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§ 1. INTRODUCTION.

We classify and present explicitly all cubic Galois exten-
sions of the field @ of the rational numbers. Still, the defini-
tions of this section embrace the more general case as they are
taken from the Galois theory of rings. |

All rings considered here are commutative and with unity.
If R 1is a subring of S then their unities coincide. The stan-
dard notation U(R) is used for the group of units of R. Let G



be an abelian finite group.

DEFINITION 1. If S is an overring of R, S 1is a Galois exten-

sion of R with the Galois group Gal(s/R) = G if G is a subgroup

of AutS and

(i) the stabilizer SG = {s € S:V0€G, g(s) = s} 1is equal to R;
(ii) for any maximal ideal p € S and any O € G; o # 1, there
exists x € S such that o(x) - x & p.

(Conditions which can substitute (ii) in this definition

are listed in [1], Theorem 1l.3).

DEFINITION 2. Two Galois extensions S,S' of R with the same Galois
group G are equivalent if there exists a bijection S =+ S' which
is an isomorphism of rings and also an isomorphism of RG-modules.

_ As usually RG is the group ring of G with coefficients in
R. From now on, let G = qn be a cyclic group of order n. Then
-a class of equivalence of the above relation can be written as
[S,0], where S is an Galois extension of R with Galois group z

and o is a fixed generator of Zn . The set T(Zn,R) of classes

[S,0] becomes a group (cf. [4], p. 3-4) under the following
operation: if [S,o0], [S',0'] € T(Zn,R), let [S,o]l=% [S',0'] =

‘ : GEZn
=[s",0"] where 8" = (s 8 S')
Z in z, e Z  generated by o_l ® o', and g" =0 8 id

with szn being the copy of

generating the copy of Z, that acts on Ss". The trivial element
of the group T(Zj,,R) is [R",t], where permutes cyclicly the
copies of R in 1IRD, L(rl,rz,...,rn) = (rn,rl,---:rn;1)°

In case of a local ring R with 2 € U(R) and n=3 there is
another déscription of T(Z3,R) in [5] that originated from con-=
sidering cubic polynomials f€ R[X].It will be used in the next

sections, so let us recall here the basic points of it. Consider



the set

3 2

3 _ 37°¢“}

T(R) = {(b,c,d) €ER> : b € U(R)A &% = 2%

and introduce the following operation in T(R):

3

(b,c,d) *+ (b',c',d') = (bb', -%(cd' +c'd), -%(dd' - 33cen)).

Commutativity of the operation is evident, associativity follows
from the direct application of the definition of =*, the triple

*(1,0,2) is the trivial element and the triple (—L, - =<, —g—) is
b b3 b3

inverse to (b,c,d). Thus, (T(R),*) is an abelian group.

Next, define a certain type of triples which correspond to

polynomials that are completely reducible over R.

DEFINITION 3. A triple (x,y,z) € T(R) is trivjial if there exist
€
vro,rl,rz R such that

o
(x - ro)(X -r) (X -ry) =X - xX -y
and
(ry - ro)(r2 - rl)(rO - r,) = z.
Denote the subset of trivial triples by T'(R). We have
(L,0,2) € T'(R) as 0, -1,1 € R are the three required elements.

If ro,rl,r2 satisfy the definition for the triple (x,y,z)€ T'(R)

T2 Ly o
then - sl € R satisfy the definition for
(é%, - L, —%;), so that (x,y,z)-l € T'(R), too. Now, take two
X X

trivial triples (x,y,z),(x',y',2') € T'(R) corresponding to the

ordered sets of roots r_,r,;.r, € R and ré,ri,ri € R, respec-

tively, and define S, = rlri - r2r' ¢ Sy < rzré - roré and szf
ri . By a straightforward and tedious calculation one can

= i oy r
ofo 1
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- ' : =
prove that xx' = -(sosl + sys, + szso), (yz' + y'2z) 5,8

2 1%2
and %%(zz' -33yy') = (s -so)(SZ —sl)(so - 52)' So, the product
of £rivial triples is trivial and, consequently, T'(R) is a sub-
group of T(R). Let T(R) be the quotient group T(R)/T'(R) whose
elements are denoted by [b,c,d], meaning the class represented by
(b,c,d) € T(R).

In [ 5] the group T(R)was introduced by inducing the opera-
tion * on T(R) = T(R)/ =, where the relation " =" was defined
as follows: two triples (b,c,d), (b',c',d') € T(R) are equivalent
(notation: (b,c,d) = (b',c',d')), if there exist trivial tri-
ples (x,y,2) and (x',y',z') such that (b,c,d) » (x,y,z) =

= (b* ' aY) * (x* . v",5"%). However, it is not clear that this

~

approach cut short much calculations as verifying that = is in-
deed a relation of equivalence one has to check up that the

product of trivial triples is trivial.
Before stating the main result of [5] let us also note that

given (b,c,d) € T(R), where R 1is a local ring with 2 € U(R),

if d € U(R) then necessarily 33c2 G_U(R): from d2,3302 €Ep (p

being the maximal ideal of R) it would follow 2°%b3

€ p, con-
tradicting the assumptions 2,b € U(R). Therefore, if d & U(R)
use the trivial triple (3,2,0) to obtain (b,c,d) * (3,2,0) =

= (3b,d,-—33c2). Obviously, b' = 3b € U(R) and d'="33°2 = oays
Thus, any element in T(R) can be represented by a triple (b,c,d)
€ T(R) with d € U(R).

We end up the introduction récalling the following result
(cf. [5], Théoréme 3.2 and Note 3.3):

THEOREM 4. Let R be a local ring with 2 € U(R). The T(R) 18

@ group of exponent 3 isomorphic to T(Z4,R). The isomorphism i
given by

T(R) - T(z4,R) : [b,c,d] » [S,0],



where S=R[X] / ([), (f) is the ideal in R[X] generated by f(X)
= x3 - bX -c, and for x= X + (f) € S the action of 0 is given

by

3b .2 _ 9c+d . _ 2b
d 2d da -

.§ 2. AN ADDITIVE VERSION OF Tt (Q)

Starting with this section we restrict our attention to

R = @, the field of rational numbers. As usually, Sl = IR/212Z
the additive group of angles.

is
LEMMA 5. The set V =

{a € S1 : cos(a + j %) € @ for j=0,1,2}
is a subgroup of S1

PROOF. If o € V we have

cos((a +3j -2-1) +—2—1T) -cos((a+j-21)—-gl = -v3 sin(a+j.2_"),
L 3 3 3
so that
. . 2T ]
(1) Y3 sin(a + j =) €EQ for 3 = 0,1,2.

We have to show that if o,B € V then a -= B € V. Note that

cos ((a = B) +j—2§1) =

= [cos(a + j—g—q—)] « [cosB] + [%] * [V/3 sin(o + j-23—1r)]° [ V3 sinB]

and all values in brackets are rational numbers; thus, we have

cos((a - B) +3 =L) €@ for j=0,1,2.,

LEMMA 6. For every [b,c,d] € 1(Q) there exist G,K € @ such
that [b,c,d] =1[3,G,K]}.
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[t] € T(Q) we have [t] Lo 1t (ef. [515 Proposi-
(b,c,d) * (b,c, -d) = (b%,0, - 2b7)
(b,c,d] "} = [b,c, -d] . Keeping also

PROOF. For
tion 3.1); ©
is a trivial triple,

in mind that Db # 0
perform the following calculations:

n the other hand,

so that
and that the triple (3,2,0) 1is trivial we

.

2 cd .3 3¢ 3
b.c,a)? = (b2,ca, 2% -33%% = %, —;§-1>,(2. - -——;5-)b ) =
3.2 3.2

cd 3¢ 2 3 cd 37 ¢
« (1, —3 e ) *» (b°,0,2b | B (1, —x 2 - ) * (3I2I0) A

b3 b3 ' b3 b3

3.2 32
3¢ 3 cd ' 3¢ 3 cd,2
2o (3'2 - ’ 3 _"') ~ (3,2 and 3 ) -
_ b3 b3 b3 N
~ 332 3ed
Thus, putting G =2--———, K = 3°—5 we have [b,c,dl=1[3,GK] g
b b

Here is the main result of this section.
THEOREM 7. The mapping

(@) >+ v/3v: [3,G,K ]+ arc cosJ% + 3V

is a group isomorphism.

2 2.3 3.2
P -—
R?OF. As K" = 2737 - 3°G” > 0, we have |G| < 2 that is, there
exists such I € gl that E

(2) G = 2cosrl,

As the consequence of K2 = (6 /§'sinP)2 we may put

(3
) K = 6 V3 sinTr.

The choice of

of T' by “K instead of K would amount to the substitution

-T

I and would give rise to another isomorphism. Thus,
e
mma 6 we see that every element of Tt(Q) is represen-

ted by a tri _ —
riple (3, 2cos T, 6 V3 sinT) for a suitable I' € s7. We



will show that: (i) starting with (3,G,K) € T(Q) we get r € v,

(ii) (3,G,K) is trivial .iff T € 3V, (iii) equivalent triples give
angles congruent modulo 3V, (iv) multiplication of triples modulo
trivial ones corresponds to the addition of angles, (v) the func-

tion is surjective.

Start with the identity

cosI' = 4 cos3-§ - 3 cosg-.

Multiply it by 2, put % = 2 cos-g_, G = 2 cosl'. The result is

(4) £(2) = 0 where f£(2) = 23 - 32 - G.

The roots are

(5) gj =2'cosYj r 3=0,1,2, where Yj =y + 3 % and >3y =r.

Let us now proceed with the proof of the steps (i)-(v):

(i)  if (3,G,K) € T(@) then, by (2) and (3), we have
- - S ey P+ 2T o _ G 1 K
cosT = > € @, cos(l % 3 ) 7 T35 €0

and T € V.

(i1) If the triple (3,G,K) is trivial then f(2Z) given by (4)
_ g.
decomposes over @ and cosyj = —31 €@ for 3j=0,1,2. But

it means that Yy € Vv and I = 3y € 3V, Conversely, if T € 3V
then Yy € V and the roots gj . 3 =0,1,2, given by (5) are
in @ and the triple (3,G,K) is trivial. :

(iii) ﬁet (3,G,K), (3,6',K') € T(Q) be two equivalent triples.
Then for a trivial triple (l,x,y) we have

(3,6',K') = (3,G,K) ~(1,%,y).
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Note that (1,%,¥) +(3,2,0) = (3,y, -3 x) corresponds to an

angle in 3V, call it 3A, as it was shown in (ii). Form

y = 2 cos 34, -33x = 6/3 sin34 we get

(a,x,y) = (1, - ng sin3A, 2cos 3A) .

G
If I = arc cos-%- and T' = arc cos—5— i the equation in-

volving the equivalent triples becomes

(3,2cos I, 6 /3 sinl') =(3,2cos (" + 34), 6/3 sin (T + 34)),

that is TI'' =T + 3A.

(iv) It is sufficient to verify that (3,2cos T, 6 /Y3 sinT) =

(3,2 cosA, 6 V3 sinA)=(3,2 cos(I'+ A), 6 /Y3 sin(T + A))*(3,2,0).

(v) If T € v, form the polynomial f using the identity which
precedes (4): By (1), K =63 sinl € @, that is, there
exists a triple (3;G,K) € T(Q) that is sent into the class
r + 3v.

Resuming the argument: in view of (i), the mépping défining
' in terms of G and K via (2) and (3) has, in fact, its values |
in V. By (iii) it is well-defined on T(Q) with values in V/3V.
Then, (iv) shows that the mapping is a homomorphism. From (ii)
it follows that it is injective and from (v) it follows that it

is also surjective. "

§ 3. THE INTEGRAL PARAMETRIZATION OF T(Q)

het = = - ‘% + ng i € € be the third root of unity and

non-zero elements of this ring we may form its "projective line"
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L= z[w]*/z*. It should be clear that L with the multiplication
induced by multiplication in € becomes a group: only the exis-
tence of inverse classes deserves any proof but this, too, is
evident from the fact that ®w = - 1 - w € Z[w] and the equalities
[z]1-0z] = [2zz] = [1].

In this section we will prove the following result.

THEOREM 8. L/L° = 1(Q).

The proof of Theorem 8 will follow some auxiliary  state-
ments and constructions.

. First, consider the group ring RZ, of the group. Z 4 gen-

3
erated by o, and with coefficients in a ring R. If v'= v, t vy0
+ v202 € U(RZ;), we define its transpose vt=vo tv,o + Vlcz and
we say that v is orthogonal if V-l = vt. Clearly, this loan of
terms of linear algebra is due to the 3-dimensional representation
0 0 1\
of IRZ3 induced by the mapping o * 1 0 O " "Orthogonal
' : ' : g1 0 '

elements form a subgroup of U(RZ3) which is denoted by Ort(RZ3) "

We will need later the following fact which we have not
managed to pinpoint to any specific textbook on group rings.

LEMMA 9. If v € IRZ, and v3=l then v = oJ for j=0,1o0r
20

PROOF. Consider the homomdrphism of rings

e:IRZ3—*¢:o+*w.

3 '
If v> =1 then 6(v) = w); so, v = o) (modKer®), that is,

s
Xw where w =1+ 0 + 02 and x € IR. But w =3w and
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(3x)w (3% + 309x + 0°J)= 0.

2 + 30‘Jx + Ozj is real

It means that either x =0 or yj(x) = 3x
and equal to zero or yj(x) is not real but it annihilates the
element w. The second possibility does not occur as it would
force j =0 but yo'(x)==3x2 + 3x + 1 1is positive for all x €1R.
The third one is also excluded as the annihilator of w 'is the
principal ideal generated by 1 - ¢ and it is easy to see that
yj(x) does not belong to it for j=1,2 and any x € IR. Thus, we
must have x = 0 and v = o9, a »

LEMMA 10. t(Q) = Ort(Q ﬁ3)/(0rt(QZ3))3.

PROOF. To begin with, to each triple of the form (3,G,X) € T(Q)
we ascribe, as in the proof of Theorem 7, the angle T and, con-
seqguently, the ordered set {go,gl,gz} C IR with gj's given by

(5). Next, define h = hO + hlo + h202 € IR?Z3 , Where

g.+1 2cos(y +3 %})+1
(6) n. = 33 = 3 r 3=0,1,2, y =

i

2 .
-~

As the elements 9,19;+9, are the roots of (%) given by (4),
they satisfy the relations

oy 9, =V, 9.9 * 00, ¢ 929, = = 3 S59:92 = G-
These relations and (6) yield

(7) h +h, + = : = - G- 2
o*PBy *hy = 1, hoh) +hihy) +hh =0, h hh, ——

The first two relations imply that h € Ort(Isz).

Next, take two triples (3, 2cos!I',6 V7 sinl') and

(3,2co8 I'' ,6 /T 8inrl') that lead to h = hy + hlo + h202 and h's=

= ’ . !
ho + hio - hio respectively, where
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2cosy +1 2cosy' +1 : .
= I = = = D',
ho = 3 , hO 3 r 3y =T, 3y
Direct calculations using (7) and the identity cosa cosB =

= -%—(cos(a + B) + cos(a - B)) show that

2cos((y +y")+ J"23—Tr)

. . SR SIaN kN
(8) hh' —hg+hi0 +h'2'0 with hj' 3 ’ j=0,1,2.

Hence, putting Gj = 2cos(I' + j —231) for j =0,1,2 we get

G.+1

(9) H=h3 =H0+ch +H202, where Hj = -1-3——— €e@ for j=0,1,2;

so that h3 = Ort(IRz3) N QZ3 = Ort(Qz3) . The announced isomor-

phism sends the class [3, G,K] to the class of H = h3 in

Ort(QZ3) modulo the subgroup of third powers, (Ort(QZ3))3. It is
well defined: if (3,G,K) and (3,G',K') represent the same class of
T(@®) then, by (iii) of the proof of Theorem 7, TI' - T = 3A For

some A € VvV, that is Y'- Y =A and h" = h'h-l = h" +h'c -i-h“cr2
Com o 1 2
2cos (A + J-3—)
with h" = 3 lG ®, j=0,1,2, that is h' = hh" with

J
h" € Ort(Qz,). Thus, we have h'd = h3(mod.(0rt(QZ3))3).

The mapping is injective: if starting with (3,G,K) we ob-
tain h3 € (Ort((DZ3))3 then, in virtue of Lemma 9, h is in
Ort((pz3) modulo third roots of unity in IRZ3 ,which are o7 and

) is also in Ort(q)z3). But h € Ort(QZ3) means that cost € @
for §=0,1,2, that is, Y€ V, so that 3y =TI € 3v and (3,G,K)
is trivial. .

The mapping is surjective: if r +so +to? € Oort(Qz,), take

tge triple (3, 3r-1,9(t -s)). First, verify that it satisfies
K¢ = 2233 _ 33G2 (and it is guaranteed by the orthogonality rela-
tions for r +so + tcz) and then verify that the triple is sent

to h® = r + 5o + to?, the desired image. g

The last part of the proof shows that (9) can be rewritten
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2 2
must have n + 3m & Qz, too, and n-m=2xXx", n+ 3m = 2y for
some X,y €%Z. But y-x=y +X (mod 2) and 2(y - x)(y + x) =
= 2y2 - 2x2 = 4m, implying that both y =X and y +x are pair

and, consequently, m is pair, the contradiction. 4

The parametrization announced in the title of the section

appears in the formulation of our next result.

LEMMA 12. The formulas

( 2

O I
== 2
a2 - aB + B
(12) | § 5= —5 AB
a2 - AR + B
2
i -AB + B
e 7)

| A® - AB + B
describe the group isomorphism

y: L > Ortl(QZ3) : [A+ Bw] ®»r + so + t02

’

where Ortl(QZ3) = {r + so + t02 e Ort_(QZ3) t:r+ s+t =1}.

PROOF. Consider the group homomorphism

0. -1
Y Ort]SQZB) -+ GL(2,0) : o ¥ (1 ,_1>.

It is the restriction of the classical ring homomorphism

‘IRZ3 » L(2,1IR) induced by the image of o defined as above. For

V=r+ soc + to2 € Ortl(QZ3) we have

r - t - (s = t)
p(v) =

Orthogonality relations yield det(y(v))
terization of Imy:

1 and we get the charac-
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X -(x-y)
ME Imyp iff M= for some x,y € Q with

x - xy+y? =1
X-y y :

The equation ¢(v) = I, brings readily v = 1, so that OrtﬂQZ3)

is isomorphic to 1Imy.
Next, define the auxiliary monomorphism
g =1

A: Zlwl* > GL(2,0) : w *
1 -1

which is the matrix notation of multiplication of complex numbers
using the basis {1,w}, and employ it to define

n:L-oIme : [z] + A(z) (A (Z)) 1.

Note that A(Z) = det(A(2)) (A\(z)7, so that n([z])= m(A(Z))ZI

which is clearly a well-defined homomorphism. Its explicit expres-
sion is '
i a2 - B2  _(2aB - B?)

, aA%- aB+ B2 2AB - B2 A% - 2aB y

n(la + Bw])

If n([2]) = I, then direct calculation forces B = 0, that is
z € Z or [z] = 1€ L and n is injective. Put Y = w"l on.
We compare ¢(V) and n([z]) using two relations: Try(v) = 3r -1
and r + s + t = 1. Hence, we obtain the formulas (12).

To show surjectivity of Yy we use Lemma 1ll. We take v=r +

2

+ 50 + to® € Ort)@%Z3) and want to exhibit z € Z[w]* such that

p(lz]) =v. Put r = %% with m, n € Z, gcd(m,n) = 1. By Lemma

.
11, there exist B, C € Z such that n - m = B2 and n+3m=C .

c? 5 38° ~ A=
This gives n = —=——7=— and as B = C (mod 2) we may put

B;C € Z. Then n = A® - AB + B2, By (11),
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4_2.2 9B(B - 2A . i
@ =2 =\ F - ) substituting - 2A2c 280 8
2 2 2
o A“-AB+ B , A" - AB 4‘32
4 K=9 B2 - 2AB in (10) we receive on th
- ce more
. A2__AB,+B2 e formulas

(12), so that we found the desired z=A + Bw,

and this completes
the proof of the lemma.

PROOF OF THEOREM 8. Note that {1} C (0rt(0Z3))> and also that
ort (QZ5)/{% 1} = Ort, (@Z,) . Therefore ort, (0% ,) / (Ortl(qm3))3 =

= Ort(QZB)/Ort(QZ3)3 and, consequently, the conjunction of

Lemma 10 and Lemma 12 giVes L/L3 = 1(Q). 4

§ 4. FINAL REMARKS

1) If we return to Theorem 4 and put (b,c,d) =(3,3r-1,9(t-s)),
the automorphiém o(x) will take the form

o(x) =

tfs(xz + (s - r)x - 2).

it should be noted, however, that the automorphism described by
this formula permutates the roots gj "of the equation £f(X)=0 in
a way that may be visualized as being induced by the clockwise
pPermutation of the angles YJ, so that the automorphism which appears

implicitly in §2 and §3 and sends 9, to g; is, actually, equal
to 02.

2) Let G=2cosI', ' €V and write G in terms of B 2 -

f@ther than using A, B (this change of coefficients expresses the

. o
dlagonalization of the form X2 - XY + Y° over @). We get

c? , 3g2 Excluding the case of C =0 W

-
=

T wWe may write
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If the diagonalization of the form is applieq to

A + By (and then

it is called "the passage to Cartesian Coordinateg") .

get
2 =
2A- B V3 B . 1
-~ = + C———— = — s -

= A + Bw 5 5 > (=C + /37Bi) M the
o

[V3B : - C] represents [z] of the projective 1lipe

L
. With
an understandable abuse of the language, for C#0 we may t
reat
T 1r
[z] € L as the angle A € (- =, — ) such that tanA=-%
’ L) :
For C =0 define A = 5 - Recalling the formula Cos 2a =

2
_ l.=itan"a » we see that T = 24 (including the case ¢ = q

1l + tanza
This formula expresses the isomorphism L =V : A * 2A; the lack

.

of rigour in permitting to talk of "angles" of L 1is compensated

by the nice geometric interpretation of V.

3) Looking for generators of T(Q) we will wo.rk in L/L3.
It will be enough to find factorization of elements in Z[w] and
use it modulo third powers of the factors. The ring Z[w] is a
unique factorization domain, it has 6 units (- w)j, 3=0,....,95,
and here is the description of its prime elements (cf. [31, Ch.
XII and XV): they are 1 - w (which divides 3), rational primes
q such that gq = 2 (mod 3) and non-trivial divisor ap ¥ bpw of

those rational primes p that satisfy p = 1 (mod 3). These divi-

sors exist and are unique modulo the action of the group Dg £t

a
preserves the form X° - XY + v2. In other words: if ( b ) N

P
' . ap here M is
found, all other solutions are of the form M( )r wher
b g
: . p g 1 and
in the matrix group isomorphic to D6 and generated by \-11
1l -1 ’ . ause
(0 _ l)‘ The element 1 - w has only 6 associates bec
I-o=(-w)1-uw.
: nto

. ks 1
Note that the set of 12 divisors of p in Z[w] bred
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6 pairs of opposite numbers, that is, it forms 6 elements in |,
one sees easily that they may be described as [z ], [4z], [wlz]

and their inverses. On the other hand, 9m2 = {1 = w)4 that L
’ s

] = [ = w)4] €L and [w?] = [1 - 0] (mod L3). Note also that
a rational prime q € Z[w] gives [q] = [1] in L. Thus, we see
that any class in L /L3 can be presented using inverse elements
and products of classes corresponding to divisors ap + b w of

‘rational primes p with p = 1 (mod 3), one factor for each p,
and of the class arising from w.

This set of generators of T(@) is analogous to a natural
choice of generators for T(ZZ,Q), the group of classes of qua-
dratic extensions of @. As any quadratic extension is of the form
OIX1/(f), £(X) = X2'-n; one may stay with a square-free n and

. : € '
then the factorization n = (-1)"p; ...p, s € = T, Pyre-- B EP,

leads to the set of generators indexed by elements of the set
{i} v P.

4) In 1770 Euler presented his description of objects which

we call nowadays the rational orthogonal matrices of degree 3 TE

we use the notation with indexed variables hu his result is
stated as follows (cf. [2]1, p. 309): if ho'hl’hz'h3 Sl s
3
Z h_ = %, then the matrix
u=0 Y
2 2 2 2 2(h.h, -h_h,)
hZ +h? -hJ -h3  2(hjh, +h hy) ()3 = Ro™2
1 2 .2 .2 _,2 2(h.h, +h _h;) is in
7| 2(mph, - n hy)  ho-hy +hy -hy (horars fie d
3 2 1@ unf
-h% -h, +h
2(hjhy + hohy)  2(hphy - h hy) B 781 7%2 773

( called "or-
SO(3,0). We encounter here the elements of so(3,0) .

thogonal circulants", of the form
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ort(QZ,) under the natural 3-dimensiona]

as images of elements of
Before expressing r,s, t in termg .
0

representation of U(IRZ3) N
at the Euler's parametrization, although obtaineg .

"h,'s note th
today is retold in clasges

solution of Diophantine equations,
of linear algebra as follows: take the algebra IH of real quater-

3 1

nions, H = {h0+hli+h23+h3k
hes,w-bh-

the conjugation by a unit quaternion wh, as the
orthogonal transformation of ]R3= (xi+yj+zk: x,y,2 €R} and writing

it in the matrix form in the basis {i,j,k} one obtains exactly

Euler's formulas. Eleméntary topologica-l arguments show that the

3 .
-+ S0(3,IR) is surjective. Moreover, one may use for

mapping S
conjugati 'e ' -
jugating h € M\ {0}. Then, putting & = Z h® and h=h_ -
, . u=0 Y (]
- { = - - o
y h,3 - hjk we have h “wh =—i(hwh) . Easy calculations show
that in order to obtain the orthogonal circulant corresponding to
2 .
r +so + t:()'2 € Ort((pz3) with r = C™ - B2 = 2 BZ-BC £t =
5 ‘ an * 2 = 4an '
= 2 -B—iﬂ in = 2 2
4n + 4n = C” + 3B° we may use h=C+B(i+j+k)and

then we have § = 4n.
: b

3 Erd 1) If we want to represent the trivial element of (@ a:
- upde of the form (3,G,K), the triple (3,2,0) is not gOOdtive
nderlying Polynomial is not separable. The representa' -

s obtalne

with th :
e smallest possible denominator of G and K 1
~ 286 g = _:.__3_2_3:_10,
14

fr s 3
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