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§1. INTRODUCTION

This note studies the problem of m::derstandinq harmonic maps
from closed Riemann surfaces into flag manifolds.

In the late 60's Chern [6] and Calabi [5] published several
papers on minimal immersions into spheres or more generally real
projective spaces, which are in the spirit of this investigation.
Then Simons [18], Lawson [14], Hsiang and Lawson [13] published
important papers in this direction.

The problem was reexamined by physicists Glaser and Stora [11]
and Din-Zakrzewski [8]. They called the attention that the right
problem should be to look at harmonic maps into complex projec-
tive spaces. Inspired by these ideas Eells and Wood [10] gave a
complete classification for harmonic maps from I:Pl to an, and
some important partial results for the higher genus cases in terms
of holomorphic data. A number of related results have appeared
including Burstall and Wood [4], Chern and Wolfson [7], Uhlenbeck
[19] . These authors have studied harmonic maps into other homoge-
neous symmetric spaces like Lie groups and Grassmannians.

On the other hand, very little is known about the homogeneous
(non-symmetric) case. One reason that we want to understand the
non-symmetric case, beside its own intrinsic interest, is that the
finite dimensional flags model in finite dimensions the geometry
of the Loop group; i.e., maps from Sl to a compact Lie group G.
In a well-known paper Atiyah calls attention to the identification
of holomorphic maps into the loop group and instantons [2].

Secondly the study of the critical points of a functional on
a space of maps is difficult to treat in general. The energy func-
tional whose critical points are the harmonic maps is more trac-
table from the point of view of computations than for example, the
Yang-Mills functional, but appears to share some of their impor-
tant properties. See Wolfson's paper [21] for more details.

If one wants to understand the problem of harmonic maps into



a non-symmetric space it is natural to start by understanding har-
monic maps from closed Riemann surfaces to flag manifolds. These
are by definition the quotient of a compact Lie group by any max-
imal torus. Some of the first work in this problem was done by
Guest [12] using a entirely different approach.

In §2 we state some basic facts about maps into flag mani-
folds.

In §3 we describe the harmonic and holomorphic equations in
terms of projection operators and derive a topological restric-
tion for a totaly isotropic map ¢ '.l‘z:tlﬂ:'1 ——t-"Pi{n). to  be  holo-
morphic with respect to a non-integrable almost complex structure
on F(n). g

In §4 we construct some new examples of harmonic maps
¢ '1‘2 = sl x sl —— F(n) which are not holomorphic with respect
to any almost complex structure on F(n). These examples are ob-
tained by studying some equivariant harmonic maps with respect to
an Sl action. 'i'his method reduces a partial differential eguation
(harmonic map equation) to an ordinary differential eguation of
second order and therefore we expect in general lots of solutions.

The approach is based on [20].

We will consider throughout this paper F(n) equipped with
the normal Killing form metric.

The contents of this note are part of my doctoral thesis [15].
I want to express my gratitude to my thesis advisor Prof. Karen
Uhlenbeck for her deep advise, criticism and encouragement.

§2. SOME BASIC FACTS ABOUT MAPS INTO FLAG MANIFOLDS

A flag manifold is a homogeneous space G/,r where G is a com-
pact Lie group and T is any maximal torus. We denote by F(n) the
flag with G=U(n) and T = U(1) s o{l), -

n-times




The Killing form of U(n) is a positive definite inner pro-
duoct (,) on the Lie algebra u(n), and one has the decomposition
u(n) = p ® u(l) ® ... ® p(l) . Note that there are X, ¥, 2 in p

i n-times
such that [X,[Y,Zl] € p, hence according to Cartan's theorem F(n)
cannot be a symmetric space.

We have that p = I E_ where S C h* is the set of roots
s€S

and E is the root-space corresponding to s € S. we have

per £ E_, where A' is the subset of complementary roots.
R sep*

An T-invariant almost complex structure on F(n) corresponds
to an T-invariant endomorphism J of p with Jz = =I. Such endo-
morphisms correspond to some decomposition S = st € 7 with the
property S = {-a ; @ € S'}, where by the decomposition p®C =

R
9(1.0) . P(0,1) into (1,0) and (0,1) parts is given by:

pec~=(

T B)O(L B .
L sest s€s

The almost complex structure is integrable precisely when st s
the set of positive roots with respect to a choice of fundamental
Weyl chamber D in wu(l) & ... & u(l).

A general (T-invariant) almost complex structure is specified

by whether or not is agrees with J on each E,®E__, so there
fo¥

Is7

are 2 possibilities. From these only n! = order of the Weyl

group of U(n) are integrable.

If we put on F(n) the metric induced from the Killing form
metric on U(n) and consider F(n) equipped with any integrable
almost complex structure we see that F(n) with the induced nor-
mal Killing form metric is not Kadhler.

Throughout all this note we will consider F(n) equipped with
the Killing form metric.



Let ln denote the trivial holomorphic vector bundle H2 x ¢”

over Hz .

We use extrinsic differential geometry and think of
0:!2-—9(n)asamporasasmlmeof£n via the pull-
back of tautologously defined vector bundles on F(n). Note that
we also think of F(n) as the set of n-tuples (Ll....,Ln). Here
Li is a l-dimensional subspace of _En, Li is perpendicular to I‘j
if ifj and L, @ ...@L = ¢”. Then the tautologously defined
vector bundles on F(n) have as fibres over a flag (Ll....,Ln)
the vector spaces Ll""'Ln respectively.

As usoval we identify a smooth map ¢ : M> — €271  with

a subbundle ¢ of g.'__n of rank one which has "fibre at x €M
given by: 1’( = T‘Nx) where T is the tautological line bundle

over CPn.l; i.e., ¢ = ¢*(T). Any subbundle!_ of cn inherits a
metric denoted by (,)¢andcoxmectiondenotedby D¢,fro-the
flat metric and connection 3 on _g_n -

Explicitly: (V,W )¢ ={V,W), VV,WE ¢, - x €M and (D) W=

¢° 2
(1,0)

e 1T°(32W) ,» WETI(9), 2 €ET(M) . BHere 'l¢:¢n —— ¢ denotes

the Hermitian projection in the subbundle 9.
Note that we always describe F(n) in terms of the natural
embedding F(n) —— T" * x ... x €®™ . S0 ¢ : M2 —— F(n)

is described as ¢ = (v;,...,7 ) where W, : M2 ™!  ana

”i”j = Gij“i .

Let us now put these facts above in a more algebraic fashion.

Let G be a connected compact Lie group, g its Lie algebra
and T C G be a maximal torus with Lie algebra h. Since T is com-
pact, the set Ad _(T) = {Ad_(t); t € T} is compact. Then there
exists an Adg('ll)—invariant inmmer product {(,) on g and writ-
ting k for b® in g and %, I -v for orthogonal projections
from g onto h, k with kernels k,h respectively, we have
Adg('l') (k) € k, in particular [h,h] Ch, [h, k] Ck.

Now consider the fibration T -—== G — G/T.'I'his defines



a principal T-bundle on which G operates transitively on the left.
This principal T-bundle carries a natural left-invariant connec-
tion as well ofher additional structures. On the one hand, the
Adg('l')-invariant inner product (,) on g and its restriction
to k extend uniguely to a left G-invariant and right T-invariant
Riemannian metric on G/,r. On the other hand, we also have two
distinguished l-forms on G with values in g, namely the left-
invariant Maurer-Cartan form g'ldg and the right-invariant.

Maurer-Cartan from dg.g-l. The natural left-invariant con-

nection mentioned above can now be described in several equivalent
ways:

(a) left translations of G , g €G to g = G, and  takes
the vertical spaces to h and the horizontal spaces to k.

(b) The connection form is the vertical part of the left-in-
variant Maurer-Cartan formon G : A = w(g ldg).

Now let g :Hz —— U(n). g can be thought as: g=(x1,...,xn)
where xi is a matrix with n-rows and one column and g.g* = I.
We introduce the orthogonal projections T,(g) =Xl.)q,..., n(g)= X X*
Hence we must have WPt e NS A I and ﬂi'll’j =0 if i#j and

2 * - *
o Sl P since g*q = I and xi'xj = 613’ .
Alternatively we can think of rri as: wi(g) = gEig* where
- 0 % -
"o
E1 =3 1 Gauge transformations act on g as:
0
& 0 | » hl
-
(xll---'xn) S———— (xlvhlv---lxnhn) where . €3u(n) .
hn

The gauge potential is:



X{ QU(XI)
ey ; and the covariant deriva-
x;l au(xn)
tive is:
Du(xl,...,xn) - (ul(au(xl)),.-.,:n(au(xn)))

where u = i)/a‘z or 3/3; . By composing g with 7m: U(N) ——

U(n)/T=F(n)wecanthinkof ¢=wog:M2—->F(n) as ¢ =

= ('rrl,...,nn). Then each such ¢ determings the tautologously de-

fined vector bundles MyreeeeT OVer M- . We study the second

fundamental forms of these tautological bundles Tyeeees in o,
om,

Let —a;‘— = 33 'ni be the covariant derivative of L] with res-

X
pect to x. We.can prove:

2.1. PROPOSITION.
o,

a) “i(a_;)ﬂi =0

b) %} =- 2 @D

c) 1ri(a~":t (ni'bni =0

d) 1rli(3:%)'uli =0

or =i=al )" where al = "li‘i:—xi’“i
£ 7 Al = AL and 7 ((ahNr = @b’

1
qg) '"i(Ax) =0

ECA
h) 7 (A)) =0



Bti 3 a'ui 3’1:i
PROOF. We have that e (Ii.‘l‘i) ol i’ Tie 3x then
31i .31ri 2 31|i
(T{)'i'-'_a—x-"i"'i—a;'i , hence we have proved a).
om 3!1
31 _ 3 1 St i %
Now O . ax('i + wi) Sa hence follow b) and
c). But (l';)z = nt > 1t:hen if we proceed as we did in the proof of
1 31i 1
a) we get that ’i(ﬁ'”i = 0 , now by using b) we have 4d).
3'li ani 1 31|i
Ontheotherhand,ﬁ=l-ﬁl=(ni+ni)w(w + n.) -
oM. . - om am
- S e e i gl
by using have: R e (Ax) = "i(_agr)ni +n (—ax)w1 . Now
B2 g - 3
f), g) and h) follow from the fact that (‘li) = and miemy =
1
= 'i'i |
i 31:1 1
Therefore AL is the projection of —x ©°n T -

We call the partial second fundamental forms of
¢ = (wl,...,tn) : H2 ——— F(n) the maps: Aij = ni(Ai) =

X
9% . Im.. om .
= g | - S £ el W S
sl il Ben s Ui, T i, R R
Note that Aij € Hon(wj,vri) and I Ai) is the second funda-

i

mental form of the span of LI

Now if we think in !42 as a complex l-dimensional manifold,
then we define: 3

om om oW, am om om
il WA et T e ko Lyl e b
3z 2( 3% 1 QY) and = 2( ot : § 3Y)' We also
define:
am et .
M=ad- ¢ o ald, 3. ; a8
J i(#3) z i) =



am . G om .
and Aij = 'l'i —1 and AIJ = 7. _.-1 0
3 z 9z

The following formula will be very useful.

n o _— n S =G
2.2. PROPOSITION. L (53— aidy =2 alhy e o gatd a?
Mo T z — - z RS
i,i=1 z 90z i,j=1
(i#3)
= ij Lk, ki
¢ B o e WY
k,i,3=1 z z
(i#3)
PROOF. See [15] or [16].
Now consider p = 2z or z and
% 2 1n |
0 Au e Au
AZL R T A2n
TR SR 4 "
H - -
nl n2
E_AD Au Rt R 5
We can rewrite the formula above as:
2.3. PROPOSITION. a—az (a) - —"’:(Az) =[(a,,Al +[a 2]
z oz z z N

§3. HARMONIC AND HOLOMORPHIC MAPS INTO FLAG MANIFOLDS

We now study the energy integral in terms of projection oper-
ators and write down the Euler-Lagrange eguations for our varia-
tional problem.



3.1. DEFINITION. Given a smooth map ¢ = (wl,...,un) ] Mz e

F(n) = U(n)/,r where 01 = 01-':10', we define the energy of ¢ as:

n om,. 2 W, 2
Z [!2 " g —a;§| Yawly &

Nl

E($) =

We will prove next some formulas that come from the conser-
vation laws associated with the invariance of E under the action
U(n) according to Ndether's theorem.

We call q : [ gttt p(n) a angular momentum map. Given

= (mypeee,m) : © it F(n) let [ni,q] = m,q-gn,. The map gq
gives rise naturally to a variation of ¢, 8¢(qg): Mz —— F(n)
given by: >

(x) exp aq (X ()

.d -tg d
§o(q) (x) = (5 - exp ade Ty peoorae

o t=0 1 dtlt-o
= ((wl(x),q(x)l,...,[wn(x),q(x)]). Then we can compute the first

variation of the enery for the map ¢.

3.2. PROPOSITION. Let ¢ = (T, ...,m) M2 —— P(n) be a smoth

map. Then:

n
(SB) (6¢(q)) = - L ([ni,Aﬂil,q) where €,)» is the L“-
i=1

Hilbert inner product on CO(MZ,F(n)).

n Bwi 3
PROOF. (68E) (§¢(g)) = L ! ((-—3; ,ﬁ(sui(q))) *
i=1 Hz

&
+ (—3-)_7_ "3y (Gﬂi(q))))dxdy.

But 3(!2) is empty then if we integrate by parts we have:
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(-A'ni. ai.ql - e

n n
(8E) (69(q)) = I I (-Mi’hi(q’ )adxdy = I
i=1 2 i=1

But by using ‘the cyclic property of trace we can easily see that
€a,[B,C] » =€[B*,A] ,C). The finally we can prove:

n

(8E) (8¢(q)) = - I €lw;,am.l.q? .

i=1

We known that ¢ = (ul,._..,'un) s l(z —— F(n) is harmonic
if and only if it is a critical point of the energy integral, i.
e., for any variation &¢(g) of ¢ we have (SE) (64(qg)) = 0. There-
fore ¢ = (W,...,m) : M’ — PF(n) is harmonic if and only if
n

: [%,,4m,] =0 if and only if 2 (A) + —= (A)) = O. Then we
- i 9z - = z
i=1 z 9z
prove:
51
12 n
0 Au i Al-'
A21 0 AZ!I
A = B hY
g - : . !
nl
Then tr(a) = t:(aﬁ) _

PROOF. See [15] or [16].

We have seen that the energy of a map ¢ = (‘ll,...,‘ln) :n2 o
F(n) is given by:

Nl

i=1 J 2 Frofh

.q
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n I, 2 n P n s
R [ |—i| > kT I |At3l ¥ =~ I J tr(aiu] athv
2 2 s - T

where u = z or z and A:j are the partial second fundamental
forms associated to ¢.

Now let [I,n}] = {x €Z ; 1 < x < n}. Consider D = {(i,i) ;

l<i<n} and s* to be a partition of ([l,n] x l,n] - D) con-
'

taining (L-iﬂ elements such that if (i,j) € s* then ) ¢ §r
We denote - SO the complement of st in 0,nl x L,n]l - D. We call
L At positive system in 1l,n .

Let E° and E denote the 2 and 3-energy respectively, de-
fined by:

e
E® () = I lAiJI v_  and
- 2 e . g
(i,53)€s ™
2 a3
E L0 = z ai3|" v = J lali]”
S 2 - 2 * 9 . + 2 z g
i1.3)sS x ti,3ye8” w

where $* is a positive system in [ 1,n]. Therefore

¢ = (ﬂl,...,ﬂ’n) : Kz ——— F(n) is holomorphic with respect to

the almost complex structure determined by st if and only if
g1 -

E N z |Ai3| Vg =0 if and only if Ai:’

& (L Sies* Tyt e E

= 0 :

v(i,j) € st .

3.4. DEFINITION. Let ¢ = (my,...,7 ) : M —— F(n) be a har-
monic map. ¢ is called totally isotropic if [AZ,A_] =0, where
zp
[A,,A_] denotes the off diagonal part of the nxn-matrix (a,,a].
zZp z



. notes the first Chern number of =

12

We can prove:

3.5. THEOREM. Let ¢ = (wl,...,tn) 3 !l2 —— F(n) be a totally

isotropic map. Then Aij = non('nj,ai) = w;.' ® n, is a holomorphic
section of the line bundle w; @ y over M when the total
space of such bundle has a suitable complex structure.

PROOF. See [15] or [16].

We now will prove a interesting result for harmonic maps
g (wl,-...nn) - T2 = s1 x Sl —— F(n) which congists of a pu-
rely topological restriction for ¢ to be holomorphic with respect

to some non-integrable almost complex structure on F(n).

3.6. COROLLARY. Let ¢ = (7 ,...,m) : 72 — + F(n) be a totally

isotropic map, holomorphic with respect to some non-integrable
almost complex structure on F(n) but not with respect to any in-
tegrable one. Then cll 111] Wy g W C1l In] = 0, where Cll ﬂi] de-

i
PROOF. We give the proof for n=3, and for arbitrary n the proof

is entirely similar.

Without loss of generality we can assume say, that A12 # 0,

7‘ 0 and A 9‘ 0 otherwise ¢ would be holomorphic wlth res-
pect to some integrable almost complex structure.

*
But according to 3.5 Theorem 'r('r ) @ Hom(‘n).w ) has a ho-
lomorphic section if and only if -C,l '1‘2] + C lw - Gl
1[ wll = Cll 'II'J] > 0.
Therefore Cll w]_] > Cll 1:2], Cll 121 > Cll 13] and cll1r3) >
. Cll 11] i.e., cll 11] = Cll 1r2] = C1[1r3]. But LAY + my + my is
equal to the triwvial bundle over T2, hence Cll 1r1]+ Cll 1r2] +

+ Cll 13]= 3c1| 1r1]= 0. Therefore Cllﬂll =C1l 12] - Cll w3] = 0.
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§4. EQUIVARIANT HARMONIC MAPS INTO FLAG MANIFOLDS

In this paragraph we will study h;mnic maps which are equi-

variant with respect to an sl action from '1'2 = S1 xsl to F(n).

Often interesting examples of solutions to non-linear pro-
blems are found by examining an equivariant case. The assumption
of equivariance under a continuous group action whose orbits have
co-dimension one in the domain manifold reduces a partial differ-
ential equation to an ordinary differential equation, then we can
use the theorem of existence and uniqueness of solutions of ordi-
nary differential equations. 7

Now let us recall some useful facts from the general theory
of equivariant harmonic maps and the relationship between harmonic
maps and minimal immersions.

Let (Hn,g) be a Riemannian manifold and Iso(M) 3. fall
isometry group. Myers and Steenrod showed that Iso(M) is natural-
ly a Lie group which acts differentiably on M.

A Lie subgroup G of Iso(M) is called an isometry group of
M, and the co-dimension of the maximal dimensional orbits is de-
fined to be the cohomogeneity of G. The cohomogeneity of Iso(M)
is called the cohomogeneity of M.

Let G be a compact, connected group of isometries of M. An
immersion f :N — M is called G-invariant if there is a smooth
action of G on N such that g.f = f.g , ¥g € G.

The "submanifold” f is said to be minimal it its mean curva-
ture vector field vanishes identically.

4.1. DEFINITION. By an equivariant variation of a G-invariant sub-
manifold f :N — M we mean a differentiable variation ft= N— M,
eI, fo = f , through submanifolds such that g.ft = ft.g
for all g € G and all t. We recall the following useful result
proved by Hsiang and Lawson [13].
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4.2. THEOREM. Let N be a compact manifold and f :N — M be a G-
invariant submanifold of M. Then f :N — M is minimal if and
only if the volume of N is stationary with respect to all compact-
ly supported equivariant variations.

PROOF. See [13].

Now let us recall the close relationship between harmonic
maps and minimal immersions. We start by stating the following
easy consequence of Riemann—Roch's theorem, namely:

4.3. PROPOSITION. If ¢ = (@1,9) ——— (N",h) is harmonic then ¢
is conformal.

We also have:

4.4. PROPOSITION. If ¢ : (M,g) — (N,h) is a nonconstant, har-
monic and conformal, then it is a minimal branched immersion; i.
e., it is a conformal minimal immersion except at isolated points
where d¢ = 0, around the image of these points there are normal
coordinates in which ¢ is of the form

ot(z) =crez® + (2D, 622 () + o(1K]) ,-..,6% (2 = o(|2]), for
Akl ‘e>3i

PROOF. See [9].

Therefore every nonconstant harmonic map from EP]' is a min-

imal branched immersion.

Now let us study the differential eguations found in [20] ,
adapted to our non-symmetric case.

Consider p : S} — U(n) given by plexp(/=I 8)) = exp(a@)

where A is some fixed matrix in u(n) and we also assume exp(2mA)
= T.
Let e be a basis of IR and consider (dp)(l)(e) = A € u(n).



Assume further that the set of eguivariant harmonic maps
F,={e €cTis' x m,Pm)); ¢lexplT 8¢ =

= plexp(v/=1 @8))£(t) where £(t) = (fl(t).-—-.fn(t)) .
for all exp(f:fl!)esllism—q’ty.!oteﬂnt U(n) acts omn
F(n) by conjugation:

U(n) x F(n) — F(n)

B X e AR Y|

-

Let ¢ = (wy,-...%) : s x m —— P(n) given by:

(exp(/-1 8),t) = (r (8, 8),en.,m (8,t)) = exp(Al).(5(0),... £ ()=

= exp(Af8) .f(t), where fi's are projection operators and A € p(n).
Note that ti(..t) = expﬂl)-fi(t) -exp(-Af) . We have:

4.5. LA, Let o(8,t) = (11(0,1:)....,Il.(ﬂ.t)):sll R — F(n)

be an eguivariant harmonic map. Then:

1 m F ;f
E(é(e,t)) = 3 ) {( ;t 3 1ys fln.f (o), ia,.f (0] )}ae
STxImR
PROOF. We knmow that lar 12 = I I‘z mili-
» i el - e
3,
= exp(A8) — exp(-A8) and Vf = A exp(a8) £, (t)exp(-A8) -

—exp(hﬂ)fi(t)-a exp(-A6) = exp(A8) Af, (t) exp(-A8) -
- exp(A8) £, (t)A exp(-A8) = exp(A8)IA,f; (t]Lexp(-A8). Therefore

aui 2 Df ifi -
G 3 triexp(a8) — exp(-A8) exp(A®).(—5y) exp(-A8)) =
oF. ok 3f_ g2

i
=tr(Tt-'(—;?i))= ;ti - In a similar way, by using again the
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cyclic property of the trace we can see that 38 = lA,fill -

Now we prove the harmonic map equations for our equivariant
case.

4.6. PROPOSITION. The Euler-Lagrange equations for an equivariant
harmonic map into F(n) are:

n
i_il [fi(t).f;(t) + lA.lA,fi(t)lll =0 .

Hence the partial differential equation becomes a second order
ordinary differential equation.

PROOF. By above we have: : £
1 n 3fi 3fi
E(¢) -i z I {(T ,-ﬁ)"i(lh,f‘.],ll,fil)}d‘: . Hence
i=1 Sle

n afi 3 4
(6E) (6¢6) = Re{ T J (W,ﬁtdf.) Yo CEnE ) I 82, ) Yae)
: i
i=1 slim

by n
Wby I C-£7,68 ) + (-IAIA,£,)],6£,) at} =
parts i=1 SIXIR =

n
=Re -{ I €[£,£7] + [£,IAIA,£111, a2} =

1=1
- 2
= Re{ I (fi.f; B lA.[A,fil].q) }. Therefore
i=1
¢ = exp(AB) (£, (t),... £ (t))exp(-A8) : S’ xR —— F(n) is an

n
equivariant harmonic map if and only if I I[f,,f] + [A,[A,£;]]]=0
i=1
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by the fundamental lemma of the calculus of variations.

Now by studying special cases of the general ordinary differ-
ential equation found in 4.6 Proposition we will construct new
examples of harmonic maps ¢ '(ﬂl""'“n) :'1‘2 = S1 x Sl — F(n)
which are not holomorphic with respect to any almost complex
structure on F(n) where F(n) is equipped with the Killing form
metric.

Consider a local chart U C ®2 for a Riemann surface Mz.

Now consider B, and B, in u(n) such that lBl,le = 0. Then
we can define locally the following map:

v —2 = u(n)
(x,y) —— exp(81x + Bzy) -

We have seen that ¢ induces a map ¢ = (Myseeesm ) 20 — F(n)

given by:
= b e = = ‘.
L 9E ¢ exp(B;x + Bzy).Ei.exp( B, X Bzy)
where
i
Mo T
; o (o]
- 0
. A 1
0
o .
< ’ 0_

We can prove:

4.7. PROPOSITION. Let ¢ = (1:1,...,'"“) : U —— F(n) given by:
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ol "5 up(le + Bzy)Ei exp(-le -Bzy) where 81,82 are in p(n)
and [BI'BZJ = 0.
Then="" R =" I exp(le + Bzy)EiBIEj exp(-le-Bzy)

X 5.9
i#j

Ay = i)':j exp(le + Bzy)ninzxj exp(-nlx -Bzy)
i#)

PROOF. We will prove the expression for A, and the one for AY is
proved similarly.

g am, )
5 T At ” i w
Ay ‘n_-s e 3 wj(Bl exp(le + Bzy)si exp ( le Bzy)

- exp(B;x + B,y)E B, exp(-B;x - B,y)). But since B,.B,=B,.B,

we have:

52 S 1
Ay (exp(le + BzY’Ej exp ( B,x Bzy)) (Bl.exp(le + Byy).

By exp(-le - Bzy) - exp(B;x + Bzy).li‘.iB1 exp(—le - Bzy))
= exp(B;x + Bzy).l-:jlill'-:i exp(-B;x - B,y).

Now by using the remarks after the proof of 3.2 Proposition
we can find the Euler-Lagrange eguations for an equivariant har-
monic map. :

4.8. PROPOSITION. Let ¢ = (11,...,tn) : 0 — F(n) be a smooth
map such that - exp(le + B.‘,y)Ei exp(-B;x - Bzy) where B, and
B, are in yu(n) and IBI,BZ] = 0. Then ¢ is harmonic if and only
L 4 (Bl,diag 81] + [Bz,diag 82] = 0, where diag Bi denotes the
diagonal part of Bi o =12,
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PROOF. According to 3.2 Proposition is harmonic if and only if

3 . L T | 3
3 (A,) + W(Ay’ 0. Hence let us compute = (A /) and 5y (Ay).

3
H(Ax) -y exp(le + Bzy)EiBIBj exp(—le - Bzy) - exp(81x -

+ Bzy)Eialzj exp(-B;x - B,y) = exp(B;x + azy)lal,izj EiBlEj] 3
.
i#j

-exp(-B;x - B,y) = exp(B;x + Bzy).[Bl,dj.ag Bllexp(—le - Byy) .

Similarly we prove that
3
W(A}') = exp(B;x + Bzy)le,diag leexp(-le = Byy). Therefore

3 ) =
3B, + W(Ay) =0 if and only if lBl,diaq all +[Bz,diag B,] =o0.

Now let us study f : IR — U(n) where f£f(x) = exp(Bx)
and

[ 4B av=1 0 05 2500
av=1 0 0 0 R
0 0 0 B/~-1 ...0
B 0 0 B/=1, 0 ..50 €utn) , n>4
2 o 0 0 b ...

and a and B are non-zero real numbers. Then exp(Bx) = I + Bx +

2 n
+(—§-’;—)—+...+-‘—:-’!‘)—-+....But
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[ a?x? 0 0 -t 0 eaagsie
0 -02x2 0 0 -7 n
0 0 o
(aur)2 = 0 0 0 —Bzxz SREAES S and so on ...
= (i} 0 T s o i
Therefore f(x) = exp(Bx) =
[ cos ax 0 0 0" o]
0 cos ax 0 0 o e
0 0 cos Bx 0 SN
= 0 0 0 COBPBX « « o O +
o 0 0 0 s ves I
2 0 sin ax 0 0 FAAART 0—!
sinax 0 0 0 R R AR
0 0 0 R AR SR
+ /I 0 0 sin B8x 0 B ega iy
b ] 0 0 0 e e et NN

Now let us consider for example:
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P -
0 av/=1 0 A

av=1 0 0 R

0 0 Qi BT ivna B

B, 0 0 B8Y-1 D, .okl
0 0 0 I

and

£ e

0 Bv—-1 0 B iz D

B8v/=1 0 0 B e

0 0 0 a/~1 ... 0

Bz - 0 0 av—-1 e
_ 0 0 % v W1

where a and 8 are non-zero real mmberé such that u/B or B/ue =.
Then B, and B, € u(n) and [31,32] = 0.

Now let us consider ¢ : IR2 —— U(n) given by:
(x,y) — exp(le + Bzx). Since u/8 or B/u € T there is
such that ay = 2178111 or aB = me2 where ny, N, are arbi-
trary integers. Then 5 induces:

2
o = = F(n) given by:

(Z ® Z)

¢ = (x+yn, y+ ym = d(x,y) (El.....Em)a(x.y) = exp(B;x + Bzy).

e AR g swnel ) ‘OXpi-B. X - Bzy). But diag B, = diag B, = 0. Then
1 n 1 2 - 1 2
according to 4.8 Proposition ¢ : T = slx § ——Fin), >4 is

harmonic. Therefore we have proved the following result:

4.9. THEOREM. Let ¢ = (T ,...,7 ): T — — F(n) where T =

= exp(B;x + B,y).E .exp(-B,Xx - B,y) where B,,B, € p(n), n> 4 are
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as above. Then ¢ is harmonic but is not holomorphic with respect
to any almost complex structure on F(n).

PROOF. By above we have seen that ¢ is harmonic. On the other hand,
A:z = Aiz + /=1 Alz and A21 - Ail + v-1 21
according to 4.7 Propositzon. Therefore ¢ is not holomorphic with

respect to any almost complex structure on F(n).

are both non-zero

Clearly the same method produces different examples of har-
monic maps ¢ : '1'2 —— F(n) that are not holomorphic with res-
pect to any almost complex structure on F(n). It is a intersting

problem to classify all harmonic maps from Tz to F(n).

Finally, we want to point out that we cannot expect to use
this equivariant harmonic map method developed above to produce
harnonic maps ¢ = (wl,...,w ) cPl — F(n), because in qeneral
tr(A = # 0 wbich contradicts 3.3 meora In fact tr(A ) =
= tr(Ax + Ay) + 2/-1 tr(a .A ). But tr(A ) = tr(B ) and tr(Ay)=

= tr(Bz) hence - t:r(Ax + Aj) # 0 in general. This fact provides
another piece of evidence to our conjecture that any harmonic map
¢ : I:Pl — F(n) must be holomorphic with respect to some almost

complex structure on F(n). See [15] or [16] for more details.
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