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ON CIRCULAR AND SPECIAL UNITS

OF AN ABELIAN NUMBER FIELD '
Trajano Nébrega

1. Introduction:

Let p an odd prime. In their study of p-class group of an abelian number
field K, Singott [4] and Thaine [5] have introduced different notions of “circular
units” and shown that these groups are of finite index in O, the group of all units
of K. We <how in this note that the two notions are indeed equiﬁhlt, thereby
answering a question posed in 5, p.1. Generalizing the ideas of Thaine to elliptic
fields, Rubin [2] introduced a group S(K) which he called the group of special
- units. We show in this note that Cs(K) = Cr(K) C S(K), where Cs(K) and
Cr(K) denote the groups of circular units of Sinnott and Thaine respectively.

Thoughout this note K will denote an abelian number field and G =
Gal(K/Q) its Galois group. B

We denote by O the ring of integers of K and by Ok the group of the units
of Ox. When we say the group of the units of K we are refering to Oy. By
Dirichlet’s Theorem on the units of K, we have Oy = T x F, where T is the group
of the roots of the unity in K and F is a free Z-modulo whose rank is easy of
calculate.

To describe explicity a set of multiplicatively independent generators for F is
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an open question; but, if K is an abelian number field, there are many subgroups
of O of finite index in O}, for which on can explicitly give a set of multiplica-
tivelly independent generators. These subgroups, of which there are many, arise
according to the puporse of the authors.

If m is a positive integer, m 0dd or divisible by 4, let & = e= |, Kpn = Q(£m)
and G, =‘Gal(K.../Q). We recall that there is a positive integer m such that
K C K, (Theorem 14.1 [6]) and the smallest m such that K C K, is called the
conductor of K and denoted by mg.

We denote by Of the ring of integers of a number field F, O} the group of
units of F, (a,b) the greatest common divisor of the integers a and b. If n is a
positive integer, we write k, = K N K, and Gj, = Gal(Kn/kn)-

S S 2% Gl O 0 e ¥ bt anelipiting. e aswenind b
{#6a 1 — € :1 < a<n-1). Let E, the group of the units of K, and de-
fine C, = V, N E,. C, is called the group of cyclotomic units of K,. More
generally, for the abelian number field K, we can define the cyclotomic units of
K in two ways: In the first definition, we let X C K,,, for some m and we take
Cg = Qi N Cp. It is easy to see that Cx depends only on my, the conductor of
K. Now in the second definition we take the image by the norm from A, to K
of the cyclotomic units of K,,,. If the first group we denote by C;(K) and the
second by Cy(K), we can see that Cy(K) C Ci(K).

Yet, for abelian number fields, there are others groups of units that we will be
dealing with in this work. :

The group of the circular units of K defined by Sinnott in 4], which will be
denoted by Cgs(K) is the intersection of O} and the subgroup of K generated by
the elements a(n,a) = Nk, s (1 — &), with n,a integers and a # 0 (mod n).



Since K,N Kp = K(nm) we only need consider the integers n such that n divides
my, the conductor of K. - '

The group of the circular units of K, defined by Thaine in [5], which we will
denote by Cr(K), is defined as follows: If mg is the conductor of K and j is a
positive integer, we let
i ma—1

cix) = {rx = =11 T1 00 - €)™ aw € Z. J(X) € K()

=1
and f(1) € o;{}.
where X is an indeterminate. Cr(K) = U2, C;(1).

Finally, we have the group of special units defined by Rubin in (2], denoted by
S(K) and defined as follows: Let S denote the set of all rational prime which split
completely in K. Write K = K,NR, L, = K-K}, e(g) ={u€ O;_: N, (v) =
1} and C(g) = {¢ € O such that there is u € £(g) with & = u(modg), where
7= (1-§&)(1 - &")O0L}. Now, S(K) = {€ € Oy;e € C(q) for almost all ¢ in
8).

2. The Main Results:
We begin with the two groups mentioned in the introduction.

Theorem 1: For an abelian number field K the two groups Cs(K) and Cr(K)
of circular units of Sinnott and Thaine are equal.



The proof will be based in three lemmas. First we need some notation.

For each m > 1, devisible by mg the conductor of K, we write

=1 K=1

Ci(X,m) = {£(X) = 2 [T T1 (X = €5 : aux € Z, f(X) € K(X)

and f(1) € Ok},

»

C;(1.m) = {f(1); f(X) € C(X,m)}.
It is easy to see that C;(1,m) is a group (j = 1,2....) and that Cy(1,m) C
Ci(1,m) € .:.. So, C(m) = | JC;(1,m) is a group and C(me) = Cr(K).

=1
Lemma 2: With the notation above, we have:
i) C;(X,m) C Cy(X,t-m) for some integer ¢
ii) Cy(1.,m) C C,(1,tm) for all positive integers t
iii) C =UR, Ci(1,tmy) is a group
-iv) Cr(K) C C.

Proof: For i) we can see that if f(X) € C,;(X,m) then the zeros of f({X) are
tm — th roots of unit for t = f\,z,....j], where lay,...,a.] ind?cate the least

common multiple of the integers a,,....a.. So f(X) € Cy(X,tm).
ii) Immediate

iii} C is a group because for each m, C,(1,m) is a group and given m, and m.
multiples of mg, there is m, multiple of mq, such that Cy(1,m,;) and C,;(1,m;)
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are contained in Cy(1,m).

iv) Immediate, since Cr(K) = Cy(myo).

The next lemma states how to decompose a polinomial f(X) = [[ (X -
i=1

€.)* € K(X) into a convenient product.

Lemma 3: K f(X) = [] (X - £)% € K(X) , then £(X) = [1£5(X) , with
=1 =1
5i(x) = hl' (X-&)~¢ k=(X) and we may suppose that m is multiple of m,.
e
 Proof: Without loss of generality, we can suppose that f(X) € K[X]. It is clear
that we can write f(X) = [] f;(X), where

=1
2y
0= T (X - ey < Ksix)
So, we only need to show that f;(X) € K|[X], that is, f7(X) = f;(X) for all
0 €G,. Butif o€ Gl and & is a primitive ™ — th root of unity, so is o(&L);
in other words, o preserves the factors f;(X), that is, f7(X) = f;j(X). Thus
5(X) € K|X] N K= [X] = ka|X].

Lemma 4: If n is a positive integer, L is a subfield of K, and G' = Gal(Kn/L),

then there are 6,,...,8, € G, such that:
i) Gﬂ Land [rin] 'ie

i) g(X) = l]c‘(x - £°) € L|X] and are irreducible in L,i = 1,2,...,s.
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iif) gi(1) = Ngae(1 - €%), i =1,2,...,8

iv) The set {g(X) = 'ﬁ(x-e;'.)~:a.-ez a‘nd- 9(X) € L(X)} is a free

Z-module of rank equal to [K : Q] and generated by ¢;(X), 1+ = 1,2,...,s.

»
Proof: For i) we can take 6, such that G, is disjoint union of cosets represented
by 6;. For the other items the proof is an immediate consequence of the definition.

Weca:!nowremrnto'rheoranl.

Proof of Theorem 1: Firstly we show that Cs(K) C Ci(1). Let ¢ =
ma(n,a)+ € Cs(K), where a(n.a) = Ng (1 - ). We let foo =
B0 T X0 = sAET = S AIK) Wooomrmdl foetH) 1D
a.nd e=jf{1) EO,,,soee'C;(l) Now, we will show that C C Cs(K). Lel:eEC
and f{X) = H(X £ )* for some multiple m of myg, such that f(X) € K(X)
and 2 =) Bt

-—l
(X)) = HL(X) with f;(X) = H (X - €a)™ € k=(X)
=1 l-‘vm

(lemma 3). Now, for each j divisor of m, there are polinomials g;(X) € k=|X]
irreducibles such that

Ji(X) = 7gii(X)* and 1) = Nig jun (1 = €5)
(lemma 4). then f;(1) = 7Ny /aa (1 - €2)% and s0 /(1) € Cs(K)

Corollary 5: The groups C;(1) defined in |5’ are all equal to each other, in par-
ticular C(K) = Cy(1). 1



We now turn to the group S(K) of Special units of Rubin.
Theorem 6: If K is an abelian number field, then Cr(K) C S(K).

. Proof: We will show that if ¢ € Cr(K) then £ € C(p), for all p that splits
.completely in K. Let K} = K,NR, L= K -K;, In = Kn, - K], p= product
of all primes of L that lie over p and p, = pf,,. e =1- £, and u; =
(1- €.,6)(1 — £..&7) then w € Ly and & = wi(mod py). Now let € € Cr(K)
and f(X) = [[Z27'(X - €.,)% € K(X) such that ¢ = f(1). We let

00 =TI [0x - e 0t - 6]

Now we can see that since f(X) € K(X) then g(z) € L(X), f(1)? = g(1)(mod p)
and Npx(g(1)) = g(1)»~", where g, is the Frobenius map for p in the Galois
group K/Q; so Ni/x(g(1)) = 1, then /(1) € S(K) as we wanted to prove.

Lemma 7: Let F C L number fields. Oy and O} the groups of units of F and L,
respectively. If N is the norm from L to F, we can restrict N to O7 and N(O;}
is a subgroup of Oz. Further more, the index |0 F : N(O7)] is finite.

Proof: Since O3 C N(0O}) C Of, where s = |L : F) then N(O;) has the same
rank of Of, because O} does.

Corollary 8: If K is an abelian number field, then Cr(K),Ci(K),Cn(K) and
S(K) are of finite index in O.



Proof: Since the:group of cycltonsic waits of-a-cvclotomic fidld in of finite index
in the group of global units (Theorem 1, [1]), then Cy(K) has finite index in Oj.
Since Cy(K) is contained in Cr(K),C;(K).and S(K) up to roots of unity, the
corollary follows.

Remark: When K is a real abelian number field. we have Cr(K) = Cn(K)

Added in Type: After this work was prepared, I received a preprint of Gunter
Lettl, wherein he proves our Theorem 1. Our proof is different from his and leads
naturally to our Theorem 6.
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