the secant equation (1.6), and using
a minimum variation principle. However, the difference By, — B, is no longer a
rank-one matrix as in Brovden'’s first method. and so. no easy relationship between
factorizations of By and By, seems to be possible. Therefore, when Schubert’s
method is used to generate the By’s, the resolution of (1.4) is as expensive as the
resolution of (1.3).

These observations motivated Dennis and Marwil [7] to develop the first Quasi-
Newton method where an L-U factorization of Biy; is obtained directly from an
L-U factorization of By, giving a substantially lower cost in the resolution of (1.4)
in relation to the resolution of (1.3). Basically. the Dennis— Marwil method keeps
the L—factor fixed and modifies the /~factor from one iteration to the following,
preserving the sparsity pattern of U and using a Schubert-type formula. Unhappily.
convergence properties of the Dennis - Marwil method are not quite satisfactory. In
fact. Jocal convergence is only obtained if the algorithm is restarted with By = J(z*)
when k is multiple of a fixed integer ¢ (see [7]). Martinez [21] introduced a method
where the LDM?7 factorization of B; (see [15]) is stored and only the factor D is
modified from one iteration to another. in order to obtain the factorization of By, .
This method belongs to a larger family introduced later in [22]. Unlike the Dennis-
Marwil method. the methods in this family have local convergence properties with-
out restarts, but superlinear convergence is only obtained using restart procedures
{see [22]). Chadee [4], generalizing 2 method of Johnson and Austria [16], intro-
duced a locally superlinear method where the L-U factorization of By, is obtained
simultaneously modifying the L-U factors of B,. Unfertunately, the inverses of the
triangular matrices L must have a definite sparsity pattern for Chadee’s method to
be useful, and so, itsapplicabilitymwbelinﬂed to special structures of the
Jacobian matrices. Martinez [23] introduced a very large family which includes most



superlinearly convergent methods for solving systems of nonlinear equations. The
Dennis-Marwil method does not belong to this family, but it may be interpreted as
a limit case (¢ — 1) of a parametric subfamily where the case § = ] isChadee’s
method. 3

In this paper, we compare Newton's method, the Modified Newton Method,
Schubert’s Method. the Dennis—Marwill Method, and three methods in family [22).
The implementation of methods for solving sparse nonlinear systems of equations
requires a decision about the algorithm which is going to be used for linear alge-
bra calculations. V. R. Lopes {17, 1§] called our attention to some ill-conditioned
banded linear systems, derived from approximation of diffusion problems using vari-
ational principles (see |18, 33]). According to [17]. the resolution of these svstems
using a general purpose sparse linear system solver [11] with a default tolerance
parameter o = 0.1 was completely unreliable, but good results were obtained
using a very strict tolerance a = 0.999. This choice is equivalent to the use of
L-U factorizations with partial pivoting (see {12, 15]) and represents the most stable
way of solving linear systems using L-U factorizations. Another reason. of a more
theoretical nature, led us to the decision of using L-U factorizations with partial
pivoting. Namely, the local convergence theorems for the methods introduced in |7,
21, 22] impose that the pivoting rule which allows the L-U factorization of J(z°)
will also allow the L-U factorization of J(z"), the Jacobian matrix at the solution.
This objective is most likely attained if the partial pivoting rule is used. since it is
intuitively evident that, the Jarger the chosen pivots are for the factorization of a
given matrix, the greater is the distance between that matrix and the set of matrices
for which a zero pivot appears using the same permutation rule. According to these
observations, we decided to use the George-Ng [14] factorization algorithm, which
uses partial pivoting, a static data structure and a symbolic factorization scheme to
predict fill-in in calculations, for all the linear algebra manipulations of our algo-
rithms. The numerical results are not independent from this decision: superiority
of a particular method for a given problem may be challenged if the algorithms for
factorizations, data structures, resolution of triangular systems, etc., are changed.
This paper is organized as follows: In Section 2 we describe the set of algorithms
used for our comparison. Features like step control, restart procedures and stop-
ping criteria are discussed. In Section 3 we survey the theoretical properties of the
methods involved in this study. In Section 4 we describe our numerical experiments,
criteria for comparison are discussed, and results are commented. :

Finally, in Section 5 we state some conclusions and we suggest some lines for
future research. :



2. The Algorithms

As we mentioned in the Introduction, we selected seven algorithms for our
comparison: Newton’s method, the Modified Newton method, Schubert’s method,
the Dennis-Marwil method, and three methods of Martinez’s family |21, 22]. We
call them the Diagonal method, the Row-Scaling method and the Column-Scaling
method. All these methods use a small tolerance parameter TOL > 0, to detect and
modify singularity of the matrices involved, and a step control A, to inhibit very
large steps 7%*' — z*. Moreover, a symbolic phase preceeds the first iteration of all
the algorithms, and even the first iteration is common to all of them. The symbolic
phase corresponds to the symbolic manipulation of the George-Ng algorithm [14],
and the first iteration corresponds to the following algorithm with k£ = 0.

Algorithm 2.1 (Newton Iteration)
Step 1. Compute F(z*), J(z*). Set B, = J(z*).

Step 2. Compute a permutation P, a lower triangular matrix L = (£;;), an upper-
tringular matrix U = (u;;), and 2n sets I, IY, i = 1,...,n such that:

(21) PB, = LU,

(22) Li=1, i=1,...,n.

(2.3) |1 <1 forall j=1,....i i=1,...,n
(2.4) IFc{1,-...m},

’.’0 C {lv--'v“}t

i=1._..n
(23) ;=0 forall jEIF, j#i, i=1,...,n

(2.6) w; =0 for all J¢’-u! j#4, i=l..n



Step 3. H ju;| < TOL, replace w; by
sg(us)TOL, i=1,....n.

Step 4. Solve
(27) Lw=—-PF(z*), and
(2.8) Us=wi,

Step 5. H [Is|le > A, replace s by sA/[lslo-
Step 6. 1""":;1’*4'3.

Matrices L, U, and the sets IX, I” which satisfy (2.1) - (2.6) are computed
using the George-Ng aigorithm. £; may be equal to zero for some j < i. j € IF.
and wu;; may be equal to zero for some ; > i, j € [V In fact. the sets X, IV
represent the structural nonzero elements of any pair of matrices L. U when the
partial pivoting algorithm is performed on a matrix with the nonzero structure of
PB,.

Algorithm 2.1 is a Newton iteration. with the safeguards against singularity and
large steps given by steps 3 and 5. Therefore, our Newton Method mav be described

by the following algorithm-

Algorithm 2.2 (Newton’s Method)
Given an arbitrary initial point z°. compute z**_ k = 0.1.2.... using Algo-
rithm 2.1.
The Modified Newton method is described by the following aigorithm.

-~

Algorithm 2.3 (Modified Newton Method)
Given z°, compute z' using Algorithm 2.1. For k = 1,2...., compute 7**
performing Steps 4 to 6 of Algorithm 2.1.

Our implementation of Schubert’s method requires the definition of n additional
sets of mdexes I; C {1,...,n}, i=1,...n. We define:

3!.

(29) L={;je{1,...,n} | =— (x)#o for some r mthedomamoff}

With this definition Schubert’s method sdauibedbyAlgxnhle.



Algorithm 2.4 (Schubert’s method)
Given z° compute r' using Algorithm 2.1. For k& = 1,2;..., compute r**'
performing the following steps:

Step 1. Compute y = F(z*) — F(z*").

Step 2. Solve the optimization problem
Minimize [|B — Bisllr

(2.10) st. B=(b;), b;=0 if jgIL, i=1,...n
Bs=y

Compact formulae for the resolution of (2.10) are given in [10. 28].
Let us call B; the solution of (2.10).

Step 3. Perform steps 2 to 6 of Algorithm 2.1.

Algorithm 2.5. 2.6, 2.7 and 2.8 describe the Dennis—Marwil method, the Diago-
nal method. the Row-Scaling method and the Column-Scaling method respectively.

Algorithm 2.5 (Dennis—Marwil method)
Given z° compute ' using algorithm 2.1. For k¥ = 1,2,... compute r**! per-
forming the following steps:
Step 1. Compute y = F(z*)— F(z*1).
Step 2. Solve Lw = Py.
Step 3. Define v=Us.
Step 4. For 1=1,...,n perform Step 5.

Step 5. If
1/2
(T ) 2107 sl
s€1Y
perform Step 5.1. Otherwise, increment : and repeat Step 5.



Step-5.1. For each j, such that, w,, # 0, compute:
-:.-——-~.~+s,~-h—-sl/£ 8-
e’
Step 6. Perform Steps 3 to 6 of algorithm 2.1.
Given 1%, compute z* using Algorithm 2.1. Set D = Diag(d;;) = Diag{us) and
replace U7 by D*U. For k= 1,2, ... compute 7**' performing the following steps:
Step 1. Compute y = F(z*) — F(z*").

Step 2. Solve
Lw = Py.
Step 3. Define
(2.11) v=0Us.
Step 4. For : = 1,... n, execute Step 5.
Step 5. i
bt > 10 js oo

set d; = w;/v;. if not, then mcrement 7 and repeat this step.

Step 6. For i=1.....n. if |} < TOL. replace
d — s9(de)TOL.

Step 7. Solve
LDUs = —PF(z*).

Step 8. Perform Steps 5 and 6 of Algorithm 2.1.
Algorithm 2.7 (Row—Scaling method)

Given z°, compute z* using Algorithm 2.1. Define D = Diag(d;). d. =1, i=
I,....n. Compute z*** performing the following steps: g
Step 1. Compute y = F(z*) — F{z*").

Step 2. Define
(2.12) v=LUs.



Step 3. Define w = Py.
Step 4. For i=1,...,n, execute Step 5.

Step 5. "
foid 2> 1071 F(z*)leo

set d; = w;/v;, otherwise increment i and repeat Step 5.
Step 6. For i =1,...,a,if |d;| < TOL, replace
8 di; +— sg(dz)TOL.

Step 7. Solve
(2.13) DLUs = —PF(z*).
Step 8. Execute Steps 5 and 6 of Algorithm 2.1.
Algorithm 2.8 (Column—Scaling method) -'
Given z°, compute z* using Algorithm 2.1. Define D = Diag(d), da =1, i=
1,...,n. For k=1,2,..., compute ' performing the following steps:

Step 1. Define z the solution of

(2.14) : LUz = PF(z*").
Step 2. Solve
(2.15) LUw = PF(z*).
Step 3. Set

' v=w-—2z

Step 4. For = 1,...,n, execute Step 5.

Step 5. If
Isil > 107*{}slleo

set d; = v;/s; otherwise increment i and repeat Step 5.
Step 6. For 1= 1,...,n, if |d;| < TOL, replace
di — s9(ds)TOL.



Step 7. Solve

Ds = —w.

Step 8. Execute Steps 5 and 6 of Algorithm 2.1.

Remarks.

We used the words “solve” or “compute” to indicate that some calculation maust
effectively be performed, and the word “define” to indicate that the result of the
calculation may, be obtained from previous computations.

Singularity and Step Control

Step 3 of Algorithm 2.1 and Step 6 of Algorithm 2.6, 2.7 and 2.8 correct the
L-U factorization when a nearly singular matrix B, appears. However, a very ill-
conditioned B; may still occur, provoking very large steps — B’ F(z*). Therefore,
in practical implementation of methods for solving nonlinear systems of equations
some control in the size of increments **' — r* is recommended (see [20, 25]). In
our codes. we adopted a very simple wav of controlling the stepsize: assuming that
A is given by the user as an estimate of the distance between the initial guess and
the solution, we simply test if [|slles = || — By F(2*)|le is less than A or not. I it
is, then the increment s is accepted. Otherwise, it is replaced by s A/||s||eo- This
is done at Steps 5 and 6 of Algorithm 2.1.

S ine Criters
A natural stopping criterion for algorithms which solve nonlinear systems is
(2.16) IFE e < &

where ¢; is a small positive number given by the user. When (2.16) occurs, we
declare “convergence of type 0”.

However, sometimes criterion (2.16) is very difficult or impossible to achieve,
maybe because of a large Jacobian at the solution. So, we incorporate another
convergence test:

(217) sl < 5.
When (2.17) holds, we declare “covergence of type 1”.

Algorithm like 2.2 — 2.8 are Jocal in nature, and, therefore, divergence may
occur for arbitray nonlinear systems if z° is far from the solution. We declare
“Divergence” when, for some large positive number BIG, given by the user, the
following inequality bolds:

(2.18) I1F(z*)llee > BIG.

10



Finally, the execution of the programs is interrupted when either a previously de-
fined computer time or some large number of iterations is exceeded.

Restarting Criteria

Sometimes, rather than executing Algorithm 2.3 — 2.8 in their original version,
it is more efficient to restart the iterative process, performing a Newton iteration
{Algorithm 2.1) instead of the original iteration, at certain steps k. The most
natural restarting criterion is to execute Algorithm 2.1 for obtaining z**' when
k is a multiple of a fixed integer ¢. For some algorithms, and comsidering only
the computational work involved in function evaluations, an optimal ¢ may be
determined using Ostrowski’s efficiency index (see [19, 31]). However, in our case,
the computational work involved in linear algebra calculations is not negligible at
all, so, we need restarting criteria which take this work into account. We developed
a “Jocal efficiency restarting criterion” (LERC) based on the following arguments:

Let us call ¢; the computer time used by some algorithm at iteration k. Assume,
further, that
(219) IF ()] = Bl F ().
Therefore, if relation (2.19) is mantained throughout the calculation, with 8, < 1
and the same type of iteration is used, the computer time to achieve (2.16) should
be proportional to —tz/log 8;. This justifies the defining of E,, the efficiency of
iteration k, as

E‘=—?‘&, if ‘h <'1. or
(2.20) :

E;=0 otherwise.

Assume now that £ is the last index of a Newton iteration previous to iteration k.
We adopt the following criterion for deciding whether to use a “normal” iteration
or a Newton type one at iteration &k + 1:

(i) If 8; > 1, iteration k + ] must be a Newton iteration.

(ii) If Ex > Eg, use a “normal” iteration for obtaining z**!, and if E; < E, use
a Newton iteration.

A similar criterion is used in [6] for minimization problems, with good numerical
results.

11



3. Theoretical Properties

Let us assume that F : 2 C R* — R", Q an open and convex %et, F €
C'(Q), F(z7) =0, J(z") nonsingular, and, for all z € Q,

W(z) = (=) < L]l = =P

for some L, p > 0.

For a Jocal convergence analysis. consider the algorithms described in Section
2. without correction of singularity, and with no control of the stepsize. That is,
eliminate Steps 3 and 5 of Algorithm 2.1, Step 4 of Algorithm 2.5. and Step 6 of
Algorithms 2.6, 2.7 and 2.8. In fact, local convergence theorems show that these
steps are not necessary with the hypotheses above, if z° is near enough z°. Let us
survey hereshe convergence results reiated to Algorithms 2.2 - 2.8. The first one
concerns local convergence of Newton's method and the Modified Newton method.

Theorem 3.1. Given r € (0, 1), there exists & = &(r) > 0 such that. if ||z°—z*|| <
<, the sequences (z*) generated by Algorithms 2.2 or 2.3 convetge to z* and satisfy

(3.1) et =27l < riiz* — 27}

forall k=0.1.2,... . Moreover, for Algorithm 2.2 (Newton's method), there exists
¢ > 0 such that:

(3:2) iz = 27|l S elj=” = 27|

Proof. See [10, 27, 30].

Like many Quasi-Newton algorithms. Schubert’s method satisfies not only the
linear convergence result (3.1), but a stronger (superlinear) convergence result which,
on the other hand. is weaker than (3.2).

Teorem 3.2. Given r € (0,1), there exists & = &(r) > 0 such that, if
1z° — z*|| < ¢, the sequence (z*) generated by Algorithm 2.4 converges to z° and
satisfies (3.1). Moreover, the speed of convergence is Q-superlinear. That is,

(33 Jim [l24 = 2°fl/[l* - 711 = 0

Proof. See (10, 24].

12



Algorithms 2.6, 2.7 and 2.8 have the same type of convergence result as the
Modified Newton method:

Theorem 3.3. Given r € (0, 1), there exists ¢ = &(r) > 0 such that, if
l=® — z°j| < ¢, the sequences (z*) generated. by Algorithms 2.6, 2.7 or 2.8 con-
verge to z* and satisfies (3.1).

Proef. See [21] for the convergence of Algorithm 2.6. For proving the convergence of
the Algorithms 2.7 and 2.8 we need to interpret them as particular cases of the family
imtroduced in [22]. This may be easily done: for Algorithm 2.7, C(B) = I, D(B) =

I, E(B) = B and for Algorithm 28, C(B) = B, D(B) = I, E(B) = I. Simce
these functions are trivially continuous, Theorem 2.1 of [22] may be appled.

» We are almost sure that the Dennis—Marwil method, without restarts, is not
locally convergent. However. the members of a closely related family of methods
introduced recently in [23], bave local and superfinear convergence. We call the
members of this family “Quasi-Dennis—Marwil” methods. Given a € (0, 1), the
Quasi-Dennis—Marwill method defined by o may be described by the following al-
gorithm:

Algorithm 3.1.
Given z° obtain z' uwsing Algorithm 2.1. For computing z*, k= 1,2, ... use

the recurrence
(3.4) = 2 (L) PPEY),

computing, at each iteration, L,},, Upy; as the solution of the following optimiza-
tion problem

Minimize o [IM — L llr + (1 — a)liU — Gillr
st Us= My
gty — ¥
y = PIF(z*") - F(z")]
U=(u3) | w;=0 i G¢I.

(3.5)

The relation between the Dennis—Marwil method and the method described above
s given in the followmg theorem:

13



Theorem 3.4. Suppose z*, L, Uy are given, and let us call Li.y, Upyy the
matrices obtained using the Denmis—Marwil method. Of course, Li,; = Ls- Let us
call Lugfa), Ussr(a) the ones obtained using Algorithm 3.1. Then,

@8) im Luys(@) = Luws ;
(37) ;ﬁ_l:‘fm(ﬁ) = Upp»-
Proaf. See [23].

The Quasi-Dennis®Marwil methods are not practical for soiving sparse nonlinear
systems because sparsity of L; 1s not preserved from one iteration to another. How-
ever. thev have the same local convergence properties as Schubert’s method (see
|23]). Therefore. although the Dennis—Marwil method seems to have the poorest
convergence properties among the algorithms described in Section 2. the fact that
“very amalogous” methads in the sense of (3.6) - (3.7) have good local convergence
properties makes us to feel that “some part” of these properties is mherited by the
Dennis—Marwil method.

Up to now, we have considered the comvergence properties of the “pure” algo-
rithms of Section 2. If restarts are incorporated. the convergence results for Algo-
rithms 2.3 and 2.8 look very simular:

Theorem 3.5. Assume that (z*) is obtained using Algorithm 2.3, 2.6, 2.7 or 2.8,
except that. for k& € Ky an infinite set of indexes. z**! is calculated using Algo-
rithm 2.1. Then. there exists ¢ > 0 such that, if [jz° —z"[} < &, 7* converges to
z~ and (3.3) also holds.

Proef. See [22. 27], or use Theorems 3.1 and 3.3.

Theorem 3.6. Assume that (z*) is obtained using Algorithm 2.5. except that, for
k € Ko. an mfimite set of mdexes, z*' is computed using Algorithm 2.1. Assume.
further. that the difference between any pair of consecutive ndexes of Ky is never
grater than a fixed mteger ¢ Then the thesis of Theorem 3.5 holds for the sequence
(=*)-

Proof. See [10].

14



4. Numerical Experiments

We wrote a FORTRAN code which implements the methods described in Section
2. All the reported tests were run in a VAX11/785 at the State University at Camp-
inas, using the FORTRAN 77 compiler and the VMS Operational System. Single
precision was used for real variables in all our tests. A compatible IBM-PC version
of the code was also written using a2 Microsoft Fortran compiler. The results for this
version were consistent with the results of the VAX version of the code.

Problem 1 (Broyden Tridiagonal) See [1, 2.

fH(z) =B —=kzy)zy — 22,4 1
fi{x)=@B—kz)zi— 2y — 2241 +1 §=2,...,n—1
fal®) = 3 = kzp)T0 = Tuy + 1.

2% =(—1,...,-1)".
Algorithmic parameters: & = ¢, = 1074, TOL =107,
A = 10, BIG = 10™.

Figure 1 shows the structure of the Jacobian matrix, and the date structure for
L-U factorization with partial pivoting computed by the George-Ng method (with
n = 40).

Table 1 shows the computer CPU times used by the symbolic phase of the
methods (previous to the first iteration) for different n.

n | time/seconds
1000 0.23
2000 0.49
3000 0.73
4000 0.99
5000 1.24
6000 1.54

Table 1: CPU time of the symbolic phase for Problem 1.

15



Table 2 shows the mean computer CPU times used by 2 Newton iteration
( Algorithm 2.1) for different n.

| time/ seconds
m .
0.52
@77 ‘
1.01 |
. 1.38 !
1.53

Table 2: Mean CPU time of 2 Newton iteration for Problem 1.

b 3
Tabie 3 shows the mean computer CPL times of ome ordmary iteration of Al-
zorithms 2.3 - 2.8. We use the followmg notation:

N - Newtow's Method (Algorithm 2.2)
MN - Modified Newton Method (Algorithm 2.3)
§  : Schubert’s Method (Algorithm 2.4)
DM - Dennis-Marwil Method { Algorithm 2.5)
DS - Diagonal Scaling Method (Algorithm 2.6)
RS : Row-Scalimg Method (Algorithm 2.7)
(94. 1 Column—Scaling Method (Algorithm 2.8)
m |MN| S |DM| DS | RS | CS
| 1000 | 0.09 | 0.29 | 016 | 0.11 | 0.1T | 0.16 1
' 2000 | 0.17 {0631 033 | 022|023 | 0.22 |
3000 | 0.26 | 0.89 | 0.50 | 0.33 | 0.34 | 0.32 |
4000 | 0.36 | 1.17 | 0.68 | 0.46 | 0.43 | 0.43
‘5@‘0.45&1.48 084 | 0.59./.0.56 | 0.53
| 6000 | 0.54 | 1.77 | 1.03 | 0.68 | 0.68 | 0.65

Table 3: Mean CPVU time of a typical iteration for Problem 1.

Observe that the computer CPU time used by different methods is a hoear
function of n. As expected, iterations of Newton’s and Schubert’s methods are the
most expensive omes. The Jacobian matrix is easily available m this problem, so



Schubert’s iteration is even more expensive than Newton’s iteration.

In tables 4.1 to 4.4, we describe the overall numerical performance of the algo-
rithms for problem 1. We write (IER, k, ky, ks, t) to indicate that a particular
algorithm stopped with error code JER, using k iterations, k; Newton iterations,
k; quasi-Newton iterations and t seconds CPU time. JER may assume five val-
ues: 0 for convergence of type 0, 1 for convergence of type 1, 2 for divergence, 3 for
exceeded number of iterations and 4 for exceed CPU time. We tested problem 1
with k = 0.5 and k = 2. The Algorithms 2.3 to 2.8 were tested without restarts,
section.

Rmark;:lmﬁngathbb4.lto4.4wemym¢eﬂbwh;

1) None of the algorithms had difficulties in solving this problem. All of then
usedafethcratmsandhttleCPUtnnefa’tbe'holem Moreover, the
overall performance did not depend on n.

2) No significant differences were detected between the versions “with restarts”
and “without restarts” in terms of CPU times for algorithms DM, DS, RS and
CS. In many cases, the behavior was exactly the same due to the fact that “normal”
iterations were always more efficient than the first Newton iteration. :

3) Schubert’s method is clearly outperformed by Newton’s method. This was
expected, since a Schubert iteration is slightly more expensive than a Newton it-
eration, and the expected progress of a Newton iteration is greater than that of a
Schubert iteration. A consequence of this fact is that, for the restarted version,

17



n = 3000

n = 1000 n = 2000

Without | EfMciency | Withous | EMiclency | Without | EMclency
Method Restarts Restarts Restarts Restarts Restarts Restarts
N (0,3,3,0,0.78) - (0,3,3,0,1.61) -, | (0330237) -
MN [ (0,00,1,9.1.16) [ (0,4,2.2,0.74) | (0,10,1,9,2.19) | (0,4.2,2,1.42) | (0,10,1,9,3.28) | (0,4,2,2,2.08)
s " (0.4.1,3.1 A7) (0,4.2.2.!.18) (0,4,1 \3,2.47) (04,2,2,2.38) (04,1 ,3.3.48) (0,4.2,2.3.41)
DM | (0,4,1,3.0.80) | (0,4,1,3,0.77) | (0,4,1,3,1.53) | (0,4,1,3,1.55) | (0.4,1,8,2.33) | (0,4,1,3.2.4)
Ds (0,4,1,3,0.63) | (0,4,1,3,0.60) | (0,4,1,3,1.23) | (0.4.1,3,1.29) | (0,4,1,3,1.80) [ (0,4,1,3,1.83)
RS (0.4,1,3,0.63) | (0,4,1,3,0.69) | (0,4,1,3,1.27) | (0,4,1,3,1.20) | (0,4,1,3,1.80) [ (0,4,1,3,1.82)
cs (1.6,1,5.0.89) | (0,8,3,2.1.04) | (1,6,1.5,1.73) | (0,5.3,2.2.0) | (1,8,1,8,2.48) | (0,8,3,2,3.04)

Tuble 4.1: Performance of the Methods for Problem 1 (k = 0.5)

L



n = 4000 n = 5000 n = 6000

Without Efficiency ~ Without Efficlency Without FEffclency
Method | ' Restarts Restarts Restarts Restarts “|  Restarts Restarts

g ko;i.s.b.s.})oj A v(o,s,s.o.a.u) - 0330463 | =

| mw (0.10.1.9.4.42) (04,2:2,2.81) | (0,10,1,9,5.47) | (0.4,22,3.49) | (0,10,1,9,634) | (0,4,2,2,4.18)

£

| G

» 's il (o.c,i.ﬁ.c.i.a). (0;4.2.2.4.55) (6.4.#3.5.35) (014,2,2,5.84) | (0,4,1,3,6.98) |(04,2,2,6.79)

B

oM | (0ada310) | 0418300 | 0413389) | (0413399 | ©a23a00 |(aT3459)

DS (0.4.1.;;;2.4'5) (0,4,1,3,2.44) (054.1.3,3.05) (04,1,3,3.08) | (0,4,1,3,3.59) | (0,4,1,3,3.62)

RS (0,4.1.3,2.50) '(6.1.'1',34.2.4;0) ((i;q.x.a,z.w) '(0;4,1.3,3.13) (0,4,1,3,3.68) | (0,4,1,3,3.60)

2ot

cs (1.6,1,5.2.38) [(05323.98) | (1,8,1,5,40) |(05324.98) | (1,6,1,84.93) | (0,8,3.2.5.92)

Table 4.2: Performance of the Methods for Problem 1 (k = 0.5)
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n = 4000 n = 5000

Without Efficiency Without Efficiency
Method | Restarts Restarts Restarts " Restarts
N (0,3,3,0,3.08) - (0,2,3,0,4.3) %
MN (1,9,1,8,3.84) (1.9,1,8,3.99) (1,9,1,8,4.98) (l.9,l,8,5.25)
S (1,5,1,4,5.65) | (0,4,2,2,4.46) | (1,5,1,4,6.98) | (0,4,2,2,6.8)
DM | (05,1,4,3.75) | (0,5,1,4,3.85) | (0,5,1,4,4.67) | (0,5,1,4,5.08)
DS (1,5.1,4,2.87) | (1,5,1,4,2.88) | (1,5,1,4,3.65) | (1,5,1,4,3.55)
RS (1,5,1,4,2.82) | (1,5,1,4,2.94) | (1,8,1,4,3.57) | (1,5,1,4,3.60)
cs (1,5,0,4,2.82) | (1.5,1,4,2.85) | (1.5,1,4,3.52) | (1,5,1,4,3.63)

Table 4.4: Performance of the Methods for Problem 1 (k = 2.0)



kg4 1 hﬂmﬂmdwﬂu

of iterations as the nensuperiinear Algorithms 2.5 — 2.8, :

eact Schulvert. itevation was always followed by a Newton iteration. Im fact, we ob-

serve that & =k or ky

MN, DS, RS aed CS have

S, a remankable fact,

-
-y

5) I the mean, DS and RS were the most efficient metheods for this prob-
lem. CS and DM also belaved quite well, both of them with similar CPU times

as Newton's metho  The Modified Newton method hehaved clearly worse tham

DM, DS, RS anc

tihe same local cons.  gemee: properties, and the convergenee results knowm for DA

are even weaker..

Figure 1. Structure of the Jacobiam matrix
and data structure for the L-U factorization.



Preblem 2. (Band Broyden [2]) »
Hs)?(3+iti’h+l-§(:,-+:§) i=l..n

where
k= fn,....a}—{i},

» 3 = max{l, s —5}, & =mm{n, :+5}.

P=(—L... -1, g=6=10° TOL=1W0', A=10, BIG=10".
Figure 2 shows the structure of the Jacobian matrix and the structure for the L-U
factorization calculated by tihe George-Ng algorithm with = = 40.

Table 5 shows the computer CPU times used by the symbelic phase of the
methods

e =1
6.80
162
263
156
461

Table 5: CPU time of the Symbelic phase for Problem 2.

Table 6 shows the mean computer CPU time used by a Newton iteration

n | time/seconds
l-; 097
2000 | 1.97
3000 299
| 4000 | 402
5000 533

Table 6: Mean CPU time of a Newton iteration for Problem 2.

Tabile 7 shows the mean computer CPU time of one ordinary iteration of Algo-
rithms 2.3 — 2.8. We use the same notation as in Problem 1 for the algorithms.



n |MN| S |DM|DS|RS]CS
1000 | 0.22 | 1.04 | 0.39 | 0.25 | 0.25 | 0.23
2000 | 0.45 | 2.10 | 0.77 | 0.51 | 0.48 | 0.48
3000 | 0.67 [ 2.93 | 1.19 | 0.74 | 0.73 | 0.72
4000 | 0.89 | 4.48 | 1.57 | 1.05 | 1.01 | 1.0
5000 | 1.11 |5.88]1.94 | 1.28 123 1.21

Table 7: Mean CPU time of a typical iteration for Problem 2.

We observe that the C PU times of symbolic factorizations and of Newton and Schu-
bert iterations are about four times the CPU times of those of the systems with
the same dimension as in Problem 1. On the other hand, the CPU times of other
Quasi-Newton iterations, and NM are about twice the times of the corresponding
ones in Problem 1. ;

In tables 8.1 and 8.2 we show the numerical performance of Algorithms 2.2 to
2.8 for Problem 2. We use the same conventions as in Problem 1

Remarks: Most of the observations drawn for Problem 1 are also valid for this
problem: This is also an easy problem for all the tested algorithms, the behavior
with and without restarts coincide, and Schubert’s method is not competitive with
the rest of the algorithms. In addition:

1) Surprisingly, methods DS, RS and CS used less iterations than Schubert’s
method in the nonrestarted case. This behavior is not predictable by local conver-
gence properties.

2) Algorithms DS, CS and RS are clearly the most efficient ones for this prob-

lem, followed by Newton’s method the, Dennis—Marwil method and the Modified
Newton method.

24 -
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n o= 1000 n = 2000 n o= 3000

Without Efficiency Without Efficient Without Efficient
Method Restarts | Restaits Restarts Nestarts Restarts Restarts
N (0,4,4,0,2.96) — (0,4,4,0,7.93) —_ (0,4,4,0,12,0) -
MN (1,18,1,14,4.29) | (1,153,1,14,4.21) | (1,15,1,14,8.63) | (1.15,1,14,8.42) | (1,15,1,14,12.5) | (1,15,1,14,12.6)
) (1.8,1,7,7.75) (0,6,325.12) (1,8,1,7,15.8) (0,3,3,2,10.7) (1,81,723.2) | (06,24.184)

N N B

DA (1,10,1,9.4.64) (0.8,2,64.38) (1,10,1,9.9.01) (0.8.2,6,4.1:6) (1,10,1.9,13.4) | (0,8,26.13.1)
DS (0,6.1,5,2.41) (0,6,1,5,2.31) (0,6,1,5,4.66) (0,8,1,5,4.6) (06,1.56.74) | (0,6,1,56.73)
RS (0.6,1,5,2.20) (06,1,5,2.29) (0,6,1,5,4.51) (0.6,1.5,4.5) (0,6,1,5,6.61) (0,6,1,5,6.66)
(oh) (0.6.1,5,2.25) (0.6.1.5,2.24) {0,6,1,54.39) (0.6,1,54.55) (0,6,1.5.6.34) (0,6,1,5.6.62)

Table 3 1: Perforinance of the Methods for Problem 2.




n w4000 " o= 5000
Without “EMcloncy Without mclcncy
Methed Rostarts Restarts Restarts Restarts
- :
N (0,4,4,0,18.1) | - (04140223 | = -
- f=dy 3 ey 3| s o 5 By d
{MN [ (1,18,1409) | (1,18,0,14,06.8) | (1,18,1,14,21.0) | (1,28,,14,21.2)
f g bigat TR LY LY R B i o |
s “v'vh’v”‘")‘ (0,5.‘3;3,23.2} J (1,8'.7'1'4’,-1’ (Q:ﬁ.’.?.”-?)
DM | (1,019,179) | (08,2,8,17.7) ‘(1.;o.i'.9,2a.1) (0,8,2.6,22.7)
Ds (08,1,8,9.38) | (06,1509.53) | (06,135,118 | (08,8,12.0)
RS (0.1,5900) | (06,1,59.33) | (0815118) | (0818.118)
cs (06.1.5.9.19) | (001,59.29) | (0.8.1,511.8) | (0,6,1,3,11.8)

o

Table 8.2: Performance of the Methods for Problem 2.“




‘Figure 2: Structure of the Jacobian matrix and
data structure for the L-U factorization.

Problem 3 (Trigexp [32])

3z] + 22, — 5+ sin(x; — z;)sin(z; + 13)

A=) =

iz} = —2ia ™ 4 24 4 32)) + 2550 +

F=2_ _.n-L

+sin(z; — z;4;)sinf(z; + Ti4q) — 8

Julz) = —zo g™V 34z -3

.,0)7 and (0.3,...,0.3)".

Algorithmic parameters: €; =&; = 107%, TOL

Initial points: (0, .

1077, A=10, BIG=10".

The structure of the Jacobian matrix and, hence, the structure of the data
structure for the L-U factorization are the same as those of Problem 1. See Figure



1. The CPU times of the symbolic phase also coincide, obviously with the CPU
times of the symbolic phase of Problem 1.

Table 9 shows the mean computer time of 2 Newton iteration, and table 10 shows
the mean computer CPU time of Modified Newton and Quasi-Newton iterations
for Problem 3.

n | tuimes/seconds
1000 0.37
2000 0.76
3000 1.15
4000 1.50
- 5000 1.93

Table 9: Mean CPU time of 2 Newton iteration for Problem 3.

n |MN| S |DM|DS|RS|CS
1000 | 0.14 | 0.33 | 0.22 | 0.16 | 0.17 | 0.17
030 | 065 0.45 | 0.33 | 0.34 | 0.34
0.45 | 1.00 | 0.66 | 0.51 | 0.51 | 0.49
0.61 | 1.40 | 0.90 | 0.69 | 0.69 | 0.69
0.75 | 1.72 | 1.10 | 0.86 | 0.86 | 0.84

Table 18. Mean CPU time of a typical iteration for Problem 3.

g883

Observe that, unlike Problem 1, the C PU time of a Newton iteration is greater
than the CPU time of a Schubert iteration due to the transcendental functions
involved in the calculation of the Jacobian matrix. However, comparison between
these times shows that L-U factorization still dominates the calculation. In Tables
11.1 and 11.2 we show the numerical performance of Algorithms 2.2 to 2.8 for Prob-
lem 1, using the same conventions as in the previous problems, for z° = (0,...0)7.
The same is done in Tables 12.1 and 12.2 for z° = (0,3,...,0.3)".

Remarks:
1) With the exception of Newton’s method only CS is succesful in all trials, for

2) In both tests RS and DS both failed for the no restarts versions; S failed in

the trial runs with no restarts and in those with a restart at every 5 iterations for
the initial point z = (0,...0)” due to the ocorrence of overflow.



n = 1000

n = 3000

Without Efficiency Teatart Without | Efficiency Restart
Methed - Sty Every § Every §

Restarts Restarts Iterations Restarts nestarls Iterations
N (0,8,8,0,3.24) - (-2 (0,8,8,0,9.26) A -
MN (3,50,1,40,8.2) | (1,13,5,8,3.27) | (3,50, 9,41,0.50) | (3,80,1,49,25.2) | (1,18,4,14,10.9) | (3,50,1,49,20.6)
L) overflow (0.10.6.8’.&.'&)  overflow overflow (0,10,5,5,10.9) overflow
DM | (246,1,459.64) | (0,11,4,7,3.0) | (0,22,4,18,5.13) | (2.46,1,45,28.7) | (1,11,4,7,9.00) | (0,22,4,18,15.8)
D§ (3,100,1,99,16.1) (0.12.8;@;2.05) (0.20.5.51.6.34) (8,100,1,99,49.3) | (0,12,3,9,8.04) | (0,26,5,21,16,3)
RS (2,13,1,12,2,36) | (0,11,3,8,2.51) | (1,15,3,12,3,18) | (2,13,1,12,7.13) | (0,11,3,8,7.68) (1.35.3.13.0.40)
cs (1,81,1,30,6.33) | (0,12,3,0,2.68) | (1,17,3,14,3.39) -(l.3i.1.30,15‘9) (0,12,3,9,8.02) |(1,17,3,14,10.4)

Table 11,1: Performance of the methods for Preblem 3, 2° = (0,...,0)7




ot

v
B = 5000
“Without Efficiency Restart
Method Every 5
Restarts Restarts Iterations
N (0,8,8,0,15.0) = &l
MN | (3,50,1,49,40.4) | (0,13,5,8,15.3) | (3,50,9,41,47.6)
s overflow | (0,105,5,183)|  overflow
DM | (246,1,45,48.6) | (1,11,4,7,15.2) | (0.22,4,18,26.3)
Ds  |(3,100,1,99,83.2) | (0,12,3,9,13.0) | (0,26,5,21,27.4)
RS (213,1,12,12.0) | (0,11,3,8,12.5) | (1,15,3,12,16.0)
cs (1,31,1,30,26.7) | (0,12,3,9,13.2) | (1,17,3,14,17.2)

Table 11.2: Performance 6f the methods for Problem 3, 2° = (0,...,0)T




€

n = 1000 n = 3000
. Without Elficiency Testart “Without ~ Efliciency Testart
Method Every § Every 5
Restarts Reslarts Iterations Restarls Restarts |  Iterations

N (0,6,6,0,2.33) - - (0,6,6,0,7.0) - -~

MN (3,50,1,49,8.66) | (1,10,3,7,2.21) | (0,50,9,41,10,1) | (3,50,1,49,23.5) | (1,10,3,7,6.66) | (0,50,9,41,30.0)
S (0,11,1,10,4.10) | (0,74,3,2.71) | (0,9,2,7,3.37) | (0,11,1,10,12.1) | (0,7,4,3,7.97) | (0,9,2,7,9.77)
DM (1,11,1,10,2.86) | (1,8,2,6,2.22) | (0,8,2,6,2.27) | (1,11,1,10,831) | (1,8,2,6,6.36) | (0,8,2,6,6.62)
Ds (1.31,3,50.9.04) (0,9.3.'.’-33) (0‘9|2.7’at01) (1.8‘.1'60‘26v‘) (°|9.3|°.6-32) (°|°|207D5'1')
RS (9,100,1,99,18.4) [ (0,8,3,5,2.1) | (0,19,4,15,4.18) | (3,100,1,99,50.8) | (0,8,3,5,6.09) (0.19.4.'15.12.})
Gs (1,12,1,11,2.39) | (0,9,3,6,2.30) | (0,9,2,7,2.08) | (1,12,1,11,6.67) | (0,9,3,6,6.60) | (0,9,2,7,6.0)

Table 12.1: Performance of the methods for Problem 3, 2% = (0.3,...,0.3)7




n = 5000

Without Efficiency Testart
Methed Every 8

Restarts Mtu}l Iterations
N (0|°“|°|“01) - : ——
MN | (3,50,1,49,40.2) | (1,10,3,7,11.0) | (0,50,0,41,48.1)
S (0,11,1,10,19.8) | (0,7,4,3,13.3) | (0,9,2,7,16.9)
DM (1.!1,1.1.0.18.0) (1,8,2,6,109) | (0,8,2,6,11.2)
DS | (1,51,1,5042.0) | (0,9,9,6,11.0) | (0,9,2,7,9.68)
RS |(3,100,1,99,84.9) | (0,83,89.86) | (0,19,4,15,20.1)
€S | (91,11,110) | (09,36,109) | (0,9,2,7,9.65)

Table 12.2: Performance of the methods for Problem 3, ° = (0.3,.,.,0.3)7




Problem 4 (Poisson Problem [28])
This problem is the nonlinear system of equation arising from finite difference
discretization of the Poisson boundary value problem

ul

A oha—siappr—
G 142412

T SRR e 5
u(0,t) =1,

u(l, t)=2-¢'. tel0.1]

u(s, 0) = 1,

u(s, 1)=2-¢', se€l0. 1]

We use an [* grid with L = 15 and L = 31. Therefore n = 225 and n = 961
respectively.
We ran the algorithms with 7° = (—l...'..—l)r, &6 = & = 107%, BIG =
108% 8 =75
The structure of the Jacobian matrix and the data structure for the L-U fac-
torization (for n = 36) is given in Figure 3. The CPU times of the symbolic phase
were the following:
n = 225, time = 0.83 sec.
n =961, time=7.70 sec.
The mean computer times of Newton iterations are the following:

n =225, time= 1.19 sec.
n = 961. time = 20.8 sec.

Table 13 shows the mean computer CPL time of one ordinary iteration of
Algorithms 2.3 - 2.8.

L|n |MN| S |[DM|DS|RS|CS
15{225(0.10 | 1.27 | 0.17 | 0.13 | 0.10 | 0.11

311961 | 0.67 |23.0 | 1.23 | 0.74 | 0.53 | 0.88
Table 13: Mean CPU time of a typical iteration for Problem 4.

As expected for the band structure of this problem, the computer time of L-U fac-
torizations (Newton and Schubert) is proportional to L?n. On the other hand, the
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computer time of other iterations is proportional to Ln.
In Tables 14.1 and 14.2 we show the numerical performance of Algorithms 2.2
to 2.8 for Problenr 4:

Without Elhciency Restart
Method . Every 5

Restarts : Restarts lterations
N (1,5,5,0,6.04) - e

MN | (4,1393,1,1392,123.) | (1,17,4,136.1) | (1,57,10,47,16.0)

S (0,9,1,8,11.0) (0,9.2,7,10.8) (0.5,2,6.9.64)

DM | (48441863122 | (0155107.68) | (027,522.9.31)

Ds (2,853,1,852,79.3) | (4,184.92,92,121.) | (4,433,73,360,122.)

RS | (1320132886.1) | (019,109,128) | (444174367121

cs (1,861,1,860,80.0) | (0,19,109,12.8) | (4,437,73,364,121.) |

Table 14.1: Performance of the methods for Problem 4.
(L =15, n=22)



Without Efficiency Restart
Method : . Every 5

Restarts Restarts Iieration
Nl (1550004) — -
MY | (4412,0411,301) | (1,18,4,14,926) | (4,73,13,60,309.)
s (1,7,1,6,150.) | (1,7,1,6,151.) | (1,7.25157.)
DM | (4,266,1,265,301.) | (1,13,6,7,136.) | (1,26,521,133.)
D5 (4,364,1,363,302.) | (4,27,14,13,314.) | (4,67,12,55,302.)
RS (4,380,1,379,301.) | (4,28,14,14,306.) | (4,71,12,59,300.)
cs (4.372,1,371,302) | (1,20,10,10,217.) | (4,73,13,60,318.)

Tabie M2 Pafannsess 4 D ineilinds far Prilion 1.
(L =31, n=0961) y

Remarks:

1) Only Newton’s method and Schubert’s method seem to be reliable for this
problem. DM, DS, RS, CS and MN failed in all cases without restart, and DS

failed in many cases even with restarts.

2) DM behaved, in general, better than DS, RS and CS, but its performance

is nowhere comparable to the performance of Newton'’s method.
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3) Even mmcging, Schubert’s method used considerably more iterations than
Newton's method and, therefore, it wasted much more CPU time. ‘

SRS AmBuanen
ssamsancans

Figure 3: Structare of the Jacobies matsix and data strectase

for the L-U factorization.

Problem 5

fi®) = 222 4 325 — 2,y ~ 22,41 4052, +10 j=2,...,n—1

fi(z) = =223 + 321 — 225 4 0.5z, + 1.0

Ja(z) = =22} + 32, — 24y + 0.5z, +1.0
for @, j = 1,2,...,n, randomly chosen in the intervals: a; € {Ojmny @jmax}

where Ojmin = max{1, j — b} and o;me = min{n, j + b} for a parameter b which

defines the bandwidth.

We used z° = (—l,...,—1)7 as a initial point and, as in previous tests,



& = €& = 100, TOL = 107, A = 10, BIG = 10™. The structure of
some typical Jacobian matrices with n = 40, for different bandwidths and their
correspondent data structures for L-U factorizations are given m Figures 4 and 5.

Table 15 shows the CPU time of the symbolic phase for some tests with n = 1000
and b= 15, 30, 50 and 100

b | Time
15 14
30| 257
50} 4.00

100 | 8.35

Table 15: CPU time of the Symbolic phase for Problem 5.

Table 16 show the mean computer CPU time of a Newton iteration for the same
problem

b | time/seconds
15 1.01
30 2.7
50 6.19
100 2.7

Table 16: Mean CPU time of a Newton iteration for Problem 5.

Table 17 shows the mean computer CPU time of one ordimary iteration of
Algorithms 23 - 28

Method | 6=15|56=30|b=50 | b= 100
MN 0.18 0.63
S 1.1 2.74 6.26 24.0
DM 0.34 0.51 0.71 1.33
| DS 0.22 0.32 0.44 0.70
RS 0.19 0.30 0.40 0.67

—

CS 0.19 0.29 0.40 0.67
Table 17: Mean CPU time of a typical iteration for Problem 5.




b.= 15 b =3

Without Efficiency Restart Without Efficiency Restart
Method Every 4 Every 4

Restarts Restarts Iterations Restarts Restarts Iterations

v

N (0,4,4,0,4.13) — — (0,4,4,0,11.1) - -
MN | (1,10.19.2.84) | (1,10,1,9.2.81) | (0.6,2,4,2.75) | (1,10,1,9,5.20) | (1,10,1,95.2) | (0.6.2,4,7.27)
s (1,6,1,5.6.44) | (0,4,2,2.4.48) | (0,6,2,4,6.52) | (1,6,1,5,16.0) | (0,4,2,2,11.4) | (0,6,2,4,16.5)
DM (0,7,1,63.21) | (0,7,1,6,3.17) |(0.6,2,4,3.49) | (0,7.1,6,5.72) | (0,7,1,6,5.93) | (0,6,2,4,7.27)
DS (1.6,1,5.2.16) | (1,6,1,5.222) | (0.6,2,4,3.03) | (0,6,1:5,4.18) | (0,8,1,54.27) | (0,6,2,4,6.78)
RS (1,6,1,5.2.10) | (0,6,2,4.2.90) | (0,6,2,4,2.93) | (0,6.1,5,4.14) | (0,6,1,5,4.19) [ (0,6,2,4,6.41)
CS (1,6,1.5.2.79) | (0,6.2,4,2.94) | (0.6,2,4,2.94) | (1,6.1,5,4.04) | (1,6,1,5.4.16) | (0,6.2,4.6.51)

Table 18.1: Performance of the methods for Problem §.




b = 50 b = 100

Without " Efficiency Restart Without Efficiency Restart
Method Every 4 Every 4

Restarts Restarts Iterations Restarts Restarts Iterations
N (0,4,4,0,24.9) - - (0,4,4,0,91.0) - -
MN (1,10,1,9.9.60) | (1,10,1,9,9.88) | (0,6,2,4,14.2) | (1,10,1,9,28.01) | (1,10,1,9.29.1) | (0.6:2,4,46.0)
s (0,6,1,5,26.7) | (0,4,2,2,25.3) | (0,6,2,4,37.5) | (0,6,1.5,134.) | (0,4,2,294.6) | (0,6,2,4,134.)
DM (0,7,1,6,10.23) | (0,7,1,6,10.5) | (0,6,2,4,15.2) | (0,7,1,6,28.9) | (0,7,1,6,31.2) | (0,6,2,4,47.9)
DS (0,6,1,5,8.24) | (0,6,1,5,8.49) | (0,6,2,4,14.1) | (1,6;1,5,25.4) | (1,6,1,5.26.4) | (0,6,2,4,45.7)
RS (0.6,1,58.10) | (0,6,1,5,8.32) | (0,6,2,4,14.3) (0.6,1'.5.24.8) (0,6,1,5,26.0) | (0.6.2,4,45.3)
cs (1.6,1,5.8.02) | (1,6,1.5,8.25) | (0.6,2,4.13.4) | (1.6.1,5,24.9) | (1,6,1.5.26.3) | (0.6.2,4,45.4)

Table 18.2: Performance of the melhods for Problem 5.




Observe that the CPU time for L-U factorization behaves in a way which may be
described as “worse than lincar but better that quadratic”. This was expected, duc
to the random localization of the nontridiagonal entries of the Jacobian matrices.

In Tables 18.1 and 18.2 we show the numerical performance of Algorithms 2.2
to 2.8 for Problem 5.

Remarks:

1) As so happens with Problem 1, this was an easy problem for all the tested

methods. Most of the conclusions drawn for that problem are also valid here.

2) Clearly, methods DS, RS and C'S are the most efficient ones, followed closely
by MN. DM also behaves very well. In spite of the small number of iterations it
uses to converge, Newton’s method is rather costly (especially for large values of b)
due to systems resolution expense.

mmanes
mEma |
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Smeamye
emmew
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dansess
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- ==
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. ww

- e

e e

Figure 4: Structure of the Jacobian matriz and data
structure for the L-U factorization (b = 15)
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Figure 5: Structure of the Jacobian matriz and data
structure for the L-U factorization (b = 30)

5. Conclusions

One of the aims of this paper was to verify if some Quasi-Newton methods
with direct updates of matrix factorizations (7, 21, 22] are reliable alternatives to
Newton’s method in situations where derivatives are available. We conclude that,
in the cases where they converge, they tend to be more efficient than Newton’s
method, especially if direct resolution of the linear systems is costly. Unhappily, they
are not as robust as Newton’s method, or even as Schubert’s method. Therefore,
development of superlinear and practical Quasi-Newton methods, possibly under
the lines of [23], seems to be an interesting challenge.

However, it is remarkable that methods like DS, CS or RS, when they converge,
use a very small number of iterations, relative to M N, even without restarts, a fact
which is not explained by presently available theory.

As expected, Schubert’s method is not competitive with Newton'’s method, for
this type of problems. Its applicability is clearly restricted to situations where
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derivatives are not available, or are very difficult to calculate.
All the computer codes related to this paper are available under request to the
authors. -
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