SLICE-PRODUCTS IN BIVARIATE APPROXIMATION

João B. Prolla

RELATÓRIO TÉCNICO Nº 28/88

ABSTRACT: Let $\{n_k\}$ and $\{m_j\}$ be two sequences of non-negative integers. Let G, H and W be the closed linear span of the sets $\{s^{n_k}: k=1,2,3,...\}, \{t^{m_j}: j=1,2,3,...\}$ and $\{s^{n_k}t^{m_j}: k, j=1,2,3,...\}$ in C(S), C(T) and $C(S\times T)$, respectively, where S and T are closed and bounded intervals in \mathbb{R} . We give conditions under which W is equal to the slice—product G # H. Recall that a function $f \in C(S\times T)$ belongs to G # H, by definition, if and only if, for every pair $(s,t) \in S \times T$, the sections f_t and f_s belong to G and G and G is the mapping G and G and G is the mapping G and G and G is the mapping G and G and G are G and G and G and G are G and G and G are G and G and G are G and G are G and G are G and G and G are G are G and G and G are G are G and G are G are G and G are G and G are G and G are G and G are G are G are G and G are G and G are G are G are G are G and G are G are G are G and G are G are G are G are G and G are G and G are G are G are G are G are

Universidade Estadual de Campinas
Instituto de Matemática, Estatística e Ciência da Computação
IMECC — UNICAMP
Caixa Postal 6065
13.081 — Campinas — SP
BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade do autor.

Dezembro - 1988

Slice-Products in Bivariate Approximation

João B. Prolla

§1. Introduction

Suppose S and T are closed and bounded intervals in \mathbb{R} . Let C(S), C(T) and $C(S \times T)$ be the corresponding spaces of continuous real-valued functions. Let $\{n_k\}$ and $\{m_k\}$ be two sequences (finite or infinite) of non-negative interges, and consider the linear span W of $\{s^{n_k}t^{m_j}; k, j=1,2,3,\ldots\}$. We are interested in finding its uniform closure \overline{W} in $C(S \times T)$. In general W is not an algebra and we cannot use the Stone-Weierstrass theorem to describe its uniform closure. However, if the set $N=\{n_k; k=1,2,3,\ldots\}$ is such that $N+N\subset N$, then the linear span G of $\{s^{n_k}; k=1,2,3,\ldots\}$, is an algebra, even though W is still not an algebra. Using a vector-valued version of the Stone-Weierstrass Theorem (see Theorem 3 below) we describe the uniform closure of W in $C(S \times T)$ as the set of all functions $f \in C(S \times T)$ such that, for every pair of points $(s,t) \in S \times T$, the section $x \in S \mapsto f(x,t) = f_t(x)$ belongs to the uniform closure of G, and the other section $y \in T \mapsto f(s,y) = f_s(y)$ belongs to the uniform closure of the linear span of $\{t^{m_k}; k=1,2,3,\ldots\}$ in C(T). (See Theorem 2 below.)

To state an abstract version of the above bivariate polynomial approximation problem let us first introduce some notation. Throughout this paper, whenever X is a compact Hausdorff space, and E is a normed space, C(X;E) denotes the normed space of all continuous functions $f:X\to E$ equipped with the topology of uniform convergence, given by the sup-norm

$$||f|| = \sup\{||f(x)||_E; x \in X\}.$$

When $E = \mathbb{R}$, we write $C(X) = C(X; \mathbb{R})$.

Suppose now that S and T are two compact Hausdorff spaces, and that two non-empty subsets $G \subset C(S)$ and $H \subset C(T)$ are given. We are interested in the following bivariate approximation problem:

Q. Which functions $f \in C(S \times T)$ can be uniformly approximated on $S \times T$ by functions of the form

$$w(s,t) = \sum_{i=1}^{n} g_i(s)h_i(t)$$

where $g_i \in G$, $h_i \in H$ (i = 1, ..., n), and $n \in \mathbb{N}$ is arbitrary.

Let us denote by $G \otimes H$ the subset of $C(S \times T)$ of such functions w(s,t), and by $G \otimes H$ its uniform closure in $C(S \times T)$. Then our problem can be stated as follows.

Q. Characterize those $f \in C(S \times T)$ that belong to $G \overline{\otimes} H$.

In order to answer this question, let us recall the definition of the slice-product G=H introduced by Eifler [4]: a function $f\in C(S\times T)$ belongs to G#H if, and only if, for every pair (s,t) its sections f_s and f_t belong to H and G respectively, where f_s is the mapping $y\in T\mapsto f(s,y)$, and f_t is the mapping $x\in S\mapsto f(x,t)$. Clearly, the following inclusions hold

General way born and sale on
$$G\otimes H\subset G\# H\subset \overline{G}\# \overline{H}$$

where \overline{G} (resp. \overline{H}) denotes the uniform closure of G (resp. H) in C(S) (resp. C(T)). On the other hand, the slice-product of two closed sets is closed. Hence

Our objective is to find properties of G and H that will make true the equality

$$(u) = (u,v) \longrightarrow \mathbb{T} \ni u$$
 notices $\mathbb{T}^{d} G \otimes H = \overline{G} \# \overline{H}.$

If both G and H are unital subalgebras, then $G \otimes H$ is a unital subalgebra of $C(S \times T)$ and the classical Stone-Weierstrass theorem for subalgebras describes $G \overline{\otimes} H$, and it is easy to prove that $G \overline{\otimes} H = \overline{G} \# \overline{H}$. But when G or H is not assumed to be an algebra, then that theorem cannot be used because now $G \otimes H$ is not a subalgebra of $C(S \times T)$. However a stronger version of that theorem, namely its vector-valued version for modules solves the problem if G or H is assumed to be a subalgebra. Notice that in this case $G \otimes H$ is a vector subspace of $C(S \times T)$. We state our solution when G is assumed to be a subalgebra, but of course a similar proof establishes the same result when H is assumed to be a subalgebra (and G is arbitrary).

Theorem 1. If G is a subalgebra of C(S) and H is a non-empty subset of C(T), then

 $G \otimes H = \overline{G} \# \overline{H}.$

We will postpone the proof of Theorem 1 and will first establish some corollaries in bivariate polynomial approximation.

Theorem 2. Let $\{n_k\}$ and $\{m_k\}$ be two sequences of non-negative integers, and assume that $n_1 < n_2 < \cdots < n_k < \cdots$ and $N = \{n_k; k = 1, 2, 3, \ldots\}$ is such that $N + N \subset N$. Let S and T be two closed and bounded intervals in R. The closed linear span of the set $\{s^{n_k}t^{m_j}; k, j = 1, 2, 3, \ldots\}$ in $C(S \times T)$ is V # W, where V is the closed linear span of $\{s^{n_k}; k = 1, 2, 3, \ldots\}$ in C(S), and W is the closed linear span of $\{t^{m_j}; j = 1, 2, 3, \ldots\}$ in C(T).

Proof. Let G be the linear span of the set $\{s^{n_k}; k=1,2,3,\ldots\}$ in C(S), and let H be the linear span of $\{t^{m_k}; k=1,2,3,\ldots\}$ in C(T). Then $G\otimes H$ is the linear span of $\{s^{n_k}t^{m_j}; k, j=1,2,3,\ldots\}$ in $C(S\times T)$. The semi-group property $N+N\subset N$ implies that G is a subalgebra of C(S). By Theorem 1, $G\otimes H=\overline{G}\#\overline{H}=V\#W$. \square

The strong version of the Stone-Weierstrass theorem that we will use in the proof of Theorem 1 is the following. (See Theorem 1.26, Prolla [8]).

Theorem 3. Let X be a compact Hausdorff space and let E be a normed space. Let W be a vector subspace of C(X; E) which is an A-module for some subalgebra $A \subset C(X)$, i.e., $AW \subset W$. Then, for each $f \in C(X; E)$, there exists some equivalence class $|x| \pmod{A}$ such that

$$dist(f; W) = dist(f[x]; W[x]).$$

Let us explain the notation used above. For each $x \in X$, we denote by [x] the equivalence class of x modulo the following equivalence relation:

$$x \equiv y \pmod{A} \Leftrightarrow \varphi(x) = \varphi(y)$$
 for all $\varphi \in A$.

Then $[x] = \{y \in X; \ \varphi(x) = \varphi(y) \text{ for all } \varphi \in A\}$. Notice that [x] is closed in X, and therefore a compact Hausdorff space. For every function $f \in C(X; E)$, we denote by f[x] the restriction of f to [x]. Then f[x] belongs to C([x]; E). Finally, if $W \subset C(X; E)$ then

$$W[x] := \{g[x]; g \in W\} \subset C([x]; E)$$

and dist(f|x|; W|x|) is measured in the space C(|x|; E). Hence

$$\begin{aligned} \operatorname{dist}(f[x]; W[x]) &= \inf_{g \in W} ||f[x] - g[x]|| = \\ &= \inf_{g \in W} \sup_{y \in |x|} ||f(y) - g(y)||_{\mathcal{E}}. \end{aligned}$$

When [x] is the singleton $\{x\}$ one identifies f[x] with f(x) and W[x] with the subspace $W(x) = \{g(x); g \in W\} \subset E$.

Not only Theorem 3 will be used in the proof of Theorem 1, but it can be used to find dense subspaces of C[a, b] which are not subalgebras.

Theorem 4. Let $M = \{m_k\}$ be a sequence of positive integers in arithmetic progression, with $m_{k+1} - m_k = r$ (k = 1, 2, 3, ...).

- (a) If r is an odd positive integer, let T = [c, d] C R.
- (b) If r is an even positive integer, let $T = [c, d] \subset \mathbb{R}_+$ or $T = [c, d] \subset \mathbb{R}_-$.

Let W be the linear span of $\{t^{m_1}, t^{m_2}, \dots, t^{m_k}, \dots\}$ in C(T). Then

- (1) if $0 \notin T$, W is dense in C(T);
- (2) if $0 \in T$, W is dense in the set $\{f \in C(T); f(0) = 0\}$, and the linear span of $\{1, t^{m_1}, t^{m_2}, \dots, t^{m_k}, \dots\}$ is dense in C(T).

Proof. Let A be the algebra of all multipliers of W:

$$A = \{ \varphi \in C(T); \varphi g \in W \text{ for all } g \in W \}.$$

Clearly, the function t^r belongs to A. In both cases (a) and (b), the function t^r separates the points of T. Hence, for any $t \in T$, [t] (mod. A) is the singleton $\{t\}$.

Case (1). Then $W(t) = \mathbb{R}$ for all $t \in T$ and by Theorem 3, W is dense in C(T), since $\operatorname{dist}(f(t); W(t)) = 0$, for all $t \in T$.

Case (2). Then $W(t) = \mathbb{R}$ for all $t \neq 0$, and W(0) = 0. By Theorem 3, $\operatorname{dist}(f;W) = |f(0)|$ for all $f \in C(T)$. Therefore W is dense in $\{f \in C(T); f(0) = 0\}$, and the linear span of $\{1, t^{m_1}, t^{m_2}, \ldots, t^{m_k}, \ldots\}$ is then dense in C(T). \square

Theorems 1 and 4 can be combined together to get further bivariate or multivariate results. As an example we have the following.

Corollary 1. Let $N = (n_k)$ and $M = (m_k)$ be two sets of strictly increasing positive integers such that $N + N \subset N$ and the m_k 's are in arithmetic progression, with $m_{k+1} - m_k = r$ (k = 1, 2, 3, ...).

Let $S = [a, b] \subset \mathbb{R}$ and $T = [c, d] \subset \mathbb{R}$ be two closed bounded intervals such that:

- (a) if all the n_k 's are even, then $S \subset \mathbb{R}_+$ or $S \subset \mathbb{R}_-$
- (b) if r is even, then $T \subset \mathbb{R}_+$ or $T \subset \mathbb{R}_-$.

Let G be the linear span of $\{1, s^{n_1}, s^{n_2}, \ldots s^{n_k}, \ldots\}$ is C(S), and let H be the linear span of $\{t^{m_1}, t^{m_2}, \ldots t^{m_k}, \ldots\}$ in C(T). Then

- (1) if $0 \notin T$, then $G \otimes H = C(S \times T)$;
- (2) if $0 \in T$, then $G \otimes H = \{ f \in C(S \times T); f(s,0) = 0 \text{ for all } s \in S \}$, and $G \otimes H_1 = C(S \times T)$ where H_1 is the linear span of $\{1, t^{m_1}, t^{m_2}, \ldots, t^{m_k}, \ldots \}$ in C(T).

§2. Proof of Theorem 1

Let us identify $C(S \times T)$ with C(S; C(T)) in the usual way: with each $f \in C(S \times T)$ associate $\hat{f} \in C(S; C(T))$ defined as follows: for each $s \in S$, $\hat{f}(s) = f_s$, where f_s is the section of f defined by $f_s(t) = f(s,t)$ for all $t \in T$. Now $f_s \in C(T)$, and the mapping $s \mapsto f_s$ is continuous. Moreover the mapping $f \mapsto \hat{f}$ is a linear isometry of $C(S \times T)$, onto C(S; C(T)).

Let $W=(G\otimes H)^{\sim}$. Notice that W is a G-module. Let $s\in S$, and let [s] be its equivalence class (mod. G). Notice that every element of G is constant on [s]. Hence the same is true of every element of \overline{G} , the uniform closure of G.

Claim (1). If $f \in \overline{G} = \overline{H}$, then \overline{f} is constant on [s], and its constant value is f, which belongs to \overline{H} .

Proof. Let $x \in |s|$. Then

$$f_s(t) = f(s,t) = f_t(s) = f_t(x) = f(x,t) = f_x(t)$$

for each $t \in T$, because $f_t \in \overline{G}$. Hence

$$\tilde{f}(x) = f_x = f_s = \tilde{f}(s)$$

for all $x \in [s]$.

Claim (2). If all $g \in G$ vanish on [s], then f[s] = 0, for all $f \in \overline{G} \# \overline{H}$.

Proof. Assume $\tilde{f}[s] \neq 0$. Since $\tilde{f}[s] = f_s$, there exists some point $t \in T$ such that $f(s,t) \neq 0$. But $f_t \in \overline{G}$ and therefore f_t vanishes on |s| too, i.e., f(s,t) = 0. This

contradiction shows that $\tilde{f}[s] = 0$.

Claim (3). If all $g \in G$ vanish on [s], then $W[s] = \{0\}$. Otherwise W[s] = H.

Proof. The first part of Claim (3) follows from $W \subset (\overline{G}\#\overline{H})^{\sim}$ and Claim (2). Suppose now that $g(s) \neq 0$ for some function $g \in G$. Let $h \in H$ be given. Then $f = v \otimes h$ belongs to $G \otimes H$, where $v = (g(s))^{-1}g$. Now $\tilde{f}[s] = h$. Hence W[s] = H.

We can now finish the proof of Theorem 1. Let $f \in \overline{G} \# \overline{H}$. By Theorem 3, applied to the G-module $W = (G \otimes H)^{\sim}$, there is some equivalence class [s] (mod. G) such that

 $\operatorname{dist}(\tilde{f}; W) = \operatorname{dist}(\tilde{f}[s]; W[s]).$

Case 1. All $g \in G$ vanish on [s].

By Claim (3), $W[s] = \{0\}$, and by Claim (2), $\tilde{f}[s] = 0$. Hence $\operatorname{dist}(\tilde{f}[s]; W[s]) = 0$.

Case 2. For some $g \in G$, $g(s) \neq 0$.

By Claim (3), W[s]=H. On the other hand $\tilde{f}[s]=f_s$ belongs to \overline{H} . Hence $\operatorname{dist}(\tilde{f}[s];W[s])=0$.

In both cases we conclude that $\operatorname{dist}(\widehat{f},W)=0$, and so \widehat{f} belongs to the closure of $W=(G\otimes H)^{\sim}$. Since the mapping $f\mapsto \widehat{f}$ is an isometric isomorphism, f belongs to the closure of $G\otimes H$. Hence $\overline{G}\#\widehat{H}\subset G\overline{\otimes}H$.

§3. Grothendieck's Approximation Property

The following result shows that to find a closed vector subspace $G \subset C(S)$ such that $G \otimes H$ is properly contained in G # H for some closed vector subspace $H \subset C(T)$ is equivalent to find such a G without Grothendieck's approximation property.

Theorem 5. For a closed vector subspace $G \subset C(S)$, S compact, the following are equivalent:

- (a) G has the approximation property;
- (b) for every Banach space E, the space $G \otimes E$ is dense in

$$\{f \in C(S; E); \varphi \circ f \in G, \text{ for all } \varphi \in E^*\};$$

(c) for every compact Hausdorff space T and every closed vector subspace $H \subset C(T)$, $(G \overline{\otimes} H)^{\sim} = \{ f \in C(S; H); \varphi \circ f \in G, \text{ for all } \varphi \in H^{\circ} \};$

(d) for every compact Hausdorff space T and every closed vector subspace $H \subset C(T)$, $G \otimes H = G \# H$.

For a proof see Grothendieck [5], Bierstedt [1] and Prolla [8].

Corollary 2. Every closed subalgebra $G \subset C(S)$, S a compact Hausdorff space, has the approximation property.

The proof of Corollary 2 depends on Theorem 5 whose proof uses several tools from Functional Analysis. Hence an elementary direct proof that any closed subalgebra $G \subset C(S)$ has the approximation property is desirable. Let us recall the definition of the metric approximation property. Let $\lambda \geq 1$. We say that a Banach space E has the λ -bounded approximation property (λ - b.a.p. for short) if, for every totally bounded subset $B \subset E$ and every $\varepsilon > 0$, there is a continuous linear operator $T: E \to E$ of finite rank such that $||x - Tx|| < \varepsilon$, for all $x \in B$, and $||T|| \leq \lambda$. We say that E has the metric approximation property if it has the λ - b.a.p. for $\lambda = 1$.

Lemma 1. Let $A \subset C(S)$ be a closed subalgebra containing the constants, and let $x \in S$ be given. If N(x) is an open neighborhood of [x] (mod. A), there exists an open neighborhood W(x) of [x], contained in N(x), and such that, for each $0 < \delta < 1$, there is $\varphi \in A$ such that

- (1) $0 \le \varphi(s) \le 1$, for all $s \in S$;
- (2) $\varphi(t) < \delta$, for all $t \notin N(x)$;
- (3) $\varphi(t) > 1 \delta$, for all $t \in W(x)$.

Proof. The set $M = \{ \varphi \in A; \ 0 \le \varphi \le 1 \}$ is closed and has property V, i.e., $1 - \varphi$ and $\varphi \psi$ belong to M, whenever φ and ψ belong to M. The result follows from Lemma 1, Prolla [9]. \square

Lemma 2. Let A be as in Lemma 1. For each $x \in S$, let there be given an open neighborhood N(x) of [x] (mod. A). There exists a finite set $\{x_1, \ldots, x_m\} \subset S$ such that, given $0 < \delta < 1$, there are $\varphi_1, \ldots, \varphi_m \in A$ such that

- (1) $0 \le \varphi_i \le 1, i = 1, ..., m;$
- (2) $\sum_{i=1}^{m} \varphi_i(x) = 1$, for all $x \in S$;

(3)
$$0 \le \varphi_i(t) < \delta$$
, if $t \notin N(x_i)$, $i = 1, ..., m$.

Proof. Select $x_1 \in S$ arbitrarily. Let $K = S \setminus N(x_1)$. For each $x \in K$, select an open neighborhood W(x) by Lemma 1. By compactness of K, there exists a finite set x_2, \ldots, x_m in K such that $K \subset W(x_2) \cup \cdots \cup W(x_m)$. Let $0 < \delta < 1$ be given. By Lemma 1, there are ψ_2, \ldots, ψ_m in A such that $0 \le \psi_i \le 1$ and $\psi_i(t) < \delta$ for all $t \in N(x_i^n)$, and $\psi_i(t) > 1 - \delta$ for all $t \in W(x_i)$, $i = 2, \ldots, m$.

Define $\varphi_2 = \psi_2$, $\varphi_3 = (1 - \psi_2) \psi_3, \dots, \varphi_m = (1 - \psi_2) \cdots (1 - \psi_{m-1}) \psi_m$. Clearly, $\varphi_i \in A$ and $0 \le \varphi_i \le 1$ for all $i = 2, \dots, m$. Since

$$\varphi_2 + \cdots + \varphi_m = 1 - (1 - \psi_2)(1 - \psi_3) \cdots (1 - \psi_m)$$

can be easily verified by induction, let us define $\varphi_1 = (1 - \psi_2)(1 - \psi_3) \cdots (1 - \psi_m)$. Then $\varphi_1 \in A$, $0 \le \varphi_1 \le 1$ and $\varphi_1 + \varphi_2 + \cdots + \varphi_m = 1$. Hence (1) and (2) are verified. To prove (3), note that for each $i = 2, \ldots, m$ we have $\varphi_i(t) \le \psi_i(t) < \delta$ for all $t \notin N(x_i)$. On the other hand, if $t \notin N(x_1)$, then $t \in K$ and for some index $j = 2, \ldots, m$, we have $t \in W(x_j)$. Hence $\psi_j(t) > 1 - \delta$ and so $1 - \psi_j(t) < \delta$. Thus

$$\varphi_1(t) = (1 - \psi_j(t)) \prod_{i \neq j} (1 - \psi_i(t)) < \delta.$$

Theorem 6. Let S be a compact Hausdorff space and let $A \subset C(S)$ be a closed subalgebra. Then A has the 2-bounded approximation property. If A contains the constants, it has the metric approximation property.

Proof. Suppose A contains the constants. Let $\varepsilon > 0$ and $B \subset A$ a totally bounded subset be given. There is a finite set $F \subset B$ such that, given $f \in B$ there is some $g \in F$ with $|f(x) - g(x)| < \varepsilon/3$ for all $x \in S$. For each $x \in S$ define

$$N(x) = \{t \in S; |g(t) - g(x)| < \varepsilon/6, \text{ for all } g \in F\}.$$

Since F is finite, N(x) is open. Notice that if $t \in [x]$ (mod. A), then g(t) = g(x). Hence N(x) is an open neighborhood of [x] (mod. A). There exists a finite set $x_1, \ldots, x_m \in S$ with the property stated in Lemma 2. Let $M = \max\{||g||; g \in F\}$ and choose $0 < \delta < 1$ so small that $12 \, m \, M \, \delta < \varepsilon$. For this δ there are $\varphi_1, \ldots, \varphi_m \in A$ such that (1) - (3) of Lemma 2 are true. Define a linear operator $T: A \to A$ by setting

(*)
$$(Tf)(x) = \sum_{i=1}^{m} \varphi_i(x) f(x_i)$$

for all $f \in A$, $x \in S$. Clearly, T is a finite rank operator, and by (1) and (2), $||T|| \le 1$.

Let now $f \in B$. There exists some $g \in F$ such that $||f - g|| < \varepsilon/3$. Hence, for any $x \in S$,

$$|f(x) - (Tf)(x)| = |\sum_{i=1}^{m} \varphi_{i}(x)(f(x) - f(x_{i}))|$$

$$\leq \sum_{i=1}^{m} \varphi_{i}(x)|f(x) - f(x_{i})|$$

$$\leq \sum_{i=1}^{m} \varphi_{i}(x)||f(x) - g(x)| + |g(x) - g(x_{i})| + |g(x_{i}) - f(x_{i})||$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \sum_{i=1}^{m} \varphi_{i}(x)|g(x) - g(x_{i})|.$$

Let $I(x)=\{1\leq i\leq m;\ x\in N(x_i)\}$ and $J(x)=\{1\leq i\leq m;\ x\not\in N(x_i)\}$. For $i\in I(x)$, we have $|g(x)-g(x_i)|<\varepsilon/6$, and therefore

(a)
$$\sum_{i \in I(x)} \varphi_i(x) |g(x) - g(x_i)| < \frac{\epsilon}{6} \sum_{i \in I(x)} \varphi_i(x) \le \frac{\epsilon}{6}.$$

For $i \in J(x)$, we have $\varphi_i(x) < \delta$, and therefore

(b)
$$\sum_{i \in J(x)}^{t} \varphi_i(x) |g(x) - g(x_i)| < \delta \sum_{i \in J(x)} |g(x) - g(x_i)| < \delta m \ 2 \ M < \varepsilon/6.$$

From (a) and (b), $\sum_{i=1}^{m} \varphi_i(x) |g(x) - g(x_i)| < \varepsilon/3$, and so $||f - Tf|| < \varepsilon$.

Suppose now that A does not contains the non-zero constants. By the Stone-Weierstrass Theorem this is equivalent to say that $N \neq \emptyset$, where $N = \{x \in S; \ \varphi(x) = 0 \text{ for all } \varphi \in A\}$. Let $A_{\epsilon} = A \oplus I\!\!R$. Hence A_{ϵ} is a closed subalgebra containing the constants. Let $\epsilon > 0$ and $B \subset A$ a totally bounded subset be given. Clearly $B \subset A_{\epsilon}$. Apply the first part to $\epsilon/2$ and B. Let T be the operator defined in (*), which maps A_{ϵ} into A_{ϵ} . Each φ_{ϵ} is of the form $\varphi_{\epsilon} = \psi_{\epsilon} + \lambda_{\epsilon}$, where $\psi_{\epsilon} \in A$ and $0 \leq \lambda_{\epsilon} \leq 1$. Define $U: A \to A$ by setting

$$(Uf)(x) = \sum_{i=1}^{m} \psi_i(x) f(x_i)$$

for all $f \in A$ and $x \in S$. Since $\sum_{i=1}^{m} \varphi_i(x) = 1$ is true for all $x \in S$, choosing $x \in N$ we see that $\sum_{i=1}^{m} \lambda_i = 1$. Hence

$$|(Uf)(x)| \le |(Tf)(x)| + |\sum_{i=1}^{m} \lambda_i f(x_i)| \le ||Tf|| + ||f|| \sum_{i=1}^{m} \lambda_i \le 2||f||.$$

Hence $||U|| \leq 2$.

Let now $f \in B$. By the definition of T we have $|f(x) - (Tf)(x)| < \varepsilon/2$ for all $x \in S$. Choosing $x \in N$ we see that $|\sum_{i=1}^m \lambda_i f(x_i)| < \varepsilon/2$. Hence $||f - Uf|| < \varepsilon$ for all $f \in B$. \square

Remark. While for any *self-adjoint* closed subalgebra $G \subset C(S; \mathcal{C})$, Theorem 6 remains true, the situation for non-selfadjoint subalgebras is different. H. Milne [7] showed that there exists a *uniform algebra* $G \subset C(S; \mathcal{C})$ without the approximation property, where S is a compact subset of \mathcal{C}^n , $n \geq 1$.

§4. Semi-Algebras

To present further cases in which $G \otimes H = \overline{G} \# \overline{H}$, let us recall the following generalized Bernstein approximation theorem. (For a proof see Prolla [9], Theorem 1.)

Theorem 7. Let X and E be as in Theorem 3. Let W be a non-empty subset of C(X; E) such that $W + W \subset W$, and let $A \subset C(X; [0, 1])$ be a subset with property V and such that $AW \subset W$. Then, for each $f \in C(X; E)$, there is some equivalence class $[x] \pmod{A}$ such that

$$dist(f; W) = dist(f|x|; W|x|).$$

The definition of property V is as follows: a subset $A \subset C(X; [0, 1])$ has property V if, and only if, for every φ and ψ in A, the functions $1 - \varphi$ and $\varphi \psi$ belong to A.

Remark. Theorem 7 can be used to prove density of subsets $W\subset C[a,b]$ which are not vector subspaces. Take, for example, W to be the set of all polynomials with rational coefficients. Let $A=\{g\in W;\ 0\leq g\leq 1\}$. Then A has property V and $AW\subset W$. Moreover $W+W\subset W$. Now it is easy to find $g\in A$ of the form $x\mapsto px+q$, with $p,q\in Q$, and therefore each equivalence class $[x]\pmod A$ is the singleton $\{x\}$. On the other hand, $\overline{W(x)}=R$, for each $x\in [a,b]$. Hence $\mathrm{dist}(f;W)=0$ for all $f\in C[a,b]$.

Let us recall the definition of a semi-algebra (Bonsall [2]): a subset $G \subset C(S)$ is a semi-algebra if $G+G \subset G$, $GG \subset G$ and $\lambda G \subset G$, for all $\lambda \geq 0$. Clearly, if $A \subset C(S)$ is a subalgebra, then the set A^+ is a semi-algebra where $A^+ = \{g \in A; g \geq 0\}$.

We shall say that a semi-algebra G is of type V, if $\{g \in G; 0 \le g \le 1\}$ has property V. For any non-empty subset $X \subset S$, the set G of all $g \in C(S)$ such that

 $g(x) \ge 0$, for each $x \in X$, is an example of a closed semi-algebra of type V.

Theorem 8. If $G \subset C^+(S)$ is a semi-algebra of type V, and H is a non-empty subset of C(T), then

 $G \otimes H = \overline{G} \# \overline{H}$.

Proof. As in the proof of Theorem 1, let $W = (G \otimes H)^{\sim} \subset C(S; C(T))$. Since G is a semi-algebra, W is a convex cone, and therefore $W + W \subset W$. Let now $A = \{g \in G; \ 0 \le g \le 1\}$. Then $AA \subset A$ and $AG \subset G$. Therefore $AW \subset W$. Since G is of type V, the set A has property V. Let $f \in \overline{G} \# \overline{H}$. By Theorem 7, there is some equivalence class [s] (mod. A) such that $\operatorname{dist}(\hat{f};W) = \operatorname{dist}(\hat{f}[s];W[s])$. The proof that $\operatorname{dist}(\hat{f};W) = 0$ proceeds now exactly as in the proof of Theorem 1, if Claims (1) - (3) remain true when [s] is the equivalence class of s (mod. A).

Claim (1). Its proof depends on the fact that every element of \overline{G} is constant on [s]. To prove this, it suffices to show that every element of G is constant on [s]. But given $g \in G$, with $g \neq 0$, then $h = ||g||^{-1}g$ belongs to A, because $G \subset C^+(S)$ and $\lambda G \subset G$ for all $\lambda \geq 0$. Hence h is constant on [s], and therefore the same is true of g = ||g||h.

Claim (2). No change needed in its proof.

Claim (3). It suffices to notice that $v=(g(s))^{-1}g$ belongs to G, because g(s)>0. \square

If A is a unital subalgebra of C(S) then $G=A^+=\{g\in A;\ g\geq 0\}$ is a semi-algebra of type V. When B is a subalgebra of C(S), and $G=B^+$, then $G\ \overline{\otimes}\ H=\overline{G}\#\overline{H}$ is still true. The proof in this case proceeds as follows. Consider $W=(G\otimes H)^{\sim}\subset C(S;C(T))$. Let B_1 be the unital subalgebra generated by B and A_1 , and let

$$A = \{g \in B_1; 0 \le g \le 1\}.$$

Then $AW \subset W$, and A has property V. As in the proof of Theorem 8 the only thing to check is Claim (1), and again it suffices to show that every element of G is constant on $|s| \pmod{A}$. Take $g \in G$, $g \neq 0$. Then $h = ||g||^{-1}g$ is such that $0 \leq h \leq 1$ and $h \in G \subset B \subset B_1$. Hence $h \in A$ and h is constant on $|s| \pmod{A}$. Therefore the same is true for g = ||g||h.

Let us give an example in which the equality $G \otimes H = \overline{G} \# \overline{H}$ is true, but G is neither a subalgebra nor a semi-algebra. Take S = [0, 1], and T an arbitrary compact Hausdorff space. Let G be the set of all polynomials in the variable s with integral

coefficients. Then G is neither a subalgebra nor a semi-algebra, but $G\pm G\subset G$ and $GG\subset G$. Let $H\subset C(T)$ be any non-empty subset. Define

$$A = \{ \varphi \in C(S; [0, 1]); \varphi f + (1 - \varphi)g \in G, \text{ for all } f, g \in G \}.$$

Then $AG \subset G$ and A has property V. Moreover, for any $s \in S$, [s] (mod. A) is the singleton set $\{s\}$, because A contains the mapping $\varphi(x) = x$, for all $x \in S$. Now identify $C(S \times T)$ with C(S; C(T)) and let $W = (G \otimes H)^{\sim}$. Then $W + W \subset W$ and $AW \subset W$. Let now $f \in \overline{G} \# \overline{H}$. By Theorem 7, there is some $s \in S$ such that

$$\operatorname{dist}(\tilde{f};W) = \operatorname{dist}(\tilde{f}(s);W(s)).$$

Now $\tilde{f}(s)=f,\in\overline{H}$. Hence, for any $\varepsilon>0$ then is some $h\in H$ such that $||f_s-h||_{C(T)}<\varepsilon$. Let $u=1\otimes h$. Then $u\in G\otimes H$, and $\tilde{u}\in W$. Now $\tilde{u}(x)$ is the map $t\to u(x,t)=h(t)$. for each $x\in S$. In particular, $\tilde{u}(s)=h$. Hence $||f_s-\tilde{u}(s)||<\varepsilon$, and $\tilde{f}(s)\in\overline{W}(s)$. This shows that $\mathrm{dist}(\tilde{f}(s),W(s))=0$. Hence f belongs to the closure of W, and f belongs to $G\overline{\otimes} H$.

§5. Grothendieck Spaces

Let V be a vector subspace of C(X; E). The set G_V is by definition the set of all pairs (x, y) such that either

(1)
$$f(x) = f(y) = 0$$
 for all $f \in V$; or

(2) there exists $t \in \mathbb{R}$, $t \neq 0$, such that f(x) = tf(y) for all $f \in V$ and $g(x) \neq 0$ for some $g \in V$.

The set G_V is an equivalence relation for X. Define a map $\gamma_V: G_V \to \mathbb{R}$ as follows: $\gamma_V(x,y)=0$ if (1) is true, and $\gamma_V(x,y)=t$ if (2) is true. The subsets KS_V and WS_V of all pairs $(x,y)\in G_V$ such that $\gamma_V(x,y)\geq 0$ and $\gamma_V(x,y)\in \{0,1\}$, respectively, are likewise equivalence relations for X. (The letters G, KS and WS stand for Grothendieck, Kakutani–Stone and Weierstrass–Stone, respectively.) The vector subspace

$$\Delta(V) = \{ f \in C(X; E); \ f(x) = \gamma_V(x, y) f(y), \quad \text{for all} \quad (x, y) \in \Delta_V \}$$

where $\Delta \in \{G, KS, WS\}$, is called the Δ -hull of V. Notice that $\Delta(V)$ is a closed subspace of C(X:E) containing V, and V is called a Δ -subspace, if $\Delta(V) = \overline{V}$. (See Blatter [2], for the study of these spaces in Approximation Theory.)

Let $V_{\mathbb{R}}$ denote linear span of the set $\{\varphi\circ f;\ f\in V,\ \varphi\in E^*\}$ in C(X). The

equivalence relations Δ_V and Δ_{V_E} are the same and the corresponding γ_V and γ_{V_R} coincide too. In particular, if $V \subset C(X)$ and $L = V \otimes E \subset C(X; E)$, then $L_R = V$ and $\Delta_V = \Delta_L$.

If $\Delta \in \{G, KS, WS\}$, we denote by $A(\Delta_V)$ the subalgebra of C(X) of all functions $\varphi \in C(X)$ that are constant on the equivalence classes modulo Δ_V , where $V \in C(X; E)$ is given. When no confusion is feared we write simply $A(\Delta) = A(\Delta_V)$.

Theorem 9. Let V be a Δ -subspace of C(S) such that each equivalence class [x] (mod. $A(\Delta)$) is contained in [x] (mod. Δ_V). Then

$$V \overline{\otimes} H = \overline{V} \# \overline{H}$$

for all non-empty subsets $H \subset C(T)$.

Proof. Identify $C(S \times T)$ with C(S; C(T)) as in the proof of Theorem 1. Let $L = (V \otimes H)^{\sim}$. Note the Δ_V and Δ_L are the same, and L is an $A(\Delta)$ -module. To simplify notation, for each $x \in S$, let $[x]_V = [x]$ (mod. Δ_V), $[x]_L = [x]$ (mod. Δ_L), and $[x] = [x]_A = [x]$ (mod. $A(\Delta)$).

Claim (1). If $f \in \overline{V} \# \overline{H}$, then $\tilde{f} \in \Delta(L)$.

Proof. Take $s \in [x]_{V_t}$. Then

$$\tilde{f}(s)(t) = f(s,t) = f_t(s) = \gamma_V(s,x)f_t(x)
= \gamma_V(s,x)f(x,t) = \gamma_V(s,x)\tilde{f}(x)(t)$$

for all $t \in T$, because $f_t \in \overline{V} = \Delta(V)$. Since $[x]_V = [x]_L$ and $\gamma_V = \gamma_L$, we see that $\hat{f}(s) = \gamma_L(s,x)\hat{f}(x)$ for all $s \in [x]_L$, i.e., $\hat{f} \in \Delta(L)$.

Let $f\in \overline{V}\,\#\overline{H}$. By Theorem 3, there is some equivalence class [x] (mod. $A(\Delta)$) such that

$$\operatorname{dist}(\tilde{f}, L) = \operatorname{dist}(\tilde{f}[x]; L[x]).$$

By hypothesis, $|x| \subset |x|_V = |x|_L$.

Case 1. f(x) = 0.

Let $t \in [x]$. Since, by Claim 1, $\tilde{f} \in \Delta(L)$, then $\tilde{f}(t) = \gamma_L(t,x)\tilde{f}(x) = 0$, because $[x] \subset [x]_L$. Hence $\tilde{f}[x] = 0$ and so $\tilde{f}[x]$ belongs to L[x].

Case 2. $f(x) \neq 0$.

We claim that $h(x) \neq 0$ for some $h \in V$. If not, $\gamma_V(x,x) = 0$ and so

$$\tilde{f}(x) = \gamma_L(x,x)\tilde{f}(x) = \gamma_V(x,x)\tilde{f}(x) = 0.$$

Hence h(x) = 1 for some $h \in V$. Let $g = h \otimes f(x)$.

Then $g \in V \otimes \overline{H} \subset \overline{V} \otimes \overline{H} \subset \overline{V} \otimes \overline{H}$. Now $\overline{V} \otimes \overline{H}$ and $V \otimes H$ have the same closure in $C(S \times T)$ and so $\hat{g} \in (V \otimes H)^{\sim} = L$. For every $t \in [x]$ we have

$$\hat{g}(t) = (h \otimes \hat{f}(x))^{\sim}(t) = h(t)\hat{f}(x) = \gamma_{V}(t,x)h(x)\hat{f}(x) = \gamma_{V}(t,x)\hat{f}(x) = \hat{f}(t)$$

where the last equality follows from Claim (1) and $[x] \subset [x]_L$. Hence $\tilde{g}[x] = \tilde{f}[x]$ with $\tilde{g} \in L$, and therefore $\tilde{f}[x] \in L[x]$. In both cases, $\operatorname{dist}(\tilde{f}[x]; L[x]) = 0$. Hence $\operatorname{dist}(\tilde{f}, L) = 0$ and so $f \in V \otimes H$.

Let X be a topological space and R an equivalence relation for X, and let Y = X/R be the quotient topological space and $P: X \to Y$ the quotient mapping. The following are equivalent:

- (a) P is a closed mapping,
- (b) for every $x \in X$, and every open set $A \supset [x] \pmod{R}$ there is an open set A' such that $A \supset A' \supset [x] \pmod{R}$ and $A' = \bigcup \{[t] \pmod{R}; t \in A'\}$.

When (b) is satisfied one says that R is upper semicontinuous.

Lemma 3. Let S be a compact Hausdorff space. Let V be a Δ -subspace of C(S) such that Δ_V is an upper semicontinuous equivalence relation for S. Let $A(\Delta)$ be the subalgebra of all $\varphi \in C(S)$ that are constant on each equivalence class [x] (mod. Δ_V). Then each equivalence class [x] (mod. $A(\Delta)$) is contained in [x] (mod. Δ_V).

Proof. Let Y be the quotient space S/Δ_V and let P be the quotient mapping. Let a and b be two distinct points of Y. Then $P^{-1}(a) = [s]$ and $P^{-1}(b) = [t]$ for some pair $s, t \in S$. Since S is Hausdorff, $\{s\}$ and $\{t\}$ are closed, and since P is a closed mapping, [s] and [t] are closed subsets of S. Now S is a normal space, hence there exists open sets A and B such that $A \cap B = \phi$, $[s] \subset A$ and $[t] \subset B$. Since Δ_V is upper semicontinuous, there are open saturated subsets A' and B' such that $[s] \subset A' \subset A$ and $[t] \subset B' \subset B$. Then P(A') and P(B') are two disjoint open sets in Y with $a \in P(A')$ and $b \in P(B')$. Thus Y is a Hausdorff space. Notice that as a continuous image (under P) of a compact space S, the space Y is compact. Hence Y is a compact Hausdorff space, and so C(Y) separates the points of Y.

Consider now an equivalence class [x] (mod. $A(\Delta)$). If it is not contained in [x] (mod. Δ_V), then for some pair $s, t \in [x]$ (mod. $A(\Delta)$), we have $a \neq b$, if a = P(s) and b = P(t). Hence there exists $g \in C(Y)$, $0 \leq g \leq 1$, with g(a) = 0 and g(b) = 1. Let $f = g \circ P$. Then $f \in C(S)$, $0 \leq f \leq 1$, and $f \in A(\Delta)$. Moreover f(t) = g(P(t)) = g(b) = 1 and f(s) = g(P(s)) = g(a) = 0. Hence $s \not\equiv t$ (mod.

 $A(\Delta)$), a contradiction.

Theorem 10. Let S be a compact Hausdorff space. Let V be a Δ -subspace of C(S) such that Δ_V is an upper semicontinuous equivalence relation for S. Then $V \otimes H = \overline{V} \# \overline{H}$ for all non-empty subsets $H \subset C(T)$.

Proof. Apply Lemma 3 and Theorem 9.

- Remarks (1). The importance in Approximation Theory, of those Δ -subspaces such that Δ_V is an upper semicontinuous equivalence relation for S was established by Blatter [2]. (See in particular Lemma 3.10 and Theorem 3.12 of [2].)
- (2). When $\Delta=WS$, then Δ_V is the equivalence relation mod. V. Hence $V\subset A(\Delta)$ and therefore the hypothesis of Theorem 9 is verified in this case. Notice that, when G is a subalgebra of C(S), then $\overline{G}=\Delta(G)$ by the Stone-Weierstrass theorem. Hence G is a WS-subspace and Theorem 9 generalizes Theorem 1.
- (3). By a result of Lindenstrauss [6], the dual V of any closed Δ -subspace V is an abstract L_1 -space, and therefore V has the metric approximation property. By a result of Grothendieck [5] V itself has then the metric approximation property. By the equivalence (a) \iff (d) of Theorem 5 it follows that $V \otimes H = V \# H$ is true for all closed Δ -subspaces, when H is a closed vector subspace of C(T). However, the interest of Theorem 9 remains because it shows that under some mild assumption one can get the equality $V \otimes H = \overline{V} \# \overline{H}$ using only tools from Approximation Theory that do not rely on deep facts from Functional Analysis. In this light, it would be interesting to find a direct elementary proof of the fact each closed Δ -subspace has the metric approximation property, as Theorem 6 did for the case of WS-subspaces.

References

- K. D. BIERSTEDT, Neuere Ergebnisse zum Approximationsproblem von Banach-Grothendieck, Jahrbuch Überblicke Mathematik 1976, 45-72.
- [2] J. BLATTER, Grothendieck spaces in Approximation Theory. Memoirs Amer. Math. Soc. 120 (1972).
- [3] F. F. BONSALL, Semi-algebras of continuous functions, Proc. London Math. Soc. (3) 10 (1960), 122-140.
- [4] L. EIFLER, The slice product of function algebras, Proc. Amer. Math. Soc. 23 (1969), 559-564.

- A. GROTHENDIECK, Products tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16 (1955).
- [6] J. LINDENSTRAUSS, Extensions of compact operators, Memoirs Amer. Math. Soc. 48 (1964).
- [7] H. MILNE, Banach space properties of uniform algebras, Bull. London Math. Soc. 4 (1972), 323-326.
- [8] J. B. PROLLA, Approximation of Vector Valued Functions, North-Holland Publ. Co., Amsterdam, 1977.
- [9] J. B. PROLLA, A generalized Bernstein approximation theorem, Math. Proc. Cambridge Phil. Soc., 104 (1988), 317-330.

João B. Prolla
Departamento de Matemática
IMECC - UNICAMP
13.081 - Campinas, SP, Brazil

RELATÓRIOS TÉCNICOS — 1988

- 01/88 A Linear Continuous Transportation Problem Enrique D. Andjel, Tarcisio L. Lopes and José Mario Martines.
- 02/88 A Splitting Theorem for Complete Manifolds With Non-Negative Curvature Operator Maria Helena Noronha.
- 03/88 Mathematical Physics of the Generalized Monopole without String - W. A. Rodrigues Jr., M. A. Faria-Rosa, A. Maia Js. and E. Recomi.
- 04/88 A Family of Quasi-Newton Methods with Direct Secant Updates of Matrix Factorizations José Mário Martínez.
- 05/88 Rotation Numbers of Differential Equations. A Framework in the Linear Case - Luis San Martin.
- 06/88 A Geometrical Theory of non Topological Magnetic Monopoles Marcio A. Faria-Rosa and Waldyr A. Rodrigues Jr.
- 07/88 Cosmic Walls and Axially Symmetric Sigma Models Patricio S. Letelier and Enric Verdaguer.
- 08/88 Verificação do Nível de Enlace do Protocolo X-25 Célio C. Guimarães e Edmundo R. M. Madeirs.
- 09/88 A Numerically Stable Reduced-Gradient Type Algorithm for Solving Large-Scale Linearly Constrained Minimization Problems Herminio Simões Gomes and José Mário Martínes.
- 10/88 On Integral Bases of Some Ring of Integers Nelo D. Allon.
- 11/88 Generating Inexact-Newton Methods Using Least Change Secant Update Procedures - José Mario Martínes.
- 12/88 Polarized Partition Relations of Higher Dimension Walter Alexandre Carnielli and Carlos Augusto Di Prisco.
- 13/88 Teoria e Prática no Planejamento de Experimentos Armando M. Infanta.
- 14/88 On Closed Twisted Curves Szeli I. R. Costs.
- 15/88 Green's Function and Isotropic Harmonic Oscillator B. Capelas de Oliveira.
- 16/88 A Hopf Bifurcation Theorem for Evolution Equations of Hyperbolic Type - Aloisio Freiria Neves and Hermano de Souza Ribeiro.
- 17/88 Nonnegatively Curved Submanifolds in Codimension Two Maria Helena Noronha.

- 18/38 A Comment on the Twin Paradox and the Hafele-Keating Experiment W. A. Rodrigues Ir. and E. C. Oliveira.
- 19/88 Limiting Properties of the Empirical Probability Generating Function of Stationary Random Sequences and Processes Mauro S. Marques and Victor Pérez-Abres.
- 20/88 Linearisation of Bounded Holomorphic Mappings on Banach Spaces Jorge Majica.
- 21/88 Quasi-Newton Methods for Solving Underdetermined Nonlinear Simultaneous Equations José Mario Martinez.
- 22/88 Fifth Force, Sixth Force, and all that: a Theoretical (Classical)
 Comment Erasmo Recami and Vilson Tonin-Zanchin.
- 23/88 On Primitive Element and Normal Basis for Galois p-Extensions of a Commutative Ring A. Paques.
- 24/88 Sur L'Existence D'Élément Primitif et Base Normale Artibono Micoli and A. Pagaes.
- 25/88 A Contribution on Rational Cubic Galois Extensions (Revisited)
 A. Paques and A. Solecki.
- 26/88 Properties for Spherical Harmonic Polynomials J. Bellandi Pilho and B. Capelas de Oliveira.
- 27/88 Clifford Algebras and the Hidden Geometrical Nature of Spinors V. L. Pigusiredo, E. C. de Oliveira and W. A. Rodrigues Jr.