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INTRODOC'l'ION. 

TBE m-ORDEREI) REAL FREE GROUP 

Antonio José Engler 

IMECC - UNICAMP 
Caixa Postal 6065 

13.081 - Campinas, SP., Brasil 

DUring the last years the study of the formally real 

fields has been a source of new interesting resea:n:h. One 

of the most attractive aspects of these studies has been 

to find ,out the characteristics of the total Galois~ 

of these fields attached to properties ooncerning the 

fact of real. 

Among the profini te groups t:he .free profini te groups 

have appeared very frequently as the total Galois group 
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of some fields ((BNW), lo)). Baran and Jarden / HJl] 

established the •real• analogue of the notion of a free 

profini te group . The aim to the present note is to 

examine closely a partiClllar case of the real profinite 

groups; those having finitely many classes of irnlolutions. 

Of course they are in connexion with fields having fi-

ni tely many orderings. Of particular interes t wil 1 be the 

pro-2-groups, as one can expect working on formally real 

fields. 

... 
Notati.ons. 

Throughout this paper we assume that C is a class of 

fini te groups tbat contains the snbgroups and the quo-

tients of gronps in C, and that is closed under exten-

sions. We also assume that C contains the cyclic group 

of order 2. A pro-C-group is a projective limit of groups 

in C. As usual, if C is the class of groups having order 

a power of the prime number 2 we say pro-2-group instead 

of pro-C-group. 

All homomorphisms between pro-C-groups are assumed 

to the continuas, and all subgroups are assumed to be 

closed. If S is a subset of" a pro-C-group G, { s ) will 

denote the closed subgroup generated by S . For general 

facts about profinite groups, see IR]. 

Let B be a set, F (8) will denote the free pro-C-group 

on B, in the restricted sense ( cf. 1 R l } . Let A1 , ... ,Am 
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m 
be pro-C-groups ; U A1 will always denote their free 

i=l 
pro-C-product ( cf. [ BNW) l . For a field K , G (K) denotes 

lts absolute Galois group. 

Our definition of real free pro-C-group is a par-

ticular case of [HJl] (Definition 1.1). 

DEFINITION: A pro- C-group G is said to be m-ordered _rea 1 

free on a set B if the following conditions are satisfied: 

(1) There is a subset e of G containing m involutions 

(i.e. every element of e has order 2). 

(2) Bis a subset of G, disjoint from e, convergent to 1. 

{i.e. every open normal sub<;Jroup of G oontains all but 

finitely many elements of B). 

(3) Every map I from C U B into a pro-C-group G', con-

vergent to 1, such that I (e} 2 = l for every e E C, can 

be extended to a unique homomorphism of G into G'. 

1. TRE REAL FREE m-01IDERED GROOP . 

The existence and uniqueness of a real free m-ordered 

group is s ta,te.d --i-n ( HJ l l ( Lemma 1. 3) . F'irs t we wil l gi ve 

two different characteriza~ions of these groups. Act:ually 

we construct the real free m-ordered group. 
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THE0REM l.l: Let G be a pro-C-group, m > O a natural 

number and B be a subset o-f G. The following conditions 

are equivalent: 

(A) G is a 111-ordered real free group on B. 

(B) There are c 1 , ... ,cm distinct involutions of G such 

that G = <c1>ll F(X), where X= fc1 c 2 , ... ,c1cm} U B U 

c 1Bc1 . (c1ac1 = {c1Bc1 ! b E B}, if B -111 l. 

m+l 
(e) G = U Ai 

.i=l 

Am+l = F(B). 

... 
(e. > for i = i , ... , m and l. 

PROOF: To prove that (A) ~(B) it is enough to stDi that 

the group < c 1> li F(X) is a real free m-ordered group on 

B. Let C = {c1 , ... ,cm} and consider two new sets of 

simbols {c1c 2 , ... ,c1cm+l} and c 1sc1 = {~bc1 b E B}, 

in case of B be a non-void set. Now let F(X) be the 

usual free pro-C-group on X = { <½• ... ,<=i_cm} u B u c 1 Bc1 • 

call V' the unique automorphism of F (X) such that V' <<=i_ cj) = 
-1 . = (c1cj) , J = 2, ... ,m and <ll(b) = c 1bc1 , op(~b<=i_) =b, 

for every b E B, if B f1. Clearly V'2 = 1 and we will 

denote op(x) = c 1xc1 , for 

the group {c!x _l~ = O,l; 

every x E !:"00 . Let RF be 

-E- FtxrT where the ~ti.a\ 

-is in the obvious wa.y. 

We claim that RF is the m-ordered real free pro-C-

-group on B. 
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Let G • be a pro-C-group and I : C u B __. G' be a 

map convergent to l such that I (cl 2 l for every e E e. 
We extend 

= 2, ... ,m 

I to X setting I(c1cj) = I(c1 JICcj) , j = 

I(c1bc1 ) "'I(c1 ) J(b) I(c1 ) for every b e B, 

1f B i. This extension is convergent to 1 too. Let 

f: F (X)___,. G' be the unique homomorphism extending I to 

F(Xl. Since f(c1xc1 ) = f(c1)f(x)f(c1 ) for every x E X, 

by construction, it follows that f(c1xc1 } = f(<½_)f(x)f(°J.l 

for every x E F(X) too, since fo(conjugation by c 1 } 

and (conjugation by f(c1))•f must be equal by the 

Wtiqueness of the extension. Then we can extend f te a 

homomorphism from RF to G' by for 

e; = O. 1 and x E F (X} . This homomorphisms is clearly the 

unique extension of 1. 

(A)~(C) 

and define 

For j l, ... ,m let e. be a generator of A. 
J J 

f(e.) = e., where C={c.., ... ,c }. 
J J l. m 

Let fm+l be the unique homomorphism extending the iden-

tical map of B. 

Let G' 
m+l 

U A. 
j=l J 

and call tj:Aj----+ G' the natural 

maps of the product. By the universal property of G' there 

exists a unique homomorphism g: G'~ G such that 

9"11ij = f. for j = l, ... ,m+l . On the other side there 
J 

exists a unigue homomorphism h: G ----i, G' such that 

h(cj) = 11/j (ej), j = 1, ... ,m and h(b) - tl,m+l (b) for 

b E B. A straightforward verification shows that h is an 
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isomorphism. 

(C) =d (A) It is an imediate consequence of the univer:sal 

property of the free product. 

REMARKS: 1.2 By Corollary 3.2 of {HJll or by Theorem 

A' of íHRl the sete {according to the definition) ls a 

complete system of representatives of the conjugacy clas-

ses of involutions in a real free pro-C-group G. Hence G 

bas exactly m conjugacy cl.asses of involutions and that 

' is the motivation of the e-xpression wm-ordered" in our 

defini tion. 

1.3 The m-ordered real free pro-C-group on B will be 

denoted by RF(m,B). Of course RF(m,B) is the usual (re-

stricted) free pro-C-group if m = O . We will constantly 

use the semidirect product representation RF (m,B) "' 

= (e) F(m,B), where e E e and F(m,B) is tbe free 

pro-C-group on tbe set X described in tbe Theorem 1.1. 

1.4 Let F be the usual free pro-C-group on a set X . If 

X is a finite set and m < #X is a natural nwnber such 

that #X- m+l is even, then we construct a real fTee group 

RF {m,B) such that F(m,B) :e F {up to isomorphism) . It is 

enough to considera set B containing l/2{#X-m+l) ele-

ments and C a set of m involutions. For a non-finite set 

X we do not need any restriction on m to get RF Cm,B) 
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such that F(m,B) 

appropriate sets. 

F . We just consider X as the un1ai of 

1.5 The notion of real free profinite ~roups has some 

importance in the theory of Pseudo Real Closed F'ields . 

Haran and Jarden (HJ2) proved that the absolute Galois 

group of a Pseudo Real Closed Field is real projective 

and conversely, a real projective qroup is the absolute 

Galois group of some pseudo real closed field. ([HJ2], 

Theorem 10.4). On the other hand, every real free group 

is a real projective group ((RJl}, Corollary 3.3). 

We combine these results in the following st:ateoeuts, 

(A) The real free profinite group 

projective. 

RF(m,B) is real 

(B) There exists a field K such that G(K) is isomor-

phic to RF(m,B). 

Observe that K is a formally real field 

m > O. 

whenever 

1.6 Let K be a field, G be a real projective profinite 

group and f: G (K) ..... G be an epimorphism such that for 

every involution e E G there is an involutioo e E G(K) such 

that f (e) e then the homomorphism f splits and there 

are closed subgroups of G (K) isomorphic to G . Hence thei'e 

are algebraic extensions L of K such that G(L) = G. 
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2. THE SOBGROUPS AND TRE QUOTIENTS OF RF(m,B). 

As in many other cases ([BNWl, {LVDD}) we will ~rove 

that the open subgronps of a real free group 

real free. 

are also 

PROPOSI'l'ION 2.h (A) An open subgroup H of RF(m,B) is 

isomorphic to RF(m' ,s•) for some m' and B' . If in ad-

dition, B is a non-finite .set, then B' = B-<Dll.d be àEeen. 

For index two subgroups .-..e have t:he followinq more pre-

cise formulation: 

(B) For every finite subset B0 e B and {ci1 , •.. ,c¾:} e e, 

r < 111 there exists a unique open index 2 subgroup H of 

RF(m,B) such that B = {b E B J b t B} , k 1 , .. 9 ,Cj_ } = 
o l r 

{ e E C l e~ Hl and H = RFf2(m-r),B1), where #Bl = #B 

if B is a non-finite set and #B1 = 2#B + r in the finite 

case. 

In the case of r = m, or equivalentely B f"l e = 1, 

we have that B = F(m,B). 

PROOF: The statement (A) follows directly fr0111 Kurosh 's 

Theorem in [BNW I and (B) is a consequenc;'.e of the urd:versal. 

property of the real free group and from tbe Theorem. 

COROLLARY 2.2: Let K be a field such that G(K) is iso-

morphic to RP(m,B) . Then K has exactly m distint or-

ders and GIK(i)) : F[m,B) i s a free profinite grou!'. 



(1 is the squaxe i:oot of -1) . 

In the aert resu1 t ve consi.deJ? a m:>i:e gene-ral si. tu-

a tion where a pi:o-C-gn,up G satísfi.es. the foUCVi:rq sepa-

ration hypothesis~ 

Let G be a p:ro-C-g.cuup that: has exactly classes 

of oonjugacy of :im,olotiOQS _ Let I (G) be the set of the 

involntions of G , tbat we asstme tx> be a c1osed subset 

of G, and let c1 , ...• c 111 be a ctm1plete systea of repre-

sentatives of the classes of ICG}. 

(SB) Por every s 1 • ••• ,c:1y, s_r+l, •• • ..C:ty+s tllere 

in iDdex 2 snbgroup H o:f G SllCb that: ê. , .... e. E B 
ll.l .1.r 

is 

amd 

PROPOSITIOR 2. 3: Jtee:ping t:be notations and the bypotbesis 

j-ust introouced above tbe follow:i.ng statements are true: 

(A) Let 

Then: (Al.) S j and "? j are nor:aal s:ubgroups of G aod 

(A2) sj e B for every i.ndex 2 subg:roup of G . 

(A3) Let H be an i.ndex 2 snhgroop of G soch that cj fE e. 
If e• is a no:rmal. subgroup of B sucb that sj e B', tben 

( cj > li B' 1.s a nom.l. s..,t,gxoup of G. Xf 1n a:ti.ltkn {B:B') = 

= 2 the converse is true. 
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IM) G/T. =- B/S. 
J J 

for every index 2 subgroup B of G 

and such that c 3 t H . 

(B) Let S = ({cc' 1 c,c' E I(G)}) and T = ({e lc E I(G)}). 

Then: (Bl) S and T are normal subgrcAJps of G and S = (e) lll T 

for every e E I (G) . 

(B2) Let H be an índex 2 subg~ of G such that B (') I(G) = SJ. 

If H' is a normal subgroup of R such that S C H' , then 

( e> lll H' is a normal subgroup of G . If in additioo {H:B') = 

= 2 the converse is true. 

(B3) G/T :: B/S for every -index two subgroup H of G such 

that H il I (G) = JI . 

(C) Let S(I) = S1S2 ... Sm .'lhen T=(cl)Jl( ... ((cm>»S(I)) ..• ), 

T/S(I) :: (Z/2Zlm and T/S(I) C Z(G/S(Il) = the centerof 

G/S(I) . 

PROOF! It is a simple vetification. 

By Proposition 2.1 the real free group RF(m,B) sat-

isfies the hypothesis (BS} and we can improve · the last 

result for this group. 

PROPOSITION 2.4: With the sarne notations of the Proposi-

tion 2.3 we have: 

(A) RF(m,B}/Tj F(m,B}/Sj RF(m-1,B). 

(B) RF(m,B)/T F(m,B)/S F(B). 
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(C) RF(m,B)/S(I) = (Z/2Z) 111 x F(B). 

PROOP': Let 11: RF(m,B) -t RF(m,B)-/T be the canonical 

surjection. Observe that for x,y E CU B, x y, and 

either x e or y ~e, there is an index two subg:roup 

H of HF (m ,B) such that 

Proposition 2.1. Hence 

c. EH 
J 

xy-l e H 

i Tj. Thus the restriction of TI to 

X~ H and y EH, by 

T. e H aro then xy-1 ic 
J 

(C-{cj }) U B is in-

jective. Let À : TI (C-{cj }) u B -G be a map convergent 

to 1 such that À (TI (X)) 2 = 1 for every X E C-{cj }.'llEn, 

there exists a homomorphism f: RF(m,B)-t G whose re-

striction to C u B is J..011. Since f(c.) 
J 

1 it foll.ows 

that Tj e kernel (f). Let f: RF(m,B)/Tj - G be the 

morphism gived by f(gTj) = f(g) for every g E RF(m,B). 

This morphism extends À to RF(m,B)/T. and since f is 
J 

unique and TI is a surjection, f is also unique. 

Statement B follows in the sarne way and the 1ast ane 

is a consequence of 2.3. 

Next we introduce some notations: Let K be a for-

mally real field and c E I(G(K)) be an involution. Call 

K (c) the intersection of those real closed fields t:hat are 

conjugated to Fix(c) = the fixed field of {l,c}. Let K* 

be the Galois order closure of K, that is, the inter-

section of all real closures of K inside a fixe:!. algebraic 

closure of K . Observe that K* = nK (.e) , for every c E 

E I(G(K)). Finally, K1(c) denote the quadratic extension 
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of K(c) gived by the square root of -1. Observe t:hat K(c), 

K1 (e) and K• are Galois extensions of K. Por every Galois 

extension NlK, G(N,K) denotes its Galois group. 

COROLLARY 2.5: For a field K such that G(K) = RF(m,B) 

let C "' -{ c 1 , ... , cm} be a system of representati ves of 

the conjugacy classes of involutions. Then: 

(A) 

(B) 

(C) 

G(K{c.J,K) = RF(m-1,B) 
J 

G (K*, K) :e F (B) . 

for every j = i, ... ,m. 

PROOF: The resul t follows frcm G(K (cj)) = Tj , G<Ki (cj)) = Sj, 

G(K*) : T and G(Kl (cl) n ... n Kl (cm)) = S(I}. 

As a consequence of (B) we get: 

COROLLARY 2.6: If G(K) :e RF (m,B) then the direct prodoct 
- B (Z) is a quotient of G(K*,K). 

Now, f ix a natural number m > O and a set B. Denote 

by RF 2 (m,B) the ro-ordered real free pro-2-group, by RF(p) 

the maximal pro-p-guotient of RF(m,B) and by Fp(B) the 

free pro-p-group on B. 

PROPOSITION 2.7: For every prime number p we have: 

(A) For pi 2, RF(p) = Fp(B). 
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These is0180rphiSlllS are canonical.ly defined. 

PROOF: First - prolPe that RF (2) " RF 2 la.e} . Let 

g: RF(m,B) - RF(2) be the canonical projection and 

f: RF(m,B} - RF 2 (111,B) be the unique ll!Drpb.isa induced bf 

the identical map of e V B. Since RF 2 is a pro-2-

group we have that lleme.1.(g) e k:er:nel.(f) . Let i,: w2 <-,B) -

RI?' (2) be the unique lllOrphísm induoed by the s,.p ., C z} = 

= g(x), x E e u B. Since <••f> (:x) = gtxJ for evei:y x E 

e e u B it. follows that hf = g . Ilenoe ke:rnel(f) e 

kernel (g). Tbus lternel (f) = kernel (g) and fl is an iso-

a>zphi.sa. 

In the proot: of RP (p) = Y P (B) we need to take care 

of the involotions. 'l'his is ma.de by settini::J f (e) = 1 for 

every e E C in tbe above defínition of f. ife finish 

the proof as above. 

In the Corolla.ry 2.8 we established the •real• ana-

logue of: a vell known fact about fi:ee pxnfinite grou:ps 

{{R J , Proposition 3. 2, pg. 225) . 

Por a field K we denote by lt(p} its waximal p-ex-

tension. 

COROLIARY 2.8: Let K be a field such t:hat G(IQ = W(a,B). 

Then: 
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(A) For p t 2 G(K(p ) ,K) "' F (B ) . p 

(B) For p 2 G(K(2),K) "' RF 2 (rn,B). 

COROLLARY 2.9: RF2'm,1?) is a real projective 

group. 

orofinite 

PROOF: Let N be a normal subgroup of RF (m, B) such that 

RF{m,B)/N = RF 2 (m,B) and let P be a 2-Sylow subgroup of 

RF(m,B). We have that (RF(m,B):N) = (RF(m,B); NP) (NP:N) 

and (RF(m,B) :P) = (RF(m,B) :NP) (NP:P). Sin-ce (RF(m,B) :N) 

is a 2-power and (RF (m,B} ~) is an odd supernatural nom-

ber it follows that (RF(m,B) :NF) = 1 and NP = RF(m,B). 

Hence RF 2 (m,B) = NP/P =- P/(N n P). Let f be the epi-

morphism f : P -- RF 2 (m,B) and s a continuous sect:icn, 

s: RF 2 (m,B)- P. ([R) Proposition 3.5 pg 31) 

Let e= {c 1 , ... ,cm } be the set of involutions such 

that C u B is the set of generators of RF 2 (m, B ) For 

every i = 1, ... ,m let e . E P be an involution 
l. 

such 

that f (ei ) = c 1 . Hence , there exists a uniqae roap 

g: RF 2 (m,B) __. P 

and g(bl = s (b) 

such that g(c1 ) = ei for i = 1, ... ,m 

:for every E B. By the uni~!:Sal pn:ç--

erty of RF 2 (m,B) we have that fg = id and g is an 

injection. Hence RF 2 (m,B) is a closed subgroap of RF(rn,B) 

and then is a real projective group by ({HJl), 'IheorBn 3.6). 

Clearly we can adap t the defini tion of real p:rojective 
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profi.nite groun (! HJ2l, pg 38] With respect to the class 

of pro-2-groups in the obvious way. Of course a pro-2-

group that is a real projective profinite group is a real 

projective pro-2-g.roup too. ln the Corollary 3.5 we will 

see the converse . 

3. THE REAL FREE PRO- 2-GROUP. 

ln t:his section we will characterize the fields K 

for which G(K(2) ,K) ., RF 2 (m,B) .• 

We will use the same notatic~s 

just before the Coro! aryz .5, but· now K (e) will be a :rel-

a tive real c1osure of K i .n K(2) and K"' is the pythagorean 

closure of l,;;. (See I B]) 

PROPOSITION 3.1: Let K be a formally real field such 

that G(K(2) ,K) = RF 2 (m,B). Choose a syst:em e= lcr-··•crn} 

of representatives of the involutions of G(K{2) ,K).'lhen: 

(A) G(K(cj),K) RF 2 (m-l,B) for every j = 1, ... ,m. 

(B) 

(C) 

PROOF: It follows from Corollary 2.5. 

The first conclusion of the Corollary was indepen-

dently proved by Ershov {[E21, Theorem 4) and ware (fW2l, 
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Corollary J.5). 

The item (B) has a kind of converse. Let JC, K2 , and 

Q(K) be the multiplicative groups of the non-zero 

ments, squares, and sllllls of squares, respectively. 

ele-

We wi.11 denote by IF 2 the priJDe field of cbara:tec 

istic 2, by #B the cardinal number of a set B. Let u(K) 

be the Hasse number of a field K . (u(K) = max {dimg}, 

where q range9 over al.l anisotropic forms wh.i"ch beCOllles 

isotropic over al.l (if any) real closures of K.) As usual 

H2 (G} = H2 (G,Z/2Z) for any pro-2--group G. 

THEOREM 3.2: Let K be a foraa.l.ly real field baving a 

orderings and let B be a set sucb that ~=dila 1F Q(JC).,-x2. 
2 

Then the following conditions are equivalent: 

(A) G(K(2),K) "' RF 2 (m,B). 

(B) G(K*,K) = F2(B} and H2 (G(K(2),K)) "' (Z/2Z)m. 

(C) Ü(K) < 2. 

CD) G(K(2},K(i)) is a free pre-2-group. 

PROOF: (A) (B) We have already seen that G(r,K) "'F2(B}. 

0n the other side by Theorem 1.1 and ((N}, Satz (4.1)) 
2 m+l 2 H (G (K ( 2), K)) = rr H (A.) and the resunt follows ftalr- t:he 

j=l J 

fact that Aj = Z/2Z for j = l, ... ,m and "m+l is a 

free pro-2-groUp. 
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ln the proof of (B) ~(A) we need the lemma. 

LEMMA 3. 3: If J< is a formally real field such that 

G (K*, J<} is a free pro-2-group then every elenett of OCK}--t' 

is a sum of 2 squares. 

PROOF: Let a E Q(K) 

G(K*,J<) = F2(B) and 

and H = G (K"*, K ( /a) ) . setting 

{b E B I b ,! H}, then 80 is a 

finite subset of B and H = kernel(f), where f:F2ca>- Z/2Z 

is the unique homomorphism such that f(b) = 1 for every 

b E B0 and f(b) = O for every b E B, b B0 . 

Let g: F 2 (Bl - Z/4Z be the unique homomorphism 

such that g (b) = l for every b E B0 and g(b) = O for 

every b E B . b '1 B.o. Observe that g is a surjection 

such that !og = f where 1: Z/4Z--+ Z/2Z is the ho-

momorohism given by 1(1+ 4Zl = l+ 22.. Hence kernel(g) 

e kernel(f} and the fixed field E of kernel(g) is a cy-

clic extension of K that contains K ( /a) . By f DO) , E = 

= K ( / x+y~) where d is a sum of 2 squares . Hence 

= I<(/"a) and then there exists b E K such that 

a = db 2 and a is a sum of 2 squares. 

To continue the proof recall that the Arf's map 

e: K/K2 +K2 --4 B(K(2),K),,. H2 (G(K(2),K)), that is given 

by 8(c) = ( (-1,c}] = the class of the quaternion algebra, 

is an injection, (ILI, Chapter 3, Theorem 2.7 and Co:rol-

lary 2.11). 

------
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Now we go back to the proof of (B) (A) in Theorern 

3. 2. 

Since K has m orderings we have that I K/Q(K) 1 > 'i°. 
-- --.. Since the Arf' s map is injective and l~(G(K(2) ,K)) 1 = 2m 

--- ....... ------
i~ that K/Q(K) 1 = ,m, e is an isomorphiSlll and 

K is a SAP field. 

Le t P 1 , ... , P m be the pos i tí ve q;,nes of the orderlngs 

of K, R1 , ... ,Rm be, respectively, the real closures of 

K in K(2) with respect to P1 , ... ,Pm and A1 = G(K(2),Ri_), 

i 1, ... ,m (See {B) Chapter II). 

Por every i i 1, ... ,m , take ª1 e K such that 

ª1 P. but ª1 E pj for every j -/ i. Observe that the 
l. 

set of classes {a1Q(K) i i = 1, ... ,m} is a IF 2-base of 

K/Q(K) and K( ra-;:, ... ,.r.çi n K*= K. Bence G:cG(K(2),K) = 

= BT, where H = G (K ( 2) , K ( .lâ'i, ... , ra;;;» and T was given 

in Proposition 2.3. By the hyoothesis F 2 (B) = G(K*,K) = 

G/T = HT/T = H/(H n T). Since F 2 (B) is a free pro-2-

group the exact sequence 1 -- H n T - H - F 2 CB) --- 1 

splits and so there exists a closed su.bqroup Am+l of H 

isomorphic to F 2 (B). Call R~l the fued field of Am+l" 

Since H = Am+l (H n T) and G = HT we ha'1e that G =Am+lT 

and so K* n Rm+l = K. 

m+l 
We claim that G u A .. We w111 orove this using 

j=l J 

the cohomological cri terion due to Neulcirc:h ( (Nl , Satz 4 .3) . 
m+l 

So we will show that Res: Hg (G) -- n il(A.) is bijective 
j=l J 
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for q = 1, 2. 

For q = 1 , from Kumrner 's theory we obtain a com-

muta tive diagram 

H1 (G) 'Í<..Jl(2 . .. 
1 l l m+l 

H1 (A.) 
m+l • 2 n n R/Rj 

j=l J j=l 

where ,p is given canonically. It is enough to prove that 

,p is an isomorphism. Let {~ 4 b E B} be a set of ele-

ments of K such that the set of classes 

is a IF2-base of Q(K)/K2 . Observe that the indexes _b ____ _ 

ranges over B because of G(K*,K) = F 2 (B) . Clearly 

{a1 , ... ,am} U {¾ 1 b E B} is a representative set of a 

IF2-base of K/K2 . By the choice of Am+l we get that 

2 • 2 {ab~l I b E B} is a IF2-base of Rm+l/Rrn+l • 

. 
Let e E K , there are e: 1 , ... , e:m , cb E {0,l} , b E B, 

almost all of then null and d E K such that e = 
m e e: 

( n a.b)( n ¾b)d2 
j=l J bEB 

Henee ,p is the ,p (~) 

e:.l 2 e:m 2 2 
(al Rl ' ••• 'ªm Rm' ªm+l Rrn+l)' 

2 
where ªmt-I = n \ri.i • 

bEB 

Let q 

diagram 

2. Since we have the following commutative 
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B (K (2), K) 

m+l 
D H2 (A.) 

,-.~ __ J. 

m+l 
TI B(K(2),R.) 

j""l J --it remains to show that the rigbt !llat> is injective. 

As we have seen, each element of B(K(2),K) is of 

tbe fOTIII [ ( -1 , e) ] , e E K. Let f.l Em e:m+l d2 
e= ª1 ···ªm ªm+l 

wbere e: 1 , ... ,e:m+l E {O,l}, ªm+l E Q(K) anà dER. Dence 

!ll+l E. 
((-1,c)} = I? ((-1,a.}] J_ But [(-1,ant+l}J =O 

j=l J 
since 

ªm+l is a sua of 2 sqoares by Lemma 3_3 and_ B{K(2), Rm+l) =O 

by [Wl) Proposition 3.1 . To finish the pnrof ctse:r~ t:hat 

B(K(2),R.) = {O, [(-1,a.)1} for j = l, ... ,m 
J J 

{A) ==t (C) By [ Wl.] Pmposi.tion 3 .2. 

(C)~(D) is Proposition 3.2 of lWl.l. 

To prove (C) (B) we need a lemma. 

LEMMA 3. 4: Let K be a field and IK be tne ideal ooosi.sti.ng 

of all even-dimensional quadratic forms over K. The fol-

lowing statements are equivalent: 

(A) ( IK) 2 = 2IK. 

(B) The Arf's map e is an isomorphism. 

PROOF: (A)~ (B) . Since B (K ( 2) , K) is generated by 
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quaternions algebras, by !ter1turyev•s Theore11 (M!=-!..• .:.-:::..;.1=:,eed=-------

only to prove that for every quatex;--.:._<111 algebra (a ,b) , 

a,b E K, there is e E i .acb that ((a,b)] = (1-1,c)) . 

But this ia a ccmsequenoe of < 1,-a,-b,ab) = < 1,1,-c,-c> = 

2 < 1,-c), by Corollary 3.3 in (L), vhich 

:no 2 : 2Ut by Tbeorea 2.1 ln (EL] . 

(B)~(A) Let (l,a,b,ab), a,b E t 

follaws 

be a 2-fold 

Pfister fora. By the hypotbesis there exi.sts e E t such 

[ (-a,-b)] = f (-1,c)]. Henoe Cl,a,b,ab) "' 2 < 1,-c> E 2Ill 

what finisb the proof. 

COHOLIÃRY 3.5: If K is a pythagorean field the above 

condi tiàiisaxe equ! va.1~ to 

(B • ) The classes of quaternions algebras forw. a s~ 

in B(K(2),K). 

PROOF: See [EL], 'ftleorea S.3. 

Now we go back to tbe proof of (C) =t(B} ln 'lheorea 3.2. 

By IELP] 'ftleorea F, ve bave that (IJ() 2 = 2IK and K is 

a SAP field. Henoe H2 (G(K{2),K)) = K/Q(K) (Z/2Z)ª by 

the Lemma. 0n the other band, by 11121, Corollary 3.5 we 

have that G(K*,K) is a free pro-2-group since G(K(2), 

K ( r-I}) is also a free pro-2-group by (ELP] 'l'heorem F. 

'l'he last theoresa adds precision to Proposi tion 3 .2 

of Ware I WI 1 . We r;,ot the free generators of G(K(2), 

-----
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K ( nd the action of an involution on these 

--------qenerators, as wel s the arithmetical meaning of the ---
generators. 

Ershov CíE 2] , Theorem 4) proved that u (J<) < 2 

implies t:hat G(K(2),K) is isomorphic to a free pro-2-
m+l 

product n Ai , where Ai .is isol!IOrphic to (Z/2S) for 
i=l 

i = l, ... ,m and Am+l = F 2 (B), whenever t has m or-

ders. Our theorem provides a connexion between these two 

results. 

In the next COrQlla.ry we find the analogue of the 

Theorem 6 .5 of [ R] . 

COROLLA.RY 3. 6: Let G be a group wi th exactly m > O a:,n-

j uga tion classes of involutions. The following conditiais 

are equivalent: 

(A) G is a real projective pro-2-qroup. 

(B) G is a pro-2-group that is a real projective pro-

fini te group. 

(C) There exists a set B such that G = RF 2 (m, B) . 

PROOF: (A) ==!l(B) Choose a set X for which there exists 

a surjection f: RF 2 (m,B) - G such that f(cj) = e 1 , 

1 = 1, .•. ,m, where {c1 , ... ,cm} and {e1 , ... ,em)are ret:r 

resentatives sets of the classes of involuticns C7f RF2 (m,B) 



and G respectively. li ft property 

~itn- ~spect to involutions. Hence there is g: G -

RF 2 (m,B} such that fg = 1. Hence G is a closed subgroup 

of RF 2 (m ,Bl . Since RF 2 (m, B) is a real projecti ve gro.ip 

by Coroilary 2.9 sois G by (!HJ2), Corollary 10.5). 

(B) (C) By lHJ2l, Theorem 10.4 there exists a 

field K such that G(K)"' G. Since G is a pro-2-group 

-G""On :e G(K{2), K) .. Since G(K(i)) C G(K) is a pro-2-group 

and is a projective group as a subgroup of a projective 

group G(K(il) is a free profinite group by ([R],Chapter 

IV, Theorem 6-.5). Thus G : G{K) RF2(m,B) by 'll'leorem 3.2. 

(C) (A} is trivial . 

4. E:XAMPLES: 

4.1. Let k be a formally real field, aE k-k 2 suchthat 

a is a surn of 2 squares and let R be a real closure of 

k. (For instance, k = O , a = 2.) Let K be an interroe-

dia te field between k and R not containing a and max-

imal wi th respect to the property of exclusion of a in R. 

Then by [EV2J, Proposition 3 and [EVl] Proposition 9 we 

have that G(K) = RF 2 (1,{b}). 

4. 2. Let k be a formally real Hilbetian fiel.d and e;_, ... ,cm 

be involutions in G (k} . Geyer ( f G] , Theorem 4. 3) proves 
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that for alrnost all (g1 , ... ,gm) E G(k)m (in the sense of 
-1 -l. Haar measure of G(k) l, the subqroup (g1~g1 , .. -,9mcm9m 7 

m -1 is isomorphic to the free product U (g.c1g1 ) Hence 
i=l 1 

by Theorem 1.1 (g1 c1 g;:1 , ... ,gmcmg;1> = RF(m,jJ). 

4. 3. Let k be an algebraic number field that has m or-

derings such that k (i) contains all 2-power roots of the 

uni ty. Then by IR] , Theorem 8. 8, pq 302 and Corol.lary 3.2, 

pg 255 it follows that G(k(2),k(i)) is a free pro-2-

group. Bence by Theorem 3.2 G(k(2),k) = RF 2 (m,B) , for 

some set B . By COrollary 2 . 9 and Remark l . 6 there exists 

an al.gebraic extension L over 1t such that G(L) = RP2 (m,B). 

4 .4. The famous "Tsen's Theorem" provides another family 

that ~~tisry the conditions of Theorem 3.2. It 

is enough to considera m-ordered algebraic extension of 

the rational function field R (X) where R is a real closed 

field. 

4.5. Let K = R(t), (the rational function field),where R 

is the real number field and let A be the set of all 

pri.me divisors of R(t) jR. For each finite subset S of 

A , let K5 1 R be the maximal normal extension of R un-

rami fied at the elernents of A-S. As is shown in ( IICN], 

Satz 2) or ((HJl], Lemma 4.2) G(K5 ,K) = RF(m,B), where 

S contains m real primes of degree 1 and finite at t and 
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#B complex primes of degree 2. 

Now, fix so e A,a set of Ili real primes of degree 

l and finite at t and call B the set o'f all complex 

primes of degree 2. Let K(SO) be the 11\aximal normal ex-

tension of K unramified at the elements of A-(S0 u B). 

Clearly K (S0 ) = u K5 , where s = s0 u s1 and s1 ranges 

over the set of finite subset of B. An easy verificatiCll 

shows that G(K(S0 ),K) = RF(m,B). Finally, by Remark 

1. 6 there are algebraic extensions L of R ( t) such that 

G(L) "RF(m,B). 
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