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Abstract: Many different definitions and representations of spinors are given in
the literature, but there are no single reference explaining how they are related,
which may explain why considerable confusion on the subject persists. Here and in
following papers (Il and 11]) we deal with three different definitions for spinors, (i)
the covariant definition (E. Cartan) based on gfoup theory representation, (ii) the
ideal definition. based on real Clifford algebra (R, ;) methods, and (iii) the opera-
tor definition, where spinors are interpreted as particular elements on appropriated
Cliflord algebras (not necessarily elements of lateral ideals). By introducing the
concept of spinorial metric on the space of algebraic spinors (i.e., elements of lat-
eral ideals in appropriated Clifford algebras) we prove that for p+ ¢ < 5 that there
exists an equivalence from the group theoretical point of view between covariant
and algebraic spinors. To this end we study the Clifford and the twisted Clifford
groups, a subject that is also necessary, e.g., for the construction of the Clifford
bundle for Lorentzian manifolds with (p,¢) = (3,1). We give explicit construction
of the representative of Pauli spinors in Rs, and Dirac spinors, Majorana spinors,
dotted and undotted two component spinors in Ry, Ry, and R,;. The problem
of the transformations laws of algebraic spinors is also treated in details anda sat-
isfactory mathematical solution is presented. Our approach clears among others



the geometrical meaning of spinors and shows that the usual claim that spinors
are objects more fundamental than tensor is non-sequitur. Also our techniques
permit, e.g., the construction of sets of Majorana or Dirac matrices in very time
saving way.

In paper Il we show how to obtain an almost elementary proof of Geroch’s
theorem without using the sophisticated techniques of algebraic topology. In pa-
per 111 we study the problem of algebraic spinor fields, the Spinors and Clifford
bundles and Dirac equation.

Introduction

There appears in the literature three essentially different definitions of spinors:
There are:

(I) The covariant definiton, (E. Cartan ', R. Braver and H. Weyl '), where a
particular kind of a covariant spinor(e-spinor) is a set of complex variables
defined by its transformations under a particular spin group.

(F1) The ideal definition (C. Chevalley ¥, M. Riez ' and W. Graf ') where a par-
ticular kind of an algebraic spinor (e-spinor) is an element of a lateral ideal
(defined by the idempotent ¢) in an appropriate Clifford algebra. (When ¢
is primitive we write a-spinor, instead of e-spinor).

(1I1) The operator definition (D. Hestenes '*) where a particular kind of operator
spinor (o-spinor) is a Clifford number in an appropriate Clifford algebra R, ,
determining a set of tensors by bilinear mappings.’

. The so-called pure spinors recently used by Caianiello '* and Budinich and
Trautman 7 are special cases of ¢-spinors (or e-spinors) and will be not analysed
in this paper. From the point of view of this paper they are not so fundamental
as it is usuvally thought.

The usual presentation of e-spinors as elements of lateral ideals in Clifford
algebras as well as the introduction in this context of the groups Spin. (p,q), does
not leave clear the relation between these objects and the e-spinors and the uni-
versal covering groups of some groups SO, (p,¢) used in theoretical physics. The
same is true in relation with o-spinors.

The main purpose of the present paper is to clear up the sitvation, and in the
process we obtain very interesting results. In particular we are going to prove that

'for our notations see § 2




all the c-spinors used by physicists can be represented by appropriate e-spinors.
From the explicit construction of the e-spinors (representing c-spinors) by the
“idempotent method™ (§ 2.3), we will see that e-spinors are nothing more than
the sum of multivectors (or multiforms). This result is at variance with the usual
claim 619113 {hat spinors are more fundamental then tensors.

Also, from our approach the geometrical meaning of Pauli c-spinors, Weyl
spinors (i.e., two component dotted and undotted c-spinor) and Dirac c-spinors
become apparent. The geometrical meaning of these objects have already been
discussed in the literature 112331435 yging different approaches without a com-
mon geometrical basis.

To formulate our problem we start by remembering the kinds of c-spinors used
by physicists,

(i) Pauli c-spinors — these are the vectors of a complex 2- dimensional space c?
equipped with the spinorial metric

8,:C'xc'~¢C B(e.0) = ¥ (1)
¢=(:), v=(:) %k €C, i=12 and p°=(53)
where in this text Z always means the complex conjugated of z € C.

The spinofial metric s mvariant snder the action of the greup SU(2),
ie., if w € SU(2), then B,(uy,up) = B,(¥,p). As it is well known,
Pauli c-spinors carry the fundamental (irreducible) representation D'/? of
SU(2),

(ii) Weyl e-spinors - the objects have been introduced by Weyl '"* and called
by van der Waerden ™ undotted and dotted two component spinors. We
have the following definitions

Contravariant Undotted Spinors - these are the elements of a com-
plex 2-dimensional space C*® equipped with the spinorial metric
B:C'xC*~€C ; B &) =19'C¢ (2
e % 01
"(-’)‘ c'(-l ')
The spinorial metric 8 is invariant under the action of the group S L(2, 0)
ie,ifnr—un;, §— u, then
B(n, &) = Blun,uf) « u'Cu = C ~ ve SL(2,C) (3)
3



Covariant Undotted Spinors - these are the elements of the dual
a b
space C?, defined by

c‘,a’n': c’-c ; 'A)(E) -‘E"l£=ﬂ(q,f) (4)

It follows that

b f= 1'C = (m.m) = (1. ~4") (5)

The transformation law of the covariant undotted spinors that leaves the
spinorial metric invariant under SL(2,C) is then

A—iu! |, weSLR.C) ‘ (6)
Contravariant Dotted Spinors — these are the elements of the space
>3 . 4 3
¢ = (€Y, ies € 20 = (n),9?) = (",7%) = n",n € C?) equipped with
the spinorial metric 3,
B:€'x¢" —-c , B@af=sCE (7)
and we have that '
B(#, &) = B(iv",u") = w"Ca* = C (8)
Covariant Dotted Spinors — these are the element of the dual space
A p
C?, defined by
QUL : a A g
C*3¢=8( ,¢§) ; (€)= @ £= aCE' (9
It follows that

T i ¢ - '3
ee-(8)e(£)=(5) oo

It is clear that the laws of transformations of the dotted spinors under
the action of SL(2,C) are

. . A e
0 — Nu T i (11)

The matrices u and (u*) ™! are the (non-equivalent) representations D{*/20)
and DI%V/2) of SL(2,C).



(iii) Dirac c-spinors — these are the vectors of a complex 4-dimensions space
C* equipped with the spinorial metric 72

Ba:C*xC*—C |, Bu= (¥4, 4) = viBda

where a Dirac e-spinor v (0y) is defined as

'

- A 4 n?
C’¢ C'=C*> ¢y =0+ €= ¢ (12)

1

&
In the canonical basis of C* the matrix B is the representation of 3; and

we have
cCo .

B (0 c ) (13)

The spinorial metric §; is invariant under SL(2, C) in the following sense

Ba(tba, 04) = Ba(p(u)va, p(u)da)
plu) = (; (u,")_, ) w € SL(2,C) (14)
The transformation law of the Dirac c-spinors are then

Yy — [; (“.0)-, ] Ya (15)

which means that Dirac c-spinors, as is well known, carry the D(1/2% g D(0.1/2)
of SL(2.C).

(iv) Standard Dirac c-spinors — If p(u) is a representation of SL(2.C) then
Sp(u)S~', with SS~! = §7!S§ = 1 is also a representation.Under a similarity
transformation the spinor ; —— Sty which in general mixes the compo-

a

nents of C? with those of C?. A particular mixing is convenient in writting

Dirac’s equation. We define standard Dirac spinors as the objects ¥, such
that

c‘9¢.=(:) (16)

a A T
where ¢ = 2:(€+ %) ; A= —\}3(5- ) where £ € C? and n< C? and the
sums in @ and A are in the sense of sums of complex numbers for each compo-
nent. It is well known that ¥, and ¥, are related by a unitary transformation
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(57! = §*) which leave unchanged the bilinear covariant constructed from
¥q and y; 1720,

We now ask the main question to which this paper is adressed: to which Clif-
ford algebras are the c-spinors described in (i), (ii), (iii) and (iv) above to be
associated?

We are ghaing to give an original answer to the above question by intoducing
a natural scalar product (see § 3} in certain lateral ideals of certain rea/ Clifford
algebras that “mimic” what has been described in (i), (ii), (iii) and (iv) above.
To this end in section 2 we give the main properties of Clifford algebras over the
reals [34.2122.2324.35.2627 The material presented fixes our notation and is the min-
imum necessary to permit the formulation of our ideas in a rigorous way.

In section 3 we define the a-spinors as elements of minimal lateral ideals and
the e-spinors are the elements of lateral ideals (not necessarily mimamal) in real
Clifford algebras. The a-spinors or e-spinors of each one of the Clifford algebras
studied in this paper has a natural F-linear space structure over one of the follow-
ing fields F = IR or C or H. respectively the real, complex and quaterniom fields
(§ 2).

We introduce for each a-spinor space / = IR, ¢ a natural scalar product (spino-
rial metric) i.e., a non-degenerated bilinear mapping I' : ] x I — Fe. where F is
the natural scalar field associated with the vector structure of I C R, .

Our approach to the natural scalar product shows for p + ¢ < 5, the groups
Spin. (p,q) are the groups that leave the spinorial metric invariant. Thus our
approach to the scalar product is different from the one discussed by Lounesio®
and as we shall see offers a solution for the main question formulated above.

In § 4 we analyse in detail the special cases SU(2) ~ Spin(3,0) and SL(2.C) ~
Spin.(1,3) and identify respectively the ideals that contain the objecis corre-
sponding to Pauli c-spinors in Rs; and the Weyl e-spinors and Dirac c-spinors
in R, 3 (the space-time algebra) and Ry, (the Majorana algebra). Our identifi-
cations are all based on explicit proofs that the representative space of a-spinors
(or e-spinors) of each one of the c-spinors mentioned above carry the correct rep-
resentation of the corresponding spin group (according to the theory of group
representation). We show also that the original.Dirac algebra € (4) must be iden-
tified for physical reasons with the real Cliflord algebra R, ;.

Now, it is well known that physical theories use spinor fields. Indeed, there are
theories which use c-spinor fields **?% and theories that use e-spinor fields [¢3031:3233
c-spinor fields are sections of the so-called Spinor bundle and the e-spinor fields are
elements of the Clifford bundle. These two bundles are of very different nature.
In particular the existence of the Spinor bundle imposes several constraints on the
base manifold of the bundle (which is taken as a Lorentzian manifold modeling



space-time 110343538} ' which are different from the constraints imposed for the
existence of the Clifford bundle **7.

Now, the construction of the Clifford bundle for a base space-time of signature
(3,1) needs the use of the tilted Clifford group 19?3 which are introduced in § 3
togethés with the Pin(p,q), (Pin"(p.q)) and Spin(p,q) and (Spin°(p. q)) groups.

The use of the Clifford bundle in references 193933233 show explicitly some
problems with the “transformation law” of e-spinors. This problem is completed
solved from the mathematical point of view in § 3.5 and in 39

In another publication (called II) we study the structure of the Spinor bundle,
the Clifford bundle and a new bundle which we call the Spinor-Clifford-bundle.
In I1 we show how to write Dirac’s equation on the Clifford bundles ( (IR, 3) and
C(Rs1). This motivates the operator definition of spinor given by Hestenes for
IR, 5 and generalized by Dimakis **' for all real Clifford algebras.

We call also the attention of the reader that in II'*”! we give a new proof Ge-
roch’s theorem that require only the explicit construction of the Weyl algebraic
spinor and the spinorial metric within IR, 3 and elementary facts about associated
bundles and the bundle-reduction process. This is to be compared with the origi-
nal Geroch’s proof which uses the full algebraic topology machiney.

For methodological reasons the definition of o-spinors is presented in another
publication. called ITI'*%,

Finally in § 5 we present our conclusions.

2. Some General Features About Clifford Algebras

Let V be a vector space of finite dim;nsion n over the field F and let Q be a non-
degenerate quadratic form on V. The Clifford algebra C(V,Q) = T(V) /Iy where
T(V) is the tensor algebra of V(T(V) = &%, T*(V); TO(V)=F: TY(V) =
V; T7(V) = @®"V) and I is the bilateral ideal generated by the elements of the
form z® z — Q(z)1, =z € V. The signature of Q is arbitrary. The Clifford alge-
bra so constructed is an associative algebra with unit. The space V is naturally
imbedded in C(V,Q).

vaTWw) L T(VI)/IQ =C(V,Q), ig=joi; and V = Ig(V)C C(V,Q).

Let C*(V,Q) (respectively C~(V,Q)) be the j-image of T2, T*(V) (respec-
tively ©2, T#*'(V)) in C(V, Q). The elements of C*(V,Q) form a subalgebra of
C(V,Q) called the even subalgebra of C(V, Q).

C(V, Q) has the following universal property: “If A is an associative F-algebra
with unit then all linear mappings ¢ : V — A such that (¢(z))* = Q(z)1, ¥z € V
can be extended in a unique way to a homomorphism ¢ : C(V,Q) — A7



In C(V.Q) the& exist three linear mappings which m quite n_atural. They
are extensions of the mappings:

(a) Main Involution - an automorphism © : C(V.Q) — C(V,Q) extension of
a:V ~T(V)/lo, alz)=-ig(z) = -z.¥z€ V.

(b) Reversign - an antiautomorphism * : C(V.Q) — C(V.Q) ‘extension of
LT(V)=T(V), T(V)32=2,,8--@ 2z, ~ 2 =2, @ @ ;-

(c) Conjugation - ~ : C(V.Q) — C(V, Q). defined by the composition of the au-
tomorphism © with the antiautomorphism ", i.e., if € C(V.Q). then z = (z°)°.

C(V,Q) can be described through its generators. i.e.. if {e;}.7 = 1,2,...,n is
a Q-orthonormal basis of V, then C(V.Q) is generated by 1 and the €,s subject
to the conditions ee; = Q(e;)1 and e;e; + e, = 0,3 # 3, 6,7=12,....n. fV is
a n-dimensional real vector space then we can choose a basis {¢,} for V such that
Q(e;) = +1.

2.2. The Real Clifford Algebras R,,

Let IR”7 be a real vector space of dimension p + ¢ = n equipped with a metric
g: IR?% x IR"% — R. Let {e;} be the canonical basis of IR*# such that

-1 1=)=p+1...,ptq=n
0 1#)

The Clifford algebra R,, = C(R**,Q); p + ¢ = n, in the Clifford alge-
bra over the real field R, generated by 1 and the {e.}, 1 = 1....,n such that
Qle;) = gles,e). Ry, is obviously of dimension 2" and it is the ‘direct sum of
the vector spaces R}, of dimensions (:), 0 < k < n. The canonical basis for

R}, are the elements ¢4 = €, "€, 1 < &y < --- < ap < n. The element
¢, = e+ -¢q € Ry, commutes (n-odd) or anti-commutes (n-even) with all vectors
er,..-.eq in R) = IR**. The center of R, is R), = R if n is even and it is the
direct sum R) & R}, if n is odd. 224 All Clifiord algebras are semi-simple.
If p+ ¢ = niseven IR,  is a simple algebra and if p + ¢ = n is odd we have the
following possibilities:

o O T B IR
glei ;) = gi; = glej,e) = 95 =

(a) R, is simple <= ¢} = —1 «+ p— ¢ # 1 (mod 4) «— center R, is isomorphic
to C.



{(b) R, is not simple < €} = +1 «+ p—g = 1 (mod 4) « center R, is isomorphic
to Ry, & Ry, :

From the fact that all semi-simple algebras are the direct sum of two simple
algebras 1*¥ and from

Weddenburn’s Theorem: “If A is a simple algebra then A is equivalent to
F(m), where F is a division algebra and m and F are unique (modulo isomor-
phisms)” we obtain from the point of view of representation theory R, , =~ F(m)
or R,, =~ F(m) & F(m) where F(m) is the matrix algebra of dimension m x m
(for some m) with coefficients in F = R, C, H.

Table I (where {n/2| means the integral part of (n/2) presents the representa-
tion of IR, ., as a matrix algebra /2375,

p—gimod 8

l o 1 2 | 3 4 s I 6 7
a ! i
} zi2lor2); w2,
2l2), ® izl cql*h a1, o | mabv-) o2,
xiale2} w2y |

Table I - Representation of the real Clifford algebra R,, as a matrix algebra

2.3. Minimal Lateral Ideals of R,

The minimal left ideals of a semi-simple algebra A are of the type Ae. where
e(e? = e) is a primitive idempotent of A. A idempotent is primitive if it cannot

be written as a sum of two non zero orthogonal idempotents, i.e., ¢ #3 + :, where

A A ' v AV VA
e*=e, e’=e and ee=ee= 0. Recall that when p+ ¢ = n is even R,, ~ F(m).

(Table I). We also have the

Theorem. The maximum number of pairwise orthogonal idempotents in F(m) is
mi?4,

The decomposition of IR, , into minimal ideals is then characterized by a spec-
tral set {e,,,} of idempotent elements of IR, , such that

9



(‘) ; 2: Cpgs = 1
(h) Cpgs Cpog = 6&) €pea

(c) rank of ey, is minimal = O.i.e., €,,is primitive.

where rank of e,,, is defined as the rank of the & A“(R??)-morphism ey, :
¥ — U ey Where & AY(IRP9) is the exterior algebra of R?4. Then R,, =
Y Le L,= Rygep,and w € I, Z Ry, is such that ¢ ey, = . Conversely,
any element ¢ € [} | can be characterized by an idempotent ey, of minimal rank
# 0 with v 5, = w.

We have the

Theorem ®: A minimal left ideal of R, is of the type I,, = Ry, Where
epe = 1/2(1 + €,,)---1/2(1 + ¢,,) is a primitive idempotent of R,, and where
€ayy-- -+ a, IS a set of commuting elements of the canonical basis of R, such that
T S e e k that generates a group of order k = ¢ — r,_, and r, are
the Radon-Hurwitz numbers, defined by the recurrence formula ri4s = r; + 4 and

= 29 A R
rn 0 B e e

bt [t

Table 11 - Radon-Hurwitz number

If we have a linear mapping L, : R,; — R,, 3 L.(z), Yz £ R,, and where
a £ R,,, the since I,, is invariant under left multiplication with arbitrary ele-
ments of R, .. we can consider L,;,_ : I, — I,,. We have the

Theorem: If p+ g = n is even or odd with p — ¢ # 1 (mod 4) then
a= Lrlyy) ='_F("') (17)

where F ~ R or C or H, [r(l,,) is the algebra of linear transformations
in I,, over the field F, m = dimg(l,,) and F ~ eF(m)e, ¢ being the
representation of e,y in F(m). f p~ ¢ = n is odd, with p— ¢ = 1 (mod 4), then
R,, ~ Lr(l,,) = F(m) & F(m), m = dimp(l,,) and ey lR, ¢, ~ R® R or
Haz H.

With the above isomorphisms we can identify the minimal left ideals R, with
the column matrices of F(m).

10



Now. with the ideas introduced above it is a simple exercise to find a primitive
idempotent of R,,. We have the following algorithm. We first give a look in
Table | and find to which matrix algebra our particular R, , is isomorphic. Let

o ~ F(m) for a particular F and m. ? Next we take from the canonical basis
{ea) of Ry,

" ex=cpven, 1<H<-<B<n pig=n

a element e,, € {es} such that e = 1. We then construct the idempotent
epe = 1'2(1+e,,) and calculate dimp(1l, ). If dimg(I,,) = m then ey, is primitive.
If dimg(l,4) # m then choose * {e4} = e,,le2. = 1 and construct the idempotent
he = 1/2(1 + €4,)1/2(1 + €,,) and the calculate dimg (K, ) where I, . = R e, . If
dimp(I,,) = m, then e, is primitive. Otherwise repit the procedure. According
to the theorem above the process is finite.

We will discuss the problem of the equivalence of representations of R,, when
we take the minimal left ideals (instead of some vector space isomorphic to them)
as representation modules of IR,,. after the introduction of the concept of the
Clifford groups (§ 3).

3. Algebraic Spinors. Spin Group, Spinorial Representation and
Spinorial Metric.

We continue to use the notation of § 2, but here V refers always to a real
vector space.

3.1. The Group C*(V,Q).

The elements u € C(V,Q) such that there exists ™! € C(V.Q), uwu™! =
u~'u = 1 constitute a non abelian group which we denote by C*(V,Q). When
(V,Q) = IR™* we denote C*(V,Q) by R; .

C*(V,Q) acts naturally on C(V,Q) as an algebra automorphism through its
adjoint representation Ad

Ad: C*(V.Q) — Aut(C(V,Q))
Ad,:C(V,Q) —C(V,Q) (18)
Ad,(z) =uzu”!, ueC(V,Q); ze€C(V,Q)

For what follows it is also important to consider the so-called twisted adjoint

*We are supposing R, , is simple. The procedure is also straightforward when R, , is semi-
simple.
“All elements e, are actual commuoting elements as stated in the Jast theorem.
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representation of C‘(V, Q),
AdD : C(V.Q) —C(V,Q)

AdD = uDzu!
Observe that AdS = Ad, for u € C*(V,Q) N C*(V.Q).
3.2. The Glifford and the Twisted Clifford Groups

We define the Clifford group T'(V.Q) of C(V,Q) by
F(V.Q) = {u € C°(V.Q). Ady(V) = V}
We define the special Clifford group I'* (V,Q) of C(V, Q) by
I (v.Q) =T(V,Q)nC™(V,Q)
We introduce the “norm mapping” N : C(V,Q) — C(V,Q) by
N(z) =12
We have the
Proposition: The following mappings are homomorphisms

Nirwg :T(V,Q) — R*, dim(V) iseven
R = R- {0)
Nir+(V,q) :T7(V,Q) — R",dim(V) isodd

The reduced Clifford group is defined by
To(V.Q) = {8 € T(V,Q)IN(u) = <1 and dim(V) iseven}
The reduced special Clifford group is defined by .
T3(V.Q)={ueT*(V,Q)IN(w) = =1 and dim(V) isodd}
I;. denotes the component of I'; containing the identity.
We now define the twisted Clifford group I'2(V,Q) of C(V,Q) by
rew.Q) = {uc C*(v.Q), Ad7 (V)=V}
The special twisted Clifford group I'C * (V.Q) is defined by
res(v,Q) = re(v,Q)nc (v.Q)

12
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When (V,Q) = IR"* we use the notations I'(p.¢) and I'°(p, g) for I'(V, Q) and
row.Q), ek ... .

It is clear from eq.(20) leq.(27)' that T2 (V.Q) ¢ I'(V, Q).

Let us call ¢ the restriction of Ad to I'(V.Q). Since when u € I'(V,Q), the
linear morphism o(u) : V — V satisfies Q(o(u)z) = Q(uzv™?) = uzu 'uzu™! =
uzr’u~! = Q(z) it follows that we have the following group morphism

Adirvg =0 :T(V,Q) - O(V.Q) (29)

It is very important to observe that when dim(V') is odd the morphism o is
not onto, its image being the special orthogonal group SO(V, Q).
We then have !10:21.22.23] .

Proposition:

o(T(V,Q)) = 0(Q.V), if dim(V) iseven

30
o(T"(V,Q)) = SO(V,Q), if dim(V) isodd Y
For what follows we need the result 13!,
Proposition: The kernel of the mapping
Ad® :T° — Aut(V) s R* (31)
Consider now the “twisted norm mapping® N© : C(V,Q) — C(V.Q)
NO%(z) = 2=z (32)

fveV—CV,Q), N = (v)°v=-v?=-Q(v). This means that
N(v) coincides with the “square of v € (V,-Q)”. In the particular case when
(V.Q) = IR*4, then (V,-Q) = IR*", which is a real vector space of dimension
n = p+ g with a metric of signature (g, p).

N© has important properties when restricted to I'°(V,Q). We have:

Proposition *4:

N®jro(V,Q) : T°(V,Q) — R" is a homomorphism
and for T2(V,Q) > u itisN®(u®) = NO(u). (33)

More important is the
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Proposition: Let u € I'9(V.Q) and Ad%|rwgq) = ¢° . Then the linear mor-
phism ¢%(u):V — V satisfies N(oZ(u)v) = N(v) = —Q(v).

It follows that ¢© C O(V,-Q) (34)
»
The proof of Proposition (34) is trivial. It is important to observe that as

O(V.Q) ~ O(V, - Q) we have also that ¢® = O(V,-Q).

We close this § 2.3 with the following observation: It is easily to show that if
v <V and Q(v) = 0. then Ad, (V) =V and AdZ (V) = V. Therefore we can show
119" that the elements of both I'(V,Q) and I'®(V.Q) can be written as a product
of a finite number of vectors v,.Q(v,) # 0. We have, e.g.,

IOl ={n--9eCIV.Q). u=1....r. Q)+#0} (35)
3.3. The groups Pin(p,q), Spin(p,q), Pin~(p.q) and Spin°(p.q)

We define the Pin(p,g) group when p+ g = n is even as the subgroup of I'(p, q)
such that
Pin(p,q) = {u € I'(p.q)IN(u) = =1} (36)

It is clear that Pin(p,q) ~ I'(p.q)/IR;, where IR’ are the non-negative real
numbers.
We also define the Spin(p, g) group when p — ¢ = n is even or odd by

Spin(p.q) = {u € " (p,q)iN(u) = =1} (37)

It is clear that Spin(p.q) =~ I'*(p.q) 'R..
We define the Spin. (p.q) group when p ~ ¢ = n is even or odd by

Spin.(p.q) = {u< ' (p.q) Nfu) = <1} (38)

Comparing eq.(38) with eq.(25) we see that Spin.(p,q) = I;(p,q) when
p+q = nis odd N is clear that Spin.(p,q) = Pin,(p,q) where Pin,(p,q)
is the component of Pin(p,g) containing the identity.

The following theorem holds true 23 -

Theorem:
Ad pinipq) : Pin(p.gq) — O(p,g) is onto with kernel
Z, when p+g=n is< even
Ad 5pnpq) - SPin(p,q) — SO(p,q) is onto with kernel
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Z, when p+g=n is even or odd (39)

Theorem (39) means that O(p.q) =~ Pin(p.q)/Z: when (p + q) is even and
SO(p. q]‘: Spin(p.q)/Z2 when (p + q) is odd or even. It is also clear from the
above considerations that SO_ (p.q) ~ 5"—"2'1—(’—")‘ where SO, (p.q) and Spin_ (p.q)
are respectively the components of SO(p,q) and Spin(p.q) connected with the
identity.

The above groups are used for the case when p+¢ = n is even. e.g.. by Bugajska

+ " in her study of the spinor structure of space time. Also related definitions are
given by Crumeyrolle 1%,

For the construction of the Clifford bundle (in II) when p+ ¢ = 3+ 1 we need

also the following definitions

Pin®(V,Q) = {u € TO(V.Q)|N°(u) = =1} (40)
Spin®(V,Q) = {u € I° *(V.Q)|N(u) = 1} (41)
SpinZ(V,Q) = {u € ' *(V,Q){N(u) = +1} (42)

Spin=(V.Q) is the connected component of Spin©(p. ).
We saw above that Pin(p.gq) is a covering of O(p,q) only when p + g is even.
For the groups Pin®(p.q) ‘and Spin°(p,g) we have 1",

Theorem:

<

Ad® |pinoipq) : Pin=(p,q) — O(q.p) is onto with kernel 2,

(43)
Ad® |5pmo(pq) : SPinZ(p,g) — SO(q, p)is onto with kernel Z,
1t follows that the following exact sequences are valid for all (p, q).
O — 2, — Pin®(p,q) - O(g,p) — 1
. Ad©
0 — 2, — Spin®(p,q) = Olg,p) =1 (44)

% o
0 — 2, — Spin®(p,q) ** SO.(p.q)

We now give the relation between the various groups defined above
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Proposition: When

ptg=nm is even l":(p.q) L r(p'q)

and when

p+g=n isodd T (p.g) C I'%(p.q) C I'(p.q) (45)
Proposition; When

p-q=n iseven Pin(p.q) = Pin®(p.q)
and when
p+q=n isevenorodd Spin(p,q) = Spin®(p.q) (46)

The proofs of Propositions (45) and (46) are trivial.
We resume the above results in Tables III and IV.
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=pin" (pg) e O(q,p) = Olp.g)

4

SO(g,p) = SO(pa)

$0,(pg) = SO
+ &P) 50, (4:p)=50, (pa)

Table 11l: p- ¢ = nisevenand n > 2



ripg)

bt

Spin(pa) = Spim (paq) 2 S0{g.p) = SO(p.q)

rpa) Olgp) = Op.q)

+ + o
Spin, (pg) = 7o (pa) = Talpa) = Spin3 (pgj————————50(ap) = SO+(pa)

Table IV - p- ¢ = nis odd
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Since R, ~ R, it follows that
Spin(p,q) ~ Spin(g,p) (47)

Finally, the following is fundamental for the present paper:

Theorem V:
Spin.(p.q) = {uc R juu=vu=1}; for p+g¢<5. (48)
3.4. Algebraic Spinors.

Given a real Clifford algebra R,, we call elementary algebraic spinors. or a-
spinors for short the elements of the minimal left (or right) ideals R, je,, (e, R, ,)
or R, e, (e, R, ), where e, ¢, are primitive idempotents of R,,. We call al-
gebraic spinors or e-spinor the element of left (or right) non minimal ideals of R, ,.

3.5. Spinorial Representations.

In § 2.3 we showed that the minimal left ideals are representation modules of
R, ,. We must now discuss the problem of the equivalence of these represeniations.
To this end, remembering that IR, , is not just an algebra, but an algebraic struc-
ture consisting of an algebra together with a distinguished subspace Rx‘w ~ RP4
and that the representation spaces I, , are certain subalgebras of IR, , we have the
following theorems 2223,

«

Theorem of Noether-Skolen: When R, ; is simple its automorphisms are given
by its inner automorphisms z — uzu™',z € R, , and u € T'(p,q) = I'Z(p,g).

Theorem: When R, is simple all their finite-dimensional irreducible represen-
tations are equivalent under inner automorphisms.

In view of the above theorems we define that two representations I, and [} A
of R, are equivalent if [,, = ul,u~' for some u < I'(p, g).

Now, if we consider the definition of the group Spin*(p,q) we see that the
ideals I, , can be made into spinorial representation of SO, (p,q) (in the sense of
group theory)by postulating /,, — ul, 4. for u € Spin_(p.q). This is exactly the
idea behind the introduction of the spinorial metric (§ 3.6) which is necessary in
order 1o “mimic” the results in (i), (i), (iii) and (iv) of § 1.

The transformation ¥ — uv. ¢ € I, , corresponds to the usual transformation
of c-spinors, but the use of this transformation involving other Cliflord numbers
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would contradict the fact that the I s are substructures of R,,.

Observe that when IR, is semi-simple and e, is a primitive idempotent then
R, e, R, ; is a bilateral ideal and lel = ¢ # 0. It follows that R, e, R, = R, ,,
from where we can write 5

Ry, = I(p,q)("L,,) (49)
where
(% g = Rygtpe and exR,, =" I,

The meaning of eq.(48) is then that ¥r € R,, can be written as sum
of elements of the tensor product * of the spinor spaces I,, and *I,,, ie.. any
z € IR, , can be considered as a rank-two spinor.

This decomposition of antisymmetric tensors are the ones generally, presented
in textbooks of theoretical physics and group theory and which gave birthy to the
believe that spinors are more fundamental than tensors. However from the results
of § 2.3 we know that Yz € R,  can be writlen as

=ttt +va (50)
where , € L,. L, = Rygepyi. T ep=1.
From eq.(50) it is clear that e-spinors can be written as sum of antisymmetric
tensors (for explicit examples see § 4).
Now. let {e,.} and {e},,} be two set of primitive idempotent 377, €, = 1,
Trith:=1 and ¢, =ueu!, u€Tl(pq)
Given z € IR, , we have

IT=3 Tepi=) 26, =t -t =j+---+ ¥,
=1

and then
¢ = uhu”! (51)
On the other side if a given z € R, can be written as
z=9'p, v€1l,, °‘pe ‘I, (52)
we can write

V0= Valyylp Ca i ¥ 0E Ry,

3 talu e u)(u"e, u) “pa

z(a"ﬂc’")lu"(c;. ‘olu) ;3 ¢L = ugu?

v (e )un (e, wl)le (53)

4 ber the definition of the Clifiord product
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In this case the factor uu~! = 1 can be eliminated or retaining without affecting
the result. Then, from the usual decomposition of antisymmetric tensors as tensor
products of spinors we infer that we can choose as transformation laws for the
spinors:

vy =wy (a)
or (54)
i -1
g ¥ — ¢ = wgu (b)

Eq.(54.b) is what results from the “sum decomposition” of z into spinors.

Observe that if ¥ € I, then uy € I,, but wvu™' @ I, 4, in general.

In physical theories which use spinor fields the observables are usually asso-
ciated with bilinear functions of spinors (i.e., the observables are tensors) and
the problem with (54.a) and (54.b) does not occur. There are a paper in the
literature*® saying that the transformation (54.a) can be directly observed. How-
ever the arguments given by the authors are not very strong - we will come back
1o this particular point into another paper.

3.6. Scalar Product of e-Spinors. The Spinorial Metric

In § 2.3 we saw that R, is simple, a minimal left ideal I,, of R, is of the
form I, = IR, 4ep Where e, is a primitive idempotent of R, and F ~ e, R, e,
with F = IR or C or HH. depending of p — ¢ = 0,1,2(mod 8), p— ¢ = 3,7(mod 8)
or p— q = 4,5,6(mod 8) respectively (Table I). We can then define a right action
FinIpg 1,y x F — I,y by I, x F = ($,@) — %a € I,,. In this way I,, has
a natural linear vector space structure over the field F. whose elements are the
natural “scalars” of the vector space I, ,.

These remarks suggest us to seach for a “natural scalar product” on I, 4, i.e..a
non-degenetared bilinear mapping I' : I, x I,, — F. To this end we observe that
if f and g are F-endomorphisms in IR,, then we can define a bilinear mapping
T'in R,, using f and g. We simply take ['(¥,0) = f(¢¥)g(v), ¥.p € R,,.
Considering that I, = IR, e, has a natural structure of vector space over F we
can take the restriction of I' to I, ,, and ask the following question:

For ¥,p € I,, when does I'(¢,p) € F?

As we saw in § 2.1 we have three natural isomorphisms defined in R,,, the
main involution, the reversion and the conjugation, denoted respectively by ©, -
and ~. Combining these isomorphisms with the identity mapping we can define
the following bilinear mappings

By ilg i g i AR
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(55)
r)('l’,\;’) - f’cP
T2, ) =¥'p
Ts(,p) = vp, Ve.p€l

As already observed in § 2.1 the main involution is an automorphisms whereas
the reversion and conjugation are antiautomorphisms.” An automorphism (anti-
aummor;hiism) transforms an element of a minimal left ideal in an element of a
minimal left ideal (minimal right ideal).

To see the validity of these statements it is enough to observe that the image
of a primitive idempotent under a isomorphism is a primitive idempotent and that
ifw s l,, = Ry ep then ¢ = ze, with z € Ry, and

% = (o) V=2l 9P e I, =R, ;8
V' = (zeg) =€ 2" > ¢ € “L,=c R, (56)
b = (zep)” = tpi > € EIpp = iRy,

Using the isomorphimsm R,, ~ Lrp(l,;) ~ F(m), m = dimg(l,,) (when
R, is simple, cf. & 2.3) we identify the elements of the minimal left ideals of R, ,
with the column matrices of F(m). Then. if ¥ € I,, has a representation as a
column matrix of F(m) then v" and v have representations as row matrices of
F(m). and we get that ¥"p and ¥¢ are elements of F.

We identify the scalars of the vector structure of I,, with multiples of

1 0
0 0 e
0 0

e

Cpg =

(57)

i.e., as matrices in F(m) multiples of the matrix in eq.(57). Sometimes it may
be convenient to choose the 1 in e,, in another line [see eq. (81)]. Through
isomorphisms of R,, (multiplication by a convenient invertible element u € R, )
we can transport ¥ ¢ or ¥ to the position (1,1) in the matrix representation of
these operations. We then conclude that the natural scalar products in 1, , are

B=hyxl,—F , i=12 (8)

Bi(v,p) = w'¥'p and Ba(¥,p) = udp, Ye,p € I, and u, v’ € R,  are conve-
nient invertible elements.

Lounesto/®! obtains the scalar products in eq.(38) using similar arguments
and immediately proceeds to the classification of the group of automorphisms
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of these scalar products, i.e.. the homomorphisms of right F-modules, I,;, —
Ipew @ — s¥, s € IR,, which preserve the products in eq.(58). Observe that
from By(sv,s0) = By(¥,p) we get s's = 1 and from By(s¢,sp) = By(v.p) we
get s =1 (v, € 1,,). Lounesto calls G, = {s € R, :5's =1}, G, = {s€
Ry a8=1)

So in Lounesto’s paper there does not appear clearly any relationship between
the graups Spin(p.¢) and the groups G, and G; with the consequence that we do
not have a clear basis to mimic within the Clifford algebras R, , (for appropriate
p and g) the results described in (i). (ii), (iii) and (iv) of § 1. We can mimic
these results within some Clifford algebras by introducing the concept of spinorial
metric. .

Observe that since Spin(p.q) C R, it seems interesting to define a scalar
product in an ideal I = IR, e,. The reason is that such a scalar product is now
unique, since if s € IR}, then s = 5. This unique scalar product will be called in
what follows the spinorial metric

il i, - F (59)
define by 8(v,p) = upp. We see that G = {s € R} |ss = 1} is the group of
automorphisms of the spinorial metric just defined and G C G,, G C G,.

We now recall Theorem (48) of § 3 which says that for p+ ¢ <5

Spin.(p,q) = {u€ R Juv = v'u =1}

With the result we get a new intgrpretation of the groups Spin,(p,q) for
p+ ¢ < 5, namely, these are the groups that leave the Spinorial metric of eq.(59)
invariant. But even more important is the fact that now we know the way to mimic
within appropriate Cliflord algebras (i), (ii), (iii) and (iv) of § 1 and thus we can
make a representation within Clifford algebras of the Pauli ¢-spinors. undotted
and dotted bidimensional ¢-spinors and Dirac c-spinors. This is done in § 4, and
in IL

4. Representation of Pauli ¢-Spinors, Undotted and Dotted Two-
Dimensional Spinors and Dirac c¢-Spinors by Appropriated
Algebraic Spinors

4.1. Pauli e-spinors and the Group SU(2)

The algebra R, (Pauli-algebra) is isomorphic to C(2) (see Table I). Ryp is
generated by 1 and o;,1 = 1,2,3 subject to the condition 0,0, + 050, = 26,;,6;, =
diag(+1,+1,+1). It is trivial to verify that ey = 1/2(1 + 03) is a primitive
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idempotent of Ryo. Now, consider z € Ryp.
T = ag + G;0) + 8203 + @30y + 40,03 + 450103 + @0205 + 010,003 (60)

&€R, 1=0,...,7
The elements p € Isg = I, = Rypess = Rjqes (Pauli a-spinors) are of the
form i
»
¢ = [(ag ~ @:) - (a4 + a1)010:05]e30 ~ [(a) + as) — (az + a6)010:05.01e5  (61)
h is then immediate that esMR3geso ~ C has basis {1,010203}e3 and the

spinorial basis is @ = {e3,0;€3). We now show that the elements of I, are the
representatives of Pauli e-spinors [(i ) of § 1..

7
Using the isomorphism Rso =~ Le(l,) (§ 2.3), f(z)¢ = zv,u € Rsp,w € I,
we obtain the representation of z € IRsp in the a-basis through the following
algorithm: * Put

em=11>, oye30=12>; <1|=¢€3% <2 =(o1em) =exoy (62)

1=Y > <3}, i=1,2% <ili> =bem

z=2Y fi> <iingfi>=) 2uli> zx =<jlab>

we{a] s e [22)

e B R HR R

We also have the following matrix representations for z,7°,z" and z € Rsp.

(63)

n 2z % -3 |
C = . L.
o ata e ER B

E

e M 2 Tl (64)

2 2z .

Y 1 € Ry we use the same letter for f(z) € C(2) ~ Le(1,). This causes no confusion.



From eq.(64) we see that the main antiautomorphism ° corresponds in the
Pauli-algebra to the operation * in matrix algebra.
We now define the spinorial metric

B:1,x Iy —C;B(b,0) = A ¥plo=0p + 8¢ (65)

where ( )o means the scalar part of the Pauli-number.
The representation of 8 in the a-basis is then

» 10
|m.=[01]=n: (66)
Also B(v,p) = Bluv,up) <= w'u =1 < u e U(2).
Now, if € R3, ~ Ro; ~ IH, we have the following representation for z in
the a-basis - ST
z=[’ ";] and i:z':[ "’] (67)
W - E -w z
Then NP(z) = Zz = det z- 1 => NP(z) = 1 <= det z = 1. So. the elements
u € Ry, such that B(uy,up) = B(v¥,¢),¥,p € I, satisfy #u = 1 and det u = ~1,
which means that u € SU(2) ~ Spin.(3.0). Our statement that Pauli ¢c-spinors
are represented by the elements of I, = IR;esq (Pauli a-spinors) is then proved.

4.2. Representative of Weyl c-Spinors and Dirac ¢-Spinors within R,
and SL(2,C)
The algebra IR, 3 is generated by 1.and the vectors e, such that
eqe, + epe, = 2n,, 3, = diag(+1,-1,-1,-1); p.r=10,1,2.3.
: x { / : 5 .
Consider the isomorphism R',"o ~ IR,3, where [ is the linear extension of
flo:) = eieg and 0; € IR* as in § 4.1. Since esp = 1/2(1 + 03) is a primitive

idempotent of Rsp, f(esa) = 1/2(1 + eseo) is a primitive idempotent of R} ,. Also,
since Ry 3 ~ IH(2),e1s = f(eso) = e is also a primitive idempotent of IR, s since

dimg Ryse = 2*/2 and dimy R, s = 2

Ip = R, se is a bidimensional quaternionic space and ¥p € [p is a representation
of the Dirac spinors as we shall prove. Let a € R, se

a s+ (ace + aye; + azes + azes)
+ (aorece; + ameoes + agsenes + ayzeres + ayzeres + arsezes) (68)
+ (ao2e0€1e2 + agseperes + agasenezes + aaserezes)

+ peperezes
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Then ¥p € R, se is such that
¥p = |20 + X1y + Zze2 + Ise1e2)e + lwo — yre; + yrer + ysesez)ereoe ~ (69)
where ¢IR; 3¢ ~ H has basis {1.¢),¢;.65¢3}e.

Contravariant Undotted e-Spinors

Consider the minimal left ideal ] = IR} ;e. Then n € I can be written as
. n = iZp + Zsile + [y + ysileoey (70)
where efR; ¢ ~ C has basis {1,i}e. where

i=epeie2es : Zp.ray.ms€ R
We write
1 2 1 2 nt o], .
Feyrivamr=rat x|, J(0ECe , i=12 ()

Covariant undotted e-spinors

Consider the space ] = (IR} s¢)~

g i 2 ( 00 ) (o 0 )
=ef —ejtph) =~ . 1 =
e | Th 7

We can identify the covariant undotted spinors as the elements

Iy

=

A 2 - 1
= ejeon = ("‘¢+ "2“]60)0301 =~ ( "o ; ) = ( 3‘ (')h ) = r)'c

oy =exep , 0y =¢e1eo , C =030, (72)
Note that we can define the spinorial metric as
B:IxT—C;Bm&=2ME)=2n"CE (73)
Contravariant dotted spinors
Consider the ideal 1 =* | = eJey
130 = eolen' - teresn’)es

=4
= eﬁ’+e¢mﬁ’=(

n
0

)

[}
—

o

) (74)

o 3
o3
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Covariant dottet spinors

Consider the ideal ]= —eoleo

137 = -7't+ 7lereot
(s -%)-(cn)
0 =9t ] \o.m
. n N2
We can identify the covariant dotted spinors as the elements
s ~ e Aesrs .
n=foy = -n030; = —(7'¢+ 7 ere0e)o30 (75)

030y(7' ¢ + 7i’eere0) = 0301 (7' e + 7’ esece)
2

Y B “'ll
or e §et,)

The spinorial metric in this case is defined by

I

l

a
B:ixI—C ; B(n.€) = 2(n0s0:E% = 2(n E)o (76)

In the spinorial basis a = {e, é,e0e} of 1 we have the following representation
for o; = e;ep, 1=1,2,3

Sl ELY, TS oy
g B BTG I 3-8 1000 W PN B & 0v
Observe now that we can write from egs.(68, 70, 75) that

A
Yp = p+e X (78)

Now, let z € ;3. Then we have that if z € €(2) is the representative of
z £ Ry, then

z2 2z 2 % -1
== = = 79
= (2 2 )masm=( 2 )= (79)

From eqgs. (78) and (79) we have that for u € Spin. (1,3) that ¥p — ¥, = utp
and . 5 3 ' e

upp = up + ueo x= up - eol(u”) ™ x| = ¢’ + €0 X (80)

Eq. (80) shows that Ip is the carrier space of the representation D(’/?9 g
DY) of Spin.(1,3) ~ SL(2,C) as defined in (iii) of § 1.

Observe also that from eq. (69) we can write

p = Urege + Yaere + Pae + Beepere (81)
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with ¥, € elR) 3¢ ~ C with basis {1.i}eze,.
A complex spinorial basis for Ip is then ap = {epe, )¢, €, €0eye}.
Consider now the injection

7: Ry — Le(lp)r
. z —(z):1p—Ip
vp — u¥p
We get the following representation for e,, 4 = 0,1,2,3 in the ap-basis
=1 P 0 l: % s 0 o, e

‘7(%)—70—(,2 o) 7(:.)—1.-(_0‘_ 0.) e L te B R |
We can also mimic the spinorial metric in €(4) [(iii) of § 1, defining

3p:IlpxIp—C , Bp(¢,p) = 2(¢ esesp)o (83)

4.3. Representations of Weyl and Dirac ¢-Spinors in R;,

R;, ~ IR(4) (see Table I). the Majorana algebra is generated by 1 and the
vectors ¢, such that £,8, < €,&, = =20, ; 1N = diag(+1,-1,-1,-1),u,v =
0.1.2,3. We can easily verify that ¢ = 1/2(1 + & &) is a primitive idempotent of
R3, ~ Rso ~ R;,. Then each ¢ € I = R; & can be written as

© = 1€ + pa€ €8 (84)

where @, p; € €R;,& =~ C has basis {1,i}¢, where i = & &é:83 = ~0,0203 ,
O ey it =i 23,

It follows that the structure of the Weyl spinors is equal in the R, algebra.
What we want now is to represent the Dirac spinors inside R3,. Observe that
unlike the case of Ry3. & =1/2(1 + &3¢y) is not a primitive idempotent of Ry ;.

However. for each 7 € IR;, we can write

Risd>z=z"+%y" ; z*,9° € R, (85)

Also if w € Ry, and if v € C(2) is the representative of u in the canonical
spinorial basis then

2 23 2 —34 ig vl
= = = s 86
u ( ) &uéo ( 2 —in) (u?) (86)
It follows that the objects of the non-minimal ideal Ip = R,s¢,

a
¥p = © + & x transforms under the action of u € Spin,(3,1) =~ Spin_(1,3) =~
SL(2,C) as

Se - A A
Up — ubp = up + ueg x= up + gol(v’)”’ x| (87)
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with p+ ¢ = §. The volume element is £, = E.E.E,E,E.mdn“ﬂ}s-l
for ¢ = 1,3,5. Now define .
e, = E, B -(99)

and impose that e; is an orthonormal basis for R!®, i.e.,
»
g=-EE=+1, ¢=-EE=-1_, k=123. (91)

Eq. (91) is satisfied when p = 4,¢ = 1. ie, E} = E} = —-E} = 1 and we
conclude that the real Clifford algebra associated with space-ume (R'*) and iso-
norpln: to C(4) is Ry,

Eq. (91) shows that Ruz R}, where g is the linear extension of g(e,) =
E,E,, p-=0,1.23 We already saw in § 4.2 that f(ey) is a primitive idempo-
tent of IR, 3 and we have that ¢(f(ex)) is 2 primitive idempotent of R;,. Thea
Ip = R{,9(f(ex)) s a minimal ideal R;, which is a 4-dimensional vecior-space
over the complex field and its elements, the Dirac a-spinors, are representations
in R, of Dirac e-spinors.

4.5. Representation of the Standard Dirac c-Spinors within the R,s
Algebra

It is obvious that é= 1/2(1 + ¢) is a primitive idempotent of R;s. Also we'
can easily verify that for any z € R, there exists y € {,mhthuzZ:,z. It
follows that Jp= Ris ¢ is a minimal left ideal of Rys. The clements ¥€]p can
be written in the form :

5’*“:1‘%‘:‘1;‘*%‘::*%1: (92)

% €¢ Ry 3 ¢~ C with basis {1,e5¢,) ¢.

The ¢’ & are the representative of standard Dirac c-spinors, which are the
kind of ¢-spinors that appear in the usual form of the Dirac equation'”..  The
isomorphism

v: Ris = Lelip)
z —(2) =;n—‘;o '
9
gives through the technique already introduced in § 4.1 the following representation
for ey, # = 0,1,2,3 and & = eoeie2¢; in dp= {‘,m; b &0 ¥}. a complex




spinorial basis for ;a.
Putting 7(ép) = {1 >,12>,18 >, 4 >} and 7(e,) = Y. 7(es) =

i=lali %= [:‘ ?_h ;] i me= !:. o..] fw [?l’ ;"]
93)
where [6;,] is the 4 x 4 matrix with one in the r-line of the first column, all other
elements being zero. Also1 = \/=1. The set of 5-matrices in (93) is usually known
as the standard representation of Dirac-matrices'’..
Observe now that the idempotents ¢= 1/2(1 + ¢o) and ¢ = 1/2(1 + eseo) are
related by
; e=wen! ; w=(1+e) (94)
Since u = (1 + e3) € I'(1.3), the ideals Ip and [p are not equivalent (module)
representations of IR, although from the point of view of group theory both
ideals are carrier spaces of the representation D{/29) @ DI03/2) of S[,(2.C). This
point is important for paper number Il of this series. There we will need also the
following results which are trivially established

I>=9%I15; 11 >=9quil >; 2>= —;u!l1>; B> >=5,51>; H>=y1>
; (95)
5. Conclusions

Hestenes'*' said about the theory of spinors: “I have not met anyone who was
not dissatisfied with his first reading on the subject”.
Well, the reasons for such statement are in our view due to three main facts,

(A) The usual representation of e-spinors such as introduced in (i), (i), (iii) and
(iv) of § 1 does not emphasize the geometrical meaning of these objects.

(B) There are not clear connection between the abstract concepts of e-spinor and
the more abstract concepts of a-spinors, e-spinors and e-spinors as element
of particular Clifford algebras.

(C) The represenation of a-spinor (or e-spinor) fields as sections of some Clifford
bundles (over space-time) and the problem of the “iransformation law” of
spinors.

As 10 (A) we think that the situation has been partially clarified with the pre-

* sentation by Hestenes of the geometrical meaning of Pauli-spinors and of Dirac-

a



spinors'™ ' and also by Penrose and Rindler!’? of the quasi geometrical represen-
tation of the undotted and dotted two components spinors.

As to (B) we think that the present paper shows in a clear way how to obtajn
relations between all e-spinors used by physicists and e-spinors and e-spinors. The
problem of o-spinors as already said in the introduction will be treated in another
publication (I11)**.

From our approach, § 3.5 and § 4 it is clear that é-spinors and e-spinors can
be though as elements of the exterior algebra of the vector space V = R I
follows that the usval claim that spinors are more fundamental then tensors is
non-sequitur.

h is very important 1o emphasize that all our e-spinors or (e-spinors) are ele-
ments of real Clifford algebras. Other approaches to the subject of algebraic spinors
like, e.g.. Crumeyrolle ", Bugajska /"' and Salingrados and Wene'?* complexific
R,s or Ry, the compiexification being isomorphic 1o Ry, ~ C(4) introducing
unnecessary complications. The reason for such a complexification is the need to
use a de Witt "' basis for the spinor-space, since these authors at the time of
their writtings did not seen aware of the idempotent method used in this paper.

Another “need” for complexification comes according to the view of Salin-
grados and Wene ’® from the fact that R;; has only two idempotents and the
formulation of quantum electrodynamics. as is well known needs four idempotents
(there called projection operators). This “difficulty” can be easily solved following
Hestenes *' simply by introducing a single operator that belongs to the dual space
of R, (here considered as a vector space over R).

We must sav that we cannot properly discuss here on some distinctive features
of the different representations of Dirac e-spinor (or e-spinor) fields and related
Dirac’s like equations over Lorentzian manifolds. The interested reader is invited
1o see our publications, Il and Il
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