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Resumo

Máquinas rotativas consistem, em geral, de partes girantes, como eixos, discos e

pás; e mancais, que possibilitam que estes últimos girem livremente. Dentre os diferentes

tipos de mancais, os mancais hidrodinâmicos ou de �lme de �uido são muito usados em

um grande número de máquinas. Mancais do tipo cilíndricos, ou journal, são o tipo mais

simples de mancais hidrodinâmicos. Estes utilizam uma �na camada de lubri�cante, fre-

quentemente óleo, e conseguem suportar altas cargas, além de apresentar baixo atrito.

No entanto, apesar de suas diversas vantagens, rotores com mancais hidrodinâmicos ap-

resentam fenômenos particulares devido a interação entre �uido e eixo que giram. Estes

fenômenos podem ser classi�cados em dois tipos: oil-whirl e oil-whip. No oil-whirl, um

componente sub-síncrono de aproximadamente 0.5 vezes a velocidade de rotação surge

no espectro da resposta. Alternativamente, o oil-whip apresenta uma frequência não sín-

crona, que é relacionada com a frequência natural do rotor, e seu surgimento apresenta

condição de alto risco muito grande para o sistema rotativo, pois pode ocasionar danos

consideráveis neste. Devido a natureza dos mancais cilíndricos, estes inevitavelmente

se encontram em condição de oil-whip, a medida que uma rotação limite seja ultrapas-

sada. Apesar disso, podem ocorrer situações em que a ocorrência do oil-whirl anteceda

o fenômeno mais crítico de oil-whip, o que representa um comportamento seguro para a

máquina.

Grande parte do projeto de rotores é feito por meio de análises lineares. No entanto,

a detecção to tipo de instabilidade não pode ser feita utilizando os métodos tradicionais da

teoria linear. O fenômeno da instabilidade �uido-induzida pode ser observado através das

lentes da teoria de bifurcação como correspondendo a uma bifurcação de Hopf. Esta, por

sua vez, pode ser super-crítica ou sub-crítica. O primeiro caso corresponde ao oil-whirl,

havendo a criação de ciclos limites estáveis após o do limiar de instabilidade, enquanto

que o segundo ao oil-whip, onde ciclos limites instáveis emergem. Desse modo, é possível

detectar se um sistema rotativo vai apresentar oil-whirl ou oil-whip sabendo o tipo de

bifurcação presente. Este trabalho apresenta uma abordagem para prever o tipo de bifur-

cação de Hopf de sistemas rotativos por meio do método da redução pela variedade central

(CMR da sigla em inglês). A base do método consiste em obter a variedade central to

sistema e estudar se este apresenta oil-whirl ou oil-whip. A principal contribuição deste

trabalho é a utilização do método da parametrização de variedades ou superfícies invari-

antes para obter a variedade central, que possibilita a aplicação em sistemas rotativos de

altas dimensões e estende grandemente a aplicação do CMR na obtenção de ciclos limites

que surgem de bifurcações de Hopf, que, em abordagens anteriores, estavam limitadas

apenas para regiões próximas do ponto de bifurcação. Além de estudos numéricos, este

trabalho apresenta experimentos onde alguns parâmetros do sistema são alterados e o tipo

de instabilidade é aferido e comparado com previsões teóricas.



Palavras Chaves: Dinâmica de rotores; mancais hidrodinâmicos; instabilidade �uido-

induzida; bifurcação de Hopf; redução pela variedade central.



Abstract

Rotating machines generally consist of rotating parts, containing the shaft, disks

and blades, and bearings, which allow the latter to rotate freely. Among the di�erent

types of bearings, hydrodynamic or �uid-�lm bearings �nd very common use in a wide

range of machines. Plain or cylindrical journal bearings are the simplest type of �uid-�lm

bearings. Using a small amount of lubricant, usually oil, these bearings can withstand

a large load while also providing low friction. However, despite their many advantages,

rotors supported by �uid-�lm bearings are known to present particular phenomena due to

the interaction between the rotating �uid and shaft. These phenomena can be classi�ed

into two distinct types: oil-whirl and oil-whip. In oil-whirl, a subsynchronous compo-

nent approximately 0.5 times the rotor speed, becomes evident in the response spectrum.

Conversely, oil-whip presents a nonsynchronous frequency in the spectrum, correlated

with the rotor's �rst critical speed, posing a severe threat to the rotor system as it can

result in signi�cant damage. Owing to the nature of plain bearings, they inevitably ex-

hibit oil-whip once a certain threshold speed is exceeded. However, there are instances

where oil-whirl may manifest before the more hazardous oil-whip, representing a safer

operational behavior for the machine.

The design of rotors is mostly performed through linear analysis. The detection

of the type of instability, however, cannot be done through traditional linear theory. The

phenomenon of �uid-induced instability can be seen through the lens of bifurcation theory

as corresponding to a Hopf bifurcation, which can be either super- or sub-critical. Here,

the former case corresponds to oil-whirl, as there is the creation of stable limit cycles

after the onset speed of instability, while the latter to oil-whip, in which unstable cycles

are created. Hence, detecting the type of Hopf bifurcation, tells whether one experiences

oil-whirl or oil-whip. This work presents an approach to predict Hopf bifurcations by

means of the Center Manifold Reduction (CMR) method in rotor systems. The basis of

the approach is to obtain the center manifold of the bifurcating system and study it to

learn whether the system will present oil-whirl or oil-whip. The main contribution of this

work lies in the use of the parameterization method for invariant manifolds to obtain the

center manifold of the system, which allows the application to high-dimensional rotors

and greatly extends the applicability of the CMR to estimate limit cycles arising from the

Hopf bifurcation, that were, in previous approaches, limited to only a small range around

the bifurcating point. In addition to numerical studies, this work presents experiments in

which some parameters of the rotor are changed and the type of instability assessed and

compared with the theoretical predictions.

Keywords: Rotordynamics; �uid-�lm bearings; �uid-induced instability; Hopf bifurca-

tion; center manifold reduction.
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1 INTRODUCTION

Rotating machines play a fundamental role in several industrial processes, as well

as being important parts in the power generation. The basic components of a rotating

machine are: the rotor, which consists of the shaft, discs and blades; the bearing, which

supports the rotor and allows it to rotate freely; and the support structure, which �xes

the bearing to the ground. The di�culty in studying these types of machines lies in the

complex interaction that exists between these various components.

Among all parts of the machine, the bearing is arguably one of the most important

components, as it is responsible for supporting the rotor and allowing it to rotate freely

around its axis of rotation. Without bearings, the rotor would not be able to rotate stably

and safely, which could cause damage to the machine or even lead to failure. In addition

to supporting radial and axial loads, the bearing is responsible for reducing the friction

between the rotor and stator, which minimizes the wear of the components and increases

the e�ciency of the machine, as it allows it to operate at higher rotations.

The choice of the type of bearing to be used in a rotating machine depends on

several factors, such as the operating speed, the load to be supported and the environmen-

tal conditions. One of the most commonly used types of bearings is the hydrodynamic

or journal bearing. This type uses a �uid �lm, usually oil, to support the load of the

rotor and allow it to rotate freely. The rotation of the shaft over the �uid �lm creates a

pressure gradient that supports it. One of the main advantages of hydrodynamic bearings

is their ability to support higher loads and provide less friction compared to other types

of bearings, which makes them ideal for high-load and high-speed applications.

Hydrodynamic bearings played a pivotal role in the early 1900s by revolutionizing

the �eld of mechanical engineering and enabling the development of various industries.

During this era, the expansion of heavy machinery and industrial processes was rapidly

underway, and the demand for reliable and e�cient bearing solutions was paramount.

Fluid-�lm bearings provided a groundbreaking solution by replacing traditional plain

bearings and babbitt bearings with a self-lubricating, low-friction design. This innova-

tion allowed the development of higher-speed and heavier machinery, such as turbines,

engines, and generators, which were essential for powering the industrial revolution. By

separating the shaft and bearing surfaces by a thin �lm of lubricating �uid, �uid-�lm

bearings signi�cantly reduced friction, wear, and heat generation, ultimately improving

the reliability and lifespan of industrial equipment. Their importance in the early 1900s

marked a signi�cant step in the advancement of mechanical engineering and the rapid

growth of many industries.

The simplest type of journal bearing consists of a cylindrical shaft rotating within

a cylindrical sleeve, known as plain journal bearings. However, one signi�cant concern
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in these bearings is the presence of �uid instabilities. These can lead to undesirable

vibrations and, in extreme cases, catastrophic failure of the bearing or machine. In order

to counteract this, di�erent bearing geometries have been proposed, such as elliptical bore,

pressure dam, and tilting pad bearings, which make the bearing less prone to instabilities

and increase the e�ciency of the machine (VANCE et al., 2010). Despite the issues

pointed out above, plain journal bearings still �nd use in several applications mainly due

to their simplicity, ease of manufacture, and low cost.

The discovery of �uid instabilities has puzzled researchers for many years since it

was �rst identi�ed around the 1920s (NEWKIRK, 1924). Since then, it was established

that there exist two kinds of phenomena, namely oil-whirl and oil-whip (MUSZYNSKA,

1988). In the �rst kind, a subsynchronous component, approximately 0.5× the rotor

speed, appears in the spectrum of the response. Despite oil-whirl being classi�ed as

an unstable regime, sometimes it is possible to operate during its occurrence (as the

experiments performed in this work showed). On the other hand, oil-whip displays a

non-synchronous frequency in the spectrum, related to the �rst critical speed of the rotor,

and it is a very dangerous phenomenon that can cause great damage to the rotor system.

It is important to mention that, in plain journal bearings, oil-whirl is always followed

by oil-whip. This is simply a feature of this type of bearing. However, depending on

the bearing parameters and the rotor system, there can be cases in which oil-whip can

suddenly appear. It is preferable to encounter oil-whirl before oil-whip because it serves

as an early warning signal for the machine to be stopped.

This work is mainly concerned with the oil-whirl/whip phenomena, speci�cally in

what circumstances the rotor might display oil-whip directly, without the warning signs

of oil-whirl. An important fact about this endeavor is that �uid instability is a purely

nonlinear phenomenon, and cannot be predicted by means of the linearized dynamic

coe�cients approach (LUND, 1987). In this manner, the kind of instability is detected

using the concept of center manifolds (TROGER; STEINDL, 1991). The main advantage

of this approach is its applicability to high-dimensional dynamical systems, which allows

a practical application in real rotating machines with many degrees of freedom (DOFs).

1.1 Objectives and original contributions

This work is focused on the study of �uid-induced instabilities that arise in ro-

tors with hydrodynamic bearings. An approach to predict Hopf bifurcations by means

of the Center Manifold Reduction (CMR) method in rotor systems is introduced. The

main original contribution lies in the application of the parameterization method for in-

variant manifolds (HARO et al., 2016) to obtain the center manifold of the system. The

parameterization method provides a powerful approach to obtain invariant manifolds of
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dynamical systems and greatly improves the range of validity of the CMR method. In

addition to this, the work also presents an original method to obtain quasi-periodic solu-

tions of rotors with unbalance and �uid-instability based on an extended CMR approach.

Some other objectives and contributions are:

� A clari�cation of the �uid-induced instabilities in light of the knowledge of nonlinear

vibrations and bifurcation theory;

� The presentation of an analytical method that can predict bifurcations in rotor

systems in a fast and accurate way. This is an advantage to purely numerical

approaches such as continuation methods and �nite di�erence techniques;

� Experimental observations on the e�ect of disk position and bearing clearance in

the occurrence of oil-whirl and oil-whip;

1.2 Manuscript outline

The rest of this thesis is divided as:

� In Chapter 2 a review of the current literature on the most important topics related

to this work is performed;

� The theory developed is reported in Chapter 3;

� Chapter 4 describes the test rig used to perform the experiments;

� The results of this work are reported in two chapters: the numerical study in Chap-

ter 5, and the experimental in Chapter 6;

� The manuscript ends with some conclusions in Chapter 7.
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2 LITERATURE REVIEW

2.1 Fluid-induced instabilities: oil-whirl and oil-whip

Despite the several advantages brought by the use of journal bearings, its opera-

tion came with an inherent problem, namely the �uid-induced instability. The discovery

of such a phenomenon in the early 1900s attracted a lot of attention from researchers

and designers. One of the �rst accounts of this phenomenon was reported by Newkirk

(1924). Later, Newkirk and Taylor (1925) identi�ed the phenomenon as due to the oil

�ow, and termed the name oil-whip, where whipping was de�ned as a high amplitude

whirling outside a major critical speed. They also provided more accounts of the phe-

nomenon, studying the in�uence of several parameters including misalignment, radial

clearance, bearing length, and oil supply. In addition, they hypothesized an explanation

of the mechanisms at play, i. e., that the oil �ow comes into resonance with the rotor

at about twice the critical speed (Figure 2.1). Kimball (1925) suggested that frictional

e�ects between the oil and the rotating shaft are the main cause of oil-whip. This was

a nonintuitive hypothesis as friction is generally seen as providing damping, which has

a stabilizing e�ect. Smith (1933) deduced the equations of motion considering a �exible

shaft and a symmetric and unsymmetric bearing. He concluded that the cross-coupled

bearing coe�cients were the major feature leading to the loss of stability. The explanation

of the oil �ow and frictional e�ects supplied a better understanding of the phenomenon

of �uid instability, but it still did not cover the fact that oil-whip emerges at about twice

Ω

Vm≈Ω/2R
Shaft

Fluid

Bearing
Casing

Vt=ΩR

Figure 2.1: Newkirk explanation of oil-whip: as the shaft rotates, the �uid starts to
display a velocity �eld. At around the midspan of the radial clearance, the �uid will have
a velocity of approximately Vm ≈ Ω/2R. Hence, when the speed reaches twice the critical
speed, the �uid speed will match the natural frequency of the rotor, causing oil-whip.
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the critical speeds but it maintains for higher speeds as well.

Robertson (1933) provided some theoretical calculations that suggested the shaft

with �uid-�lm bearings was unstable at all speeds. However, his analysis considered the

negative pressure region of the hydrodynamic pressure distribution. By neglecting such

region, Poritsky (1953) was able to show the existence of a radial component that stabilizes

the system up until around twice the �rst critical speed. Nonetheless, these theoretical

results were not in agreement with later experiments done by Newkirk and Lewis (1956)

and Newkirk (1956) that reported cases in which oil-whip does not develop prior to �ve or

six times the �rst critical speed. In addition, Pinkus (1956) reported a hysteresis e�ect,

where a heavy and light rotor showed di�erent onset of instability, and a transient region

before the rotor enters into full oil-whip. Later, Hori (1959) summarized the experimental

results and developed a theoretical approach explaining them.

Despite a good understanding of the causes and e�ects of �uid instability phe-

nomenon, there still was no clear distinction between oil-whip and oil-whirl, and many

researchers did not consider the latter case to be an unstable regime. Muszynska (1986,

1988, 2005) performed extensive numerical and experimental work on the �uid instability

phenomenon. She de�ned that oil-whirl consists of a subharmonic vibration in which the

rotor vibrates at around 0.5× the shaft speed, and the rotor presents a shape related to

its rigid body mode. Oil-whip was de�ned as a non-synchronous vibration, where the

rotor vibrates at a constant frequency that is close to the �rst critical speed of the sys-

tem. In this regime, the rotor presents a shape related to the �rst �exible mode. Both

oil-whirl and oil-whip are independent of the amount of unbalance in the rotor system,

which makes them a self-excited vibration, an inherent nonlinear phenomenon where there

exists a transfer of energy within the vibrating system (NAYFEH; BALACHANDRAN,

1995).

Since the 80s, researchers had already a good grasp on the causes and mecha-

nisms related to �uid instability. The research that followed clari�ed some aspects of

oil-whirl/whip. Tonnesen and Lund (1978) studied the occurrence of �uid instability in

a light and heavy rotor. They showed that adding damping to the supports stabilized

the system. Chauvin Jr. (2003) experimentally studied the e�ects of oil and bearing

temperature, as well as the occurrence of �uid instability at low eccentricities. El-Shafei

et al. (2004) performed experiments in a �exible rotor on two plain bearings. They

showed the e�ects of unbalance levels, �uid pressures and coupling misalignments on the

oil-whirl/whip. de Castro et al. (2008) studied the e�ects of unbalance in a rotor with

journal bearings using the in�nitely short bearing assumptions, validating its results with

experiments. Fan et al. (2011) performed experiments to study the dynamics of a rotor

subjected to oil-whip and annular rubbing, and proposed a method based on the Hilbert

transform to predict these phenomena from a rotor start-up response. Sa�zadeh and
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Golmohammadi (2020) proposed a technique to detect oil-whirl/whip using multi-sensor

data fusion.

2.1.1 When does oil-whirl or oil-whip occur?

The occurrence of either oil-whirl or oil-whip, in plain bearings, mainly depends on

the position of the shaft on the locus at the unstable speed. To illustrate this, Figure 2.2

shows the hydrodynamic forces in the auxiliary frame rotating with the shaft whirl as a

function of the dimensionless eccentricity ε = e/cr, being cr the radial clearance. As the

journal gets closer to the bearing's center (eccentricity decreases) the tangential compo-

nent of the oil-�lm force, which is destabilizing, gets stronger than the radial component,

which is stabilizing. Oil-whip is triggered when the tangential component reaches su�cient

strength to displace the shaft signi�cantly from its equilibrium position, as illustrated in

Fig. 2.3a. Conversely, when this tangential force is comparatively weaker, oil-whirl en-

sues. In the case of oil-whirl, the amplitude of the journal inside the bearing increases

but remains much closer to the equilibrium, as Fig. 2.3b shows.

The above discussion implies that higher eccentricities or reduced attitude angles

are more prone to induce oil-whirl rather than oil-whip in the rotor system. However,

even when the rotor displays oil-whirl, as the speed increases, the shaft will get closer

and closer to the bearing center (the eccentricity will decrease) and, for plain bearings,

oil-whip is inevitable. Nonetheless, it is much better to have oil-whirl prior to oil-whip

as a warning sign, so that the machine is stopped immediately and oil-whip is avoided.

It is worth mentioning that this analysis is merely qualitative, and it cannot be used to

precisely point out when a rotor will experience oil-whip or oil-whirl.
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Figure 2.2: Forces on a journal bearing as a function of eccentricity.
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(a)

Equilibrium 
position

Locus

Bearing wall

(b)

Figure 2.3: Typical oil-whip (a) and oil-whirl (b) response for an initial condition close
to the equilibrium. Note the di�erence between the equilibrium position along the locus
in both cases.

2.2 Hydrodynamic forces using linearized dynamic coe�cients

It is common practice in rotordynamics to model the e�ect of bearings using lin-

earized dynamic coe�cients. In this case, instead of considering the full model of the hy-

drodynamic force, the bearing is included as a spring-damper system in the rotor model.

Hence, the bearing force is often given as,{
fy

fz

}
=

[
kyy kyz

kzy kzz

]{
uy

uz

}
+

[
cyy cyz

czy czz

]{
u̇y

u̇z

}
(2.1)

where kij and cij (i, j = yy, zz, yz, zy) are the sti�ness and damping coe�cients. Fig-

ure 2.4 depicts this approach to represent the bearing. These coe�cients can be obtained

directly from the solution of the hydrodynamic pressure, and it is a very simple and ef-

fective way to model rotor systems. Stability analysis can be performed by including the

coe�cients in the �nite element model of the rotor and studying the eigenvalues of the

system (FRISWELL et al., 2010). When the real part of any eigenvalue crosses the real

line, the system becomes unstable, indicating �uid instability.

The onset speed of the �uid instability can be reliably obtained using the model

of Eq. (2.1), provided the coe�cients are accurate. A lot of work has been done to

correctly obtain these coe�cients and the onset of oil-whirl/whip. Lund (1987) reviewed

this approach and discussed its limitations. Elrod and Vijayaraghan (1994, 1995) included

the e�ects of cavitation in the obtention of stability boundaries. Guo and Kirk (2003b,

2003a) studied the e�ect of damping in the unstable regions. They showed that damping,
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Figure 2.4: Modeling the hydrodynamic forces on a journal bearing using dynamic coef-
�cients.

either in the shaft or in the bearing support, can suppress the �uid instability. Along these

lines, Sorge (2008) proposed using dry friction in the journal housings to provide damping

and reduce or eliminate oil-whip. Someya (1989) provided extensive sample calculations

of dynamic coe�cients for several types of bearings and in di�erent con�gurations.

Some works focused on obtaining the dynamic coe�cients experimentally. Zhang

at al. (1992b, 1992a) presented a frequency-based technique to obtain the dynamic co-

e�cients and applied it to numerical and experimental studies. Tieu and Qiu (1994)

proposed a method that can detect the coe�cients using unbalanced responses, excluding

the need for complex excitation equipment. Tiwari and Chakravarthy (2009) presented

a method for the simultaneous estimation of the bearing parameters and residual unbal-

ance in a rigid rotor. Li et al. (2016) proposed a time-domain-based method consisting

in reconstructing the oil-�lm forces in order to obtain the dynamic coe�cients.

Despite the e�ectiveness of the dynamic coe�cients approach to model the �uid-

�lm forces and in to obtain the onset speed of instability, it cannot be used to know if the

rotor will display oil-whirl or oil-whip. Since the force in Eq. (2.1) is linear, the stability

is given by the eigenvalues of the system. The transient response when a real part of an

eigenvalue crosses the real line is simply an exponentially increasing amplitude. However,

the nonlinear analysis, and the experiments for that matter, clearly show that the system

amplitude reaches a limit cycle in the oil-whirl and it is limited by the radial clearance

in the oil-whip (see Fig. 2.3). Therefore, to know the type of �uid instability, one has to

rely on nonlinear analyses such as the ones presented in the following sections.
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2.3 Hopf bifurcation theory

As shown in Fig. 2.3, the oil-whirl/whip phenomena consist in the origination of

limit cycles in the dynamics of the system. Limit cycles can only occur in nonlinear

systems (STROGATZ, 2018), and hence, one cannot use the traditional approach of

using linearized dynamic coe�cients, reviewed in the last section, to study these cycles.

The most basic way in which a limit cycle is created is through a Hopf bifurcation (or

Andronov-Hopf). Consider a dynamical system given by the following equation of motion,

ẋ = f(x, ξ) (2.2)

where x ∈ RN contains the displacements and velocities, f : RN ×R → RN is a nonlinear

map describing the dynamics and ξ ∈ R a parameter. The conditions for the occurrence

of a Hopf bifurcation in this dynamical system are (HASSARD et al., 1981; WANG;

KHONSARI, 2006a):

� The system has an equilibrium solution x0 = x0(ξ);

� The jacobian fx(ξ) = ∂f/∂x has a pair of complex conjugate eigenvalues λ(ξ) =

σ(ξ) ± jω(ξ) such that when the parameter crosses a critical value ξ > ξc, one has

σ(ξc) = 0 and ω(ξc) = ω0. Also, the remaining eigenvalues have negative real parts,

which means that only one mode becomes unstable;

� f is analytic in the neighborhood of (x, ξ) = (x0, ξc);

� The rate of change of the real part of the eigenvalue with respect to the parameter

satis�es dσ(ξ)/dξ ̸= 0.

For a rotor on �uid-�lm bearings, perfectly balanced, one can �nd that all the above

conditions hold by assuming the parameter ξ as the shaft speed Ω. A Hopf bifurcation

can lead to two types of behavior, which are labeled super-critical and sub-critical. The

di�erence between the two lies in the stability type of the limit cycles, which are stable

in the super-critical case and exist for Ω > ωth, and unstable for the sub-critical case and

exist for Ω < ωth, where ωth denotes the onset speed of instability. Figure 2.5 depicts the

two kinds of Hopf bifurcations and their e�ects on the system's dynamics. Starting from

the super-critical case, Figure 2.5a, when the speed is Ω < ωth, the rotor has a stable

equilibrium solution. Hence, when an initial condition A is given, the system will arrive

at this solution. However, after Ω > ωth, this equilibrium solution becomes unstable and

a limit cycle emerges due to the Hopf bifurcation. When two initial conditions B and

B' are given, the rotor will always tend to the limit cycle. One may relate this behavior

to the oil-whirl shown in Fig. 2.3b. The other case is presented in Figure 2.5b, where

there is the emergence of an unstable limit cycle (also known as stability envelope) that
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Figure 2.5: Types of Hopf bifurcations and their e�ects on the dynamics: super-critical
(a) and sub-critical (b) (Source: Chasalevris (2020)).

extends prior to the threshold speed ωth. When Ω < ωth, the rotor has both the stable

equilibrium and the unstable limit cycles. Depending on the initial condition, it may

or may not reach the equilibrium curve as shown in Fig. 2.5b. As the threshold speed

is passed, the equilibrium solution becomes again unstable, but now there are no other

stable solutions nearby and the amplitude of the system may reach very high levels. This

behavior resembles the oil-whip case observed in Fig. 2.3a.

The above discussion indicates that the type of Hopf bifurcation will dictate

whether one will experience oil-whirl or oil-whip. It is also worth noting that, in the

sub-critical case, oil-whip can be triggered before the onset speed ωth, provided a strong

enough disturbance is given to the rotor. Therefore, in addition to the instability thresh-

old, the type of bifurcation and the amplitude of the emerging limit cycles become critical

design parameters to ensure a safe operating regime for the machine.

A lot of research was done aiming at estimating the limit cycles. Myers (1984) and

Hollis and Taylor (1986) applied Hopf bifurcation theory on a rigid rotor supported by

�uid bearings. The former used the in�nitely long (Sommerfeld) model to represent the

hydrodynamic forces, while the latter used the in�nitely short (Ocvirk) bearing approx-

imation. The approach consists in performing a Taylor expansion of the hydrodynamic

forces up to the third order. The information on the stability of the emerging limit cy-

cles is contained in the second and third components of the force. Hollis and Taylor also

showed that the type of bifurcation depends on the bearing parameters as well as the load.

A similar study was also performed by Wang and Khonsari (2005). The same authors

also studied the e�ect of �uid turbulence (WANG; KHONSARI, 2006a) and the e�ect

of shaft �exibility (WANG; KHONSARI, 2006b) in the �uid instability. These studies

examine basic rotor systems (Je�cott model), but the method can be used for complex

turbine-generator systems, as demonstrated by Chasalevris (2020). The research on Hopf

bifurcation showed that the parameters of the bearing and the �exibility of the shaft can
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a�ect the type of bifurcation present in the system. In addition, experimental evidence

of the bifurcation phenomenon was given by Deepak and Noah (1998), who observed the

existence of super-critical and sub-critical solutions.

2.4 Center manifold reduction

The basis of the Hopf bifurcation theory lies in studying the dynamics of a system

on its center manifold. The center manifold is a type of invariant manifold, the others

being the stable and unstable manifolds (WIGGINS, 2003). In the context of vibrating

systems, invariant manifolds can be seen as extensions of the modes of vibration. While

the latter is a hyper-plane in the phase space, the former is a curved hyper-surface, that

accounts for the nonlinearities present in the system. To illustrate this fact, consider the

following nonlinear two DOF spring-mass-damper system shown in Fig. 2.6. The equation

of motion is given as,

Mẍ+Cẋ+Kx = f(x), (2.3)

where,

x =

{
x1

x2

}
, M =

[
m 0

0 m

]
, C =

[
c −c
−c 2c

]
, K =

[
2k −k
−k 2k

]
, f(x) =

{
−γx31
0

}
, (2.4)

with m = 1 kg, c = 0.03 Ns/m, k = 1 N/m, and γ = 0.5 N/m3. The system exhibits

two distinct modes: one wherein the masses move in synchrony, and another where they

move in opposite directions. These modes can be seen as motions occurring in a hyper-

plane on the phase space, which has four dimensions. Figure 2.7a illustrate this. When no

nonlinearities are present (γ = 0), the long-term dynamics of the system can be completely

described by two planes, which represent the vibration modes. If an initial condition is

given in one plane, the response will remain on it for all time. This means that these

planes are invariant under the dynamics. This behavior is completely changed when the

nonlinearity is considered (γ ̸= 0), as Fig. 2.7b shows. Now an initial condition in either

plane does not remain on it, but leaves, taking over a broad range in the phase space.

x1 x2

m m

k k k

c cγ

Figure 2.6: spring-mass-damper system with nonlinear spring.
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Figure 2.7: Modes of a linear spring-mass-damper system can be seen as planes in the
phase space (a), which are invariant under the dynamics. However, the invariant property
is no longer valid when nonlinearity is considered (b).

Figure 2.8: Illustration of the trajectory in phase space being attracted to an invariant
manifold: the dashed line is the dynamics on the manifold while the solid line is the full
trajectory. Here h, ḣ, γ, γ̇, d and ḋ represent state variables of the dynamical system
(Source: Haller and Ponsioen (2017)).

However, one can still �nd an invariant quantity, namely an invariant manifold, which

has the same properties as the vibration modes in the linear system. In this case, the

manifolds are curved surfaces, tangent to the planes at the equilibrium, which take into

account the exchange of energy between the vibrating modes. Because of the similarities

to linear modes, Shaw and Pierre (1993) called these invariant manifolds the nonlinear

normal modes (NNMs).
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The center manifold is also an invariant quantity, and it is an extension of the

vibration mode that becomes unstable at the Hopf bifurcation. Because near the bifur-

cating point the real part of the eigenvalue of the unstable mode becomes very close to

zero, making it a slow mode (HALLER; PONSIOEN, 2017), the dynamics of the system

will be attracted to the center manifold as time moves on, as depicted in Figure 2.8. This

means that one can describe the dynamics of the system by only studying what happens

on the center manifold (TROGER; STEINDL, 1991). The limitation of this approach is

that it is only valid in the neighborhood of the bifurcation, since as one moves away from

it, the center manifold turns into a regular stable or unstable manifold (depending on the

direction).

The use of center manifolds to obtain the limit cycles is known as center manifold

reduction (CMR), which is equivalent to the application of Hopf bifurcation theory. There

are a limited number of papers that studied the Hopf bifurcation of rotors with �uid

bearings using the CMR. Boyaci et al. (2009) used the CMR to estimate the bifurcation

type and the amplitudes of the limit cycles in a rigid rotor on two �oating-ring bearings.

The results were compared with numerical continuation. Miura et al. (2017) applied the

CMR in a �exible rotor with one plain bearing at the outboard side. They studied the

in�uence of the rotor and bearing parameters on the type of bifurcation and the amplitude

of the cycles. Kano et al. (2019) applied the CMR and a static reduction in a more complex

rotor, with two disks and one journal bearing at the outboard side. They showed that,

besides the �exibility of the shaft and the bearing parameters, the disk position can also

alter the type of bifurcation and a�ect the amplitude of the limit cycles, in addition to

providing experimental evidence for their theoretical �ndings.

As mentioned above, the main limitation of the CMR is that it is only valid in the

region close to the bifurcating point. However, it is possible to improve the accuracy of

the CMR by better approximating the center manifold. An important tool for this task is

the parameterization method for invariant manifolds (HARO et al., 2016), which provides

a systematic way to obtain invariant manifolds of dynamical systems. Some applications

of this method in weakly damped mechanical systems in both autonomous (PONSIOEN

et al., 2018; OPRENI et al., 2021; VIZZACCARO et al., 2022) and non-autonomous

cases (PONSIOEN et al., 2020; TOUZÉ et al., 2021; OPRENI et al., 2023), show that

the parameterization method is a fast and accurate approach to obtaining the response

of nonlinear dynamical systems.

2.5 Bifurcation of cycles

In addition to the Hopf bifurcations, rotors on �uid bearings often experience a

subsequent bifurcation of cycles, what is known as limit point of cycles (LPC). The LPC
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Figure 2.9: Bifurcation of cycles in a rigid rotor with �uid bearings (Source: Chouchane
and Amamou (2011))

consists of a fold bifurcation and it changes the stability of the limit cycles that emerge in

the Hopf point. Chouchane and Amamou (2011) performed extensive numerical studies

on the bifurcation of cycles using numerical continuation. Figure 2.9 shows some of their

results. In this �gure, ε denotes the dimensionless eccentricity of the journal, ω̄ = ω
√
cr/g

is the dimensionless speed and Γ = (µRL3
b)/(2mrc

2.5
r g0.5) the bearing parameter 1. The

solid and dashed lines represent the stable and unstable solutions, respectively. One can

note that the bifurcation of cycles changes dramatically with the bearing parameter. Kano

et al. (2019) also experienced the existence of the LPC in a �exible rotor with two rigid

disks by means of the shooting technique.

The existence of the bifurcation of cycles means that not only the limit cycles that

emerge at the Hopf point need to be of concern, but also the global bifurcating behavior

of the system because, as Fig. 2.9 presents, some solutions extend far away from the

instability point.

2.6 E�ect of unbalance on �uid instability

All the discussion around Fig. 2.5 is valid only for a perfectly balanced rotor sup-

ported by �uid bearings. However, the presence of mass unbalance is inherent to rotating

machinery due to manufacture and assembly errors. When unbalance is considered, the

equilibrium solution turns into a periodic orbit, while the limit cycles turn into quasi-

periodic solutions. These quasi-periodic solutions will be a combination of the periodic

orbit due to unbalance and the emergent limit cycles. Shaw and Shaw (SHAW; SHAW,

1990) studied the e�ect of unbalance in the �uid instability. They showed that di�erent

motions, from periodic to chaotic, can occur, depending on the ratio between the onset

1for the de�nition of the parameters one is referred to Chapter 3
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speed of instability and the frequency of the limit cycle.

Rotors with �uid bearing and unbalance also display a period-doubling bifurcation,

that is unrelated to the oil-whirl/whip. This phenomenon was studied by de Castro et al.

(2008) and Rendl et al. (2023). These works showed that the period-doubling bifurcation

is a�ected by the bearing parameters, the amount of unbalance, and the model used to

describe the oil-�lm forces.
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3 THEORETICAL BACKGROUND

3.1 Rotordynamic model

The mathematical model for the rotating machine is obtained through the �nite

element method (FEM). Figure 3.1 depicts a typical rotor system, consisting of stepped

shafts, bearings and rigid disks. The shaft is modeled using Timoshenko beams elements

in the two orthogonal directions, the disks are considered rigid masses with rotary inertia

and the bearings are included at single nodes in the mesh. This approach is very common

to model rotating machines and widely applied in practice (FRISWELL et al., 2010;

VANCE et al., 2010). The ith nodal displacement is given by xi = {uiy, uiz, ψi
y, ψ

i
z}T ,

being uy,z and ψy,z the displacements and rotations, respectively, as indicated in Fig. 3.1.

The equations of motion can be written as (FRISWELL et al., 2010),

Mẍ+ (Cs + ΩG)ẋ+Ksx = fb(x, ẋ,Ω) + fg + fh(Ωt), (3.1)

where x = {x1, x2, · · · , xNn}T ∈ RN is the displacement vector of the discretized domain

withNn nodes andN = 4Nn degrees of freedom (DOFs), Ω ∈ R is the shaft rotating speed,

M, Cs, G and Ks ∈ RN×N are the mass, damping, gyroscopic and sti�ness matrices of

the shaft. One can consult any rotordynamics book, e.g., Friswell et al. (2010) or Ishida

and Yamamoto (2012) about these matrices. Damping is considered proportional to the

sti�ness matrix, that is, Cs = βKs, with β = 1.5× 10−5 s as proposed by Liu and Novak

(1995).

The external forces that act in the system are the bearing forces fb(x, ẋ,Ω), gravity

fg, which is a constant vector acting in the center of mass of the rotor, and unbalance

fh(Ωt), which is given by,

fh(Ωt) = fhymunΩ
2 cosΩt+ fhzmunΩ

2 sinΩt. (3.2)

Here, fhy and fhz ∈ RN are Boolean vectors that specify the nodes of the mesh where the

1 x

y

n - 1

uz(x,t)

ψz(x,t)
ψy(x,t)

uy(x,t)

z

Bearing
Disk

32 nn-1

Figure 3.1: Representation of a typical rotor system.
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force is applied and mun represents the unbalance moment, expressed in kg·m.

In order to apply the CMR method, the hydrodynamic forces need to be in a

polynomial form. This can be accomplished by expanding the term fb(x, ẋ,Ω) using

Taylor series up to the third order, around the equilibrium position and with respect only

to the displacements and velocity, leading to,

fb(x, ẋ,Ω) = fb(x, ẋ,Ω)
∣∣∣
eq
+
∂fb(x, ẋ,Ω)

∂x

∣∣∣
eq
(x− xe) +

∂fb(x, ẋ,Ω)

∂ẋ

∣∣∣
eq
ẋ+ fnl(x, ẋ,Ω)

= fb0(Ω)−Kb(Ω)(x− xe)−Cb(Ω)ẋ+ fnl(x, ẋ,Ω)

(3.3)

where eq means an evaluation at the equilibrium point x = xe and ẋ = 0, fb0(Ω) =

fb(xe,0,Ω) is the static bearing force, Kb(Ω) and Cb(Ω) are the bearing sti�ness and

damping matrices, and fnl = O(|x|2, |x||ẋ|, |ẋ|2) represents higher-order terms in the

Taylor expansion. By substituting Eq. (3.3) into (3.1), one has,

Mẍ+(Cs+Cb(Ω)+ΩG)ẋ+(Ks+Kb(Ω))x = fb0(Ω)+Kb(Ω)xe+fnl(x, ẋ,Ω)+fg+fh(Ωt).

(3.4)

The equilibrium position xe and the static force fb0 are obtained from Eq. (3.4) by making

x = xe, ẍ = ẋ = fh = 0, which leads to,

Ksxe = fb0(xe,Ω) + fg. (3.5)

Equation (3.5) is a nonlinear algebraic equation that needs to be solved for xe. It is worth

noting that, although not explicitly shown, this equation depends on the speed Ω because

of the hydrodynamic force term fb0(Ω) = fb(xe,0,Ω), and its solution gives the locus of

the rotor.

To apply the CMR, it is also required to write the system with respect to the

equilibrium position, making it the origin of the system. Let y = x− xe. Using this new

coordinate system, Equation (3.4) will now read,

Mÿ +D(Ω)ẏ +K(Ω)y = fnl(y, ẏ,Ω) + fh(Ωt), (3.6)

where Eq. (3.5) was used and,

D(Ω) = Cs +Cb(Ω) + ΩG, K = Ks +Kb(Ω). (3.7)

3.2 Hydrodynamic bearing forces

The force fb in Eq. (3.1) comes from the hydrodynamic e�ect of the rotating oil-

�lm. This force is obtained in this work by solving the isoviscous Reynolds equation,
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Figure 3.2: Bearing geometry and hydrodynamic forces

which is given as (HAMROCK et al., 2004),

1

R2

∂

∂θ

(
h3
∂p

∂θ

)
+

∂

∂x

(
h3
∂p

∂x

)
= 6µΩ

∂h

∂θ
+ 12µ

∂h

∂t
, (3.8)

in which p = p(θ, x) is the pressure distribution, R the journal radius, h the �uid-�lm

thickness, θ and x the circumferential and axial coordinates. The oil-�lm thickness is

given as (SZERI, 1998; MIRASKARI et al., 2017a),

h = cr +R + e cos θ −R

√
1−

( e
R

)2
sin2 θ (3.9)

where e =
√
u2y + u2z is the eccentricity and cr is the radial clearance. Since the typical

clearance in journal bearings is much smaller than the journal radius cr ≪ R, the term

(e/R)2 has a negligible contribution and can often be ignored. Hence, the thickness is

given simply as,

h = cr + e cos θ = cr(1 + ε cos θ) (3.10)

being ε = e/cr. The isoviscous Reynolds equation is often solved by means of an nu-

merical procedure such as the FEM or �nite volume method (FVM) (VERSTEEG;

MALALASEKERA, 1995). However, in this work, an approximation is made to solve

Eq (3.8), namely, the bearing is considered in�nitely short. This solution is obtained

by neglecting the circumferential gradient in Eq. (3.8), that is ∂p/∂θ = 0, allowing the

obtention of a closed-form expression for the hydrodynamic pressure as,

p(θ, x) =

(
3µL2

b

c2r

)
ε(Ω− 2α̇) sin θ − 2ε̇ cos θ

(1 + ε cos θ)3

((
x

Lb

)2

− 1

4

)
, (3.11)
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where Lb is the bearing length and α̇ denotes the whirl speed, which is given as,

α̇ =
uyu̇z − uzu̇y

c2rε
2

. (3.12)

With the pressure distribution at hand, the forces in the frame rotating with the shaft

whirl (r − t in Fig. 3.2) is obtained as,{
fr

ft

}
=

∫ θ1

0

∫ Lb/2

−Lb/2

p(θ, x)

{
cos θ

sin θ

}
dxRdθ. (3.13)

The integrations (3.13) are performed assuming θ1 = π, which is known as the π-�lm or

half-Sommerfeld boundary condition, giving the following expressions (WANG; KHON-

SARI, 2006b),

fr = −µRL
3
b

2c2r

[
2ε2(Ω− 2α̇)

(1− ε2)2
+
π(1 + 2ε2)ε̇

(1− ε2)5/2

]
, (3.14)

ft =
µRL3

b

2c2r

[
π(Ω− 2α̇)ε

2(1− ε2)3/2
+

4εε̇

(1− ε2)2

]
. (3.15)

To express the hydrodynamic forces in the �xed reference frame, the following transfor-

mation can be applied, {
fy

fz

}
=

[
sinα cosα

− cosα sinα

]{
fr

ft

}
(3.16)

with,

α = − tan−1

(
uy
uz

)
. (3.17)

Additionally, the hydrodynamic forces can be incorporated into the �nite element model

by using,

fb(x, ẋ,Ω) =

nb∑
i=1

(
fby

if i
y(xb

i, ẋi
b,Ω) + fbz

if i
z(xb

i, ẋi
b,Ω)

)
, (3.18)

where nb is the number of bearings, fby and fbz ∈ RN are Boolean vectors that de�ne the

nodes of the mesh in which the forces act, and xb
i = {uiy, uiz} and ẋi

b = {u̇iy, u̇iz} are the

displacements and velocities at the ith bearing.

The sti�ness and damping coe�cients can be obtained by performing the di�er-

entiations indicated in Eq. (3.3), which can be done using any software for symbolic

computation. In addition, the higher order terms fnl(y, ẏ) used in Eq. (3.6) are obtained

from a Taylor expansion up to the third order and are given as,

fnl(y, ẏ,Ω) =

nb∑
i=1

(
fby

if i
nl,y(yb

i, ẏi
b,Ω) + fbz

if i
nl,z(yb

i, ẏi
b,Ω)

)
, (3.19)
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with

fnl,(y,z)(yb, ẏb,Ω) = β(y,z),(2000)u
2
y + β(y,z),(0200)u

2
z + β(y,z),(0020)u̇

2
y + β(y,z),(0002)u̇

2
z +· · ·

+ β(y,z),(3000)u
3
y + β(y,z),(0300)u

3
z + β(y,z),(0030)u̇

3
y +· · · =

∑
i,j,k,l

β(y,z),(ijkl)u
i
yu

j
zu̇

k
yu̇

l
z, (3.20)

and,

β(y,z),(ijkl) =
∂if(y,z)
∂uiy

∂jf(y,z)

∂ujz

∂kf(y,z)
∂u̇ky

∂lf(y,z)
∂u̇ly

. (3.21)

Note that the displacements above are measured relative to the equilibrium position xe.

In Miraskari et al. (2017b) one �nds closed-form expressions for the linear and higher

order coe�cients β(y,z),(ijkl)

3.3 Center manifold reduction

3.3.1 Autonomous system

This section presents the application of the parameterization method for invariant

manifolds (HARO et al., 2016) to estimate the center manifold of the system and perform

a CMR. Here, the unbalance force is neglected, fh = 0, making the system given by

Eq. (3.6) autonomous. In addition, all the procedure is performed for a �xed speed Ω,

thus the dependence of the hydrodynamic terms on Ω is omitted, thus Kb(Ω) = Kb,

Cb(Ω) = Cb, and so on. This also means that this analysis must be performed at each

speed Ω separately.

Firstly, the system needs to be recast in a �rst-order form, that is,

ẇ = Aw + g(w), (3.22)

where,

A =

[
0 I

−M−1K −M−1D

]
, w =

{
y, ẏ

}T

, g(w) =
{
0, M−1fnl(w)

}T

. (3.23)

Next, the vector w needs to be expanded in terms of the modes or eigenvectors of the

matrix A ∈ R2N×2N as,

w =
2N∑
i=1

ϕϕϕiqi = [ϕϕϕ1 ϕϕϕ2 · · · ϕϕϕ2N ]q = ϕϕϕq, (3.24)

ϕϕϕ ∈ C2N×2N being the matrix with the eigenvectors at its columns, and q ∈ C2N the

generalized coordinates. The columns of ϕϕϕ are either complex conjugate or purely real,
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so that the result (3.24) is also real. In rotor systems, the matrix A is in general not

hermitian, and thus one needs to solve two eigenvalue problems, namely (LEE, 1993),

Aϕϕϕi = λiϕϕϕ
i,

AHψψψi = λ∗iψψψ
i,

(3.25)

in which i ∈ {1, · · · , 2N}, λi are the eigenvalues, ψψψi the ith adjoint eigenvector, ∗ denotes

complex conjugation and H denotes the hermitian (complex conjugate) transpose. Both

ϕϕϕi and ψψψi can be normalized to satisfy,

(ψψψj)Hϕϕϕi = δij,

(ψψψj)HAϕϕϕi = λjδij,
(3.26)

where δij is the Kronecker delta and i, j ∈ {1, · · · , 2N}. The conditions above are com-
monly referred to as biorthonormality conditions (LEE, 1993; MEIROVITCH, 1980). One

may write Eq. (3.22) in its diagonal form by using the expansion (3.24), pre-multiplying

the result by ψψψH , and using the biorthonormality conditions, one arrives at,

q̇ = ΛΛΛq+ψψψHg
(
ϕϕϕq
)
, (3.27)

where ΛΛΛ = diag(λ1, · · · , λ2N). In the studied system, as the speed increases, the �uid-

induced instability arises. This phenomenon is seen as the real part of an eigenvalue

becoming positive, making the system unstable. Let qm ∈ C2 denote the coordinates of

the mode that becomes unstable as Ω > ωth, where ωth is the instability threshold speed.

The remaining coordinates are labeled qs ∈ C2N−2. In this way, Eq. (3.27) can be written

as,

q̇m = ΛmΛmΛmqm +ψmψmψm
Hg(qm,qs), (3.28a)

q̇s = ΛsΛsΛsqs +ψsψsψs
Hg(qm,qs), (3.28b)

whereΛmΛmΛm = diag(λ1, λ2), with λ2 = λ∗1, andΛsΛsΛs = diag(λ3,· · · , λ2N)2. Note that Eqs. (3.28a)
and (3.28b) are coupled due to the nonlinear term g(q). One could assume qs = 0 in

(3.28a) and integrate the equation for qm. However, this, in addition to not giving the

dynamics on the center manifold, may also lead to erroneous predictions such as spuri-

ous bifurcations (TROGER; STEINDL, 1991). The proper way to perform a CMR is by

assuming qs = hs(qm), which will lead to,

q̇m = ΛmΛmΛmqm +ψmψmψm
Hg
(
qm,hs(qm)

)
, (3.29a)

∂hs

∂qm

q̇m = ΛsΛsΛshs(qm) +ψsψsψs
Hg
(
qm,hs(qm)

)
. (3.29b)

2Note that this might require a reordering of matrices ΛΛΛ and ψψψ, depending on the rotor system
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Figure 3.3: Depiction of the CMR: instead of obtaining the full trajectories by integrating
all coordinates (a), in the CMR one only solves for the master coordinates and uses the
geometry of the center manifold to obtain the full trajectory (b).

Where now, only Eq. (3.29a) needs to be integrated, and the coupling between the mas-

ter and slave modes is given by the function hs(qm), which in turn is obtained from

Eq. (3.29b). The function hs : C2 → C2N−2 encodes the interaction between the modes

and it is also what gives the geometry of the center manifold of the system. The di�er-

ence between the problems given by Eqs. (3.28a)-(3.28b) and (3.29a)-(3.29b) is depicted

in Fig. 3.3. In this �rst case, one needs to integrate for both qm and qs to obtain the

response, whereas in the second case only the solution for qm is needed, and the coupling

between the two coordinates will be taken into account by the geometry of the manifold,

given by h(qm).

One can go further and simplify Eq. (3.29a) by only retaining the most relevant

terms. This procedure is known as normal form transformation (WAGG, 2022). Let

p ∈ C2 denote the coordinates in normal form (also known as the parameterization

coordinates), and hm : C2 → C2 a map that transforms the master coordinates qm in the

normal coordinates p, that is,

qm = hm(p). (3.30)

The dynamics of the system in normal form will be given as,

ṗ = r(p), (3.31)

in which r : C2 → C2 is a function that de�nes the reduced dynamics on the center

manifold and it consists of a simpli�ed form of the right-hand side of Eq. (3.29a). By

substituting Eq. (3.30) into (3.29a), and using (3.31), one has

∂hm

∂p
r(p) = ΛmΛmΛmhm(p) +ψmψmψm

Hg
(
hm(p),hs(p)

)
, (3.32)
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where the map hs is rede�ned as hs(p) = hs(hm(p)). Hence, Eq. (3.29b) becomes,

∂hs

∂p
r(p) = ΛsΛsΛshs(p) +ψsψsψs

Hg
(
hm(p),hs(p))

)
. (3.33)

Equations (3.32) and (3.33) can be combined by making h = {hm, hs}T , leading to,

∂h

∂p
r(p) = ΛΛΛh(p) + g1(p), (3.34)

where g1 = ψψψHg
(
h(p)

)
. The problem now consists in �nding h that maps the normal

coordinates to the generalized coordinates, q = h(p), and r that gives the equation of

motion for the normal coordinates. Note that by obtaining h one not only performs a

CMR, but is also able to simplify the equations of motion for the master modes qm at

the same time. This approach is known in the literature as the parameterization method

(HARO et al., 2016).

Equation (3.34) is labeled as the invariance equation (HARO et al., 2016; PON-

SIOEN et al., 2020). This equation is a Partial Di�erential Equation (PDE), and it can

be solved by any method aimed at this kind of problem (see Renson et al. (2016) for a

review of the computation of invariant manifolds). In this work, the PDE is solved by

expanding h and r into multivariate polynomials as,

hi(p) = Hi,(1,0)p1 +Hi,(0,1)p2 +Hi,(1,1)p1p2 +· · · =
∑
k

Hi,kp
k, (3.35)

rj(p) = Rj,(1,0)p1 +Rj,(0,1)p2 +Rj,(1,1)p1p2 +· · · =
∑
k

Rj,kp
k, (3.36)

in which i ∈ {1, · · · , 2N}, j ∈ {1, 2}, k = (k1, k2) = {(1, 0), (0, 1), (1, 1), · · ·} is a vector

with the polynomial indices with ki ∈ N, and pk = pk11 p
k2
2 . This notation for representing

multivariate polynomials is known as multi-index notation (PONSIOEN et al., 2020).

The order of the multivariate polynomial is given by |k| = k1 + k2, while the coe�cients

are included in the multi-dimensional complex arrays H = [H1,k, · · · , H2N,k] ∈ C2N×P×P

and R = [R1,k, R2,k] ∈ C2×P×P , being P the highest polynomial order.

By substituting Eqs. (3.35)-(3.36) into (3.34), one has,

2∑
j=1

(∑
k

kjHi,kp
k−ej

)∑
m

Rj,mpm = λi
∑
k

Hi,kp
k + g1i(p), (3.37)

where ej ∈ R2 denotes a unit vector that has a one in its jth element and zeros elsewhere.

One may obtain Hi,k and Rj,k by matching the order of the polynomials |k| = 1, 2,· · · , P
in Eq. (3.37). However, this system of equations is under-determined, because there are

more unknowns than equations. One way to overcome this to obtain a unique solution
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Figure 3.4: Depiction of the normal form style of parameterization of the invariant man-
ifold: instead of using the master coordinates one uses the parameterization coordinates
to obtain the dynamics on the manifold.

is to assume the terms in Rj,k. The approach one uses in this assumption de�nes the

so-called style of parameterization (HARO et al., 2016; JAIN; HALLER, 2022). Recall

that r(p) comes from the right-hand side of Eq. (3.29a). Styles of parameterization refer

to which terms are retained for the equation of motion of p. When all terms are retained,

one has the graph style, in which r(p) is the same as the right-hand side of Eq. (3.29a),

thus p = qm. This method might present problems when there is a fold in the invariant

manifold (VIZZACCARO et al., 2022). On the other hand, in the normal form style, only

terms that cause inner resonances are retained (which will become clear in the following).

The normal form style is equivalent to performing a nonlinear change of coordinates to

represent the invariant manifold (OPRENI et al., 2021), as depicted in Fig. 3.4. The

normal form style is adopted in the following derivations.

At linear order, |k| = 1, Eq. (3.37) gives,

Hi,(1,0)R1,(1,0) +Hi,(1,0)R1,(0,1) +Hi,(0,1)R2,(1,0) +Hi,(0,1)R2,(0,1) = λi
(
Hi,(1,0) +Hi,(0,1)

)
.

(3.38)

In order to make the center manifold tangent to the linear eigenspace, r(p) has to match

the right-hand side of Eq. (3.28a) at linear order, thus

R1,(1,0) = λ1, R2,(0,1) = λ2, R1,(0,1) = R2,(1,0) = 0, (3.39)

or

Ri,ej = λjδij, (3.40)
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which in turn gives,

Hi,ej = δij. (3.41)

Now, moving on to the case in which |k| > 1. By performing the polynomial multiplication

in the left-hand side of Eq. (3.37) one has,

2∑
j=1

∑
k

∑
m

kjHi,kRj,mpk−ejpm =
2∑

j=1

(∑
k

kjHi,kRj,ejp
k +

∑
m

Hi,ejRj,mpm

)

+
2∑

j=1

∑
|k|>1

∑
|m|>1

kjHi,kRj,mpk−ejpm

=
2∑

j=1

∑
k

kjλjHi,kp
k +

∑
m

δijRj,mpm +
∑

n=k+m

 ∑
k≤n+ej

kjHi,kRj,n+ej−k

pn

 .

(3.42)

Additionally, the nonlinear force can be expressed as,

g1i(p) = Gi,kp
k. (3.43)

Substituting Eqs. (3.42) and (3.43) into (3.37), and matching the polynomial orders |k| =
2, 3, · · · , P , one has,(

λi −
2∑

j=1

kjλj

)
Hi,k =

2∑
j=1

δijRj,k +
∑
m≤k̃j

mjHi,mRj,k̃j−m

+Gi,k, (3.44)

where k̃j = k+ ej. Equation (3.44) can be readily solved for Hi,k, leading to,

Hi,k =

∑2
j=1 δijRj,k +Qi,k

λi −
∑2

j=1 kjλj
, (3.45)

being Qi,k de�ned from Eq. (3.44). One may note that in case λi −
∑2

j=1 kjλj ≈ 0, the

coe�cients Hi,k may have large or unde�ned values. This can a�ect the convergence of the

Taylor series approximation of the center manifold (PONSIOEN et al., 2020). Since the

present system displays a Hopf bifurcation at the instability speed Ω = ωth, the following

conditions hold (WIGGINS, 2003):

λ1,2 − (k1λ1,2 + k2λ
∗
1,2) = 0, (3.46)

when k1 and k2 are odd. Therefore, Hi,k has unde�ned values when k′ = {k | |k| =
3, 5, 7, . . . }. In order to overcome this problem, one assumes the values in Rj,k to set the

left-hand side of Eq. (3.45) zero. In this way, both Hi,k and Rj,k are obtained at the
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same time, giving the geometry of and dynamics on the center manifold, respectively. To

remove the terms that cause resonance, one may perform,

R1,k′ = −Q1,k′ , R2,k′ = −Q2,k′ , (3.47)

k′ = (k′1, k
′
2) being the set of orders that satisfy Eq. (3.46). By applying (3.47), one

transforms Eq. (3.31) into the well known Hopf normal form,

ṗ1 = r1(p1, p2) = λ1p1 +R1,(2,1)p
2
1p2 +R1,(3,2)p

3
1p

2
2 +O(|p|7), (3.48a)

ṗ2 = r2(p1, p2) = λ2p2 +R2,(1,2)p
2
2p1 +R2,(2,3)p

3
2p

2
1 +O(|p|7), (3.48b)

which is a set of complex di�erential equations for p = {p1, p2}. One can recast the

above equations in polar coordinates by making p1 = aeiθ and p2 = ae−iθ, with a ∈ R and

i =
√
−1, and then separating the real and imaginary parts, leading to,

ȧ = b1a+ c1a
3 + d1a

5 +O(a7), (3.49a)

θ̇ = b2 + c2a
2 + d2a

4 +O(a6), (3.49b)

in which b1 = Re[λ1], b2 = Im[λ1], c1 = Re[R1,(2,1)], c2 = Im[R1,(2,1)], d1 = Re[R1,(3,2)] and

d2 = Im[R1,(3,2)]. Either Eq. (3.49) or (3.48) may be used to obtain the dynamics of the

system in the parameterization coordinates p.

The steady-state amplitudes of motions can be computed directly from Eq. (3.49a)

by making ȧ = 0 and solving for a. Substituting this value in Eq. (3.49b) gives the

frequency of the motion θ̇. Near the Hopf bifurcation, in addition to the equilibrium

solution a = 0, the system will display another solution, namely a = a∗, which represents

the emerging limit cycle. Therefore, no numerical integration is required, only the solution

of a polynomial equation (3.49a). The stability of the cycles can be assessed by the sign

of c1 (WIGGINS, 2003). Sub-critical bifurcations occur for c1 < 0, where unstable cycles

emerge prior to the bifurcating point (hence the pre�x "sub") and super-critical when

c1 > 0, where the cycles emerge after the bifurcation (hence the pre�x "super"). After

the dynamics in the parameterization coordinates is obtained, one can use the map h(p)

to obtain the response in terms of the generalized coordinates q. The physical coordinates

are obtained from the modal expansion, Equation (3.24). This process is illustrated in

Fig. 3.5. Note that the rotor model may possess a large number of DOFs, and yet its

response can be obtained by only the dynamics on the center manifold. This is the greatest

advantage of the CMR method, and makes it a feasible tool for the analysis and design

of real rotating machinery.



3 THEORETICAL BACKGROUND 43

Hopf
bifurcation

w=ϕh(p)

Figure 3.5: Summarizing the CMR method: one can obtain the limit cycles (a = a∗)
and equilibrium (a = 0) solutions from the reduced dynamics (top), and then use the
transformation w = ϕϕϕh(p) to obtain the response in physical coordinates (bottom). No
numerical integration is required.

3.3.2 Non-autonomous system

The approach presented in the previous section is only valid for a perfectly bal-

anced rotor. However, the CMR can be extended to the non-autonomous case by simple

adjustments in the equations of motion. The approach developed here di�ers from (PON-

SIOEN et al., 2020) in that the non-autonomous term is not treated as a perturbation of

the autonomous manifolds. Instead, the system is augmented considering the excitation

as state variables, and in cartesian form. This approach allows the external force to be

fairly strong and avoids the small force assumptions in (PONSIOEN et al., 2020). In

addition, similar to the previous case, the analysis is performed for a �xed Ω, thus any

dependence on this parameter is omitted.

Let u = cosΩt and v = sinΩt, which are now considered as state variables for the

system. Equation (3.6) can now be rewritten as,

Mÿ +Dẏ +Ky = fnl(y, ẏ) + fhymunΩ
2u+ fhzmunΩ

2v (3.50a)
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u̇ = −Ωv (3.50b)

v̇ = Ωu (3.50c)

where Eq. (3.2) was employed. Note that Eq. (3.50) is now independent of time, and

hence autonomous. This equation can be recast in the same form as Eq. (3.22), with the

following matrices and vectors,

A =


0N×N IN×N 0N 0N

−M−1K −M−1D M−1fhymuεΩ
2 M−1fhzmuεΩ

2

0N×N 0N×N 0 −Ω

0N×N 0N×N Ω 0

 ,
w =

{
y, ẏ, u, v

}T

, g(w) =
{
0N , M−1fnl(w), 0, 0

}T

(3.51)

From this point onwards, the application of the CMR is now very similar to what was

shown in the previous section. One may expand the state vector w in terms of the

eigenvetors of the matrix A ∈ R(2N+2)×(2N+2), and write the dynamical system in its

diagonal form (Equation (3.27)). Due to the augmented system, one pair of eigenvalues

of A will be purely imaginary, with the imaginary part corresponding to the speed Ω,

which is a �ctitious mode and it does not correspond to any vibrating mode of the rotor.

The master coordinates will consist of the mode that becomes unstable and the

�ctitious mode due to unbalance. Hence qm ∈ CM , with M = 4, while qs ∈ CNs , with

Ns = 2N+2−M . Therefore, the reduced dynamics will be r : CM → CM and the normal

coordinates p ∈ CM . The map h(p) can still be found by Eq. (3.34). The multivariate

polynomials are now given as,

hi(p) = Hi,(1,0,0,0)p1 +Hi,(0,1,0,0)p2 +Hi,(1,1,0,0)p1p2

+Hi,(0,0,1,0)p3 +Hi,(0,0,0,1)p4 +· · · =
∑
k

Hi,kp
k, (3.52)

rj(p) = Rj,(1,0,0,0)p1 +Rj,(0,1,0,0)p2 +· · · =
∑
k

Rj,kp
k, (3.53)

in which i ∈ {1, · · · , 2N +2}, j ∈ {1, · · · , M} and k = (k1, k2, k3, k4) = {(1, 0, 0, 0), · · ·}.
The polynomial coe�cients are contained in H = [H1,k, · · · , H2N+2,k] ∈ C2N×P×P×P×P

and R = [R1,k, · · · , RM,k] ∈ CM×P×P×P×P , being P the highest polynomial order. Note

that these arrays can become very large, depending on the order P , which might require a

high usage of memory in the numerical implementation. However, these arrays are sparse

and can be e�ciently stored by keeping the nonzero terms only, as explained by Ponsioen

et al. (2020).

The solution of Eq. (3.34) is obtained by substituting the polynomials expansions
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(3.52)-(3.53), and equating the orders |k| = 1, 2,· · · , P , exactly as shown in the previous

section. The higher order coe�cients will be obtained from,

Hi,k =

∑M
j=1 δijRj,k +Qi,k

λi −
∑M

j=1 kjλj
, (3.54)

and the terms that enter into the reduced dynamics r(p) are the ones that make the

numerator in Eq. (3.54) zero, that is, λi−
∑M

j=1 kjλj ≈ 0. From the previous section, due

to the Hopf bifurcation, one has, λ1,2−(k1λ1+k2λ
∗
1) = 0, with k1+k2 odd and k3 = k4 = 0.

In addition to these terms, whenever k3 = k4, there is also internal resonance, because,

λi −
M∑
j=1

kjλj = λi − k1λ1 − k2λ2 − k3λ3 − k4λ4

= λi − k1λ1 − k2λ2 − k3iΩ− k3(−iΩ) = λi − k1λ1 − k2λ2. (3.55)

Therefore, when i ∈ {1, 2}, the following polynomial terms will be problematic,

k′ = (k1, k2, k3, k4) = {k | k3 = k4, k1 + k2 = 1, 3, 5, 7, . . . }. (3.56)

These terms are removed from Eq. (3.54) by means of Eq. (3.47). The reduced dynamics

then becomes,

ṗ1 = λ1p1 +R1,(1,0,1,1)p1p3p4 +R1,(2,1,0,0)p
2
1p2 +R1,(2,1,1,1)p

2
1p2p3p4 +O(|p|5), (3.57a)

ṗ2 = λ2p2 +R2,(0,1,1,1)p2p3p4 +R2,(1,2,0,0)p
2
2p1 +R2,(1,2,1,1)p

2
2p1p3p4 +O(|p|5), (3.57b)

ṗ3 = iΩp3, (3.57c)

ṗ4 = −iΩp4. (3.57d)

Equations (3.57c)-(3.57d) can be readily solved as p3 = p0e
iΩ and p4 = p∗0e

−iΩ, where

p0 ∈ C is the initial condition. Substituting these solutions in Eqs. (3.57a)-(3.57b) leads

to,

ṗ1 =
(
λ1 + |p0|2 + |p0|4 + |p0|6 +· · ·

)
p1

+
(
R1,(2,1,0,0) +R1,(2,1,1,1)|p0|2 +R1,(2,1,2,2)|p0|4 +· · ·

)
p21p2

+
(
R1,(3,2,0,0) +R1,(3,2,1,1)|p0|2 +R1,(3,2,2,2)|p0|4 +· · ·

)
p31p

2
2 +O(|p|7),

(3.58a)

ṗ2 =
(
λ2 + |p0|2 + |p0|4 + |p0|6 +· · ·

)
p2

+
(
R2,(2,1,0,0) +R2,(2,1,1,1)|p0|2 +R2,(2,1,2,2)|p0|4 +· · ·

)
p1p

2
2

+
(
R2,(3,2,0,0) +R1,(3,2,1,1)|p0|2 +R2,(3,2,2,2)|p0|4 +· · ·

)
p21p

3
2 +O(|p|7),

(3.58b)
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which is very similar to the autonomous case, Equation (3.48), except with some additional

terms due to the non-autonomous forcing. Note that the non-autonomous terms a�ect

the cubic coe�cients p1p22, and hence the type of Hopf bifurcation (See discussion at the

end of the previous section). This was shown in the studies performed by Rendl et al.

(2023).

The initial condition p0 is obtained in the following way. Firstly, note that u =

cosΩt and v = sinΩt, by de�nition. Thus, the initial conditions for u and v are u0 = 1

and v0 = 0. Secondly, the initial condition for the generalized coordinates is obtained as,

q0 = ψψψTw0 = ψψψT


y0

ẏ0

u0

v0

 , (3.59)

where y0 and ẏ0 are the initial displacements and velocities. Assuming y0 = ẏ0 = 0, one

has

q0 = ψψψT


0N

0N

1

0

 = ψψψu (3.60)

where ψψψu is the column of ψψψT corresponding to the state variable u. Therefore, the initial

condition will be,

p0 = ψk
u (3.61)

being ψk
u the kth element of the vector ψψψu that correspond to the forcing mode. For

an initial condition with a nonzero phase, the same straightforward procedure can be

followed, but then (u0, v0) ∈ [0, 1].
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4 EXPERIMENTAL TEST RIG

The test rig used for the experiments is located at the Faculty of Mechanical

Engineering of the University of Campinas (Unicamp). It is one of the test rigs belonging

to the Laboratory of Rotating Machines (Laboratório de Máquinas Rotativas - LAMAR

in Portuguese). The rig consists of a steel plate with dimensions 1170 × 280 × 30 mm,

mounted on top of a large concrete block, which in turn is supported by springs and a

layer of foam on another concrete block. The plate has a large number of holes that allow

the positioning of bearing pedestals in di�erent con�gurations.

Figure 4.1 shows the two con�gurations, with one and two disks, used in this

work. A detailed indication of the components and sensors is provided by Fig. 4.2. The

instrumentation consists of sensors to measure the displacements of the rotor inside the

bearings and at the disks and acceleration of the bearing supports. Temperature of the

lubricating oil (ISO VG 32) is measured at the oil reservoir and bearing housing. Also,

an optic sensor (PHCT 203) provides speed measurements and it is used as a trigger

mechanism to ensure all measurements start at the same phase (Figure 4.3). Table 4.1

gives a detailed description of the sensors used.

Figure 4.4 shows the oil feeding system of the test rig. The pump is of the di-

aphragm type and has a variable injection pressure in the 40-60 kPa range. Oil is pumped

from the reservoir to an oil �lter, it passes through an air trap to remove any air contained

in the lubricant, and then it is sent to the bearings through a "T" connection, as shown

Table 4.1: List of sensors used in the experiments.
Description Model Sensitivity Range
Displacements of disks Turk Bi5-M18-LU 5.3 V @ 1 mm 2 mm
Displacements of journal Bently Nevada 1 V @ 10 mils 1.5 mm
Reaction forces of bearing casing Honeywell Model 102 2.5 mV/V 100 kg
Acceleration of bearing casing DeltaTron Type 4534-B 1 mV/ms−2 7000 ms−2

(a) (b)

Figure 4.1: Experimental test rig: con�guration with one disk (a) and two disks (b).
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5

6
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a
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1- Motor
2 - Coupling
3 - Bearing 1
4 - Bearing 2
5 - Disks
6 - Base plate
7 - Shaft

a - Eddy current
b - Temperature
c - Accelerometer
d - Speed
e - Load cell

e

e

Figure 4.2: Experimental test rig: components and sensors.

Figure 4.3: Trigger mechanism: an optic sensor detects the passage of a small metal plate
to start the measurements.

in the �gure. In addition, the oil �owing out from the bearings goes directly back to the

reservoir.

The bearing pedestals are mounted on two four-bar mechanisms developed by

Dedini (1993), and consist of four thin beams in each direction. The di�erence of the

beams sti�ness allows the horizontal and vertical reaction forces to be independently

measured through a load cell, as shown in Fig. 4.5. However, it is worth mentioning

that this assembly makes the pedestals �exible. As shown in Nonato (2013), the natural

frequencies of the pedestals are 68.5 Hz, 149.0 Hz and 223.0 Hz. In the present work, the

maximum rotor speed considered was 60 Hz, thus not in the range of the frequencies.
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Oil reservoir

Pump
Oil input to bearings

Oil filter

Air trapOil output from
 bearing 2

Oil output from
 bearing 1

Figure 4.4: Oil feeding system.

Oil input

Oil output

Bearing bush

Beams

Load cell

(a)

Beams

Load cell

(b)

Figure 4.5: Bearing pedestal: front view (a) and bottom load cell (b).

The bearing casing is made of aluminium, while the bush is made of bronze and

has three holes, one for the oil input and two for inserting displacement sensors. The

displacements are measured at a 45◦ angle between the vertical axis, and a rotation

transformation needs to be performed to obtain the vertical and horizontal components.

The shaft is made of AISI 1055 steel and has a diameter of 12 mm and a length of

800 mm. It is placed between two bearing pedestals, which are positioned 530 mm apart

from each other. The disks are made of SAE 1020 steel with 120 mm of diameters and 20
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mm of thickness. In the con�guration with one disk, it is placed at the midspan between

the bearings. In the con�guration with two disks, they were placed symmetrically along

the shaft, and their distance between each other was varied throughout the studies.

The motor that drives the system is a 3 CV WEG AC motor, and it is connected to

the shaft through a �exible coupling, which can be seen in Fig. 4.3. To control the motor

speed, a WEG CFW-08 frequency inverter is used, which is connected to a PC by means

of a serial port. The signal is acquired through a National Instruments board, model

USB-9162. However, before entering the board, the signals from the displacement and

accelerometers pass through signal conditioners. In the case of the displacement sensors,

the conditioners consist of an ampli�er (only for the Bentley sensors), and low-pass, with

a 1 kHz cut-o�, and DC �lters. For the accelerometers, the signal conditioner Type 2694

from Brüel & Kjær is used. Despite the availability of this sensing equipment, in the

present work only the displacement sensors were used, due to the nature of the current

study.
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5 NUMERICAL STUDY

This chapter presents the validation of the CMR approach deduced in Chapter 3.

The validation is divided into the autonomous, Section 5.1, and non-autonomous, Sec-

tion 5.2, approaches.

5.1 Autonomous system

The following text was �rst published in "Nonlinear Dynamics, 111, 17749�17767,

2023" and it is reproduced with permission from Springer Nature.

This section presents the application of the CMR to obtain stable and unstable

limit cycles. The e�ectiveness of the method will be assessed through a comparison of

its results with those obtained using the open-source software MATCONT (DHOOGE et

al., 2003), which is a numerical continuation package based in MATLABTM. MATCONT

utilizes a modi�ed pseudo-arclength continuation. It can be used to continue equilibria

and limit cycles and to detect a wide range of bifurcations (DHOOGE et al., 2003). This

software has been used by other authors to study bifurcations in rotors with �uid-�lm

bearings before, e.g., (CHOUCHANE; AMAMOU, 2011; AMAMOU, 2022; BOYACI,

2016; ANASTASOPOULOS; CHASALEVRIS, 2022). In the MATCONT solutions, the

full bearing force given by Eq. (3.16) is used, that is, with no polynomial approximation

as in the CMR method. Therefore, this approach not only evaluates the CMR ability

to detect bifurcations, but also the suitability of the polynomial approximation to rep-

resent the �uid-�lm bearing force. The default options in MATCONT were used in all

continuation runs performed.

The CMR will be evaluated in two systems: a simple and a realistic rotor. In

the following studies, the polynomial expansions in Eqs. (3.35)-(3.36) were considered

up to the �fth order, except when indicated otherwise. In addition, the main pur-

pose of this section is to evaluate and compare the predictions given by the proposed

method with an established software, thus the parametric studies will be limited. How-

ever, extensive studies have already been performed in this sense, where various factors

that a�ect the bifurcations in rotors with �uid bearings were studied, and the reader

is referred to (WANG; KHONSARI, 2006b; CHASALEVRIS, 2020; KANO et al., 2019;

CHOUCHANE; AMAMOU, 2011; MIURA et al., 2017).

5.1.1 Simple rotor system

Figure 5.1 shows the geometry and mesh of the studied system. This rotor system

is based on an experimental test rig (MACHADO et al., 2018). It consists of a shaft,
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Figure 5.1: Geometry and mesh of the simple rotor system studied.

Table 5.1: Reference values for the parameters used in the simulations for the simple rotor
system.

Parameter Value

Shaft length (L) 600 mm
Shaft diameter (d) 24 mm
Disk diameter (D) 90 mm
Disk thickness (hd) 47 mm
Disk position (a) 300 mm
Young's modulus (E) 207 GPa
Poisson's ratio (ν) 0.3
Density of the material (ρ) 7850 kg·m3

Bearing length (Lb) 20 mm
Bearing diameter (db) 31 mm
Fluid ISO VG 32
Fluid viscosity (µ) 0.028 Pa·s (at 40 °C)
Fluid density (ρf ) 870 kg·m3

Radial clearance (cr) 90 µm

discretized into 6 �nite elements, with a disk and two identical �uid-�lm bearings. The

disk and journal are considered rigid masses (with rotary and polar inertia), and they

are placed at nodes 1, 4, and 7. The nonlinear forces are introduced at the center of

the bearings, nodes 1 and 7. The parameters used are listed in Tab. 5.1. Some of these

parameters will be varied in the following study, and if nothing is mentioned, the assumed

values are the ones in the table.

Figure 5.2 shows the limit cycles originated after the instability threshold for dif-

ferent length-to-diameter ratios (Lb/db) of the bearings. The ratio is varied by �xing the

diameter at db = 31 mm, and varying the bearing length Lb. In the �gures, ∆Ω = Ω−ωw,

where ωw is the instability speed, which is also shown. The system starts at equilibrium

and at ∆Ω = 0, one has the creation of limit cycles (Hopf bifurcation). The top row

�gures show the maximum and minimum displacements of the cycles normalized by the

radial clearance cr, while the bottom row shows the orbits at the demarcated line A�A.

For Lb/db = 0.4, one gets a super-critical bifurcation with stable limit cycles extending

as far as 175 rpm from the instability point (Figure 5.2a). Although the amplitudes of

these limit cycles reach a fairly high value, it still is a safe operating speed. The CMR
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Figure 5.2: E�ect of Lb/db ratio on the limit cycles near the instability speed at bearing
1: Lb/db = 0.4 (a-d), Lb/db = 0.5 (b-e) and Lb/db = 0.65 (c-f).

shows a good agreement with the numerical results obtained with MATCONT (which are

labeled as reference in the �gures), as one notes from the radial displacements and orbits

(Figures 5.2a-d).

As the ratio is increased to Lb/db = 0.5, one notes that the system shows stable

limit cycles that turn into unstable ones at a Limit Point of Cycles (LPC). The LPC is a

fold bifurcation, and it is one type of bifurcation that can occur in limit cycles, the others

being Period-Doubling (PD) and Neimark-Sacker (NS) (WIGGINS, 2003). In the present

system, only the fold bifurcation occurs due to the �uid-�lm bearing model adopted. It is

worth mentioning that the zeros of Eq. (3.48a) or (3.49a) give automatically all solutions

of the system. Thus, at line A�A in Figure 5.2b, both stable and unstable limit cycles

are already given by the CMR. On the other hand, in MATCONT one must continue the

solution, encounter the LPC, and continue further to �nd the unstable cycles. Although

the CMR predicted higher unstable cycles, the stable cycles are quite accurate, as shown

in Fig. 5.2e.

In Fig. 5.2c-f, the ratio is Lb/db = 0.65, and one notes that no stable solutions

exist after the instability and the bifurcation is sub-critical, with a very small limit cycle.
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CMR.
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Figure 5.4: E�ect of Lb/db ratio on the whirl frequency ratio: Lb/db = 0.4 (a), Lb/db = 0.5
(b) and Lb/db = 0.65 (c).

Compared with the other cases, it is clear that this is the less optimal con�guration for

the rotor system, as any small disturbance will make the rotor unstable even as far as 50

rpm from the instability speed. The disappearance of the stable limit cycles occurs when

the LPC point coalesces with the Hopf point. Here, the agreement between the CMR and

MATCONT was also very good. By analyzing all results in Fig. 5.2, one notes that the

Lb/db ratio greatly a�ects the eccentricity at equilibrium. The higher the eccentricity, the

lower the range with stable limit cycles. It is also worth mentioning that, by altering the

Lb/db ratio, one can alter the type of bifurcation at hand.
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Figure 5.5: E�ect of radial clearance cr on the limit cycles near the instability speed at
bearing 1: cr = 90 µm (a-d), cr = 180 µm (b-e) and cr = 270 µm (c-f).

The results of Fig. 5.2 (and all other results, except where indicated) were obtained

using a �fth-order polynomial for the CMR. In case better accuracy is required, one can

consider higher polynomial orders, which results in higher computational costs as well.

Figure 5.3 shows a comparison between the CMR using higher order polynomials, namely

5, 7, and 17, for the case with Lb/db = 0.5. One sees that the unstable limit cycles are

better approximated when higher polynomial orders are considered in the CMR. However,

even for a 17th order polynomial, the CMR fails to converge to the numerical result. This

is simply a limitation of the approach, which is mostly valid in the neighborhood of the

bifurcation.

Figure 5.4 shows the whirl frequency ratio of the limit cycles shown in Fig. 5.2.

This frequency is given automatically by MATCONT, while in the CMR it is obtained by

substituting the amplitude in Eq. (3.49b). The frequency of the stable limit cycle is what

it is known as oil-whirl frequency, and it is observed in experiments as a stable solution

(MUSZYNSKA, 1988; El-Shafei et al., 2004). Both MATCONT and CMR showed results

consistent with experiments, where the frequency of the limit cycles was sub-synchronous

and around 0.5×Ω. It is also worth mentioning that the frequency in Fig. 5.4c corresponds

to an unstable cycle, and it cannot be reached in practice. When the rotor encounters
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Figure 5.6: E�ect of radial clearance cr on the whirl frequency ratio: cr = 90 µm (a),
cr = 180 µm (b) and cr = 270 µm (c).
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Figure 5.7: E�ect of �uid viscosity µ on the limit cycles near the instability speed at
bearing 1: µ = 0.0209 Pa·s (T = 50 °C) (a-d), µ = 0.0114 Pa·s (T = 70 °C) (b-e) and
µ = 0.0046 Pa·s (T = 100 °C) (c-f).

an unstable cycle, it spirals until it reaches a physical barrier or another stable solution.

This is often called oil-whip and is more violent than oil-whirl.

The e�ect of the radial clearance in the limit cycles is shown in Fig. 5.5. The
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Figure 5.8: E�ect of �uid viscosity µ on the whirl frequency ratio: µ = 0.0209 Pa·s
(T = 50 °C) (a), µ = 0.0114 Pa·s (T = 70 °C) (b) and µ = 0.0046 Pa·s (T = 100 °C) (c).

increase of the radial clearance has the e�ect of increasing the eccentricity at equilibrium,

opposite to what occurs if the ratio Lb/db is increased. When cr = 180 µm, the CMR

predicts an LPC point and unstable limit cycles. In MATCONT, the solutions could

not be continued further due to numerical di�culties (when the eccentricity becomes too

small, ε ≈ 0, the system becomes sti� and the Newton-Raphson procedure in MATCONT

does not converge), and the LPC point could not be reached. When cr = 270 µm,

however, MATCONT successfully delivered the unstable limit cycles and the LPC point.

From Figs. 5.5c-f, one notes that the CMR results for the second bifurcation (after the

LPC) are not as accurate as the �rst one, and numerical continuation is required in such

cases. However, in the results of Fig. 5.5, the limit cycles given by the CMR after the

LPC point are in general smaller, thus giving a conservative estimate of the presence of

unstable solutions, which can still be helpful information in the design stage �uid bearings.

In addition, the whirl frequencies are shown in Fig. 5.6, showing similar results to the

previous case.

Figure 5.7 presents the last study performed, where the viscosity of the �uid µ was

varied. To realistically alter this parameter, the temperature T was varied and the data

on the ISO VG 32 �uid was used to obtain the values of µ for a given T (ASTM D2270-10,

2016). Similarly to the previous case, the LPC point could not be reached in MATCONT

due to numerical di�culties. Here again, one notes that the CMR is very accurate in the

�rst bifurcation, but gives wrong results in the second one. Nonetheless, the CMR can

indicate that there is a presence of an LPC point nearby, but the true point can only be

found numerically through continuation. Figure 5.8 shows the whirl frequencies for the

case with variable viscosity. Similarly to the previous cases, the frequency is well situated

close to 0.5× Ω.

As one can note from the results in Fig. 5.7, the viscosity greatly a�ects the
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limit cycles at the bifurcation. In general, lower viscosity tends to produce stable limit

cycles with a higher speed range. The results agree with experimental data (WANG;

KHONSARI, 2006b), where the change in viscosity was shown to a�ect the type of Hopf

bifurcation. The explanation of this change is highlighted in Fig. 5.7, and occurs when

the LPC point coalesces with the Hopf bifurcation point.

5.1.2 Complex rotor system

This example presents the applicability of the CMR to a realistic rotor system.

Figure 5.9 shows the �nite element mesh based on a real turbomachine. The system

has a total length of L = 2.5 m, weights Wr = 17.94 kN, and is discretized using 26

elements and 27 nodes. The elements used are 1D Timoshenko beams in both orthogonal

directions, while torsional and axial movements are ignored. Details of the mesh can be

consulted in Mereles and Cavalca (2021) or Mereles et al. (2022). The rotor has four

rigid disks positioned at nodes 12, 15, 17, and 19; and two bearings at nodes 6 and

23. Although the bearings of the real machine are elliptical, a �xed-geometry cylindrical

bearing is considered here, using the model presented in Section 2.1. Two di�erent data

for the bearings were considered, and they are listed in Table 5.2. The only di�erence

between the two cases is the radial clearance, which is larger in case II. In addition, the

�uid viscosity µ = 0.027 Pa·s (ISO VG 46 at 50 °C) is assumed in both bearings and all

cases.

The total number of DOFs of the system presented in Fig. 5.9 is 108 (since each

node has 4 DOFs). For the analysis to be feasible using MATCONT, a reduction was

performed by means of a Component Mode Synthesis (CMS) method, namely the Craig-

1

6 9

12 15

17
19 21 23 27 bearings

disks

Figure 5.9: Mesh of the complex rotor system.

Table 5.2: Bearing data for the complex rotor system (dimensions in mm).
Parameter Case I Case II

Bearing 1
Length (Lb1) 88 88
Diameter (db1) 160 160

Radial clearance (cr1) 0.12 0.34

Bearing 2
Length (Lb2) 98 98
Diameter (db2) 180 180

Radial clearance (cr2) 0.135 0.385
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Figure 5.10: Comparison between the �rst six eigenvalues of the full and CMS-reduced
systems using case I data: imaginary (a) and real (b) parts.
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Figure 5.11: Limit cycles of the complex rotor for case I at: bearing 1 (a-d), disk 2 (b-e),
and bearing 2 (c-f).

Bampton (CB) method (CRAIG; BAMPTON, 1968; ALLEN et al., 2020). This method

is very well established in the literature and was used in many rotordynamic analyses
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Figure 5.12: Limit cycles of the complex rotor for case II at: bearing 1 (a-d), disk 2 (b-e),
and bearing 2 (c-f).
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Figure 5.13: Whirl frequency ratio for case I (a) and case II (b).

(WAGNER et al., 2010). In the CB method, the system is divided into boundary DOFs,

which are kept in physical form, and internal DOFs, which are reduced using �xed interface

modes. In the present case, the boundary DOFs consist of the bearing DOFs (nodes 6 and

23), and the remaining DOFs are labeled as internal. A total of 8 �xed interface modes

are used in the system. Hence, the rotor is reduced from 108 to 16 DOFs, which allows
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Figure 5.14: Limit cycles of the complex rotor for bearing 2 considering a higher order
polynomial: case I (a-c), and case II (b-d).

the use of numerical continuation methods. It is worth mentioning that this reduction is

optional in the CMR method, as the approach can handle high-dimensional systems with

a reasonable computational time. However, to make the comparison between MATCONT

and the CMR, the system reduced by the CMS was used. This means that the modes

used in Eq. (3.24) were obtained using the matrices reduced by the CMS, instead of the

full �nite element matrices. Figure 5.10 shows a comparison between the eigenvalues of

the full and the CMS reduced systems using data from case I. As one notes, the reduction

is very e�ective in reducing the numerical cost and maintaining accuracy.

Figure 5.11 shows the limit cycles of the complex rotor near the instability speed

ωw for case I at three di�erent points of the rotor: bearing 1 (node 6), disk 2 (node 15),

and bearing 2 (node 23). In these �gures, ε1 = |u|/cr1 and ε2 = |u|/cr2, where |u| is the
maximum/minimum radial displacement at the indicated axial position. One can note

that, for these bearing parameters, the bifurcation is sub-critical, with an unstable limit

cycle reaching as far as 250 rpm from the instability speed. The CMR gives very accurate

results near the bifurcation, but it exhibits larger errors for higher speeds when compared

with numerical continuation. For this reason, the analysis was stopped at around 275 rpm.
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This error can be diminished by considering a higher polynomial order for the CMR, as

shown in Fig. 5.14.

Figure 5.12 shows the limit cycles at the same points of the rotor but using the

data of case II. Here, one has a super-critical bifurcation followed by a second bifurcation

at an LPC, which turns the stable limit cycle into an unstable one. Similarly to the

previous example, the CMR agrees very well with MATCONT in the stable limit cycles

but shows large errors for the unstable ones. The results of the CMR can be understood

as a conservative estimate of the unstable limit cycles after the LPC. The whirl frequency

ratio for cases I and II are shown in Fig. 5.13. One notes that the frequencies stay very

close to 0.5×Ω, similar to the previous study. One should note, however, that the unstable

frequencies are not actually reachable; only the stable ones are.

Figure 5.14 shows the limit cycles at bearing 2 for both cases considering a seventh-

order expansion in the CMR. As one can note by comparing with the previous cases, the

accuracy of the limit cycles given by the CMR is greatly improved further from the

bifurcation point. It is worth noting, however, that the LPC was not predicted by the

seventh-order CMR, as Fig. 5.14b shows. Therefore, the CMR can be used reliably to

study the limit cycles from the Hopf bifurcation, but not the subsequent bifurcation of

the limit cycles.

5.2 Non-autonomous system

In this section, the e�ect of unbalance in the simple system studied in the au-

tonomous case (Fig. 5.1) is established. The CMR approach presented in Section 3.3.2

is employed. A �fth-order polynomial is used and is evaluated by comparing it with

numerical integration, which was performed using the ode45 integrator of the software

MATLABTM. Figures 5.15-5.17 show this evaluation for Lb/db = 0.4, where the dis-

placements are measured at bearing 1. The autonomous result of this case is shown in

Figs. 5.2a-d. In addition, the speed is set to ∆Ω = 50 rpm, and three levels of unbalance

are considered, namely, mun = 1, 10 and 20 g·mm. These values of unbalance correspond
approximately to the ISO grades G 1, G 2.5 and G 6.3, respectively. As unbalance is

added to the system, the periodic limit cycles turn to quasi-periodic solutions. By ana-

lyzing the �gures, one notes that the results of the CMR are very close to the numerical

integration in both the time and frequency domains. The latter results are obtained by

applying the Fast Fourier Transform (FFT) on the complex vibration signal, in order

to obtain the full spectrum. However, it is worth noting that the CMR results do not

require any numerical integration, only the solution of a polynomial equation, as shown

in Section 3.3.2. Additionally, the CMR gives all solutions, including the 1× harmonic

response, which turns unstable at the bifurcating point. The transient simulation can
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Figure 5.15: Comparison between CMR and transient integration for the non-autonomous
rotor with ∆Ω = 50 rpm, Lb/db = 0.4 and mun = 1 g·mm: orbit (a), radial displacement
(b) and frequency spectrum (c).
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Figure 5.16: Comparison between CMR and transient integration for the non-autonomous
rotor with ∆Ω = 50 rpm, Lb/db = 0.4 and mun = 10 g·mm: orbit (a), radial displacement
(b) and frequency spectrum (c).

only give stable solutions.

Figure 5.18 shows the e�ect of unbalance in the emerging limit cycles close to the

Hopf bifurcation. These �gures show the maxima and minima of the vertical displacement

of the rotor. Thus, multiple dots indicate a quasi-periodic solution, while a �xed number

indicates a periodic one. Figure 5.18a shows that when unbalance is small, in this case

mun = 1 g·mm, the autonomous and non-autonomous systems are very similar, as one

may note by comparing Figs.5.2a and 5.18a. As Figs. 5.18b-c show, the postponement of

the instability point is the main e�ect of increasing unbalance, which happens when the

1× solution turns unstable. This means that, if the external excitation is strong enough,
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Figure 5.17: Comparison between CMR and transient integration for the non-autonomous
rotor with ∆Ω = 50 rpm, Lb/db = 0.4 and mun = 20 g·mm: orbit (a), radial displacement
(b) and frequency spectrum (c).
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Figure 5.18: E�ect of unbalance on the limit cycles near the instability speed at bearing
1 with Lb/db = 0.4: mun = 1 g·mm (a), mun = 10 g·mm (b) and mun = 20 g·mm (c).

the e�ect of unbalance cannot be neglected in order to obtain the instability point.

Figure 5.19 shows the e�ect of unbalance when the bifurcation of the autonomous

system is sub-critical, while the previous response corresponded to a super-critical case.

It is interesting to note that the e�ect of unbalance in the instability point has now the

opposite outcome, that is, when unbalance is increased, the instability now occurs at an

earlier speed. This highlights the importance of knowing the type of bifurcation the system

presents. It is also worth noting that the sub-critical case is much more dangerous, as the

instability can occur prior to the threshold speed predicted by the autonomous system.

It was shown that the unbalance can a�ect the speed at which the rotor 1× solution

becomes unstable. In addition to this, the non-autonomous system can also change the

type of bifurcation the autonomous system displays, as Fig. 5.20 shows. As unbalance is
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Figure 5.19: E�ect of unbalance on the limit cycles near the instability speed at bearing
1 with Lb/db = 0.65: mun = 1 g·mm (a), mun = 10 g·mm (b) and mun = 20 g·mm (c).
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Figure 5.20: Change of bifurcation when unbalance is added for ∆Ω = 1.2 rpm and
Lb/db = 0.5: mun = 1 g·mm (a), mun = 10 g·mm (b) and mun = 20 g·mm (c). Here, the
red orbits denote unstable solutions, while the blue orbits denote stable ones.
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Figure 5.21: E�ect of unbalance on the limit cycles near the instability speed at bearing
1 with Lb/db = 0.5: mun = 1 g·mm (a), mun = 10 g·mm (b) and mun = 20 g·mm (c).
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increased, the stable and unstable quasi-periodic solutions annihilate each other, leaving

only the unstable 1× solution. This means that the stable solution that existed before

the unbalance was added cannot be reached anymore. Figure 5.21 presents the same case

of Fig. 5.20 but for di�erent rotational speeds. The autonomous counterpart of this result

is shown in Fig. 5.2b. Here it is possible to see that the change of bifurcation type occurs

because the unstable solutions become superimposed with the stable ones.

This section showed how the CMR can be used to obtain quasi-periodic solutions

of rotors under both �uid instability and unbalance. From the results, one notes that the

inclusion of the external excitation is very important if one is trying to estimate precisely

the speed at which oil-whip/whirl occurs. These outcomes agree with the ones obtained

by Rendl et al. (2023) using numerical continuation.
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6 EXPERIMENTAL STUDY

This chapter presents an experimental validation of the approach proposed to

detect whether the system will present oil-whirl or oil-whip. The test rig was described

in detail in Chapter 4. Measurements were conducted at �xed motor speeds, with a

sampling frequency of 4096 Hz over a period of �ve seconds. Prior to each measurement,

a �ve-second pause was implemented to ensure that the response reached a stationary

state.

The numerical studies revealed that variations in the bearing parameters can in�u-

ence the type of bifurcation exhibited by the system. To validate the model predictions,

certain parameters were intentionally adjusted in the real system, and the resulting bifur-

cation type was analyzed. The objective is to evaluate the model's ability to accurately

anticipate changes in bifurcation within the real system. Speci�cally, two parameters,

namely the bearing clearance and disk position, were selected for manipulation. This

study involves modifying these parameters in both the experimental setup and the model,

followed by a comparison of the results obtained.

As shown in Section 5.2, the amount of unbalance may a�ect the onset of instability

or even change the type of bifurcation displayed by the autonomous system. In view

of this, the rotor was well-balanced before each set of measurements to ensure a low

unbalanced moment. Measurements with the rotor balanced and with a known unbalance

were then performed. When the rotor reaches the oil-whip state, the measurements are

immediately aborted, so no damage is caused to the bearings and sensors. Hence, the rotor

does not develop the full circular motion characteristic of oil-whip, which was depicted in

Fig. 2.3a.

6.1 Rotor with one disk

Figure 6.1 depicts the dimensions and �nite element mesh of the rotor with one

disk, while Table 6.1 lists the properties of the system. The domain is subdivided into

16 Timoshenko beam elements. The journals and disk are considered rigid masses with

moments of inertia and are placed at nodes 4, 9, and 14. In order to reduce the number of

149 265 265 121

Beam element

Rigid mass Node

1 4 9 14 17

Figure 6.1: Finite element model of the rotor with one disk (dimensions in mm).
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Table 6.1: Properties of the rotor system.
Description Value
Young's modulus (E) 207 GPa
Poisson's ratio (ν) 0.3
Density of the material (ρ) 7850 kg·m3

Mass of shaft 0.71 kg
Mass of disk(s) 1.71 kg
Mass of journal(s) 0.96 kg
Diametral moment of inertia of disk(s) 1.61 kg·mm2

Polar moment of inertia of disk(s) 3.10 kg·mm2

Diametral moment of inertia of journal(s) 0.010 kg·mm2

Polar moment of inertia of journal(s) 0.013 kg·mm2

Bearing length 18 mm
Bearing radial clearance 90 and 130 µm
Oil dynamic viscosity 0.045 Pa·s1
1ISO VG at 25 C◦

DOFs of the system, a Component Mode Synthesis (CMS) approach was used, namely the

Craig-Bampton (CB) technique. The master nodes were chosen to be the bearing nodes

(nodes 4 and 14). The CB method is widely used in the literature, and one is referred to

Mereles et al. (2023) on how to implement it in a rotor system. Additionally, an isotropic

constant sti�ness of 28 kN/m is placed at node 1 of the model to mimic the e�ect of the

�exible coupling. The value of this sti�ness was adjusted to match the critical speeds of

the model with the measured ones.

In this study, the radial clearance of the system was changed in both the real

and modeled rotors. The values were 90 and 130 µm. As mentioned above, the idea of

the study is to see the e�ect of this change in the type of instability, either oil-whirl or

oil-whip, displayed by the system. However, the simulated and measured synchronous
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Figure 6.2: Comparison between measured and simulated 1× response with 90 µm clear-
ance: bearing 1 (a), bearing 2 (b) and disk (c).
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(a) (b)

(c)

Figure 6.3: Measured waterfall diagrams with 90 µm clearance: bearing 1 (a), bearing 2
(b) and disk (c).

responses are compared prior to the assessment of the bifurcation. This result is shown

in Fig. 6.2 for the rotor with 90 µm of radial clearance. To obtain these �gures, the Fast

Fourier Transform (FFT) is applied in the measured signal and only the 1× component is

extracted. In order to obtain the full spectrum, the FFT is applied to a complex signal, in

which the real part is the horizontal measurement while the imaginary part is the vertical

one. The response of the model is obtained by applying the Harmonic Balance Method

(HBM) (KRACK; GROSS, 2019), using three harmonics, and subsequently the FFT.

Note that this approach considers nonlinearities of the bearing force. In addition, the

experimental signal was obtained by a subtraction between the balanced and unbalanced

systems (with a known unbalance of 1 g at a 50 mm radius). Note that, the di�erence of

signals is used in order to reduce the impact of other e�ects not considered in the model,

such as shaft bow, misalignment, and others. As one may note from Fig. 6.2, there is a

good agreement between the experiment and the model.

With the model and experiment in agreement with respect to the unbalanced

synchronous response, the next step is to evaluate the �uid instability. Figure 6.3 shows

the experimental waterfall plots, which are obtained using the di�erence between the

balanced and unbalanced signals. In addition to the critical speed on the 1× line, one

also notes the emergence of a peak on the 0.5× line, which is the �uid-induced instability.
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(a) (b)

(d)

(f)(e)

(c)

Figure 6.4: Measured time signals and frequency spectrum of the disk during the transition
to �uid instability at: 61 Hz (a-b), 61.2 Hz (c-d) and 61.4 Hz (e-f). Rotor with 90 µm of
radial clearance.

59 59.5 60 60.5 61 61.5

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(a)

59 59.5 60 60.5 61 61.5

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(b)

Figure 6.5: CMR predictions for the rotor with 90 µm clearance and one disk near �uid
instability: autonomous (a) and non-autonomous (b).
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Figure 6.6: Comparison between measured and simulated 1× response with 130 µm clear-
ance: bearing 1 (a), bearing 2 (b) and disk (c). Here V - vertical and H - horizontal.
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Figure 6.7: Measured waterfall diagrams with 130 µm clearance: bearing 1 (a), bearing 2
(b) and disk (c).

However, it is not clear from these results whether the instability was oil-whirl or oil-

whip. Figure 6.4 shows the last three measurements of the displacement of the disk right

before the rotor becomes unstable. As one may see from the frequency spectrum, there

is no 0.5× component up until the rotor enters oil-whip. Therefore, this case corresponds

to a sub-critical bifurcation, in which no stable solutions exist after to oil-whip. This
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(a) (b)

(d)

(f)(e)

(c)

Figure 6.8: Measured time signals and frequency spectrum of the disk during the transition
to �uid instability at: 59 Hz (a-b), 59.2 Hz (c-d) and 59.4 Hz (e-f). Rotor with 130 µm
of radial clearance.

Figure 6.9: Expanded view of the waterfall diagram of the disk near �uid instability for
the rotor with 130 µm of radial clearance.
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Figure 6.10: CMR predictions for the rotor with 90 µm clearance and one disk near �uid
instability: autonomous (a) and non-autonomous (b).

result also highlights how the sub-critical bifurcation is very sudden: for 61.2 Hz the

system appears stable with no indication of any problem, but at 61.4 Hz, the operation

is no longer possible. In addition, Figure 6.5 shows the predictions of the model with

and without unbalance. As one may note, the model correctly predicted the sub-critical

bifurcation, but the speed was lower, at 60.1 Hz, which, again, works as a conservative

estimative of the phenomenon.

After the previously reported results were obtained, the 90 µm bearing bush was

substituted by a now one with a radial clearance of 130 µm. According to the numerical

studies presented in Chapter 5, the increase of the radial clearance may change the type of

bifurcation. Firstly, Figure 6.6 shows a comparison between the measured and simulated

1× responses. As in the previous case, the signal consists of the di�erence between the

balanced and the unbalanced rotor with a mass of 1 g at 50 mm. As seen in the �gures,

the agreement is very good between the model and experimental measurements.

Next, the rotor is driven to the �uid instability in order to evaluate the type

of bifurcation at hand. Figure 6.7 shows the measured waterfall diagrams, where the

occurrence of the instability is clear on the 0.5× line. To investigate the type of bifurcation

at hand, Figure 6.8 shows the last three measurements of the disk. Di�erently from the

previous case, one can note the appearance of a 0.5× component already at 59 Hz. This

indicates that the rotor reached a stable oil-whirl solution prior to the oil-whip, meaning

that the type of bifurcation is super-critical. By comparing this case with the one shown

in Fig. 6.4, it is arguably that the former is much more favorable, as there is a clear

indication in the frequency spectrum that oil-whip is nearby.

Figure 6.8 showed that at 59 Hz the rotor already appears to be in oil-whirl. To
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Table 6.2: Experimental frequencies against model (Rotor with one disk).
Case Critical speed (Hz) Instability speed (Hz)

90 µm
Experiment 32.4 61.4

Model 32.7 60.1
Error (%) 0.93 2.12

130 µm
Experiment 32.2 57-57.6∗

Model 32.5 57.1
Error (%) 0.92 0.17-0.87

∗The speed is considered a range due to the di�culty in precisely de�ning it.

point out the speed in which this regime started, Figure 6.9 shows an expanded view of

the waterfall diagram of the disk at the last measured speeds. One may note that the

0.5× component is already present at 57 Hz, but it is weaker. The component appears

to increase at 57.6 Hz, so the experimental onset speed for the oil-whirl phenomenon is

considered to be in the range 57-57.6 Hz in this case. The prediction of the model using the

CMR is shown in Fig. 6.10, for both the autonomous and non-autonomous case. As can

be seen, the model correctly predicts a super-critical bifurcation. However, the range of

oil-whirl predicted, 57.1-57.2 Hz, is seemingly smaller than the observed. Nonetheless, the

model correctly predicted that by increasing the radial clearance, the rotor would display

a super-critical bifurcation. In addition, Table 6.2 lists the results measured against the

ones predicted by the model.

6.2 Rotor with two disks

The dimensions of the rotor with two disks are shown in Fig. 6.11. The same

parameters listed in Table 6.1 were considered for this system. The two disks have the

same properties and are positioned at three di�erent positions: position 1 (P1), position 2

(P2) and position 3 (P3). These are highlighted in the �gure. The idea here is to analyze

how the position of the disks a�ects the type of instability present in the real system.

In addition, the bearing clearance was considered to be 90 µm. Similar to the previous

case, a model reduction technique is applied to reduce the number of DOFs of the system.

Here, the CB is used again, with the master nodes consisting of the bearings nodes (nodes

149 157, 197, 213 121
P2P1 P3

216, 138, 100
P2P1 P3

157, 195, 213
P2P1 P3

Beam element

Rigid mass Node

1
4

8 12 16 19

Figure 6.11: Finite element model of the rotor with two disks indicating the three positions
considered (dimensions in mm).
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(a) (b)

(c) (d)

Figure 6.12: Comparison between measured and simulated 1× response with disks at P1:
bearing 1 (a), bearing 2 (b), disk 1 (c) and disk 2 (d).

4 and 16). Lastly, a constant sti�ness of 28 kN/m is placed at node 1 to mimic the e�ect

of the �exible coupling. This value was obtained to match the model critical speed with

the measured value.

Following the same approach as before, the �rst step is to compare the numerical

and experimental synchronous responses. Figures 6.12-6.14 show such comparison. The

experimental signals are obtained from the di�erence between the balanced and unbal-

anced (1 g mass at 50 mm at disk 2 only) rotors. The same value of unbalance is also

used in the model for the evaluation.

The model showed good agreements in some cases, such as Figs. 6.12c-6.12d, and

disagreements in others, such as Figs 6.12b, 6.13b and 6.14b. Note that the major di�er-

ences occurred mainly in the measurements of bearing 2. Nonetheless, one may conclude

that the model reasonably represents the real system.

The measured waterfall diagrams of the three positions are displayed in Figs. 6.15-

6.16. Only the results of bearing 1 and disk 1 are shown for brevity. One may see the rise

of the 0.5× component, indicating the occurrence of �uid instability. It is also noticeable

the di�erent strengths of this component for the di�erent disk positions. This occurs

because of the transient nature of the measurements when the rotor enters oil-whip, that

is, in some cases the whip motion developed a bit further than in others. As mentioned
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(a) (b)

(c) (d)

Figure 6.13: Comparison between measured and simulated 1× response with disks at P2:
bearing 1 (a), bearing 2 (b), disk 1 (c) and disk 2 (d).

(a) (b)

(c) (d)

Figure 6.14: Comparison between measured and simulated 1× response with disks at P3:
bearing 1 (a), bearing 2 (b), disk 1 (c) and disk 2 (d).
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(a) (b)

(c)

Figure 6.15: Measured waterfall diagrams with disks at positions: P1 (a), P2 (b) and P3
(c). Signals from bearing 1.

(a) (b)

(c)

Figure 6.16: Measured waterfall diagrams with disks at positions: P1 (a), P2 (b) and P3
(c). Signals from disk 1.
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(a) (b) (c)

Figure 6.17: Expanded view of waterfall diagrams with disks at positions: P1 (a), P2 (b)
and P3 (c). Signals from disk 1.

(a) (b)

(d)

(f)(e)

(c)

Figure 6.18: Measured time signals and frequency spectrum of disk 1 with disks at P1
during the transition to �uid instability at: 56.8 Hz (a-b), 56.4 Hz (c-d) and 56.2 Hz (e-f).
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Figure 6.19: CMR predictions for the rotor with disks at P1 near �uid instability: au-
tonomous (a) and non-autonomous (b).

in the beginning of the chapter, no full whip motion was allowed due to safety concerns.

It is hard to say whether the rotor displayed oil-whirl prior to oil-whip from the

results of Fig. 6.16. Figure 6.17 shows an expanded view of the waterfall diagrams. Here

one may note that, as the disks are placed far apart at P1, the rotor tends to display oil-

whip directly, as the 0.5× component is very low until oil-whip occurs. Conversely, as the

disks are placed closed together at P3, the amplitude of the 0.5× component is noticeably

higher, indicating oil-whirl prior to oil-whip, and hence, a super-critical bifurcation. The

reason for this change in behavior is the e�ect of the disks on the onset speed of instability.

The higher the onset speed is, the closer the rotor equilibrium will be to the center of

the bearing, making the occurrence of oil-whip more likely (See Fig. 2.2 and discussion

therein).

Figure 6.18 shows the transition to �uid instability when the disks are positioned

at P1 (farther apart). The behavior is very similar to the rotor with one disk, Figure 6.4,

where the bifurcation was sub-critical. However, a small 0.5× component still appeared

in the frequency spectrum, indicating that the rotor entered a small oil-whirl prior to

oil-whip. It is worth noting that this warning was very sudden, as one observes when

comparing Figs. 6.17a with 6.17b or 6.17c. Thus, the rotor was very close to display

oil-whip only.

The predictions of the CMR are shown in Fig. 6.19 for both autonomous and non-

autonomous case. As one may note, the CMR predicted a sub-critical bifurcation, that is,

oil-whip directly. Although the prediction did not match exactly the measured response,

it still serves as a warning that with disks at P1, oil-whirl may not appear before oil-whip.

Also, the response shown in Figure 6.18 is very close to being a sub-critical bifurcation,
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Figure 6.20: Measured time signals and frequency spectrum of disk 1 with disks at P2
during the transition to �uid instability at: 48.6 Hz (a-b), 48.8 Hz (c-d) and 49 Hz (e-f).
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Figure 6.21: CMR predictions for the rotor with disks at P2 near �uid instability: au-
tonomous (a) and non-autonomous (b).
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Figure 6.22: Measured time signals and frequency spectrum of disk 1 with disks at P3
during the transition to �uid instability at: 47 Hz (a-b), 47.2 Hz (c-d) and 47.4 Hz (e-f).

Table 6.3: Experimental frequencies against model (Rotor with two disks).
Case Critical speed (Hz) Instability speed (Hz)

Position 1
Experiment 29.4 56.2-56.6∗

Model 29.2 56.1
Error (%) 0.68 0.18-0.8

Position 2
Experiment 26.0 48.6-49∗

Model 26.0 49.2
Error (%) 0.01 1.23-0.41

Position 3
Experiment 25.2 47-47.4∗

Model 25.0 47.2
Error (%) 0.79 0.38-0.46

∗The speed is considered a range due to the di�culty in precisely de�ning it.

as the oil-whirl is very small.

The transition to �uid instability with disks at P2 is shown in Fig 6.20. Here, the

0.5× component is already very visible in the frequency spectrum and time series, indi-

cating the appearance of oil-whirl. The predictions of the CMR are presented in Fig. 6.21,
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Figure 6.23: CMR predictions for the rotor with disks at P3 near �uid instability: au-
tonomous (a) and non-autonomous (b).

which showed that the system would present a super-critical bifurcation. Therefore, the

prediction was in agreement with the observed response of the real system for this case.

The last result is shown in Fig. 6.22, where the disks were at P3 (farther apart).

These results are very similar to the ones given by P2, with the di�erence that the oil-

whirl is much more noticeable, indicating once more a super-critical bifurcation. The

predictions of the CMR are shown in Fig. 6.23, and they are in agreement with the

experimental results, as the model also presented a super-critical bifurcation. Table 6.3

lists the frequencies obtained by the model against the measured ones, indicating good

agreement.
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7 CONCLUSIONS

Journal or hydrodynamic bearings �nd common applications in several rotating

machines mainly due to their many advantages such as simplicity in construction, ability

to sustain high loads, and others. However, these types of bearings are known to display

unwanted behavior, denoted as �uid-induced instability. For plain journal bearings, there

are basically two types of instabilities, namely oil-whirl and oil-whip, the latter being

more dangerous to the operation of the machine. One can also look at these phenomena

as occurring due to a Hopf bifurcation, where the type of bifurcation tells whether oil-

whirl or oil-whip will occur. This work presented an approach to predict the type of Hopf

bifurcation that will manifest in a given system, which can be important information in

the design of rotating machines.

The approach proposed is based on the Center Manifold Reduction (CMR) method,

which estimates the center manifold of a nonlinear system, and allows one to �nd the limit

cycles that emerge in Hopf bifurcations. The main contribution of this work lies in the use

of the parameterization method for invariant manifolds (HARO et al., 2016) to estimate

the center manifold, extending both the range in with the limit cycles can be obtained

and their accuracy when compared with purely numerical approaches. Compared with

previous applications of the CMR, e. g. Boyaci et al. (2009) or Kano et al. (2019), which

were limited to around ∆Ω = ±10 rpm from the bifurcation point, the present method

extents tenfold the range in which the limit cycles extending from Hopf bifurcations can

be obtained (See for example Figs. 5.2).

In Chapter 5 the CMR was validated against numerical continuation, where the

open-source numerical package MATCONT was used. Several parameters of the bearing

were varied and the limit cycles were obtained. It was shown that the CMR is very

accurate in the region close to the instability point, and starts to show greater errors

the farther from said point. With the results, one can conclude that the CMR can be

used reliably to detect the type of Hopf bifurcation, to perform parametric studies and to

predict the amplitudes of the limit cycles. In addition, one major advantage of the CMR

is its seamless application to high-dimensional rotor systems, which allows it to be used

in the study and design of real rotating machines.

The CMR approach can also be used to study the e�ect of unbalance forcing in the

�uid instability as presented in Section 5.2. Here the method was compared with transient

numerical integration due to the inability of the numerical continuation software to handle

quasi-periodic responses. Here the analytical nature of the CMR shows great advantages

when compared with transient integration, which generally takes much longer and is only

suited to the obtention of stable solutions. With the CMR, one is also able to study the

e�ect of unbalance in the limit cycles of the autonomous system. Here, the onset speed
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of instability and the type of bifurcation were shown to be dependent on the amount of

unbalance present in the system.

Some experiments were also performed and were reported in Chapter 6. Two

systems were studied: a rotor with one and two disks. The studies focused on changing

some parameters of the system, namely the position of the disks and the radial clearance

of the bearings, and assessing whether oil-whirl or oil-whip occurred. The experimental

observations were in agreement with the numerical studies in which the higher the radial

clearance, the higher the chance of the rotor displaying oil-whirl. With regard to the disks'

positions, it was found that the closer together they are placed, the chance of oil-whirl

also increases. In addition to this, the predictions of the CMR were also shown, where

good agreements between the model and experiment were found, as one may note from

Tables 6.2 and 6.3.
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