
OPTIMIZA~ION OF NON-LINEAR LARGE SCALE SYSTEMS 

WITH LINEAR DYNAMICS - AN APPLICATION 

TO LOAD SCHEDULING 

ABSTRACT. This paper presents an algori thm for optimization of large 
scale non-lineardynamical problems with linear constraints. The approach 
was devised with the aim of solving deterministic scheduling problems of 
hydrotherrnal power systems. The method has a conception based on the 
overall structure of the reduced gradient method, more specifically it 
is based on the implementation of this method by Murtagh and Saunders 
(1978).The dynamical characteristic of the problem leads to a constraints 
matrix with staircase structure. Skillfull use of this feature in 
storing and computations is mandatory for large scale problems. The 
staircase structure is considered in the L - U decomposi tion of the con-
straints matrix and in the updating scheme which is based in the classic 
paper of Bartels-Golub. 

The algorithm was implemented in a computer program and an appli-
cation to load scheduling is presented. 
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l. INTRODUCTION 

Optirnization of non-linear dynamic systems with linear dynarnics 
arise, frequently, in control and planning of engineering systems. The 
main feature of the problems is that thei r cons traints are represented by 
sparse matrices with staircase structure. 

Linear dynamic programming has been the object of many earlier re-
search. Krivonozhko and Chebotâr ev (1976 ) and Propoi and Krivonozhko 
(1978) developed an algorithm to solve a linear dynamic problem. This al-
gorithm adapted the Simplex method for cons traints matrices with stair-
case structure and used the Forrest -Toml in (1972) updating scheme, which 
has good properties related with sparsity preservation but is not nu-
merically stable. Fourier (1979, 1982, 1983, 1984) surveys . the proper-
ties of staircase matrices and the varie ties of Gaussian elimination for 
these matrices. Friedlander, Medina and Tavare s (1982) presented anal-
gorithm to solve a linear dynamic programming p roblem, establishing a 
compromise between the preservation of staircase structure and numerical 
stability. Friedlander (198 6) imp.lementPd computer code for this algo-
rithm and showed the . viability of extending it to non-linear problems. 

·rn this paper we sol•;e the dynami prob lem with non-linear objec-
tive function and linear restrictions. 'Ihe a lgorithm is based on Murtagh 
and Saunders (1978) implementation of the reduced gradient method. The 
basic constraints matrices are factorized in the LU form. When a change 
of basis is necessary, the factors are updated by a procedure based on 
the Bartels and Golub's Scheme (1969). The decomposition and theupdating 
process take advantage of the staircase structure. During thewhole process 
a compromise is established_ between s tructure preservation and. numerical 
stability. 

2. STATEMENT OF THE PROBLEM 

The non-linear programming problem with linear dynamics has the 
form: 

minimize f (x , u~ (l) 

subject to 



x(t + 1) A(t)x{t) + B(t)u(tl 

x(O) = x0 

C(t)x(t) + V(t)u{t) = g(t) 

-X< X(t + 1) < X 

-u < u(t) < u t 0,1, ... ,T-l 

· where f{x,u) e ~l 

x ( t) E IRn, state vector 

u(t) ' E IRr, control vector 

g{t) E IRm, < 1 t m _ r, g ven resource vec or 

x(O) x0 , initial state vector 

T, number of time periods, fixed. 

The constraint matrix of this problem has the form shown below 

A '"' 

u(O) 
r 

D ( O) 

X (1) 
n 

B{O) - ]. 

e !ll 

u(l) 
r 

D(l) 

x(2) ... x(T-1) 
n 

A(l) B (1) - :n. 

• C(T-1) 

A(T -1) 

Fig. 1 

u(T - 1) 

D (T - 1) 

B (T - 1) 

X (T) 

- :n. 

3 

(2) 

(3) 

(4) 

(5) 

(6) 
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where n is a (n x n), identity matrix. 

3. SUMMARY OF THE MURTAGH AND SAUNDERS VERSION OF THE REDUCED GRADIEN'l 

METHOD 

We wish to 

subject to 

where A E IRmxn, m < n. 

minimize f (x) 
xemn 

A x = b 
-X < X < X 

(1) 

(2) 

(3) 

Given xk, a vector that satisfies (2) and (3), E> O anda par-
tition of the set of general constraints (2) as follows 

Ax 

'"'b_a_s_:,..... c-s-'--s_u_:_e_r_..._n_o_n __ .,..b-:-s....,i_c_s___.l [ l 
basics 

= b. 

The matrix B is sguare and non-singular as in the Simplex method, 

s e mmxs with O .::. s < n - m and N is the matrix formed by the re-
maining columbs of A.The associated variables ~, x5 ,~ are called 

the basics, superbasics and non-basics , respectively. Then if we fix ~• 
and let and x5 free to vary between their bounds, from (2) and (3) 
we obtain 

Define, 

STEP 1. Compute the gradient vector Vf(xk). 
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STEP 3. Compute the reduced gradient 

If s = o goto step a. 
Otherwise goto Step 4. 

STEP 4. Compute a search direction 

STEP 5. Solve .. -
Set 

o 

STEP 6. Find a* > O, the greatest value of a for which xk + atixk is 
feasible. 

STEP 7. Find y E [O, a* J SO that 

f(xk + ytixk) < f(xk). 

Define k+l = k + aóxk. X X 

If y < a* make k = k + 1, go i.:o Step 1. 

If y = a*, we conclude that a basic or a superbasic variable 
hit a bound. If it is a superbasic, change it to non-basic make s :os -1, 
k = k + 1 and go to S tep 1. 

If it is basic, a change of basis is necessary. Find a superbasic 
variable to enter the basis and declare the basic variable that hit the 
bound non-basic. Make s :o s - 1, k =- k + 1 and go to Step 1. 

STEP 8. ("Price", i.e., estimate Lagrange multipliers). Compute 

( 

' ( 
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If the Kuhn - Tucker necessary condi tions of optimality are satisfied, 
xk is an optimal solution 0f our proble~. Then STOP. 

Otherwise, choose a non-basic variable not satisfying theoptirra.lity 
condi tions, to rele ase i t from i t s bo .wó Oeclare i t superbasic, make 
s = s + 1 and 90 to Step 4 

The next sections show the basi~ factorization and the updating 
procedure used for the matrices with stai e se structure. 

4. BASIS FACTORIZATION 

Any submatrix B of A satisfies 

m Bl 

n B2 

m ;;i 
BP = n B4 . 

m 

n 

Fig. 2 

for some permutation matrix P. 

Let B be a basis, then the block s1 must have m independent 
columns. We perform a stable row-pivoting within this (m x m) submatri> 
of block B1 . As the number of colwnns of s1 can be greater than m, 
after this process we may have some columns of B1 , that rerrain unpivoted. 

Let 1::,. (1) be the submatrix formPd by the remaining columns of B1 , 
where we take just the first m-rows. To continue the factorization, 
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consider the submatrix whose colurnns are the remaining columns of B1 and 
the colwnns of B2 , and whose rows a.re the first n-rows after the last 
pivoted row. Once again the fact that B is a basis guarantees the per-
formance of a stable row-pivoting within this submatrix. Wecontinue this 
process until the whole matrix B is factorized, Finally we have 

where 

'1(2) 

remaining l1 ( 3) 

o = 
colwnn of B1 , 

that was pivoted 
together with the l1(2T-l) 

columns of the s2T-l block 

Fig. 3 

the L1 are elementary rnatrices, and the Pi elementary permutation ma-
trices. O is a permutation matrix. à(i) is the .matrix whose colurnns are 
the remaining ones and whose rows are the corresponding 
l 1 2T - 1. The whole process will not produce fill-in 

rows of u1 , 
outside the 

sta1rcase except for the remaining colurnns. Note that the colurnns of any 
u1 , O~ i < 2T may represent state or control variables from Jiy pre-
v1ous stage. 

S. UPDATING THE LU FACTORIZATION 

To describe the updating process, we have to distinguish the fol-
iowing two situations: 
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il The leaving column stays in u1 , and t he entering column is 
associated with Uj, with j > i. Let k be the position o f the leaving 
column relative to u 1 , wh i ch we suppose of d imens i on m. We bring the 
columns (k + 1, k + 2, .. . , m) o f u1 baclc t o positions (k,k+l, ... ,m-1) 
respectively, and column k is put i n p lace of the m-th column of Ui. 
This permutations transform the lower-triangular Ui in a Hessenberg ma-
trix Hi. The H1 matrix is pivoted, in order to eliminate the sub-diago-
nal, choosing the element with largest absolute value between the diago-
nal and sub-diagonal in each column as pivot (Bartels-Golub, (1969)). 
These operations increase the number of elementary Li that define L- 1 . 
Clearly, these operations involve only the rows of B, corresponding to 
u1 . The Â(i) columns, which at the end of these eliminations have a 
zero in the m-th row of Ui, are linearly dependent of the first (m - 1) 
columns of u1 . We choose the first â (i) column which has a non - zero 
element on this row. It is not difficult to show the viability of this 
choice. We permute the chosen column of â(i) with the leaving column 
(that is now in the last column of u1 >. With this permutation, some ele-
ments are created under U's diagonal, at'ld the next step is their elimi-
nation. Observe that the fact that the column introduced in u1 , was the 
first one with non-zero element in the last U. 's row, guarantees thrt 

l. 
this last elimination produces no f il -in on U's columns between the t:,..,u 

permuted columns. Also al t erations in U will only occur on the â(i) 
columns with non-zero element on the pivoting-row. After this process 
the leaving column stays in a u1 with 1 > i. We repeat this procedure 
until the leaving column reaches the position of the last Uj's colwnn. 
At this moment we arrive to situation: 

ii) The leaving column is in u1 and the entering colwnn is asso-
ciated with u., j < i. We proceed justas in situation i. The differ-

J -
ence is that, in this case, it may happen that the whole Â(i) row, in 
which we look for a non-zero element, is null. If this is the case, the 
leaving column is deffinitely retired from U and replaced by the updata:1 
entering column. Once aga i n, this change of columns, creates elernents 
below U's diagonal, but the fact that the whole Â(il 's pivoting row 
is null, guarantees that no fill-in i s produced in U when those elements 
are eliminated. If Â(il has a non-zero element on the pivoting row we 
proceed as in i), repeat 1.•.9 t.he p rocess until for some 1 > i, Ã(i) 's 
pivoting row is null or 2. "" 2T. Then ...,e may effectivize the change of 
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columns. It is clear that the whole process preserves the staircase 
structure with exception of the "remaining columns" of the factorization, 
and some new â(i} type columns that rr~y be introduced during the updating 
process. Also some of these â (i} columns may be deleted during this 
process. 

·6 . COMPUTATIONAL EXPERIENCE 

The algorithm presented in the previous sections was implernented in 
a Fortran prograrn and has been tested in an application to the optimal 
scheduling of the hydrothermal power system of the são Francisco River 
in Brazil. This systern consists of four hydraulic turbines, two of them 
with reservais, Sobradinho and Moxotó. The others are Paulo Afonso I, 
II, III (P. A. I, II, III) and Paulo Afonso IV (P.A. IV). 

The variables considered in the modelling of this system are: 

xf storage of reservoir i at stage t; 

t y i : natural inflow of reservoir i at stage t (known constant); 

t u1 water released from rese~oir 1 (Sobradinho) at stage t di-
rected to the power plant to produce electricity; 

t v 1 water spilt from reservoir 1 at stage t; 

• u; water released from reservoir 2 (Moxotó} directed to the tur-
bines of Moxotó and P.A. I, II, III to produce electricity; 

t v 2 water spilt from reservoir 2 and P.A. I, II, III; 

u; water released from reservoir 2 directed to P.A. IV to pro-
duce electricity; 

t v 3 water spilt from P.A.-.IY; 

T delay in the wa ter flow from reservoir 1 to 2; 

T final stage. 
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- .. C"~\j>20,... "'nd bounds t 1=1,2; t = l , ... , T " ' "1 upper on xi 

- and bounds t i=l,2; t = o , ... , T -1 ~1 , ui ower upper on u. 
l. 

dt : energy demand to be met at stage t. 

For th1s system we obtained the total energy production ata given stage 
as a quadratic function of the flows u: . 

t g(u) 

The optimization problem we formulated is: 

subject to 

(P) t -
~i < xi < xi - - i 1,2; t = l, ... ,T 

t - l ~i < ui ui 

t > o J vi - i = 1,2; t 0,l, ... , T- l 

known constants 

(l) 

(2) 

( J.) 

(4) 

(S) 

(6) 

(7) 

An ini tial feasible solution was obtat&ed solving the linear program-
ming problem 

\ n.!,I 

subject to (2), (3), (4), (S) , (6). (7) and 

( 8) 

(9) 

(10) 
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- t t t t where g(u) = 8.26u1 + 32.9Bu2 + 34.93u3 , is a linear approximation of 

g(ut) obtained by fitting it's non-linear part with 1000 points. ~t may 
be interpreted as energy produced by other turbines than the hydraulic 
oras energy shortage. 

The problem (P) was run on a VAX/785 with VMS operational sys-
tem, for a two-week horizon discretized in periods of 8 hours, thus 
It converged to an optimal solution in 120 iterations consuming 
seconds iteration. 
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