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Slice-Products in Bivariate Approximation

Jodo B. Prolla

§1. Introduction

Suppose S and T are closed and bounded intervals in R. Let C(3), C(T) and
C(S x T) be the corresponding spaces of continuous real-valued functions. Let {n}
and {m;} be two sequences (finite or infinite) of non-negative interges, and consider
the linear span W of {s™t™; k,j = 1,2,3,...}. We are interested in finding its
uniform closure W in C(S x T). In general W is not an algebra and we cannot
use the Stone- Weierstirass theorem to describe its uniform closure. However, if the
set N = {ny; k =1,2,3,...} is such that N + N C N, then the linear span G of
{s™; k = 1,2,3,...} is an algebra, even though W is still not an algebra. Using a
vector-valued version of the Stone- Weierstrass Theorem (see Theorem 3 below) we
describe the uniform closure of W in C(S x T') as the set of all functions f € C(SxT)
such that, for every pair of points (s,t) € § x T, the section z€ S — f(z,t) = fi(z)
belongs to the uniform closure of G, and the other section y € T — f(s,9) = fi(v)
belongs to the uniform closure of the linear span of {t™; k = 1.2,3,...} in C(T).
(See Theorem 2 below.)

To state an abstract version of the above bivariate polynomial approximation
problem let us first introduce some notation. Throughout this paper, whenever X is
a compact Hausdorff space, and E is a normed space, C(X; E) denotes the normed
space of all continuous functions f : X — E equipped with the topology of uniform
convergence, given by the sup-norm

171 = sup{ilf(=)lle: =€ X}.

When E = R, we write C(X) = C(X; R).

Suppose now that S and T are two compact Hausdorfl spaces, and that two
non-empty subsets G C C(S) and H C C(T) are given. We are interested in the
following bivariate approximation problem:



Q. Which /lmch'orﬁ f € C(S x T) can be uniformly ;ppmn'matd onS xT by
Junctions of the Jorm
w(s,t) = 3~ gi(s)hi(t)
=1

where g; € G, h, € H (i =1,....n), and n € IN is arbitrary.

Let us denoteby G ® H the subset of C(S x T) of ‘such functions w(s,t), and by
G ® H its uniform closure in C(S x T). Then our problem can be stated as follows.

Q. Characterize those f € C(S x T) that belong to GR H.

In order to answer this question, let us recall the definition of the slice-product
G=H introduced by Eifler [4]: a function f € C(S x T) belongs to G#H if, and only
if. for every pair (s,t) its sections f, and f; belong to H and G respectively, where
f. is the mapping y € T — f(s,y), and f; is the mapping z € § — f(z,t). Clearly,
the following inclusions hold

G®HCG#HCG#H

where G (resp. H) denotes the uniform closure of G (resp. H) in C(S) (resp. C(T)).
On the other hand, the slice- product of two closed sets is closed. Hence

G® H c G#H.
Our objective is to find properties of G and H that will make true the equality
G® H =G+#H.

If both G and H are unital subalgebras, then G @ H is a unital subalgebra of
C(S x T) and the classical Stone-Weierstrass theorem for subalgebras describes
GZ H, and it is easy to prove that G® H = G#H. But when G or H is not
assumed to be an algebra, then that theorem cannot be used because now G ® H is
not a subalgebra of C(S x T). However a stronger version of that theorem, namely
its vector-valued version for modules solves the problem if G or H is assumed to be
a subalgebra. Notice that in this case G & H is a vector subspace of C(S x T). We
state our solution when G is assumed to be a subalgebra, but of course a similar
proof establishes the same result when H is assumed to be a subalgebra (and G is *
arbitrary).

Theorem 1. Jf G is a subalgebra of C(S) and H is @ non-empty subset of C(T),
then
G@ H = G#H.
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We will postpone the proof of Theorem 1 and will first establish some corollaries
in bivariate polynomial approximation.

Theorem 2. Let {n,} and {m,} be two secquences of non-negative integers, and
assume that ny < ny < --- < ny < --- and N = {ny; k = 1,2,3,...} is such that
N+ NC N. Let S and T be two closed and bounded intervals in R. The closed
linear span of the set {s™t™; k,j = 1,2,3,...} in C(S x T) is V#W, where V is

closed linear span of {s™; k = 1,2,3,...} in C(S), and W is the closed linear
span of {t™; 7 = 1,2,3,...} in C(T).

Proof. Let G be the linear span of the set {s™; k = 1,2,3,...} in C(S), and let H
be the finear span of {t™; k = 1,2,3,...} in C(T). Then G®H is the linear span of
{s™t™; k, 7 = 1,2,3,...} in C(S x T). The semi-group property N + N C N im-
plies that G is a subalgebra of C(S). By Theorem 1, G®H =G#H =V#W. 0O

The strong version of the Stone-Weierstrass theorem that we will use in the proof
of Theorem 1 is the following. (See Theorem 1.26, Prolla [8]).

Theorem 3. Let X be a compact Hausdorfl space and let E be a normed space.
Let W be a vector subspace of C(X;E) which is an A-module for some subalgebra
AC C(X),ie, AW C W. Then, for each f € C(X; E),Mmdcmcquvdem
class [z} (mod. A) such that

dist(/; W) = dist(f [zj; Wiz]).

Let us explain the notation used above. For each z € X. we denote by |z} the
equivalence class of z modulo the following equivalence relation:

z=y (mod. A) & p(z) = p(y) forall p€ A.

Then [z} = {y € X; op(z) = p(y) for all p € A}. Notice that |z] is closed in
X, and therefore a compact Hausdorfl space. For every function f € C(X; E), we
denote by f|z] the restriction of / to [z]. Then f|z] belongs to C([z]; E). Fimally, if
W C C(X;E) then

Wis) = {slzl; ¢ € W) C Cllz}; E)
and dist(f|z}; W|z]) is measured in the space C(|z]; E). Hence

gt fl=} W) = g If12] - ol =

= inf sup l/(s) - sl
v€lz]



When |z] is the singleton {z} one identifies f|z] with f(z) and W|z] with the sub-
space W (z) = {g(z); ge W} C E. '

Not only Theorem 3 will be used in the proof of Theorem 1, but it can be ysed
to find dense subspaces of Cla, b] which are not subalgebras.

Theorem 4. Let M = {m,} be a sequence of positive integers in arithmetic progres-
ston, with myy; —mp =r (k=1,2,3,...).

(a) If r is an odd positive integer, let T = jc, d) C R.

(b) If r is an even positive integer, let T = [c,d] C Ry or T = [c,d] C R_.
Let W be the lincar span of {t™,t™ ._..t™ ..} in C(T). Then

(1) f0g T, W is dense in C(T);

(2) #O € T, W is dense in the set {f € C(T); [(0) = 0}, and the linear span
of {1, t™ t™ .. t™ .} is dense in C(T).

Proof. Let A be the algebra of all multipliers of W:
A={p€C(T); pgcW forall g W}.

Clearly, the function ¢" belongs to A. In both cases (a) and (b). the function
separates the points of T. Hence, for any t € T, [t] (mod. A) is the singleton {t}.

Case (1). Then W(t) = R for all t € T and by Theorem 3, W is dense in C(T),
since dist(f(t); W(t)) =0.forallt € T.

Case (2). Then W(t) = R for all t # 0, and W(0) = 0. By Theorem 3,
dist(f; W) = |f(0)' for all f € C(T). Therefore W is dense in {f € C(T); f(0) = 0},
and the linear span of {1, t™ ™ ..., t™ _..} is then dense in C(T). O

Theorems 1 and 4 can be combined togeth‘er to get further bivariate or multi-
variate results. As an example we have the following.

Corollary 1. Let N = (n) and M = (m,) be two sets of strictly increasing posi-
tive integers such that N + N C N and the m,’s are in arithmetic progression, with
My — Mg =7 (K =172,%,.5)

Let S = |a. bl Z R and T = |c, d] C R be two closed bounded intervals such that:



(a) if all the ny's are even, then S C R, or S C R-
(b) #f r 45 even, thenT C R, or T C R_.

Let G be the linear span of {1, s™, s™,...s™,...} is C(S), and let H be the
linear span of {t™ ™, ...t™ ...} in C(T). Then

(1) y0gT.then GR®H =C(S x T);

(2) fOET, then GRH = {f € C(SxT); f(5,0) = 0 for all s € S}, and
G® H, = C(S x T) where H, is the linear span of {1, t™ 1™ ... .t™ ...} inC(T).

§2. Proof of Theorem 1

Let us identify C(S x T) with C(S:C(T)) in the usual way: with each [ €
C(S x T) associate | € C(S;C(T)) defined as follows: for each s € S, f(s) = f.,
where f, is the section of f defined by f,(t) = f(s,t) for all t € T. Now f, € C(T),
and the mapping s — f. is continuous. Moreover the mapping f — [ is a linear
isometry of C(S » T) onto C(S;C(T)).

Let W = (G & H)~. Notice that W is a G-module. Let s € S, and let [s| be its
equivalence class (mod. G). Notice that every element of G is constant on s|. Hence
the same is true of every element of G, the uniform closure of G.

Claim (1). Jf f € G=H, then [ is constant on |s|, and its constant value is f, which
belongs to H.

Proof. Let z € [s|. Then
1,1) = f(s,8) = fuls) = filz) = f(z,1) = [ult)
for each t € T, because f; € G. Hence
(=) =fo=1 = (o)
for all z € [s].

Claim (2). i all g € G vanish on |s], then f[s| = 0, for oll f € G#H.

Proof. Assume ]]a} # 0. Since }la] = f,, there exists some point t € T such that
f(s,t) # 0. But f; = G and therefore f; vanishes on |s| 100, i.e., f(s,f) = 0. This
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contradiction shows that f|s] = 0.
Claim (3). If all g € G vanish on |s|, then W|s| = {0}. Otherwise W(s| = H. .

Proof. The first part of Claim (3) follows from W C (G#H)~ and Claim (2).
Suppose now that g(s) # 0 for some function g € G. Let h € H be given. Then
/= v®h belongs to G ® H, where v = (g(s))"'9. Now f|s| = h. Hence W|s| = H.

We can now finish the proof of Theorem 1. Let f € G#H. By Theorem 3,
applied to the G-module W = (G & H)™, there is some equivalence class |s] (mod.
G) such that

dist(J; W) = dist(Tis): W]s]).

Case 1. All g £ G vanish on |s|.

By Claim (3), W(s| = {0}, and by Claim (2), f|s| = 0. Hence dist(f|s]; W|s|) =
0.

Case 2. For some g € G, g(s) #0.

By Claim (3), W|s| = H. On the other hand f|s| = f, belongs to H. Hence
dist(f|s}; Wis]) = 0.

In both cases we conclude that dist(f,W) = 0, and so / belongs to the closure
of W = (G ® H)~. Since the mapping / — | is an isometric isomorphism, f belongs
to the closure of G® H. Hence G#H C GRH. O

§3. Grothendieck’s Approximation Property

The following result shows that to find a closed vector subspace G C C(S) such
that G ® H is properly contained in G# H for some closed vector subspace H C C(T)
is equivalent to find such a G without Grothendieck’s approximation property.

Theorem 5. For a closed vector subspace G C C(S), S compact, the following are
equivalent:
(a) G has the approzimation property;
(b) for every Banach space E, the space G ® E is dense in
{fE€C(S:E); pof€G, Jorall p€E)

(¢) Jor every compact Hausdorf] space T and every closed vector subspace H C
C(T), (GRH)" ={f€C(S;H); pof€G, Jorall pec H};



(d) for every compact Hausdorff space T and every closed vector subspace H C
C(T), G® H = G#H.

For a proof see Grothendieck |5}, Bierstedt {1} and Prolla [8].

Corollary 2. Every closed subalgebra G C C(S), S a compact Hausdorff space, has
the approzimation property.
®

The proof of Corollary 2 depends on Theorem 5 whose proof uses several tools
from Functional Analysis. Hence an elementary direct proof that any closed sub-
algebra G C C(S) has the approximation property is desirable. Let us recall the
definition of the metric approrimation property. Let A > 1. We say that a Banach
space E has the A-bounded approzimation property (A- b.a.p. for short) if, for every
totally bounded subset B C E and every £ > 0, there is a continuous linear operator
T : E — E of finite rank such that ||z — Tz|| < ¢, for all z € B, and ||T]| < A. We
say that E has the metric approrymation property if it has the A- b.a.p. for A = 1.

Lemma 1. Let A C C(S) be a closed subalgebra containing the constants, and let
z € S be given. If N(z) is an open neighborhood of z] (mod. A), there exisis an
open neighborhood W (z) of |z|, contained in N(z), and such that, for each0 < 6 < 1,
there is p € A such that

(1) 0< p(s) <1, for all s € S;

(2) olt) < &, for all t & N(z);

(3) o(t) >1-6, for allt € W(z).
Proof. Theset M = {p € A; 0 < p < 1} is closed and has property V, ie.,1 —p
and p ¥ belong to M, whenever  and ¢ belong to M. The result follows from
Lemma 1, Prolla [9]. O
Lemma 2. Let A be as in Lemma 1. For each z € S, let there be given an open
neighborhood N(z) of [z| (mod. A). There exists a finite set {z,,...,Zm} C S such
that, given 0 < § < 1, there are ©,,...,om € A such that

Mo<ep <1 i=1...,m

2) 2, pi(z)=1,forallz € S;



(3) 0< pi(t) < éb,ift g N(z;), i=1,...,m.

Proof. Select z; € S arbitrarily. Let K = S\N(z,). For each z € K, select an
open neighborhood W (z) by Lemma 1. By compactness of K, there exists a finite
set Ty, ..., T, in K such that K € W(z;) U--- UW(z,). Let 0 < é < 1 be given.
By Lemma 1, there are ¥3,....¢m in A such that 0 < v < 1 and #(t) < é for all
1€ N(R).and o(t) >1 -6 forall t € W(z,), i =2,%.,m.

Define 3 = 2, @3 = (1 = ¥2) ¥s,-..,0m = (1 = ¥1) -+~ (1 = ¥m-1)¥m. Clearly,
i€ Aand0< p; <lforalli=2,...,m. Since

pr+-tom =1 (1= )1~ ) {1~ Ym)

can be easily verified by induction, let us define py = (1 — ¥2)(1 — ¥3) - (1 — ¥m).
Then oy € A, 0< p; <1 and oy + Py +--- + pm = 1. Hence (1) and (2) are
verified. To prove (3), note that for each 1 = 2,...,m we have p;(t) < ¥;(t) < 6
for all t € N(z;). On the other hand, if t € N(z,), then t € K and for some index
j=2,...,m, we have t € W(z;). Hence ¥,;(t) > 1 -6 and so 1 — ¥;(t) < é. Thus

eilt) = (1 - w0 [0 -w() <6 ©
#)
Theorem 6. Let S be a compact Hausdorff space and let A C C(S) be a closed
subalgebra. Then A has the 2-bounded approzimation property. If A contains the
constants, it has the metric approximation property.

Proof. Suppose A contains the constants. Let € > 0 and B C A a totally bounded
subset be given. There is a finite set F C B such that, given f € B there is some
g = F with |f(z) — g(z)| < £/3 for all z € S. For each z € S define

N(z)={t€ S; |g(t) — 9(z)] <€/6, forall g€ F}.

Since F is finite, N(z) is open. Notice that if ¢ € [z] (mod. A), then g(t) = g(z).
Hence N(z) is an open neighborhood of [z] (mod. A). There exists a finite set
Zy,...,Zm € S with the property stated in Lemma 2. Let M = max{|lg||; ¢ € F}
and choose 0 < § < 1 sosmall that 12m M § < ¢. For this § there are p;,...,om € A
such that (1) - (3) of Lemma 2 are true. Define a linear operator 7 : A — A by
setting

(*) (TN)(=) = T, wil=) f(=)

for all f € A, z € S. Clearly, T is a finite rank operator, and by (1) and (2),
IITh < 1.



Let now f € B. There exists some g € F such that ||f — g|| < £/3. Hence, for
any r € S,

(z) - (THE)] = 13 eD(=) - f(2))]
‘ =1

@)1 (=) - Szl

IA
M2

1

wi(@) [If(z) - 9(2)] + lo(2) — o(z)] + lo(=:) - J(=z)]]

IA
gE]

IA
wim

+£+ 3 eula)lola) - olzl.
Let I(z) = {1 <4< m; z€ N(xn)} and J(z) = {1 <i<m z¢&N(z)}. For
i € I(z), we have |g(z) — ’(z;)f < £/6, and therefore

(a) Tiensn wi(z) 9(z) — 9(z:)| < § Tiens) wil) < §-

For 1 € J(z), we have p;(z) < 6. and therefore

() Dicstos bM< FTicrui o) = s
<ém2M <¢e/6. '

From (a) and (b), S, i) 0(z) — g(x)] < /3, and so [If ~ T/]| < .

Suppose now that A does not contains the non—zero constants. By the Stone-
Weierstrass Theorem this is equivalent to say that N # 0, where N = {z € S; p(z) =
0 for all p € A}. Let A, = A @ R. Hence A, is a closed subalgebra containing the
constants. Let £ > 0 and B C A a totally bounded subset be given. Clearly B C A..
Apply the first part to /2 and B. Let T be the operator defined in (*), which maps
A, into A,. Each p; is of the form g; = ¢; + A;, where ¢); € Aand 0 < \; < 1. Define
U:A— A by setting

(UN)=z) = Y_wil=)f (=)
: =1
forall f€ Aand z€ S. Since T, pi(z) = 1 is true for all £ € S, choosing z € N
we see that 1%, A; = 1. Hence

UNE) < UTHE=)+ Ii AS(@) < TS+ 1A f:,\.- < 20|/l
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Hence ||U]] < 2.

Let now f € B. By the definition of T we have |f(z) — (Tf)(z)] < /2 for all
z € 5. Choosing z € N we see that |, X f(z;)| < £/2. Hence ||f —Uf|| < ¢ for
alfeB. O 2

Remark. W\ile for any self-adjoint closed subalgebra G ¢ C(S:;@), Theorem 6
remains true, the situation for non-selfadjoint subalgebsas is different. H. Milne (7]
showed that there exists a uniform algebra G C C(S;@) without the approximation
property, where S is a compact subset of @", n > 1.

84. Semi-Algebras

To present further cases in which G® H = G#H, let us recall the following gen-
eralized Bernstein approximation theorem. (For a proof see Prolla (9], Theorem 1.)

Theorem 7. Let X and E be as tn Theorem 8. Let W be a non-empty subset of
C(X;E) such that W ~+ W — W, and let A C C(X;|0, 1) be a subset with property
V and such that AW C W. Then, for each f < C(X;E), there is some equivalence
class [z] (mod. A) such that .

dist(/;W) = dist(f ‘z}: W |z]).

The definition of property V is as follows: a subset 4 C C(X; [0, 1]) has property
V if, and only il. for every © and ¥ in A, the functions 1 — ¢ and ¢ ¢ belong to A.

Remark. Theorem 7 can be used to prove density of subsets W C Cla, bl which
are not vector subspaces. Take, for example, W to be the set of all polynomials with
rational coefficients. Let A = {g € W; 0 < g < 1}. Then A has property V and
AW < W. Moreover W +W C W. Now it is easy to find g € A of the form z — pz+g,
with p, ¢ € @, and therefore each equivalence class [z] (mod. A) is the singleton {z}.
On the other hand, W(z) = R, for each z € [a, b]. Hence dist(f;W) = 0 for all
J € Cla, b}.

Let us recall the definition of a semi-algebra (Bonsall [2]): a subset G C C(S) isa -
semi-algebraif G+G C G, GG C G and AG <~ G, for all A > 0. Clearly, if A C C(S)
is a subalgebra, then the set A~ is a semi-algebra where A* = {g € A; g > 0}.

We shall say that a semi-algebra G is of type V, il {§ € G; 0 < g < 1} has
property V. For any non-empty subset X C S, the set G of all ¢ € C(S) such that



g(z) > 0, for each £ € X, is an example of a closed semi-algebra of type V.

Theorem 8. If G C C*(S) is a semi-algebra of type V, and H is a non-empty
subset of C(T), then
G® H = G#H.

Proof. As in the proof of Theorem 1, let W = (G ® H)~ C C(S;C(T)). Since
G is, a semi-algebra, W is a convex cone, and therefore W + W C W. Let now
A={9€G; 0<g<1}. Then AA C A and AG C G. Therefore AW C W. Since G
is of type V, the set A has property V. Let f € G#H. By Theorem 7, there is some
equivalence class |s| (mod. A) such that dist(f: W) = dist(f]s); W]s]). The proof
that dist(f; W) = 0 proceeds now exactly as in the proof of Theorem 1, if Claims (1)
- (3) remain true when |s' is the equivalence class of s (mod. A).

Claim (1). lts proof depends on the fact that every element of G is constant on
|s]. To prove this, it suffices to show that every element of G is constant on [s]. But
given g € G, with g # 0, then A = |!g||"'g belongs to A, because G C C*(S) and
AG C G for all A > 0. Hence h is constant on |s,. and therefore the same is true of
9= |lgllh.

Claim (2). No change needed in its proof.

Claim (3). It suffices to notice that v = (g(s))~'g belongs to G, because
g(s) >0. O

H A is a unital subalgebra of C(S) then G = A* = {g € 4; g > 0} is a
semi-algebra of type V. When B is a subalgebra of C(S), and G = B*, then
G&®H = G#H is still true. The proof in this case proceeds as follows. Consider
W = (G® H)~ C C(S;C(T)). Let B, be the unital subalgebra generated by B and
1, and let

A={g€B; 0<g<1}.

Then AW C W, and A has property V. As in the proof of Theorem 8 the only thing
to check is Claim (1), and again it suffices to show that every element of G is constant
on |s| (mod. A). Takeg € G, g # 0. Then h = ||g||"'g is such that 0 < h < 1 and
h€ G C BC B,. Hence h € A and h is constant on [s| (mod. A). Therefore the
same is true for g = ||g|lh.

Let us give an example in which the equality G@ H = G#H is true, but G is
neither a subalgebra nor a semi-algebra. Take S = [0, 1], and T an arbitrary compact
Hausdorfl space. Let G be the set of all polynomials in the variable s with integral
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coefficients. Then G is neither a subalgebra nor a semi-algebra, but G+ G C G and
GG Z G. Let H = C(T) be any non-empty subset. Define

A={pcC(5]0,1): of+(1-p)gc G, forall f,geG).

Then AG C G and A has property V. Moreover, for any s € S, |s| (mod. A) is
the singleton set {s}, because 4 contains the mapping ¢(z) = z, for all z € S. Now
identify C (S x T) with C(S;C(T)) and let W = (G ® H)™. Then W + W C W and
AW -~ W. Let now f € G£H. By Theorem 7, there is some s € S such that

dist(f; W) = dist(f(s); W (s))-

Now f(s) = f, € H. Hence, for any ¢ > 0 then is some h € H such that
Ilf. hilciry < c. Letu=1®h. Thenu € G® H, and & = W. Now i(z) is the map
t — u(z,t) = h(t). for each z € S. In particular, &(s) = h. Hence ||f, — u(s)|| < e.
and f(s) € W(s). This shows that dist(f(s), W(s)) = 0. Hence f belongs to the
closure of W, and f belongs to G@H.

§5. Grothendieck Spaces

Let V' be a vector subspace of C(X; E). The set Gy is by definition the set of all
pairs (z,y) such that either

(1) Jf(z)=J(y) =0 forall fEV;or

(2) thereexistst € R, t % 0,such that f(z) = tf(y) forall f € V and g(z) # 0
for some g € V.

The set Gy is an equivalence relation for X. Define a map y : Gv — R as
follows: ~yv(z,y) = 0 if (1) is true, and v (z,y) = t if (2) is true. The subsets K Sy
and WSy of all pairs (z,y) < Gv such that yy(z,y) > 0 and yy(z,y) € {0, 1},
respectively, are likewise equivalence relations for X. (The letters G, KS and WS
stand for Grothendieck, Kakutani- Stone and Weierstrass-Stone, mpectrvely) The
veclor subspace

A(V) ={f € C(X:E); [lz) = w(z,9)f(y), forall (z,y)€ Av}

where A € {G, KS, WS}). is called the A-hull of V. Notice that A(V) is a closed
subspace of C(X: E) containig V, and V is called a A-subspace, if A(V) = V. (See
Blatter |2|, for the study of these spaces in Approximation Theory.)

Let Vg denote linear span of the set {p o f; f €V, p € E'} im C(X). The

12
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equivalence relations Ay and Ay, are the same and the corresponding <y and ‘7Vn
coincide too. In particular, if V. C C(X)and L =V ® E C C(X;E), then Lg =
and Ay = A,,

If Ac{G, KS, WS}, we denote by A(Ay) the subalgebra of C(X) of all func-
tions ¢ € C(X) that are constant on the equivalence classes modulo Ay. where
V € C(X;E) is given. When no confusion is feared we write simply A(A) = A(Ay).

Theorem 9. Let V be a A-subspace of C(S) such that each equivalence class [z
{mod. A(A)) is contained in [z] (mod. Ay). Then
_ V®H=V#H
Jor all non-empty subsets H C C(T).
Proof. Identify C(S x T) with C(S;C(T)) as in the proof of Theorem 1. Let
= (V ® H)~. Note the Ay and A, are the same, and L is an A(A)-module. To

simplify notation, for each z € S, let [z]y = |z] (mod. Av), |z]r = [z] (mod. A;),
and [z]| = [z|4 = [z] (mod. A(A)).

Claim (1). If f € V£H, then | € A(L).

Proof. Take s € [z}y. Then
T(s)(t) = fls.1) = fils) = w(s2)filz)
= w(s. Z)I(z,t) = w(s,z)f(z)(t)
for all t € T, because fy € V = A(V) Smce lzlv = {z], and 7 = 7;, we see that
7(s) = (s, z)f(z) for all s € iz, ie., [ € A(L).

Let f € V#H. By Theorem 3, there is some equivalence class |z] (mod. A(A))
such that % 2
dist(f, L) = dist(f|z]; L|z]).
By hypothesis, [z] C [z]y = [z],.

Case 1. [(z) =
Let t € [z]. Smce, by Claim 1, f € A(L), then f(t) = m(t,z)f(z) = 0, because
|2] € |z]1. Hence f|z] = 0 and so f|z] belongs to Ljz].

Case 2. f(z) #0.
We claim that h(z) # 0 for some h € V. If not, 7 (z,z) = 0 and so
1(z) = wlz.2)](2) = wiz,2)](z) = 0.

13



Hence h(z) =1 forsome h € V. Let ¢ = A ® f(z).
Thenge VR HCVQRHCVR®H. Now V @ H and V ® H have the same
closure in C(S x T) and so g € (V ® H)™ = L. For every t € [z] we have

a(t) = (h Q\T (@)(t) = h()](2) = w(t.2)h(=)] () = w(t,2)] (2) = [l2)

where the last equality follows from Claim (1) and [z] C [z];. Hence §iz| = fizi
with g € L, and therefore f|z] € L{z]. In both cases, dist(f[z]; L{z]) = 0. Hence
dist(f, L) =0andso f € VB H. (]

Let X be a topological space and R an equivalence relation for X, and let
Y = X/R be the quotient topological space and P : X — Y the quotient map-
ping. The following are equivalent:

(a) P is a closed mapping,
(b) for every z € X, and every open set A D [z] (mod. R) there is an open set
A' such that A D A' D [z} (mod. R) and A’ = U{|t] (mod. R); t€ A"}.

When (b) is satisfied one says that R is upper semicontinuous.

Lemma 3. Let S be a compact Hausdorff space. Let V be a A-subspace of C(S)
such that Ay is an upper semicontinuous equivalence relation for S. Let A(A) be
the subalgebra of all ¢ € C(S) that are constani on each equivalence class iz| (mod.
Ay). Then each equivalence class (z] (mod. A(A)) is contained in (z| (mod. Ay).

Proof. Let Y be the quotient space S/Ay and let P be the quotient mapping.
Let a and b be two distinct points of Y. Then P~ '(a) = [s and P~'(b) = |t| for
some pair s, ¢ € S. Since S is Hausdorfl, {s} and {t} are closed, and since P is a
closed mapping, {s. and [t] are closed subsets of S. Now S is a normal space, hence
there exists open sets A and B such that AN B = ¢, [s] C A and [t| C B. Since
Ay is upper semicontinuous, there are open saturated subsets A’ and B’ such that
|s] — A' € A and itj C B' C B. Then P(A') and P(B') are two disjoint open sets
in Y with @a € P(A") and b€ P(B'). Thus Y is a Hausdorfl space. Notice that as a
continuous image (under P) of a compact space S, the space Y is compact. Hence
Y is a compact Hausdorfl space, and so C(Y) separates the points of Y.

Consider now an equivalence class |z] (mod. A(A)). K it is not contained in [z}
(mod. Ay), then for some pair s, t € [z] (mod. A(A)), we have a # b, if a = P(s)
and b = P(t). Hence there exists g € C(Y), 0 < g < 1, with g(a) = 0 and
g(b) = 1. Let f =go P. Then [ € C(S), 0< f <1, and [ € A(A). Moreover
f(t) = g(P(t)) = g(b) = 1 and [f(s) = g(P(s)) = g(a) = 0. Hence s Z t (mod.
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A(A)), a contradiction. O

Theorem 10. Let S be a compact Hausdorfl space. Let V be a A-subspace of
C(S) such that Ay is an upper semicontinuous equivalence relation for S. Then
V®H = V#H for all non-empty subsets H C CAT)-

>
Proof. Apply Lemma 3 and Theorem 9.

Remarks (1). The importance in Approximation Theory, of those A-subspaces
such that Ay is an upper semicontinuous equivalence relation for S was established
by Blatter [2]. (See in particular Lemma 3.10 and Theorem 3.12 of (2].)

(2). When A = WS, then Ay is the equivalence relation mod. V. Hence
V © A(A) and therefore the hypothesis of Theorem 9 is verified in this case. Notice
that, when G is a subalgebra of C(S), then G = A(G) by the Stone- Weierstrass
theorem. Hence G is a W S-subspace and Theorem 9 generalizes Theorem 1.

(3). By a result of Lindenstrauss [6], the dual V" of any closed A-subspace V is
an abstract L;-space, and therefore V" has the metric approximation property. By
a result of Grothendieck [5] V' itself has then the metric approximation property. By
the equivalence (a) +=> (d) of Theorem 5 it follows that V @ H = V#H is true for
all closed A-subspaces, when H is a closed vector subspace of C(T). However, the
interest of Theorem 9 remains because it shows that under some mild assumption one
can get the equality V ® H = V#H usjng only tools from Approximation Theory
that do not rely on deep facts from Functional Analysis. In this light, it would be
interesting to find a direct elementary proof of the fact each closed A-subspace has
the metric approximation property, as Theorem 6 did for the case of W S-subspaces.
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