
EQUJV ARIANT BARMONIC MAPS INTO FLAG MANIFOLDS 

Caio J. C. Negreiros 

RELA TÕRIO TÉCNICO 46/87 

ABSTRACT. This papei- is about hannonic maps from doseei Riemann surfaces 
into flag .mamfulds. We consnuct some new examples of hamonic maps 
cp: T2 = s1 x s1 --,.F(n) which are n.ot holomorphic with respect to any almost 
complex strncture on F(n). 

Universidade EstaduaJ de Campinas 
Instituto de Matemática, Estatística e Ciência da Computação 
IMECC - UNJCAMP 
Caixa Postal 6065 
13.081 - Campinas - SP 
BRASIL 

O conteúdo do presente Relatório Técnico é de única responsabilidade do autor. 

Outubro - 1987 



§1. INTRODUCTIOPI 

. 
This note studies the problem of understanding harmonic maps 

from closed Riemann surfaces into flag manifolds. 

In the late 60' s Chern [6) and Calabi (5) published several 
papers on minimal iromersions into spheres or more generally real 
projective spaces, which are in the spirit of this investigation. 
Then Simons (18] , Lawson (14) , Hsiang and Lawson (13) published 
important papers in this direction. 

The problem was reexamined by physicists Glaser and Stora ~li 
and Din-Zakrzewski ffll. They called the attention that the right 
problem should be to look at harmonic maps into complex projec-
tive spaces. Inspired by these ideas Eells and Wood ~Ol gave a 
complete classification for harmonic maps from ct'P1 to ~Pn, and 
some important partial results for the higher genus cases in terms 
of holomorphic data. A number of related results have appeared 
incloding Burstall and Wood ~), Chern and Wolfson IT], Uhlenbeck 
n9J. These authors have studied harrnonic maps into other homoge-

neous symmetric spaces like Lie groups and Grassmannians. 

0n the other hand, very little is known about the homogeneous 
(non-symmetric) case. One reason that we want to understand the 
non-symmetric case, beside its own intrinsic interest, is that the 
finite dimensional flags model in finite dimensions the geometry 

1 of the Loop group; i.e., maps from S to a compact Lie group G. 
In a well-known paper Atiyah calls attention to the identification 
of holomorphic maps into the loop group and instantons [2] . 

Secondly the study of the critical points of a functional on 
a space of maps is difficult to treat in general. The energy f~-
tional whose critica! points are the harmonic maps is more trac-
table from the point of view of computations than for example, the 
Yang-Mills functional, but appears to share some of their impor-
tant properties. See Wolfson's paper [21) for more details. 

If one wants to understand the problem of harmonic maps into 
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a non-symmetric space i t is natural to start by understandi.ng har-
monic maps from closed Riemann surfaces to flag manifolds. These 
are by definition the quo~ient of a compact Lie group by any max-
imal toros. Some of the first work i.n this problem was done by 
Guest n21 using a entirely different approach. 

ln §2 we state some basic facts about maps into flag mani-
folds. 

ln §3 we describe the harmonic and holomorphic equations in 
terms of projection operators and derive a topolo~ical ~estric-
tion for a totaly isotropic map 4> T2 : «:P1 - F (n) to be holo-
morphic with respect to a non-integrable almost complex s~ructure 
on F(n). 

ln §-4 we construct some new examples of harmonic maps 
4> : T2 = s 1 x s 1 --+ F ln) which are. not holomorphic with respect 
to any almost complex structure on F(n). These examples are ob-
tained by studying some equivariant haI'TIIOnic maps with respect to 
an s1 action. This method reduces a partial differential equation 
lharmonic map equation) to an ordinary differential equation of 
second order and therefore we expeat in general lots of solutions. 
The approach is based on ~O]. 

We will consider throughout this paper Fln) equipped with 
the normal Killing forrn metric. 

The contents of this note are part of my doctoral thesis [15). 
l want to express my gratitude to my thesis advisor Prof. Karen 
Uhlenbeck for her deep advise, criticism and encouragement. 

§2. SOME BASIC FACTS ABOIJT MAPS INTO FLAG MANIFOLDS 

A flag manifold is a homogeneous space G/T where G is a com-
pact Lie grouo and Tis any maximal torus. We denote by F(n) the 
flag with G =U(n) and T = U ( 1) O ( 1), . 

' n-times 
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The Killing form of U(n) is a positive definite inner pro-
duct ( , ) on the Lie algebra JJ (n), an_!:1 one has the decomposition 
u (n) = p • 1J (1) • • JJ (l) Note that there are X, Y, Z in p 

n-times 
such that lx,[Y,Z]) V p, hence according to Carta"TI's theorem F(n) 
cannot be a symmetric space. 

We have that P = r 
sG 

E where s S e b* is the set 

and E s is the root-space corresponcling to s E S. 

of roots 

We have 
p811:=l: E, 

lR sEl\ 1 s 
where l\. is the subset of complementary roots. 

An T-invartant almost complex structure on F(nl corresponds 
to an T--i.nvariant endomorphism J of p wi th J 2 -I. Such endo-
mo.rphi.sms correspond to some decomposition S = S+ E S- w::. th the 

propert:y S- = {-a a E S+}, where by the decomposition p @a: 
:m = P(l,O) • Pco,l} into (1,0) and (0,1) parts is given by: 

p 8 a: 
:m 

E)ll{E s 
ses 

E ) 
5 

Tbe almost complex structure is integrable precisely when s+ is 
the set of positive roots wi th respect to a choice of fundamental 
Weyl chamber D in u(l) li ... li u(l). 

A general (T-invariant) almost complex structure is specified 
by whether or not is agrees wi th J on each E5 li E_ 5 , so there 

+ , 
are 2 15 1 possibilities. From these only n: = order of the Weyl 
gronp of U(n) are integrable. 

If we put on F(n} the metric induced from the Killing form 
metric on O(n) and coosider F(n) equipped with any integrable 
almost COU!plex structure we see that F(n) with the induced nor-
mal Killing form metric is not Kahler. 

Throughout all this note we will consider F (n) equiwed wi th 
the Killing form metric. 
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denote the trivial holamorphic vector bundle x a:n 
over 

We use extrinsic differential geometry and think of 
lj> : ~? - F (n) as a map or as a subbundle of t'1 via th€ pull-
back of tautologously defined vector bundles on F(n). Note that 
we also think of F(n) as the set of n-tuples (L1 , ... ,Ln). Here 
Li is a 1-dimensional subspace of !f_n, Li is perpendicular to Lj 
if ii"'j and L1 81 ... 81 Ln = a:n. The:, the tautologously defined 
vector bundles on F(n) have as fibres over a flag (L1 , ... ,Ln) 
the vector spaces L1 , ... ,Ln respectively. 

As usual we identify a smooth mao with 
a subbundle of _!.n of rank one which has fibre at X E M 

given by: Íx = (x) where T is the tautological line bundle 
n-1 . n over a:P ; i. e., = (T). Any subbundle of a: inheri ts a 

the metric denoted by < , ) and connection denoted by from 
flat metric and connection a on a:n 

Explicitly: <v,w>il> ( V ,W) vv,w E Íx , X EM and (Dd>)ZW= 

,rdl (azw> w E f (_e!> , z E T (M) (1,0). Bere n denotes . lrd>: a: 
the Hermitian projection in the subbundle .. !: 

Note that we always describe 
. n-1 embedding F (n) - !CP x ... 

F(n) in terms of the natural 
x a:Pn-l_ So dl : M2 - F(n) 

is described as 2 n-1 d>= (n 1 , ••• ,n 0 ) where ni : M - Cl:P and 
li. li. = ô .. ". 

J. J l.J J. 

Let us now put these facts above in a more algebraic fashion. 

Let G be a connected compact Lie group, g its Lie algebra 
and T C G be a maximal torus with Lie algebra li. Since Tis ccm-
pact, the set Ad (T) = {Ad (t); t E T} is compact. Then there g g 
exists an Ad (T) -invariant inner product ( , ) on g and wri t-

g 1 
ting k for ti in g and 11, r - ir for orthogonal projections 
from g onto h , k wi th kernels k,h respectively, 
Ad9 (T) (k) S k, in particular (h,b] S h, (h,k] S k. 

we have 

Now consider the fibration T - G/T. This defines 
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a principal T-bu.ndle on which G operates transitively ai the left. 
This principal T-bundle carries a naturcal left-invariant connec-
tion as well ot:her additional structures. On the one hand, the 
Adg(T)-invariant inner product (, > on g and its restriction 
to k e.xtend uniquely to a left G-invariant and right T-invariant 
Riemannian metric on G/T. On the other hand, we also have two 
distinguished 1-fo:nas on G with values in g, namely the left-
invariant Maurer-Cartan form g-ldg and the right-invariant. 

-1 .Maurer-Cartan from dg.g . The natural left-invariant con-
nection mentioned above can now be described in several equivalent 
ways: 

(a) left translations of G, g E G to 9 = G and e takes 
the vertical spaces to h and the horizontal spaces to k. 

(b) The connection form is the vertical part of the left-in-
variant Maurer-Cartan form on G : A= n(g-ldg). 

2 
Now let g : M - o (n). g can be thought as: g = (~, ... ,Xn) 

where Xi is a matrix with n-rows and one column and g.g* = I. 
We introduce the orthogonal projections T\ (g) =~·Xi• ... , n (g)= Xn X~. 
Rence we must have n1 + + n = I and rr . rr . =O if i#j and 

2 n i J 
rri ni since g*g = I and x1.xj óij 

Alternatively we can think of rr 1 as: ni (g) = gE1g* where 

o i 

o 
1 Gauge transformations act on g as: 

o 

o 

The gauge potential is: 
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l and the covariant 

X* a (X l • 

deriva-

n 1,1 n 

tive is: 

D (x1 , ... ~X) = (n 1 (a (X1 )}, ... ,n (a (X lll 
ll n ll n 1-1 n 

where µ = õ/az or a/az. By composing g with ll· O(N) ---+-

2 O(n)/T F{n) we can think of (f) = n o g M --+- F(n) as 41 
= (1T 1 , . .. ,1Tn). Then each such determines the tautologously de-
fined vector bnndles n 1 , ... ,un over M2 . We study the second 
fundame.ntal forms of t:bese tautological bundles 11 1 , ... , 1T n in a:n. 

01!. 
Let a:= ªa ni 

ax 
be the covariant derivative of n. wi.th res-

1 

pect to x. we.can prove: 

2.1. PROPOSITION. 

,ln. 
al 11 . (~)11. O 

1 dX 1 

OlT i a l 
b) Tx = - ãx (11 i) 

e) íl (n~)) 1T. =O n i ( ílx 1 1 

d) 1 ª" i . .l 
lli( <IX),ri o 

A\r. Ai f) n. and 
1 X J.. X 

g) n. (Ai) 
l. X o 

1 • 
h) n. (Al.) = o l. X 

n1 ( (A;) * 1 
) n i 
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cln. íl ,h1. cln. 
J. J. J. = PROOF. We have that Tx .lx (1!i.,ri) + then ax .,ri 1T •• dX J. 

ihr. air. 2 êrn. 
(--1) 11. 1 l. henee bave proved a). =: ax 1T . + 1T. Tx Tl. , we 

dX 1 1 J. J. 

ê),r . .l,r~ n íl ,h 1 J. hence follow Now o = ax ax (n i + ax + ax J. 

e) • (,/) 2 l 
if we proceed did the But li . , then as we in 

J. J. l 
a) that 

l a1r i l o we get 11 i ( ílx) n i ' now by using b) we have 

cl1Ti íl-rri 
On the other hand, ílx = I ax I = (11 i + 

au . . . * 1 a11; 
by • h l. A1 + (A1 } ( ~) using ave: 3x x x ni élf ni 

f}, g) and h) follow- from the fact that (1T~) 2 
J. 

.l 
11 i 11 i = o 

Therefore is the projection of OD 

l 
1T. 

J. 

l 
1T. 

l. 

We cal.l the partial second fundamental forms of 

and 

(11 1 ,. •. ,1rn) - F(n) the maps: Aij -= n. (Aj) X l. X 
1 ar. . ,llí . ;,11 . 

11. {11 . .....,,..J. 1rJ.) n. n. = 11. -;;--lx if ijj. 
l. ] dX l. oX J l. a 

bl and 

proof of 

d). 

Note tbat Aij E Hom(n .• ~.l and is the second funda-
X ) l. 

mental form of the span of "i • 

Now if we think in !-/ as a complex 1-dimensional manifold, 
then we define: 

ihr. 1 ;,,r. êl1Y. an. 1 ani an. 
J. J. J. r-r J. 

ai" = -l-1. - ,r-r Ty) and == 2 1 ax + ay l • We also 2 dX ai 
define: 

Aj l a1r . 
Aij 11) Aij n. _J_ E E z J az i (jj) z i (jj) z z 



and Aij 
z 

an. 
--1 ,ri dZ 

and Aij 
z 

11 . 
l. 

The follow.ing formula will be very useful. 
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n 
2.2. PROPOSITION. E <a: (A~j) - ..l... (A;jll 

n 
2 E [Aij,Aji] 

i,j=l z dZ i,j=l 

n 
1 Aij Ajk+ A~l. + r 

k,i,j=l 
z , z z 

(i;<'j) 

PROOF. See US} or U6]. 

Now consider µ = z or z and 

o 
A 

IJ 

A2n 
µ 

o 

We can rewrite the formula above as: 

2.3. PROPOSITION. a (A_) - i(A) 
ãz z ai z 

(i;ilj) 

1 A ,A l + 1 A ,A l 
z z z z h 

§3. HARMONIC AND HOLOMORPHIC MAPS INTO FLAG MANIFOLDS 

We now study the energy integral in terms of projection oper-
ators and write down the Euler-Lagrange equations for our varia-
tional problem. 



2 3.1. DEFINTTION. Given a smooth map <j, = (n 1 , ... ,-rr 0 ) : M -
F(n) O(n) /T where 4> 1 = ,pE1 <j,*, we deUne the energy of ,p as: 

I l an . 12 I 3"R" • l 2 
2 e a: + a: > dxdy • 

M 
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We will prove next some formulas that come from the conser-
vation laws associated with the invariance of E under the action 
U(n) according to Noethex's theorem. 

We call q : M2 - JJ(n) a angular 
<j, = (n 1 , ... ,n0 ) : M2 - F(n) let ln 1 ,q) 
gi ves rise naturally to a variation of ,p , 

given by: 

momentum map. Given 
= n . q - q,r . . The rnap q 

l. 2 l. 
ô<j,(q):M - F(n) 

d I -tq (x) d j -tq(x) ôfj>(q) (x) = (dt - exp ade n 1 , ... ,dt expad .-rr (x)} 
n 

= ({-rr 1 (x) ,q(x)) , ... ,[,r0 (x) ,q(x))). Then we can compute the first 
variation of the enery for the map <j,. 

3.2. PROPOSITION. Let <j, 

map. Then: 
M2 ----+- F (n) be a sm::oth 

!l 
(óE)(ócp(q)) E «[n.,t.11.),q)) where 

i=l 1. i 
( , )) 

Hilbert inner product on cº(M 2 ,F(n)). 

n 
PROOF. (ó"E}(ócj>(q)) E 

i=l 

Õ"!T • 
((-1 ,+(Ô'I!. (q)}) + ax .,x l. 

is the 

But êl (M2 ) is empty then if we integrate by parts we have: 
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But by asing the cyclic property of trace we can easily see that 
C A,I B,CJ » = < ( B* ,A) ,e> . The finally we can prove: 

n 
( ôE) ( (q)) - L ( ( "lli,filT .J,q) 

i=l 1 

2 We known that = (n 1 ,.~.,11 0 ) : M - F(n) is harmonic 
if and only if i t is a cri ti cal point of the energy integral, i. 

e., for any variation of we have (ôE) = O. There-
fore = (,,. 1 , ... ,r.n) : M2 - F(n) is hara;,nic if and only if 

n a +i r f,i-i,.ti,ri) = o if and only if ai (A_) (Az) = o. Then we 
i=l z ai 
prove: 

o Al.2 
u 

Al.n 
IJ 

A21 o A2n 
A -= u ,1.1 

ll 

Anl o J u 

Then tr(A) = tr(A2 ) o. 
ll u 

PROOF. See (1.5) or (16) . 

We have seen that the energy of a aap = h 1 , ... ,110 } : ,.2 -
F(n) is given by: 

1 n r ílll • íllT . cllT. ílll . 
=2 r << a:' a~>+<-!, __ 1.>>v 

i=l J 2 <12 ai 9 M 
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n 

f 1ª11112 n I IA1 jl 2 n J tr(Aij Aji)V = I vg r V =- E au 1,1 . g i,j=l I'? ]J ü g i=l M2 i,j=l M2 

-where u = z or z and Aij are the partial second fundamental u 
fonn.s associated to ljl. 

Now let ~,n} = {x E z ; 1 < x < n}. Consider D= { (i,il ; 
1 < i < n } and s+ to be a partition of ( [l,n] x 11,n) - D) con-

(n2 -n) + + taining 2 elements such that if (i,j) E S then (j,i) i S . 

We denote S the complement of s+ in (l,n] x {l,n] - D. We call 
s+ a positive system in l,n 

Let Eº and E denote the a and ~-energy respectively, de-
fined by: 

E +<clll s 
E 

(i,j)ES 

and 

V = E g 
{i,j)ES+ 

where S+ is a positive system in I l,n]. Therefore 

V g 

= (11 1 , ... ,11) : M2 - F(n) is holomorphic with 
n + 

the almost complex structure determined by S if 
respect 

and only 
to 
if 

J IA-1 J·1 2 v9 = º if and only if 
M2 z 

2 
3.4. DEFINITION. Let ijl = (irl, ... ,'lfn) : M --+ F(n) be 
monic map. $ is called totally isotropic if [Az,A_J = O, 

z p 
(Az,A_J denotes the off diagonal part of the nxn-matrix 

z p 

o 

a har-
where 

[ A ,A ) . z -z 
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We can prove: 

3.5. THEOREM. Let t 
isotropic map. Then Aij E 

JJ 
section of the line blllldle 

Rom(11j,11,) = 11~ 9 11. 
l. J 2 l. 

11~911. over M 

is a holomorphic 
when the total 

J l. 
space of such bundle has a suitable complex structure. 

PROOF. See ílSJ or (16J. 

We now will prove a interesting result for harmonic maps 
2 l 1 

cp = (rr1 , ... ,Trnl : T = S x S - F(n) which con~ists of a pu-
rely topological restriction for cp to be holomorphic with respect 
to some non-integrable almost compl.ex structure on F (n). 

2 3.6. COROLLARY. Let = (111 , ... ,11 0 ) : T - F(n) be a totally 
isotropic map, holornorphic wi th respect ta some non-integrable 
almost complex.structure on F{n) 
tegrable one. Then c1[ rr 1 J = ... "' 
notes the first Chern number of 11. 

but not with respect to any in-
de-

l. 

PROOF. We give the proof for n=3, and for arbitrary n the proof 
is entirely similar. 

Wi thout loss of generali ty we can assume say, that A; 2 i O, 
A:l 4 O and A~ 3 4 O h ld be h l h T T ot erwise wou o omorp ic with res-
pect to some integrable almost complex structure. 

But according to 3.5 Theorem T(T2)* 8 Hom(11j,11i) has a ho-
lomorphic section if and only if -c1[T7 + c1[111J- c1[11 1) = 

c 1 [ 11 1 ] - c 1 11rj) > O. 

Therefore c 1 [ n 1 J c 1 t ir 2 ], c 1 [ 11 2 1 _:::. c 1 ( 1r 3 ] and c 1 ( 1r3J 

> c1( 11 1] i.e., c1J 'ITJ! c 1[ 1r 2] = c11 rr 3J. But lll + 11 2 + 11 3 is 

equal to the trivial bundle over T2 , hence c1r lT1 )+ c1[ lT 2] + 

+ c 1[ ll 3] = 3C111r1J = O. Therefore c 11111J =c1[ 11 2] = c 1[ 11 3) = O. 



13 

§4. EQOIVARIANT HARMONIC MAPS INTO FLAG MANIFOLDS 

In this paragraph we will study harmonic maps whlc:h are equi-
variant with respect to an s 1 action from T2 = s 1 xs 1 to F(n). 

Often interesting examples of solutions to non-linear pro-
blems are found by examining an equivariant case. The assumption 
of equivariance under a continuous group action whose orbits have 
co-dimension one in the domain rnanifold reduces a partial differ-
ential equation to an ordinary differential equation, then we can 
use the theorem of existence and uniqueness of solutions of ordi-
nary differential equations, 

Now let us recall some useful facts from the general theory 
of equi variant harmonic maps and the relationship between hanroni.c 
maps and minimal ill1Illersions. 

Let (Mn ,g) be a Riemannian manifold and Iso(M) its full 
isometry group. Myers and Steenrod showed that Iso(Ml is natural-
ly a Lie group which acts differentiably on M. 

A Lie subgroup G of Iso{M) is called an isometry group of 
M, and the co-dimension of the maximal dimensional orbits is de-
fined to be the cohomogeneity of G. The cohomogeneity of Iso{M) 
is called the cohomogeneity of M. 

Let G be a compact, connected group of isometries of M. An 
imrnersion f :N-----+ M is called G-invariant if there is a smooth 
action of G on N such that g.f = f.g , Yg E G. 

The •submanifold• f is said to be minimal it its mean curva-
ture vector field vanishes identically. 

4 .1. DEFTNITION. By an equi variant variation of a G-invariant sub-
manifold f : N -+ M we mean a differentiable variation te N-+ M., 

-t < t < t, f 0 = f, through submanifolds such that g.ft = ft.g 
for all g E G and all t. We recall the following useful result 
proved by Hsiang and Lawson [13]. 
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4. 2. THEOREM. Let N be a compac:t manifold and f : N --+ M be a G-
invariant submanifold of M. Then f : N -+ M is minimal if and 
only if the vo~ of N is stationary wi tb respect to all compact-
ly supported equivariant variations. 

PROOF. See 0.3} • 

Now let u.s recall the close relationship between harmonic 
maps and minimal immersions. We start by stating the 
easy consequence of Riemann-Roch's tbeorem, namely: 

followin9 

4.3. PROPOSITION. If <P : («:P.l ,g) - ,(Nn ,h) is harmonj_c then ;j:, 

is conformal. 

We also have~ 

4.4. PROPOSITIOB- If q, : (M,g} - (N ,h) is a nonconstant, har-
monic and conforma!, then it is a minimal branched immersion; i. 
e., it is a conforma! minimal immersion except at isolated points 

where dcp - O, around the image of these points there are normal 
coordinates in which ,jl is of the form 

1 .. k_ lk 2 k. k o. k ,jl (z) =CRe(zl + C z I>, 4> (z) Clm(z J + o( l z l> , ... ,<P (z) = o (l z I>, for 

all o. > 3,. 

PROOF. See 19 J . 

Thererore every nonconstant harmonic map from (l;l>l is a min-
imal branched i111J11ersion. 

Now let us study the differential equations found in f 20 l , 
adapted to our non-symmetric case. 

Consider p : s1 - O(nl given by o(exp(l=T 6))"' exp(A6) 
where A is some fixed matrix in µ(n) and we also assume exp(2~AJ 
= I. 

Let e be a basis of IR and consider (do) Cl) (e) = A E µ (n). 
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Assu.e fu.rtber t:hat. tbe set: of equi.iJalriaat: baTWJ11ic JllilpS 

- l. {te e «s • m.P(n)J; t(eJKPl•-I 8).t = 

= p(ezp(.t=i t))f(t) f(t, = (f1 CtJ.---•fn(t)) 

for a11 eç(r-I 8) E s 1 , i.s - empty. llot:e t:bat D(n) aci:s a:m 
F(o) by coojoqation: 

Let 

ll'fn) • F(D) - F(n) 

-]. 
(A .X) - AXA _ 

Cexpf r--r e> . t) = ('Jí]. UJI. t:». __ .• 1111n «(IJ;. u) = ezp(Aet) _ ff:1 cu•--- .r11 at> l= 

= exp(Ai) .f(t). vbexe fi. ªs are pxojectic:m operatDrs and A E µ,(n}_ 

llot:e tbat iri (&,t) = ezp(A.9) .fi (-0 .eicp(-A&). lle ha'VI!: 

1 4.5. LEll!Ul. Let: <fl(f.U = ('ffi].{e.u .... ,lliDUl,t)):S • lR - F(n) 

be an equ:ivariant. ~e -..p. "nlell: 

PROOF. We t:bat: 

-exp (AEr J fi (t:) .A ezp(-A8) = ezp(A9) Mi (U e11p{-.Ae) -

- exp(Ai)fi (tJA ezp(-A8) = elrp(Al'It)I A.fi fU)..eip(-A9J. 'J'hexefore 
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lªwif 2 = 1 12 
cyclic p:i;operty of the trace we ca.n see that 38 1 A, fi] • 

Now· we prove the ha.rmanic map equations for our equivatiant 
case. 

4.6. PROPOSITION. 'l'he Euler-Lagrange equations for an equivariant 
lrarmonic map into F(n) are:, 

n 
E [f. (t) ,f".'(tl + [A,(A,f. (t}]l) = O • 

i=l 1 1 1 

Bence the partia! differential eqnation becomes a second arder 
ordinary differentiai equation. 

PROOF. By above we have: 

by Re { J < - e , ó f. > + < -( A. 1 A, f i l l , ó f i > dt l 
parts i=l Sl"lR 1 1 

n 
= Re -{ E ([f.,f"!'] + [f.,[A,(A,f.]]l, q» 2},. 

i=l 1 1 1 1 

n 
Re\:1 «ti,fi + [A,(A,fi]J,q> 2 }. Therefore 

is an 
n 

equivariant harmonic map if and only if r [f.,f_j'. + [A,[A,f1]JJ=a 
i=l 1 
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by the fundamental lernma of the calculus of variations. 

Now by studying special cases of the general ordinary differ-
ential eguation found in 4.6 Proposition we will construct new 

x s1 - F(nl examples o.f harmonic maps 
which are not holomorphic 
structure on F(n) where 
metric. 

2 1 
cj> =(11 1 , ... ,nn) :T = S 

with respect to any almost complex 
F(n) is equipped with the Killing form 

Considera local chart U C IR 2 for a Riemann surface M2 . 

Now consider s1 and s 2 in µ(n) such that (B1 ,B2) = O. Then 
we can define locally the following map: 

O~ O(n) 

We have seen that 4> induces a map 4> = ('11 1, ... ,nn) :O--+ F(n) 
given by: 

where 

T.. 
1 

We can prove: 

o 

o 

4.7. PROPOSITION. Let cj> 

o 

i 

o 

1 1 
o ••. ,J 

U--+- F(n) given by: 



,r = 
i 

and 

and 

exp(B1x + B2y)Ei exp(-B1x -B2y) wbere 
1B1,B2] =O. 

are 

Then: 

A y 

1: exp(B1x + a 2y)EiBlEj exp(-B1x -B2y) 
i,j 
i7"j 

r exp(Blx + B2y)EiB2Ej exp(-Blx - ª2Y> 
i,j 
il"'j 

18 

in JJ(n) 

PROOF. We wj_ll prove tbe expression for A and the one for A is 
X y 

proved similarly. 
. . clir. 

A; 1 = ~j ~: = ,rj(Bl exp(Blx + B2y)Ei exp(-Blx - B2y) -

we have: 

Now by using the remarks after the proof of 3. 2 Proposi tion 
we can find the Euler-Lagrange equations for an equivariant har-
monic map. 

4.8. PROPOSlTION. Let 4' = (111,··. ,1rn) .: o - F(n) be a smooth 

map soch that ,ri= exp(B1x + B2y)Ei exp(-s1x - B2y) where s 1 and 
B2 are in µ(n) and [B1 ,s2J = O. Then tis harmonic if and only 
if (B1 ,diag B1) + [B2 ,diag s 2J = O, where diag Bi denotes the 
diagonal part of Bi , i=l,2. 
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PROOF. According to 3.2 Proposition is harmonic if and only if 

2_ (A ) d ô ( ) an .;- A . 
oX X ay y 

+ B2yJEiBlEJ. exp(-Blx - B2y) = exp(Blx + B2yl1B1'.r . E.BlE .J. 
l.,J l. J 
i;,!j 

.exp(-B1x - B2y) = exp(B1x + B2y).[B1 ,diag B1]exp{-B1x - B 2y) . 

Similarly we prove that 

2_(A ) .,,, 
ay Y 

Now let us study f 
and 

o ar-T 
cxr-T o 

o o 

B o o 

o o 

m - o (n) .where f (x) 

o o o 
·O o o 
o er-r o 

sr-r o o E JJ (n) 

o o o 

and a and 8 are non-zero real nwnbers. Then exp(Bx) 

Therefore 

exp(Bx) 

, n > 4 -

I + Bx + 



(Bx) 2 = 

Therefore 

+ /17 

-o 

f (x) 

cos (l :X 

o 

o 

o 

o 

o 

sin ax 

o 

o 

o 

2 
X 

o 
o 

o 

o 

2 o 
2 2 -a 

o 

o 

o 

exp(Bx) 

o 
COS CX X 

o 

o 

o 

sin ax 

o 

o 

o 

o 

X 

o 

o 

-i?x2 

o 

o 

o 

o 

cos Sx 

o 

o 

o 

o 
o 

sin (3 X 

o 

Now let us consider for example: 

o 

o 
o 

-B2x 2 

o 

o . 

o 
o 

cos Bx 

o 

o 

o 

sin B x 

o 

o 

. . 

. o 
o 

. o 

o 

o 

o 
o 

o 

o 

o 

o 
o 

o 

20 

and so cn ... 

+ 



21 

,--
1 o ar-r o o o 
1 ar-I o o o o 

o o o s..cr o 
Bl = o o o o 

o o o o o 

and 

o sr-T o o o 
B.r.:T o o o o 

o o o or-I o 
B2 o o ol=I o o 

o o o o o 

where [l and B are non-zero real nwnbers such that a/8 or S/0 E z. 
Then Bl and B2 E ii{n) and [ Bl ,B2] = o. 

Now le-t: us consider <P : IR2 - O(nl give.n by: 

(x,y) __._ exp(B1x + B2x). Since o/s or B/o: E I there is 
such that ay = 2rrBn1 or as = 2iro.n2 where nl, n2 are arbi-
trary integers. Then tJI induces: 

d; 
Ilt2 

--+F(n) given by: 
(1 13 Z) 

4> = (x + yn, Y + ym) = 41 (x,y) {E1 , ... ,Em)$ (x,y) "'exp(B1x + B2y). 

. (E1 , ... ,En) ex~(-B1x - B2y}. But diag a 1 = diag B2 = O. Then 
according to 4. 8 Proposition cp T 2 "' .f x s1 - F (n), n > 4 is 
harrnonic. Therefore we have proved the following result: 

2 4. 9. THEOREM. Let 4> = C 1\, ••• , Trn): T - F (nl where ni = 
= exp{B1x + B2yJ .Ei.exp(-B1x - B2yJ where B1 ,B 2 Eu ln), n> 4 are 

-
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as above. Tben is harmonic but is not holomorphic with respect 
to any almost complex structure on F(n). 

PROOF. By above we have seen tbat is harmonic. on the other band, 
A12 = A12 + r-r A12 and A21 = A21 + .-'=l A21 are both non-zero 

Z X y Z X y 
according to 4. 7 Proposi tion. Therefore is not bolomorphic wi th 
respect to any almost complex structure on F(n). 

Clearly the same method produces different examples of har-
monic maps : T2 - F(n) that are not holomorphic with res-
pect to any almost complex structure on F(n). It is a intersting 
problem to classify all harmonic maps from T2 to F(n). 

Finally, we want to point out tbat we cannot expect to use 
this equivariant harmonic map method developed above to produce 
barmonic maps = ('IT 1 , ... , 1r ) :CCP1 ---+- F (n) , because in general 

2 n 2 
tr(Azl I O whicb contradicts 3.3 Theorem. ln fact~ tr(Az) = 

tr(A2 + A2) + 2N tr(A .A). But tr(A2) = tr(B12) and tr(A_2)= 
X y X y X y 

tr(B22) hence • tr(A2 + A2) f O in general. This fact provides 
X y 

another piece of evidence to our conjecture that any harmonic map 
«:P1 - F(n) must be holomorp~ic with respect to some alnost 

complex structure on F(n). See U.SJ or U.61 for more details. 
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