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ABSTRACT: In this paper we present a theory of the generalized magnetic monopole
without string, which is distinct from Dirac’s original theory and aiso distinct from the
topological theory of the monopole. Our theory is first formulated in the Clifford
bundl: formalism; and in the particular case of electrodynamics we dedoce from
Maxwell equations the generalized Lorentz force and the equations of moton of charges
* and monopoles. We discuss the conservation laws and the probiem of the Lagrangian
formalism. We obtain Dirac quantization condition in rwo differem ways.

Finally, we present a principal fiber bundie formulation of our theory using the spliced-
bundle concept with gauge group GxG, where G is the gauge group of the theory
without monopoles.

LINTRODUCTION

In this paper we present the theory of the magnetic monopole without string. By this we
mean that in our theory the electromagnetic field generated by charges and monopoles is
described by a generalized potential which is the sum (in the Clifford bundle) of a I-
form and a 3-form field, which are singular only at the location of the charges and
monopoles.

Our approach contrasts with the one by Dirac where an unphysical singularity called
string (where the potential is singular) is introduced in order o be possible 1o describe
the electromagnetic field of charges and monopoles through a single potential which is a
1-form field (see §3).

Also it is worth-while to compare our theory, where no change in the topology of
space-time occurs, with the topological monopole theory formulated as a principal fiber
theory with group U(1). Indecd, in such a theory the monopole appears as a hole in
space-time which has then the non trivial topology R2xS2 . All this is described in
§2,§3 and §4.

(*) Work done with partial suppont from: FAPESP, CNPg, FAP, IBM-BRASIL and CNR-ITALIA
(1) On Icave on zbsence from IMECC, UNICAMP



In our approach to the monopole problem using the Clifford bundle formalism (§5), we
are able 10 deduce from Maxwell equations the conservation Jaws and the correct
coupling of clectric and magnetic particles to the electromagnetic field. We are
consequently able to derive the motion equations for electric and magnetic particles. In
§4 we discuss also Dirac’s quantization condition using two different methods. In §6
we discuss the problem of the Lagrangian formalism when monopoles are present.
Although the Clifford bundle formalism seems 1o be a perfect mathemarical design for
the generalized electrodynamics with monopoles without strings it is insufficient for
introducing analogous monopoles for non abelian gauge theories. We then, produce in
§7 a monopole theory without string in normal way. Indeed, we are able, to associate
with the two potentials of the theory of §5 a connection in an appropriatie spliced
bundle. In this way we obtain the geometrization of the theory as 2 principal fiber
bundle with gauge group GxG and then use the full appararus of these theories to obtain
the field equation, etc.

In §8 we present our conclusions.

The paper contain Appendices A,B,C, that introduce respectively the Clifford bundle
formalism and the necessary ingredients for the formularion of the theory of §7 as a

2.STANDARD ELECTRODYNAMICS IN INSTRINSIC FORM

Let (M,h,V) be a Lorentzian manifold(1], and J. and F respectively a 1-form and a 2-
form ficlds over M[i.e, J. and F are sections of the Hodge Bundle (see Appendix

A)]. The Maxwell equations in free space are
dF=0, 8F=-J, ; (6)]

where d is the exterior derivative (differential) and & is the Hodge codifferential (see
Appendix A for details). Let xM,pu=0,123, beachartfor UcM Let

(89=dx0,61.62,6%) be an orthonormal system in T*U. Then, for xeU wehave
the identifications [h=nyy 6" @58"; Ty = diag (+1,-1,-1,-DJ:
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where E'=(E;EEy) is the electric field, B=(B,,B,.B;) is the magnetic ficld and
Pe and j. are respectively the charge and cumrent densities. When space-time is flat,
then there exist charts valid for all M where  b=Tydx*®5dx and i this casc
egs.(1) are equivalen:

VE = Pe VxE -i‘g—-& TG @)
()]
VE =0 VP =22 “’ o)

where dF=0 is equivalent 10 the homogencous eguations (3b) and 5F =J. is
equivalent to the inhomogeneous equations (3a). &

To complete the formulation of classical electrodynamics it is necessary 10 know the
coupling between the electric currents and the fields.

This is done after we inroduce the concept of a charged particle as a riple (me. e, 7).
where me>0 is said to be the mass of the particle, ece R  is said 10 be the charge of the
particlc and ¥ R> 1M is a foture-pointing time-like curve!1). We now inroduce
the;

LORENTZ POSTULATE: The equation of motion of charged particles is given by
the equation

L -LFp.) @
where p=my. isthe momenmum, sel is the proper-time, ¥ is the velocity of the
clectric particle, F=H,dx"&' and cF(p,) is called the Lorentz-force.

3.STANDARD ELECTRODYNAMICS AS A PRINCIPAL FIBER
BUNDLE THEORY

The model of electrodynamics as a PFB is a follows M 1Let  (Mh,V) be a Loventzian

umfoldmdla x:P—M be aPFB with group U(1)={¢®8eR} and with Lic

algeba  U(1)={oi.@eR]). A

Let ® be a connection 1-formover P, ie., e AI(P, U(1)), and let UcM_ oy-U—P

be a local section. The pullback of @ is the electromagnetic potential, and we write
oy =0y ® =—-iAy ®)

(*) See Appendix B for details.



The elecromagnetic field (Q® =dw) relative o oy-U—P is
iQy = Fy = dAg ®
i ov:V—P is another Jocal section, then from the fact that U(1) is abelian we have
sec eq. (B18)] that Fy=Fy. It follows that the curvature of the connection is in this
case a 2-form which is well defined in the base manifold M; in other words, the
elecromagnetic field is gauge invariant ;
Then, fixing UcM, if Ae AI(U,R) is the potential ) | the field is F=dA with
A=Apdx®, and Fyy=dyAy-dyAy. From Bianchi identity it follows that
~ dF=0 (homogencous Maxwell equations) o
As there are no reasons for F 10 be niill ,we put
8F=-J. (inhomogencous Maxwell equations) @

wheze J, is the current one-form here introduced in a purely “phenomenological”
way. Egs (7) are the Maxwell equations introduced in §1 [egs(1)).

4.THE MONOPOLE
Wepmnoqunwdomﬂowmwcmodifyancneqpaﬁonsinmdamdesuibe
also magnetic monopoles. In order 1o understand the problems associated with the
existence of the monopole we consider here (M,h,V) as being a Minkowski space-time.
Then, there is a global coordinate system (xM ) in M where Maxwell equations have the
form of egs (3). The natural guess for introducing monopoles is to generalize
phenomenologically egs (3) into
V.E =pe vm.ra"-' Te @

V.E = Pm -VxE = ?—%ﬂ- - o ®)

The magnetic particles (monopoles) are modelled s wriples (mg,g.0) where

) See Appendix B for details.



my € R* is the mass of the monopole, ge R is its magnétic charge and 0: ROI-SM isa
future-pointing time like curve. The Lorentz force in this case is postlated 1o be

Fi=-£B+ BpF : 0,=(vgrvp) ©

where ¥ is the Lorentz facior.
The intrinsic formulation of egs (8) in the Hodge bundle read

dF =—*Ip @
SF=-J, ®) (10)

where J,, already introduced (eq. (2)), is the phenomenological electric current 1-form
and Jyn=(Pm.~im) is the phenomenological magnetic current 1-form.

Before we go on, it is necessary to emphasize that egs (8) are invariant under the
transformations

F> TF'cosd + Bsind
B-> -E'sin® + Bcosd
an
T-  To'cosB + jg 'sin@ Jm— &' sin® + jn cosd
Pe=>  Pe' cosB + py'sin Pm—> —P.’ 5inb + py'cosd

As a consequence of this fact, we sec that if the ratio ¢/g of all particles in nature is a
universal constant, ie, Je=kJ, k 2 constant, then it is a always possible to choose an
angle in eq (11) such that egs (8) ransform into egs (3), i.e., the uswal Maxwell
equations. In that case the label electric charge or magnetic charge would be arbitrary. In
what follows we suppose that  Jo# kip,.

It is a well known fact that the existence of a Lagrangian formalism for the
electrodynamics of charged electric particles rests on the fact that we can write
F=dA , for all .x(eM.siueehthismedlemouicdmdagimdmged

clectric particle ¢ is

oL
My=py +eAy=— ;p0=0,123 12)
n=Pu ey

where py, is the kinetic momentum and



L = 5=(py +cAy 2= TPVE, (13)

Now, a magnetic monopole g at the origin of the coordinate system (x¥) in M creates

a magnetic field satisfying V-B'= g5(%).

K the magnetic field is defined globally by a potential A, singular only at the origin
X =0, i, F=dA, (or B=VxA), then the magnetic flux through any closed surface
S containing g must vanish. Indeed, 95=0 and by Swskes theorem we have
IsF=[35A=0 or

J Bav - js (VxR)a®

= (f)'z.as‘- ?’1.d'5’=0 : (14)
L

where I is any closed curve in S . The moral of eq (14) is the following: If the field of
2 magnetic monopole is to be described by 2 single potential A then at least one
assumption used to deduce eq (14) must fail to hold. We have at least three possible
solutions for the formulation of the monopole theory:

THE DIRAC STRING: A way out of this dilemma was found by Diract?] Imagine
an infinitely thin solenoid extending form -e to the origin in the x3-axis of the {xH)

coadirmsysmhsfﬂdf”saﬁsﬁa V-B'sot =0 and is given by

B ot = 75T +£0-2)3(x)8()¢ as)
where 7 is the unitary vector in the x3 direction and 8(F) is the Heaviside function. This
magnetic field differs from the field of the monopole B'= g7 /4mr3
only by the contribution g8(-z)5(x)8(y)z due to the solenoid. Writing B ;=VxA ,

we have

2—5;;? = VxA — g0(-z)5(x)3(y)2 (16)

The line occupied by the solenoid is called the Dirac string. We can solve eq (16) for
R obtaining



1(‘?‘)-;%-'—';—3’—0-69 an
where § is the unitary vector in the @-direction of the spherical coordinaie sysiem in
R3. Eq.(17) shows very clearly the singularity in the negative z-axis (6=x). Using
this potential invalidaies the deguction of eq (14).

It is fundamental 1o observe that the line occupied by the string can be chany2d into
another arbitrary fine in R3 starting at the origin, by a gauge transformation
A—-M—t VQ where Q: R3-SR is a differentiable funcrion.

This fact shows that the Dirac string is a non physical object. Dirac in 193112 and then
in 19480 developed, using the poiential given by eq (17) a Lagrangian theory for the
motion of a charged particle in the field of 2 monopole. In particular in 1931 studying
the quantum version of the theory he found the famous quantization condition(+)

%-n %:l el (18)

We will obtain this condition in our theory (§5) using a procedure different from the one
wsed by Dirac.

To end, we must observe that in the case of the quantum formulation of the motion of
charges and monopoles with string there are non-trivial problemas which have not been
solved in a satisfactory way [4,5].

THE TOPOLOGICAL MONOPOLE: We saw in §3 that, interpreting the
electromagnetic connection as a 1-form defined globally over a principal U(1) bundle
over M, provides an aliernative description for the electrodynamics of charged
particles. In this case eqgs (3) hold good instead of egs (10) and we meet the question:
Can Maxwell equations [egs (3) ] accomodate the existence of magnetic monopoles?(7)
The answer is yes : all we need is a situation where does not exist a global defined
potential such that F=dA . This happens if the PFB ,;:P—M with group  U(1) is non
trivial, since the existence of a global section (gauge) 6y would provide a way 1o define
the potential iA=oy @ globally over space-time M. As all fibre bundle over a
contractible paracompat base space are trivializablel7], we must choose as base of our
PFB a noncontracrible space-time. This can be done by deleting the World line of the
magnetic monopole from Minkowski space. We choose then M=R* - {pole world-
line) X

In this theory the magnetic monopole is then of topological origin: it is a hole in
Minkowski space-time! .

(4 In general we use units such that D=1




Since M=R2xS? and R? is contractibie, the classification of the PFB's x:P—M with

group U(1) reduces to the classification of the PFB's 1:P—52 with group U(1).
The classification is given by the first group of homotopy  1y(U(1))=ny(S*)=Z . The
integer n, coresponding 10 the element of x1(S?) , is obtained by calculating the first

Chern class of P,cy(P)e H(S2R) over §2

[ see Milnor-Stasheffi6l]. Quantity cy(P) is given by

Q
©(P) = 5= a9
where Q is the curvarare of the electromagnetic field. The number

Cy=2x jsz \(P) @0)

isan imeger called the first Chemn-number and it classifies all noneguivalent PFB
%:P—52 with fiber S! and then it also classifies all solutions of Maxwell equation in
R3-{0}=S2. Thisinteger n is called the magnetic charge of te monopole.
Letthen S$2 be described by twoopen séts Hyand H. and let 0s@sn; 0<9<2x
be the coordinates of H, and H..
LetU(1) S? be described by the coordinates  ¢i¥,0<y<2x.
HynH. is a thin band around the equator parametrized by w . The  PFBx:P—S2
with group U(1) i then decomposable into two local trivializations.
H,x U(1), coordinates (8,0,¢/¥+)

: H_ x U(1), coordinates (8,0,¢'¥-)
The transition functions gg,p. :Hs N H.—U(1) arc functions of ¢ and therefore are
elements of U(1) . We then relate H, with H. by

elV_ = (N9 iV, @n

For the resulting structure 10 be a manifold, n must be an integer. This means that the
fibers must be indentified when we complete a turn around the equator. This is
essentially the topological version of Dirac quantization condition [7],

When n=0, we have a trivial PFB;P(n=0)=52xS!. When n=1 we have the famous
Hopf fibration of S3,P(n=1)=S3, which descibes a monopole with charge  n=1. For
a general ne Z we have a PFB corresponding to a monopole with charge n. As we
already said n corresponds to the first Chern class and is given by eq (20). Let us do the
explicit calculations. Consider then a connection @ defined globally over the PFB
®:P—52 whith group U(1) such thatthe “pull-backs™ for two local trivializations
Hy are



1
A +I—dy over H
-io'o-{+ s » @)
-3

A_#:l-'-dy-?ver H_

The choice of the ransition function ¢i¥ ,=ci™® cin¥_ [eq.(19)] implies the gauge
transformatjon A.,=A.+i 6.

The potentials that satisfy Maxwell equations [V-B=0] in $?2=R>-{0} andarc
regular in H, and H. are given by

xdy —
EEY

Ay == (cos8 - 1)dg ==
The elecromagnetic field on HyUH. is given by

F=dA, = -“—‘;.sine 40 Adp =— gy (kdyadz+ydzadx+zdxady) 4

Using eq (20) we get
Cy= 2:!82 cy(P) "Isi F
g R 'LLF'_'Js! (s - A0 = [ 509 s

We see from eq (23) that A+ are singular along the “strings” - z and +z ,respectively,
where they are not defined. In the Dirac formulation local charts have not been defined,
A, being used for all R3-{0): this is the source of the (ficticious) “string”
We end this “resume” about the topological magnetic monopole with the observation
that in the U(1) gauge theory of clectromagnetism the discreteness of the unitary
representations of U(1) implies also the quantization of electric charge [7). To see this,
consider a one-dimensional unitary representation of U(1)on C,ic.,

p:U()-U);  exp(it)—sexp(ar
The condition a(t+2x)=at+2xn,where ne Z, gives a=n. Assuming a minimal coupling
of the electromagnetic potential A with the marter field, of the type ( p, C).[see App.
C) we have

D,¥ =3,¥ - p (0)cA, ¥ = 3,'¥ - incA, ¥ @5)



Since the electromagnetic potential couples 10 all charged fields, ¢ is fixed!

We mentioned at the begining of §4 that there are three possible ways 10 formulate a
monopole theory. We already examined: (i) the Dirac monopole with string, and (ii) the
topological monopole.

In (i) we have unphysical singularities, and in (i) [which refers to an extremely
beautiful theory] we need to change the topology of the space-time manifold.

We now present in §5 a theory of magnetic monopoles without string, with a
generalized potential, which is formulated in the Clifford bundle over space-time (for
definitions see Appendix A). The resulting theory rivalizes in mathematical beauty with
the topological monopole theory although it desviates from the main stream of present
theoretical physics which gives emphasis to the Lagrangian formulation. In § 6 we

present 2 generalization of the theory of the monopole th=ory without string as 2 PFB -

theory with gauge group GxG using the spliced bundle concept and where G is a gange
group of standard gange theory.

STHEORY OF MAGNETIC MONOPOLES WITHOUT STRING IN
MINKOWSKI SPACE.

We leamned in Appendix A that, among others, we can give the structure of a Clifford
algebra o  @AP(T,* M) and, then, we can define the Clifford bundle over space-time
M, C(M). We know that in C(M) the natural derivative operator is the Dirac operator

fve‘ (26)
where ¥ =dxit humdammmvﬁtkmmmm
In what follows we restrict ourselves (for simplicity) 1o the case where M is the

where P -p=Ot
We know that

9=d-8 28)
and

o= NPT, T, € APeM @9

We then can writé equations (IOa)sﬂaOb)dum'bingmepbmmbgialmy
of monopoles and charges as

10



oF =], -1, =], +¥l. 30)
We now define generalized potential 1) the quantity

o=a+7P0 ;o o' € scc Alt*M <))}
Applyhgthcma’w uvegaﬂnmdlo-fmtw‘;z-faudl-ﬁumi.e.

F=0-a+daa+0-(YPa)+en(r’a’)

and imposing the Lorentz gauge 9-a=0e>9"0y,=0,0A(7° @)=0c23® a’y=0 we obtain
F as a 2-form, ie.

, F = 9aa + 0.(°a) : G2
We get also that

De=l : o=t : [J=®=@2-7 @3

To see the power of the Clifford-formalism, we now deduce the conservation-laws and
the couplings of the electromagnetic field 1o electric charge and magnetic monopole.

CONSERVATION LAWS AND GENERALIZED LORENTZ FORCE:

Let us observe that from eq (30), by applying the anti-automorphism + (reversion), we

get the equation
Fror=J, +1, ¥ G6)

where the symbol 0” refers to the fact that the Dirac operator acts on the right; i.e.:
F+o*= —do(Fuv) ¥ VY2

Multiplying eq (30) by F* on the left and eq (3.7) by F on the right, and summing both
equations, we get

%mapm-:}u.r-a.)*}a.ﬂ’-m. ) Gn
Defining moreover

St = JPHF 38)

i1



eg (37) can be writien as

Sk =Fl,-°Fl, 39

Now, from eq. (38), we get immediately that SH*+=SH and SK=-St  where the bar
indicatey the inversion, i.c., the main avtomorphism defined in Appendix A. The
mnique objects in the Clifford algebra of differendal forms that satisfy these equations
are the }-forms. We call the quantities SH the energy-momentum 1-forms. The reason
for such mame is that EMV=SH -y are the components of the symmetric energy
momentum tensor of the electromagnesic field, as we show below.

In particular §9=-3 F Py, F=y%Fy® wnd, writing F=E-¥'B, we get by projecting
into the Pauli-Algebra (see Appendix A) the following splinting into two quantities

SOP=U+TO U =r (E2+B2); TO-ExE 0)
which we recognize as the encrgy-density and the Poynting vector of the
electromagnetic field, respectively.

More generally we have

B =— <G FRFY > =—<(F. )R> - S <H P>
== (FF)LEP) - ;EDPY @

= FROiv ek 4 L FogFos

Writing ,
Kc’s'lc and Kp=-*FIlg,,
“42)
Ke=P~]Y  Kp=-*Pv],Y
and projecting K¢ and Ky, on the Pauli-Algebra we get
Ke?=T.F +(peE+72xB) @
(43)

Ka?’=-Ja.B +(-paB+ 2xE) ©®)

12



We see, then, that K and Kq represent the Lorentz forces that act on the electic
charges and the magnetic monopoles, respectively. As this result has been derived only
from the Maxwell equatons, we arrive at the conclusion that the Lorentz forces (electmic
and magnetic) need pot be postulated, as is usvally done (see § 2).

We note that, due 1o the symmetry EXV=EV! we can write 3uEV= 3yEVP=
=3y (SV-#)=3-SY . Then eq (39) can be writien

oSvV=Q' ; Q@ =(Fl) - CFlL)Y (39)

The interpretation of eq (39) is now clear. The equation

GEW =P, Iv= *P, IV (39™)

expresses very clearly the fact that the energy momentum of the field is not conserved,
OuEMV#0 when mater (described by J.Jm) is present. Actually, one expects that only
the total energy momentumn of ficld and currents be conserved.

If we write the r.h.s. of eq (39) as -OyM*V, with

MV = K. + ¥ Km (44)
then eq (39) assumes the structure of 2 global conservation equation
Oy (BV+MHWV) =0 (45)

where MMV plays the role of the symmerric energy momentum of matter (i.e. of the
currents).

THE MOTION EQUATIONS DERIVED FROM MAXWELL
EQUATIONS):  In analogy to what happens in general relativity, the identification
of MWV with the actual energy -momentum tensor of the matter currents Jeads directly
to the motion equations.

Let us show this in the simple, but easily generalizable, case in which the field
F is generated by a single electric charge e and a single magnetic charge g .Be in fact,
the electric and magnetic matter represented by the triples (me,e,y) and (mg.g,0) so as in
§3 and §4, respectively. The most general symmetric tensor that we can write o
Tepresent matter is then(20]

13
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M=MIVH @Sy

=—m, Ids B(x =N Te ® Y, -my Ids'&(x—o(s'»o. ®sc, (46)

In components, writing xP(¥(s))=2"(s);x*(o(s))=y*(s), we have

" v
Mo, [as 8(x0- 20 SE 4 foe pxon yo WU ey

Incidentally, it is  Jo= ]ds&(x XN, Jm= J'dss(x - o(s)o. ,

wherefrom it follows 9-Je= 0-Jm =0.
Now, comparing eq (44) with eq (40) and recalling cqgs (43), it is immediately
scen that

mZ; = pe Ei+ @ xB); imy;=—pm B+ FxE) @D
which are the correct equarions of the motion of electric and magnetic charges.

DIRAC QUANTIZATION CONDITION: In studying the motion of an electric
charge in the field of 2 monopole (neglecting radiative effects), the kinetic energy of the
charge is conserved. Taking in what follows xH as the relative coordinates and m as the

reduced mass, we can adopt as quantum Hamiltonian the quantity :‘Eﬁpz.pﬁrlds
where s—Y(s)=(x°(s),x! (s)) with the ordinary postulates [c=h=1]

xix]=0; [xipj)=if; (48a)

Ipi pj) = ieixBE (48b)

The quantization rules given by eqgs (48) are satisfactory, since, e.g., the angular
momentum V=7 xP-egT/4x  does commute with 7, and [J; Jj] =icijlx.
Morcover, from the Ehrenfest relation T=i[ T ,%] , it follows the Lorentz-force
expression

%-i—(_;’x B -'Bx—;")



We would like 1o stress here that the Jacobi identty is violated for the p;'s, since
L . Ipidpipll=cV.B “9)

so that the conjugated momenta p; do not close a Lic algebra under the commutator
product whenever V- B0 (i.c., when monopoles are present). Incidentally let us recall
that V. B #0 corresponds also to a violation of Rianchi's identity in the standard U(1)
theory of elecomagnetism as PFB (§4). This has as a consequence that a2 PFB for
electromagnetism with our monopoles can be implemented only by making resource to
“spliced” U(1)x U(1) bundles: as we shall show explicity in §7.

Eq (49) does imply that the momenta p; (conjugated to the coordinaies  xj)
cannot play the role of canonical momenta in any (local) Lagrangian whatsover. In fact,
if suoch a Lagrangian existed, then the Jacobi equarion would be automatcally
satisfied(™). This then justifies the well known fact that there does not exist using the
classical tensor calculus a Lagrangian which yield simultancously the field equations
and the equations of motion of charged particles and magnetic monopoles!10,

Happily enough, this is not a problem when we ase the Clifford formalism,
since knowing the field equations does already mean knowing also the equations of
motion of electric and magnetic charges.

‘We now show that eq (48) implies the Dirac quantization condition. Indeed, if
the operators U(2) = exp[i 2 - p ), with 2, any cuclidian vector (2 € R3 ), have 10
yicld a projective representation of the translation group in the Hilbert space of our
charge-monopole system, the associative law, in particular, must be satisfied

[U@)U(B) JUT) =U() [U(BIU(D) ] (50)
Explicit calculations, nsing egs (48) and (49), then yield:

[U@UEB) (D) = FPu@) B 50)

where ® is the magnetic field flux crossing the surface of the tetrahedron individuated

by the three vectors ?.'5’.'5’. The compatibility of eq. (49) and eg. (50) requires
e®=2xnn. If one monopole only is localized inside the tetrabedron, then:

(*) Note that a canonical momentum, as the one present in eq (12), makes no sease hese, because now
we have twopolentials a and *o

15



-]
ﬁ":‘ el (L3))
Note that eq. (51) implies that J-7°=3, which means that even in the case when the
electric charge and the monopole are bosons they can be in an half-integral spin state.

GENERALIZATION OF MANDELSTAM APPROACHI8): Let ¢(x.I) be the

Mandestam path dependent wave function!?9) for a charged particle in an ordinary
elecuomagnetic field Fe=da=da . If (x) is the usual wave function of the particle and
x

r

x> pexp( [ —ica) 3 62
7 o

where I is the arbitary path from ee—9x . If we choosctwo paths " and I  differing
only for a finite part, we get (using Stokes theorem)
x -

0T = $(x.Nexp( {—iecc) 3)

where S is an arbitrary sarface soch that  3S=I"-T-
How to generalize eq (53) for the case when the charge ¢ interacts with the
clectromagnetic potential =0 — *o’? Let us introduce the following

Interaction postulate (IP): The introduction of an electric charge e, represented
by the path dependent wave-function 9(x,I") , with the generalized electromagnetic field
F=0dw is given by

0T = ¢(x.Nexp( Is-icF) 69

We now show that the IP implies the Dirac gquantization condition, being then
compatible with the commutation relations given by egs. (48).

If eq. (54) is 10 be independent of the surface S , so that 3S=I"-T", we must
have

exp( L-—ie(du —*daY) =1 (55)
0

where Sj is a closed surface. By Stokes theorem we can write eq (54) as

16



exp( Ivie‘&la') =1 (56)

Supposing, now, that we have onc monopole inside V and that Ju=(g5(7),0,0,0),
and taking into account that [] @'=-(d8+8d)a’=-bda’=ly, , we have

exp( [ ie*lm) = exp(-icg) =1 = E-SmeZ 57
7y 4x

6.LAGRANGIAN FORMALISM:

It is well known{4.10.12] that there does not exist a local lagrangian which gives
simultaneously the equation of motion of electric charges and magnetic monopoles, as
well as the field equations of the gencralized electromagnetic field. The recent claim by
Fryberger{13] that this is possible within the Clifford algebra formalism is non-sequitur
as we now show. ;

We start by considering the classical action A =%C+%C for the interaction of
-mmmuwﬁ? 0=y dx* . We have

Ho=ALIAE = J. (meds — eor,dx®) 8)

Now, the variation of %C enbeniuhmiibpmvm

5, 4C = — Js¢=_¢ jsu..; ISW (59a)
b b
8, AC=— I.S;(a,dll')-—e I.(F.W&v (59b)
while the variation of 4.Cis
b
3, &C= I:!;dn.&" (60)

where 8, indicates that T, the equilibrium path of integration from a 1 b has been
changed into T" by an arbitrary infinitesimal function 5x, such that  3x*(2)=5x}(b)=
=0 . Morcover 9S=I"-T"; etc...

Comparison of egs (59 2) and (59 b)soggested 1 Frybergerl13] the following

identification (do¥Y =dxMAdxY):
b

i-jsdcm o [anse 6
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He interpreted €q.(61) as having the following geometrical meaning: the surface S,
spanning the Joop formed by I' and I ; has an infinitesimal width, &x®, thus reducing
the surface integral 1o 2 line integral

The IP suggests the possible existence of a gencralized action - A=%.+%; , since
eq (54) suggests that

BA=-c [F = Is (Fe — Y’Fm) )

where F = 80 =0a — Yoo’ = Fo - P Fp.

To proceed with our analysis, we are going 1o use below (in the remaining part of this
section) the Clifford bundle C(tM) instead of C(t"M) . In other words, we are going
10 use multivectors instead of muhiforms. Obviously there is a canonical isomorphism
(see Appendix A) between multivectors and multiforms, and in the following we
represent the multivector corresponding 10 a given multiform by the same letter . Letting
eu[p=0,1,2,3] be an orthonormal basisof T,;M and ef=n#Vey the reciprocal basis,
the Dirac operator when acting on multivectors is then 9=ct9/dx® . The fundamental
pscado-scalar is now es=cgeyc,e; By using multivectors, eq (59 a) reads

3, AC=— Jsa.dx--c J;F.dc (592)

where  o=oy(x)ef , dx=dxiey, anddo = (dxPadxVegey .
In reff8) we considered the following generalized action

b
% =— [ (edx+ esatdx) (63)
a

which is non-conventional, since it is the sum of scalar and pseudo-scalar terms.
Fryberger considers,instead of %; , the action

b

Ri= J < a.dx + esx’.dx > 64)
a

where the brackets mean the scalar part.
Now the variationof & is

b b
8= < | (Fuddxy —e [ es(Fm)yydxh8x¥ (65
a a
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It is quite obvious that the second term on the right hand side of eq (65) cannot
be combined with 34, , that does not contains a pscudo-scalar part. Now, Fryberger

writes the sequence of “identities”

b .
[ estFaddnnsxy @ 1 [ eF ) dningxy 66)
a s

b

TR [ oFm = [ (Falydxn bxY (65)
s a

While eq (66) is correct, it does not imply however eq (66", since eq. (66) forwards a
psendo-scalar and eq (66") a scalar.

The situation is even more confusing in ref{(13], since that author uses 3 insicad
of % and in that case the term esa’-dx make obviously no contribution ©
5% 4;. .
Having discussed the fact that we cannot write a generalized action even in the
Clifford formalism that yield the equations of motion, we only mention here that it is
possible 10 write an action A=A+% which yields the generalized Maxwell equations
OF=J +¥)a=].

This can be done by writing

A=-3[<FF>dx - [<lo>da% ()
and varying independently @ and «; or by making use of A=Ar+4; :
A= Id‘x LFF-lm)=ann (68)

and treating @=a+Y,0r as the canonical coordinate (and deriving formally with respect
o ® and do = F,whea doing the variation). Such a procedure, even if not totally
justified, gives the correct generalized Maxwell equations,as has been proved in reff8l.

To conclude,let us observe that in the ordinary ficld theories the Lagrangians are
postulate in such a way to yicld the ficld and motion equation and conservation laws.
On the contrary, all these things are automatically obtained by odr Clifford bundle
formalism, once the ficld equation are known; so that in our more economical approach
it is redundant 1o look for Lagrangians.



7.SPLICED BUNDLE FORMULATION OF THE THEORY OF THE
GENERALIZED MONOPOLES WITHOUT STRING[14]

In what follows we shall present an extension of the theory of elecmodynamics
with monopoles using 2 generalized potential in an arbitrary gauge theory. We
emphasize once more that in our theory space-time have no holes.

The mathematical structure we shall use in our gauge theory with monopoles is
the spliced bundle x15:P 0 P—M with group GxG (see Appendix C) obtained from two
identical PFB each one describying an ordinary gauge theory.(x:P—M with group G
and base the space-time). We also observe that in what follows M may be a gencral
Lorentzian manifold with non zevo curvarure.

In our theory we associate the gauge potential with a connection @ in
%P o P = M ; ie., given a choice of the gauge in the PFB, Ty: x13(U)—UxGxG
with the associated Jocal section Oy UMSP o P e define @y=0y; ® the gange potential
associated with the chosen gauge.

We observe that there exist (sce Appendix C) two connections @, and @; in
x:P—M such that o=x!",&nZ" @, It is fundamentally different 1o usc, for describing
the gauge potential,

@: 2 commection @=x""m@x7m; €ANP o P, 88 )in the spliced bundle, or
®):  two connections t,0,€A!(P,5) in the original PFB of the theory without
monopolcs. 3

Let us consider first the case (a): Let then Ty 3(U)3U0x(GxG)and Ty :
%;3(V) = VxGxG be two gavgesin Xyp: Po P—5M and such that UnV=D, and
Jet be Oyy:U—P o Pand Oy :V—Po P the associated Jocal sections.

The transference functions gy;y:UNV—GxG are such that gyw(x)=(g)yvxEuvi)
with xe UNV. Since
o=x"0,01*e, (69)

ﬁabmiﬁeﬁ.kmmw-uhpgm%
and Wy can be written as the two relations

(@)v = (@Juv)dduv + (@uv) (eugdyy . i=1.2. oo
In the case of standard clectrodynamics, we can write

(o)y =(@)y+idxgy ; (@)y=(@)y+idyyy aon



with  (g)yv(x) = exp ixyv and (g)uvix)=exp ivyv.and  zyv.wyv-UNV—R.
In that way a gauge transformation of q,eA_’(U.Gea.)) corresponds 10 two
independent gauge iransformarions of (w,)y and (wyy= AVUG).

In the case (b) we have two connections @, and @; in the PFB x:P—M  with
group G. Let Tyy:x}(U)— UxG and Ty:x-}(V)— VG be two gauges an let UnV=D.
Let moreover oyy:U—P and Gy:V—P be the associated local sections. The transition
function now is gyy-UNV—G , and we have

@)y = (guv) " dguv + euv) " @)ygyy , i=12.
In the czse of standard electrodynamics we have
(@)y = (@)y + idxyy ; 2yv: UNV-R

These relations show that both potentials (@y)y and (@2)y change by effects of the
same gauge transformation in case (b). This makes clear the difference berween (a) and
(b). In what follows we adopt the choice (a).

To show the necessity of such a choice, let vs consider first the case of
clectrodynamics with monopoles described by two potentials: one related to the electric
charges and the other 1o the magnetic charges as we did in § 5.
Nodoeﬁm,inﬂweaseofsmaduddecuwym:ﬁaﬁdmmnpoh&his G=U(1)
and the gauge potential takes its valved in iR=G,i.e., (@0))y = - iApdxte AN(U,iR).
The gauge field is then

i(Q))y = JFndxiadxVe AXU,R) 2
Mum&ukmmmwm
@y @y + id a3)
This information is interpreted geometrically as a choice of gauge, or local
trivialization, and the associated transition functionis g = exp iy : UnV—G.
As we already know (§ 2), we can write

QY = 5 (FedxAdxk + Fipdxiadxm)
= (Epdx%adx* + B, *(dx%Adx¥)) ; kIlm=1273. (74)
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and, since (*)? = ~1 when applied 1 2-forms, the Hodge star operator changes E into
-B and ¥ into F. Let us now consider the electrodynamics with charges and
monopoles. The ficld generated only by electric charges can be described by the usual

potential
Qy)y = dley)y (75a)

The field generated by the magnetic charges is a dual field:
*(Qy = *dl)y (75b)

The woxal ficld generated by electric and magnetic charges will be given by
-iFy = (Qy + *(Q)y : @6)

In this way one of the potential describes the field generated by electric, and the
other the ficld generated by magnetic charges.
‘We observe that, if we make two independemt gauge transformations

(@)y—(®,)y + idY ; (@)y— @)y + idy

the field Fyy does not change. If we interpret the above transformations as changes in the
local trivialization of a PFB, we must use a spliced bundle (due 1o the independence of
% and ). Once we justified our choice (2), we now go on with the theory.

Let us observe that the spliced bundle of two copies of the PFB x:P—M has
each point pe P o P associated with two points of P over the same fiber. This permits
us to understand that a gauge ransofrmation in ®y;:P o P —-M comresponds to two
gauge transformations in x:P—M. Indeed, o(;:U—P o P corresponds to
oly=n'e Oy:U—P and also o 62y=%2 o G j:U—P . In this way we can associatc 10 a
given connection @ in P two gauge potentials @y=oy! ® and @y=02y”® . Observe
that

oy = (xle oy)*® = o) (x!*®) = oy (x!*0® 0) (773)



&y = (% op)*e = oy"(x?* 0) = oy’ (0Sx>*w) (T70)

where @y and @ comespond 1o gauge potentals associated with the I-forms
x*w®0 and OPx2°@, which are possible extensions of ® to the spliced bundle.
This shows that, given two connections o and ®; in x:P—M, we can associate with
them two distinct connections @=x'*w, Ox2*w, and @=x'*w, ®x2*®, in TP
o P —M . We show in Appendix C that, given a connection @ on the spliced bundle,
we have two connections @, and ©; well defined on the original fiber bundles.

We sce now that, when both PFB are egual, the connections ®; and @> can
generate another connection @ on the spliced bundle. We call @ the connection dual 10
© .

Observe that we have tw) curvatures Q@ = D® @ and Q@ = D9 & associated
1o the connections @ and @ . These curvatures must, by the Bianchi identities, satisfy
D®w=0 and D® =0 . Before we analyse these identities, we must understand some
of the properties of the horizontal forms in a spliced bundle.

If te AX(P 0P, G,8C,) with the adjoint representation GyxGz— 6,80,
then it follows ,

(a) we can write T=x!"1j+x2*1, with 1y A%P; C)) and e AK®P:2 &) ,where

we use the adjoint representations  Ad: Gi—G; ,i=12.
®) DOt=g1*D®l;+x2* D21, ; for O=n"*@1+x2*0y 78)
© Let 73 AXP10P2.G,88,)—AMKP10P2,G,@C )be the Hodge operator for
horizontal forms in PoP,, (n=dimension of M)and ¥1: A% @y , )= Ark@yd)) ;
T2 APy Gy APKP2,G5) be the Hodge operators for horizontal forms in the original
PFB. Then %121 = n*(% ) T))®x2* (32 1).

We employ the relations (), (b) and (c) in the following way. Returning to the
curvature Q% A2(P1oP2G,8C,) we can write Q®=x!"Q,0%2°Q,, where
9,0, AXP,5) are well defined. We now prove thatif @=x!"®,®x2"®, , we have
Qy =Q1 =Dy, and Q,=Q02 =DO2 e,

ndesd,

Qo= do+ 11,- @ ®]=dx"0® o, )+% " oore, 1" 0@n"e, ]
=xI" D@1, & x2° D®2, = x!* Q1 @ x2* QN2

Morcover, we have Q8 = zI*Qo,@x2*Qo,,
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In this way, the Bianchi identites D®Q®=0 and D®Q® =0 according
10 (b) are equivalent, and correspond 10 D®;,=D®2w,=0 , which are the Bianchi
identities associated w0 @y and 7 in x: P=M. In elecodynamics, these equations
imply that d(Q;)y=0 and d(Q;)y=0 , which physically mean that both the magnetic
field of electric origin and the electric field of magnetic arigin have null divergences.

In what follows we are going 1o generalize the gauge principlel15] for a gauge
theory with our monopoles.

Let be =x:P o P M a spliced bundic with group GxG a2nd let be
GxG—-GL(V) a representation of  GxG . We remember hat the space of 1-jets of the
mappings from Piwo Vis:

J(PoP,V)={(p,v,0) lpcPoP,ve V and 8:TpP o P is lincar}

-~

. Wecall a Lagrangian the mapping L: J(P o P,V)—R such thatforall (p,v,8)eJ(Po -

P,V) and ge GxG, we have
Lpg.g 'v.g18 o Ry.12)=Lipv.0)

K Lip.g! v,g-6)=L(p,v.8) then L is said to be GxG -invariant, and in what follows
we suppose L to have this property.

Now given a Lagrangian L: J(P oP ,V)—3R , let Cbe the space of the connections
in P o P . Define the action density by

LCP,VIXC— C(M) a9

where C(M) are the set of the C™ functions on M.
We have,

LY w)x) = Lip,P(p).D¥(p)) (80)

where xe M, pe x}(x) and the generalized wave function (matter ficld) describing the
electric and the magnetic particles is Ve A°(P o P,V)=C(P o P,V).
Then £ is not only well defined but is also gange invariant in the sense that for all fe
GA(P o P), we have, Uf*¥.1° @)=£(¥,0) .GA (PoP) is the gauge algebra of the
spliced bundle, more precisely it is the space C(Po P.5®8) with the adjoint
representation GxG-GLG®E) ; g—Ad,.

If we impose that LO(¥) is stationary with respect to ¥, we obtain the Euler-
Lagrange equations(!5], We show now that, if we add an appropriate term S(®) 10



LO(Y"), obtaining-then the 10tal action (L4 SKY ©), this density will generate not only
the Euler-Lagrange equations for ¥ but also the non-homogencous ficld equations.
More precisely, these results follow once we impose that (£+S) (¥, @) is stationxy
with respect to the pair  (¥,) .We will see that tht non-homogencous equations
obtainzd in this way correspond in the case of electodynamics 1o Maxwell equations
with monopoles, like in § 5.

We define the autoaction by
S@)= - 3R ); T=0047T8; Fy=of 7 @n
where

fk;: A Po P, 608) x A Po P, E@l) o R

is the metric for horizontal forms in ( 5®8 ) (with the adjoint represemation). We

observe that kyz is the Killing-Cartan metric in ( 5@6 ) and that kyxA,0A2.8,88=
K(A1B.)+k(A2.B;) , where k is the Killing-Cartan metric in & (see Appendix B).

Let us observe that, as S(w) is F-equivariant, it is gange invariant as required for the
autoaction term(15). Let us observe also that, had we construcied the autoaction term as
%ﬁkn(mmmaemwbemimmﬁmbmmmumlm
take the case of clectrodynamics where Q®=x!"0;®x2"®, then Q, and Q,
correspond 10 the fields generated by charges and monopoles:

iy, (0.00) = Bk (QF, OF') B(QF. QF) @2

and there are not, in this expression, interaction terms between the fields ) and Q.
For S(w), instead, we have

-+ ik (Tu. R = 2 B0, oY) - Lo, of) - o . o) 63

where the interaction term appears explicitly.
Before we apply the variational principle 1o the sotal action, Jet us remember the
definition of the current in terms of the Lagrangian
S AY, 0410)| g = Fkp(JoD), 0)

Voe At (P o P, 6&8 ). In this case JO(#)e A? (P o P,E®E ) and we can write

b



JO(¥)= — x1°),@x2*J2; s0 that we can asociate J; and Joe AXP,8) 10 the “electric”

and “magnetic” currents, respectively.
Effecting the variation at =0 (0=x""0,®17"0;) we gat

% {'(L;S)ﬁun,mu)u

= LL(‘P*n:,a)p +£— L S(P,0+t7)p.

=‘% J 12.&( QU101 QLo

-5 J 3 Bk Q102, Qe ozy

& [ yucagre, sopey, =
We bave at +=0 for the four first terms in eq (84):

5’; Lt(‘l’+m)u = rh@*—— +—-r)u

8o

Lza.omm B L ik p0O(), Op
& [ apeayom—- | aevaton

5 [ baTrer aopony —- [ R0 oy
U

Moreover:
£ fk( Qo1 0y)

= S R(QOo1707) + & i g1 omnoy

and, at 120, we have S-Q@HO=D®{1S] Then



%mkzﬂ«m:nmmz;
-=fk( D®g, F0MHOY 4 ik Q™ T
= B MR ,) + B 52T R™),0,)

and we obtain for the last iexm.in eq (34)

d I QPIH0L T QP2+

a ) B 102)
U

- [ ExcmEaTyoy + k(smEn™om
U

: Now, summing all the terms obtained and taking into account that 1,0y and
o2 zre all independent, and also that E

fiky,(FO(F),0) = - fik(J,,0,) + k(507 , (85)
we get the equations
JL JL '
¥ own * ¥ v
§M0% 4 5T =, ®7)
§2QM 4§z Q") =1, (88)

Eq (86) corresponds to the Euler-Lagrange equation, which gives the equation of the
generalized field describing the motion in P o P of charges and monopoles. We are not
going to investigate in this paper the nature of L% (¥).

Eqs (87) and (88) can be wrinten, putting Q=0 + *Q® _ag

§%1Q =-J, (89)
MGEQ) =) < D"MQ=-2] (90)

which are the non-homogencous equations of the theory.
In the casc of clectrodynamcics these equations reduce 1o



SQ = -Jl (9“)

aQ = - *), : (91b)

which we recognize 2s the Maxwell equations for the electromagnetic field Q=0%1+
*Q® gencrated by electric and magnetic charges. We have for Q% and Q@2 the
equations:

N® =4, ; 5Q®2=-), (92)
since dQ®; = dQ®=0 . Also, since 2®1=dw;, Q¥2=dw®,  we have

Oe=3:Qexrx=hk 93)
where D = —(d5+5d).

8.CONCLUSIONS

~ We presented in this paper a theory of magnetic monopoles without strings. In
order to show the crucial difference between our theory and the usual presentations of
the subject, we described briefly the string theory by Dirac and the topological
monopole theory, where the monopole appears associated with a change in the topology
of the world manifold (§ 2,3,4).

In order to expressconvenienily our theory of the generalized potential, we use
the Clifford bundle formalism described in Appendix A. In our approach, we show that
Maxwell equations imply the correct coupling of the electromagnetic field 1o electric
charges and magneiic monopoles; i.e. we deduce the form of the generalized Lorentz
force (§ 5). From that we deduce the motion equations of charges and monopoles.
Moreover we derive, from the quantum version of the theory the Dirac quantization
condition in two different ways.

In § 6 we discussed the impossibility of constructing a local Lagrangian which
gives simultaneously the motion equations of particles and monopoles and the ficld
equations. We arrive at the conclusion that, contrary to recent claims{13], even in the
Clifford bundle formalism this is not possible. :

Finally in § 7 we present a generalization of our theory in § 6 10 generalized monopoles
associated with an arbitrary gauge group G. In other words, we succeed in giving 1o
our theory a principal fiber bundle structure: a spliced bundle with group GxG. We
obtain the equation of the gencralized field in our theory using in the spliced bundle a



generalization of the Principle of the Stationary Action. We postulate the exisience of a
Lagrangian density £®(¥) for the gencralized field, that describes in the splhiced
bundle the “electric™ and “magnetic™ maticr, but we do nox use explicitly any Lagrangian
10 deduce the equations of the generalized matier field. Indeed, £9(¥) is used only
produce the currents. The question of the existence of £L®(¥) and its form in this
formalism will be investigated in another paper.

To sonclude, we observe that the approach here developed shows explicity an
inmteresting interplay of several diffzrent branches of modem mathematics, which
conspire together in order to shed new [ight on various physical problems.

APPENDIX A

A 1. SOME ALGEBRAS AND THEIR RELATIONS

In AL Az and A3 we follow the presentation of Graf(16),
Let V be a n-dimensional vector space. In this subsection we introduce some algebras
that will be usefull to derive the equations of motion for electrical and magnctical
charges in the ficld of magnetic monopoles and electric charges.
The tensor algebra T(V) over R isthe R-vector space of the direct sum of the powers
@PV 1togetber with the wsual tensor product @ of its clements. Then we have:

(V)= (o; eV, ®) (A1)

is Z-graded: (®PV)S(@IV)c®P*IV and infinite-dimensional f n21.As V is
finite-dimensional we can identify V with its image @'V in T(V) and we aiso definc
®0V=R .

On T(V) there are two important involutive morphisms (both being Lincar
automorphisms of o;w.
(i) the main automorphism o

ASB) = a(A)®x(B) , AB e T(V) (A12)
a(A)=Aif AcB’V and a(A) =-AHAc®'V. (A13)

(i)the main anti-automorphism B,
B(A®B) = BA)Y®B(B) , A.B € T(V) (A.1.4)



BA)=A if Ac@’V+8'V (A.1.5)

The exterior Algebra A(V) over the R-vector space V can be defined as the quotient
algebra TV of T(V) over the two sided ideal JCT(V) gencrated by the element
with the form a®a, where 2eV.

As usual, we denote the exterior multiplication by the sign A. Since J is
homogencous in the Z-graduation of T(V), also A(V)is Z-graded: A(V)=GAP(V),
with AP(V)AAYV)CAP*A(V) . As before, we make the identifications Al(V)=V
and AO(V)=R .. i
The subspaces (V) are ()—dimensional and A(V) is 2"-dimensional. For the
clements Ae AP(V) and Be A9(Y), the exierior prodoct is commutative or
anticommutative:

AAB=T-I)MBAA (A.1.6)

The morphisms @ and B of T(V) pass to the quotient A(Y) . Denoting them by the
same symbols « and B, we have:

a(AAB) = a(A)Aa(BS (A.1D)
' ABe T(V)
B(AAB) = B(AIAB(B) (A1.8)
If AeAP(V) = a(A) = (-1)PA and PB(A) = (—1)P-D2A (A.1.9)

‘We define as Grassman-Algebra A(V,Q) the pair (A(V),Q), consisting of the exterior
algebra A(V) together with the inner product (, )Q:A(V)x A(V)—R induced in
A(V) by a quadratic form Q over V as follows:

H AeAP(V) and BeA%(V) with pzq,then (AB)g=0.

K A=ajama...asp and B=byabpa...ab, with ab; € A1(V), then (AB)g =
det (B(ay,by)) , where B is the bilinear form associated 10 Q by

ZB(xy)=Qx +y) - Qx)-Qy) (A.1.10)
The case of general 2,be A(V) can then be reduced, due 1o the linearity,to (i) and Gi ).

The Clifferd Algebra C(V,Q) of the real vector space V with quadratic form Q is
defined as the quotient algebra T(V)/T , where the two-sided ideal J is generated



by clements of the form  282-Qa).]1 with ae V. As before, we can identify V
with its image in C(V.Q) . Denoting the Clifford-multiplication by a simple
Jjustaposition, for 2, be V we have

ab +ba =2B(a.b) (AL11)

with the bifincar form B defined in (A.1.10).

The ideal T, being inhomogencons of even degree in T(V), induces a Z3
gradation of the Clifford Algebra, Q(V.Q)=C*(V,Q) @ C (V,Q), where C*(V.,Q) is
the image of the clements of even degree in T(V). Since a(J)=T", the morphisms a
and B induce morphisms (designated by the same symbols) in O(V,Q): Forall A B e
(v, Q,

a(AB) =a(A)x(B) (A.1.12)
A.Be T(V)
P(AB) = B(A)B(B) (A.1.13)

(A)=PA)=A for A€ R;— a(A)=fA)y=A forAeV (A.1149)
In particular, for AcCH(V.Qitis a(A)=A . and for 2eC(V.Q) itis a(A)—A

A2 STRUCTURE OF THE CLIFFORD ALGEBRA

In this sub-section we study the structure of the Clifford Algebras and their
relations with the Grassmann Algebras.

First, for any clement X of the dual vector space V* let us define the
contraction of an element of T(V) with Xe V* as the (V*,T(V)) -bilinear map V*x
T(V)-T(V) of degree —1 with

XJ1=0

a=X(@), ifae VCIV)

@®b)=(XJ2) @b + a(a) ®(XJb) ;a,beV
(In particolar, X JXJ will annihilate any clementof T(V)).

Since XJJ=J and XIF=J, thec contraction also passes to the quotients
A(V) and C(V,Q) and 10 A(V,Q), and we have:
if A,BeA(V) or A(V.Q

XI(AAB)=(XJA) A B + a{A) A (XIB) (A2.1)

£

XI(AB)=(XJA) B+afA) A (XIB) ,if A BeQ(V.Q (A22)

g
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Xja=0 ifac Rc AV) ,AV,Q, OV.Q (A.23)

Now, for aeV, define the Q-adjoint 1o ae Vo T(V)A(V), (V,Q). C(V.Q) w©
be the element . 3 V* such thatforany aeVc A(V,Q) and be A(V,Q) their
product  avb is defined as

avb =aab+ild (A25)
ava =Q(a) (A.2.6)

By the theorem on the universality of Clifford Algebras{2), the v-Algebra gencrated by
this relation on the clements of A(V,Q) is the Clifford-Algebra C(V,Q) with the
Qlifiord product (designated by mere justaposition) replaced by v. 5

Conversely, if for a Clifford-Algebra C(V,Q) we define a a prodoct of
Vo C(V,Q) with Be C(V,Q~is

aaB=aB+ilB , (A2.7)
then we get

aAa=0 (A.2.8)
which is the defining relation of the exterior algebra. Since in the Clifford-Algebra
aa=((a) , this exterior algebra can be made a Grassmann-Algebra.

This correspondence of Clifford and Grassmann-Algebras does not depend on
Q being non-degenerated or not. In particular, if Q=0, the Q-adjoint vanishes and
C(V,00=A(V,0)=A(Y) .
Another important observation is that the Grasmann-Algebra A(V,Q) and the
Clifford-Algebra C(V,Q) are isomorphic as vector spaces over R . Then, the
generators of A(V,Q) are the generators of C(V,Q) and vice-versa.

Then if {e...,eq) isabasisof V,thesetof the p-vectors,
p=012, .n

[ o= 1e1 ... ea &1AC2, C1nCy, » CIACIACS,., CIACY......ACy |
generates A(V,Q) and also C(V,Q) . Both are 2" -dimensional algebras. Any element
AeA(V,Q) or C(V,Q can bewritten as

n n
A= =¥ (A),,where Ap= 9
’).:‘,AP EO o Ap={A), € AP(V) (A2



So we have that, over the direct sum @AP(V) of the fincar spaces AP(V), we can impose
the structure of a Grassmann Algebra by means of A and Q, as well as the strucwre of
a Clifford. Algebra; and each of the two products can be reduced to the other, as scen
above.

For gencral elements, Clifford and exierior product are related as follows:

AB=3, %ﬁmm aPley) —Jegl Adaleyl —JeplB)  (A2.10)
AB=3, !%"—2’-"- B PR{(aP(ey) el ANi(ej) e (A2.11)

where hX:=B(y 2% ¢ is the dual basis 1o the basis e A(V); and the product of the
clements inside the brackets in (A.2.11) is the Clifford -product.
The formulas (A.2.10) and (A.2.11) for the special cases that 2 or be Al(Y)
reduoce to:
ay =any +dly (A212)

#b =bra(@) - bl a(6) (A2.13)

A3.SOME VECTOR BUNDLES RELATED TO THE COTANGENT
BUNDLE

Since all the algebraic structures considered above possess a R-linear structure
inherited form the vector space V, for their generalization to manifolds we will use the
formalism of the vector bundles (with additional algebraic structures). Here M will be a
real n-dimensional C™-manifold. Moreover, bundles, cross sections and maps will be
C= . Quantity t™™ denotes the Tangent Bundle associated to M .
The basic bundle for our constructions will be the Cotangemt Bundle t"M of the
manifold M. Moreover , cross sections  ce Sec ("M ) will be called I-form  fields.
Given a cross secion he Sec(t*M x 1*M ),Jet be hie Sec(tM x T ) such thathfik=5%;
In each fiber x-!(x), quantity h, will be a quadratic form over the cotangent space
T,*M.Let vs denote the pair (t°M,h) a Riemannian (or Lorentzian) vecior bundle.
We denote the veciar-bundle, whose fibers AT,*M are the exterior algebras over
V=T,*M, the Cartan-bundle of exicrior differential forms on M . As is well known,
on a Cartan-bundle the exterior derivative d can be umiquely characterized by the
following conditions:

d(A+B) = dA +dB

d(AAB)=dAAB +a(A)AdB

d2=0



xJ(df) = X(D)
for any A,Be Sec At*M , fe A®T*M and Xe SectM.

In particular, d will be homogencous of degree +1 imthe Z-gradation of the
ring of cross sections of AT'M = (®AP T*Ma).
The pair (AT*M.F ), where each fiber (AT,*MJ, ) is 2 Grassmann Algebra, will be
called Hodge-bundle on M with metric h.

If for any xe M, quantity hy is nondcgenerate, in addition o d there is the
divergence B , which is the formally b-adjoint operatorof d , defined (7] by:

Boo =(—1)P"'d‘mp (A3.0)
where the operator *  (Hodge star operator) is defined as the lincar isomorphism:
 APT*M DA PT*M , 69 * ¢

oA*éo=(cd
for all p-forms ©,9 € Sec APt*M , where p is the volume n-form

,...il_m__i_ dxil.a A dxin. = Vbl dx'A A dx® (A3.3)

¥ (6362, ._.,0") is a orthonormal basis, then 1 can be written as:
p=01A_..A00 _
Because ﬂe&’-o.ﬂnhpltimfadﬂsm&lfmu=-(ds+8d) can

be written also as a square
D:(d—S)z (A3.49)

A vector bundle is called a Clifford-bundle C(t*M,f) if each fiber is a Clifford-
algebra C(T"xM.B ») . We can prove that C(t*M.,fi) is a vecior bundle associate to
the PFB Pp(13) (T*M), i.c., C(‘l."M.E)=Pq1_3) (T*M)xo(1,3) R13-
If h is non-degencrate, there is a particular differential operator 9 called the
Dirac-operator odd in the Zp-gradationof C(T*;MJ},) defined as follows:
Forany t*e Sec ©*Mc Sec ((1*M,h) and any te Sec t™, consider the
bilincar tensorial map of type (1,1) given by

vV y (A3.5)



where W is aify element of Sec C{(r*M f) and V, is the covariant derivative of W,
considered as element of the tensor-bundle, in the direction of t .Because V,J'cT\V,
passes to the quotient bundle C(7*M Jf). Then 2 is defined as the tensorial race of
the map:
o=Tr(1*V) (A36)
In terms of a Jocal basis  {¥) of Horm fields and its dual basis {ej) of
vector fielfls, we can also write

a = YSVei (A.3-7)
In particular, taking a Jocal coordiante basis {dxM] we have

9= d&xnVy (A.3.3)

The Dirac Operator can be reformulated as follows. Take any local

ncighbourhood UcM with coordinate basis- {dxP] . Then in U, the guantity
9=dxHV), can be written when acting on we sec (AP T° M.R)

Ay =dxP A (Vyy ) + 3, J(Vyp) (A39)

We get for Y=Vi‘__i.dxh-A...Adxi!-
1 .
dﬂl\(v"\')=i,—!-vl”vn___§.}dxﬂ-4\_“/‘dxh.sd'

anJ(V,,v) = Gfl_l_)'!'v” vﬂ-iz 3 = in'l.;\ _Adxin = By

As the forms at the right-hand sides of the two last formulas are independent of
any basis, we get
9=d-3 (A3.10)

AA4.THE GEOMETRIC CALCULUS OF THE CLIFFORD-ALGEBRA

In this section we show how 10 do some calcululations in the Clifford-Algebra
C(V,Q). This is particularly important in order to obtain the results of §5 and §6.
: Here we follows Hestenes(17), that yields a geometric interpretation for the
clemens of the Clifford Algebra (and this is the reason why we designate this section by
Geometric Calculus). x

We have seen (Sec.A.2) that the Grassmann Algebra is isomorphic, as vector
space, 1o a Clifford Algebra. Then, any Ae C(V,Q) can be writien (eq.(A.2.9)):
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A= '); (A), =(A)g+ (A), + —t(A), (A4D)

where {A); is the component of A in AT(V) . Due 10 the above decomposition, the
elements of C(V,Q) will be called mulrtiveciors, (or multiforms, depending on V).

If A=(A) forsome inieger 0<r<n, then we say that A is homogeneous
at the r-grade. In this case we will write A as A;€ ATV .

The elements of ATV will be called, as usual, r-vectors. Now, we must introduce

the following products in C(V,Q):
The inner product of homogensous multvectors

ArBs=(ABg)_¢.if 15>0 (A42)
ApB=0 ,if r=0 or s=0
The inner product of arbitrary multvectors is then defined by:

=X (A} B =T, A(B)s= X, (AN(B)s (A43)

The equivalence of the three expressions on the right side of (A.4.3) is an
obvious consequence of the distributivity of the Clifford product.
The outer product (or exterior produt) of homogeneous multvectors
ArABs=(ArBorss (A.449)
Note that, in contrast to the inner product, we have AAA=AAA=AA; if A =
(R ‘
The outer product of arbitrary multivectors is defined by

AAB= =3 (A} AB= T AAB)s= Lo (A (B)s (A4.5)

Now, in the following, let's designate the anti-antomorphismin C(V,Q) (Sec.
A.I)by +,and call it reversion.

We have, with A,Be C(V,Q):
(AB)* =B*A* (A4.6)
(A+By*=A++B* (A47)
(A*)=(A (A.4.8)
at=a  ifa={a) (A4.9)

It follows immediately that the reversion of a Clifford-product of vectors is

(2122 a)® = A 2g2y (A.4.10)



Morcover, we have

Aty =(AN* =(1y¢-DZA), (A4.11)
Using the above relations, we get also the relations:
€AB )= (-1y¢ - DUAB* AY ), (A4.12)
(ArBs )r = (Bs*Ar )= (-1 - WABA, ) (A.4.13)
(AB.C );= (C*BA*) (A4.14)
Using (A.4.11) and (A.4.12), we find, for the inner and outer product defined -
above, the following reordering rules:
ApBs= (-1y¢-DBA; r<s (A.4.15)
ArABg= (-1)" BsaA, (A4.16)
The inner and outer product are defined obviously by means of the Clifiord-
product in the Clifford Algebra. 5
Note that using (A.4.15) and (A.4.16) we can show easily the relations:
2Ac = 3(aA- C1F As) A417)
anA = 5aAc+ C1F A) (A4.18)
and then
aA; =aAr +anAs (A4.19)
For our applications, the following are important:
- The identity

@tpt) = 3 (Daneydea) (420

where the 2} means that the kth vector is omitted from the product.
-The Fundamental Formula

m
ABs <(ABs Ny -t + (ABs N - o2+ +{ABs dras= 2 (ABs e s (A4.21)
where mt%(l’flr-l'—d)-
Observations: -
Obs. 1. Note that the equation (A.4.19)
' ) Aag=aAc+anie
is the same as the equation (A.2.5) when the outer product in the Clifford Algebra is
identified with the usual ovter product and  a-A;=aJA;.
Obs. 2. Note that the Clifford inner product between multivectors with the same grade
is given by the Grassmann inner product, that is:
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ArBr=(ArBro
But observe that, although (, ) is defined only for clements with the same
grade, the Clifford inner product ( . ) is defined for any clements of the Algebra
C(v,Q. ;
Obs.3. Using the Clifford inner product we can imwoduce a very important
isomorphism for our calculus, between A(V) and A(V*), as follows:

A (V)30 = Ar € A(V) 0, (a5, 2220 = At (A ;A nnp) (A422)

foray, a3...acV

We use dﬁs.isomwphism in §6. It is necessary also in order 10 translate our
present approach into the one in references [8,9].
Obs. 4. If V is n-dimensional vector space with a metric tensor h with signature (p.q),
then the algebra C(V,Q), where Q(a)=h(a.a), is usually desiznated by Rpq-
Obs .5. The Clifford Algebra Ry 3 (called Mirkowski Algebra or Space Time Algebra)
of the forms {dxM ] is isomorphic to H(2) quaternionic matrices. The Dirac complex
matrices Algebra (¥ ), with % W+W¥u=2hyy 1, is the algebra C(4)=Ry;.

We have the inclusion R*g3; =Ry3, where R*g; is the even part of Rgy.
For completeness, we note that R3; = R(4) is called the Majorana Algebra.
Obs. 6 We have the following relation between  ¥9=dx®...dx3 and the Hodge star
operator:

If fpeAP(V), with V=T,*M, then !

=DM (A4.23)

where the index t depends an the signature and on the gradeof  fp,.

In the paticular case of Rj33 wehave *=—9for p=123 and *=9
for 0,4.

The product at the right hand side of (A.4.23) is the Clifford product.

AS.THE PAULI ALGEBRA

The Pauli Algebra is defined as the even sub-algebra of the space-time algebra
Ry3. Truly, it is the Clifford Algebra R3p of the euclidean tridimensional space R3.
Then, we have the isomorphism R*; 3 =R3,0. This isomorphism is given by the lincar
extension of

L St ud (AS.D)

where %eR;3 and ¥ is ime-Jike (yp2=1).

The Pauli Algebra R3p isisomorphicto C; (complex 2x2 matrices); and
this is the reason why physicits can use the representation of o; in terms of the very
well known Pauli matrices
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The vecwos 0y satisfy the multiplication rule:

0% = 3 (00 &) (*s2)
The products of Oy generate a tensorial basis for Ryp. which is a vector-space
with dimension 23=8. Other.clements of the basis are the bivectors Gy = GYAOK=
(oj0x -0x0;) and the pscodoscalar is 1= 0,003
The clement | commute with all the others clements and  P=-1.
From the isomorphism (A.5.1) it follows that:
Ox= — Yk (AS.3)

I =y (A5.4)
We see that for cach choice of the arbitrary time-like vector Yo we obtain the

- Paufi Algebra of Y by the isomorphism (A.5.1).

Given a vector  pe Ry, it can be represented by:

Pl=Po* P (A5S5)
where

PP and P =PpaYe (A.5.6)
The Dirac operator 9=#'3,, is a vector operator. We have then:

%0=3¢+V (A5.7)
do=10 and V=yprd (A.5.8)
Obs:Hf AeR;s. then

9A =0-A +3nA (A.59)
Quantity d-A is called divergence of A and 9AA is called curl of A.

APPENDIX B

Bl. GENERAL GAUGE THEORY. THE PRINCIPAL FIBER BUNDLE
APPROACH.

Let (MAV) be aLorentzian manifold(!), Let x2P—M be a principal fiber
bundle PFB with group G (and Lic algebra &). The following conditions must hold :
@)  Given geG, there exists 2 mapping (diffeomorphism)



Rg:P—P;p—3Rg(p)=pg
@) mP—M isonto.lf x=n(p)e M, the orbit of G through px1(x)=x"1(gx)
=pg. g€ G is called the fibre over x=n(p).

In this way, given pe x-!(x), there exists a2 diffeomorphism (non-canonical)
G- xMx) g— pe

@) P is Jocally mivial, ic. for cach xe M , there exist an open set UM with
xeU and a diffeomorphism Ty }U)—UxG; Ty(p) = (2(p).Su(P))
where Sy i(U)—G  has the propenty  Syfpe)=Sy(pe.  Vee G.VpexI(U).

Ty is called 2 Jocal wivialization (LT), or a choice of gauge.

We will need also the concept of transition function. Given the PFB x:P—M
with group G and two LT, Tyx-}(U)>UxG and Tyar (V) VXG , we define
the transition from Tyto Ty as the mapping gyy:UNV—G where,

guv(®) = SUPX(SuP)) ! x = x(p)e UNV (B1)
~ guv(x) is well dcfined since %mwmr‘-suwgsm‘wkmwl
-Su(p)(Sv(p))".uidmefollowmgpmpcmcsmm
gyux) =¢ . VxeU; @) gyvx)=(gyv X))} VxeUnV
guviX)ggwx)zwy(®) = ¢, Vxe UnVAW

In order 1o fink this abstract theory with the theory in §2, we need the concept of
a Jocal section of a PFB 1:P—M  with group G, i.c. the mapping

MU —P; %0 = ldy ®2)
where Idy is the identity in U.

It can be shown that there exists a natural correspondence between local sections
and Jocal trivializations. To analyse the monopole theory, we shall need also the
following(6.3]

THEOREM: A PFB m:P—M with group G is trivial if and only if it has a continuous
(global) cross section.

A trivial PFB is one where P=MxG

We give now three equivalent definitions of a connection in a PFB. These three
definitions contain necessary ingredients for the formulation of our monopole theory as
a PFB theory.

(CI) A connection is a way to associate with peP asubspace HpcTpP such that:

Rg+( Hp) =Hpy (B3)



The mapping p—H, is C~. Hy is called the horizontal subspaceand Vp iscalied
the vertical subspace,such that TpP=Hp @ Vp.

(C2) A comnectionisa €= 1-form o over P which takes values in G, the Lie Algebra

of G, and such that
(@ given AeG and A* a vector field defined over P by

AGEePAN. = apAnp=A
A* s called the fundamental field ,
() given geG,itis pg(RpsX) = Adg1p(x), VgeG,peP
‘We can write this equation as

Rge (0) = Adg-10(w)
where @ is called the connection 1-form.
It is imporntant to observe that in general G appears in the physical theories as 2

maix group through its adjoint representation

G—)GL(&):;—-;M‘.
In such a case, if AeGL(G ) and Be &, we have

AdpB =S Ady (cxptBlg= S (A (cxpB)ANg = AIBA ®5)
Assuming then that G is a matrix group we have
(C3) A connection associates for each local trivialization (i.c., aAchoiscofgauge)
Ty:x(U)-»UxG a 1-form @y over U, with values in G, with the following

compatibility condition: If gyyy: UNV—G is the tansition function from Tyy to Ty we
impose

_ oy = (gyv)'dgyy + (guv) oy guv (B6)
which we sometimes write in a more compact notation as
oy = gldg +Adg oy (B6)

We now defien the local gauge potential. Given a connection over P, a local

section G:U—P , the “pull-back”
oy =oj; ® ®7)
is called the local gauge potential.

Now, given a connection 1-form ® overa PFB mP—-M with group G,
we can write cach Xe TpP as X=XV +XH, where XV is vertical (i.c..ns(XV)=0)
and XH is horizontal (i.c. (XH)=0).

If AXPG) isthesetofallthe k-formsover P with valuesin G , then if
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A A
9 A(P,G) wedefine oM eAKP.G) by
P X) = OOXE, ... X ®3)
Notice that @A(X,, ... Xyy=0 if one of the X; is versical. Moreover, the exicrior
covariamt derivative D® of g AKP.G) is
Doy = @p¥ eAM1(P.5) (39)
We define now the curvature form of the connection  @e ANP.G) as
Qe =Dow eAAP.G) (B10)
We can show that the curvatre satisfies the C -rtan structural equartion(23]
0 = DO o= do+ 1 [ @) B11)
The meaning of the commotator in eq (15) is 2s follows: Let oeAi (PG) and
yeA (P,G) . Then [@,y]e A™XP,G), insucha way that

[PV = 1157 g (CIPTOK 1y Xo) ¥ Koguiy-Xogap))  (B12):

where e Perm (1,2,...,i+]) and (-)°=%  is the sign of the permutation.

The brackess in the 7-h.s. of (16) are the Lic brackets in & and X g€ TpP, n=1,
e o

The curvature satisfies also certain imtegrability condition called Bianchi identity
(which in the Physics hierature are called the homogeneous field equations):

De Qo= (B13)

Once we choose a Jocal section oyy: U-P(UcM) , we have a gauge potential
@y associated with the connection via the pull-back (C3).

Now, the pull-back of Q@ is called the force-field associated 10 oy; . We have

Qy=oy Q© (B14)
The Cartan structural eqguation is also valid in U jie. we have
Q= Doy = doy + 3 [ oy.0y] (B15) -

It is important 10 observe that, when (B6) is a2 matrix group, we have that, if
9eAP.G) and YeA'P.G). then
[9.¥] =oA? - (-D)i¥ae (B16)
where ¢ and'¥ are considered as matrices of forms with valuesin R, and @AY is
the usaal matrix .nultiphication (where the elements of the matrices are multiplied via the
edge operator A). Then, when G is a matrix group, eq (B11) and eq (B15) can be
written
Q®=do + ore - B119)

Qy=day+ oyroy (B15)



Eq.(10)givesthe rule for the transformation of the potcntial vnder a gauge
transformation. For the force field we have the following rulel7.15],

guv:UnV =G =DV=MM),,% B17)
and in the casc when G is 2 marrix group we have s
Qy = (guv)'Qusuv (B18)

B2. EQUIVARIANT HORIZONTAL FORMS

Let G- GL(V),g— gv for geG and ve V be as usual a representation of
G in a vector space V. By definition, an equivariznt horizontal k-form (or horizontal k-
form, for short ) in P which assames values in V satisfies the properties:

() ¢ (X, —Xp=0 (B.19)
if at Jeast one of the X; is vertical, i.c.xeX; =0
) Ko-gly a0

Lot it the space of the k-horizontal forms AXP,V)CAX(P,V) . Observe
that , although a connection e AMP,G) bas the property (h2) when we use the
adjoint representation Ad: G—GL(V), it does not give zero when applied to vertical
vectors and then does not belong 1o A(P,G). The difference berween rwo connections
t=0 ~ @ AYP.G) since satisfies () and (). Indeed, @ and @; mapa
gwenvemcdvecta A*p on its (unique) gencrator A= D1(A*)=0(A*)=Ae G

Conversely, if teT'(P.&).abomtiumeaim.ndifnﬁxamwcﬁon
@ we have 2 1-1 correspondence berween the elements of A1(P,G) and the connections
in %:P—M .In this way, if @ is a connection and te AN(P.5), then @+T isa cuve in
C ,(the space of connections) which isequalto @ in t=0.

We can then characterizes T‘(P.&)-T.C as the tangent space 10 C.We
also obscrve here that Qe A(P,G)  with the adjoint representation.

We call horizontal functions or particle fields the maps ¥: P—V which
satisfy only (h2) (Pe A%P,V) =C(P,V)). Such functions arc associated to the
quantum ficlds of the particles. :
DOAXP,V)— AX+1(P,V) . Indeed, D®g=(dg)? gives zero on verfical vectors and
Ry = £'9. K, D% = R (dg) = @R 9)" = gD (Obscrve that the pull-back
commutes with the differential and that K changes only the vertical component of the
VveCIors). )
We'can show(!S] that for 1€ AXP,V) we have
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(h3) D9t = dw+ ®AT (B.21)
The symbol A in (h3) carries not only the usual exterior product but also the
action of G in V. Such an action comes from the representation of G in V, v—gv given
= d
Av=a (( exptA).vip (B.22)
When V=G with the adjoint representation, (hs) redoces 1o D®t=dt+{e,7] . When
t=00® this is the Bianchi identity.

B3. METRICS AND THE HODGE STAR OPERATOR IN A PFB

Let m:P—M with group G be a PFB. For each peP we can choose HycTpP  such
that TP=Hp@V) . We observe that xey,: Hy—TM (x=n(p))
is an isomorphism between Hp and T,M . p
The metric b of the space-time M can then be transported o Hp, which then ill
have a metric hyp = ;" hy . We can also define a volume clement [l associated with
the volume element p in Ty M . This permits us to define 2 Hodge star operator in
Hp. :
pARHL V) —> AR-KH,V) - « ®23)
where  n=dim Hy=dim M. 3
Due tothe partition TpP=H,@V), and due 1o the fact that horizontal forms give
zero when applied to vertical vectors, we can define .
%= AP.V) - A" 5P,V) ®24)
For ge AX(P,V) and peP we definc (+@)p as the unique extension of *pPp 2
(n-k) form in P with values in V which gives zero when acting on vertical vectors. We
bave for each local section  oy.U—P
@) =20y (@) (®.25)
where *: AX(U,V)-5A™ X(U,V) is the usual Hodge star operator * defined by the
metric and the volume element in M. (see eq (A3.2))
Given + we can define a codifferential associated 10 a connection
5 :AX(P,V) > A"-X(PV) for horizontal forms by (compare with eq (A.3.1)):
30A, = (-1)PF 'D@IA, VA AKP.V) (B.26)
Bywsing ¥ we can alsodefine a metric for the horizontal p-forms @,%e AK(P,R) by
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h: AXPR)XAXP.R)=R - @®27)
with @ASY=h(g,y)ii, being i the volume clement in Hp.
This metric can be extended also 1o horizontal forms @,we AX(P,V) which take
valves in a vector space V with mewric h Let (Eq) be a basis of V,
Rap = A(ES.ER) and write g=qOEq, Y=y Eq with §%yae AX(P.R).
‘We define
% Q:N.WXN.V)—'R
B 5w = Zasht@yPhag (B.28)
In the case in which V=G we always use h = h, the bi invariant Killing-Cartan metric
in G05) and we have
: i::m.&m.& )-R
forall ge AX(P.G ).

APPENDIX C
SPLICED BUNDLES AND CONNECTIONS

Let x:P; 5Mand x;:P;—M be two PFB with group G, and G; and the
same base space M. We define the set P;0Py={(p;.p;)€ Py>P; | 71(p1)=my(p;)) and
observe that Gy x Gz acts freely on the right of PyoP;, (p.p2)(81.22)=(P181.P282) -

- It is casy to see that x32:P;oP,—M with %;5(p;.py)=7,(p)=%(p) is a PFB with
group Gy xG,. ‘We call such a PFB a spliced bundle associated to the two PFB

We can also introduce two other PFB, x!: PjoP,—P; (x1(p;.py)=p;) with
group G, and x2:PyoP;—Py(x? (py.py) = p; whith group Gy

‘We have the structure of five PFB,represented in Figure 1

G xG;
it e

Gjesseseeee P,/‘/N‘ o geeeeseeecGy
e

xl
x

M
Fig. 1 - The spliced bundle PjoP; and other PFBs



We can show(15) that, if @ye AN(P,.G,) and e A2(P,,5,) are connections

defined on the PFB  x;:P;—»M and £,:P;—M, then
o=x"e, ® %6, (cn

is a connection on the PFB  ®,:P,0P;—M . We are going 1o show here that, if o
is a connection on the spliced bundle, there are connections ®, and ©®, on the original
o=x"0,0x e, ((o0))

In order 1o prove our smiement Jet us use the identifications  G;=G,®0,
86,2000, in 6,®5,, and consider the projections PG, @G,—Gi(i=1.2).0bserve
that we can always writt ©=p}(®) ©p2(®@), and then, if we define ©, and @7
through the relations  ©*@; =pi(®) , i=1,2, we obuin =", &x2°w,.
It remains 1o be proved that ®, and ®, are well defined and are connections. We
have, for @;for example, that

(@), %)) = pY(@p(Xp))

where pe ProP;, () = Py Xpe Ty(P;0Py) and (X, =wleXpeT,, ()

We rmust show that this definition does not depend on the choice of p and Xp . Indeed,
for p fixed, if Xp,X'pe Tp(P1oP2) and :l.,,(x,)sxlo,( X‘,)=Xp,. then

xle(Xp-Xp) =0 @)
and then Xp—X'p is a vertical vector in the PFB x!:P;0P,—P). The group associated
to this PFB is G; and we can write

Xp-Xp = 5 (p expthr)ig (Ca)
for Ae (. Making the identification A;=0®Aze 5,68, * we obtain that
@ (Xp— X'p) =00 Ay (C5)

and then  pl(@p(Xp-Xp)=0 and  p'(@p(Xp))=p(p(Xp))
Inthecase ©(p)=x!(p)=p1,wehave p'=pg; and Xp=Ry Xp ,and then

xle (Xp)= e (Xp)

@y (Xp) =Ad(g )0 (Xp) and pHlay (Xp))=p'(ep (Xp)
It follows that @, is well defined and we must now show that it is a connection.
The properties (i) and (ii) of the definition of a connection are clearly satisfied. We

Morcover



obscrve that, from the point of view of the PFB, x!:PjoPy—Ry acts50as Riey,)
from the point of view of the spliced bundle:
®, Ry« Xp) =pl{@Reg, o)+ Xp) = p! (Ady o, 0X(Xp)) =
C =Adg ) p'(eXXp) = Adgg ), ©,(Xp,) (C6)
In this way it is proved that, for each connection ® on the spliced bundle
%12 P1oP;—M , there are two connections @) on Py and @; on Py such that
o=x"0,6z7 o,
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