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Abstract: In this work we give a version of Hopf Bifurcation theorem in infinite
dimension for semi linear evolution equations. We show existence and uniqueness of
a family of periodic solutions and we study its symmetry and stability properties.
We do not assume analyticity nor compactness of the semi-group generated by the
linear part; we also allow the parameter to perturb the unbounded part.

Introduction:

In the paper The Hopf Bifurcation Theorem in Infinite Dimensions (1], Crandall
and Rabinowitz used the Liapunov-Schmidt method to study a semi-linear evolution
equation where the semi group generated is holomorphic. To get their results, they
introduced an unknown period p as a new parameter in the equation and looked for
solutions having a known period.

In this paper we will use the same technique for semi-linear evolution equations
of the form 4

= 98) = A(r)w(s) + f(r,o(s)),

in a real Banach space W, where the perturbation appear also in the unbounded
part A(r) of the equation and the semi group T(r,1), t > 0, gemerated by A(r) is
not necessarily analytic. We will show the existence and uniqueness of a bifurcating
family of periodic solutions and we will study its simmetry and stability properties.



The main difference between Crandall and Rabinowitz [1] and our work, is that,
we do not have analyticity assumptions; so we had an extra work to show the regu-
larity of the periodic solutions. This problem was studied by Hale and De Oliveira
[12] for functional equations. They used Fourier series to prove that every periodic
solution must be C'.

Our version of Hopf’s bifurcation theorem can be applied to hyperbolic systems,
such as, one dimensional wave equation and transmission line equation (which is a
linearized version of the equations studied by Brayton and Miranker [13]). These
appﬁcations will be treated in a subsequent paper.

Marsden and McCracken (9], devote one section to study Hopf’s bifurcation for
PDE and present a theorem that holds for parabolic type equations. They assume
that the flow must be smooth in t and in the parametric p of the system, for t > 0.
Our hypothesis A A4) is analogue to the hypothesis (8.3) of Marsden and McCracken
([9] pg. 254), it requires a dichotomy of the space, such that the semi group T(r,1)
decays to zero exponentially in an invariant subspace of codimension two.

It is well known that the asymptotic behavior of a Cy semi group T'(t), t > 0, is
determined by its spectrum o(T'(t)). For instance, to say that T(t) decays to zero
exponentially in an invariant subspace of finite codimension is the same as to say
that the essential spectral radius of T'(t) is less than one. For semi groups which
are either compact or analytic. the spectrum of the infinitesimal generator A, a(A),
gives all the important informations about o(7'(t)) (this takes care of retarded equa-
tions and parabolic systems), but, in general, since the continuous spectrum of T(t)
cannot be determined by the inspection of the spectrum of A, to apply our the-
orems, the asymptotic behavior of each problem has to be studied in particular.
For difference equations and neutral FDE that analysis has been carried out by D.
Henry (3] and for hyperbolic systems by Lopes, Neves & Ribeiro (4]. In both works,
it is shown basically, that the asymptotic behavior of the semi groups generated by
those equations is determined by the spectrum of the corresponding infinitesimal
generator.

For retarded functional equations and hyperbolic systems it is known that the
spectrum a(A) of the operator A is given by zeros of an entire function A()) and it
is also known that for these equations, the dimension of the range of the spectral
projection, corresponding to a single characteristic root Ag, is equal to the multi-
plicity of the spectral point Ag, as a root of the characteristic equation A(A) = 0,
(see Levinger 6] and Lin & Neves [5]). These results can be used to compute the
dimension of the finite invariant subspace on the dichotomy.

Another important question is that the semi group T'(r,t) is continuous in the
strong operator topology (that is, (r,t) ~— T(r,t)u is continuous for each u fixed in
Banach space). In general, the spectrum o(7'(r,t)) may present an “explosion” as
a function of r. This implies the asymptotic behavior of T(r,t) is very sensitive to
perturbations of the parameter. This phenomenon has been studied for difference
equations by Hale [10], and it is called parametric unstability, and also for hyperbolic
systems by Lopes (8]. These papers give us conditions, under which, it is possible
to estimate the “explosion” of the spectrum.

This paper is divided in two sections. The existence, uniqueness and simmetry



properties are presented in section one. The analysis of the characterisitc exponents
and linearized stability results appear in section two.

Section 1. The Hopf Bifurcation Theorem
We will discuss the Hopf Bifurcation theorem in a real Banach space W, || ||)
for semi linear evolution equation of the form
d
(1) 2 7 = Alr)o(s) + f(r,(s))
under the following assumptions on A and f:

HA) For each r € (—rg,1p), 70> 0:

1. A(r) is a closed densely defined linear operator on W, with domain D(A(r)) =
D independent on r.

2. A(r) is strongly continuously differentiable on D that is, r»» A(r)uforu € D
has a continuous derivative.

3. A(r) is infinitesimal generator of a strongly continuous semi—group {TY(r,1) :
t > 0}.

4. i) W can be decomposed in a direct sum of A(r)-invariant subspaces, W =
X, ®Y,, with strongly continuous differentiable projections P(r) on ¥, along
X,, P(r) : W = Y,, such that

(2) |IT(r,t)(J = P(r))wl] < M exp(—7 )I|({ = P(r))wl}; A( >1, t>0
7>0, weW.

ii) Y, is a two (real) dimensional subspace and the matrix of the re-
striction of A(r) to Y,, with respect to a suitable basis {e(r),ex(r)},
is

® o= | 20 2

where, a, 8 are continuously differentiable, a(0) = 0, 8(0) 7 0 and o
satisfies the Hopf’s hypothesis:

Ha) o'(0) #0.

The requirements on f in (1) are the following:



Hf) The function f:(=rg,rg) X W — W is C?~function such that
Sr0)=0 and  fu(r,0)=0 for ri<r.

Before stating the main result, it may be helpful to remind some of the well
known properties of A(r), under the hypotheses H A), (see Krein [7]):

i) A(r)A~'(s) is a bounded linear operator on W, continuous in r and
3 in the uniform operator topology.
ii) A(r)A~!'(s) is strongly differentiable in r, with A’(r)A~"(s) bounded
and strongly continuous in r and s.

Furthermore, as a consequence of Trotter approximation theorem, the sem.i-gn‘mp
T(r,t) generated by A(r) is also strongly continuously differentiable in r on D.

We will use in this paper Cy(JR, W) to denote the space of continuous bounded
functions from /R into W with the usual supremum norm || - || and Cyuy (R, W) 10
denote the subspace of Cy(JR, W) of all wg—periodic functions.

Our infinite dimensional version of the Hopf bifurcation theorem can now be
stated:

Theorem 1.1 (BIFURCATION). Let (HA), (Ha) and (H f) be satisfied. Then
there are positive real numbers a; > 0, by > 0, ¢y > 0 and a continuously differen-
tiable function :

(P! f,”) : (-a'h‘l) — R x IR x ci(nvw)

with the following properties:
i) For each a € (—ay, a,), v(a) is a strong ﬁy(l+p(a))-periodic solution
of

= o(a) = Alr(a))e(a) + f(r(a),o(a).
ii) p(0) = 7(0) = £(0) = 2(0)=0, »(0)=0,

va)#0 if 0<laf<ay, |p(a)l<er and [|%(a)lle < by

: iii).Exoept for translations on s, every wg-periodic solution w(s) of (1),
with
2x
iw-ﬁKc\ and [jwlle < by

belongs to the family above.

Proof. We are looking for periodic solutions of the equation (1), but we do not
know, at the first sight, the period of such solutions. So. we will introduce a new
parameter p relative to the unknown period. If p is near zero and

s=(4p)t,  w(t)= o((1+p)t)



the equation (1) is equivalent to

) %n(t) = (1 + p)[A(r)w(t) + f(r,w(t))]

and we will seek nontrivial ‘-,(uor-pediodic solutions of (4).
The equation (4) can be viewed as a system

(5) %[(] = P(r))w] = (1+ p)[A(r)(I = P(r))w + (I - P(r))f(r, w)]
) % (P(r)w) = (1 + ) A()(P(r)w) + P(r)f(r, w)).

I w(p,r,-)isa N?’ﬁ—periodic solution of this system, we have from equation (5)
that

(n (I = P(r))w(p,r,t) = T(r,(1 + p)t)zo+
+ @+p) [ T (14 20t = )T = PO wlprr, o),

where =k
(I- P(r))'(,vft B(—oi) =20
then defining
:o(-,r.-):(—l.oo)xcﬁ(R,W)-oX,; Irl < 7o
by :

(8) zo(p, 1 w( - ) =
= (I-T(rn0+ p)ﬁ%n-'u +9) f‘ T(r,(1 +px§'o—) - NI - P(r))
S(r,w(s))ds
we conclude that zo in (7) must satisfy
(9) Zp = 30(’! T, '(’v T, '))'
On the other hand, the equation (6) can be considered as a equation in R?,
taking the coordinates with respect to the basis given in H A4), that is
%IP(r)vl = (14 PIAMIP(rw] + (1 4 PIPOS(r, )], in B2,
where the brackets denote coordinates (or components).

For technical reasons, we will work with this equation in the following equivalent
from:

(10) S1P()w] = [AO)[P(r)w] + o(p, . )



where
g:(=1,00) X (—ro,70) X W — R?
is given by :
(11)  g(p,r,w) = (1 + p)(A(DIP(r)w] + [P(r)f(r, w)]) - [A(0)][P(r)w].
The following properties of g can be easily ven'ﬁed:l
o) 9pr0)=0 p>-1, |ri<re

g92) ¢ and g, are continuously differentiables with g,,(0,0,0) = 0.

For the sake of notations simplicity, we will identify, throughout the paper,
elements of Y, with their coordinates in JR?. in such way that the brackets can be
eliminated.

From (10) and Fredholm’s alternative (see Hale [11], pg. 263), we have
(12) Qo(p,r,w(p,r,-)) =0
where @ is the linear projection from C ﬂT(R,R’) onto the subspace of
c 25 (IR, IR?) spanned by the m—’%,-—periodic solutions of the adjoint equation
(13) = —[A(0)]'z = [A(0)]z (* denotes transpose)
that is, a two dimensional subspace spanned by

_ [ cos(B(O)) _ ( sen(B(0))
orhe ( —sen(B(0)1) ) b ( cos((0)1) )

Furthernore, there is a unique f(?)—periodic solution of (10), K ¢(p,r, w(p,r, -)) such
that )
QKy(P,f,IJ(P.T. ')) =0

and K (J—Q)is a continuous linear operator taking C;_E‘ (IR, IR?) into Cﬁ(R,R’).
Therefore, except a translation on time, there exists a € IR, such that

(14) P(ryw(p,r,t) = ags(t) + Kg(p,r,w(p, 7, w(p, 7, -)))(1).
Now, using the equalities (7) and (14), we define the map
F: R x(~1,00) x (~70,70) X C 2 (IR, W) — C 2 (R, W)
by
(15) F(a,p, 7, w)(t) = w(t) = T(r,(1 + p)t)zo(p, 7, w)—
= (1) [ T+ PNt = T = PONSCrw(s))ds -
=~ agi(t) - K(I - Q)g(p,rw)(t)



where zo(p,r, w) and g(p, r, w(s)) are given respectively in (8) and (11). The Theo-
rem 1.1 is a consequence of the following lemmas:

Lemma 1.1. Let (HA),(Ha) and (H f) be satisfied. Then there exist constants
a; >0, p >0, 0<ry <rpand a unique continuous function w(a,p,r) defined for
la} < ay, |p| < 71y and |r| < r; with values in Cﬂ’(R.W) such that:

i\ Fla,p,r,w(a,p,r)) = 0.
" ii) w(0,p,7) = 0 and w(a,p,r) #0if a # 0.

iil) w is continuously differentiable in the first variable a, with
2(0,0,0) = &n(-). :

Lemma 1.2. Under the hypotheses of Lemma 1.1 aldkchoosing the constants
ay, p1 and ry smaller if necessary, the function w(a,p,r)(t), given by Lemma 1.1, is
continuously differentiable in all the variables. In particular w(a,p,r,) is a strong
f(ﬁ—periodk solution of
(16) —;—v = (1+ p)lA(r)w + f(r,w)] — Qa(p,r,w)
Lemma 1.3: Under hypotheses of Lemma 1.1 and choosing e, still smaller if nec-
essary, there exist continuously differentiable functions p(a) and r{a) defined for
la| < a; such that:

i) Qg(p(a),r(a), w(a,p(a),r(a))).= 0.

i) p(0) = r(0) = £(0) = Z(0) = 0.
In particular, setting

w(a)(s) = w(a,p(a), (a)) (m)

wehantha-(a)hthhnﬂydenﬁmuﬂying.L

We will finish this section proving the lemmas and the simmetry properties of
the fuactions w, p and r.

Proof of Lemma 1.1. Since F is continuous, continuously differentiable in the
variables a, w and

F(0,0,0,00=0 and  Fu(0,0,0,0)=7

the implicit function theorem implies the existence of constants a,, py, r, and a
function w(a,p,r) defined for |a| < ay, |p| < py, |r] < 7y, satisfying the conditions i)



and iii) of the lemma. We also have that F(0,p,r,0) =0, then w(0,r,p) = 0 follows
from the uniqueness of the simplicit function theorem. Finally, since

an - QP(r)w(a,p,r)(t) = ah(t)

-~
is nonzero if a # 0, we have w(a,p,r) #0ifa # 0.
Proof'of Lemma 1.2. First of all, we will prove that w(a,r,p)(t) is continuously
differe.”tiable in t. We will show that w(a,r,p)(t) can be uniformly approximated in

the C'~topology.
We will use, for simplicity, the notations

(18) (I = P(r))w(a,p,r) = z(a,p,7)
P(r)w(a,p,r) = y(a,p,7).

Of course, it suffices to show that z(a,p,r)(t) is continuously differentiable in t.
We define
Supe €35 (R X0) = C 3 (R, X.)

by
(19) Sapr(z)t) = T(r,(1 + p)t)zo(p- 7,2 + ¥(a,p, 7))+ :
+ @+p) [ T4 8= D = POM(r,2(6) + 3lapr)(e))ds

where zo(p,r,z + y(a,p, 7)) is given in (8). The operator S, is well defined and,
moreover, it is a uniform contraction in a neighborhood of zero for a, p, v small
enough. To be clearer, since f satisfies

f('vo)= 0 and f'(‘r,O)z 0

and y(a,p,7) is continuous with y(0,p,r) = 0, we can choose constants, that we call
‘G‘iﬂh- § 4% r;.mdso.sm:htha,forkl(q, H<,~» l"<"l lﬂd"'n"S"“-'o'
we have

T = PEDS(r o)l € o ol
(20) T = P() fulry ) - il < sl
ll¥(a,p,7)lles < €0
where M and 7 are the constants given in (2). If B,, denotes the closed ball of
radius g in C %(R.X,). then a simple computation shows that
SIO-':B—Q-—‘F;' “lal<ay, Pl<p, Irl<n

and 1
ISapr(z1) = Sapr(z2)llec < 3 llz1 = zafleo



for z; and z; in B,,. Therefore z(a,p,r) is the unique fixed point of S,,,, in B,
and z(a,p,r) can be approximated by the following successive approximation

30("" ') =0
3“!(‘:” r)= sw(’n("’v ')): n=012,...

therefore, z,(a,p,7)(t) is continuous in all the variables and continuously differen-
tiablein ¢ for n = 0,1,2,.... Moreover, since Za41(@,p,7)is 2 ﬁ,—periodic solution
of the "inearized equation

= (14 p)A()o + (I = P(r)fu(r 2a(ayp,7) + 3(as2,7))
¥ (il(utpi ') o7 '.(.'QPI '))la

it is easy to see that z,,,(a,p,r) satisfies:

21) Zasa(apr)(t) =
= T( (14 D)) 2Py, 2al0,,7) + 9(,5,7)) - (2ul@sp,7) + (0, 7)) +
H14 ) [ T0,(14 )t = NI = P fulrs2alesp Ho) + Hor2. 7))
'(il(‘v,v')(') * i(cvpi ')("))"‘-

where zo(p, r,w( -)) is given in (8). Therefore if

K= s (0= P(0) 5% (ol coxo
wliS2ey -

the mean value inequality implies

(22) I = P(r))(ful(r, 1) = fulr,w2)) - ]| < Koy — wal| [lwl

for w € W and |r] < ry, ||lwi]] € 220, i = 1,2, then using (20), (21), (22) and some
elementary computations, we can show that

Mimer( 2, oo < 5 [Fin(2, ko + 5 (Pl %= 01,2,
therefore
llEn(a,2,7)llc < ll3(a,2,7)llec; = =0,1,2,...
and furthermore, forn = 0,1,2,...,
Ens1(a,p,7)(t) — Za(a,p, r)(D)I| <
< Kallza(@,3,7) = 2a-1(a,p, oo + 3 lin(8,5,7) = 2a-1(,2: Ve
where K, is a constant independent of a, p, r and t, so we have
Ilzm(c.m) zn(a,p, r)lloo <
< 2.._, sy Killza(a,p,7)lleo + o ﬂsn(c.r'r)ll-
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and this inequality implies that Z,(a,p,r)(t) converges, as n — oo, uniformly in
a, p, rand 4, if |a] < ay, [p| < p, |Ir| < 1y and t > O, then z(a,p,7)(2) is
continuously differentiable in ¢t and

#(a,p,r)(t) = -la iq(a,p,7)(1). ;

It remains to prove the differentiability in the variables p and r, and this will be
done via the well known. Fixed Point theorem depending on parameters. We know
that w(e,p,r) is fixed point of the operator

LS

E(“’pvrv‘)(‘) = ‘l}(t) 2o F(n.p.r,w)(t)

with F(a,p,r,w) given in (15). Then all we have to show is that E(a,p,r, w), for w
in the fixed points set .

F ={w(a,p,r):|a| <@y, |rl<ny, |p|<m}
has continuous derivatives in p and r. Let w(t) be in F, then w(t) is continu-
ously differentiable, from first part, and therefore, to get the differentiability of
E(a,p,r,w(-))in p and r it suffices to analyse the expression
eerit) = [ T(r,(1 4 ) = )0+ BXT = PN, w(s))ds

showing that:
i) @(p,r,1) belongs to the domain D of A(r),
ii) ¢(p,r,t) has continuous derivatives in p and r.

The first one follows from

- (1+p)t
o) = [ T(ra)d - Pt = T e

that implies that ¢(p,7,1) is also continuously differentiable in t and therefore be-
longs to the domain D. The second conclusion follows writting @(p.r,t) in the form

W'r") o=
[ T(r, (1 + p)(t = $))(1 + P)ATYA (P = P(r))f(r,u(s))ds =

= [ £ T+ 9 = A )T = PODSCrv (s

and integrating by parts, to get

plp,rt) =
= T(r,(1 4+ p)AT' () = P(r))f(r,w(0)) - A7 (r)(] = P(r))f(r,w(t)) +

4 [T+ = DA = PEDSulr,uls)is)ds
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that is continuously differentiable in p and r.
Proof of Lemma 1.3. First of all, note that Qg(p, r,w(a,p,r)( -)) is identically
zero, for a = 0, since w(0,p,7) = 0 and g¢(p,r,0) = 0. Then we define

_ | 1Qelp.rwia,p,r)(- )i for a#0
i Fagan { Q0u(p. . 0)2(0,p,)(- )i for a =0

“and we will use the implicit function theorem in R(a,p,7) = 0 to get uniques con-
tinuously differentiables functions p(a) and r(a) defined in a neighborhood of zero
and assuming real values such that

R(a,p(a), (@) = 0
§o)=r(0)=0
and
0= 20 =
Zz0=2o=0
We have R(0,0,0) = 0 and
R(0,7,0) = pQIAO)IP(0) 5 w(0,2,0)(")
R(0,0,7) = QUAC)] - [AO)) P(r) 55 w(0.0.7))
therefore, since f; w(0,0,0) = #1(- ), we have that
R5(0,0,0) = QA(0)]¢n( - ) = —B(0)¢a( -)
d
Rr(onoqot) = Qif- [A(r)}fﬂél( ')
= a'(0)¢n( ) = B8'(0)¢a( - )-
Consequentely, the Hopf’s hypothesis Ha) implies that 3‘% (0,0.0) is an isomor-
phism and the remainder of the proof is straight—forward, since %% (0,0,0) = 0.
We will show now some symmetry properties of the bifurcating family of pe-
riodic solutions. In order to get these properties, we will change a ¢y(t) by

(a cos 8)¢1(t) + (asend)gs(t), 6 € R,in (15) obtaining the function F, depending
on #, that is

F(‘va T,w, 0)(') = '(‘) - T('t 1+ P)‘)’O(Pv Ty ')‘

= @) [ T+ )= NI = P SCrwte))ds -
6 :

- api(t - m—o)-)- K(I - Q)g(p, r,w)(t).

In the same way we did before, we get w(a,p,7,8). In particular, w(a,p,r) =

w(a,p,r,0). Using the function w(a,p,r,8), we introduce

= '}Q“’! T, W{d, P' T, 0,)( ¥ ): f" a # o
Ranf) = { Q9ulp,7,0)2 w(0,p,7,8)(-); for a=0
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to obtain the functions p(a,#) and r{a,#) by implicit function theorem. In particular
p(a) = p(a,0) and r(a) = r(a,0).
The symmetry result is the following:

Theorem 1.2. (SYMMETRY). Under the hypotheses of Theorem 1.1, we have
a) w(a,p,r,8) = w(—a,p,r,8+x),
b) w(a,p.r, )t + ga5) = w(-a,p,7,6)(D),
¢) p(a.8) and r(a,8) are even functions of a.

Proof. We will use the local uniqueness of the implicit function theorem to get
these properties. The first one is a consequence of the trivial equality

F(a,p,r,0,8) = F(~a,p,1,6, 8 + x).
The item b) is deduced from the equality

L! x
Fla,p,r, (g + )0+ 2)(0) = Fla,pr, o, 0)(t + 565)
whose verification we omitted, but it can be done using only usual changes of vari-

ables. : 1
The last part c) is derived from the relation

R(“r?: o)+ ﬁ) = —R(-a,p,r, 0)(!)

that follows trivially from b).

Section 2. Linearized Stability
First of all, we are going to review the concepts and some results, it may be
helpful to locate the problem. ¢
From the first section, we have that
w(a)t) = w(a,p(a),r(0))(t); lal<a, 120

(24) w(a)(t) = (1 + p(a))[A(r(a))wla)(t) + f(r(a), w(a)(2))].
Let S(a,t,7), t> 7, be the evolution operator of the linearized equation
(25)° = (1+ p(a))[A(r(a))u + fu(r{a), w(a)())u]

such that u(t) = S(a,t 7)wp is the solution of (25) with u(7) = wg. The char-
acteristic multipliers of the problem (25) are the nonzero eigenvalues of S(a) =
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S(c.ﬁ‘ 0). If k(a) is such that R is characteristic multiplier, then we say
that k(a) is a characteristic exponent of (25). Equivalently, k{a) is a characteristic
exponent of (25) if and only if the equation

(26) i = (1+p(a))[A(r(a))u + fu(r(a), w(a)t)u] ~ K(a)u

has a nontrivial 32(3;-penochc solution.

Fota—ﬂ 1 is a characteristic multiplier with multiplicity 2 (k = 0 is a double
characteristic exponent) with the corresponding eigenfunctions given, following the
notations of section 1, by

.
-

(1) and #(2).

Moreover, a simple differentiation of (24) show us that k(a) = 0 (or 2xrin 52 n =
0,%1,12,...) should remain as characteristic exponents, for a in a neighborhood of
zero.

Under our hypotheses, we have the following result of linearized stability (see
Henry [2], pg. 158): I 1 is a simple eigenvalue of S(a) and the remainder of the
spectrum of §(a) is strictly inside the unit circle, then the orbit {w(a)(t):a <t <
ﬁ,,} is asymptotically stable (as a set) with asymptotic phase. Furthermore, if the
spectrum of S(a) contains points outside the unit circle, then the orbit {w(a)(t) :
0<t< ﬁ%;} is unstable (as a set). Therefore we will get the stability properties of
the ﬁ,,—peﬁodksdum w(a), of (24), if we know the localization of the spectrum
of S(a), for a # 0 close to zero.

From the variation constants formula we know that

S(a,t,0)w = T(r(a),(1 + p(a))t)w +

1+ p(@)) [ T(r(a), (1 + Ha))t - 5))fulr(a) w(a)(s))S(a, 5, Opmds
so, the Gronwall's inequality implies that

{S(a,t,0)w:jal <@, 0<t< o' Jlwll = 1}
is 2 bounded set of W. Therefore, since f,(0,0) = 0, we have that
11S(a) — T(a)llcew) — O as a—0
where
2x 2x

S(a) = S(a, B(0)’ 0) and T(a)=T(r(a),(1 +r(¢));,:'(75)-
Therefore, for a sufficiently close to zero we conclude that the spectrum of S(a) is
contained in a circle with radius less than one with exception of two characteristic

multipliers which correspond to small perturbation of the double multiplier 1 when
@ = 0. Since, we know that &(a) = 0 remains as characteristic exponent for a # 0,
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what we have to do is to look for a second small characteristic exponent which we
will denote by £°(a), and to determine the sign of Re k™(a) (that will give us the
expected stability properties of the solution w(a)). What we will really have is that
k*(a) is real and the sign of k*(a) is determined by the signs of a’(0) and ar'(a), for
small a. The result of stability is the following:

Theorem 2.1 (LINEARIZED STABILITY): Under the hypotheses of section 1.
If ar’(a)a’(0) > 0, a # 0, then £*(a) < 0 and w(a) is asymptotically stable. Jf
ar’(a)a’(0) < 0, a# 0, then k*(a) > 0 and w(a) is unstable. 2

To study the characteristic exponent £*(a) we have to analyse the equation (26),
or more generally

{ o= (1+ p(a)) [A(r(a))v + fu(r{a), w(a)t)v] + A(2)
w0) = o %)

where hisa ;,%,—-periodic function. Adopting the same procedure used in the section
1 (equation (27)) to get the integrated form (15), that is, projecting the equation
on the invariant subspaces X, and Y, and solving them separately as we did
before, we obtain the following integrated form for the problem (27)

(28) Fu(a)-v - QP(r(a))r = L(a)h
Qlow(a) - v + P(r(a))h] = 0

where Fy(a) = Fu(a,p(a),r(a).w(a)), g(a) = g(p(a),r(a), w(a)(-)) etc., and L(a)
is a bounded linear operator on C#S(R" W) given by

(La)h)t) =
= T(r(a),(1 + p@)V)I - T(r(a), (1 + p(-»%)r‘ :

(27)

f*‘ T(r(a),(1+ p(-)x%) — 8))- (I - P(r(a))h(s)ds +

+ [ TO@,0+ sa))t - NI = Plr(a)h(s)s + K(I - QIP(r{a) AI()
Therefore k(a) is a characteristic exponent of (25) if and only if, the problem
(29) { i R o M

Qlgw(a)u ~ k(a)P(r(a))u] = 0

has a nontrivial solution in Cﬂ_)(k., w).

Observe that k(a) = 0 remains as characteristic exponent. The implicit function
theorem shows that there exists a unique continuous ;% —periodic function u*(a),
for a in neighborhood of zero, such that
(30) " Fu(a)u’(a) = () =0

w(0)(1) = & (t)
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therefore, from the first section, we also have that

(31) au’(a) = f(a)
and ;
(32) Qgu(a)u*(a) =0

thatsh, u*(a) is the eigenfunction corresponding to the characteristic exponent
k(a) = N with :
(33) QP(r(a))u(a) = &i(-) = —B(0)ea( - ).

Since, u*(a) is a %—periodic solution of

o = (1 + p(a))[A(r(a))o + fu(r(a), w(a))v],

with the same proof of Lemma 1.2, we have that u*(a)(t) is continuously differen-
tiable.
We also have w(a) continuously differentiable with

QP(0)w'(0) = ¢n(-).

Then we can state the following lemmas, that, in particular, prove Theorem 2.1.
Lemma 2.1. There exists a unique continuous function v*(a, k, n) defined for a, k, 7
(real) near zero, with values in Cﬂ%’(ﬂ, W) such that:

i) ©%(0,0,0) = ¢ (-)

ii) QP(r(a))v*(a,r,n) = QP(r(a))v'(a)

iii) Fu(a)v*(a,k, 1) - QP(r(a))w(a) = —L(a)(kv"(a,k,7) + mu"(a))

iv) v*(a,k,n)(t) is continuously differentiable in all the variables.
Lemma 2.2. There exist continuously differentiables functions %*(a) and 7"(a)
defined near a = 0 with values in /R, which satisfy:

i) k°(0)=19"(0) =0

i) Qgu(a)v"(a) = k"(@)QP(r(a))w'(a) + 7"(a)ér(-) where o7(a) =

v*(a,k%(a), 7"(a)).

iii) If k*(a) # 0, then k*(a) is a characteristic exponent of (25) (that

"is, k*(a) is the second small characteristic exponent).
Lemma 2.3. For k*(a) and n”(a) given in Lemma 2.2 we have that

i) J|w'(a) - v*(a)lleo < clar’(a)|

ii) |k*(a)+ar’(a)e’(0)| < |ar’(a)|o(1), as @ — 0, in particular, £*(a) and

—ar’(a)a’(0) have the same sign. Furthermore

iii) |n°(a) + $222k + ar’'(a) 53] < far'(a)io(1), as a—0.
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Proof of Lemma 2.1. The map

F(a,k,n,9) = Fu(a)v - QP(r(a))w'(a) + L(a)(kv + nu"(a)) |
defined for a, k, 5 near zero and v € C ;. (R, W) with values in Cﬂ,(R,W)is
continuous and continuously differentiable in v, with

5
7(0,0,0,¢:(-)) =0
and
Fv(o- ovovél( * )) =17

therefore, the implicit function theorem gives v*(a, k, n) satisfying i.), ii) and iii) of
the lemma. The continuous differentiability of v* follows again using the same pro-
cedure adopted in Lemma 1.2.

Proof of Lemma 2.2. The existence of k*(a) and n*(a) satisfying i) and ii) is a
consequence of the implicit function theorem, since g,(0) = 0. Now, if k¥*(a) # 0,
then, using the Lemma 2.1 and (30), (32), (33), we obtain that

Ful@)(v™(e) + T w(a) ~ (QPUr(@)w(a) + Toad () =
(@) .

= —L(a)k*(a)(z"(a) + )" (a))

and

Qlaula)(s"(a) + o) u7(a))-

K (@) Pr@)(s™(e) + Foa) w*(@)] =0

therefore, from (29), we have £*(a) as a characteristic exponent with the correspond-
ing eigenfunction

v"(a) + % u*(a).

Proof of Lemma 2.3. From the first section, we have that w(a) is continuously
differentiable, and w'(a) is a ﬁ;—)-ntiodic solution of

b = (1+ p(a)) [A(r(a))v + fu(r(a), w(a))v] + h(a)
where

Ma) = Z1@)

i ae) w(a) + r'(a)(1 + p(a))(A'(r(a))w(a) + fr(r(a),w(a))
therefore, (28) implies that
Fu(a)w'(a) - QP(r(a))w'(a) = L(a)h(a).




Since 15(4;) = au®(a), we obtain using Lemmas 2.1 and 2.3, that

ap'(a)

(4 Fule)(wl(a) - v°() = L@ (a)(a) + (1"(0) + s

+7'(a)(1 + p(a))(A'(r(a))w(a) + fr(r(a),w(a)))]

and looking at
»

yu"(a) +

A'(r(a))w(a) = A'(r(a))A™"(r(a))A(r(a))w(a)
we can see that
A'(r(a))w(a) + fr(r(a),w(a)) =aO(1) a5 a—0
because A’(r(a))A~'(r(a)) is bounded and strongly continuous,

au”(a)

Ar{@yele) = 70

and f(r(a),w(a)) = ao(1) as a — 0, therefore

- f(r(a), w(a))

(35)  Fu(a)(w/(a) - v"(a)) = L(a) [£"(a)v"(a) + (7"(a) + ;‘{i—%}-’(cn +
+ar’(a)O(1) as a—0.
On the other hand, differentiating the relation

Qs(e) = Qs(a(e), (a), w{a)) = 0

gives
Qou(a)w'(a) = ~F(a)Q05(a) - 7 (o)Qsr(a) =
= T () - @+ () g AP mrirata(-) -
- @R + Ny [POISR)] _, +
wew(a)
+ (4 p(e) LAGa)] - [AO)) g [Poe] )
waw(e)

then, we have
(36) Qgu(a)w'(a) =

= 22218 41() - ar'a)t + @@ raN(-) = Flr(a)énl ) +
+ar'(a)o(1) as a—0.

14
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and therefore, from Lemma 2.2, we obtain
B0 Quula)w(a)-v7(a) =
= —F@QP({e)w(a) - (1(6)+ 1Tl )on( )=
- @)1+ pa)e(r{a)r(-) ~ Fr(a))bal ) +
+ ar'(a)o(1) as a—0.
Since,
ar'(@)1 + p(a)a'({a))é(-) = F'(r{a))éx(-)) = ar'(a)0(1)
we have, taking together (35) and (37), that
() F@ertawe)+ (1@ + e a0+
+ (Fula) + Qou(@))(w'(a) ~ v"(a)) -

- Ko (e(a) + (1()+ 72 )(a)] = ar'(a)0(1).

To estimate [fw/(a) — v°(a)||c We observe that w’(a) — v*(a) belongs to

Vo={0€ C 2 (R,W): QP(r(a))v = 0}

and Ci‘;(n, W) is isomorphic to JR? x V,, so we can define the linear operator

K(a): B* x V, — C ze (R, W)

by
K(a)(k,n,v) = kQP(r(a))w'(a) + nér(-) +
+(Fu(a) - Qgula))v — L(a)[kv*(a) + nu”(a)]

and, we have, K(0) = J and K(a) continuous, therefore, from (38), there is a positive

constant ¢ such that

() W@+ + 7k 4 () - o (@l < clar(a)

that proves the item i) of the lemma, and implies

Ka)QP(r(a))u'(a) = k(a)ér(-) + ar’(a)o(1)
and
Qgu(a)(w'(a) - v*(a)) = ar’(a)o(1) as a—0.
Now, using these two equalities and ¢s(-) = 774 éi( ) in (37), we obtain

(K*(a) + ar’(a)(1 + p(a))a’(r(a))ér(1)+
. apl(a) | ar'(a)(1+ p(a))F'(r(a))
+ (o T5G 5(0)
= ar'(a)o(1) as a—0

)&.(t) -
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therefore, for t = 0, we have

[k*(a) + ar’(a)(1 + p(a))a’(r(a))] < lar’(a)lo(1)

and
1B0)r" (@) + T Ee) + ar' (@)1 + DI (@ S lar (@) 38w
and finally,

k*(a) + ar'(a)a’(0)] < [k"(a) + ar’(a)(1 + p(a))a’(r(a))|+
+lar’(a)] |a'(0) — (1 + p(a))a'(r(a))| < |ar'(a)jo(1).

In the same way,

)4 2P B(O) ,
i () =i i o ar’(a) === 30) < lar’(a)jo(1)
and the proof is completed.
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