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§ 1. INTRODUCTION. 

We classify and present explicitly all cubic Galois exten-
sions of the field of the rational nurnbers. Still, the . defini-
tions of this section embrace the more general case as they are 
taken from the Galois theory ~f rings. 

All rings considered here are commutativé and with unity. 
If R is a subring of S then their unities coincide. The stan-
dard notation U (R) is used for the group of uni ts of R. Let G 
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be an abelian finite group. 

If S l.• 5 an overring of R, S is a Galois e xte n-
DEFINITION 1. 
sion of R wi th the Galois group Gal (S/R) = G if G is a subgroup 

of AutS and 

(i) the stabilizer sG = {s E s: VoEG, a (s) = s} is equal to R; 

( ii) for any maximal ideal p e S and any cr E G; a 1 1, there 
exists x E S such that cr(x) - x p. 

(Conditions which can substitute (ii) in this definition 
are listed in [ 1 ] , Theorem 1. 3) . 

DEFINIT~ON 2. Two Galoisextensions S,S' of R with the same Galois 
group Gare equivalent if there exists a bijection S S' which 
is an isomorphism of rings and also an isomorphism of RG-modules. 

As usually RG is the group ring of G wi th coef f icients in 
R. From·now on, let G be a cyclic group of order n. Then 

- a class of equi valence of the above rela tion can be wri tten as 
[ S, cr], where s is an Galois extension of R wi th Galois group 1Ln 

and crisa fixed generator of 1L . The set n of classes 

[ S, cr] becomes a group ( cf. [ 4 ] , p. 3 - 4) under the following 
operation: if [S,cr], [S',o'] E T(7.ln 1 R), let [S,cr]* [S',cr') = 

. ô ?l 
= {S",cr"J where S" = (S 0R S 1) n with ô7.ln being the copy of 

1L in 1L 0 7l generated by n n n 
-1 cr 0 cr', and a"= a 8 id 

generating the copy of 
of the group T(1Ln,R) 
copies of R in m.n , 

7.ln that acts on S". The trivial element 
is [ Rn, t ] , where t per~utes cyclicly the 

t (r1 ,r2 , ... ,rn) = (rn 1 r 1 , ... ,rn-l). 

In case of a local ring R wi th 2 E u (R) and n = 3 there is 
another a·escription of T ( 7.l 3 ,R) in ( 5 ] that originated from con-
sidering cubic polynomials f E R [ x ] . It will be used in the next 
sections, so let us recall here the basic points of it. Consider 
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the set 

and introduce the following operation in T(R): 

( b, e, d) * ( b' , e' , d' ) = ( bb' , ½ ( cd' +e' d) , ( dd' - 3 J cc' ) ) . 

Commutativity of the operation is evident, associativity follows 
from the direct application of the definition of *, the triple 

• (1,0,2) is the trivial element and the triple ( bl' - c3 , --ª-> is 
b b 3 

inverse to (b,c,d). Thus, (T(R),•) is an abelian group. 

Next, define a certain type of triples which correspond to 
polynomials that are completely reducible over R. 

DEFINITION 3. A triple (x,y,z) E T(R) is trivial if there exist 
r 0 ,r1 ,r2 E R such that 

(X 3 = X - XX - y 

and 

Denote the subset of trivial triples by T' (R). We have 
(1,0,2) E_ T' (R) as O, -1, 1 E R are the three required elements. 

If satisfy the definition for the triple (x,y,z)ET'(R) 

r 
then 

X ' 
o 

X 
E R satisfy the definition for 

( ;, - --¾, --;), so that (x,y,z)-l E T' (R), too~ Now, take two 
X X 

trivial triples (x,y,z),(x',y',z') E T' (R) corresponding 
ER d ' ' 'ER ordered séts of roots r 0 ,r1 ,r2 an r 0 ,r1 ,r2 , 

tively, and define 

to the 
respec-

and 

= r 0 r~ - r 1 ri . By a straightforward and tedious calculation one can 
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prove that xx' = -(s0 s 1 + s 1 s 2 + s2s0 ), 

and ; ( z z ' - 3 3 yy ' ) = ( s 1 - s o) ( s 2 - s 1) ( s o -

of trivial triples 
group of T(R). Let 

is trivial and, consequently, T' (R) is a sub-
T(R) be the quotient group T(R)/T'(R) whose 

elements are denoted by [b,c,d], meaning the class represented by 

(b,c,d) E T(R). 

In [5] the group T(R)was introduced by inducing the opera-
tion * on T (R) = T (R) / :::::., where the relation " :::::. " was defined 
as follows: two triples (b,c,d), (b',c' ,d') E T(R) are equivalent 
(notation: (b,c,d) :::::. (b' ,e' ,d')), if there exist trivial tri-
ples (x,y,z) and (x' ,y' ,z') such that {b,c,d) * {x,y,z) = 
= (b',c',d') * (x',y',z'). However, it is not clear that this 

. 
approach cut short much calculations as verifying that is in-
deed a relation of equivalence one has to check up that the 
product of trivial triples is trivial. 

Before stating the main result of (5] let us also note that 

given (b,c,d) E T (R), where R is a local ring with 2 E O(R), 

if d~ U(R) then necessarily 3 3c 2• E U(R): frorn a2 , 33c 2 E p (p 

being the maximal ideal of R) it would follow 2 2b 3 E p, con-

tradicting the assumptions 2, b E U (R) . Therefore, if d (/. O (R) 

use the trivial triple (3,2,0) to obtain (b,c,d) * (3,2,0) = 
= (3b,d,-3 3c 2). Obviously, b' = 3bE U(R) and d.'=-3 3c 2 eu(R). 
Thus, any element in T(R) can be represented by a triple (b,c,d) 
E T(R) with d E U(R). 

We end up the introduction recalling the following result 
( cf • [ 5 ] , Théoreme 3. 2 and Note 3. 3) : 

THEOREM 4 • Let R be a local ring wi th 2 E U (R) . The 'l" (R) is 

a group of exponent 
given by 

3 i hi { ) h isomorphism is somorp e to T :,z 3 ,R . T e 
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whcre S := H( X l /([), (f) 

= x3 - bX - e, aod for 
by 

is the ideal in 
X= X + (f) E S 

R [ X ] 

the 

generated by f(X) 

action of a is given 

a (x) gc+ d 
2d 

. § 2. AN ADDITIVE VERSION OF T ((n) 

X -

Starting wi th this section we restrict our attention to 
1 R = m, the field of rational nurnbers. As usually, S = :m/2TT~ is 

the additive group of angles. 

LEMMA 5. The· set V = {a. E s 1 : cos (a + j ~7T) E m for j =0,1,2} 
is a subgroup of s 1 . 

PROOF. If a. E V we have 

cos ( ( a + j 2 '1T ) + 2 7T ) 
3 3 cos((a + j 2/> - ~'IT) = - /Tsin(a + j ~TT), 

so that 

( 1) 13 sin(a + j 2;) Em for j = 0,1,2. 

We have to show that if a, f3 E V then a. - f3 E V. Note that 

cos ( ( a - f3) + j 2/ ) = 

27T 1 r:- 27T = [cos(a + j 3 )] • [cosf3] + [ 3 ] • [v3 sin(a + j 3 )J • [/3sin/3] 

and all values in brackets are rational numbers; thus, we have 

cos((a - /3) + j ;7T> E~ for j = 0,1,2. 

LEMMA 6. For every [b,c,d] E T (m) there exist G, K E m such 
tha t [ b , e , d ] = [ 3 , G, K J . 
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-1 [t2] 

( "') we have [ t 1 = (cf. [ 5 ], Propos i-
For [ t J E T w. ) 

PROOF . (b,c,d) * (b,c, -d = 
3 1). on the other hand, 

tion • , [b e d]-l = [ b,c, -d)• . 1 so tha t , , 
i s · o tr i vi a l trip e, d that the triple (3,2,0) is 
in mi nd tha t b i O an 

the following calculations: per form 

33 2 2 3 cd 2 _ e ) * (b , O, 2b ) 
= (1, b3 , bj 

= ( 3, 2 

cd 2 _ 
lltj ( 1, b3 , 

3 3 cd) 2. -;r 

(b 2 ,o, -2b3 ) 

Keeping also 
trivial we 

* (3,2,0) = 

33c2 
Thus, putting G = 2 - 3 , K = we have [ b,c,d 1 = [ 3,G,K ]. • 

b 

Here ·is the main result of this section. 

THEOREM 7. The mapping 

-r (<;D) V/3V : [ 3,G,K] -t+- ' are cos + 3V 

is a group isomorphism. 

PROOF. As IGI < 2 that is, there 
exists such r e sl that 

(2) G = 2 coar. 

As the consequence of K2 = (6 13 sin r) 2 we rnay put 

(3) 
K = 6 13 sinr. 

The choice of - K instead of K would amount to the substitution 
of r by - r and would give rise to another isomorphism. ThUS, 
restating Lemma 6 we see that every elernent of T(i) is represen-
ted by ª triple (3, 2 cos r, 6 sin r) for a sui table r E S1 · we 
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will show that: {i) starting with {3,G,K) E T(m) we get r E V, 

(ii) {3,G,K) is trivial .iff r E 3V, {iii) equivalent triples give 
angles congruent modulo 3V, (iv) multiplication of triples modulo 
trivial ones corresponds to the addition of angles, (v) the func-
tion is surjective. 

Start wi th the identi ty 

cos r = 4 cos 3 -r - 3 cos f . 
Multiply it by 2, put r Z = 2 coe 3 , G = 2 coe r. The resul t is 

(4) f{Z) = O where f{Z) = z3 - 3Z - G. 

The roots are 

( 5) g j = 2 cos y j , j = O , 1, 2 , where 2TT yj = y + j 3 and 3y = r. 

Let us now proceed with the proof of che steps (i)-(v)~ 

(i) if {3,G,K) E T(m) then, by (2) and (3), we have 

• cos r = ; e <JJ, cos cr + ~t > = - + f 2 e Q) 

·and r e v. 

(ii) If the triple (3,G,K) is trivial then f(Z) . given by (4) 
. g. 

decomposes over m and cos y j = T E «2 for j = O, 1, 2. But 

it means that y e V and r = 3y e 3V. Conversely,if reJv 
then y e V and the ~oots gj, j = 0,.1,2, given by (5) are 
in o, and the triple (3,G,K) is trivial. 

(iii) Let (3,G,I<), (3,G' ,K') e T(Ql) be two equivalent triples. 
Then for a trivial triple (1,x,y) we have 

(3,G' ,R') ·• (3,G,K) * (l,x,y). 
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* ( 3 , 2 , o) = ( 3 , y, - 3 3 x) corresponds to an Note that (l,x,y) 
Call i t 3/J., as it was shown in (ii). Form angle in 3V, 

y = 2 cos 3.1., - 33x = 61"1" sin 3/J. we get 

· (1,x,y) = (1, - 213 sin 3/J., 2cos 3Ll) . 
9 

G I f r = are cos 2 
G' and r ' = are cos 2 : the 

volving the equivalent triples becomes 

equation in- . 

( 3, 2cos r• , 6 13 sin r') = ( 3, 2cos (r + 3/J.) , 613 sin ( r + 3ti.)) , 

that is r• = r + 3.1.. 

(iv) It is sufficient to verify that (3,2cos r, 6 ffsinr) • 

(3,2 cos/J.; 6 /Tsin/J.)=(3,2 cos(r+ ti.), 613 sin(r+IJ.))•(3,2,0). 

(v) If r E V, form the polynomial f using the identity which 

precedes (4). By (1) K = 6 13 sinr Ê 112, that • is, there 

exists a triple (3,G,K) E T(IJ2) that is sent into the class 

r + 3V. 

Resuming the argument: in view of (i), the mapping defining 
r in terms of G and K via (2) and (3) has, in fact, its values 
in V. By (iii) it is well-defined on -r((J2) with values in V/3V. 
T?en, (iv) shows that the mapping is a homomorphisrn. From (ii) 
it follows that it is injective and from (v) it follows that it 
is also surjective . • 

§ 3. THE INTEGRAL PARAMETRIZATION OF T ((J)) 

. put 

Let w=-..!.+ 2 
~[w] ={A+ Bw E~ 

/3 i E G: be the third root of uni ty 2 
: A, B E 1l}. Taking the subset 1l[W] * 

and 

of 
1 11·ne" non-zero e ements of this ring we may form its "projective 
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1 = '!J,[w) */'!J,*. It should be clear that L with the multiplication 
induced by multiplication in a: becomes a group: only the exis-
tence of inverse classes de serves any proof but this, too, . . is 
evident from the fact that w = - 1 - w e ~[w] and the equalities 
[z]•[z] = [zz] = [l). 

In this section we will prove the following result. 

THEOREM 8. L/L3 T(~). 

The proof of Theorem 8 will follow some auxiliary 
ments and constructions. 

state-

First, consider the group ring R~ 3 of the group . ~ 3 gen-
erated by a, and wi th coeff icients in a ring R. If v•= v O + v 1 CJ 

· 2 t 2 + v 2a E U(R7l3 ), we define its transpose v =v0 +v2a + v1a and 

we say that vis orthogonal if v-1 = vt. Clearly, this loan of 
terms of linear algebra is due to the 3-dimensional representation 

of IR7l 3 induced by the mapping a -.. ( \ . • Orthogonal 
· O 1 O / 

elements forro a subgroup of U(R7l3) which is denoted by Ort(R~ 3). 

We will need later the following fact which • we have not 
managed to pinpoint to any specific textbook on group rings. 

LEMMA 9. 
2. 

and 3 
V = 1 then v = aj for j =O, 1 or 

PROOF. Consider the homomorphism of rings 

If 3 1 V = 
V = (Jj + xw 
from v3 = 1 

e : m~ 3 a: : a -.. w • 

Wj• (Jj then é (v) = so, V -, 
where w = 1 + a + a2 and 

we get 

(mod Ker e ·) , 

;K E ]R. But 
that is, 

w2 = 3w and 



10 

2 • 2 
It means that either x = O or y,(x) = 3x + 3aJx + a j is real J 
and equal to zero or y. (x) is not real but it annihilates the 

J 
element w. The second possibility does not occur as it would 
force j = O but y (x) = 3x2 + 3x + 1 is positive for all o 

x ·em. 
w • is the 
see that 

The third one is also excluded as the annihilator of 
- a and it is easy to principal ideal generated by l 

yj(x) does not belong to it for 
must have x = O and v = aj. a 

j = 1,2 anã any X E IR. Thus, 

PROOF. To begin with, to each triple of the forro (3,G,X) E T((P) 

we ascribe, as in the proof of Theorem 7, the angle r and, con-
seGuently, the ordered set {g0 ,g1 ,g2 } e 1R with gj's given by 

(5). Next, define h = h0 + h1 cr + h 2cr 2 E . m~ 3 , where 

( 6) n . = 
J 

g. + l 
~3 = 

2 cos (y + j 2TI) + l 3 -----,3.----------- , j = O, l, 2 , y = I' ., 
.J 

As the elements g0 ,g1 ,g2 are the roots of f(Z) given by (4), 
~t~y satisfy the relations 

These relations and (6) yield 

(7) 

The t1r1t t wo relation1 imply that h E Ort (IRZ 3). 

Nex~, tak~ t wo t riples (3, 2 co r, 6 v'J s·1n r) 
(3,2coa r',6ffa1nr 1 ) that lead to 

= h' + h!a o .l. 
+ h'a 2 

2 respectively, where 

and 
and h' = 



2cos y + 1 
3 

, h' = o 

2cos y' + 1 
3 
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3y = r, 3y' = r, . 

Direct calculations using ( 7) and the identi ty 
1 

cosa cosa = 
= 2 (cos(a + 6) + cos(a - 6)) show that 

. ( 8) hh' = h 11 + h II cr + h" cr 2 wi th h '! = o 1 2 J 

2cos ( (y + y') + j ~) 
3 , j =0,1,2. 

Hence, putting Gj = 2cos(r + j ;n> for j = 0,1,2 we get 

H. = 
J 

G, + 1 
J 

3 for j = 0,1,2; 

so that h 3 E Ort(JR7.l
3

) n (J!7.l
3 

= Ort((J!7.l
3

). The announced isornor-

phisrn sends the class [ 3, G, K] to the class of H = h 3 in 
Ort((J!~ 3 ) modulo the subgroup of third powers, (Ort((J!7l 3 )) 3 . It is 
well defined: if (3,G,K) and (3,G',K') represent the sarne class of 
T((J!) then, by (iii) of the proof of Theorern 7, r• - r = 3~ for 
sorne ti E V, that is Y' - Y = /1 and h" = h'h-l = h" +h"cr +h"cr 2 

o 1 2 
2cos (li+ j ~t) 

with hj = 3 E (J! , j = O , 1 , 2., tha t is h ' = h h" with 

h" E 
3 3 · • 3 Ort((J!~ 3 ). Thus, we have h' = h (mod (Ort((J!7.l 3)) ). 

The rnapping is injective: if starting with (3,G,K) we ob-
tain h 3 E ( Ort ( tl}7.l 3) ) 3 then, in virtue of Lenuna 9 , h is in 
Ort((J!~ 3) modulo third roots of unity in m7.l 3 , which are crj and . 

crj is ~lso in Ort ( (J!~ 3 ) . But h E Ort ( tl}7l 3) rneans tha t cos y j E (J! 
for j =0,1,2, that is, y e v, so that 3y = r e 3V and (3,G,K) 
is trivial. 

The rnapping is surjective: if r + scr + tcr 2 E Ort((J!7l 3 ), take 
the triple (3, 3r - 1, 9 ( t - s) ) . First, verify that i t satisfies 
K2 = 2233 - 33G2 (and it is guaranteed by the orthogonality rela-
tions for r +scr + tcr 2) and then verify that the triple is sent 
to h3 = r + scr + tcr 2 , the desired irnage. 

The last part of the proof shows that (9) can be rewritten 



must have n + 3m m2 , too, and 
2 n - m = 2x, 

13 

n + 3m = 2y2 for 

some x, y E~- But y - x = y + x (mod 2) and 2(y - x) (y + x) = 
= 2y2 _ 2x2 = 4m, implying that both y - x and y + x are pair 

d e Uently m is pair, the contradiction. m an, cons q , 

The parametrization announced in the title of the section 
appears in the formulation of our next result. 

LEMMA 12. The . formulas 

r = 

(12) s = AB 
A2 + B2 - AB 

t -AB + B2 
= 

A2 - AB + B2 

describe the group isomorphism 

.lJJ: L Ortl (m~3) : [A + Bw) r + stJ + tcr 2 , 

where Ort1 (l.n~ 3 ) = {r + scr + to 2 E Ort (m~ 3 ) : r + s + t = l}. 

PROOF. Consider the group homomorphism 

'/1 : Ortjill:r.1 3 ) GL (2 ,ill) : a * (: • =~ )-

It is the restriction of the classical ring homomorphisrn 
• lR~ 3 L ( 2, 1R) induced by the image of cr def ined as above. For 

v = r + scr + tcr2 E Ort1(m~ 3) we have 

'P (v) = ( r - t 

s - t 

- (s -

r -

Orthogonali ty relations yield det (ip (v)) = 1 and we get the charac-
terization of Irnip: 
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( 
X -(x-y)) 

iff M = 
x-y y 

for some x, y E with 2 2 
X - xy+y =l. 

The equation "'(v) = I 2 
is isomorphic to Im "'. 

brings readily v = 1, so tha t ort ( IJ)~ ) 
1 3 

Next, define the auxiliary monomorphism 

À: 7l[w]* GL(2,~) : w (º -l), 
1 -1 

which is the matrix notation of multiplication of complex numbers 
using the basis {l,w}, and employ it to define 

n : L Im 1/J : [ z ] À { z) ( À { z) ) - l. 

Note that - -1 1 2 À{z) = det{À{z)) {À{z)) , so that n( [z])= det(Ã(z)) (À(z)) , 

which is _clearly a well-defined homomorphism. Its explicit expres-
sion is 

n { [ A + Bw] ) = 1 

If n < [ z 1 ) = I2 then direct calculation forces B = o, that is 
Z E or [ z 1 = 1 E L and n is injective. Put 1jJ = cp-l on. 
We compare "'(v) and n([z)) using two relations: Trl/J {v) = 3r -1 

and r + s + t = 1. Hence, we obtain the formulas ( 12) . 

To show surjectivity of tJJ we use Lemma 11. We take v = r + 

+ 5(1 + tcr 2 E Ort1{'1!7l 3 ) and want to exhibit z E 7l[w]* such that 

ip([z]) Put m with m, n E 7l, gcd{m,n) = 1. By Lernrna = v. r = n 
2 

11, there exist B, C E 7l such that n - m = B2 and n + 3m =C • 

This gives c2 + 3B 2 
and B e (mod i) we may put A= n = 4 as -

= 8 - C E 7l. Then n = A 2 - AB + B 2 . By ( 11) , 2 
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K2 
34B2C2 

= ( 9B (B - 2A) -) 2 
Substituting 2A2 - 2AB- a2 = 2 A2 - AB + a2 . G a: 

n 
A2 - AB +B2 

B2 - 2AB 
and K = 9 

A2 -AB + s2 
in (10) we receive once more the formulas 

( 12) , so tha t we found the desired z = A + Bw, and this completes 
the proof of the lemrna. 

. 3 
• PROOF OF THEOREM 8. Note tha t { ± 1} C ( Ort ( ~?l 3) ) and also that 
ort (IJ}7l 3)/{± l} E:!! Ort1 (~7l 3). Therefore Ort1 (<.»7l 3)/ (Ort1(m7l ))3 E!! 

. 3 
== Ort(IJ}7l 3)/Ort(<l}7l 3 ) 3 and, consequently, the conjunction of 

Lemma 10 and Lemrna 12 gives L/L3 e! T(<,D). 

§ 4. FINAL REMARKS 

1) If v.e return to Theorem 4 and put (b,c,d) = (3,3r -1,9 (t-s}), 
the automorphisrn cr(x) will take the forrn 

' 
o (x) = t: 5 (x2 + (s - r) x - 2). 

It should be noted, however, that 
this formula permutates . the roots 
a way that may be visualized as 

the autornorphism described by 
g . • of the equation f (X) = O in 

J 
being induced by the clockwise 

perrnutation of the angles Yj, so that the automorphisrn which appears 
implicitly in §2 and §3 and sends g 0 to g 1 is, actually, equal 
to cr2. 

2> Let G = 2cos r, r E v and write G in terms of B, e 
rather than using A, B (this change of coefficients expresses the 
d ' 2 iagonalization of the form x2 - XY + Y over we get G = 

== 2 _c2 - 3B2 
c2 + 382 • Excluding the case of e= O which gives G= - 2 

ana r == ir we may write 

cos r = 
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If the diagonalization of the form is appli e <l to~ 
1 + Bw (u nd 

it is called "the passage to Cartesian coordinates") 
we get 

then 

2A - B /3 B . 1 ( r::;--= A + Bw = 2 + 2 1 = 2 - e + -( 3 Bi) and the 

z ::: 

[ /3B : - C] represents [ z 1 of the projective line L. 

ratio 

With 
an understandable abuse of the language, for 

[ z ) E L as the ang le 1T 1T 6 E (- 2 , 2 ) such 

For e= O define 1T 6 = 2 . Recalling the 

that 
we may treat 

tant. = _ 13 .! e . 
formula COS 2Cl ::: 

1 - tan 2a = 2 , we see that r = 26 (including the case e = O). 
1 + tan a 

This formula expresses the isomorphism L V : 6 # 2t.; the lack 

of rigour in permi t ting to talk of '' angles" of L is cornpensated 
by the nice geometric interpretation of V. 

3) Looking for genera tors of T (~) we will work in L / L 3. 
It will be enough to find factorization of elements in 7.l[w) and 
use i t modulo third powers of the f actors. The ring 7l ( w] is a 
unique factorization domain, it has 6 units (-w)j, j=O , .•• ,5, 

and here is the description of its prime elements (cf. [3], Ch. 
XII and XV): they are 1 - w (which divides 3), rational prim~s 
q such that q = 2 (mod 3) and ·non-trivial divisor ªp + bpw of 

those rational primes p that satisfy p = 1 (mod 3). These divi-

06 that sors exist and are unique modulo the action of the group 

preserves the form x2 - XY +· Y~. In other words: if ( bª:) is 

found, all other solutions are of the form M( ªP), where 

06 and gener:ied by ~ 01 Ú 
M is 

in the matrix group isornorphic to 
(l - 1) \o - 1 • The elernent 1 - w has 

and 

only 6 associates because 

Note that the set of 12 divisors of P in ~[w] breaks into 
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6 pairs of opposite nurnbers, that is, it forrns 6 elernents in L. 
one sees easily that they rnay be described as [z 1, [wz), [w2z) 

and their inverses. On the other hand, 9w2 = (1 _ w)4, that is 

[w2] == [ (1 - w) 4 ] E L and [w 2 ] = [ 1 - w] (rnod L3). Note also that 
a rational prime q E 7.l[w] gives [q] = [ 1] in L. Thus, we see 
that any class in L / L3 can be presented using inverse elements 
and products of classes corresponding to divisors a + b w of 

p p 
• rational primes p wi th p = 1 (rnod 3), one factor for each 
and of the class arising frorn w. 

p, 

This set of generators of T(~) is analogous to a natural 
choice of generators for T(7l 2 ,~), the group of classes of qua-
dratic extensions of m. As any quadratic extension is o; the form 
(D [X]/ ( f) , f (X) = x2 - n; one rnay stay wi th a square-free n and 
then the factorization n = (-1) e:p1 ... pk, e: = ± 1, Pl'···,I\_EP, 

leads to the set of generators indexed by elements of the set 
{i} u P. 

4) In 1770 Euler presented his description of objects which 
we call nowadays the rational orthogonal matrices of degree 3. If 
we use the notation with indéxed variables hu his result is 

stated as follows (cf. [ 2], p. 309): if h0 ,h1 ,h2 ,h3 E 7l 

3 
1: h = R, , then the rnatrix 

u=o u 

h2 h2 - h2 - h2 o+ 1 2 3 2 (hl h 2 + h 0 h 3 ) 2 (h1h 3 - h0 h 2 ) 

1 2 2 2 2 2 (h2h 3 + h0 h1 ) 
"T 2(h1h 2 hoh3) h - h + h 2 - h3 o 1 

2 2 2 2 
+ hoh2) 2(h2h 3 - hohl) h - h -h2 + h3 

2(h1h 3 o 1 

S(t) ( 3, m) • We encounter here the elernents of 
S(J)(J,(D), called 

thogonal circulants ", of the forrn 

and 

is in 

"or-



18 

r t s 

s r t , 

t s r 

1 nts of ort (~7l 3 ) under the natural 3-dimensi ...... , as images of e eme . ~ICl.1. 

·t tion of U(JR7l 3). Before expressing r, s, t in terms of represen a . 
h , 5 note that the Euler's parametrization, although obtained by 

s~lution of Diophantine equations, today is retold in classes 
of linear algebra as follows: take the algebra Ili of real quater-
nions, lH = {ho + hli + h2j + h3k : ho,hl,h2,h3 e IR}. Considering 

3 -1 the conjugation by a unit quaternion h E S , w h wh, as the 

orthogonal transformation of IR3 = {xi+yj+zk: x,y,z EJR} and writing 

it in the matrix form in the basis {i,j,k} one obtains exactly 

Euler's formulas. Elementary topological arguments show that the 

mapping S 3 sm ( 3, IR) is surj ecti ve. Moreover, one may use for 

conjugating h E m\{ol. Then, ··putting 
3 

R. = E h 2 
u=O u 

and ~ h = h -o 
-1 1 ~ h wh = 1 (hwh) . Easy calculations SW\' 

that in order to obtain the orthogonal circulant corresponding to 

r + SO + ta 2 E Ort ((J17l 3 ) with 
C2- B2 

2 B2 - BC t = r = 4n , s = 4n 
, 

= 2 1t + BC 4n = c2 3B2 B(i + j + k) and 
4n , + we may use h = e + 

then we have R, = 4n. 

5 t ((V) by 
) If we want to represent the trivial elernent of as 

a triple of the forrn (3,G,K), the triple (3,2,0) is not goodtive 
the unde 1 i presenta r Y ng polynornial is not separable. The re • ned 
wi th th • is obtal . 

• e srnallest possible denorninator of G a nd K 

frorn ( 3 + w) 3 = - 286 K == _: 32iº-• 19 + 18w and then • G = 3 , 7 
7 
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