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Abstract: The characterization of global minimizers of a quadratic func-
tion with a spherical constaint is well-understood from classical works
of Gay and Moré-Sorensen. In this paper we give a complete charac-
terization of local-nonglobal minimizers of this problem. Essentially, we
prove that there exist at most one local-nonglobal minimizer. and that
its Lagrange multiplier p is the larger solution of a single nonlinear equa-
tion. This generalizes to the n-dimensional case a previous result of
Celis-Dennis-Martinez- Tapia. We give an algorithm for computing the
local-nonglobal minimizer, and we suggest some applications.

1. Introduction

We consider the problem
Mininine ¢(9)
B st Jlsll=A
where

(1.2) e %3703 +es,



s BER, G=GTand || - 1= - |l

Global solutions of (1.1) are well understood. and may be obtained usingthe theory
in [8. 12. 13]. Our main result concerns the existence and computation of local-nonglobal
(LNG) solutions of (1.1).

Our interest in LNG solutions of (1.1) derives from the following observation:

Proposition 1.1. Assume that ¢ is a global solution of the following nonlinear pro-
gramming problem:
% Minimize p(s)

(1-3) st. gi(se) <0, i=1,....m.

where g;, ¢ = 1,....m. are continuous functions. and

n(sH =0

Sle® ) <0, em Q. .. m.

Then, s" is a local solution of
Minimize p(s)

e st g1(s)=0.

This proposition generalizes an observation of [2]. It follows from Proposition 1.1 that, if
3 is a local solution of (1.4), and ¢;(3) < 0. i=2..... m. then 3 is a good “candidate” to
minimizer of (1.3).

Now, Proposition 1.1 is a useful tool for solving (1.3) only if local minimizers of (1.4)
are easy to find. We will show that this is the case when (1.4) has the form (1.1) - (1.2).

We would like to mention here a few situations where the identity between (1.4) and
(1.1) occurs.

{a) Trust region methods for minimization with simple constraints:

Assume that we have the problem: :

Minimize f(z)

5 st. 220, ze R



and we want to solve it using the trust-region approach (sce [3, 4, 5, 8, 10, 12, 13]). At
each iteration k of such an algorithm, we should solve a problem of type:

Minimize V f(z*)7s 4 17 Bys
st. * 4320

lefly < A

(1.6)

It is nsually chosen || - [, = || © [la (see [3. 4]) so that the feasible set of (1.6) is a
box. Howewvgr, the use of || - |}, instead of || - ||» in (1.6) has some advantages. In
fact, the number of sets of possible active constraints of (1.6)if || - [}, = || - |jm s 3",
independently of the number of binding constraints of (1.5) at z* On the other hand. if
[l 1l =1 - || this number goes from only 2 (if z* > 0 and A, is small), to 2**' — 1 (if
z* = 0). Another reason for prefering || - ||z to || - |lo in (1.6) is the global information
contained in the constraint ||s||; € A;. In fact, a global minimizer 3 of the quadratic
objective function subject to ||s||; < A always exists. and so. if z* +3 > 0. 3 is a global
minimizer of (1.6). Of course, the same observation is true if || - ||, = || - ||e, but. in
this case. to find a global minimizer with the sole constraint ||s||.. < A, is as difficult as

(b) Minimization of a gencral function on a sphere.
Assume that we want to solve:
Minimize f(z)

) st |zl =0

An appealing idea is the sclve (1.7) using a direct trust -region approach. This amounis
to solve, at each iteration, a pioblem like this:

Minimize Vf(z*)s + 137 Bys
st |zt + 8|l =0

flsll < &.

(1.8)

Like (1.6), it is easy to see that (1.8) is of the form (1.3), where (1.4) has the form (1.1).



{¢) Trust-region algorithms for nonlinear programmig: Celis-Dennis-Tapia (1] intro-
duced a trust-region algorithm for the equality constained nonlinear optimization prob-
lem:

Minimize f(z)

- st. Mz)=0, kiR — R

At each iteration of their algorithin they propose to solve a subproblem of the following
type: . ]
Minimize V&(z*)Ts + 1s7 Bys

(1.]0) > s.t. ”3“ S A

1R’ (=%)s + h(z*)|) < @

where i(z) is an aporoximation of the Lagrangean function. A completely satisfactory
algorithm for solving (1.10) is not known (see [2. 14, 15. 16]). However, problem (1.10)
has tie form (1.3) and so. Proposition 1.1 applies to this case. For n = 2. this observation
helps 10 solve completely the problem (see [2]). For general n. the knowledge of local and
globai solutions of the quadratic function restricted to the sphere should be a considerable
step towards the solution of (1.10).

This paper is organized as follows. The main result is proved in Section 2. There we
essentially prove that problem (1.1) has at most one LNG solution. and we characterize
this solution in terms of the eigensystem of G. The main theorem is a generalization
of Lemma 3.4 of [2.. but the proof in the n—dimensional case in much more involved.
In Section 3 we suggest an algorithm for finding the LNG solution. which may be used
jointly with the classical algorithms of Gay [8] and Moré-Sorensen (13] for finding global
solutions. In Section 4 we address probiem (1.10) under a different point of view than
the usually taken. Instead of trying to find a global solution of (1.10), we find a feasible
point for (1.10) which is a good approximation to the solution and is sufficiently good in
the sense that satishes the conditions which are enough to prove global convergence of
the CDT algorithm isee [6]).

2. Local Minimizers of a Quadratic Function on a Sphere
We consider the problem
Minimize ¢(s)

& st [lsll=a






(b) «"(u) > 0 for all # € N. Thus ¢ is convex on any interval contained in .
(c) Hie I (=\ €90N), we have:

hm ¢(p) = oo,
——A

lim ¢'(p) = —c0., and

p—=1}

im () = oc.
g

» ]

(@ fim () = tim o(u) =0.
(e) For all u € 0. (p) = || = (G + ul) gl

If s is a local minimizer of (2.1}, we have, by standard Lagrange multiplier theory,
that:

(2.8) G+ ul)s"+9g=0.

fis”ll = &
for some p € R.
The following theorem proves that u € [—q, oc).
Theorem 2.1. If 5" is a local minimizer of (2.1), then (2.8) holds with s > —Js.

Proof. Define
(2.9) : fs) = qls) + 5 lisll?,
the Lagrangean function associated to (2.1). Then,

(2.10) Vi(z) = (G + pl)s + g,

(2.11) V(s) =G + puJ



The necessary second order conditions for a local minimizer (see [11]) state that
(2.12) 1 vl (G + pulye 20

for all w in the tangent subspace to ||s|| = A at 5.
Assume by contradiction that # < —A,. By (2.3). we have:

A+

A
(2.13) G+pul=QD+u)Q"=Q it - Q.
An + 1t

Now, consider the plane P spanned by v,. v5. If v € P we have v = av, + Bv,, and so,
by (2.13),

(2.14) tT(G + ulv = (avy + Bvy)T (G + ul)(avy + Bvy) =

= o®o] (G + ul)vy + 2a8¢] (G + plvs + 861 (G + pul)vs.

But
Mt "\:
(215)  T(G+alye = F (-, 0) o b O
: Antpt '7;’.'
M+ p
=e i : e =0.
.*\--Hl
Moreover,
AMtp v{
(2.16) *e] (G + ul)y = o] (my,.... ) ‘et . f”r 5
. Antp 'Z



M+p

M4t
= ozr:{ 5 = ey = a*(\ + p).

At it

Analogously,

(2.17) 301 (G + ulvy = F(Ag + p).
>

Hence, by (2.14) - (2.17). we deduce that
(2.18) (G +ple <0

forallve P. v #0. :

Now. the dimension of the tangent hyperplane T at s* is n — 1, and the dimension of
P is 2. Therefore, there exists some nonnull w € PNT. Hence, (2.12) does not hold, and
so, s~ is not a local minimizer. o

Let us call S the subspace spanned by {v;..... t,}. where j is such that A, = --- = A;.
The following theorem, due to Gay [8] and More-Sorensen {13] characterize solutions
of (2.8) for u > —A,.

Theorem 2.2. If g > — )\, satisfies (2.8) then s* is a global minimizer of (2.1). f g & 5S¢
or |[@{—A)|| > A? there exists only one solution of (2.8) for 4 € [—A,, o) and, in this

case u > —A;. However, if ¢ € Si and o(—X,) < A% (2.8) is satisfied with y = — A, for
any s” such that [|s*|]| = A lying in the linear manifold

J
V={se R'iz=~(G-hI)'g+ 3 a;}.
=1

Proof. See Gay (8] and Moré-Sorensen [13].

By Theorems 2.1 and 2.2, it only remaians to characterize solutions of (2.8) for
i € [=Ag, =);). This is done in the following theorem.

Theorem 2.3. (i) f ¢ = 0 (gL1S5;) there are no local minimizers of (2.1) with
pE ["AQ, —Al).



(ii) There exists at most one local minimizer of (2.1) with g € [-),, —A,). For this
minimizer, @(u) is well-defined and &{u) > 0.

(iti) H (s°, ) satisfies (2.8) for p € [—A3, —A;), and (1) > 0, then <° is a strict Jocal
minimizer of (2.1).

Proof. Let us first prove (i). If (s*.u) satifies (2.8) and p € (—Xy. =\y), G+ pul is
nonsingular. and so,

(2.19) s =—(G+ [ll)A"g.
*

Therefore,

8 = —(010...rval(D + il) e = - 5y
(01 e (D + ul) e %(Xmu}l

T s T
‘sz,(/\.ﬂl)v'

Hence, v, is a tangent vector to the sphere at s*. But
(2.20) . oI (G + plyoy = el (D + pl)ey = Ay +p < 0.

Therefore. the necessary condition (2.12) does not hold and so, s™ is not a local minimizer.
If (s, p) satisfies (2.8) and g = —Ay, s" is a particular solution of the consistent
system

(G—=AM)s+g=0.
Hence,

"= —(G-=Ad) g+ z a;v;
Ay=ig

= = g ;,—c"_x"ﬁ Y ay

Ay=Aa
gy

So, v, is also a tangent vector to the sphere at s*. Now, as in (2.20), we have
o] (G 4 vy = v] (G = MJ)vy = A — )y < 0.



Therefore, s* is not a local minimizer.
The proof of (i) is complete. From now on, we assume ¢; # 0. Assume first that
(z", i) satishies (2.8) and p € (—A;, —\,). Therefore. G + u[ is nonsingular, and

.. Cn

2 Py — e —
R Mg Atp

S=—=(G+pul)'g=

Ca

Since ¢; # 0. we deduce from (2.21) that the columns of W are a basis of the tangent
hyperplane at s°, where:

*

(222) W= ( & & & a

~ T v
R S VT S

% 3. = by G 3 Ul)
M+p At A+

( C2 C3 Cn . \
Mtp Aty Aatp
e 0 0
= (150 .- 5 0) - i
y A +p
-cl ;
Therefore,
(2.23) B = B(p)= WT(G + u)W =
[ C;‘A) + u) Cf‘/\; + p) cre3( A + ﬂ) C;C.(l\] +8)
(A2 +p)? (M +p) (A2 + p)( X + p) (A2 + p)(An + )
cacs(M + p) Glh+u) | fAa+p) . c3ta(M + )
(A2 + p)( A3+ p) (As+u)? (A +4p)? (A + p)(An + 1)
c2ca(M + p1) esea( M + 1) ahtr)  gihtp)
(A2 + p)(Aa + p) (A3 + p)(Aa + p) Aa+pP (M +p)?

10




where

Hence,

(2.24)

where

Thus. (see [9])

(2.25)

Now,

(2.26)

[ (A2 + p) 0 ’
(M +p)P?
Gids + p)
(A + p)? +ouu
z ata+m
(M +p)?
c
Azt p
.= : co=Ah+p
Cn
Avt+
B=§(l +oB 'uu’),
» (A + p)?
B=
0 Gl + )
(M + )

det(B) = det(B)(1 + ou” B 'u).

= G Mt ) (Oat )
i o IR

11



and

(2.27) 1+ou’Blu=1+()\ +p)( = & )

A4p’ TN+

IR L. 7 P L Tt
doe T G0N P

Hence. by (2.25),- (2.27).

a2 (A2 + 1) - + p) (A + p)?

(2.28) det(B) = (A + pp-2
3= = +5 = 3
g s e i+ pP
I Cfe-‘(x’."*’”)'“(l\"TF’[ C-;‘ E e C;': ]—
% (M Hppr2 (M +pp Ga+aPl
_cf'“(xzu)m(x.w)[ - e X
2N + p)n-d et i

Thereore. by (2.6) and (2.28).

a il +p)---ida 4 p)

2.9 = : 1 ’
(2.29) det(B) T = )

But. for all g € {(=A;. —Ay). ¢; #0.

=" A= p) - (A + )

2.30)
( ‘ 2(X; + )3,

>0,

So, for all g € (—=A;. —A;). det(B) has the same sign as ©'(u). But (2.12) implies that
det(B) > 0. and so. that '(u) > 0. That is, (g} > 0 is a necessary condition for s*
being a minimizer of (2.1) with u € (—A;. —Aq).

Now, the equation ¢(u) = A? has at most two solutions in (—Ag, —A;). If it has one
solution yu, it must be ¢'(u) = 0. If it has two solutions by Lemma 2.1 we necessarily
have ¢'(p;) < 0 and 9'(gq) > 0, if py < pp. So, only the larger one defines a condidate to
local minimizer. :

Let us show now that, if g € (—A;. —Ay) and '(u) > 0, then u is a strict local

12




minimizer of (2.1).

Suppose, by contradiction, that u does not define a local minimizer. Thus, B = B(u)
defined by (2.23) is not positive definite. But, since ¢, # 0 and ), # )\; we easily see
that B(j1) is positive definite if 4 € (z. — A} is close enough to —),. Hence, there exists
7 € (p, i) such that B{ji) has a zero eigenvalue. Therefore, det(B(ji)) = 0 and hence
#(@#) = 0, contradicting convexity of >. Finally, since () > 0, B(p) is nonsingular
and hence the sufficient second order conditions for strict local minimizers (see |11]) also
hold at s*. Therefore, ’{u} > 0 and u € (—Az, — Ay} imply that s°. defined by (2.8). isa
strict local minimzer of (2.1).

Now assume that (2.8) holds with = —A,. Define{ > 2by Ay = --- = A\;. Therefore.
the svstem
(2.31) (G—=ADNs+g=10
admits a linear manifold of solutions given by ~
(2.32) s=—(G = A g+ ay + -+ amp.
with as,.... a € R.
Moreover, ¢; = =¢ = 0. and
" - ? SN - | Crs1 Cn
(2.33) (G— DYy ks v+ e Uegy + -+ wor i

Assume first that s* has the form (2.32)-(2.33) with some a;, # 0. Without loss of
generality assume that a; # 0. Consider the plane P spanned by {v,,v;}. If w € P, then
w = avy + Bvy, a, B € R. Therefore,

(2.38) w'(G — Ml)w = (avy + Bv)"(G — Mal)(awy + Bvy) =
= a’v] (G — ol )y + 20807 (G — Al vy + B*01(G — M l)vy =
= el (D — Ml)e, + 2a8e] (D — Ml)es + el (D — Al)ey = a*(A — M)

Hence w” (G — Ayl )w < 0 unless w is a multipie of .

Now consider the intersection of P with the tangent hyperplane at s*. From the
preceedings arguments, it follows that this intersection contains a vector w such that
wT (G — AQ)w < 0 unless it is generated by »,. But, if this is the case, v, is a tangent
vector and so, by (2.32) - (2.33), a; = 0. Hence, we proved that, if s* usloca.lmmmm
and has the from (2.32) - (2.33), then ay =--- = a¢ = 0.

Therefore, it only remains to analyze the case where

(2.35) s=—(G-Xl)'s, |Isll=A.

13



In this case, by (2.33). (2.35),

s 1 Ct41 Cn

2.36 & = + e — .
(2.36) RS T ,\m_h"m*‘ TR

Hence. using the convention § = 0. the columns of W given by (2.22) are a basis of the
tangent hyperplane at z°.

Therefore. the reasoning which lead to (2.23) - (2.30) may be repeated here. This
means that, if " is a local minimizer. it must satisfy @'(—)A;) > 0 and. conversely. if
@'(—A2) 3 0, & is a strict local minimizer. This completes the proof of Theorem 2.3. ¢

3. An Algorithm for Finding the Local Nonglobal Minimizer of the Problem

In this section we introduce an algorithm to caiculate a local-nongiobal minmmnizer of
problem (2.1).

We use the definition (2.4) for the function .

We assume that we have aiready found a global minimizer s¢ of (2.1). with a corre-
sponding Lagrange multiplier ug.

If ug = —Ay. that is, if G + pg/ is singular. then ¢; = 0 and we know. from Theorem
2.3, that there are no iocal-nonglobal minimizers of (2.1). Therefore, we may assume that
MnG > -A‘.

The algorithm for computing a local-nonglobal minimizer of (2.1) is divided into two
phases. In phase 1. we try to find u such that ¢(x) > A? and ¢’(u) > 0.

Algorithm 3.1 (Phase 1). Let po be such that G + uo/ is not positive semidefinite
(po < —-A;). Let -0'). gy € (0.1). oy <o, and let'ﬂg = UugG.
Given pi, ul. the steps to obtain pey,. ;4“{,, are following:
Step 1. Compute w(ui), ¢'(uk).
Step 2. If ¢o(ux) > A? and ¢(ux) > 0. stop Phase 1.
Step 3. Choose i € [y + oy(pd — ). e + o2(pd — ).
Step 4. If G + 4l > 0, define pryr = ps- I‘g-n = ji. Else, define ux4y = i, I‘gn = uy.

Theorem 3.1. Algorithm 3.1 (Phase 1) stops at some finite k giving u; such that
@(px) = A? and ¢'(ue) > 0. or it generates an infinite sequence such that E.m“" =—=\.

Moreover, in this last case, *lirn w'==Xand ¢ =0.
—00

14



Proof. If the sequence is not finite, it follows, from Step 3, that
31 Jim (4~ ) = 0.

Bnt,bythcdéﬁnitionq(pﬁ' and pi, we have: gf > —); and pp < —Ay. Therefore,
by (3.1),

- lY ay - g i
Jm g = lm o = =

Let us now prove that ¢; = 0 when the algorithm generates an infinite sequence.
In fact. if ¢; # 0, we have, from Lemma 2.1. that:

lim ={p) = ﬁg_s=’(p)=oo
Therefore, since lxmm = —A and g < —A, for all k = 0,1,2,..., the conditions
reqmmdatStcszhouldbemlsﬁedformeﬁnnek Thnoompletestheproof o
From Theorems 3.1 and 2.3, we know now that (2.1) has a local-nonglobal solution

only if Algorithm 3.1 (Phase 1) stops at some finite k. So. let us assume that this is the
case. Let us call u¥ = pi_,. Therefore. we have:

(3.2) Plme) 2 A% P(m)>0.
and:
(3.3) Either k) <A o b <o

Algorithm 3.1 (Phase 2). Given ul. pu;. the steps to obtain pf, = usy, are the follow-
ing:

Step 1. If p(ui) = A% and ¢/(pi) > 0, stop.

15



Step 2. Compute

v _ o _ lelm) =A%)
S Pm)

If u < uk, stop.
Step 3. Choose ji € [} + oy(me — pf), uf + o2(me — k)]

Step 4. If p(i1) > A? and ¢'(f1) > 0. define pk,, = uk, poyy = f.
El:e. define ul,, = ji, pirser = p-
Theorem 3.2. Assume that, in Algorithm 3.1 (Phase 1), yo is chosen in the interval
[=Ag, —Ay). and that Phase 1 stops at some finite k. Then:
(i) If Algorithm 3.1 (Phase 2) stops at Step 2. there is no local-nonglobal minimizer
of (2.1). .

(11) If Algorithm 3.1 (Phase 2) defines an infinite sequence u;, then there exists u* €
(=Agz, —Ay) such that

Jim g = Jim g =gt
1) 20, @(p")2A% and

P =47 o PE)=0.

(iti) If ¢'(¢") = 0 and @(u") > A? there is no local-nonglobal minimizer of (2.1).
If @'(#") > 0 and p(p") = 0 then u" defines the local-nonglobal minimizer of (2.1)
(s=—(G—-p1)yg).
Proof. Let us first prove {(i}. We proceed by contradiction. Assume that a local-nonglobal
minimizer of (2.1) exists. Then, by Theorem 2.3, its Lagrange multiplier 4* must satisfy:
p(u”) =A% ¢'(x7)20.

But, by construction, we have, for all k£ in Phase 2:

V(I‘lr) 2 sz ¢'(’E) 2 0.

16



and

- either () <A? or  @'(m)<0.

Hence, by Lemma 2.1, x* € [k, m].
But. since ¢ is a convex function, uf > a°, contradicting the fact that sl < uf.
Therefore (i) is proved.
Now, let us prove (ii). By Steps 3 and 4 of the algorithm, we see that

® %
Jim (e — f) = 0.

Therefore. there exists y” such that

o= lim py = lim gl
Hence,
(3.4) P(u) = lim o(pm) 2 a?
(3.5) #'n7)= }_ig?' (me) > 0.

We consider two possibilities:
(a) There exists a subsequence uf , j =0.1,2,... of (ux) such that

wlug) < A%
(b) For all uk generated in Phase 2 of Algorithm 2.1, we have p(uf) > A%
Assume first that (a) holds. Then

(3.6) Pln7) = lim p(uf,) < A%,
Now,if(b)holds,itfollowsthu«p’(p{')SGbranp{'. Hence,
(3.7) ¢'(u7) = lim ¢'(u,) < 0.

17



Thus, (ii) follows from (3.4) - (3.7).
Finally, (iii) follows from Theorem 2.3 and the fact that ¢/(4°) = 0 is & sufficient
condition for p* Lo be a local minimizer of ¢. o

Remark. The efficiency of Algorithm 2.1 depends entirely of the way ji is chosen at Step
3 of Phase 1 and at Step 3 of Phase 2. Using the particular shape of ¢ it seems that
its approximation b\ a rational function is recommended, as in the Hebden-Moré scheme
(see (10, 13]) for finding global minimizers of 2.1.

4. Application to the Subproblem in the CDT Method
At each iteration of the CDT method for equality constrained minimization (1] a
problem of the followmmg type must be solved:
Minimize s7Gs+ ¢7s

(4.1) st ||JAs—b]] <0,

fisil <A

where G is as in (2.2), (2.3), A € R™*" and the region defined by the two constraints is
known to have nonvoid interior. A completely satisfactory algorithm for solving (4.1) is
not known (see [2, 14, 15, 16]). However, El Alem [6] proved that global convergence of
the CDT algorithm is obtained if a feasible point for (4.1) is found such that:

(4.2) Gs+g+ps+pAT(As—b) =0

with g, p > 0.
Here we propose an algorithm for ahtaining a feasible point which satisfies (4.2) and
18 probably a good approximation 1o the salution of (4.1) in a finite number of steps.

Algorithm 4.1.
Set p=0.
Step 1. Find s,, a global solution, and {s,,...,s,} a set of global or local solutions of
Minimize 1s7Gs + g7+ p||As - bff*

e st ol <A

18



Step 2. If. foralli = 1....,q, [|As, — b > 0, go to Step 4.

Step 3. Choose
RS s = Argmin {2e7Gs; + ¢ ||| As; — bl < 6).
Stop.

Step 4. p ~— max{10.10p}. Go to Step 1.
»

The following theorem states that the desired step 5 is obtained in a finite number of
steps.

Theorem 4.1. After a finite number of steps, algorithm 4.1 obtains a feasible s satisfying
(4.2).
Proof. Consider the following auxiliary problem:
Minimize [|As— b||
e st lsll € A
Assume that, at any global minimizer 3 of (4.5), we bhave
1145 — bj] = m.

Since the feasible region of (4.1) has interior points, we must have m < 4.
Now. let p, a sequence of positive numbers such that p, — co. and let s; be a global
solution of

Minimize %s’Ga + ¢T3+ m[l|As — B|? = m?)

(4.6)
st |lsll € A.

Using standard external penalization theory (see [7, 11]) we verify that any limit point of
(%) is a global solution of:

Minimize %STGI - grl
(4.7) st |lsll < A,

[1As = Bf* = m?.
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Therefore. for some k. the solution of (4.6) satifies

l1Asy = BiF < m? + (& —m?) < &.

Since (4.6) is equivalent to (4.3), this reasoning applies to the successive solutions of (4.3)
in Algorithm 4.1. Therefore, the algorithm stops.

But, if s is (local or global) solution of (4.3). we have, by standard (Lagrange multiplier
theory. that (4.2) holds. Hence. the proof is complete. o
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