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INTRODUCTION .

During the last years the study of the formally real
fields has been a source of new interesting research. One
of the most attractive aspects of these studies has been
to find out the characteristics of the total Galois group
of these fields attached to properties concerning the
fact of being real.

Among the profinite groups the free profinite groups
have appeared very frequently as the total Galois group



of some fields ([BWW],[D]). Baran and Jarden [HJ1]
established the “real" analogue of the notion of a free
profinite group . The aim to the present note is to
examine closely a particular case of the real profinite
groups; those having finitely many classes of involutions.
O0f course they are in connexion with fields having fi-
nitely many orderings. Of particular interest will be the
pro—-2-groups, as one can expect working on formally real
fields.

Notations.

Throughout this paper we assume that C is a class of
finite groups that contains the subgroups and the guo-
tients of groups in C, and that is closed under exten-
sions. We also assume that C contains the cyclic group
of order 2. A pro-(C-group is a projective limit of groups
in C. As usual, if C is the class of groups having order
a power of the prime number 2 we say pro-2-group instead
of pro-C-group.

All homomorphisms between pro-C-groups are assumed
to the continuos, and all subgroups are assumed to be
closed. If S is a subset of a pro-C-group G, ( S) will
denote the closed subgroup generated by S . For general
facts about profinite groups, see [R].

Let B be a set, F(B) will denote the free pro-C—group

on B, in the restricted sense (cf. [R]). Let Ay,---0Ap



m
be pro-(C-groups ; I Ay will always denote their free
i=1

pro-C-product (cf. [BNW]). For a field K, G(K) denotes

its absolute Galois group.

Our definition of real free pro-(-group is a par-

ticular case of [HJ1] (Definition 1.1).

DEFINITION: A pro-(C-group G is said to be m—ordered real

free on a set B if the following conditions are satisfied:

(1) There is a subset C of G containing m involutions

(i.e. every element of C has order 2).

(2) B is a subset of G, disjoint from C, convergent to 1.

{i.e. every open normal subgroup of G contains all but

finitely many elements of B).

(3) Every map I from C U B into a pro-(-group G', -con-
vergent to 1, such that I(c)2 = 1 for every c € C, can

be extended to a unigque homomorphism of G into G'.

1. THE REAL FREE m-ORDERED GROUP.

The existence and uniqueness of a real free m—ordered
group is stated in [HJ1] (Lemma 1.3). First we will give
two different characterizations of these groups. Actually

we construct the real free m-ordered group.



THEOREM 1.1: Let G be a pro-C-group, m > 0 a natural
number and B be a subset of G. The following conditions

are equivalent:
(A) G is a m-ordered real free group on B.

(B) There are CyresesCp distinct involutions of G such
that G = (cl)x F(X), where X = {clcz,...,clcm} U B U

¢,Bc, . (eyBe, = {cch1 |beBl, if B#M#).

m+1l N

ST =" A -, e A, = (c,) for-"?=%,...;m and
sl s i i

Ay = F(B).

PROOF: To prove that (A)=—=(B) it is enough to show that
the group (cl)l F(X) is a real free m—-ordered group on
B. Let C = {cl,...,cm} and consider two new sets of
simbols {clcz,...,clcm_‘_l) and c;Bc, = {clbcl j: bt €B};
in case of B be a non-void set. Now let F(X) be the
usual free pro-C-group on X = {CICZ""'clcm} UBUc,Be, .
Call ¢ the unique automorphism of F(X) such that o(clcj) -
= sl R a
(clcj) r 3 % 2eeem AN WD) c,bey, w(clbcl) =D,
for every b € B, if B # §. Clearly ¢2 =1 and we will

denote ¢(x) = c;xc, , for every x € PIX}_ Let RF be

the group f{cix | e = 0,1; ¥ € P(X)] where the operation
—
//'Tfﬁvfen—’in the obvious way. Clearly RF = (c1>)| F(X).

p—

We claim that RF is the m-ordered real free pro-C-

-group on B.
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Let G' be a pro-C-group and I: C UB —G' be a

map convergent to 1 such that I(e)? =1 for every c € C.
We ext;and I to X setting I(clcj) B I(cl)I(cj) . -
Lo T I(clbcl) = I(cl) I(b) I(cl) for every b € B,
if B # §. This extension is convergent to 1 too . Let
f: F(X)—G' be the unigue homomorphism extending I to
F(X). Since f(clxcl) = f(cl)f(x)f(cl) for every x €X,
by construction, it follows that f(clxcl) = f(cl)f(x)f(cl)
for every x € F(X) too, since fe{(conjugation by cl)
and (conjugation by f(cl))-f must * be equal by the
uniqueness of the extension. Then we can extend f to 2
homomorphism from RF to G' by f(cix) = f(ci) £(x) for
€ =0,1 and x € F(X). This homomorphisms is clearly the

unique extension of I.

(A)==(C) For j =1,...,m let e. be a generator of A,

J J
and define fj:Aj ~— G by f(ej) = ¢,, where C={c1,...,cm}.

Let fm be the unigue homomorphism extending the iden-

1

tical map of B.
m+1
Let G' = 1I A. and call y_.:A, — G' the natural

maps of the product. By the universal property of G' there
exists a unigque homomorphism g: G' — G such that
gwj = :Ej for j=1,...,m1 . On the other side there
exists a unigue homomorphism h: G — G' such that

h(cj) - "j(ej)' j=1,....m and h(b) = ¢ for

ml (b)
b € B. A straightforward verification shows that h is an



isomorphism.

(C)==(A) It is an imediate consequence of the universal

property of the free product.

REMARKS: 1.2 By Corollary 3.2 of [HJ1l] or by Theorem
A' of [HR] the set C (according to the definition) is a
complete system of representatives of the conjugacy clas-
ses of involutions in a real free pro-C-group G. Hence G
has exactly m conjugacy classes of involutions and that
is the motivation of the expression "m—orderea" in our
definition. '

1.3 The m—ordered real free pro-(—group on B will be
denoted by RF(m,B). Of course RF(m,B) is the usual (re-
stricted) free pro-C-group if m = 0. We will constantly
use the semidirect product representation RF (m,B) =
={c) X F(m,B), where c € C and F(m,B) is the free

pro-C-group on the set X described in the Theorem 1l.1l.

1.4 Let F be the usual free pro-(-group on a set X . If
X is a finite set and m < #X is a natural number such
that #X-m+l is even, then we construct a real free group
RF(m,B) such that F(m,B) = F (up to isomorphism). It is
enough to consider a set B containing 1/2(#X-m+l) ele-
ments and C a set of m involutions. For a non-finite set

X we do not need any restriction on m to get RF (m,B)



such that F(m,B) = F. We just consider X as the union of

appropriate sets.

1.5 The notion of real free profinite groups has some
importance in the theory of Pseudo Real Closed Fields.
Haran and Jarden [HJ2] proved that the absolute Galois
group of a Pseudo Real Closed Field is real projective
and conversely, a real projective group is the absolute
Galois group of some pseudo real closed field . ([HJ2],
Theorem 10.4). On the other hand , every real free group

is a real projective group ([HJ1], Cofollary 3.3).
We combine these results in the following statements:

(A) The real free profinite group RF (m,B) is real

projective.

(B) There exists a field K such that G(K) is isomor-

phic to RF(m,B) .

Observe that K is a formally real field whenever

m>0.

1.6 Let K be a field, G be a real projective profinite
group and f: G(K)= G be an epimorphism such that for
every involution ¢ € G there is an involution e € G(K) such
that f(e) = ¢ then the homomorphism f splits and there
are closed subgroups of G(K) isomorphic to G. Hence there

are algebraic extensions L of K such that G(L) = G.



2. THE SUBGROUPS AND THE QUOTIENTS OF RF(m,B) .

As in many other cases ([BNW], |LVDD]) we will prove
that the open subgroups of a real free group are also

real free.

PROPOSITION 2.1l: (A) An open subgroup H of RF(m,B) is
isomorphic to RF(m',B') for some m' and B'. If in ad-

dition, B is a non—-finite set, then»_B' = B oould be chosen.

For index two snbgmpsvahaveﬁefoum:ﬁﬁompte—
cise formulation:

(B) For every finite subset B, C B and {cll'".'cir}cc'
r <m there exists a unique open index 2 subgroup H of
RF(m,B) such that B, = (b€ B | b € H} , feg reemrcy } =
{cec|lcgHl and H = RF (2(m-1) ,B,), where #Bl = #B
if B is a non-finite set and #’Bl = 2#B + r in the finite
case.

In the case of r = m, Or equivalentely HNC = #,

we have that H = F(m,B).

PROOF: The statement (A) follows directly from Kurosh's
Theorem in [BNW] and (B) is a consequence of the universal
property of the real free group and from the Theorem.

COROLLARY 2.2: Let K be a field such that G(K) is iso-
morphic to RF(m,B) . Then K has exactly m distint or-

ders and G(K(i)) = P(m,B) is a free profinite group.



(1 is the square root of -1).

In the next result we consider a more general situ-
ation where a pro-C—-group G satisfies the following sepa-

ration hypothesis:

Let G be a pro—(C-group that has exactly m classes
of conjugacy of involutions. Let I(G) be the set of the
involutions of G, that we assume to be a closed subset

of G, and let Cyre-esCy be a complete system of repre-

sentatives of the classes of I(G).

(SH) For every Cgyevr-2Clige O1us rvervOy there is

in index 2 subgroup H of G such that éil.-.-,cieu and
<

reeesCy ¢ H.

C.
irm1 r+s

PROPOSITION 2.3: Keepinag the notations and the hypothesis
just introduced above the following statements are true:

(A) Let Sj = ({cjgcjg-'1 ig €GP and ‘rj=({chg—1[q€<;}).

Then: (Al) Sjand'rjarenor-almbgroupsofsaﬂ Tj=

S Y 8
°3 i~y

(A2) sjcn for every index 2 subgroup of G.

(A3) Let H be an index 2 subgroup of Gsnchthatcjﬁﬂ.

If H' is a normal subgroup of H such that S. C H', then

b

(cj) X H' is a normal subgroup of G. If in addition (H:BH')=

= 2 the converse is true.
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(Ad) G/'I'j = H/Sj for every index 2 subgroup H of G

and such that cj & H.

(B) Let S =({cc'|ec,c' € I@) and T=({clc € 1@}
Then: (Bl) S and T are normal subgroups of Gand S ={c) N T

for every c € I(G).

(B2) Let H be an index 2 subgroup of G such that H "N I(G) = §.
If H' is a normal subgroup of H such that S C H', then
{(c) ¥H' is a normal subgroup of G. If in addition (H:H')=

= 2 the converse is true.
(B3) G/T = H/S for every index two subgroup H of G such

that H N I(G) = #.

(C) Let S(I) = $1S5.--5, - Then 'r=(c1>x(...(<cm>nsu))...).
T/S(I) = (/2™ and T/S(I) C Z(G/S(I)) = the center of

G/S(I) .
PROOF: It is a simple verification.

By Proposition 2.1 the real free group RF(m,B) sat-
isfies the hypothesis (HS) and we can improve’ the last

result for this group.

PROPOSITION 2.4: With the same notations of the Proposi-

tion 2.3 we have:

(A) RI?(!\\.B)/Tj = 1=‘(m,B)/S:i = RF(m-1,B).

(B) RF(m,B)/T = F(m,B)/S = F(B).
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(C) RF(m,B)/S(I) = (2/28)™ x F(B).

PROOF: Let 7: RF(m,B) — RF(m,BY/T be the canonical
surjection. Observe that for x,y € CUB, x #y, and
either x € C or y € C, there is an index two subgroup
H of HF(m,B) such that chH,xiﬂ and y € H, by
Proposition 2.1. Hence xy » &€ H, TjCH and then xy © &
& Tj‘ Thus the restriction of 7 to (C—{cj}) UB is in-
jective. Let 1: w(C-{cj}) UB —G be a map convergent

to 1 such that A(wm(x))2 = 1 for every x € C-{c.).Then,

3
there exists a homomorphism f: RF(m,B)— G whose re-
striction to C UB is JXemw. Fince f(cj) =1 it follows
that T, C kernel (f) . Let £: R‘F(n;,B)/Tj —— G be the
morphism gived by f(g‘rj) = f(g) for every g € RF(m,B).
This morphism extends X to RF(m,B)/Tj and since f is

unique and 7 is a surjection, f is also unique.

Statement B follows in the same way and the last one

is a consequence of 2.3.

Next we introduce some notations: Let XK be a for-
mally real field and c € I(G(K)) be an involution. Call
K(c) the intersection of those real closed fields that are
conjugated to Fix(c) = the fixed field of {1l,c}. Let K*
be the Galois order closure of K, that is , the inter-
section of all real closures of K inside a fixed algebraic
closure of K. Observe that K* = NK(c), for every e €

€ I(G(K)). Finally, K, (c) denote the guadratic extension
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of K(c) gived by the sguare root of -1. Observe that K(c),
Ky (c) and K* are Galois extensions of K. For every Galois

extension N|K, G(N,K) denotes its Galois group.

COROLLARY 2.5: For a field K such that G(K) = RF(m,B)
let C = (cl,...,cm} be a system of representatives of

the conjugacy classes of involutions. Then:

(A) G(K(cj),x) = RF(m1,B) for every j =i,...,m.

(B) GI(K* K) = F(B).

(©  G(Rjle;) N Kjley) Mo N Ky(e ), K) = (2/22)™ x F(B).

PROOF: The result follows from G(K(cj)) = Tj,G(Kl(cj)) = Sj;
G(K*) = T and G(Kl(cl)n - ﬂxltcm)) = 8(I).

As a consequence of (B) we get:

COROLLARY 2.6: If G(K) = RF(m,B) then the direct product

®)?® is a quotient of G(K*,K).

Now, fix a natural number m > 0 and a set B. Denote
by RFz(m,B) the m-ordered real free pro-2-group, by RF(p)
the maximal pro-p-gquotient of RF(m,B) and by Fp (B) the
free pro-p-group on B.

PROPOSITION 2.7: For every prime number p we have:

(A) Por p# 2, RF(p) = Fp(B).
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(B) For p= 2, FRF(2) = mz(l,s).
These isomorphisms are canonically defined.

PROOF: First we prove that RF(2) = RP,(m,B) . Let
g: RF{m,B) —= RF(2) be the canonical projection and
£: RF(m,B) — RF,(m,B) be the unigue morphism induced by
the identical map of C U B. Since RPZ(-.B) is a pro—-2-
group we have that kemel(g) C kemel(f) . Let »¢: RF,(m,B) —
RF(2) beununiqne-arphis-nﬂncadbythe map v(g_)

=g(x), X ECUB. Since (vof)(x) = gix) for every x €
€ECUB it follows that v.f = g . ﬁenqe kernel(f) C
kernel(g). Thus kernel(f) = kernel(g) and ¢ is an iso-
morphism.

In the proof of RFi{p) =PP(B) we need to take care
of the involutions. This is made by setting f{c) =1 for
every c € C in the above definition of f. We finish

the proof as above.

In the Corollary 2.8 we established the “"real™ ana-
logque of a well known fact about free profinite groups
(IrR], Proposition 3.2, pg. 225).

Por a field K we denote by K(p) its maximal p-ex-

tension.

COROLLARY 2.8: Let K be a field such that G{K) = RF(m,B).

Then:
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(A) Por p # 2, G(K(p),K) = FP(B) :
(B) For p =2, G(K(2),K) = RF,(m,B).

COROLLARY 2.9: RFz(m,B) is a real projective profinite

group.

PROOF: Let N be a normal subgroup of RF(m,B) such that
"RF(m,B)/N = RF,(m,B) and let P be a 2-Sylow subgrow of
RF(m,B) . We have that (RF(m,B):N) = (RF(m,B): NP) (NP:N)
and (RF(m,B):P) = (!;F(n,B) :NP) (NP:P) . Since (RF(m,B) :N)
is a 2-power and (RF(m,B):P) is an odd supe}natural num-
ber it follows that (RF(m,B):NP) = 1 and NP = RF(m,B).
Hence RF,(m,B) = NP/P = P/(NNP). Let f be the epi-
morphism f:P — er(n,B) and s a continuous section,

s: RF,(m,B) — P. (IR] Proposition 3.5 pg 31)

Let C = {cl,...,cm) be the set of involutions such
that C U B is the set of generators of RFZ(m,B) . POT
every i =1,...,m let e € P be an involution such

that f(ei) =c Hence , there exists a unique map

i
g: Rlem,B)—» P such that g(ci) i} for 4 = l.;...om
and g(b) = s(b) for every € B. By the universal prop-
erty of RF,(m,B) we have that fg = id and g is an
injection. Hence RF,(m,B) is a closed subgroup of RF(m,B)

and then is a real projective group by ([HJ1], Theorem 3.6).

Clearly we can adapt the definition of real projective
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profinite grour ([HJ2], pg 38) with respect to the class
of pro—2-groups in the obvious way . Of course a pro-2-
group that is a real projective provfin:lte group is a real
projective pro-2-group too. In the Corollary 3.5 we will

see the converse.

3. THE REAL FREE PRO-2-GROUP.

In this section we will characterize the fields K

for which G(K(2),K) = RFz(leB)- :

We will use the same notaticrs e T ETECneR
just before the Corollary 2.5, but now K(c) will be a rel-
ative real closure of K in K(2) and K* is the pythagorean

closure of K. (See [B])

PROPOSITION 3.1: Let K be a formally real field such
that G(K(2),K) = RPz(m,B) . Choose a system C = {cl,...,cm}

of representatives of the involutions of G(K(2),K).Then:
(A) G(K(cj),K) = RFz(m-l,B) for every j = 1,...,m.
(B) G(K*,K) = F,(B).

(€)  G(Ky(ey) N.c NK, (cp),K) = (B/28)" x P, (B).

PRC;O?: It follows from Corollary 2.5.

The first conclusion of the Corollary was indepen-

dently proved by Ershov ([E2], Theorem 4) and Ware ([W2],
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Corollary 3.5).

The item (B) has a kind of converse. Let K, Kz. and
Q(K) be the multiplicative groups of the non-zero ele-

ments, squares, and sums of sguares, respectively.

We will denote by IF, the prime field of character-

2
istic 2, by #B the cardinal number of a set B. Let a(K)
be the Hasse number of a field K . (u(K) = max {dimg],
where g ranges over all anisotropic forms which becomes
isotropic over all (if any) real closures of K.) As usual

}lz(G) = g2 (G,'Z/ZI) for any pro—-2—-group G.

e SN

THEOREM 3.2: Let K be a formally real field having m
orderings and let B be a set such ﬁat#'8=d:hn,20m/K2.
Then the following conditions are equivalent:

() G(K(2),K) = RF,(m,B).

(B) G(K*,K) = F,(B) and H2(G(K(2),K)) = (2/2E)™.
(© §(K) < 2.

(D) G(K(2),K(i)) is a free pre-2-group.

PROCF: (A) =—=(B) We have already seen that G(K*,K) = F,(B).
On the other side by Theorem 1.1 and (INl, Satz (4.1))

m+1
HZ(G(K(Z),K)) =0 HZ(AJ.) and the resunt follows fraom the
=1

fact that AJ.-—-!/ZZ for §J =0,...,% anll Ay is a

free pro-2-group.
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In the proof of (B)=—=(A) we need the lemma.

LEMMA 3,3: If K is a formally real field such that
G(K* K) is a free pro-2-group then every element of Q(K)—Kz

is a sum of 2 squares.

PROOF: Let a € O(K)-K> and H = G(K*,K(/a)). Setting
G(K*,K) = F,(B) and B = (b € B|b¢H)}, then B, is a
finite subset of B and H = kernel(f), where £:F,(B)— 2/2%
is the unigue homomorphism such that £f(b) = 1 for every
bEBo and f(b) =0 foreverg € B, bﬁao.

Let g: P2(B) — ZX/4X be the unique homomorphism
such that g(b) =1 for every b € By and g(b) =0 for
every b€ B, b ¢7BQ;9bge‘rye that g is a surjection
such that f%q = £, where 1: 2/4Z — X%/2% is the ho-
momorohism given by 2(1+4Z) = 1+2Z. Hence kernel(qg)
C kernel(f) and the fixed field E of kernel(g) is a cy-
clic extension of K that contains K(va ). By [DD], E =
= RK(/ x+y/d ) where d is a sum of 2 squares. Hence
K(Ya) = K(Yd) and then there exists b € K such that

2

a = db” and a is a sum of 2 squares.

To continue the proof recall that the Arf's map
8: R/k%+K? — B(K(2),K) = H2(G(K(2),K)), that is given
by 8(c) = [(-1,c)] = the class of the quaternion algebra,
is an injection , ({L], Chapter 3, Theorem 2.7 and Corol-

lary 2.11).
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Now we go back to the proof of (B)==(A) in Theorem
g, &
Since K has m orderings we have that |K/Q(K) | > s e

Since the Arf's map is injective and |2 (GK(2),R) | = 2™

M;that [k/Q(KR)| = 2™, 8 is an isomorphism and

7\
K is a SAP field. sl

Let pl""'Pm be the positive q;nng»of the orderings
of K, Ry,...,R be, respectively, the_real&c—lo’sures of
K in K(2) with respect to P?,,...,P and Ay = G(R(2),Ry),
i=1,...,m (See {B] Chapter II).

For every i , i = 1,...,m , take a, € K such that
a; £ P, but aiGPj for every 3j # i. Observe that the
set of classes {aiQ(K)I T L SRR ST T IF -base of
K/Q(K) and K( /& ,...,7a ) N K*=K. Hence G=G(K(2),K) =
= AT, where H = G(K(2),K(/a,...,7a )) and T was given
in Proposition 2.3. By the hypoﬂtesis‘ PZ(B) = G(K*,K) =
G/T = HT/T = H/(H N T). Since FZ(B) is a free pro-2-
group the exact sequence 1 — HNT — H — Fz(B)—-‘l

splits and so there exists a closed subgroup A of R

m+1

1 the fixed field of Am+1'

Since H=AM1(HnT) and G = HT wehaveﬂ'atG=Am1T

isomorphic to FZ(B) . Call R

and so K*nnml=l<.
m+1l
We claim that G = 1l Aj. We will prove this using
J=2
the cohomological criterion due to Neukirch ([N], Satz 4.3).

m+1
So we will show that Res: HO(G) — .nlnzuxj) is bijective
J=
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for g = 1,2.

For g = 1, from Rummer's theory we obtain a com-

mutative diagram

gl = ke

i lv

. m+1 1 Sl 2
B BA,) — 10 R./R.
j=1 E §=1 o

where ¢ is given canonically. It is enough to prove that
¢ is an isomorphism. Let {a.b4 b € B} be a set of ele-
ments of K such that the set of classes (abK2|b € B)

is a IF,-base of Q(K)/K’. Observe that the indexes b

ranges over B because of G(K*,K) = Pz(s) - Clearly
{al,...,am) U {abl b € B} is a representative set of a
A
n?z-base of K/K” . By the choice of Am+1
2 -
{abRnH_ll b€B} is a I¥ ,~base of Rm+l/

we get that
2

le .

Let c € K , there are Eqreeerp o sbe{o,l).bEB,

almost all of then null and d € K such that c =

e €
= (0 a.b)( n abb)dz. Hence ¢ 1is the isomorphism v(ckz) =
j=1 7  bpeB

€ 3
e ] m 2 2 a3
(al Rl,...,am Rm, a !lnm+1)' where aa n abgnﬂ»l'
Let g = 2. Since we have the following commutative

diagram



g2 = B(K(2),K)
Res l Resl

m+1 m+1

n B2@a,) = N B(K(2),R.)
j j=1 J

—

—

it remains to show that the right map isi injective.

As we have seen, each element of B(K(2),K) is of

e € €

= 1 m m+l .2
the form [(-1,¢)], c € K. Let c=a; ...a a4,
where Eprenert 16{0,1}, a 1EQ(K) and dex.m

"

m+l ej

=3
a4 is a sum of 2 squares by Lemma 3.3 and .B(x(z).lgﬂho
by [W1l] Proposition 3.1 . To finish the proof chserve that
B(K(2),R;) = {0, [(-1,a)]} for j =1,....m.

] =0 since

(A)=>(C) By [W1l] Proposition 3.2.
(C)&(D) is Proposition 3.2 of [Wl].

To prove (C)=—(B) we need a lemma.

LEMMA 3.4: Let K be a field and IK be the ideal consisting
of all even-dimensional quadratic forms over K. The fol-

lowing statements are equivalent:
a) (1K) 2 = 21K.

(B) The Arf's map @ is an isomorphism.

PROOF: (A)===(B). Since B(K(2),K) is generated by
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quaternions algebras, by Merkuryev's Theorem [M!  we need

only to prove that for every guaterZion algebra (a,b),
a,b € K, there is c € K_guch that [(a,b)] = [(-1,0)] .
But this iz a cmseqm of (l,-a,~b,ab) =(1,1,~c,~c)=
2(1,-¢), by Corollary 3.3 in [L], which follows from

(IK)2 = 2IK by Theorem 2.1 in [EL].

(B)==(A) Let (l,a,b,ab), a,b€ K be a 2-fold
Pfister form. By the hypothesis there exists c € R such
[(-a,-b)] = [(-1,c)]. Hemce (l,a,b,ab) = 2(1,-© € 2IK
what finish the proof.

COROLLARY 3.5: If K isapythagox:m field the above

(B') The classes of mmmx

in B(K(2).,K).
PROOFP: See [EL], Theorem S5.3.

Now we go back to the proof of (C)==(B) in Theorem 3.2.
By [ELP] Theorem F, we have that (IK)2 = 2IK and K is
a SAP field. Hence HZ(G(K(2),K)) = K/Q(K) = (%/2%)™ by
the Lemma. On the other hand, by [W2], Corollary 3.5 we
have that G(K*,K) is a free pro-2-group since G(K(2),

K(/~1)) is also a free pro-2-group by [ELP] Theorem F.

The last theorem adds precision to Proposition 3.2

of Ware [Wl]. We got the free generators of G(K(2),



—

22

K{/=1 nd the action of an involution on these
generators, as we s the arithmetical meaning of the

—
—

generators. S

Ershov ([E2] , Theorem 4) provedrrtha‘t u(K) i
implies that G(K(2),K) is isomorphic to a free pro-2-
product .Ei Ai , where Ai is isomorphic to (Z/2%) for

f B T e - Am-t-l = E‘Z(B), whenever K has m or-
ders. Our theorem provides a connexion between these two

results.

-

In the next comllaz.v we find the analogue of the

Theorem 6.5 of [R].

 COROLLARY 3.6: Let G be a group with exactly m > 0 con-
jugation classes of involutions. The following conditions

are equivalent:
(A) G 1is a real projective pro-2-group.

(B) G is a pro-2-group that is a real projective pro-

finite group.

{C) There exists a set B such that G = R?Z(m,B) -

PROOF: (A)==(B) Choose a set X for which there exists
a surjection f: RFz(m,B) -+ G such that f(cj) =e .
i=1,...,m, where {cl,...,cm} and (el,...,em}axe rep-

resentatives sets of the classes of inwolutions of RFz(m,B)



and G respectively. C y f has the 1lift property

with respect to involutions, Hence there is g: G —

R‘Pzgm,B) such that fg = 1. Hence G is a closed subgroup
of RPz(n,B) . Since R!‘z(m.B) is a real projective group
by Corollary 2.9 so is G by ([HJ2], Corollary 10.5).

(B)==(C) By [HJI2], Theorem 10.4 there exists a
field K such that G(X)= G. Since G is a pro-2-group
G(K) = G(K(2),K). Since G(K(i)) C G(K) is a pro-2-growp
and is a projective group as a subgroup of a projective
group G(K(i)) is a free profinite group by ([R],Chapter
IV, Theorem 6.5). Thus G = G(K) = er(l.B)bym 3:2.

(Cy=—=(A) is trivial.

4. EXAMPLES: \

4.1. Let k be a formally real field , a € k- k° such that
a is a sum of 2 squares and let R be a real closure of
k. (Por instance, k = @ , a = 2.) Let K be an interme-
diate field between k and R not containing a and max-
imal with respect to the property of exclusion of a in R.
Then by [EV2], Proposition 3 and [EV1l] Proposition 9 we
have that G(K) = RF,(1,{b}).

4.2. Let k be a formally real Hilbetian ﬁelda'ldcl,...,cm

be involutions in G(k). Geyer ([G], Theorem 4.3) proves
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that for almost all (91,...,gm) € G(k)™ (in the sense of

Haar measure of G(k)), the subgroup (glclqil.-.-'gmcng;l)

m P
is isomorphic to the free product u (gicigil) . Hence
i=1

by Theorem 1.1 (glclgzl,...,gmcmg;l) = RF(m,#) .

4.3. Let k be an algebraic number field that has m or-
derings such that k(i) contains all 2-power roots of the
unity. Then by [R], Theorem 8.8, pg 302 and Corollary 3.2,
pg 255 it follows that G(k(2),k(i)) is a free pro-2-
group. Hence by Theorem 3.2 G(k(2),k) = RFz_(n,B) g EOT
some set B. By Corollary 2.9 and Remark 1.6 there exists

an algebraic extension L over k such that G(L) = 1!!‘2(1,8).

4.4. The famous "Tsen's Theorem" provides another family

T of fields that satisfy the conditions of Theorem 3.2. It

is enough to consider a m-ordered algebraic extension of
the rational function field R(X) where R is a real closed
field.

4.5. Let K = R(t), (the rational function field), where R
is the real number field and let A be the set of all
prime divisors of R(t)|R. Por each finite subset S of
A - ek KSIK be the maximal normal extension of K un-
ramified at the elements of A-S. As is shown in ( [KN],
Satz 2) or ([HJ1], Lemma 4.2) G(Kg,K) = RF(m,B), where

S contains m real primes of degree 1 and finite at t and
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#B complex primes of degree 2.

Now, fix S, C A ,a set of m real primes of degree
1 and finite at t and call B the set of all complex
primes of degree 2. Let K(so) be the maximal normal ex-
tension of K unramified at the elements of A-(S U B).

Clearly K(So) = UK where S = sousl and Sl ranges

s '
over the set of finite subset of B. An easy verification
shows that G(K(So). K) = RF(m,B). Finally , by Remark

1.6 there are algebraic extensions L of R(t) such that

-

G(L) = RF(m,B).
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