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Abstract

Electron beam accumulation into SIRIUS storage ring occurs in a off-axis scheme, on which
the efficiency depends on a sufficiently large dynamic aperture (DA): the region comprising
stable transverse oscillations. Prior to optimization, SIRIUS DA was sufficiently large for
providing good injection efficiency levels, but showed signs it could be further improved
upon fine-tuning of sextupole magnet strengths, which determine the DA. In this master’s
project, the Robust Conjugate Direction Search Algorithm (RCDS) for online optimization
was applied to optimize the DA and the injection efficiency at SIRIUS. Online optimization
was also carried out in different working points, with higher fractional tunes. Higher
tunes are beneficial for orbit stability, but usually deteriorate the DA, requiring online
optimization work to achieve injection efficiencies meeting operation demands. This work
shows how online optimization was successful at optimizing the DA in SIRIUS nominal
working point as well as in a new working point where orbit stability improvements were
observed. The results highlight the effectiveness of this method in 4th-generation storage
rings.



Resumo

O acúmulo de feixe no anel de armazenamento do SIRIUS ocorre no esquema de in-
jeção off-axis, o qual depende de uma abertura dinâmica (AD) – a região contemplando
oscilações transversais estáveis – suficientemente grande. Antes do trabalho de otimização,
a AD do SIRIUS se mostrava suficientemente grande para fornecer uma boa eficiência de in-
jeção, mas também mostrava sinais de que poderia ainda ser melhorada por meio do ajuste
fino das forças dos imãs sextupolos, que determinam a AD. Neste projeto de mestrado, o
alogritmo Robust Conjugate Direction Search (RCDS) para otimização online foi aplicado
para otimizar a AD e eficiência de injeção no SIRIUS. Os experimentos também foram
realizados em outros pontos de operação, com maiores valores para a parte fracionária das
sintonias. Aumentar as sintonias é benéfico para a estabilidade órbita, mas geralmente
deteriora a AD, o que requer o trabalho de otimização online para alcançar valores de
eficiência de injeção que atendam as demandas da operação. Este trabalho mostra como a
otimização online foi bem sucedida para otimizar a AD no ponto de operação nominal do
SIRIUS, bem como em um novo ponto de operação, onde melhorias na estabilidade de
órbita foram observadas. Os resultados salientam a efetividade desse método em anéis de
armazenamento de 4º geração.
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Introduction

This dissertation focuses on the work conducted on the SIRIUS storage ring
with the objective of optimizing the ring’s Dynamic Aperture (DA) and Injection Efficiency
(IE). The text is structured as follows:

• The current chapter introduces synchrotron light sources, provides an overview of the
SIRIUS project, outlines the main components and subsystems present in electron
storage rings, and elucidates the problem addressed in this work;

• Chapter 1 delves into the theoretical and scientific background regarding the dynamics
of particles in accelerators. It covers topics such as optics functions, tunes, chromatic
effects, field errors, perturbations, and the dynamic aperture;

• Chapter 2 introduces the online optimization of nonlinear dynamics in accelerators
and presents the Robust Conjugate Direction Search (RCDS) algorithm;

• Chapter 3 presents the diagnostic tools available for probing the electron beam’s
motion, current, and other relevant parameters. It also covers technical details on
the design of the experiments and measurements reported here, such as the choice of
the objective function and the decision variables for the optimization problem;

• Chapter 4 presents the results of the online optimization experiments and discusses
their significance for the machine operation and stability.

• Lastly, Chapter 5 provides conclusions and closing remarks on the findings and
implications of the study.

Storage ring-based synchrotron light sources

Synchrotron radiation (SR) is the electromagnetic radiation emitted by charged
relativistic particles when accelerated perpendicularly to their motion. The phenomenon
was theoretically predicted in the early 1900s when Liénard and Wiechert calculated the
retarded potentials for point particles. The first experimental observation in a laboratory
occurred at General Electric’s synchrotron accelerator, justifying the adoption of the term
"synchrotron" in its name [1].

Synchrotron light is extremely collimated and has a broad spectral distribution,
covering from infrared to hard X-rays. These properties make it ideal for imaging experi-
ments in crystallography and spectroscopy across a wide variety of scientific disciplines.

Modern synchrotron light sources rely primarily on two particle acceleration
technologies: free-electron lasers and electron storage rings. Here we focus on storage
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ring-based synchrotron light source facilities. In these facilities, ultra-relativistic electron
beams are stored for extended periods around a closed orbit within a chamber in ultra-high
vacuum to produce synchrotron light. The beam is maintained in stable orbits by the fields
of magnets carefully placed along the ring to provide bending and focusing of the electrons
trajectories. It is also periodically influenced by longitudinal standing-wave electric fields
in the radio-frequency range, which replenish the energy radiated away in the form of
light.

The main figure of merit for measuring the quality of a SR source is the
brightness [2], defined as the photon flux density in phase space [1, 3]:

B(ω) = 1
∆ω/ω

Ṅ(ω)
4π2Σx(ω)Σy(ω) , (1)

where Ṅ is the photon flux at energies in E = ℏω, E + dE. Σu is the photon beam
volume in the u = x, y phase space, and ∆ω/ω is the frequency bandwidth. The photon
phase space volume depends on the convolution of the electron beam distribution with the
distribution of the photons emitted by a single electron. The latter depends on the photon
energy and the emission process, while the former is related to the phase space volume
of the electron beam: the emittance. The equilibrium beam emittance depends on the
magnetic lattice and has units of the transverse phase space areas (size × angle). Increasing
brightness can be achieved by maximizing the photon flux, reducing the electron beam
emittances and optimizing the matching between photon and electron beams distribution
orientation. [1].

Synchrotron light sources can be classified based on their brightness and
emittance. In the early 1960s, the community interested in SR for imaging experiments
obtained it parasitically from machines originally designed for high-energy and nuclear
physics experiments, such as DESY and DORIS, in Germany, and ADA, in Italy [4]. This
marks the era of the first-generation synchrotron light sources [5]. The second-generation
machines emerged in the 1980s and consisted on machines designed exclusively for SR
production, such as BESSY, DORIS II, DORIS III, and ELSA, in Germany; SuperACO,
in France; MAX I, in Sweden [4]; NSLS and SPEAR, in the USA; UVX in Brazil; KEK
Photon Factory and SOR-Ring, in Japan.

The 1990s saw a growing demand for higher brightness, leading to the develop-
ment of third-generation machines [5]. These machines introduced insertion devices (IDs)
such as wigglers and undulators, which consist of a sequence of alternating magnetic fields
generally created by an array of permanent magnets arranged in a Halbach array [6, chapter
7]. IDs significantly enhance brightness by adding the radiation emitted by many poles.
They also allowed precise control over the emitted radiation energy and polarization.

Typical emittances for third-generation machines is of the order of units to
tens of nm.rad. Most of the currently operating machines pertain to the third-generation,
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such as ALBA, in Spain; SOLEIL and ESRF, in France; Diamond, in the United Kindom;
ELETTRA, in Italy [4]; SPEAR3, APS, ALS and NSLS-II, in the USA; SSRF, in China;
Spring-8 in Japan; PLS-II, in Korea; TPS, in Taiwan; CLS, in Canada; and AS, in Australia

The era of the 4th generation storage rings (4GSRs) commenced with the
design of the MAX-IV machine in Lund, Sweden, in 2015 [3, 5]. 4GSRs achieved a
notable reduction in emittance, reaching sub-nm.rad values thanks to recent technological
advancements in accelerator technology, such as computer simulations, vacuum technology,
machining, mechanical alignment, and others [3, 5]. Following MAX-IV, an upgrade of the
ESRF facility, the ESRF-EBS, in France, and the launch of SIRIUS, in Campinas, Brazil,
marked significant milestones for the fourth-generation. Today, several 4GSR projects are
being planned, designed and constructed around the globe.

The SIRIUS project

SIRIUS is a 4GSR synchrotron light source. It was designed, built, and is
operated by the Brazilian Synchrotron Light Laboratory (LNLS), on the campus of the
Brazilian Center for Research in Energy and Materials (CNPEM), in Campinas, Brazil.
The electron storage ring has 518 m in circumference and its operating energy is 3 GeV.
The natural emittance of the lattice is 250 pm.rad.

SIRIUS succeeded the first synchrotron light source in Brazil, the UVX machine,
which opened to users in 1997 and served the community until its shutdown, in the beginning
of SIRIUS commissioning, in August 2019 [7]. The SIRIUS project started in 2009, initially
planned and designed as a third-generation machine. By 2012, the project evolved into
that of a 4GSR [7]. Building construction was finished in 2018, the LINAC and Booster
commissioning soon followed. In November 2019 the first beam was stored in the storage
ring.

SIRIUS finished the Phase-0 commissioning in 2022 and since March 2023 is
receiving the first external users. At the time of this writing, it has 10 operating beamlines,
1 beamline in commissioning, 2 under construction and 1 beamline in design [8]. The
storage ring currently stores 100 mA current, operating with frequent beam injections
throughout the day, a scheme known as “top-up” mode. SIRIUS is expected to achieve
350 mA current when the system of two superconducting radio-frequency (RF) cavities
and the third-harmonic cavity are installed [9, 10].

Presently, SIRIUS stands as the most complex scientific infrastructure ever
constructed in Brazil, aiming to position the country at the forefront of global leadership
in synchrotron light science and technology. It has the capacity to host up to 40 beamlines
and as of the time of this writing, SIRIUS is the sole fourth-generation synchrotron light
source in the southern hemisphere and one of merely three 4GSRs in operation across the
globe.
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Figure 1: Schematic view of the SIRIUS installations. 1) Linear Accelerator (LINAC); 2) Concrete tunnel
housing the booster accelerator and the storage ring, in blue; 3) tunnel interior floor, in yellow; beamlines,
in red, long beamlines, in 4). Figure from LNLS website.

Physics of electron storage rings: an overview

Typical systems comprising a storage ring synchrotron light source facility
include:

• an injection system: including the electrons source, beam transport lines, the linear
accelerator and the booster synchrotron accelerator. At SIRIUS, the linear accelerator
provides the booster with a 150 MeV beam. The booster further ramps the beam
energy up to 3 GeV, which is the storage ring operation energy;

• storage ring: where the ultra-relativistic beam of electrons is kept in stable orbits
for hours within the vacuum-chamber, producing synchrotron light at the bending
magnets and insertion devices;

• beamlines which steer, focus and select the energy of the photon beams towards
the experimental cabins where samples are placed for the experiments based on
light-matter interaction, such as spectroscopy, crystallography, tomography and
others.

A schematic view of the SIRIUS building is shown in Fig. 1.
Figure 2 outlines the typical layout of a synchrotron storage ring. The electron

beam is stored within a vacuum chamber, where the individual electrons oscillate in
proximity to a reference closed orbit, under the influence of magnetostatic fields from an
array of multipolar magnets (the magnetic lattice) and also time-dependent fields from
the RF cavities.

A pure dipole magnet provides a uniform and homogeneous magnetic field
perpendicular to the facility floor and bends the electron’s trajectory in the plane parallel

https://lnls.cnpem.br/sirius/como-funciona-o-sirius/
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Figure 2: Storage ring typical configuration. Inspired by ref. [11]

to the floor. The field profile of a dipole magnet is depicted in the left-side sketch of Fig. 3.
Imagining a beam directed inward toward the screen, the trajectory will be bent to the
right. For trajectories resulting in a closed orbit, the overall bending angle provided by
the dipoles along the entire ring must equal 2π radians.

To maintain electrons in close proximity to the reference orbit, focusing of
the trajectories is required. Focusing is attained by employing gradient fields, primarily
generated by quadrupole magnets. The strength of such fields increases linearly with
deviations from the closed orbit, which lies in the magnet’s center. Gradient fields effectively
act as restoring spring forces. The magnets poles and the field profile of a quadrupole
magnet are depicted in the center sketch of Fig. 3.

Focusing and deflection are energy-dependent, which means small deviations
from the nominal operating energy can result in an enlarged or reduced orbit and on
differential focusing at the gradients. The former effect is a dispersion effect, while in
the latter, drawing an analogy from geometric optics, the beam’s focusing behavior at
the "lenses" (quadrupoles) depends on its "color" (energy). The sextupole fields serve
as corrective lenses to correct these chromatic aberrations. They introduce geometric
aberrations to counteract the chromatic ones, resulting in approximately uniform, energy-
independent focusing, up to the linear approximation. The magnets poles and the field
profile of a sextupole magnet are depicted in the right sketch of Fig. 3.

Besides dipoles, quadrupoles and sextupoles, additional dipole actuators mag-
nets for orbit/trajectory correction and pulsed magnets for beam injection can also be
found in the ring.

When having its trajectory bent at the dipoles and insertion devices, the beam
loses energy in the form of synchrotron radiation. To avoid inward spiraling and to
maintain the beam stored, the energy lost must be replenished. To achieve this, RF
cavities are placed along the ring to provide oscillating electric fields along the longitudinal
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Figure 3: Schematic representation of the magnets comprising SIRIUS lattice and their fields profile.
From left to right: dipole magnet, quadrupole magnet and sextupole magnet.

direction. The work done in the beam by the fields restore its energy.
The radiated photons are instantaneously emitted in a narrow cone with angular

aperture of 1/γ, γ being the relativistic Lorentz factor (∼ 6000 at SIRIUS storage ring).
The photons carry away a fraction of the beam’s momentum in both the longitudinal and
transverse directions. However, when passing through RF cavities, only momentum in the
longitudinal direction is replenished. The combined effect of radiating photons and passing
through RF cavities leads to an overall damping of the transverse oscillations amplitudes.

On the other hand, the quantum nature of the emitted radiation leads to the
excitation of transverse oscillations, an effect known as quantum excitation. When a photon
carries away energy, it depletes the electrons energy by the same amount. It thus changes
the reference orbit of the electron because of the dispersion effect, inducing oscillations.
Additionally, coupling on the transverse plane and intra-beam scattering events can lead to
the excitation of transverse oscillations, enlarging the beam size. Eventually, equilibrium
between radiative damping and transverse excitations is achieved, leading the beam size
to reach a stationary value.

Each degree of freedom of the beam (transverse amplitudes and momenta,
beam energy and revolution time) defines an acceptance, which establishes limits on the
dynamical variables. Exceeding these limits can result in unstable, unbounded motion,
and eventually, beam losses. The most apparent form of acceptance is the transverse
acceptance, since the beam motion is bounded by a vacuum chamber, and colliding
with the chamber’s physical aperture leads to losses. Additionally, the beam has an
energy acceptance, representing a tolerance for energy deviations from the nominal value.
Exceeding this tolerance can lead to a unstable energetic balance when passing at the
RF cavities. Over the span of several turns, the energy deviations can grow and result in
significant deviations from the nominal orbit because of the dispersive effect. Eventually
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the beam collides with the vacuum chamber wall.
Because of the nonlinearities introduced mainly by the sextupole magnets, the

transverse acceptances can be limited not solely by the physical aperture available in the
vacuum chamber but rather by the amplitudes above which motion is irregular, unstable
and unbounded. This limiting amplitude is known as the Dynamic Aperture DA, a term
that can be used to refer to the limiting amplitudes in the transverse space x, y as well as
the phase space coordinates x, px and y, py.

Knowledge of the acceptances and the distribution for the values of the dy-
namical variables, which can be well approximated by a Gaussian distribution, allows
the determination of the expected rate at which the variables exceed the acceptances,
defining the base rate for the expected beam loss in the ring. Additionally, the beam
is also susceptible to elastic and inelastic collisions with residual gas molecules within
the chamber, as well as collisions between electrons within the same bunch. All these
effects can lead to beam loss, and the overall beam loss rate resulting from these combined
mechanisms defines the characteristic time scale during which a given electron current
survives in the ring. This is the beam lifetime and determines the rate at which injections
into the storage ring are required to maintain the current within a specified range.

The problem addressed in this work

The pursuit of low-emittances and high-brightness has propelled the accelerator
community toward the fourth-generation of storage rings. Achieving such low emittances
was made possible by a series of technological advances that enabled the use of the Multi-
Bend-Achromat (MBA) lattice [3,5]. MBA lattices require intense gradient fields provided
by quadrupole magnets, which, in turn, demand the presence of strong sextupolar fields to
compensate for chromatic effects. As sextupoles introduce nonlinear fields, the dynamics
in fourth-generation storage rings has become increasingly nonlinear [5].

A quasi-periodic nonlinear dynamics when subjected to perturbations, such
as small field errors stemming from rotation, alignment, or fields excitation errors, can
potentially become unstable at large oscillation amplitudes. These instabilities impose
constraints on the maximum transverse oscillation amplitudes that the machine can
accommodate, the DA of the ring. Exceeding the DA results in irregular and often chaotic
motion and beam loss.

Under normal operation conditions, the equilibrium beam size and the typical
oscillation amplitudes are considerably smaller than the DA , and the dynamics can be
well studied and analyzed using a linear approximation theory, without worrying about the
DA. However, there are specific scenarios where the DA becomes crucial for the operation,
notably during the injection process.

During injection into the storage ring for beam accumulation, the beam is
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extracted from the booster accelerator and guided toward the storage ring through a
transport line. Upon entering the ring, the beam is deflected by the field of a pulsed
nonlinear magnet, aligning the beam almost parallel to the storage ring tangent direction,
albeit with a horizontal offset of approximately x = −8 mm [12]. If the DA is smaller
than this initial amplitude at the injection point, it imposes limitations on the IE.

The DA is determined by the beam’s nonlinear dynamics performance, which is a
consequence of the nonlinear lattice (sextupoles). In the design phase of the SIRIUS project,
the placement, symmetry, and strength of sextupole magnets were determined through a
multi-objective optimization process, primarily focused on improving the simulated DA and
beam lifetime of the machine’s computer model [13,14]. This optimization work considered
the average performance of the lattice configurations while accounting for various magnet
errors that simulate the expected errors in the actual machine [13]. Several models (lattice
configurations), with errors distributed among the magnets, were generated, and the DA
and lifetime for a given lattice configuration were calculated by simulating the electron
beam’s motion for thousands of turns (tracking simulations). The final figure of merit for
a magnetic lattice consisted of the average DA and lifetime it provided to the ensemble of
machines. The best-performing machine lattice found during this process was adopted
as the nominal lattice and subsequently deployed during the commissioning phase of the
machine. Prior to the optimization work reported here, the machine operated with this
nominal sextupole configuration.

The real machine consists of a practical realization of one specific error con-
figuration, which defines the physically realized magnetic lattice and determines the
overall performance of the dynamics. The nominal nonlinear lattice, identified as the
best-performing lattice on average in simulations, is not necessarily the optimum lattice
for this specific error realization.

Assuming the realized lattice closely approximates the optimum setup, i.e.,
that the errors are small, it is reasonable to assume that by making minor tweaks
and adjustments to the sextupoles, one can adapt the nonlinear lattice to the actual
distribution of errors in the physical system. Since the sextupoles are already installed, the
optimization variables available are their field strengths. A fine-tuning of strengths aiming
to accommodate the nonlinear fields to the realized lattice can result in improvements to
the nonlinear dynamics performance, increases in the DA, and an enhancement of IE.

This sextupole tuning process has already been demonstrated in other machines
[15–19]. It has proven to be a successful approach and consists of a particular application
of Online optimization. If one thinks of the errors as agents responsible for deteriorating
the DA from its optimum, online optimization of nonlinear dynamics can be seen as an
attempt to compensate for such deterioration.

Online optimization of the machine nonlinear dynamics consists of employ-
ing computer-automated search strategies to systematically explore various sextupole
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configurations with the goal of identifying the ones that yield the largest DA while not
interfering with other machine parameters, such as chromaticity and beam lifetime. The
key ingredient in online optimization is the choice of a robust optimization algorithm
based on direct or indirect search in the parameter space. The most widely used is the
RCDS algorithm [15], which is based on a noise-robust one-dimensional optimizer along
with a clever strategy, known as Powell’s method, for choosing directions in the search
space. Chapter 2 addresses the RCDS algorithm.

Besides improving the DA and IE in nominal operation conditions, it is also
interesting, and in some cases it is necessary, to do so in different machine working points,
with different tunes. As presented in chapter 1, if one fixes one’s attention to a specific
point of the ring, and measure the beam position in horizontal and vertical planes for
consecutive turns, one realizes the motion is a sampled sinusoid and the fractional parts
of the tunes νx and νy are the fundamental frequencies of such harmonic motion on each
plane. The tunes are important operation parameters and influence the response of the
beam in the presence of perturbations. Tunes close to integer numbers result in large
orbit amplification factors making the dynamics particularly sensitive to perturbations.
The fractional parts of SIRIUS nominal tunes are quite low, and increasing them would
distance the tunes away from integer numbers, reducing the orbit amplification factors
and improving orbit stability.

Changing the tunes can be achieved by actuating with the quadrupole magnets,
but doing so takes the machine to a different working point, in which the DA can, and
often is, smaller than the DA in nominal tunes. In different working points, thus, online
optimization is essential for finding a new sextupole configuration to achieve a good DA
and acceptable IE for operation.

In agreement with the experience in other facilities, it is shown in Chapter 4
that online optimization using RCDS can successfully improve the dynamics performance
and lead to DA and IE improvements. This was observed for the SIRIUS storage ring
both in the machine nominal tunes as well as in other working points, with higher tune
fractional parts.

SIRIUS experience with online optimization is a valuable demonstration of this
tool’s efficiency in fourth-generation rings, specially because SIRIUS has more sextupole
magnets families than MAX-IV, which, prior to this work, was the sole fourth-generation
ring on which online optimization of nonlinear dynamics was carried out.

At the time of this writing, SIRIUS is operating with the sextupole configu-
rations found during the experiments carried out while executing this project [20]. The
configuration was found by online optimizing the machine with increased fractional tunes.
The higher tunes indeed led to a reduction in orbit amplification factors and unprecedented
orbit stability [10].

In the upcoming chapter, the dynamics of electrons in storage rings is examined.
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The linear approximation theory is introduced, and nonlinear dynamics is treated as a
perturbation. The goal is to introduce the optics functions and relevant quantities such as
chromaticity and dispersion, and to present how a nonlinear dynamics is limited by the
increase in instabilities and irregularities at large amplitudes. Chapter 2 provides a brief
overview of optimization strategies and focuses on familiarizing the reader with the RCDS
algorithm. Chapter 3 presents the methods, measurement procedures and diagnostics
tools available and required for the execution of the online optimization experiments and
Chapter 4 presents the results of the optimization at the SIRIUS storage ring.
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1 Theoretical background: single-particle
dynamics

This chapter provides the theoretical knowledge on the dynamics of electrons
in storage rings needed to acquaint the reader with the online optimization problem and
the constraints involved. The main objective is to introduce the linear dynamics theory,
the optics functions, the operation parameters such as the betatron tunes and chromaticity
and to conceptualize the amplitudes limitations due to the nonlinearities of the motion.
This chapter also aims at introducing SIRIUS’ operation parameters and specifications.
We claim no original contribution. All the content presented here can be found in the
accelerator physics and engineering literature, in particular, refs. [1, 11, 21,22].

Despite the complicated physics of fully-coupled dynamics involving transverse,
longitudinal and energy oscillations, damping and excitation of amplitudes, collective
effects and instabilities, for the purpose of this dissertation and the optimization problem
at sight, we model the motion of a single electron, focusing on the transverse dynamics at
fixed energy, neglecting radiation losses and gains and any other collective interactions.
These simplifications are justified for our immediate purposes because:

• the beam is injected into the storage ring on-energy: it has no significant energy
deviations and thus it does not perform large energy and longitudinal oscillations
once it is captured into the ring;

• radiation losses are only significant over a time scale of a couple of turns. Over
this period, tens of transverse oscillations take place. A model neglecting losses is
relatively accurate for a small number of turns soon after the injection;

• the linear and uncoupled dynamics this simpler modeling renders serves as an initial
building block, which captures the hierarchically more important features of the
dynamics and upon which elaborate modeling can be carried out, incorporating
coupling, nonlinearities and perturbations, as well as collective effects;

In this simplified picture, the electron travels along the ring at the speed of light and
executes transverse oscillations in two orthogonal planes. The dynamics takes place in a
4-dimensional phase space, identical to that of two independent quasi-periodic oscillators.
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1.1 Motion of charged particles in magnetic fields

1.1.1 Circular cyclotron motion

An electron of charge e and momentum magnitude p follows a circular orbit
of radius ρ when interacting with an uniform and time-independent magnetic field of
magnitude B, directed perpendicularly to the orbit plane. In such conditions, the Lorentz
force law predicts that the orbit radius reads

ρ = p

Be
. (1.1)

Rearranging this relation we can define a quantity with units of magnetic field × length
which characterizes the momentum magnitude per unit charge of the beam, the magnetic
rigidity:

R(p) ≡ Bρ = p

e
. (1.2)

1.1.2 Trajectory deflections

Figure 1.1: Illustration of trajectory deflection when interacting with magnetic fields.

Consider an electron traveling along a curve parameterized by the arc-length s
with respect to an arbitrary reference point. Define the normal and bi-normal unit vectors
so that we can identify a x − y plane perpendicular to the motion. Let Bx(x, y, s) and
By(x, y, s), denote the magnetic field components along the unit vectors. The interaction
with the fields results in deflections of the trajectory, whose deflection angles dθu in the
u = x, y plane can be estimated from the local curvature radius ρu and infinitesimal
displacement ds with the aid of a local, instantaneous version of equation (1.1):

dθu = ds
ρu(s) = e

p
Bv(x, y, s)ds = 1

R(p)Bv(x, y, s)ds, u, v = x, y or y, x. (1.3)
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Where eq. (1.2) has been used to identify the p/e ratio as the magnetic rigidity R(p). These
considerations are illustrated in Fig. 1.1. The rigidity depends solely on the electron’s
momentum/energy and serves as the appropriate normalization constant to evaluate the
instantaneous angular deflections in the electron’s trajectory caused by magnetic fields.

1.2 The coordinate system for storage ring dynamics

As sketched by Fig. 2, electrons in a storage ring perform oscillations close to
a nearly circular reference closed orbit. A convenient coordinate frame to describe the
dynamics in this scenario can be constructed by imagining a reference particle traveling
along a curve drawn by the tip of a vector r0, as Fig. 1.2 shows. This particle samples
exactly the reference nominal orbit and travels a distance s along the ring, which can
be used to parameterize the motion. The triad of direction vectors for the co-moving
coordinate frame consists of the vector ŝ, tangent to the trajectory, the vector x̂, normal
to the trajectory, pointing in the direction at which ŝ changes, and a vector ŷ = x̂ × ŝ,
bi-normal to the trajectory. This construction leads to a Frenet-Serret reference frame.

Assuming no curvature in the y plane, i.e. that the accelerator defines a curve
whose plane is parallel to the facility flat floor, then the tangent, normal and binormal
unit vectors defining the frame can be calculated as [21]

ŝ = dr0

ds , x̂ = −ρdŝ
ds, ŷ = x̂× ŝ, (1.4)

where ρ(s) = ∥dŝ/ds∥−1 is the local curvature radius1. The vectors evolve along s as
prescribed by the Frenet-Serret equations:

dŝ
ds = − 1

ρ(s) x̂,
dx̂
ds = 1

ρ(s) ŝ,
dŷ
ds = 0. (1.5)

The frame depends solely on the geometry of the specified path: the instantaneous
curvature ρ−1(s). Since the curvature is defined by the strengths of the dipolar fields B0(s)
in the y direction, then, eq. (1.3) leads to

1
ρ(s) = B0(s)

R0
, (1.6)

where R0 is the rigidity of the beam at the nominal energy.
The transverse deviations from the nominal orbit can be measured as projections

along the unit vectors x̂, ŷ in the normal and bi-normal directions. These deviations
1For a circular trajectory, r0 =

[
R cos(s/R) R sin(s/R) 0

]⊺, 0 ≤ s ≤ L, in the laboratory frame.
So we can calculate ŝ =

[
− sin(s/R) cos(s/R) 0

]⊺, dŝ/ds = −R−1[cos(s/R) sin(s/R) 0
]
, which

reveals ρ(s) = R, justifying the interpretation of ρ(s) as a curvature radius.
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characterize the transverse dynamics of the electron. One may also be concerned with the
distance of a given particle from the reference particle along the curve. Such differences
arise due to differences in the energy of the two particles. In the full, six-dimensional
dynamics, the longitudinal distance from the reference particle and the energy deviations
are conjugate dynamical variables characterizing the longitudinal dynamics. They typically
oscillate within a range of stable values, characterizing the energy acceptance. As mentioned
above, since no radiation loss nor gain will be considered in our modeling, the energy
and longitudinal deviations from the reference particle shall be static and treated as fixed
parameters.

lab frame

Frenet-Serret frame

Figure 1.2: The Frenet-Serret coordinate system. Figure inspired by ref. [23].

1.3 Hamiltonian for the relativistic electron

To the derive equations of motion for the electron in a storage ring, the Lorentz
equation in the Frenet-Serret frame could be further developed. However, a more formal,
systematic and rigorous derivation can be obtained via the canonical formalism. The
dynamics of relativistic electrons influenced by electromagnetic fields (Φ,A) is encapsulated
by the Hamiltonian [24]

H =
√
m2c4 + (P− eA)2c2 + eΦ,

e being the elementary charge and P = p + eA the canonical momentum, with A being
the vector potential describing the magnetostatic fields of the lattice, i.e. B = ∇ × A. To
obtain equations of motion for electrons in the storage ring, one usually follows the steps
below:

• A canonical transformation to change coordinates is applied in order to describe the
motion in terms of the Frenet-Serret frame variables x, y;
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• Instead of time t, the Hamiltonian and the dynamical variables are described as
functions of s, the longitudinal position along the ring;

• Paraxial approximation: the transverse momenta are assumed to be way smaller than
the momentum along the trajectory’s tangent direction. This allows the expansion
of the square-root in the Hamiltonian as a power series, revealing the expression for
an approximate Hamiltonian, which can be more easily handled;

• Geometric quantities are used: in the paraxial approximation, the canonical momenta
for on-energy particles are identified with the derivatives with respect to the parameter
s, i.e., px = x′ = dx/ds and py = y′ = dy/ds , which represent the divergence angles
from the nominal orbit. For off-energy particles, a correction factor is present;

All of the transformations and manipulations summarized above can be found in detail
in the literature, such as in Refs. [1, 21,22]. As mentioned previously, by neglecting RF
cavities (Φ = 0) and radiation losses, the energy will be a constant parameter, and the
dynamics will consist solely of the transverse degrees of freedom. In this 4-dimensional
dynamics, the set of canonical variables are (x, px, y, py), where the momenta are given by

px = x′(1 + δ), py = y′(1 + δ) (1.7)

and δ is the relative deviation from the nominal energy-momentum:

δ ≡ P − P0

P0
≈ E − E0

E0
. (1.8)

The ultra-relativistic approximation E ≈ pc was used. For on-energy particles, px = x′,
py = y′.

Hamilton’s equations for the paraxial-approximated Hamiltonian reveals the
equations of motion for the x and y coordinates, which read:

x′′ = −(1 +Gx)2

1 + δ

By

R0
+G(1 +Gx), y′′ = (1 +Gx)2

1 + δ

Bx

R0
, (1.9)

where R0 = p0/e is the magnetic rigidity of the beam at the nominal energy and G(s) ≡
ρ−1(s) is the inverse local radius of curvature, related to the dipole fields as in Eq. (1.6).

1.4 The magnetic fields

To study the motion, we need to specify the fields Bx(s) and By(s) acting on
the beam. Since in a storage ring the magnets are arranged as periodic arrays of dipoles,
quadrupole, and sextupoles, the Bx(s) and By(s) functions are periodic. The magnetic
fields are sectionally defined and have the following functional forms
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• Horizontal Dipole

Bx(s) = 0, By(s) = B0, inside dipoles, (1.10)

• Normal quadrupole

Bx = B1y, By = B1x, inside quadrupoles, (1.11)

• Normal sextupole

Bx = B2xy, By = 1
2B2(x2 − y2), inside sextupoles, (1.12)

and zero everywhere else, in drift sections. Fields (1.10)–(1.12) are the so-called normal
multipole fields, in contrast with skew multipole fields, which couple the horizontal and
vertical dynamics. We will neglect skew fields and coupling for now. They can be treated
as perturbations in perturbation theory schemes.

In eqs. (1.9), the magnetic rigidity normalizes all the fields. Thus, we define
the normalized dipolar, quadrupolar and sextupolar field strengths, G(s), K(s), S(s):

G(s) = B0(s)
R0

, K(s) = B1(s)
R0

, S(s) = B2(s)
R0

. (1.13)

For a SIRIUS superperiod, the functions are shown in Fig. 1.3. A superperiod consists of
the basic repetition of four magnetic cells. SIRIUS has 5 superperiods. In other words, the
curves in Fig. 1.3 repeat themselves five times along the 518 m of the ring. More details
on the magnetic lattice are in section 3.1.

1.5 Linear dynamics

Expansion of eqs. (1.9) up to first order in the x, y, δ variables leads to [11]

x′′ + (G2 +K)x = Gδ, y′′ −Ky = 0. (1.14)

For on-momentum particles, δ = 0, both equations are instances of Hill’s equations

u′′ +Ku(s)u = 0, (1.15)

i.e, a pair of parametric oscillators for u = x, y, with s-dependent and periodic focusing
functions

Kx(s) = G2(s) +K(s), Ky(s) = −K(s),
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Figure 1.3: Normalized field functions for dipoles (top plot), quadrupoles (middle plot) and sextupoles
(bottom plot) of a superperiod of SIRIUS lattice, shown at the top. Colored blocks represent the magnets
of the accelerator lattice: blue for dipoles, orange for quadrupoles and green for sextupoles. The ring has
a 5-fold symmetry, with the cells, fields, and optics function repeating the pattern shown above five times
up to s = 518 m.

the analogs to an oscillator’s spring force per unit mass. Motion in the linear approximation
thus consists of oscillations around the closed orbit, known as betatron oscillations.

1.5.1 Pseudoharmonic description

Betatron motion can be cast in an amplitude-phase form. One can show that

u(s) =
√

2βu(s)Ju cos(ϕu(s) + ϕ0), u = x, y, (1.16)

is a solution to (1.15), as long as the βu(s) function satisfies the boundary-value problem

1
2β

′′
u + βuKu(s)− 1

βu

(1
4β

′2
u + 1

)
= 0,

βu(0) = βu(L)

β′
u(0) = β′

u(L)
(1.17)
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and the phase advance is given by

ϕu(s) =
∫ s

0

1
βu(σ)dσ. (1.18)

The motion is oscillatory, non-harmonic, and non-periodic. The oscillations envelope is
the square-root of the beta functions βu(s), which for the SIRIUS storage ring are shown
in Fig. 1.4.
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Figure 1.4: Betatron functions in a superperiod of the SIRIUS storage ring.

1.5.2 The tune

An important parameter of the dynamics is the tune: the phase advance over
a revolution along the ring, in units of a complete cycle:

νu = 1
2π

∫ s+L

s

dσ
βu(σ) ≡

1
2π

∮ ds
βu(s) .

The tune reveals the number of transverse oscillations per revolution along the ring. The
optimized tunes during design phase for SIRIUS storage ring are (νx, νy) = (49.08, 14.14).
These were the machine tunes prior to this work.

When studying the effects of perturbations and nonlinearities acting on the
beam, one realizes that tunes are global parameters in determining the beam’s response.
More specifically, the tunes impact over disturbances amplification factors, which are
greatest when tunes are close to integer numbers. Ideally, it is desired for the tunes to be
far from the integers, but also far from the half-integers. We examine the relation between
the tunes and the effects of disturbances in more detail in section 1.6.2.
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1.5.3 Turn-by-turn motion

If one keeps track of the time evolution of the u, u′ variables at a fixed position
along the ring, plotting them in a phase space, one realizes the quasi-periodic motion
traces out ellipses. This fact can be analytically verified by calculating the derivative

u′(s) = −
√

2Ju

βu

[
sin(ϕu(s) + ϕ0)−

1
2β

′
u(s) cos(ϕu(s) + ϕ0)

]
, (1.19)

defining the functions αu = −β′
u

2 and γu = (1+α2
u)

βu
and checking that u, u′ satisfy the

quadratic form
2Ju = γuu

2 + 2αuuu
′ + βuu

′2, (1.20)

which describes the ellipse. The ellipse properties are determined by the βu(s), αu(s) and
γu(s) functions, also known as Courant-Snyder (C-S) parameters or Twiss parameters, as
Fig. 1.5 shows. Since the parameters are functions of the position s, then, at each point
along the accelerator, the Poincaré Section u, u′ displays a different ellipse. Although
different in shape, their areas are proportional to Ju, an invariant quantity determined by
the particle’s initial condition. The ellipse areas are thus conserved along the ring [1, 21].

Since the phase advance over a turn is 2πν + ϕ0, the phase advance after the
j-th turn is 2πνj+ϕ0. Therefore, sampling the transverse motion at a fixed s = s0 position
reveals a harmonic displacement, which at the j-th turn reads

uj(s0) =
√

2βu(s0)Ju cos(2πνuj + ϕu(s0)). (1.21)

Knowledge of this formula allows the determination of the tunes (mod 2π) from the
observation of Turn-by-Turn (TbT) motion of the beam. The time-series of positions can
be fitted to eq. (1.21) in the time domain, or the signal can be processed in the frequency
domain for the identification of the harmonic corresponding to νu.

1.6 Dispersive & chromatic effects and linear pertur-
bations

1.6.1 Dispersion

The equation of motion for off-momentum particles in the horizontal plane,
the first of eqs. (1.14), is a non-homogeneous Hill’s equation. The solution consists of
the linear combination of the homogeneous solution (betatron motion) and the particular
solution: x = xβ + xδ, which represents an additional deviation from the nominal orbit.
Since the non-homogeneous term, G(s)δ, is proportional to δ, we can assume xδ = η(s)δ,
where η(s) is the dispersion function. For this to be the solution, the dispersion should
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slope

slope

Figure 1.5: Ellipse traced by TbT motion in the (x, x′) phase space. Optics functions α(s), β(s), γ(s)
determine the principal axes aspect-ratio and the ellipse inclination at each longitudinal position along
the ring. Figure inspired by ref. [22].

satisfy

η′′ + (G2 +K)η = G,

η(0) = η(L),

η′(0) = η′(L).

The periodicity in the η(s) function is required if we want to interpret it as a closed
orbit distortion per relative momentum deviation. Thus, off-momentum particles perform
betatron oscillations around a dispersive orbit, displaced from the nominal orbit by η(s)δ.
The dispersion function for the SIRIUS storage ring is shown in Fig. 1.6

0 20 40 60 80 100
longitudinal position [m]

0.00

0.02

0.04

0.06

0.08

η
(s

)
[c

m
]

ηx

Figure 1.6: Dispersion function for a SIRIUS superperiod.
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1.6.2 Linear Field Errors

In the presence of additional dipolar and quadrupolar fields representing field
errors and deviations from the nominal fields, the orbit and focusing of the beam are
changed. Assuming these are small perturbations and not sufficiently strong to perturb
the beam severely, we can evaluate the disturbances to the unperturbed dynamics with
a simple perturbation theory scheme. The details and derivations can be found in the
literature, such as in chapter 2 of Ref. [21]. Here we highlight the main results.

Dipole errors

Suppose there are additional dipole fields ∆B0x(s),∆B0y(s) interacting with
the beam other than the dipole fields of the nominal lattice. These translate into errors
of the dipolar functions: ∆Gy(s) = −∆B0x(s)/R0 and ∆Gx(s) = ∆B0y(s)/R0. In this
scenario, the equations of motion read

x′′ +Kx(s)x = Gδ + ∆Gx(s), y′′ +Ky(s)y = ∆Gy(s). (1.22)

The solution consists of the combination of the betatron motion and the dispersive orbit
(for the horizontal plane) plus the closed orbit distortion uco induced by the additional
bending terms due to the dipole errors. For a single thin bending error ∆Gu in the u = x, y

plane, acting for a length ∆s around s = s0, the closed orbit distortion uco reads

uco(s) =

√
βu(s)βu(s0)
2 sin πνu

∆Gu cos(πνu − |ϕu(s)− ϕu(s0)|)∆s. (1.23)

For a distribution ∆Gu(s) of dipolar perturbations along the ring, we sum over the
contributions:

uco(s) =

√
βu(s)

2 sin πνu

∫ s+L

s
∆Gu(σ)

√
βu(σ) cos(πνu + ϕu(s)− ϕu(σ)) dσ . (1.24)

The prefactor involving the sine of the tune shows how νu close to an integer can amplify
the effects of the dipolar perturbations on orbit distortions. At first, aiming for tunes half-
integer tunes ν = k/2, k ∈ Z might seem desirable to minimize the distortions. Choosing
so, however, increases the sensitivity to gradient errors, which we examine next.

Gradient errors

Gradient errors can be modeled as corrections to the focusing functions in
the equations of motion: Ku(s) → Ku(s) + ∆Ku(s), for ∆Kx(s) = ∆B1y(s)/R0 and
∆Ky(s) = −∆B1x(s)/R0. The changes in beam focusing lead to changes in the beta-
functions, phase advances and, consequently, the betatron tunes. One can show the
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tune-shift as a consequence of a focusing gradient error ∆Ku, acting during a small
longitudinal extent ∆s around s = s0 is [21]

∆νu = 1
4πβ(s0)∆Ku∆s. (1.25)

Were we dealing with a defocusing error, a minus sign would preceed the above equation.
For a distribution of errors we sum over the ring:

∆ν = 1
4π

∮
β(s)∆K(s)ds, (1.26)

where the closed integration sign refers to a complete circulation along the ring, i.e.,
integration from s0 to s0 + L, for any s0 ∈ [0, L).

As for the induced error on the beta-functions, it is possible to show that the
relative error, known as beta-beat, can be expressed as

∆βu(s)
βu(s) = − 1

2 sin(2πνu)

∫ s+L

s
β(σ)∆Ku(σ) cos[2(ϕu(σ)− ϕu(s)− πν)]dσ. (1.27)

which is the largest for 2νu closest to an integer. This means we must avoid tunes close to
half-integers if we want to avoid the coherent build-up of betatron amplitudes, which can
eventually lead to beam loss. Integer or half-integer tunes are the simplest instances of
resonances the beam can be subject to. A more general overview of resonances is presented
in subsection 1.7.3.

1.6.3 Chromaticity

We have seen how the bending angles at the dipoles are different for electrons
with different energies. This is the origin of dispersive orbits. However, energy deviations
affect not only the closed orbit by means of the dispersion effect, but also the focusing of
the trajectories, since a more/less energetic beam has higher/lower rigidity and thus is
focused differently when passing through gradient fields.

Expansion of the equations of motion, eqs. (1.9), for off-energy particles up to
the order of terms uδ (for u = x, y) reveals additional higher-order gradient errors. The
focusing functions are corrected by Ku(s)→ Ku(s) + ∆Ku(s) [21, 23], where

∆Kx = −(K + 2G2)δ ≈ −Kxδ (1.28)

∆Ky = Kδ = −Kyδ (1.29)

This means there exists an energy-dependent tune-shift effect caused by the gradient error.
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Using eq. (1.26), the tune-shift reads

∆νu = − 1
4π

∮
βuKuδ ds , (1.30)

for the u = x, y planes. We can define the linear chromaticity in the u = x, y direction as
tune-shift ∆νu per relative energy deviation δ:

ξu = dνu

dδ . (1.31)

The chromaticity created by the linear lattice is also called natural chromaticity. Using
expression (1.30) for the tune-shift, the natural chromaticity reads

ξu,nat = − 1
4π

∮
Kuβu ds . (1.32)

This chromatic aberration effect needs to be corrected to guarantee energy-
independent focusing. Correction can be attained with the insertion of sextupolar fields,
specifically in the dispersive sections of the storage ring. In such regions, off-energy
particles follow a dispersive orbit, and their position reads x(s) = xβ(s) + η(s)δ, where
xβ(s) consists on the betatron oscillations. Since sextupolar fields are of the form

Bx = B2xy, By = B2

2 (x2 − y2),

then, the off-momentum particles "see" the fields

Bx = B2(xβy + ηδy), By = B2

2 (x2
β − y2) +B2xβηδ + B2

2 (ηδ)2.

So, to lowest order in eqs. (1.9), they feel a dipolar perturbation (which contributes to
orbit distortions) and the following gradient perturbation:

∆Kx,y(δ) = ±Sηδ,

recalling that S(s) = B2/R0.
Considering the contributions from both the errors induced by energy deviations

and also the lowest order sextupole gradient effect, we have a gradient shift of ∆Ku =
−(Ku ∓ Sη)δ to be inserted in eq. (1.26). The chromaticity in a lattice with sextupoles
thus reads

ξu = − 1
4π

∮
βu(Ku ∓ Sη) ds , (1.33)

with the minus sign for u = x and the plus sign for u = y.
Formula (1.33) reveals that chromaticity depends linearly on sextupole strengths.

This allows for its correction and tuning to desired values. In the SIRIUS storage ring, the
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Figure 1.7: Illustration of chromatic aberrations (top), their correction with sextupoles (middle) and
examples of geometric aberrations (bottom).

operation chromaticity of about +2.5 for each plane was determined with the objective of
mitigating the transverse instabilities induced by the resistive-wall effect in the range of
currents the storage ring is expected to operate: 100 to 350 mA [25, section 7.3].

Since a focusing sextupole field focuses in a given plane and defocuses in the
other, at least two sextupole families are required for chromaticity correction. To optimize
the sextupole strengths required for correction, one family must be placed where βx > βy

and another where βy < βx. The cost of correcting chromaticity with sextupole is the
insertion of nonlinearities in the dynamics. If on the one-hand, amplitude-dependent
focusing is needed to correct the energy-dependent focusing (chromaticity), on the other
hand it also influence particles with large amplitudes with nonlinearities. To allow for
more control over the nonlinear effects and optimization of the dynamics, some families of
sextupoles are also placed in non-dispersive sections. They are called achromatic families,
since they have no effect over chromaticity up to leading order.

1.7 Nonlinear dynamics, perturbations, resonances
and tune-shifts

The fields of sextupoles make the dynamics intrinsically nonlinear. To under-
stand the effects of nonlinearities in a generic manner, we develop a basic Hamiltonian
perturbation theory in the upcoming sections. However, this requires us to step back
momentarily to review linear dynamics in the action-angle variables formalism, upon which
we proceed with canonical perturbation theory.
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1.7.1 Action-Angle Variables

The betatron equations of motion, Eqs. (1.15), can be obtained as Hamilton’s
equations for an effective, linear Hamiltonian

Hu = 1
2u

′2 + 1
2Ku(s)u2, (1.34)

summed over u = x, y. A transformation (u, u′) → (ψu, Ju) to Action-angle variables is
implicitly implemented by the type–1 generating function [21]

F1(u, ϕu) =
∫
u′ du = − u2

2βu

(
tanϕu −

β′
u

2

)
. (1.35)

The action variable reads

Ju = −∂F1

∂ϕu

= u2

2βu

sec2 ϕu = 1
2βu

[u2 + (βuu
′ + αuu

2)], (1.36)

from which we can recover the pseudo-harmonic form u =
√

2βuJu cos(ϕu(s) + ϕ0), and
identify the constant J we met before as the action and the betatron phase advance as
the angle variable.

In the J, ϕ variables, the new Hamiltonian is H0(ϕ, J), given by

Hu = Hu + ∂F1

∂s
= Ju

βu

. (1.37)

Performing the change to action-angle variables in both the horizontal and vertical planes,
we find the action-angle Hamiltonian for 4D dynamics:

H0 = Jx

βx

+ Jy

βy

. (1.38)

Hamilton’s equations read
ϕ′

u = 1
βu(s) , J ′

u = 0. (1.39)

1.7.2 Perturbations and tune-shifts

Linear motion is integrable since it can be written in terms of the action variable
only (angle-independent Hamiltonian). This means the action variable is a constant of
motion.

Linear motion, though, is only a useful first approximation. In reality, in a
storage ring, there are higher-order multipole magnets, such as sextupole magnets, and also
multipole, alignment and excitation errors acting as perturbations. Generically referring
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Figure 1.8: Illustration of main characteristics in nonlinear dynamics. a) & b): Poincaré sections for
motion with increasing horizontal & vertical amplitudes, respectively; c) Path traced in tune-space for each
ellipse of a) in blue, for b) in red, and for each δ in f), in purple. d) & e): x and y amplitude-dependent
tune-shifts for each ellipse of a) & b), respectively; f) energy-dependent tune-shifts

to perturbations as the potential V (J, ϕ), we can write the perturbed Hamiltonian

H(J, ϕ) = H0 + V (J, ϕ), (1.40)

For which Hamilton’s equations read

ϕ′
u = 1

βu(s) + ∂V (J, ϕ)
∂Ju

, J ′
u = −∂V (J, ϕ)

∂ϕu

. (1.41)

The action is no longer an invariant. It changes as prescribed by the rate of change of
the potential with respect to the phase. The phase also changes. The phase advance rate
deviates from the linear betatron phase advance, which translates directly into tune-shifts.
In this scenario, the tunes depend not only on the momentum, via the chromaticity, but
also on the amplitudes (actions). In a general form, we can be express the tunes as

νu = νu0 + ξu(δ)δ + αuuJu + αuvJv, (1.42)

where ξu represents the energy-dependent tune-shifts (higher-order generalization of the
linear chromaticity), and the other components consist on the amplitude-dependent tune-
shifts, up to first order in the actions.

Figure 1.8 highlights the main characteristics of the nonlinear dynamics. In a)
and b) particles are simulated in SIRIUS’ computer model with increasingly larger initial
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amplitudes in the x and y planes, respectively. The large-amplitude ellipses are distorted,
since the action J is no longer an integral of motion. Some large-amplitude particles do
not survive. In d) and e), the deviations in horizontal and vertical tunes are shown for
the a) and b) simulations, respectively. In d), the tune-shifts in the y and x planes are
shown for each initial x amplitude. In e), the tune-shifts for each initial y amplitude in
b) is shown. These plots outline the distortion of phase space ellipses, the existence of
limiting amplitudes under which regular motion occurs, and the dependence of the tunes
with the amplitudes.

In plot e) of Fig. 1.8, the chromatic (energy-dependent) tune-shifts are shown:
the tune-shifts of particle simulated with energy deviations in the range of −5% to 5%.
Linear chromaticity is the derivative of this curve around δ = 0. In c), the blue curve
represents the path traced in tune-space as the x amplitude increase, i.e., the tunes for
each initial condition of the simulations in a); the red curve represents the path traced as
the y amplitudes increase, i.e., the tunes for each initial condition of the simulations in b).
The purple curve is the path traced for each δ in the simulations shown at f).

1.7.3 Resonances

4D linear unperturbed motion consists of the motion of two uncoupled para-
metric oscillators. As a quasi-periodic integrable system, the phase-space is diffeomorphic
to the 2-Torus, T2, and there are an infinite number of such tori covering phase space,
corresponding to the different choices of initial conditions Ju.

Canonical perturbation theory applied to perturbed motion fails to converge
whenever the ratio of tunes is sufficiently rational (resonant tori). The Poincare-Birkhoff
theorem states that under such conditions, almost all the periodic phase-space orbits
disappear, i.e., almost all the tori are destroyed. An even number of tori survive, half
stable and half unstable [26, section 10.2]. Unstable motion in a storage ring eventually
leads to beam loss.

The condition for sufficiently rational tunes, i.e, resonant tori, can be expressed
as

mνx + nνy = ℓ, (1.43)

for n,m, ℓ ∈ Z. This condition defines lines in tune-space corresponding to the locus in
which perturbation theory fails and motion can become unstable: resonance lines.

We say |n|+ |m| is the order of the resonance, which is related to the order of
the multipole field perturbation from which it arises. Resonances arising from linear field
errors, already anticipated in section 1.6.2, are those described by νx = ℓ or νy = ℓ, ℓ ∈ Z.
Normal gradient field errors drive 2νx = ℓ or 2νy = ℓ resonances. Skew gradients couple
both planes and can drive the famous sum and difference resonances νx +νy = ℓ, νx−νy = ℓ.
Sextupoles, up to first-order in perturbation theory, can drive the 3νx = ℓ, resonance, as



1. Theoretical background: single-particle dynamics 44

well as νx±2νy = ℓ and νx = ℓ resonances [22, section 11.2.4]. Figure 1.9 depicts resonance
lines in tune-space for resonances up to second, third and fourth order, in the left, middle
and right plots, respectively.

Figure 1.9: Resonance lines in tune space up to 2nd, 3rd and 4th order, respectively. Solid lines correspond
to resonances driven by normal multipole fields, while dashed lines correspond to resonances driven by
skew multipole fields. Figure adapted from ref. [27]

1.7.4 The Dynamic Aperture

The stability of nonlinear dynamics can become sensitive when amplitudes are
large. In this scenario, the effects of the nonlinear fields become more significant and the
perturbations are dialed up, breaking down the stable tori. Even low-amplitude motion
can be dangerous in the long-term due to the phenomenon of Arnold diffusion [22, 28]:
because of the tune-shifts, especially the amplitude-dependent tune shifts, the tunes can
wander in tune space and eventually cross resonance conditions.

Despite the complexity of predicting the stability of nonlinear perturbed dy-
namics theoretically, in electron storage rings, we usually observe the existence of an
amplitude limit beyond which instabilities increase and the particles are lost, while the
particles below the limiting amplitudes survive. In other words, there are limitations to the
maximum transverse amplitudes displaying regular and bounded motion. This behavior
was anticipated by the simulations shown in plots a) and b) of Fig. 1.8 and is also verified
in the actual machine during experiments.

The border of the region of stability is the dynamic aperture (DA). This term
can be used to refer to the limiting amplitudes in any of the dynamical variables of
phase-space. In this work, we are mostly concerned with the DA in the (x, x′) phase space
because of its importance during the beam injection for accumulation into the storage
ring.

During injection, if the horizontal amplitudes are larger than the DA along x
or x′, the beam is not captured efficiently into the storage ring. In this case, increasing
the DA to accommodate the incoming beam would be interesting, which is exactly what
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we aimed at while developing this project.
Since the DA is determined by the nonlinear perturbations, it is possible that

tuning the nonlinear fields in a particular manner can render an optimum configuration
with increased DA. In the upcoming chapter, this idea is developed in more detail.
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2 Online Optimization

This chapter defines, introduces and justifies online optimization of synchrotron
storage rings nonlinear dynamics. The Robust Conjugate Direction Search (RCDS)
algorithm is introduced, as well as the other optimization routines from which it was built
upon. This chapter adds no novelty to the literature in optimization. It is an overview for
merely pedagogic purposes. It mostly draws from the discussion presented by Numerical
Recipes, ref. [29], as well as chapters 7 and 8 of ref. [23] and ref. [15].

2.1 Defining Online Optimization

Consider a system that possesses some sort of figure of merit which depends
on the collective state of a set of relevant components, parts, or operation modes which
constitute the parameters or decision variables. There is no mechanistic/deterministic or
probabilistic model for the dependence of the figure of merit on the parameters’ state, but
it is well known that the parameters affect the figure of merit. One may call the relevant
parameters knobs, since they can be used to tune the figure of merit.

Now suppose one wants to tune the knobs so the figure of merit reaches a
certain value, or so that it is minimized or maximized. This is an optimization problem,
with the figure of merit being the objective function. Since the whole system is a black-box,
to measure different values for the objective function, i.e., to sample it, the knobs must
be varied and the objective function must be measured, a process that may be expensive.
The tuning procedure thus consists on trial-and-error iterations of changing the knobs,
evaluating the objection and judging the quality of the changes performed.

A computer-automated routine or algorithm employing some strategy to seek
the desired value or extremum of the objective function while the machine functioning is
what we define as online optimization. The program must measure the objective function,
read the current state of the knobs, calculate or decide and apply the changes to the knobs,
measure the objective again and evaluate the quality of the changes over the objective. It
incorporates this information when making the decision on how much to change the knobs
next. The process is iterated until the desired outcome is reached.

The Dynamic Aperture (DA) optimization problem suits this heuristic, black-
box optimization scheme very well. The DA is a figure of merit related to the nonlinear
dynamics–in SIRIUS’ case, the sextupole magnets. There is no analytical/statistical model
predicting DA changes given sextupole nudges so the problem cannot be inverted to tune
the sextupoles to render the DA a desired value. The tuning procedure must be based on
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trial-and-error.

2.2 Justifying Online Optimization

2.2.1 Why not correct the nonlinear optics?

Several well-established and effective correction schemes exist for managing
linear dynamics in storage rings. These methods rely on measurable figures of merit,
enabling diagnostics of linear dynamics and optics. Crucially, they leverage linearly
controllable adjustment knobs, allowing for the inversion of the problem—determining how
much to tune the knobs to achieve a specific figure of merit. Examples include the widely
used Linear Optics from Closed Orbits (LOCO) method, as originally introduced in ref. [30]
and routinely applied to SIRIUS [31,32], and other methods utilizing turn-by-turn data
evaluation [23, chapter 5]. These correction schemes ensure that linear optics parameters,
dependent on dipoles and quadrupoles, such as optics functions, meet specifications.

Recently, LOCO-inspired schemes have been extended to encompass nonlinear
magnets and correct nonlinear optics. These methods have proven successful in addressing
the state of sextupoles and octupoles, reportedly enhancing the DA and beam lifetime at
the MAX-IV, [33] and NSLS-II [34] machines. These sophisticated procedures rely on a
bottom-up understanding of how off-energy orbits appear for a specific configuration of
nonlinear magnets.

Despite the value of these approaches, this master’s project adopts the prag-
matic, heuristic online optimization strategy. This choice is driven by the immediate need
to optimize DA performance for the top-up operation mode and the considerations of
available time and task complexity aligning with a master’s degree scope. We acknowledge
the significance of theory-based correction schemes as crucial next steps for comprehending
the machine and establishing connections with the machine computer model, a pursuit to
be completed in the near future.

2.2.2 The logic of nonlinear dynamics online optimization

During the design phase of SIRIUS, the strengths of the sextupole families and
symmetry of the nonlinear magnetic lattice were determined through a comprehensive multi-
objective optimization process. This process aimed to identify the lattice configuration
that statistically would yield the highest DA and optimal lifetime performance based on
particle tracking simulations with different lattice error configurations [13]. The most
successful and feasible solution (lattice) resulting from these simulation-based optimization
studies was subsequently implemented in the actual machine during the commissioning
phase.
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The optimization work accounted for the presence of expected errors arising
from magnet misalignments or deviations in magnetic fields. These errors introduce
additional perturbations that can degrade the DA and were intentionally introduced into
the model during the simulations for evaluating the figures of merit more realistically.
Multiple machine models, each with different error configurations distributed across various
magnets, were generated. The lattices derived from these models were then evaluated
through simulations. The best lattice, determined based on average performance across
various error configurations, demonstrated the highest average DA and average lifetime in
tracking simulations.

In the actual machine, a specific configuration of errors becomes a reality,
resulting in a distinct physical magnetic lattice. For this particular lattice, the optimized
configuration identified during simulations in the design phase may not necessarily be
the one that yields the largest DA or optimal lifetime. However, it is anticipated that
optimum sextupole configuration for the realized lattice is not significantly different from
the reference configuration chosen and implemented in the machine. Essentially, the
assumption is that errors are small and the online optimization procedure, therefore,
involves a mere fine-tuning of the strengths of the sextupole lattice to achieve its best-
performing configuration, compensating for nonlinear dynamics perturbations and small
residual perturbations from linear dynamics. In other words, online optimization consists
on tailoring the sextupole strengths to match the realized lattice.

2.3 Robust Conjugate Direction Search Algorithm

Optimization routines and algorithms are commonly categorized based on
whether they involve the calculation of derivatives (gradient-based) or rely solely on
the comparison of objective function values (gradient-free). The latter can be further
classified into direct- or indirect-search methods, depending on whether the extremum
search relies on direct comparisons of the objective function or on a mathematical model
of it, respectively [29].

Both gradient-based and gradient-free strategies rely on the comparison of the
objective function at different points of the parameter space. If the objective function suffers
with noise, it can significantly reduce the efficiency of the optimization routine [23, 29]. In
Chap. 7, section 7.3.1 of Ref. [23], a review of traditional optimization algorithms (e.g.
gradient descent, Nelder-Mead simplex method, Powell method) shows how most of them
suffer to find minima to, at least, the precision of the noise σ the objective function is
subjected to.

The Robust Conjugate Direction Search (RCDS) algorithm is an indirect-search,
gradient-free optimization algorithm introduced in Ref. [15]. The algorithm comprises a
main loop for constructing and managing optimal search directions along the knobs space
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(Powell’s Method) and a one-dimensional optimizer responsible for a noise-aware search
for the minimum along a given direction. Demonstrated in ref. [15] and [23, section 7.3.3],
the algorithm can optimize the objective function with a precision at least equivalent to
the objective-function noise, being suitable for online optimization problems. Specifically,
for accelerator applications, the algorithm has been successfully applied to optimize beam
steering and optics matching during injection [15], reduce horizontal emittance [15, 16],
and optimize dynamic aperture [15–19] at machines such as SPEAR3, NSLS-II, MAX-IV,
and ESRF. It has become a standard tool for optimizing the DA.

To this date, the only 4th-generation machine RCDS has been applied to was
MAX-IV. The machine has five sextupole families and five octupole families. Selecting
combinations of these families, subject to relevant operation constraints, such as keeping
chromaticity unchanged, resulted in a 6-dimensional parameter search space [18]. SIRIUS,
on the other hand, has 21-sextupole families. The application of RCDS in a 4GSR with a
larger search space is of great interest to the community, especially for upcoming upgrades
and new 4GSR projects currently under construction.

2.3.1 One-dimensional optimizers

RCDS’ distinct noise robustness is due to the cumulative effect of minor
modifications of well-known indirect-search routines. To grasp how it works, a brief
overview on its predecessors is presented next.

Bracketing the minimum

Let f(x) ∈ R be the objective function depending on the single knob x ∈ R. The
goal of optimizing f is accomplished through a search over its domain. Since maximizing f
is equivalent to minimizing −f , in the following discussion we shall refer to minimization
only. The search for the minimum is usually preceded by initially bracketing the minimum.
We seek points a < b < c in the domain such that f(b) is smaller than both f(a) and
f(c). If f is reasonably smooth, we can be certain there will be a minimum in the interval
(a, c). Standard bracket routines for well-behaved, noiseless objective functions can be
found in the literature [29, section 10.1]. They mostly consist on starting from an initial
point, scanning the line "downhill", i.e., as long as it decreases. The scanning stops when
f stops decreasing. This allows identifying a first guess for the minimum, x = b, as well as
x = a and x = c, the borders the brackets. The bracketing procedure can be seen as a
coarse-grained scan performed initially.

Line scan

After bracketing, the minimum is then more finely searched by a routine referred
to as line search or line scan. The most common line search methods are the golden section
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search and parabolic interpolation [29, sections 10.2 and 10.3]. Parabolic Interpolation is
an indirect-search method. A parabola is fitted to the values f(a), f(b), f(c) the function
takes in the brackets. The parabola vertex then gives the estimate for f ’s minimum.
Both of these methods rely on comparisons of the objective function at different points
in the parameter space. They assume that the objective function f is deterministic and
they trust their observed behavior. In other words, they are completely unaware of any
experimental noise in the system. In what follows, we assume what we actually measure
in the control-room is f(x) + ξ, where ξ ∼ N (µ = 0, σ) is a random variable modeling the
experimental noise, with σ being expected noise error, σ2 = Var[ξ].

RCDS bracketing

For the optimization of noisy objective functions, the line optimizer introduced
in ref. [15] incorporates minor modifications to the traditional bracketing and parabolic
interpolation line scan routines. Unlike traditional bracketing, RCDS enforces the stricter
condition for accepting a and c as the brackets’ borders. It demands that f(b) + 3σ < f(a)
and f(b)+3σ < f(c), where σ is the standard deviation of the objective function values, its
experimental noise. In other words, RCDS brackets are obtained by scanning f downhill
not only until the function stops decreasing, but until it departs from the best guess for
the minimum by at least three times the expected error. This increases the likelihood
that the observed trend represents real behavior of the objective function rather than
noise. Pseudocode for a simple RCDS bracketing routine is presented in Algorithm 1 of
Appendix A.

Figure 2.1 illustrates the RCDS bracketing. Starting from x0, taken as the first
guess for the minimum, f(x1) is measured. Since it is no grater than f(x0) + 3σ, the
scan continues up to x2, which is updated as the the minimum. When measuring f(x3),
condition f(x3) > f(x2) + 3σ is true and the scanning in the positive direction stops. The
starting point, x0, is checked for the condition f(x0) > f(x3) + 3σ. If true, as in fig. 2.1,
there is no need to scan in the negative direction and the brackets will be (x0, x2, x3). If
the condition is false, the scanning continues in the negative direction until x∗ satisfying
f(x∗) > f(x3) + 3σ is found, giving (x∗, x2, x3) as the bracket.

RCDS line scan

Next, for the line scan, a parabola is fitted within the brackets using the points
previously sampled during the bracketing. The parabola vertex is taken as the objective
function minimum. Prior to fitting, however, an outlier verification routine scans the
measured values of f during bracketing. If any point is identified as an outlier, according
the routine described in Appendix A, it is discarded, and the fitting process is repeated
without it, as long as a sufficient number (specified by the user) of measured values of f is
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Figure 2.1: Illustration of RCDS bracketing. Black
curve is the objective function, blue dots are its mea-
surements, with noise. Bracketing routine: scan
the objective function downhill, updating the guess
for the minimum, until f stops decreasing and in-
creases by more than 3σ compared the minimum.

min

min

Figure 2.2: Illustration of RCDS line scan proce-
dure: perform a parabolic fitting (red curve) over
a curated set of objective function measurements
(blue dots) within the brackets. Outliers are re-
moved, if any is present. The parabola vertex is
the best guess for f ’s minimum.

still available. If that is not the case, additional measurements of f are carried out prior
to fitting.

2.3.2 Powell’s method

How could we optimize an objective function f(x) ∈ R depending on the set of
p parameters {xi}i=1,...,p? The simplest idea is to iteratively nudge each knob individually:
optimize f by changing x1, while the other knobs remain fixed, then optimize by changing
x2 only, and so forth. In other words, since each one of the knobs defines a direction
whose basis vector is êi, we could scan each direction, one at once, using the noise-robust
line-optimizer introduced in the previous section.

Formally, we are reducing a multi-dimensional optimization problem into a
series of 1-dimensional searches. That is, given an initial configuration of the parameters
(an initial position) x0, and a direction n̂, we have the one-dimensional problem to minimize
g(δ) = f(x0 + δn̂). The minimum is then f(x0 + δ∗n̂), where δ∗ = argminδg(δ). In the
scheme of the previous paragraph, we specialized to n = êi, and iterated for i = 1, . . . , p.

As can be seen in the path from the red point to the blue point in fig. 2.3,
scanning along each orthogonal canonical direction can be time-consuming, specially for
some functions with long and narrow valleys at some angle with the coordinates basis
vectors. The reason why using unit basis vectors can be so inefficient is because optimizing
along a given basis vector spoils down the prior minimization carried out in other directions.
As a result, the process requires more iterations to crawl to the minimum.

Instead of canonical directions, a more efficient strategy for optimizing consists
on constructing a set of special, non-interfering direction vectors for which the minimization
along a direction is preserved when optimizing in a different direction. In ref. [29] the
properties that these desired non-interfering vectors should have is discussed. It is shown
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Figure 2.3: Comparison of iterated line-searches until f(x, y)’s minimum along canonical unit vectors
(path from red dot to blue dot) vs. along vectors chosen according to Powell’s method of conjugate
directions (path from green to blue dot).

that the necessary condition for direction vectors u and v to be non-interfering is

v ·H · u = 0, (2.1)

where (H)ij = ∂2f(x0)/∂xi∂xj is the Hessian matrix for the objective function f . The u
and v directions are said to be conjugate directions.

The question now is on how to find this appropriate set of p conjugate directions.
Let {ui} denote our directions set. Powell [35] proved that conjugate directions can be
obtained according to the following algorithm:

1. Let the initial directions be the basis vectors: ûi = êi for i = 1, . . . , p.

2. Save the starting point (initial parameters state) as x0;

3. For i = 1, . . . , p minimize along ûi. Save the minimum as xi.

4. For i = 1, . . . p− 1 set ûi ← ûi+1

5. Set up = xp − x0. Normalize to obtain ûp.

6. Minimize along ûp. Name the found minimum as the new x0.

7. Repeat the procedure until reaching a certain number of evaluations or until some
stopping condition is reached.

In steps 1–3, we optimize along each one of the unit basis vectors, updating
the minimum. When finishing optimization along up, the current minimum will be xp.
In step 4 we discard the first direction, rename directions ui+1 to ui, and set as our new
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p-th direction the vector pointing along the line from the starting point x0 to the current
minimum.

In this loop, steps 1–6 characterize 1 iteration and results in 1 new direction.
Powell proved that, for a quadratic form, k iterations of this strategy produces a set
of directions whose last k vectors are mutually, pairwise conjugate, in the sense of the
Hessian matrix. So p iterations exactly minimizes the quadratic form. The method is also
quadratically convergent: each iteration doubles the number of significant figures of the
candidate minimum for the quadratic form.

There is a problem, however, in throwing away for û1 for xp−x0 every iteration:
at some point the lines start to fold up on each other and lose linear independence. As a
result the function can end up minimized only within a subspace of parameter space. To
fix this, one can reinitialize the directions to the basis vectors after an iteration along the
p directions, or use any new set of orthogonal directions. This means giving up conjugacy
and quadratic convergence.

The apparently counter-intuitive solution suggested by Powell is to discard not
necessarily û1 in favor of the new direction, but the direction along which f had its largest
decrease so far. This is justified because this direction is likely have a large component
along the new proposed direction. Powell also posits some conditions in which is best not
to add any new directions, keeping the old set from the previous iteration [29, section
10.7]. The resulting algorithm shall is referred to as "Powell’s method".

Powell’s method results in a set of p directions which are no longer mutually
conjugate by the end of p iterations. The search is also no longer quadratically convergent,
but it is more adequate for more diverse objective function landscapes. For instance, if
the objective function has long, twisting valleys, quadratic convergence guaranteed by
conjugate directions is of no use since we may start far away from the nearly parabolic
region. In this situation, we would be leaping along the minimum of a parabola which is
not quite at the minimum yet. When close to "true" parabolic region, Powell’s criteria
results in adequate directions which tends to crawl about the paraboloid principal axes
quite efficiently.

The path from the green to the blue point in fig. 2.3 illustrates the use of
Powell’s method for choosing directions. In it, we can see that the two initial search
directions were performed along the unit canonical vectors. Next, the direction pointing
from the starting point to the minimum after the two first searches is used, and the
direction with the largest component along it, ey, was discarded. Further iterations
rendered directions along which the search tends to walk by the principal axis of the
paraboloid in a more efficient manner than the searches using unit canonical vectors.

In summary, Powell’s method calculates and manages directions adaptively,
deciding when to change old directions in favor of the newly calculated vectors, and when
to avoid the changes to control build-up of linear dependence. In practice, using Powell’s
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directions accounts to finding a good set of directions providing "shortcuts" towards the
minimum in the objective landscape, instead of "zig-zags", as for the case of canonical
vectors.

RCDS consists on using Powell’s method for managing directions and minimizing
along these directions with the noise-robust line-optimizer described previously. RCDS
was first implemented by the authors of ref. [15] and is available in Matlab and Python on
their GitHub repository. The code used on SIRIUS was based on their implementation.
The SIRIUS code is object-oriented and was implemented in Python by members of LNLS’
Accelerator Physics Group and the author. The code is available in the "optimization"
directory of the Accelerator Physics Suite (apsuite) repository [36]. The pseudocode for
the bracketing and line scan routines as well as Powell’s directions loop is available in
Appendix A.

https://github.com/SPEAR3-ML/RCDS
https://github.com/lnls-fac/apsuite
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3 Storage ring setup, diagnostics, measure-
ments & experimental methods

In this chapter, we delve into the SIRIUS magnetic lattice, beam diagnostics
tools and relevant experimental methods. We emphasize the key parameters for optimizing
nonlinear dynamics and detail the experimental procedures encompassing beam trajectories
and orbits, beam current and lifetime, as well as the control and manipulation of tunes and
chromaticity during machine studies. The final segments address the selection of objective
functions for probing the Dynamic Aperture and the selection of sextupole families as
optimization knobs.

3.1 SIRIUS magnetic lattice

SIRIUS storage ring consists on a 20-cell five-bend-achromat (5BA) lattice
comprising a 5-fold symmetric configuration with alternating high- and low-horizontal
betatron functions at the straight sections, as Fig. 3.1 shows. There are 5 A-type sections,
with high horizontal betatron function and 15 B- and P-type sections, with low horizontal
and vertical betatron functions [37]. A superperiod consists of one high-beta and 3 low-beta
sections arranged in the order A-B-P-B.

The central dipole, the BC, is a permanent superbend magnet with a peak
field of 3.2 T. The storage ring accommodates 20 such. The arcs contain additional four
dipoles: two B1 and two B2. These are electromagnetic dipoles with peak fields of 0.58 T.
In total, the SIRIUS magnetic lattice comprises 100 dipoles: 20 permanent BC magnets
and 80 B1 and B2s electromagnets.

In the high-beta straight sections, the quadrupole doublet (QFA, QDA) is
employed for optics matching. B-type sections utilize the (QDB1, QFB, QDB2) quadrupole
triplet for matching while the (QDP1, QFP, QDP2) triplet is used in the P-type sections.
The arc sections contain the Q1, Q2, Q3, and Q4 quadrupole families, totalling 12 families
of quadrupoles and 270 magnets.

The lattice also features 21 families of sextupoles magnets, used for chromaticity
correction and nonlinear dynamics optimization. They sum up to 280 magnets. Some
sextupoles families are located where the dispersion function vanishes and are called
achromatic, or harmonic, while other families, located where there is non-zero dispersion,
are called chromatic families.

Table 3.1 lists the sextupoles families and their types in the storage ring. The
21 families are, in principle, the available search space for nonlinear dynamics optimization.
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The subsection 3.3.2, on the choice of optimization knobs, at the end of this chapter,
shows how the search space can be reduced down to 13 dimensions once the constant
chromaticity requirement and/or other additional constraints are imposed.

Figure 3.1: SIRIUS 5BA cells comprising the lattice. The cells differ by their straight section types:
high-beta type (A), or low-beta (B, P). A superperiod consists of one high-beta and 3 low-beta sections
arranged in the order A-B-P-B. The storage ring consists on 5 concatenation of superperiods. Source:
Wiki-SIRIUS (currently only available on-campus).

Table 3.1: SIRIUS sextupole families

achromatic chromatic
SFA0, SDA0, SFB0,
SDB0, SDP0, SFP0

SDA1, SFA1, SDA2, SFA2,SDA3, SDB1, SFB1,
SDB2, SFB2, SDB3, SFP1, SDP1, SDP2, SFP2, SDP3

3.2 Beam diagnostics and measurements

3.2.1 Beam positions

To track the beam’s position along the ring, a diagnostic tool known as Beam
Position Monitor (BPM) is used. It consists of a set of four pick-up antennas positioned
within the vacuum chamber, as illustrated by Fig 3.2. The mirror charges induced by the
electron beam as it passes by the device are collected by the antennas. The different signals
induced on each antenna when the beam position deviates from the device’s geometric and
electric center allows the determination of the beam displacements. The antenna signals
undergo processing in the "partial-Delta/Sigma" scheme, providing horizontal and vertical
beam displacements through the following algebraic calculations:

x = Kx

[
A− C
A+ C

+ D −B
D +B

]
, y = Ky

[
A− C
A+ C

− D −B
D +B

]
, (3.1)

where A, B, C, and D represent the intensity of the induced signal over the corresponding
antennas and Kx and Ky are calibration factors.
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Figure 3.2: Schematic representation of BPM button antennas, in solid lines, the vacuum chamber
cross-section, in dashed lines, and the transverse positions reference frame.

SIRIUS storage ring is equipped with 160 BPMs distributed along the ring.
The BPMs allow the determination of the centroid’s (beam electric center) displacements
at a turn-by-turn (TbT) acquisition rate for probing the betatron motion. The signal can
also be processed at other acquisition rates, allowing for signal averaging and providing
information about the orbit.

Phase-space reconstruction and decoherence

With BPM recording the TbT motion of the beam’s centroid, the x and y

positions can be readily acquired. The angles, or momenta, can be obtained through the
following processing: for two consecutive BPMs located at the ends of a straight section
of length ℓ, where no bending or focusing occurs, the beam angle can be calculated as
x′ = ∆x

ℓ
, where ∆x refers to the difference in the BPMs position readings. This allows

for the reconstruction of the x, x′ and y, y′ phase-spaces on a TbT basis, as exemplified
by Fig. 3.3. In the figure, BPM data of the beam was acquired at the TbT rate, soon
after betatron oscillations were induced to the beam’s centroid. The beam initially had an
amplitude in the negative horizontal direction reaching approximately −8 mm and in the
first turns it circulated the outermost region of the phase portrait (dark blue points). The
last turns correspond to light yellow points in the innermost region.

At first glance, in Fig. 3.3, it might seem that the transverse positions are
being damped. However, the radiative damping time for the SIRIUS storage ring is of
the order of thousands of turns, much longer than the acquired time scale in the figure.
This apparent damping is a manifestation of decoherence. Decoherence arises due to
the nonlinear tune-shifts and the finite extent of the beam in 6-dimensional phase space,
which has a spread over amplitudes. The cumulative effect of amplitude-dependent and
momentum-dependent tune-shifts renders the bunch with a spread in tunes. This results
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Figure 3.3: Phase space reconstruction from TbT BPM data. Data was collected for 300 turns in the
storage ring. The color-scheme encodes the turn each point was collected.

in the filamentation and spreading of an initially localized bunch in phase space due to the
different frequencies (the tunes) with which they circulate the ellipses. In this scenario, the
positions (and momenta) tend to become uncorrelated, and the average of the electrons
distribution, which is the beam’s centroid measured by the BPMs, goes to zero, justifying
the apparent damping.

3.2.2 Beam current and injection efficiency

Direct-Current Current Transformers (DCCTs) enable the measurement of
the stored beam current within accelerator rings (booster or storage ring). The BPMs
sum-signal, which is proportional to the beam current, can also be used to measure currents
and calculate current variations. In transport lines, there are also Integrated Current
Transformers (ICTs) which allow measuring the integrated current (charge) per pulse.

Utilizing the current measurement and the beam revolution period in the
respective ring, one can assess the stored charge and calculate the injection efficiency (IE)
during storage ring injections. By measuring the charge in the booster or transport line
just before injection into the storage ring and the storage ring charge immediately after
the injection pulse, it is possible to deduce the efficiency of the injection process.

3.2.3 Tunes measurement & control

When TbT motion is viewed at a fixed longitudinal position s, it consists of the
sampling of a harmonic motion, for which the fundamental frequency is the fractional part
of the tune ν. Thus, observation of TbT data can reveal the tunes upon the appropriate
signal processing. For instance, the betatron motion can be Fourier-transformed (discrete
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Fourier transform via fast-Fourier transform algorithm), revealing the BPM signal spectrum.
Alternatively the time-domain signal can be fitted to a sinusoid, allowing the determination
of the tune as the fundamental frequency.

Despite being simple, the process described above is incompatible with user’s
shift operation, and mostly used during machine experiments for measuring the tunes of
large-amplitude motion or for precise determination of changes in tune due to relevant
changes in operation parameters. The main incompatibility with user’s operation is that
extracting tunes from TbT data requires inducing betatron oscillations by kicking and
the beam and operating with the BPMs in the TbT acquisition rate. This means the
control loops of the Fast Orbit Feedback System (FOFB) and Slow Orbit Feedback System
(SOFB), which guarantee the orbit stability required by the beamlines, must be turned-off.

Precise monitoring of the tunes during operation is achieved with the aid of
a strip-line shaker, which constantly drives the beam with an alternating electric field
in a narrow band of frequencies, leading to sub-nanometer displacements and inducing
small-amplitude betatron motion without interfering significantly with the operation. This
system also reads back the beam response at that same frequency range. The peak of the
beam response signal is identified with the betatron tune.

Regarding changes and manipulation of the tunes, formula (1.25) reveals that
adjustments in the quadrupole strengths, particularly at the quadrupoles in large β-function
sections, enable control of the tunes. As the tune response to changes in quadrupole
strength is linear, a tune-response matrix can be constructed, i.e., the Jacobian of the
tunes with respect to changes in quadrupoles, allowing tune changes to be expressed as

∆ν = Jν∆K, (3.2)

where ∆ν =
[
∆νx ∆νy

]⊺
is the tune-shifts vector, ∆K is the vector containing the

changes in strengths across all the quadrupole families, and the Jacobian or response
matrix has entries

(Jν)ij = ∂νi

∂Kj

≈ ∆νi

∆Kj

, i = x, y, j ∈ tune-correction quadrupole families. (3.3)

The system (3.2) can pseudo-inverted, allowing for the determination of quadrupoles
changes required for a desired change in tune

∆K = J+
ν ∆ν (3.4)

where J+
ν = (J⊺

νJν)−1J⊺
ν is the Moore-Penrose pseudoinverse. The tune-correction quadrupole

families are located in non-dispersive sections



3. Storage ring setup, diagnostics, measurements & experimental methods 60

3.2.4 Chromaticity measurements & control

Chromaticity characterizes the energy-dependent tune-shift. To measure it, we
need to calculate the numerical derivative

ξu = ∂νu

∂δ
≈ ∆νu

δ
, u = x, y, (3.5)

that is, measure the tune-shift ∆νu induced by the energy-shift δ.
A direct manner to induce a particular energy-shift is to change the RF

cavities frequency. A relation can be established between energy deviations δ and relative
RF frequency changes with the aid of a quantity α, known as momentum compaction
factor [11, 21]:

δ = − 1
α

∆f
f
. (3.6)

Where the momentum compaction factor is defined by

α ≡ 1
L

∮
G(s)η(s) ds , (3.7)

and is first introduced to relate changes in orbit length due to energy deviations [11].
Therefore, in practice, when measuring chromaticity, we are interested in the

following numerical derivative, which is a consequence of eqs. (3.5) and (3.6):

ξu = −f
α

∆νu

∆f . (3.8)

The derivative is usually calculated by obtaining the first-degree coefficient of the polyno-
mial fitting of the tune-shifts vs. RF frequency curve.

Regarding chromaticity control, eq. (1.33) shows that chromaticity depends
linearly on the strengths of the chromatic sextupole families. Thus it can be adjusted to
certain desired values according to the same pseudo-inversion procedure described above
for the tunes. We relate the changes in chromaticity ∆ξ to the changes in the strengths of
the sextupole families ∆S by

∆ξ = Jξ∆S, (3.9)

where ∆ξ =
[
∆ξx ∆ξy

]⊺
and the Jacobian matrix J ∈ has entries

(Jξ)ij = ∂ξi

∂Sj

≈ ∆ξi

∆Sj

, i = x, y, j ∈ chromaticity correction sextupole families. (3.10)

If we wish to change chromaticity by a ∆ξ amount, the Jacobian can be
pseudo-inverted to calculate the required sextupole strength changes:

∆S = J+
ξ ∆ξ. (3.11)
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Figure 3.4: Illustration of injection sensitivity to the DA. In red, the DA border before optimizing
sextupoles. In blue, the expected effect on the DA border after optimization. Reduced injection efficiency
results from losing part of the beam due to small DA. Optimizing injection efficiency by tuning sextupoles
should translate to optimizing DA.

In practice, the chromaticity Jacobian was never measured in the actual machine, due to
the time-consuming process of varying each sextupole family individually and carrying
out the chromaticity measurement. The "measurement" of the Jacobian is instead carried
out in the SIRIUS storage ring computer model. The model-calculated Jacobian renders
satisfactory chromaticity corrections in the actual machine.

3.3 The choice of objective function & optimization
knobs

3.3.1 The objective function

There is no analytical formula relating the storage ring linear or nonlinear
optics to the Dynamic Aperture (DA). The optimization procedure must be a heuristic
search procedure: changes are performed to the knobs (nonlinear magnets) and the
effect on the DA is evaluated. Additionally, one cannot measure the DA in a practical
and straightforward measurement procedure sufficiently fast to be run online. Direct
measurements of DA can take several iterations of acquiring trajectories of the beam with
increasingly higher transverse displacements. The acquisitions are then processed to access
the DA.

For online optimization one must choose a practical, relatively fast to measure
objective function to act as a probe of the DA: a figure of merit related to the DA to
represent it and to be used to evaluate the quality of the changes performed during the
online tuning process. In our experiments, we studied using two practical objectives as
the probes for DA: the injection efficiency (IE) and the beam’s resilience to dipolar
perturbations. The former is quite self-explanatory: the larger the DA, larger the space
for the beam to be captured into the storage ring during the injection pulse, and thus the
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Figure 3.5: Action jumps due to dipolar kicks in the linear (left) and nonlinear (right) regimes.

larger the injection efficiency.
Figure 3.4 illustrates how a smaller aperture, shown in red, influences the

efficiency of injection. After leaving the booster accelerator at 3 GeV, the beam is
transported into the storage ring injection straight section. It reaches the injection area
with phase space coordinates of approximately (x, x′) ≈ (−8 mm, 3 mrad). The beam
then suffers the deflection of a nonlinear pulsed magnet, the nonlinear kicker (NLK) and
is captured into the storage ring with phase space coordinates (−8 mm, 0) [12]. If the DA
border along the negative horizontal direction is reduced below −8 mm, the dynamics
may not accommodate the long-term time evolution of the beam fraction exceeding this
threshold. This fraction is lost due to the nonlinear dynamics instabilities in the first
turns. On the other hand, if the DA is increased, the larger the beam fraction which is
successfully captured and survives in the storage ring in the long-term.

As for the beam kick resilience, this figure of merit is related to the DA by
the following reasoning: the larger the horizontal dipolar kicks the beam can survive, the
larger the amplitudes the beam explores as it oscillates. If the beam survives to larger
kicks, it means the ring can accommodate larger amplitudes because of an increased DA.

Figure 3.5 illustrates the phase space orbits for a beam when it is kicked. In
the left sketch, small amplitude TbT motion ellipse is shown. When kicked, the beam
gains momentum (angle) and is rigidly translated higher along the x′ direction. In the
linear approximation the beam goes from one ellipse, with action J to another ellipse,
with action J̃ > J . If the kick is stronger (larger than 500 µrad), the action jump takes
the beam to a nonlinear regime, as shown in the right sketch, where the beam traces
out distorted ellipses. After the kick, the maximum amplitude reached in the negative
horizontal direction is increased thus the larger the fraction of the beam that can survive
the kick, the larger the DA.

In summary, the dynamic aperture optimization procedure must consist on the
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exploration of sextupole (knobs) configurations yielding the largest dynamic aperture as
accessed by as objective function such as injection efficiency or beam kick-resiliency.

3.3.2 The optimization knobs

The DA is determined by the quality of the beam dynamics in terms of
perturbations. Given that a linear optics correction scheme is already in place and
regularly implemented in the machine, effectively addressing optics functions and phase
advances, the primary factor impacting SIRIUS DA likely stems from nonlinear dynamics
and/or remaining uncorrected and previously inaccessible deviations and errors. This may
include sextupole field errors or other minor nonlinear multipoles.

If the limitation of the DA is likely associated with nonlinear dynamics, the
actuation knobs must unexpectedly be composed of the controllable nonlinear magnets
available at the SIRIUS storage ring, namely the sextupoles. However, it is important to
note that sextupole strengths cannot be changed arbitrarily.

Sextupoles are originally introduced into the lattices as actuators for correcting
chromaticity, which refers to the energy-dependent aberrations in the focusing of the beam,
and for optimizing DA. Care must be taken when varying the sextupole strengths, as it
can alter the chromaticity.

A strategy needs to be devised to select the sextupole family in a way that
allows for the simultaneous correction of chromaticity and the online tuning of magnet
strengths to optimize the DA. In simpler terms, the optimization processes for DA should
be conducted while preserving the machine’s chromaticity. The natural question that
arises is how to implement these isochromatic changes to the sextupoles.

As highlighted previously, SIRIUS has 21 sextupole families, magnets powered
by the same power supply. Six of them are achromatic families, strategically placed where
the dispersion is zero, while the remaining 15 families are chromatic families. In principle,
the optimization parameter space is 21-dimensional. However, as mentioned earlier, the
goal is to change sextupoles without affecting chromaticity. Since we need at least one
degree of freedom for correcting chromaticity in the horizontal plane and one degree of
freedom for correcting chromaticity in the vertical plane, there are 19 independent knobs
available. The dimensionality of the search space can be further reduced by imposing
additional constraints on certain families’ variations. These specific constraints changed
according to each experiment and are detailed in what follows. Two strategies were adopted
to select the sextupole optimization knobs: a compensation scheme and using the Jacobian
null space knobs.
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Compensation scheme

The idea is the following: out of the 15 chromatic sextupole families, at least two
of them are labeled "correction" or "compensation" families and are not freely varied by the
optimization routine during the experiment. The other 13 chromatic families can be varied
arbitrarily, respecting their linear magnetic (non-saturated) regime. Alongside these 13
chromatic families, the strength of the 6 achromatic sextupole families are also free knobs.
Whenever the routine proposes changes in the free knobs, the chromaticity changes caused
by this action are anticipated as follows: the reduced Jacobian, J̃ξ, whose columns contain
only those corresponding to the free knobs, is used to calculate the chromaticity change
∆ξ = J̃ξ∆Sfree upon the change ∆Sfree in the free knobs. Another reduced Jacobian, J′

ξ

containing only the columns corresponding to the "correction" or "compensation" families is
used to counteract the predicted chromaticity build-up, i.e., to produce sextupole changes
∆Scorr. leading to exactly the opposite chromaticity change −∆ξ. The required strength
changes in the compensation families is determined by ∆Scorr. = J′+

ξ (−∆ξ). Applying
∆S = ∆Sfree. + ∆Scorr. to the machine leads to sextupole families strength changes keeping
the chromaticity unchanged. The scheme is illustrated in Fig. 3.6.

In practice, during the experiments, the compensation scheme was used as
follows. The 6 achromatic families plus the SDA1, SFA1, SDB1, SDP1, SDA3, SDB3 and
SDP3 families could be freely varied. Their strengths were the optimization knobs. The
SDA2, SDB2, SDP2, SFA2, SFB2 and SFP2 were used as the compensation or correction
families. They would only be varied to cancel the chromaticity build-up caused by changing
the free knobs. The resulting search space was 13-dimensional.

Note that families SFP1 and SFB1 were not used as knobs. They were kept
constant. They were actually used in the first experiments attempts, as discussed in
section 4.1 of the next chapter, but were later removed upon the realization that they
already operate close to saturation, where the fields may not be repeatable due to hysteresis
effect. When these are included, the search space is 15-dimensional.

The compensation families were chosen on basis of having range to act on the
chromaticity, that is, they were the families with initial strengths far from saturation, with
a lot of room to compensate the knobs effects on chromaticity.

Jacobian null space knobs scheme

Here the idea is to identify the combination of sextupole families living in the
null space, or kernel, of the chromaticity Jacobian matrix. That is, we are interested in
the set of vectors ker(Jξ) = span{si ∈ R21|Jξsi = 0}i=1,...,19. If we perform changes along
such subspace ∆S ∈ ker(Jξ) then the resulting changes in chromaticity are null.

The reason why we can anticipate the dimension of the null space is 19 is
because it contains the 6 achromatic sextupole families plus 13 degrees of freedom out
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Figure 3.6: Illustration of the compensation scheme for changing sextupole strengths with no change in
chromaticity.

of the 15 achromatic families, since at least 2 degrees of freedom are needed to act over
chromaticity.

A straightforward way to identify the null space of the Jacobian is to calculate
its full singular value decomposition (SVD), which expresses the Jacobian as the product

Jξ = UΣV⊺

=


... ...

u1 u2
... ...


︸ ︷︷ ︸

2×2

σ1 0 . . . 0
0 σ2 . . . 0


︸ ︷︷ ︸

2×21



. . . v⊺
1 . . .

. . . v⊺
2 . . .

. . . v⊺
3 . . .
...

. . . v⊺
21 . . .


︸ ︷︷ ︸

21×21

. (3.12)

Note that the singular-values matrix has only two non-vanishing singular values σ1 and σ2.
In the sum-over-modes form of SVD, we have

Jξ =
21∑

i=0
σiuiv⊺

i = σ1u1v⊺
1 + σ2u2v⊺

2, (3.13)

in which it becomes clear that we have only two independent modes or degrees of freedom
for changing chromaticity, corresponding to the horizontal and vertical degrees of freedom.

Multiplication of the SVD-decomposed Jξ by V gives JξV = UΣ, which
explicitly reads

Jξvi = σiui, i = 1, 2,

Jξvi = 0, i = 3, . . . , 21.
(3.14)

Revealing the sextupole strength vectors living in the null space of the Jacobian. They
must be the ones associated with the vanishing singular values: ker(Jξ) = span{vi}i=3,...,21.
Figure 3.7 illustrates the fundamental subspaces associated with the chromaticity jacobian.
The range of the matrix, or column space, is the chromaticity changes space. Vectors living
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Figure 3.7: Illustration of chromaticity jacobian Jξ fundamental subspaces. The idea is to use sextupole
combinations living in the null space, since these are mapped to the zero vector on the chromaticity space.

in the null space are the sextupole strengths combinations mapped to the chromaticity
space origin.

As mentioned previously, additional constraints on the families strengths varia-
tions have been imposed to further reduce the dimensionality of the search space. In such
cases, the jacobian is recalculated considering the imposed constraints. For instance, in
one of the experiments the following constraints were imposed:

• Families SFP1 and SFB1 were kept constant, i.e., were not allowed to change. As
mentioned, they operate close to their saturation, nonlinear regime, and one cannot
trust they would be able to provide reproducible magnetic field changes. Deciding
not using them already reduces from 21 to 19 degrees of freedom.

• The pair of families SDB1 & SDP1, SDB2 & SDP2, SFB2 & SFP2, SDB3 & SDP3
were constrained to change by the same amount, starting from their respective initial
strengths. This reduces the available options from 19 to 15 families.

These 15 families consist on the combination of the 6 achromatic families, the 4 pairs of
constrained families and 5 other non-constrained families SDA1, SFA1, SDA2 , SFA2, and
SDA3. Calculating the null space of the Jacobian results in a 13-dimensional search space.
We shall refer to such constraint configuration as Constraint Scheme I, to distinguish it
from Constraint Scheme II, which consists on

• Families SFP1 and SFB1 were kept constant, by the same reason as in the previous
scheme.

• No pair-wise constraints were imposed to the sextupole families. So, in principle,
there were 19 possible families: 21 minus the two families not used.

Calculating the Jacobian null space revealed the 17 chromaticity-preserving free knobs.
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4 Experiments with Online Optimization
of Nonlinear Dynamics

This chapter presents the results of the experiments carried out during the this
masters project. There are two set of important results: i) those of the experiments carried
out in late 2022 and ii) those of the experiments carried out during the first semester
of 2023. In i), the early attempts, the experimental method and setup was still being
perfected. We tried using the beam kick resilience as objective function and learned it
was not the best choice. In ii), we moved on to using instead the injection efficiency (IE)
as objective, which had a better performance. We started to be more cautious when
choosing the knobs, avoiding the families close to their magnetic nonlinear regime and
experimenting with different possibilities of constraints among the sextupole families. We
also carried out optimization in different working tunes and performed characterizations
and analysis of the configurations found by optimization.

4.1 Kick resilience optimization attempt

In the first attempt to online optimize the nonlinear dynamics, we used the
beam kick resilience as objective function. As described in subsection 3.3.1, we sought to
minimize the beam-loss rate at a given fixed dipolar kick from the pinger magnet. The
idea was to minimize the rate for a given kick, increase the kick and repeat the process,
reaching higher survival rates at stronger kicks.

4.1.1 The knobs

The knobs were chosen according to the compensation scheme described in
subsection 3.3.2: the achromatic families SDA0, SDB0, SDP0, SFA0, SFB0, SFP0, and the
chromatic families SDA1, SDB1, SDP1, SDA3, SDB3, SDP3, SFA1, SFB1, SFP1 varied
freely. The SDA2, SDB2, SDP2 and SFA2, SFB2, SFP2 families were the compensation
families used to keep chromaticity constant when varying the optimization knobs. In
this early attempt, families SFP1 and SFB1 were included as knobs. In later attempts
they were avoided upon the realization that they operate close to the magnets’ nonlinear
response regime. The search space was 15-dimensional.
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4.1.2 Objective function and setup

A small beam current was accumulated into the storage ring, usually 10 mA,
localized in a single bunch. At a given moment, we can fire up the kick from a dipole
kicker, located close to the injection section. The BPMs acquisition was fired in synchrony
with the kick. Since we are interested in optimizing the horizontal DA, the kick was in the
horizontal direction.

To evaluate the beam loss we used the BPMs sum-signal, which is proportional
to the stored current. The average sum-signal of the first 10 turns was compared to that
of the last 10 turns of the BPMs acquisition time-series. The kick strength was chosen to
render an initial beam rate loss of about 35% up to 60%

4.1.3 Optimization runs & results

With the compensation scheme for changing strengths in the sextupole families,
RCDS was launched to minimize the beam-loss resulting from the horizontal kick. In the
algorithm’s first iteration , beam loss dropped from 60% to nearly 0%. In the beginning
of the 2nd iteration, the objective function took negative values, which is a numerical
artifact, so the optimization run was stopped. The beam-loss minimization significantly
improved the beam’s resiliency to dipole kicks. After the optimization, it was necessary to
kick the beam with a strength of approximately ∆x′ = −0.850 mrad to achieve the same
30–60% beam-loss rate previously achieved by a ∆x′ = −0.760 mrad kick.

By the end of this first attempt, the machine magnets were standardized1 and
the configurations found during optimization were loaded into the machine sextupoles.
This was done to test the repeatability of the configuration found.

Given the improvements in the resilience, it was expected the IE would also
improve as a result of the DA enlargement, however, when trying to inject for beam
accumulation, the efficiency was quite low, indicating no DA improvements in the −x
direction.

The improved kick resilience, however, was preserved. This observation raised
the suspicion that the aperture along the negative horizontal direction might have been
negatively impacted by the procedure, while the aperture along x′ increased. In other
words, the DA enlargement was not evenly distributed along both x and x′. The DA
border apparently is way more elastic than anticipated, and apparently can be stretched
preferentially along x or x′, as the Figure 4.1 illustrates. This observation motivated the
adoption of IE to probe the DA.

1Standardizing magnets consists of driving their power suplies with different types of waveforms to
mitigate hysteresis effects and bring the magnets yokes to their standard reference magnetization.
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Figure 4.1: Expected phase space ellipse distortions, in the left. Hypothetically realized distortions,
preferentially along the x′ axis, in the right.

4.2 Injection efficiency optimization

The initial attempt to optimize the DA by minimizing beam loss revealed that
the optimization procedure did not enhance IE, suggesting there was no effect over the DA
in the x direction. This led to the decision to use the IE itself as the objective function.

In this setup, changes are made to the sextupoles, and each evaluation of the
objective function involves taking the average of efficiency of 5 injection pulses into the
storage ring. With this configuration, the expected error of the objective function was
approximately σ = 1%.

The ideia behind optimizing IE is to change the injection conditions to delib-
erately reduce the efficiency by delivering the incoming beam right on the DA border.
The subsequent improvement in efficiency would be a result of DA enlargement. Extra
attention was given to the injection conditions and the anticipated beam positions in
phase space during this process, taking into account the seemingly elastic nature of the
DA boundary. The IE was intentionally reduced by lowering the NLK kick strength, which
results in placing the beam slightly above the nominal value of x′ ≈ 0. In practice, a value
of x′ ≈ 0.100 mrad was typically set in the experiments. Consequently, the beam was
injected at the upper-left border of the (x, x′) aperture, as illustrated in Fig. 4.2. The
efficiency under such conditions was approximately 30%.

The expectation was that maximizing IE in these conditions would correspond
to a more even enlargement of the DA in both the x and x′ directions, stretching the
boundary diagonally in the upper-left quadrant. This is in contrast to the previous attempt,
where the enlargement seemed to occur preferentially along the x′ direction. Once the
procedure is complete, the DA is anticipated to be larger than in the initial state, and
it is expected that injection under nominal conditions (x, x′) ≈ (−8 mm, 0) would be
significantly more efficient.
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Figure 4.2: Injection conditions for DA optimization.

A significant difference from the early attempt was the exclusion of families
SFP1 and SFB1 as knobs in the optimization experiments. This decision was made upon
realizing that these families operate near their saturation strengths, where hysteresis effects
become prominent, as discussed in Section 3.3.2.

The optimization experiments were conducted in the machine with the im-
plemented tunes (νx, νy) = (49.08, 14.14), referred to as WP1, as well as in the tunes
(49.20, 14.25) and (49.16, 14.22), denoted as WP2 and WP3, respectively. As mentioned
earlier, the goal was to explore a different optics configuration with smaller orbit ampli-
fication factors to enhance orbit stability. Part of the results reported below have been
presented in ref. [20].

4.2.1 Optimization in Working Point 1 (49.08, 14.14)

The knob selection scheme followed the 13-dimensional search space of Con-
straint Scheme I, as detailed in Section 3.3.2. Three optimization experiments were
conducted, resulting in three optimized configurations.

In Run 1, the optimization began with the reference sextupole configurations
loaded in the machine. The machine underwent linear optics and orbit corrections before
initiating each run’s optimization process. Optimization was launched and once the best
IE was achieved and no indication of further improvement was at sight, the run was halted
and the best-performing sextupole configuration was saved. These optimal configurations
are referred to as "solutions".

The magnets were standardized, and the solution from Run 1 was implemented
in the machine. Run 2 commenced with the solution from Run 1. Since the Run 1 solution
improved the efficiency, the beam’s horizontal offset during injection was further increased
in the negative direction to reduce the efficiency by shifting the beam toward the border of
the expectedly enlarged DA. The same procedure was replicated for Run 3, which initiated
from the solution obtained in Run 2. Figure 4.3 shows the history of the objective function
(average efficiency of 5 injection pulses) throughout the optimization runs at Working
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Figure 4.3: Objective function history during the RCDS runs in WP1.
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Figure 4.4: Current losses vs. horizontal dipole kick for the ref. config. and for the RCDS solutions at
WP1.

Point 1.

Characterization of solutions

For each of the optimal configurations identified in Runs 1, 2, and 3, as well as
for the non-optimized reference configuration (ref. config.), turn-by-turn (TbT) BPM data
of the stored beam subjected to horizontal kicks from the dipolar kicker was collected.
The DCCT current monitor allowed the determination of the current losses as a function
of the horizontal kicks strengths, which is shown in Fig. 4.4 for the three runs. These
curves characterize the beam’s resilience to kicks.

TbT data also allowed for the reconstruction of the (x, x′) phase space of the
beam under the influence of the kicks. Using two BPMs at the ends of an empty ID straight
section, the position and angle of the beam were determined at each turn. Figure 4.5 shows
the measured phase spaces for the ref. config. and the best configurations found during
run 1, 2, and 3, at the storage ring fifth straight section (SA05), which is a high-beta
section with optics identical to that of the injection point. In the measurement, the beam
was under the influence of kicks rendering approximately tehe same current loss of 12%.
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Figure 4.5: Measured phase space at SA05 high-beta straight section for the ref. config. and the best
RCDS configurations of runs 1, 2 and 3 in WP1. Color-map indicates the turns. The areas are in mm mrad.
The beam was being kicked horizontally at 730 µrad in the ref. config, 790 µrad in run 1, 780 µrad in run
2, and 770 µrad, in run 3. Loss rates of 12%, 11%, 13% and 13%.

Table 4.1 compiles the injection efficiencies achieved for each configuration
during off-axis NLK injection under normal injection conditions (x ≈ −8 mm, x′ ≈ 0), as
well as the lifetime at 60 mA current for the ref. config. and runs 2.

Once again, we emphasize the apparent elasticity of the phase portrait ellipse
deformations: the configuration with the highest kick resilience, observed in Run 1, is
not necessarily the one with the largest phase space area and best IE performance. This
behavior could be explained if the phase space deformations of the ellipse at the kicker
location for this sextupole setting resulted in a larger x′/x ratio, contributing to a greater
kick acceptance and poorer injection performance compared to Run 2. In summary,
increased kick resilience does not necessarily translate into an increased DA.

Lifetime at 60 mA was measured at 20 hr for run 2 solution, the best performing
in terms of IE. The measurement revealed no impact of the optimization procedure on
lifetime, since lifetime for the same conditions on the reference configuration is 21 hr.

Despite the precautions taken to avoid changing chromaticity during the opti-
mization procedure by selecting the chromaticity Jacobian null space knobs, slight changes
were observed. Chromaticity was measured as (2.33, 2.53) in the reference configuration
and (2.24, 2.39) in the solution obtained in Run 2. This could be attributed to minor
discrepancies between the machine computer model and the actual machine, since the
optimization knobs were computed using the storage ring computer model Jacobian. De-
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spite the small deviations in chromaticity, the observed values still fall within acceptable
operation ranges for the SIRIUS storage ring, according to the transverse instabilities
studies shown in chapter 7, section 3 of ref. [25].

In summary, for WP1: the solution found during run 2 rendered 98% IE;
increase in horizontal phase space area and horizontal kick resilience were observed; no
significant effect was observed on beam lifetime; small, acceptable chromaticity changes
observedIncrease in efficiency, phase space areas and kick resilience are strong indicators
of a DA enlargement. The online optimization was extremely succesful on WP1.

Table 4.1: Injection efficiency in nominal off-axis conditions & lifetime for optimized configurations at
WP1, with tunes (49.08, 14.14).

configuration injection efficiency [%] lifetime @ 60 mA
ref-config 88± 8 21 hrs

run 1 91± 1
run 2 98± 1 20 hrs
run 3 87± 3

4.2.2 Optimization in Working Point 2 (49.20, 14.25)

The storage ring tunes were adjusted to (νx, νy) = (49.20, 14.25). The initial
sextupole configuration was the same as the nominal tunes reference configuration. The
new working point significantly impacted on the DA, since the IE in nominal conditions
with this setup was about 50%, at most. Without successful optimization, it would be
impossible to operate in this working point.

For the optimization experiment, the objective function was the IE with the
the beam delivered at the upper-left border of the x, x′ phase space, just as in the WP1
experiment. The optimization knobs were those of the Constraints Scheme II, discussed in
3.3.2, totalling 17 independent knobs.

Two optimization runs were carried out: run 1 and run 2. The sextupoles were
optimized in the new tunes starting with reference sextupoles. Once the best solution
from run 1 was identified, it was re-loaded in the machine and, starting from it, run 2
was launched. The objective function history throughout the optimization is shown in
Fig. 4.6. Several drops in efficiency can be observed in a single run. This is because, in this
experiment, there were "sub-runs": whenever the objective function improvement was slow,
the optimization was paused and the IE was worsened by increasing the beam’s offset in
the horizontal direction during injection. This was a manner to introduce more variability
to see if it could help in accelerating the rate at which the objective was maximized.
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Figure 4.6: Objective function history during the RCDS runs in WP2.
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Figure 4.7: Current losses vs. horizontal dipole kick for the initial configuration and the RCDS solutions
at WP2.

Characterization of solutions

TbT BPM data of the kicked stored beam in the initial configuration (non-
optimized) and in each run’s best solution was acquired and allowed the determination of
current losses vs. kicks, shown in Fig. 4.7, and the reconstruction of phase space, shown
in Fig. 4.8. Improvements on the resilience and the phase space area can be observed in
the optimized solutions.

Table 4.2 compiles the IEs in nominal injection conditions for each run, as
well as the beam lifetime for the non-optimized configuration and run 1 configuration.
Run 1 configuration rendered the best IE, the largest kick resilience. It also displayed
larger lifetime than the initial configuration, reaching a value comparable to the reference
configuration lifetime at WP1. The largest phase space area increase was also observed for
this solution. Still, the IE it delivered was quite unsatisfactory and the overall impression
was that optimizing in this working point was quite difficult, as the objective function
history of Fig. 4.6 shows. The objective rise was slow and seemed to have the 35% mark as
upper limit when the injection was deliberately worsened during the runs. In other words,
the DA seemed more rigid. For this reason, another working point was sought. If the idea
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Figure 4.8: Measured phase space at SA05 high-beta straight section for the initial configuration and
the best RCDS configurations of runs 1 and 2 in WP2. Color-map indicates the turns. The areas are in
mm mrad. The beam was being kicked horizontally at 680 µrad, for the initial configuration, 770 µrad for
run 1, and at 720 µrad for run 2. Loss rates of 10%, 12% and 12%, respectively

is to increase the fraction parts of the tunes, and (0.20, 0.25) seemed like overshooting
towards unknown regions, optimization in the intermediate tunes between WP1 and WP2,
with fractional tunes (0.16, 0.22), seemed reasonable.

Table 4.2: Injection efficiency in nominal off-axis conditions & lifetime for optimized configurations at
WP2, with tunes (49.20, 14.25).

configuration injection efficiency [%] lifetime @ 60 mA
non-optimized 51± 1 18 hrs

run 1 79± 3 21 hrs
run 2 65± 1

4.2.3 Optimization in Working Point 3 (49.16, 14.22)

From the reference configuration with corrected linear optics and orbit, the
tunes were adjusted to the desired working point (νx, νy) = (49.16, 14.22).IE in nominal
conditions was low, indicating, as in WP2, deterioration of the DA when changing tunes.

The objective function was the average IE of 5 injection pulses in the same
conditions as in WP1 and WP2 experiments. The optimization knobs were those of the
Compensation Scheme described in section 3.3.2. Families SFP1 and SFB1 were not used
and the search space was 13-dimensional.

Two optimization runs were carried out, starting from sextupole settings of
the WP1 reference configuration. Best configuration found at run 1 was reloaded after
magnets standardization and run 2 was launched. Only run 2 configuration was saved,
and shall be referred to as the "optimized configuration". Figure 4.9 shows the objective
function history during the two optimization runs.
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Figure 4.9: Objective function history during RCDS runs in WP3.
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Figure 4.10: Current losses vs. horizontal dipole kick for the initial configuration and the RCDS solution
at WP3.

Characterization of the solution

The optimized solution was characterized in terms of kick resilience, phase space
area, IE during nominal injection conditions and whether it preserved chromaticity and
lifetime. Lifetime at 60 mA was measured at 19.5 hrs, so no significant reductions compared
to the WP1 reference configuration were observed. No significant chromaticity changes
were observed as well. Phase space area increased, compared to the initial non-optimized
configuration, and reached similar value to that of the WP1 nominal tunes reference
configuration, as Fig. 4.11 shows. Kick resilience, shown in Fig. 4.10, also improved, with
a larger fraction of the beam surviving to large kicks in the range 700− 770 µrad. Finally,
and most importantly, run 2 solution displayed IE of 93 ± 3% during nominal off-axis
injection, which is acceptable for operating with this configuration.

Summary of results

Table 4.3 summarizes the injection efficiencies achieved for the best configura-
tions of each run and WP during nominal conditions for off-axis injection. Run 2 from
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Figure 4.11: Measured phase space at SA05 high-beta straight section for the non-optimized configuration
and the best RCDS configuration in WP3. Color-map indicates the turns. The areas are in mm mrad.

WP1 and the optimzed configuration at WP3 were the best performing configurations of
their corresponding WPs and successfully met the standards to be used during operation.
Currently, WP3 is SIRIUS’ working point and the optimized sextupole configuration
identified in the online optimization experiments is deployed in the machine.

Table 4.3: Injection efficiencies (IE) for sextupole configurations found during online optimization at
Working Points 1, 2 and 3.

WP1 (49.08, 14.14) WP2 (49.20, 14.25) WP3 (49.16, 14.22)
configuration IE [%] configuration IE [%] configuration IE [%]
ref. config. 88± 8 initial 51± 1 initial

run 1 91± 1 run 1 79± 3 optimized 93± 3
run 2 98± 1 run 2 65± 1
run 3 87± 3

Orbit stability improvements

The motivation for exploring higher tunes was the desirable effect of reducing
orbit amplification factors to improve the overall orbit stability. Orbit stability improve-
ments in WP3 tunes were confirmed by the orbit integrated spectrum density of the orbit
data collected with BPMs. The spectrum decreased by a factor of approximately 2, as
Fig. 4.12, presented in Ref. [10], shows.

Leveraging WP3, and the improvements of the Fast Orbit Feedback System
in 2023, orbit root-mean-square (rms) variations reached the record values of less than
1% of the horizontal beam size, in the horizontal plane, and less than 4% of the vertical
beam size in the vertical plane [10]. New measurements indicate variations less than 2%
the beam size for both the horizontal and vertical orbit.
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Figure 4.12: Horizontal (vertical) RMS orbit variations in units of the horizontal (vertical) beam sizes.
Blue curves represents orbit variations in the nominal working point, WP1, orange curves are the orbit
variations at WP3, and green curves variations at WP3 under the effects of the recent improvements in
Fast Orbit Feedback System. From Ref. [10]

4.3 Amplitude-dependent tune-shift analysis

Online optimization is a heuristic optimization approach. It consists on explor-
ing parameter space searching for regions where the DA and IE improve. One may wonder
if any of the RCDS-optimized sextupole configurations share any common characteristic
or trend that could explain why they improve the dynamics overall.

An intrinsic feature of nonlinear dynamics and relatively easy to access experi-
mentally are the nonlinear tune-shifts. Specifically, the transverse amplitudes tune-shifts.
By kicking the beam with the dipolar kicker at high strengths and acquiring TbT BPM
data one can sample the large-amplitude betatron motion and fit it in the time domain to
extract the fundamental frequency, which is the tune. Repeating this analysis for several
kicks, ranging from 500 µrad up to 850 µrad, the amplitude-dependent tune-shift ∆ν can
be measured. Doing so gives the curve of tune-shifts vs dipolar kicks strengths. Using
TbT data and eq. (9) of Ref. [38], the betatron action J can be fitted instead, and the
curve of tune-shifts vs amplitudes J can be obtained. For the determination of tunes,
the time-domain fitting of BPM data is carried out for each one of the 160 BPMs. The
average tune is adopted as the estimate for the beam’s tune, and the standard deviation
as the error bar.

This analysis was performed for each RCDS sextupole configuration in the 3
working points, specializing to the horizontal tune-shifts due to horizontal kicks. That is,
the beam was kicked in the horizontal direction, and the tunes of the induced horizontal
betatron motion were calculated. The ∆νx vs. Jx curves are shown by Fig. 4.13 for each
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Figure 4.13: Horizontal tune-shifts vs. horizontal betatron actions for the RCDS solutions in WPs 1, 2,
and 3.

configuration of the RCDS runs in each working point.
The common feature among the curves of the best performing configurations

for each WP (run 2 for WP1, run 1 for WP2 and the optimized curve for WP3) in
Fig. 4.13 seems to be the consistent departure from the nominal model curve (in blue),
towards negative tune-shifts values. This trend for tune-shifts seems to be beneficial for
the machine.

The same procedure can be done kicking the beam in the vertical direction
and calculating the vertical motion tunes, giving the curve of ∆νy vs. Jy. However, this
experiment has not yet been carried out.

With the horizontal kicks data, attempts were also made to extract vertical
tune shifts ∆νy vs horizontal action Jx. However, due to coupling, it is difficult (and in
most cases impossible) to extract the vertical tune from the y TbT BPM data, because
the time-series gets contaminated with the horizontal tune signal and the vertical tune
signal has a low signal-to-noise ratio.

One way to overcome these limitations is to change the experimental acquisition
slightly: first, the beam must be kicked in the vertical direction once to induce a significant
betatron motion and, consequently, increase the νy peak in the spectrum. This addresses
the low signal-to-noise ratio limitation. After the vertical kick, the beam is then kicked
in the horizontal direction with the kicks in the desired nonlinear dynamics range. This
last step takes the beam to the large horizontal amplitudes optics, changing the vertical
tune of the vertical motion induced in the first step according to what is prescribed by the
nonlinear effects.

Characterizing the ∆νx vs. Jx and the ∆νy vs. Jx or ∆νx vs Jy curves, one can
reconstruct the path traced in the tune-space at large amplitudes. If the observed path
avoids particular regions of the tune-space or particular resonance lines, the enhanced
performance would be justified: the best-performing sextupole configurations are those
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rendering beneficial behaviour in tune-space. Consequently, the dynamics is less irregular,
less chaotic, specially close to the border of the DA, explaining the observed improvements
in the IE, beam kick-resilience and phase space area.

Unfortunately, these additional data acquisitions and processing attempts could
not be carried out before the completion of this dissertation. These tasks stands out as
required next-steps if one wishes to understand and explain why these configurations
rendered the improvements they did and also to verify the hypothesis that the optimized
configurations render the dynamics with beneficial behaviour in tune-space.
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5 Conclusions

In this work, the Robust Conjugate Direction Search algorithm (RCDS) was
studied, implemented in Python and applied to the problem of optimizing the nonlinear
dynamics and dynamic aperture (DA) of the SIRIUS storage ring.

The experiments focused on using the average injection efficiency (IE) of five
injection pulses as the objective function to probe the DA. While attempts were made
using the beam’s resilience to dipolar perturbations as the objective function, they did not
yield satisfactory results in enhancing the IE in the nominal operation conditions. The
average IE as objective function, on the other hand, proved to be a reliable figure of merit
to access the DA.

The optimization parameters, or knobs, were the sextupole families of the
storage ring. The need to optimize dynamics while maintaining constant chromaticity
imposed constraints to the selection of families or combinations of families to be used
as optimization knobs. Two methods were considered to ensure constant chromaticity:
selecting combinations of sextupole families which belong to the null space of the chro-
maticity jacobian matrix; and selecting a reduced number of free optimization knobs and
delegating an online scheme of chromaticity anticipation and correction to another set of
sextupole families. We also experimented with imposing supplementary symmetries on
the nonlinear lattice in the form of additional constraints to reduce the dimensionality of
the search space. Optimization proved effective irrespective of the strategy employed to
preserve chromaticity and the varying dimensions of the search space.

Optimization was conducted at the machine’s nominal working point, denoted
as Working Point 1 (WP1), with tunes (νx, νy) = (49.08, 14.14) and two additional
working points, WP2, with tunes (νx, νy) = (49.20, 14.25), and WP3, with tunes (νx, νy) =
(49.16, 14.22). The optimization in WP1 was extremely successful, yielding a sextupole
configuration that achieved the remarkable level of 98% IE in the nominal operational
injection conditions. This configuration exhibited no adverse effects on chromaticity and
beam lifetime while displaying an increased phase space area and enhanced kick resilience.
In WP2, however, the optimization proved more challenging. Despite positive impacts on
phase space areas, kick resilience, the resulting efficiency of 79% fell short of operational
expectations. In contrast, the optimization in WP3 was deemed successful. The process
not only improved phase space areas and kick resilience but also achieved an IE of 93%,
with no impact on lifetime and chromaticity.

The primary motivation for exploring different machine operation tunes was to
elevate the fractional parts of the tunes, distancing them from integer resonances. This



5. Conclusions 82

adjustment aimed to reduce orbit amplification factors, which quantify the sensitivity
of the orbit to perturbations. The tunes of (νx, νy) = (49.16, 14.22) of WP3, resulted in
improved stability and IE in this WP was made possible due to the online optimization
work. Leveraging this new working point and recent enhancements in the orbit feedback
systems, the machine achieved a world-record orbit stability, with orbit variations of less
than 2% of the beam size in both the vertical and horizontal orbits.

In conclusion, this study highlights the success of online optimization of nonlin-
ear dynamics using RCDS in 4th-generation storage rings, exemplified by SIRIUS with its
large parameter space. The outcomes of this work serve as a benchmark for the effectiveness
of the RCDS method and advocate for the inclusion and planning of online optimization
routines as a standard tools during the commissioning of future 4th-generation projects.
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Appendix A - Algorithms pseudocode

This appendix presents pseudocode for simplified versions of the routines
implemented Python during the execution of this work. The code has been simplified for
pedagogic reasons, focusing on the main characteristics of each routine composing the
RCDS algorithm. In particular, the checking of data consistency and adequacy are not
included; the bracketing and line scan routines are presented only for the simpler case of a
single parameter optimization and the normalization of parameters range is not included.
The RCDS Python code used in this work is available in "optimization/rcds.py", in the
apsuite repository [36].

A.1 RCDS Bracketing

Given the initial point x0, the initial value for the objective function f0 = f(x0),
and the initial step size, the bracketing routine scans "downhill" until the function stops
decreasing and starts to increase by more than the 3σ threshold. The step size is increased
at each evaluation by the golden ratio ϕ = 1+

√
5

2 , as long as it does not exceed 0.10. The
use of the golden ratio is inspired by the Golden Section Search bracket routine [29, sec.
10.2]. The bracketing function returns a list of x positions, which are the brackets, and
the objective function evaluated at those points. Pseudocode is shown in Algorithm 1.
The bracketing function calls the externally defined function "ObjectiveFunction()", which
implements the evaluation of the figure of merit. This function increases the global variable
"n_evals" whenever it is called. This keeps track of the number of objective function
evaluations, which is essential as a stopping condition for Powell’s loop.

A.2 RCDS line scan

In algorithm 2, the RCDS line scan function is presented. The list of positions
within the brackets and measured objective functions must be provided alongside m,
the number of points that should be sampled within the brackets, and n, the smallest
number of points inside the brackets required for trusting the fit. Notice these are different
parameters. If the provided list of positions is already of size m, no additional points are
sampled, otherwise, additional measurements are carried out. Once m points are available,
the parabola is fitted and the outlier removal routine evaluates the measured points against
the model. If any outliers are removed and the remaining number of available points is
smaller than n, this means we cannot trust the model because too little points remained,

https://github.com/lnls-fac/apsuite/blob/master/apsuite/optimization/rcds.py
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Algorithm 1 RCDS bracketing
1: function BracketingMin(x0, f0, step)
2: positions ← list containing x0
3: functions ← list containing f0
4: xmin, fmin ← x0, f0
5: dir ← +x ▷ scan in the positive direction
6: f ← ObjectiveFunction(x0 + step)
7: if f < fmin then
8: fmin ← f
9: append x0 + step to positions

10: append f to functions
11: while f < fmin + 3σ do:
12: if |step| < 0.1 then
13: step ← step × (1 + ϕ)
14: else if dir = +x then
15: step ← step + 0.1
16: else
17: step ← step - 0.1
18: f ← ObjectiveFunction(x0 + step)
19: if f is NaN then
20: break
21: if f < fmin then
22: xmin ← x0 + step
23: fmin ← f
24: append x0 + step to positions
25: append f to functions
26: if f0 ≤ fmin + 3σ then ▷ if false, no need to scan in the other direction
27: dir ← −x
28: step ← −step
29: start again from line 6 ▷ scan in the negative direction
30: sort positions in ascending order
31: sort the corresponding entries of functions in the same ordering as positions
32: return positions, functions, xmin, fmin
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according to the user-defined value.

Algorithm 2 RCDS line scan
1: function linescan(positions, functions, xmin, fmin, n, m)
2: a← positions first entry
3: c← positions last entry ▷ brackets (a, xmin, c)
4: V ← evenly spaced m-array w/ values ∈ [a, c] ▷ dense span inside the brackets
5: f(V ) ← m-array with NaNs
6: for the i-th entry of positions do ▷ reuse previously measured point
7: j∗ ← argminj(|V [j]− position[i]|)
8: V [j∗]← position[i]
9: f(V )[j∗]← functions[i]

10: for the i-th entry of V which is NaN do
11: ▷ measure the points not measured yet ◁
12: f(V )[i] ← ObjectiveFunction(V [i])
13: c0, c1, c2 ← CalcDeg2PolynomCoefs(V , f(V ))
14: V , f(V ) ← RemoveOutiler(V , f(V ))
15: if length(V ) < n or c2 ≤ 0 then
16: ▷ no sufficient points for trusting the fit or wrong parabola concavity ◁
17: return xmin, fmin
18: V ← evenly spaced 1000-array w/ values ∈ (a, c)
19: f(V )← empty 1000-array
20: for the i-th entry of V do
21: ▷ fine scan for min on the parabolic model ◁
22: f(V )[i]← c0 + c1V [i] + c2V [i]2 ▷ f(V ) = [f(a), . . . , f(c)]
23: xmin ← V [argmin(f(V ))]
24: fmin ← min(f(V ))
25: return xmin, fmin

The function references the externally defined functions "ObjectiveFunction()"
"RemoveOutlier()" and "CalcDeg2PolynomCoefs()". Pseudocode for the RemoveOutlier()
function is not essential here, since its implementation is simple and offers small pedagogic
value for our purpose. The reader may check our python implementation of the "remove
outlier" function in the "RCDSParams" class of the "rcds.py" file of the "apsuite" repository.
The conceptual idea of the routine is:

1. calculate the errors as the differences between observed and fitted values.

2. sort the errors and compute the differences between consecutive errors.

3. if there are less than 5 points evaluated within the brackets, check if the largest and
smallest differences are greater than a threshold 3σ. If yes, exclude the corresponding
points.

4. calculate the average of the errors differences (errors standard deviation) within a
specified percentile range. Identify outliers based on differences exceeding a threshold
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3σ for both larger and smaller differences. Create a boolean mask to mark outliers
and return the filtered array of x positions and objective function measurements.

The "CalcDeg2PolynomCoefs()" function implements the parabolic fit within
the brackets and returns the zeroth, first and second degree coefficients c0, c1, c2 for which
the polynomial c0 + c1x+ c2x

2 best explains, in the least-squares sense, the observed data.

A.3 Powell’s method

Algorithm 3 presents the pseudocode for the main loop in the optimization
routine. It implements Powell’s method for constructing new directions with ref’s. [29,
section 10.7] criteria for when to replace directions and stop the routine. Stopping
conditions can be reached by the maximum number of objective function evaluations
the user specifies, or according to a tolerance value for deciding when the objective has
changed significantly.

Again we stress that the bracketing and line scan pseudocode presented above,
as well as Powell loop below, were significantly simplified for pedagogic reasons. In
particular, 1-dimensional versions for the bracketing and line scan were presented, omitting
the the extra steps of reducing the high-dimensional minimization problem into a 1-
dimensional problem of minimizing g(δ) = f(x0 + δui) for a direction ui. Additionally, in
Powell’s loop, the RCDS code normalizes the knobs in the [0, 1] interval, so the parameter
space consists on a unit hypercube. Handling of normalization and de-normalization to
evaluate the objective function is also omitted here.
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Algorithm 3 Powell directions loop
1: function Optimize(max_evals, search_dirs, step, tol, x0, ortho_threshold)
2: max_decrease ← 0
3: max_decrease_dir ← 0
4: f0 ← ObjectiveFunction(x0)
5: xmin ← x0
6: fmin ← f0
7: for i-th direction vector ui in search_dirs do
8: positions, functions, xmin, fmin ← BracketingMin(x0, f0, step)
9: x, f ← LineScan(positions, functions, xmin, fmin)

10: if fmin − f > max_decrease then
11: max_decrease← fmin − f
12: max_decrease_dir← i
13: xmin ← x
14: fmin ← f
15: xe ← 2xmin − x0 ▷ define extension point
16: fe ← ObjectiveFunction(xe) ▷ evaluate objective at extension point
17: unew ← xmin−x0

|xmin−x0| ▷ new proposed direction
18: max_dot ← 0 ▷ max overlap w/ all the directions
19: for j-th direction vector uj in search_dirs do
20: dot = uj · unew
21: if dot > max_dot then:
22: max_dot ← dot
23: cond1 ← f0 ≤ fe

24: cond2lhs ← 2(f0 − 2fmin + fe)(f0 − fmin −max_decrease)2

25: cond2rhs ← max_decrease(fe = f0)2

26: cond2 ← cond2lhs ≥ cond2rhs
27: if cond1 or cond2 then
28: ▷ Numerical Recipes conditions for direction replacement ◁
29: output max_decrease_dir not replaced
30: else if max_dot < orth_threshold then
31: ▷ If conditions are met and new dir sufficiently orthogonal, replace ◁
32: output replacing max_decrease_dir
33: ui ← ui+1 for i = 1, . . . , p− 1
34: up ← unew
35: ▷ and minimize along new direction ◁
36: positions, functions, xmin, fmin ← BracketingMin(x0, f0, step)
37: xmin, fmin ← LineScan(positions, functions, xmin, fmin)
38: else
39: output max_decrease_dir not replaced
40: cond ← 2|f0 − fmin| ≤ tol(|f0|+ |fmin|)
41: if cond and tol> 0 then
42: output Stopping condition met. Exiting
43: break
44: else if n_evals > max_evals then
45: Maximum number of objective function evaluations reached. Exiting
46: break
47: f0 ← fmin
48: x0 ← xmin
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