
co::REc·r CLIFrORD l,LGEDR:\ J>.EPRI:SENT/\TJONS OF Pl\ULI I DIRJI.C , 

l . >O'.::'' • .::o T:m-co:,iPON'E::Ts SPIKORS 

a.'1t3. 

l jstitut:o a~ Matemática, Estatlstica e Ciência da Co:::putação 
I!-~CC - U.IICT,HP 

Caixa Postal 6065 
13081, C~• inas SP, Brasil 

) 

ABSTRl,CT. Ir. this paper we clearifv tr.e relation betweE:-.n F uli, undotted 

anã dotted two components and Dirac spinors, as dcfincd by ph:ysicist.s, 
anc.1 Spinors - ele ,1t,, of cert,ün r.ünir.ial left (or right} idez's in a;:>-
p! :,::riatr Cllffm:d algel:. as . Ou• approach is based p,q 
of thc Sp:inol.·ial-!"!e'.:ric in Spinor-space and the fact t::at 

the i:war3ant grl up of tl, Spin ial-rnetric íor p +q 2, 5 . 

on ... notio!'l 
S;:,~,+(p,q} is 

Pa, cularly 

important: res1.:l ts ru:e the repres(:'.ntations in JR,, 3 (the space time al·· 
geb• ) o't the llnciotteà and àotted two cor.iponent spinors and Duc.tc spinors. 

Pl\CS nur:l!'lers: 02.10 +w, 02.,!0 +rn, 03.65 fd. 



2 

CORRECT CLIFFORD ALGEBRA REPRESENTATIONS OF PAULI , DIP.Z:.,C, 
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1. INTRODUCTION 

The usual presentation of Spinors as elements of minimal left ideals 
in Clifford algebras ( * ) IR ( l , 2 ' 3 ) as well as the introduction in 

p , q + 
this context of the groups Spin (p,q) , does not leave clear the relation 
between thesc objects and the spinors ( **) and the universa:i =-ering grou::: , 
of sorne groups SO(p , q) used in theoretical physics . 

The main purpose o f this paper i s to clear up the situation , and 
in the process we will obtain sorne·very interesting results. 

To formulate our problem we start by remembering that p~ysicists 
use the foll ,Ming kind of spinors 

(i) Pauli spinors - which are the vectors of a co~plcx 2-dimensional 
space ct (2) equiped with th "' spinorial metric 

8 : a: (2) X (t (2) -+ a: B (1/1,,p) = 1/1*,p I p p 
(1) 

zl 
) 

Y1 
) E C: , i=l,2 IÍI* <z1 , z2l 1jJ 

z2 
,p 

Y2 ' 2 i'yi and 

(; for our notation see §2 . 

(** ) We i.:se the notation Spinors for the eler.ients of minimal left 
:ideals in Clifford algebras which represent the spinors defined in 
§1. 
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-wherc in this text z always means the complcx conjugate of z E a:. 
The spinorial metric is invariant under the action of the group 
ie, if u E SU ( 2) t.hen 6 (u:P , u.p) = S {IJI ,,; ) • As is well }mo,m (~) 
spinors carry the fundamepral (irreduclble) representations 0 112 
su ( 2) ( 5l. 

SU( 2), 

Pauli 
of 

(ii) undotted and dottcd two-components spinors-which are respectively 
the vectors of two complex 2-dimensional spaccs a: ( 2) and a: ( 2). 

I1 both spaces there are defined as spinorial nctric 8,B such that 

B cr: ( 2) )' a: ( 2) ---+ e: I B (~ ,,; ) t/Jt e,; 

(2) 
B â: ( 2) )< a:( 2) --+ a: ' $(~,~) = :t e,; ljl 

where t/J (~) are of the type defined in eq. (1) and i;,t(~tj is the tran5-
pose of tJ, ( ljt ) and 

e (3) 

(6, 7) 
is t. '1e r ,·,presentations of 6(8) in U1e canonical basis of C:(2) (<r:(2)) 

The spinorial metrics 8,8 are invariant under the action of the 
• -1 · group SL(2,Cí:), ie>, if u E SL(2,C:) then 6(utJ,,w) = B(..:,,.p) and B((u*) , , 

(u*)-1 .,;).) = 8(~ 1 ~). The natriccs u and (u*)-l are the (non-eguivalent) 
represcntations D(l/2 ,o) and D(O,l/2 ) of the group SL(2,G:) and we say 

that the , ndottc_,J. (dotted) two-coMoonents spi•1ors are the carrie1 s o: thc 
rep ·csentations D(l/2 ,0) (D(0,1/2);. 

(iii) Dirac spinors-t 1ese are the vectors of a complex ·1-di:rensional space 
a:(4) equiped with the spinorial Metric(G,?) 

( 4) 

where a Dirac spinor tjl(<,?) E a:(4) is defined as 

<I(2) e C:(2)* = 0:(4) 3 ~•=E;+ ll(ri, (5) 

\>:he r e Ç E a:(2) and B(n, ) E â:(2)*, the dual space of <t(2). 



ln the canonical basis of C(4) obtained through the canonical basis of 
C(2) and Ó:(?)'· the matrix B is the reprcsentatir:1 of !\, and we have 

BD = [: o -i 
e J 

v::1ere e is the natrix defined in cq. (3). 

. . . 11 k tl D(l/2,0) "' D(0,1/2) [•1.rac spinors as is we mown carry 1e "' represen-
tation of SL(2,~). 

We no·~· c:s~ thc main question: to which rnininal ideals, in which 
Clifford 1 ~ .,bras are tl,e spinors described in (i), (ii), (iii) abovc to 
he asr cic:ttcd? 

He are going o give an original answer to the above question by 
:i n tl'.'oducing a u1t-<.q ue "110..tulta.i. i, co.!a.t JJ/1.0 dcLc..t" (see § 3) in certaj n appro-
pri. ,te r.linimal left idcals of cert.ain Clifford algebra~ that "mi1rlc" what 
h:'1s been descr bed in (i), (ii), (iii) abovc. 'l'o this end in Sect:ion 

·e êefine ar.d give the rnain properties of Clifford algcbras over the 
1.Lals(B, 9 ,lO) and analyse the structure of the minimal ideals of thc:Se 
nlgebras ( 3l. T;.e naterial prescr1ted fi.,:es ol-:r notation anel is the mininur:t 
necess,:ry to pernit the formula tion of our ide as in a rigorous • ·ay. 

ln secti o:t 3 we define Spinors as t e elcments of mhim:i.l left ideals 
ili Clifford als;ebras. The Spinors of each one o f the Clifford al9 <>br as 
-0.tud,i,e.d --tn 1."l:--t-0 pa.pelt have a r. t1.1ral: 1,..í.1ihf.. F-.f.úre , -'t llpa.c.e -0.t./tuc.tuJ-d?. o· er 
o.,e of t.' e follm;ing ficlds I' 

plcx nurnber ar.à quartenion ( §2) . 
lR, a: , JH, respcctivcly thc real, c orr-

We introãucc for each Spinor space I e IR a unfr;ve. nc..t:.L'to.! oc.a.ln't p, 
p'to ttc..t (Spincn:ial metric), ie, a non-de~wnerated !Jili!:edr application 
r : l x I F, where F"' m ,a:, I!-l is the na.:tu-'l.a.f.. i,c.o..to.t. 6.(e.td associat-
e-d wi th the vector spacc i.tructure of 
!l:ttural ..,;calar p:roduct shows tha t for 

I e :m . Our approach to the 
p,q + 

p + q _<: 5 the , groups Spin (p,gl 
n ,_ e the gro.;ps th:i t lcave invarian L the sr uorial rílc;_t,ric. Thu!. our a;_,-
p-, oach to the se ) ar pro ,1ct is diffcrent frorn the one discusscd by 

t,ciunesto(3) and , s we shall see offers a solution for tLe 1:1ain CTucstio:1 
Cal ulated above. 

Wc analysc in §4 in detail thc sp0cial cases SU(2) Spin(3,0) 
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and SL(2,a:) ::: Spin+ (1, 3) and iJentify respectively the ideals that con-
tain the objects corresponding to Pauli-spinor! (I; = lR;, 0 e30), and undot-
ted and dotted two components spinors (Iu = m1 , 3e 13 , Id = I~). Also in 
§4.3 we show that the minimal left ideals ID = m 113 f(e 30 ) of m 1 , 3 

the space-time, or Mhkowski algebra ( 111 ) carry lhe D ( l/2 'O l e D (O' 112 l 
representation of SL(2,a:), ie, the space-time Spinors are a representa-
tion of Dirac spinors. 

In § ~.4 we show that the original Dirac algebra (a:(4)) must be 
identified for physical reasons with the real Clifford algebra R4 , 1 . We 

+ then show that the ideals ID = R411g(f(e 30 )) carry also the represen -
tation of Dirac spinors. 

In §5 we present our conclusions and some comments concerning our 
. (1 2) results on Dirac spinors and the results c ~tained by Hestenes ' . 

2. SOME GENERAL FEA':'URES ABOUT CLIFFORD ALGEBRAS 

2.1. CLIFFORD ALG: BRAS C(V,Q) 

Let V be a vector space of fini te dimension n over the field F 
together with a nondegenerate quadratic forro Q. The Clifford algebra 
C(V,Q) = T(V)/IQ where T(V) is the tensor algel ra of V (T(V) = ; T1-(V); 

i=l 
T(O) (V) = F, T1 (V) = V, Tr(V) = 0rV) and IQ is the bila t eral ideal 
generated by the elernents of the forro x@ x - Q{x), x E V. The signa-
ture of Q is arbitrary. The Clifford algebra as constructed is an as-
sociative algebra with unit. The space V is naturally imbedded in 
C(V,Q) 

V~ T (V) _L, T (V) /IQ C(V,Q); iQ =j oi and V - IQ C C(V,Q). 

Let be {respectively C-(V,Q)) the j-image of 
00 

I: 
i =0 

(respectively I: T:? i+l( '/)) in C(V,Q). The elemen t s of C+(V,Q) forro a 
i =0 

subalgebra of C(V,Q) called the even subalgebra of C(V,Q), 

C(V,Q) has the following niven: 1 property: "If A is an associa-
tive F-algebra with unit, then for all linear mappings ~:V ........ A such 
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that (C:,( ·) ) 2 '-= n(x)l , \Jx E V can be extcnded in an unique 
l omomorp .. isin C· : e (V , Q) -+ A" . 

wa·.1 to a 

ln C(\',Q) there exist thrce linear mappings which are quite na-

Lural. They are the extension of the mappings 

• (a) .MAIN INVOLUTIO:~ - an automorphism : C(V , Q) - C( V , Q) , extension of 

(b) REVERSIO'.-1 - an antiautomorphism 
t: Tr(V) -+- Tr(V) , Tr(V) 3 X= 

1 < r < n 

-x \! X E V 

f. 
: C(V , Q)-+ 

X. 0 ... 0 X. 
il ir 

C(V,Q), 
t 

- X 

extension of 
X. 0 ... @ X _. 
ir l 

(e) CONJ JGl\TI9~: - <v :C( V, Q) C(V,Q), defined by the com1 :)sition of the 
n 

automorphjsm with the antiautomorphism , ie, if x E C(V, Q) , then 

x = (x* >". 

C (V,Q) can be described through its generators , ie , if {e.}, i =l , l. 
2 , ... , n is a Q-orthogonal bas is of V, t:1en C (V , Q) is gener 2. ted by l 

and the ei ' s subjected to the conditions e 1ei = Q(e1 )1 and eiej+e1ej= 
= O, i~j , i,j = 1, ... , n. If V is a n-dimensioral real vector space 

then we can choose a ba ·is {e1 } for V suc-'1 that Q(ei) = ± 1( ) 

2 . 2. THE REAL CLIFFORD ALGEBRAS IR p,q 

Let IR p, q J: , a real vector space of dir.,ension p + q = .. eql.,!ipped 
\:ith a metric g : IRp,q x JRp , q-+l:L Let be {e1 } the canonical basis of 
J~p , q, such that 

=g .. = { =~ Jl. 
o 

i = j = 1,2, ... ,p 
i = j = p+l, . .. , p+q=n 

1 rj 

( 7) 

The Clifford algebra IR p,q 
JR , generated by 1 and the {e. } , i = 1, ... , n l. 

Q(ei) = g(e1 , e 1 ). IRp,g is obviously of dimension 211 and is 

e ( JR P ' q , Q) , p+q = n is the Clifford 

algebra over the real field 

such that 
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the direct 
The 

sum of 

basis 
the vector spaces 

k 
IRk of dirnensions (nk),O~k2_n. p,q 

canonical for IR q are p, the elements • • • e I 

ºk 
1 < º1 < ••• < ºk n. 

_µ1-odd) or anticomutes 
= IR p, q. The ~enter of 

The element 

(n-even) with all vectors e 1 , ... ,en in 

commutes 

lRl 

the direct swn 

IR p,q 
ll'ln 

p,q 

is 

if 

IRº = IR if p,q n is even and 

n is odd< 3 ,l 2 l. 

All Clifford algebras are semi-sirnple. If p + q = n is even 
is a simple algebra and if p + q = n is odd we have the following 
sibilities: 

(i) 2 

p,q 
it is 

1R p,q 
pos-

IR is sirnple +-+ eJ = -1 +-+- p - q ,j 1 (mod 4) -+--+- center IR p,q p,q 
isomorphic to 

is 

(ii) JR is not sirr.ple p,q o 
is isomorphic to IR p,q 

1 (mod 4) +--+- center IR p,q 

From the fact that all semi-simple algebras are the direct swn of 
two sirnple algebras (l3) and from 

WEDDENBURN' S THEOREM. "If A is a sirnple algebra then A is equivalent to F(rnt~ 

where F is a clivisicn aloebr:a º 1 m • an1 F are uniaue (modulo isomó:r;:phisms)" , . 
we obtain from the ooinf of view of representation theory 
IR "' F(m) or IR = F (m) e F (rn) where F (m) is the matrix algebra p,q p,q 
of dimension rnxm (for some rn) with coefficients in F = lR, ~, IH. 

Table I (where [n/2] rneans the integral part of n/2) presents the re-
pre _entation of lR as a rnatrix algebra( 12 l p,q 



p-q (mod8) o 1 2 3 4 5 6 7 

l 

lR (2 [n/2]) m (2 ln/21 -ll 

m , 2 1n/2ll a: (2 1,./21 l ' a:(2 (n/2)) lR e ,2 ln/21 l JH (2 [n/2-.tl l e lH (2 fn/2-1) ) 
p,q 

:R (2 (n/21) JH (2 ln/21 -1) 

1 

' 
Table I - Rcpresentation of the real Cli:ford algebra 

m as a matrix algebra p,q 

) 

co 
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2.3. MINIMAL LATERAL IDEALS OF IR p,g 

The minimal left ideals of a semi-simple algebra A are of the type 
Ae, where e is a primitiv~ idempotent of A, ie, e 2 = e, ande is not 
the suro of two mutually ncn trivial orthogonal idelrq:otentes, ie, e = ê + e wi th 
A2 v2 V AV VA (13) 
e = e, e = e and ee = ee = O . 

A minimal left ideal of IR 
½ ( l + e0 ) ••• ½ ( l + e ) 

l ªk 

p,q is of the type 
where 

I = IR e where p,g pq 
is a set of commut-

2 ing elemen t s of the canonical basis of IR such that (e ) = 1, i = 
p,q ª1 

1, ... , k tha t generates a group of order k = q - r , and r. are the 
q-p l. (3) 

Radon-Hurwitz nwnbers, defined by the recurrence formula ri+S =r 1+4 
and 

i o l 2 3 4 5 6 7 

o l 2 2 3 3 3 3 

Table II - Radon-Hurwitz nurnbers 

If we have a linear roapping L : IR -+ IR , L (x), Vx E ..lR a p,q p,q a p,q 
and where a E IR , then,as I is invariant under l e ft multiplication p,g 
with ai;bitrary elements of 
is even or odd with p - q t-

IR ,we can consider L 1I: I--+ I. I f p +q =n p,q a 
l(mod 4) then IR = !F(I) = F (m), where p,q 

F = IR, a:, m and .CF(I) is the algebra 'of linear transformations 
in I over the field F , m = di~ ( I) and F = eF (m) e (l3). If p· + q = n 
either odd, with p-q =l(mod 4) then lRp,·q = .CF(I) e .CF(I) = F(m) E& F(m), 
m = diIIL ( I) and e lR e = IR e lR or Ili e lH . .r· pq p; q pq 

With the above isomorphisms we can i ~entify the minimal left ideals 
of IR with the column-matrices of F(m). p,q 

3. SPINORS, THE SPINORIAL METRIC AND TP.E SPIN GROUP 

3. l. SPINORS. Given a real Clifford algebra lR with primitive idempoterit e p,q pq 
we call Spinors the elerr.ents o~ the ~inimal left ideal lR e or the p,g pq 
elements of IR+ e p,q pq 
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3.2. THE SPIN GROUP-SPIN{p,q) 

The invertible elements s E IR such that 'ix E IR 1 = lRp,q we 
p,q 

have 
1 1 p,q 

s•xs- E ' IR ,forma multiplicative group called the Clifford 

group of 

vectors 

IR p,q 
p,q 

which we denote by r . This group is generated by 
X 

x E IRp,q such that g{x,x) ;/ O. 

Consider now the mapping N : IR -----+- IR defined by N ( s l p,q p,q 

the 

ss. 
If s E rx, then N is a homomorphism of the group rx into the multi-
plicative group of the non null rnultiples of 1 of IR p,q 

We define the groups 
Spin(p,q) = Pin(p,q) n IR+ p,q 

Pin(p,q) = {s E r ; N(s) = ± l}, 
+ X + 

and Spin (p,q) = {s E r , ss = + l l nIP. X p,q 

as the connected component of Spin(p,q) that contains the identity. 

3. 3. SCALAR PRODUCT OF SPINORS. THE SPINORIAL METRIC 

In §2.3 we saw that when IR is sirnple, a minimal left ideal p,q 
I of lR is of the form I = IR e where e is a primitive 

p,q p,q pq pq 
idernpotent of lR and F :: e IR e with F = IR, a: , lH depending pq p,q pq p,q 
on p -q = 0,1,2 (mod 8) , p-q = 3,7{mod 8) or p -q = 4, 5, 6 (rnod 8) res-
pecti vely ( Table I) . We .can then define a right action F ln I, I x F - I, 
by I x F 3 ( ljl, a) -+ ljla E I. In this way I has a natural linear vector 
space structure over the field F, whose elernents are the natural "scalars" 
of the vector space I. 

These remarks suggest us , to search for a na.tu1ta.l "lic.a..ta.11. 

p!toduc.t" in I, ie, a non-degenerated bilinear mapping r: I x I-+ F . 
To this end we observe that if f and g are - F - endomorphims in 
IR then we can define a bilinear mapping r in IR using f and g. p,q p,q 
We sirnply take f(ljl,,p) = f(ljl)g(,p), ljl,,pElR . ConsideringthatI=lR e p,q p,q pq 
has a natural structure of vector space over F we can take the restric-
tion of r to I, and ask the following question: 

For lji,,p E I when does r(ljl,,p) E F? 
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As we saw in §2.1 we have three natural isomorphisms defined in 
IR , the rnain involution, the reversion and the conjugation, denoted p,q • • 'I, 

respectively by, and . Combining these isomorh isms with the identity 
mapping we can define the following bilinear mappings 

i = 1;2,3 

.,.•~ . r 1 < '41 , "' > = "' ,., ; r 2 ( ,p '"' > = ,p "' , r 3 e 1/1 , "' > = tjJ'(J , 

As already observed in §2.1 the main involution is an automorphism 
whereas the reversion and conjugation are antiautornorphisms. An automor-
phism (antiautomorphism) transforms an element of a minimal left ideal 
in an element of a minimal left ideal (minimal right ideal). 

To see the validity of these statements it is enough to observe 
that the image of a primitive idempotent under an isomorphism is a prim-
itive idempotent and that if ,p e I lR e then ip = xepq with p,q p,q pq 
X E lR and p,q 

• (xe >ª • • • I' • ,p = = X e =>tjJ E = IR e pq pq p,q pq pq 

* (xe >* • * • * * (8) 1/1 = e X =,J, E I = e IR pq pq p,q pq p,q 

,p = (xe >"'= e X ==- ,P E I e lR pq pq p,q pq p~q 

Using the isomorphisms IR = l. (I) = F(m), m = dim_I (when IR is p,q F i,· p,q p,q 
sirnple, cf. §2.3) we identify the elernents of the minimal left ideals of 
IR wi th the a:ilurm matrices of F (m). Then if ,P E I has a repre-p, q • - p,q 
sentation as a o::ilum matrix of F(m) then ljl and ljl have representaticn 

* -as row matrices of F(m), and we get that ,P"' and ,P'(J are elements of F. 

pings. 
are 

We also observe that r2 and 
Indeed, r 1 c,p,~) = O, i=2,3 
isomorphisrns. 

r3 are non-degenerate bilinear .map-
then ljl = O or ,p = O, since '(J and 

We identity the scalars of the vector space structure of I with p,q 
mul tiples of 
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[ 
1 o •••• • 1 

e - l o o ..... ( 9) pq .......... 
ie, as matrices F(m) multiples of the matrix in eq. (9). Through iso-
morphisms of lR (multiplication by a convenient invertible element 

p,q * - . 
u e IR ) we can transport i.jl ,p or i.jl,p to the position (1, 1) in the ma-p,q 
trix representation of these operations. We then conclude that the na-
.ttvt.al. i> ca.!.a.11. p.11.oduc.ti> in I are p,q 

B :I xI --.p i p,q p,q i=l,2 (10) 

, Vi.ji,"' E I and u E lR is a p,q p,q 

convenient invertible element. 

Lounesto ( 3> obtains the scalar products in eg(lO) using similar argu-

ments and immediatefy proceeds to the classification of the groups of 
automorphisms of these scalar products, ie, the homomorphisms of right 
F-modu1es, I - I , 1j, --+- si.jl, s e lR i.hich preserve the products p,q p,q p,q .. 
in eq. (10). Observe that from s1 (sljl,s,p) = s1 (i.ji,,p) we get s s =l and 
from S2 (sljl,s,p) = S2 (1j,,op) we get ss = l {i.jl,,p É I ). Lounesto(Jl calls 

. * p,q 
G1 ={sEJR ; ss=l}, G2 = · {sElR ,ss=l}. p,q p,q 

So in Lounesto paper the.re does not appear in 
ticnship beo,,,een the groups Spin (p,q) and the groups G1 
sequence that we do not have a clear basis to 
algebras IR (for appropriate p and q) the p,q 

mimic 

principle any rela-
and G2 with the con-
within the Clifford 

results described in ( i) , 

(ii), (iii) of §1. We can mimic these results within some Clifford alge-
bras by introducing the concept of Spinorial metric. 

Observe that since Spin (p,q) e IR+ it seems interesting to define + + p,q 
a scalar product in an ideal I = IR e . The reason is that such a p,q p,q pq + * 
scalar product is now uniqu~, since if se IR , then s = s. This p,q 
unigue scalar product will be called in what follows the Spinaóal metric 

B (11) 
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defined by B(tji,,p) = Utp,P. We see that G =· {s E IR+ l ss = l} is the p,g 
group of automorphisms of the Spinorial metric just defined, and G e G1 , 

G e G2. 
(14) + We now recall a result firstly obtained by Porteous : "Spin (p,q) = 

{s E m+ 1 ss = l} for p +g < s• IProposition 13.58]. p,g 
With this result we get a new interpretation of the groups 

+ Spin (p,g) for p +g 5, namely, these are the groups that leave the 
Spinorial metric of eg. (11) invariant. But even more i.mportant is the 
fact the now we know the way to mi.mie within appropriate Clifford alge-
bras (i), (ii), (iii) of §1 and thus we can make a co-'111.ec.t representaticn 
within Clifford algebras of the Pauli spinors, undotted and dotted bidi-
mensional spinors and Dirac spinors. This is done in §4. 

4. CLIFFORD ALGEBRA REPRESENTATION OF PAULI SPINORS, UNOOTTEO ANO DOTTEO 
TWO-DIMENSIONAL SPINORS ANO DIRAC SPINORS 

4 .1. PAULI SP INORS ANO THE GROUP SU ( 2) • 

The algebra m. 310 (Pauli algebra) is isomorphic to ~(2) (see Table 
I), the algebra of complex matrices, generated by 1 and a1 , i = 1, 2, 3 
subject to . the conditions ºiºj + ajai 2ôij , ôij =+l or O depending if 
i = j or i t, j. 

1 The elernent e 30 =2 (1 + a 3 ) is a primitive idempotent of 
We have that a= {e30 ,o1e 30 } is a spinorial basis for I 310 - I p 
m3,0e30 • 

+ -t We shall see that the elements of IP= m3 , 0e 30 (Pauli Spinors) 
are the representatives of Pauli spinors ((1) of §1) within the Pauli al-
gebra. The reason is as follows: 

In the above basis we have the following matrix representation for 

• * x,x ,x ,xE IRJ,O 
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a:(2) 3 x= 

,p = 

Defining â: I+ x I+ -p p 

• X = 

a: , 

x= (12) 

• = 1/1 ,p [
1/11 

, for r,j) = 
lj,2 : ] ' and 

(13) 

We define now the Spinoria1 rnetric "1 + 8 = 8 I . We have, p 8{r,j),,p) = 
(hermitian product). As a= (e30 ,a1e 30 ) is .an orthonormal 1 8 < r,j), ,p) 1 

basis for + IP we have the following representation of 8 in the a-basis 

(14) 

• 8(1/1 ,'P) = 8(slj,,S<P) é=> s s = ½ <=> S E 0(2). 

Now, if x E lR;, 0 = lR O, 2 = m we have the following representa-
t i on for x in the a-basis 

x= Íz -üi] 
Lw z -

and x"' 

Observe now that N(x) = xx = detx1 2 and we get N(x) = 1 <=> 
+ det N = l. So the elernent s E JR. 3 0 such ,that 8(slj,,s,p) = 8(1j,,,p), lj,,,p E 

+ , 
I satisfy ss = 1 2 and det s = +l, that means that s E 50(2) and 
p + 

50(2) = Spin (3,0), and our assertion that Pauli spinors are represented 
+ + by the elernents of IP lR 310e 30 is proved. 

4. 2. UNDOTTED ANO DOTTED TWO COMPONENTS SPINORS ANO THE GROUP SL(2,a:). 

f + We have that lR 3,0 = lR 1, 3 where f is the linear extension of 
f (ai) = e.e , i,10, i=l,2,3 , Oi E 

IR 3,0 and e , -µ = 0,1,2,3 is an 
l. o -µ 
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orthonormal basis of m1 • 3 . 

As is a primitive idempotent of 1R 310 then 
+ primitive idempotent of JR 113 . We have that Iu 

= IR~, 3 f(e 30 ) is a minimal left ideal of m~, 3 with basis o = {f(e30 i, 
e 1e 0 f(e30 )}. Using the isomorphism 

u ,....... p (u) : Iu -+ (16) 

1j, ,___ u1j, 

we have the following matrix representation for + u E lR l, 3 in the a-basis 

O: (2) 3 
• [zl 
u = 3 

z 
• _ ü _ [z

4 
-z2] 

u - - 3 1 
-z z r (17) 

Defining 

(18) 

we get 

8 (19) 

and the representation of 8 in the a-basis is 

(20) 

Then, 8(u1j,,u.p) = S(lj,,<P) <=> üu = 1 2 <=:>det u = 1 <=>u E SL(2,a:)~Spin+(l,3) 

We conclude that the elements of Iu (undotted Spinors) can be -said 
to give a representation of undotted two-component spinors within the 
space-time algebra m1 , 3 . The vector space Iu carries the D(l/2 ,0> 

l~ the D(l/2 ,o> re-+ re presentation of SL(2,a:), ie~ the group Spin (1,3) 
presentation of SL(2,0:) within the space-time algebra • 

. ,, 



16 

* Now remembering that is an antiautomorphism in the Clifford al-
* + + + gebra : m 1 , 3 -. m 1 , 3 that preserves the Spin (1,3) group we have: 

If u E Spin+(l,3) =u*e Spin+(l,3) = (u*)-l E Spin+(l,3). 

Consider now the minimal right ideal Id 
the iscmorphism 

o 
1jl --

o * -1 ljl (u ) 

( 21) 

We conclude that the elernents of 
to give a representation of the dotted 
wi thin the space-ti.me algebra lR 1 3 . 

Ia (dotted Spinors) can be said 
two component spinors (ii) of §li 

The vector space Ia carries the 
(O 1/2) ' D ' representation of SL(2,a:). 

) 
4.3. REPRESENTATION OF DIRAC SPINORS WITHIN THE SPACE-TI~E ALGEBR,-, m1 , 3 

We have that m1 , 3 = lH(2) and the idempotent f(e30J isalso 
itive in m1 , 3 . This means that I 0 = m113f(e 30 J is a minimal 
ideal of m1 , 3 .It is a bi-dirnensional quaternion ideal in m 1 , 3 . 

prim-
left 

We can consider I 0 as a 4-dimensional complex vector space and 
+ is this way we get a complex representation of IR 113 =IR 411 cm4, 1 = a:(4). 

e 13 = e we have 

(22) 
ai E IR , i=!:", ... , 8 

Observi :-.g that 

we can rewrite eq.(22) as 



A cornplex bc is for I 0 is then o 0 = {e0e,e1e , e , e 0 e 1e}. 
Consider now the injection 

y 

we get the following representation for eµ IJ = O, l , 2 , 3 in 
basis 

y(eo) - Yo = [:, 1:] y(e . ) =yi = [:i ·~ , i=l,2,3 
l. 

where oi are the Pauli matrices . 

17 

(23) 

(24) 

t.he o. -D 

(25) 

In this basis we have the following re; .r;ese nta t i on for x E 1r. 1 , 3 

r , 7 
xl x2 X5 x6 

X3 x4 X 7 Xg 
y (x) = --1 - (26) 

x8 -x4 X4 -x3 

-x6 xs 1 -x2 xl 

Consideri g the r e striction YIIR~ , 3 we get for z E m1 , 3 the fol-
lowing re 2resentation in the o 0-basis, 
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Now, 
such that 

and 

o 

y(z} = (27) 

o 

f + since IR 3 , 0 " IR l, 3 there exists an unique y E ~,O " a:(2) 
z = f(y} and we have 

y(f(y)} = (28) 

y E lR3,0 (29) 

We see that the restriction y I IR~ 3 gives a complex 4-dimensicnal 
+ , 

representation of Spin (1,3} " SL(2,a:) - naMely the representation 
D(l/2,0) e o<0,1/2) of SL(2,a:). 

We call the elements • Ili E r O , space-time Spinors. From the above 
discussion it is quite clear that space-time Spinors represent in lR113 
the Dirac spinors introduced in (iii) of §1. 

We also mirnic the spinorial metric in C!(4) [(iii) of §1] defining 

(30 ) 

for an appropriated b E IR 1 , 3 
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4. 4. REPRESENTATION OF DIRAC SPINORS l,ITHIN THE IR 4 1 l hLGEBRA 

From table I we see that IR 411 , lR 312 and IR 015 are isor.iorphic to 
th~ algebra ~(4) which is the usual Dirac algebra of physicists. ln 
order to identify thc algebra thaL carries the physj.cal interpretation 
associated with space-time lR l , 3 we procecd as follows . Let be Eh , A = 
0 , 1 , 2 , 3 ,4 an orthonormal basis for lRp , q 1t-lith p +q = 5. The volurre ele-

ment is EJ = EOF. 1 E2F 3E4 and wc get E~ = -1 for q = 1,3,5. Now de-
fine 

( 31) 

and i :~se that eµ is an orthonormal basis for m113 , ie 

+l, -E 2r: 2 =-1 , .v. = 1? 3 k 4 ,-, (32) 

1 • r: 2 - E2 = - E2 = 1 apd , ie, 4 - 1-: o 
associated with space-tine 

Eq . (32) is satisfied when p = 4, q = 
we concludc th3t the real Clitford algebra 
(m 1 ' 3 ) and isomorphic to O::( l - is m 4 1 • 

g + , 
.F:q .( 31) sho·,;s that m 1 13 = m 4 , 1 where g is the linear exten-

sion of g(eu ) = EUE 4 , µ = 0 , 1,2,3. l,e already saw in §4 .2 and 94.3 
that f (e 30 ) is a prir ,itive idempotent of IR l, 3 e.nd wc have that g(f(e30» 
is a primitive idempotent of IR:, 1 . Then rO = m.;, , l g(f(e30 )) is a 
minimal ideal of m; , l which is a 4-dimensional vector-space over lhe 
complex field "' ' d its elernents are Spinors which are rer esentations in 
IR 4 11 of the Dirac spinors 

5 . CO:>;CLUSIONS 

Hestenes(ll) said about the theory of spinors: "I have not rct a"lyone 
whc, was not õissatis' "ª with his first reaõings on the subject" . 

Well, the reasons for such staternen are in our view due to two 

facts 
(A) the .sual i:-:resentation of . pinors such as introduced in (i) , 

( ij) , ( iii) of §1 does not emphas ze the geometrical meaning of these 

obje ts . 
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(B} There are not clear connection between the au~trac t concepts 
of spinors as introduced in (i), (ii) and (iii) of §1 and the more abs-
tract concept of Spine,rs as elements of ideals of particular Clifford al-
gebras. 

As to (.A) we think that the situation has been partially clarified 
with the presentation by Hestenes of the geometrical meaning of 
Pauli spinors(lS} and of Dirac spinors(l, 2 }and also by Penrose and Rin-
dler (lG) of the geometrical meaning of the undotted and dotted t...,o-::com-
ponent soinors. 

\•;e take this opportunity to clear up the relation between our ap-
( 1, 2) 

proach to Dirac spinors and the a ; proach by Hestenes 

ln Ref. (1) Hestenes searchs a representation, using t.~e Clifford 
bundle(l?) 1 over Minkowski space-tirne (M)] of the usual Dirac equation 

where M 3 x - (x) is a section of the spinor bundle( 4 l (ov~r M), s 

(33} 

q 
is the electric charge, A , \J = O, l, 2, 3 are the cornponents (is an orth:>-\J 
normal frame jn M) of the electrornagnetic potential, and y~ are the Dirac 
rnatrices s ,i tisfying y\JyV + yvyµ = 2gµv = 2 diag(+l,-1,-1,-1). Hestenes 
choose the specific 6tanda~d ~ep~e6entaü..on( 6 ) where the y-natrices are 

y = [ l.2 O ] : 
0 O -1 2 ' 

y = [ O -ok] 
k o O 

k 

l 34) 

and where Dirac spinors are represented by the four -dimensional column 
matrices called &tanda~d Vi~ac 6pino~h 

W = [ : ] ( 35) 

where 4, = 1 (~+n) : 
12 

:>. , 1 ( ~-n) , where t anã n = S(n, are the un-
li 

dotted a .. d do ted 2-component spinors introduced in ( iii) of §1. 
Introducing for each x EM a spiro r b~:~s u 51 ,u52 ,u53 ,u54 

the fibe r over x (cr(4)) in the spinor bundle where 
at 
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t: st (36) 

we can show that 1/t s has the follow.i.ng representation j n IR l, 3 

(f. ( 4) + 
~• E IR l, 3 (37) 

1 3 ( *) where eJ.!, 1.1 = O, 1, 2, 3 is an orthonor:--,al basis of JR ' , and l½_ is 
the representatjon of u in lR Interpreting the ') l ' as 1·epresenta -s, µv 1, 3 
ti on" of the vect:ors eu '-' g e\/ , we c;et U-:e following rcpresentation of 
ec, :( 33) in the Clifford bunclle over r ace time 

A ( 38) 

\~e observe that in eq. (38) the i •· •'-1 has been clir.iinate:d! t;ow al-
tougb u1 has no invcrse, the coefficients of u1 can be equ ..... ted and we 
have 

h e •·· c1z,,, ,. 2 l • ' (39). 

Finally considcring 

( 40) 

cq. ( 39) can be wrj tten as 

which appears originaly in ref. (lfi). It is quite clear that is rn ele-
uent of a 1:üniMal ideal in m113 since u is a primit:ivc idem_ ,te l. 

ln rcsm'1 , thc hta.nda~ d V,i.Jtr.c hp-<.r.cvv, are represent. d in lli l, 3 lJy 
+ tht' el cments of the ni.11 • ll'al j deal r10 = m l, 3 u 1 of JR l, 3 and a s:i "1ple 

( •) Ob '!rve that the Minko·.-lski-spacc M is the affine sr, cc construc . d 
wit.h lR l, 3 . 
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:2 

Uirac equntion is writt n using the ~ lements of the minimal ideal r 0 
m1 , 3u of IR 1 13 . Obviously r10 and r 2 are isomorphic. 

We can show without difficult that r 10 (or r 20 ) is the carrier 

space of the rcpresentation D(l/Z,O) e D(O,l/2 ) of SL(2,a:). In refs(l,2) 
. + Viestenes calls ~• E IR 1 3 a spinor . This scems to be non-sequitur in the 

+ , 
~.ense tha t as ·,i E IR l, 3 is a sum of scalar , pseudc -scal, r a1 b ; cctor 
parts and the space of the 1), ' s is the car1-ier space of the representation 
[)(O,O) i D(l/ ,O) 0 D(O,l/2 ) e D(O,O) of SL(2,a:) (1 J . Nevertheless it 

is ,;,mportant to ernphasize that worki directly wit eq. (3 :1 (ie, with 1jl) 

sives thc correct giromag,etic factor for the electrQn! 

':"nese re: lts show that i t is t ot certain that the Kahler-Dirac equa-
tion as presented in ref. (17) can correctly represer t the D e ec_..ia-
tion in the Clifford bundle over Minkowski spa• 'ê? -tine. We will analyse 
this point in ano~ •r paper. 

As ,o (B) we think tl.at the present paper gives the relation be-
tween spinors and Spi.nors in a clear 
of spinor ,, wi th s.,inors are based on 
the observation tr t for p + q 5, 
of the Spinorial mctrics. 

way. Our method· of identification 
the concept of Spir rial metric and 

+ . . 
Spin (p,q) is the in'variance group 

Among the important results obtaine<l we enphsize that here for the 
first tine there ap-pears the . epresentation of undotted artd dotted two-
cornponent and Dirac spinors in IR l, 3 . In particular ·we gave 
proof that the space-tirae Spinors, ie, the elements of ID = 
carry the representation D(l/2 ,0) $ D(O,l/2 ) of SL(2 , a:) and 

a rigorous 

lRl 3fCe3ol , 
.thus can be 

said to give a rcprescntation of Dirac spinors as introduced in (iii) of 
§1. 

Also the i..:tanda1td V.i.1ta.c. ôpinol..ô [eq. (35)] are ·represented in m 1 , 3 
+ by the elements of the ideal r10 = m113t\ anda simple Dirac equation 

wri tten using the Clifford bundle uses as field variable the eh .ent of 
+ 

1 2D = IR1,3u • 
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