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Abstract: In previous paper (Rodrigues et al (1)] , we 
characterized a space time theory T as the theory of a 
species of structure in the sense of ~urbakí (2). We suc-
ceded in this way in g1v1.ng precise mathematical and 
physical meaning to the concepts, of covariance and invari-
ance of T and in introducing the fundamental notion of 
equivalent reference frames, which are time-like vector 
fie lds X E TU, U M, where M is part of the space-time 
substructure ST(l,2) for each r EModT. ln particular we 
showed in the quoted reference that a space-time theory T 
admits a Principle of Relativity only if GXT (the equiva-
lence group of the class of reference frames of kind X ac-
cording to T) is different from the identity for some X. 
Here, after remembering the definition of reference frames 
appropriated for relativistic space-time l Rodrigues and 
Faria-Rosa (3) and also (1) ) , we prove that there are 
models of General Rel~tivity with a canonically privileged 
reference frame (cprf). The precise meaning of the cprf is 
given through Propositions 3 and 4. We show that the cprf 
can be physically distinguished from any other reference 
frame with the performance of mecbanical experimente (Prop-
osition 4). Although the predicted effects are perhaps very 
small to be detected within present technology,our resulte 
show tbat no Principle of General Relativity (meaning phys-
ical equivalence of all reference frames) holds for General 
Realativity. Of particular importance is that even locally 
inertial reference frames are not equivalent. 



1. THE CONCEPT OF REFERENCE FRAMES IN RELATIVISTIC SPACE-
TIME THEOlUES 

Let T be a space time theory as defined io (1). Let ModT 
be the class of all models of T. Tis said to be a rela-
tivistic theory if each T EModT contains a substructure 
ST <M,g,D) that is a relativistic space-time, as defined 
in (1,2) and in Sachs and Wu (4). We remember here that g 
is a Lorentz metric and D is the Levi-Civita connection 
of g on M. 

Definition 1. Let ST be a relativistic space-time. A mov-
ing frame, ~in x EM, is an orthonormal basis for the tan-
gent space T M. 

X 

Proposition 1. Let Q E TM be a time-like vector field such 
that g(Q,Q) = 1. Then for each x EM there exists in a 
neigbouhood U of x three space-like vector fields such 
that together with Q determine a moving frame for each x E 
EU. (The proof is trivial) 

Definition 2. A particle in ST is a pair (m,O) where o: 
ll :::> I -M is a future pointing causal curve {1,3,4] and 
m E ( O,+ui ) is the rest ma.se. When m • O the particle ia 
called a pboton . When m E (O,+m) the particle is said to 
be a material particle. a is said to be tbe world line of 
the particle. 

The relation between m 1 O and O is given by: 

Proposition 2. For each pair (x,m), x E M , m E(0,+00), there 
exists a unique curve o: R J I-+ M with closed image a(I) 
such that Vu E I a*u is future pointing and g{o*u, *u)=m2 . 

The proof of Proposition 2 can be constructed as an exten-
sion of Proposition 0.21 of (4). Quantify ª•º is called 
the momentum of the particle. 

Definition 3. An observer in ( M,g,D} is a future pointing 
time-like curve y: R J I-+ M auch tbat g(y*u,y*u) • 1. 
The inclusion para111eter I -+ 1. in this case is cal led the 
proper time along y, which is said to be tbe vorld line of 
the observer. 

Observation 1. The physical meaning of proper time is 
cussed in details in (3) which deals witb the theory 
time in relativistic tbeories. 

z. 
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Definition 4. An instantaneous obs,erver is an element of 
TM, i.e.~ apair (z,Z), z EM; and 'ZETK i s a future 
pointing time-like vector. z 

The Proposition 1 together with the above definitions sug-
gests: 

Defínition 5. A reference frame in ST s ( M,g,D) is a ti-me-
like vector field in TU, U f. M such that each one of its 
in tegral lines is an observer. 

2. CANONICALLY PRIVILEGED FRAMES IN GENERAL RELA.TIVITY 

Einstetn' s General Relativity T~ is a theory of the grav-
itstional field [Weinberg (5) and also (4)) .Tben a typical 
model 't EModTE is of the form 't • <M,g,D, T, { (m, cr )}) , 

where ST ,. (M,g,D> is a relativistk space-time and T e 
E secT*M XT*M is said to be tbe energy momentum tensor. 
T represents tbe material and energetic content of space-
time, including contributions from all physical fields(with 
exception of the gravitational field) and particles. For 
what follows we do not need knowing the explicit fora of 
T. The proper axíoms of TE are: 

D(g) 1 = O; G = Ric - 2 Sg = T (l) 

G is said to be the Einstein tensor. ltic is the Ricci ten-
sor, S is the scalar curvature. The equat:ion of motion of 
a particle (m,o) that moves only under the illfluence of 
gravitation is: 

(2) 

ST is in general not flat • which implies that (in general) 
there do not exíst inertial reference frames i, i.e., refer-
ence • trames such that (Di) "" O YxE K. The reference frame:s X -

more similar to t:be inertial reference frames of flat ~ce-
time are given· by: 

Definition 6. A reference frame i ETU,U K is said to be 



locally inertial if D, i., =- O 
l z_ " 

and 

Yx EU and ªi • g(iz,)• 

Observation 2. ln (1,3) we classify an arbitrary reference 
frame Q either according to its synchronizability or ac-
cording to the decomposition of Da,a • g(Q, ). This last 
decomposition ~hows that the reference frames can be char-
acterized for each EModTE according to their accelera-
tion, rotation, shear and expansion in an absolute way (1, 
3,4). It follows that in general different reference frame 
cannot be physically equivalent according to thedefinition 
of physical equivalence presented in (1,3). From this it 
follows that there does not exist a Principle of General 
Relativity in TE. 

Now, the physical universe we live in is well represented 
by metrics of the Robertson-Walker-Friedman type (6). ln 
particular a very simple space-time structure ST • <M,g,D> 
that represents the main properties observed is formulated 
as follows: Let M .. R3 x I,ICI. and R: I (0, 00),t R(t) 
and define g in M(considering M as a subset of 1l4) by: 

Then g is a Lorentzian metric in M and 
like vector field in (M,g). Let <M,g,D} 
time by a/at and space-time oriented by 
Then (M,g,D} is a relativistic space-time 
We have the 

(3) 

a/at is a time-
be oriented in 
dt l\dxll\dx2,.,dx3. 

for I • (O,m). 

Proposition 3. Let V ETK be a future pointing time-like 
vector field, g(V,V) • 1, and an eigenvector of Einstein'• 
tensor G in the sense tbat 

G(V, ) "" fg(V • ) (4) 

for some real function f: M R. Then V • 3/at. 

Proof: First we need to calculate the Einstein'• tensor C 
for the metric given by eq.(3). We get: 

G • 3R.2R -ldtGtdt • R • R (5) ' dt 
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Using eq.(5) iu eq.(4) we obtain: 

(6) 

and then for ea.ch x E K we have 

dt(V)dt = ag(V, ) ; a • (7) 

ln eq.(7) a E R. Also dt(V) • O since dt and V are time-
li'.ke. Then dt = bg(V, ); a.. ::>b ./-O, wbich implies (V) = 

X 
= e(cl/;)t) for some 1l :, e I O and since V is normal ized 

X 

and future pointing then e• 1. Since the 
is valid Vx E M, then V • 9/élt. 

above argument 

Observation 3. Proposition 3 appears in a particular foraa 
and in a very different context in (4). 

We shall say tbat V • cl/élt is canonically preferred or 
privileged in the matbematica.l sense that it c.an be 
defined, in the particular T E Mod TE above, only in terms 

of the metric tensor g and the time orieotation, without 

any reference to structure.s that 1.4 possesses but K does 
not. 

We can show very easily that V= 'à/élt is a locally iner-
tial reference frame. It is canonically privileged in the 
physical sense that there are no other reference frame 
physically equivalent to it, as proved in Proposition 4. 
Of course, we DRJst only show that any otber locally iner-
tial reference frame is not equivalent to V. 

3. PHYSICAL NON EQUIVALENCE OF LOCALLY IMERTIAL REFEREBCE 
FRAMES 

Propqsition 4. ln the space-time defined by eq.(2) whicb 
is a model of TE locally inertial reference frames are 

not physically equivalent. 

The proof of Proposition 4 can be obtained immediately 
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with the methodology of (1) . Here we prove the validity 
of the proposition, following Rodrigues (6), i.e.,by show-
ing that there are mechanical experiments that can distin-
guish between two locally inertial frames, V s 3/3t and 

(8) 

ln eq. (8) R is the function defined by eq, (2) and B. :, u 'l-0 
is a constan~ with the physical meaning of coordinate ve-
locity of Z relative to V. To prove Proposition 4 we need 
the concept of naturally adapted coordinate system to a 
reference frame Q(nacs/Q). This concept has been originally 
introduced in (1,3). We have: 

Definition 7. Let Q E TU,UC M. A chart in U of the maxi-
mal oriented atlas of M is-said to be a (nacs/Q) if in 
the natural coordinate basis of TU associated with the 
chart the space-like componente of Q are null. 

Proof of Proposition 4: (i) We start by finding a (nacs/Z). 
To do that we note that, if y is an integral curve of 
Z , tbeu its parametic equationa can be wri tten as 

d 1 u 2 3 - x o y .. -__,,--....,.....,,.....,.. x oy • O·, x oy - o 
dt R(R2+u2) 1/2 ' 

(9) 

(The direction 1 x o y 1s obviously arbitrary) 
choose 
3' 

for (nacs/Z) the coordinate functions 
x ) given by: 

t 
l' l fo dt 

1 2' 
X • X - u 

R(R2+u2) 1/2 ; X 

t 
3' 3 

We then 
• l' 2' (t ,x ,x 

2 
• X 

l' 
X • X ; t' • ·fo dt R(R2+u2)-l/2 - ux (10) 

We then get: 
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- d 1 • 2 -1/2 
where R(t') •R(t(t')) and v-=R( dt x o y)t=O= u(l+u ) 
is the initial metric velocity of Z relative to V. 

(ii) The solution of the equation of a>tion for a free par-
ticle (m,o) in V, witb the initial conditions:xi oo(O) cO, 

• d i i d • i = 1, 2, 3 and dt x O O ( 0) = U 3/3x and d t O O ( 0) = 0, 
j;i, is given by an equation analogous to eq. (9). The ac-

d2 • 
celerations are such that - xl o o(t) • O for j; i. 

dt2 

(iii) The solution of the equation of motion for a free 
particle (m,o') in Z can be found in the case R(t) • 1 + 

11 2' + At + ••• , A << 1. We get for motion in tbe (x , x ) plane: 

(a) 
- d 2' d 1' - d l' 

lf R(êft x oo')t-o• O; R.(dt x oo')t-o• v; R. dtx ocr (t')•v1, 
the measured acceleration in Z vill be: 

(b) 

If -R( d l 1 1 ) O ( d , ) - d 2' , ( 1 ) , 
dt x ºª t-0- ; R. dt x 00 t-0-v; R dt x 00 t -v2' 

the measured acceleration in Z will be: 

d2 - l' 2 1/2 
--2 (R x o o'(t')) • v Avi'º - x ) ; 
dt 

d 2 - 2' 2 2 l/2 -2(R x o o'(t')) • -A•2'(1 - v' )/(1 - v) (13) 
dt 2 

From (ii) and equations (12) and (13) ia follows that V and 
and Z are not pbysically equivalent. 
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4. CONCLUSIONS 

We noticed that reference frames in ST "" (M,g,D) can be 
classified according to their acceleration, rotation, shear 
and expansion (these concepts being absolute ia the sense 
that they depend only on D) or according to their synchro-
nizability. This means that, given two arbitrary reference 
frames, they are uot in general physically equivalent sc-
cording to the definitions of (1,3). ln this paper. even 
without using the methodology of (1,3), we succeded in 
proving (Proposition 4) that there are models of TE in 
which even locally inertial reference frames are not equiv-
alent. We conclude that no Principle of Relativity (ia the 
sense of the physical equivalence of all reference frames) 
hold for TE. All reference frames are however mathemati-
cally equivalent, a trivial consequence of the mathemati-
cal structure associated with TE (general covariance ac-
cording to the metbodology of (1)). Of course physical 
equivalence and mathematical equivalence are completely 
different concepts, it being a misanderstanding trying to 
associate general covariance witb a Principie of Relativ-
ity 

According to Einstein (7,8,9,10,11,12,13,14,16)Generai rel-
ativity is a theory of the aether! Bowever, Einstein had 
the wrong opinion that it would be impossible to associate 
a privi.leged reference frame to the aether and then that 
his "reladvistic aether would not violate the Principle of 
Relativity. For more details on this point see Kostro (17) 

In a letter by Einstein to Lorentz (17) we read: 

,. the general relativity tbeory is nearer to an aether 
hypothesis than is special relativity theory. However, this 
new aether theory would not violate the principie of rela-
tivity, because its state gµv '"' aether would not be of a 
rigid body in an indevendent state of motion,but its state 
of motion would be a function of position determined via 
material processes." 

We see· that the origin of Einstein's wrong statement is 
the fact that he did not know how to characterize mathemat-
ically reference frames. lf he knew that a reference frame 
must be characterized by a time-like vector field Q E TM, 
as done above, he would realized from the decomposition of 
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pa, a = g(Q,, ) that in General Relativity reference frames 
(in general) do not have the properties of rigid bodies. 
From our analysis in (1,3) and also in Rodrigues and Tiommo 
(18,19), Maciel and Tiommo (20) and Witenberg (21), we ar-
rive at the conclusion that even breakdown of Lorentz in-

variance i$ to be expected in experiments involving the 
coupling of light and the roto-translational motion of 
solid bodies. 
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