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ABSTRACT. In this paper we clearify the relation between Pauli, undotted
and dotted two components and Dirac spinors, as defined by physicists,
and Spinors - elen:nts of certain 'minimal left (or right) idezls in ap-
propriated Clifford algebras l.p’q. Owxr approach is based on »:e notion
of the Spinorial-metric in Spinor-space and the fact that Spin (p,qg) is
the invariant group of thce Spinorial-metric for p+q < 5. Parficularly
important results are the representations in IR1’3 (the space-time al-
gebr=) of the undotted and dotted two component spinors and Dirac spinors.

~
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1. INTRODUCTION

The usual presentation of Spinors as elements of minimal left ideals
*
in Clifford algebras( ) IRp Q.2,3) as well as the introduction in
r’
this context of the groups Spin+(p,q),does not leave clear the relation
=)

*
between these objects and the spinors( and the universal covering groups

of some groups SO(p,qg) used in theoretical physics.

The main purpose of this paper is to clear up the situation, and
in the process we will obtain some very interesting results.

To formulate our problem we start by remembering that physicists
use the following kind of spinors

(1} Pauli spinors - which are the vectors of a complex 2-dimensicnal
space €(2) equiped with tHe spinorial metric

B b :@(2) x€(2) — ¢ , Bp(w,v) = y*e ,

(1)
Gl ¥y : A
v o= %, b et { Y, ) r2.Y; €C ,i=1,2 and Uy* =(zl,zz)
() for our notation see §2.

-

(**) VWe use the notation Spinors for the elements of minimal left
ideals in Clifford algebras which represent the spinors defined in

§1.



where in this text 2z always means the complex conjugate of z € (.

The spinorial metric is invariant under the action of the group SU(2),

ie, 1f u € SU(2) then B (uy,ur) =8 (¥,v). As is well known(f) Pauli

spinors carry the fundaméptal (irreducible) representations Dl/2 of

su(H* 9

(ii) undotted and dotted two-components spinors-which are respectively
the vectors of two complex 2-dimensional spaces (€(2) and é(z).
In both spaces there are defined as spinorial metric 8,é such that

™
.-

€(2) x €(2) — €, B(V,») Cy

i
&

(2)

€(2) x €(2) — ¢, B(h,8) =4 Cy

™
-

]

where ¥(J) are of the type defined in eq.(1) and ¥Y(y%) is the trans-

pose of ¥(§) and
0 1
C=1 1+ o (3)

. _ £ (6,7)
is the representations of B(B) in the canonical basis of €(2)(C(2))

The spinorial metrics B,é are invariant under the action of the
group SL(2,L), ie, if u € SL(2,&) then B(uy,uy) = B(¥,¢) and B((u*fdé,
(u*)-lé)g = B(y,¢). The matrices u and (u")-1 are the (non-equivalent)
D(1/2,0) and D(o’l/Z) of the group SL(2,C) and we say

that the undotted (dotted) two-components spinors are the carriers of the
D(l/Z,O)(D(O.l/Z))

representations

representations

(iii) Dirac spinors-these are the vectors of a complex 4-dimensional space

C(4) equiped with the spinorial metric(6’7)

By ¢ C(4) x €(4) — € ; B (h,¢) = 4" By (4)
where a Dirac spinor ¢(v) € €(4) is defined as

C(2) © C(2)* =C(4) > y = + B(ny ) (5)

where £ € €(2) and é(ﬁ, ) € ©(2)*, the dual space of c(2).



in the canonical bhasis of €(4) obtained through the canonical basis of
©(2) and @(2)* the matrix B is the representation of SD and we have

(4 =
g 0 cC

where C 1is the matrix defined in eq.(3).

5(1/2,0) o (0,1/2)

Dirac spinors as is well known carry the ® D represen-

tation of SL(2,C).

We now ask the main question: to which minimal ideals, in which
Clifford ¢ l¢ebras are the spinors described in (i), (ii), (iii) above to

be associated?

We are going to give an original answer to the above qguestion by
introducing a undigue "natural scalar product" (see §3) in certain appro-
priate minimal left ideals of certain Clifford algebrac= that "mimic" what
has been described ins (4), fii), (iii) above. To this end in Section

ol

we define and give the main properties of Clifford algebras over the
(8,9,10)

(3)

reals and analyse the structure of the minimal ideals of these

algebras The material presented fixes our notation and is the minimum

necessary to permit the formulation of ocur ideas in a rigorous ‘ay.

In section 3 we define Spinors as tiie elements of minimal left ideals
in Clifford algebras. The Spinors of each one of the Clifford alg=bras
studied 4in %his papen have a natural aight F-Linecia &pace siructure over
one of the following fields F = IR,C , H, respectively the real, com~

plex number and quartenion (§2). ’

We introduce for each Spinor space I C IRp’: a undigue natural scalan
procuct (Spinorial metric), ie, a non-degenerated bilinear application
':I xI—PF, where P= IR,C,H is the natural scalar {{ield associat-
ed with the vector space structure of I € IR . Our approach to the
natural scalar product shows that for p+qg < é the : groups Spin+(p,q)
are the groups that leave invariant the Spinorial metric. Thus our ap-
proach to the sc.lar product is different from the one discussed by
(3)

Lounesto and s we shall see offers a solution for the main cuestion

fer mlated above.

We analyse in §4 in detail the special cases SU(2) = Spin(3,0)
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and SL(2,C) = Sp1n+(1,3) and identify respectively the ideals that con-
tain the objects corresponding to Pauli-spinors (1; = Kg 0e30),and undot-
S ="I*). Also in

u
of

ted and dotted two components spinors (Iu = IR; 1813 ,Id
§4.3 we show that the minimal left ideals ID = IRl 3f(e3o)

(11) p(1/2,0)

e

(0,1/2)

the space-time, or Minkowski algebra @ D

representation of SL(2,C), ie, the space-time Spinors are a representa-

) carry the

tion of Dirac spinors.

In §4.4 we show that the original Dirac algebra (€(4)) must be
identified for physical reasons with the real Clifford algebra R4'1. We
then show that the ideals fD = R4’1g(f(e3°)) carry also the represen —
tation of Dirac spinors.

In §5 we present our conclusions and some comments concerning our

results on Dirac spinors and the results cbtained by Hestenes(l’Z).

2. SOME GENERAL FEATURES ABOUT CLIFFORD ALGEBRAS
2.1. CLIFFORD ALGEBRAS C(V,Q)

Let V be a vector space of finite dimension n over the field F
together with a nondegenerate quédratic form Q. The Clifford aalgebra
c(v,Q) = T(V)/IQ where T(V) is the tensor algebra of V (T(V) = I T;(V);

i=1

r@w) =%, 7hv) = v, (V) = e°v) and I, is the bilateral ideal

generated by the elements of the form x @ x - Q(x), x € V. The signa-
ture of Q is arbitrary. The Clifford algebra as constructed is an as-
sociative algebra with unit. The space V is naturally imbedded in
Cc(v,Q)

vids ) A>T/ = C(V,Q); §,=30i and V= I,C C(V,Q).
Let be C+(V,Q) (respectively C (V,Q)) the j-image of I Tzl(v)
i=0

2i+l

@
&
(respectively Bl (V)) in C(V,Q). The elements of C (V,Q) form a

i=0
subalgebra of C(V,Q) called the even subalgebra of C(V,Q).

C(V,Q) has the following universal property: "If A is an associa-
tive F-algebra with unit, then for all linear:mappings ¢$:V—2A such



that (¢(:<))2 = 0(x)1, Yx € V can be extended in an unique way to a

homomorphism ®: C{V,Q) — A",

In C(V,Q) there exist three linear mappings which are quite na-

tural. They are the extension of the mappings

(a) MAIN INVOLUTION - an automorphism -:C(\’,Q) — C(V,Q), extension of
a:V — .(\’)/IQ , a(x) = —iQ(x) = -x VX EV

. )
(b) REVERSION - an antiautomorphism 1 C(V,Q) — C(V,Q), extension of

Lot w) — (), TTW 5x=x_ 0...8x T e TRl T T

ir 1r it

15 n

(c) CONJUGATI9N - : C(V,Q) — C(V,Q), defined by the composition of the
/ *
au‘comorp‘:dsm'I with the antiautomorphism v e, if x € C(V,Q),then

R Ll

C(V,Q) can be described through its generators, ie, if {ei}, i1,
2,...,n 1is a Q-orthogonal basis of V, then C(V,Q) is generated by 1
and the e,'s subjected to the conditions e.,e, = Q(e.)l and €.e.+e.,e.=

¢ & B § 3 - Vi B g
=0, i#j, 1,3 =1,...,n. If V is a n-dimensioral real vector space

then we can choose a basis {ei} for V such that Q(ei) = # l( ) 5

’

2.2. THE REAL CLIFFORD ALGEBRAS IRp a
Al ! 4
Let WP'Y 1o a real vector space of dimension p+q =1 equipped
with a metric g :RP'? x BP9 L m. Let be {ei} the canonical basis of
IRp’q, such that

*1 i=9=1,2,...,p
g(ei,ej) = gij =g(ej,ei) =gji = -1 i=5= p+tl,c..,ptg=n . (7)
0 i

| #3
The Clifford algebra IRp q = C(IRp‘q,Q)  ptg = n is the Clifford
!
algebra over the real field IR, generated by 1 and the {ei}, S R

such that Q(ei) = g(ei,ei). IRp q is obviously of dimension 2n and is

I



the direct sum of the vector spaces IR]; q of dimensions (;:),Of_kf_n.

r
The canonical basis for mk are the elements e_=e one B ’
P.q s “k
n
sén & < . = » €
I al < cxk < n. The element eJ ele2 en mp,q commutes
(n-odd) or anticomutes (n-even) with all vectors el,...,en in JR:; q =
» ’
= RP’9, The center of JRp g is m; it IR if n 1is even and it is
r ’
the direct sum IRO e R’ 1€ +n ds odd(3’12) .
Prg P.,9 \

All Clifford algebras are semi-simple. If p+g=n is even IRp q
’
is a simple algebra and if p+qg=n is odd we have the following pos=-

sibilities:

(1) :er’q is simple + eg. =<1 +«+>p-q #1 (mod 4) +> center II-‘(p'q is

isomorphic to €

(ii) R is not simple +-» e2 =+1 > p-q =1 (mod 4) <> center IR
g o J n P.q
is isomorphic to IR ® IR .
P.q P:.q

From the fact that all semi-simple algebras are the direct sum of

@3 and from

two simple algebras
WEDDENBURN'S THEOREM. "If A is .a simple algebra then A is equivalent to F(m);
where F is a division aloebra @ m and F are wnicue (modulo isomorphisms)",
we obtain  from the wvoint of view of representation theory
mp,q = F(m) or IRPuq = F(m) ® F(m) where F(m) is the matrix algebra
of dimension mxm (for some m) with coefficients in F = IR, T, M.

Table I (where [n/2] means the integral part of n/2) presents the re-
prezentation of IRp q as a matrix algebra(lz)
’



p-g(mod8) 0 5 B 2 3 4 5 6 7

R (22 m (2 /2 -1,
mp i R (2 n/2] ) ® R (2 In/2] )| e [n/2) ) | H 2 [n/2-1} ) ® H (2 In/z-ll) c(2 ln/21)
]R(Zln/zl) ]H(2[n/21—1)

A

Table I - Representation of the real Clifford algebra

R as a matrix algebra
P.9



2.3. MINIMAL LATERAL IDEALS OF IRP q
’
The minimal left ideals of a semi-simple algebra A are of the type
Re, where e is a primitive idempotent of A, ie, e2 = e, and e is not
the sun of two mutually ncn trivial orthogmal idempotentes, ie, e = & + & with
(13

Az - v2 v v A
=e, e =& and ee = ee =0

A minimal left ideal of IR is of the type I = IR e where
P.q P:9 P9

epq=—%- (1+eu) ...% (1+eu) where €y reeer€y is a set of commut-
1 k 2 k
ing elements of the canonical basis of IRp q such that (ea )2 =%k, 1=
r
i

l,...,k that generates a group of order k = q - rq -p* and r;, are the
Radon-Hurwitz numbers, defined by the recurrence formula ri,g=t +4(3)
and

Table II - Radon—ﬂurwitz numbers

H R ¥x €
If we have a linear mapping L, IRP'q = IS $ L, (x), ¥x IRp q

and where a € IR , then,as I is invariant under left multiplication
r
with arbitrary elements of IR we can consider L alT tI—1I. I p+g=n

is even or odd with p-g # ltmod 4) then IRp P = 1.' (I) = F(m), where

’

F=1R, €, JH and ZF(I) is the algebra ‘of linear transformations
in I over the field F , m = dimP(I) and F = eF(m)euB). If p+g=n
®ither odd, with p-g=1(mod 4) then mp"q = 1-‘!.(1) -] IF(I) = F(m) @ F(m),
m = dim.F(I) and epqmp;qepq =R @R or ™ & H.

With the above isomorphisms we can icentify the minimal left ideals
of mp,q with the éol}nnn-mat‘z:i:ces of F(m).

3. SPINORS, THE SPINORIAL METRIC AND TEE SPIN GROUP

3.1. SPINORS. Given a real Clifford algebra lRp a with primitive idempotent epq
we call Spinots the elements of the minimal left ideal mp qepq or the
’

lement ofIR 5
elements p,qpq
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3.2. THE SPIN GROUP-SPIN(p,q)

1

The invertible eléments s € IRp q such that V¥x € IR =RP'Y ye

- r r
have s'xs 1 € ':I:Rl g’ form a multiplicative group called the Clifford

’
group of IRp & which we denote by I'x . This group is generated by the
’

vectors x € RP’'? such that g(x,x) # 0.

Consider now the mapping N : IRp q—»mp q defined by N(s) = ss.
’ r
If &8 E I‘x, then N is a homomorphism of the group !‘x into the multi-

plicative group of the non null multiples of 1 of IRp g
r

We define the groups Pin(p,q) = {s € 1"x : N(s) = +11},

- +
Spin(p,q) = Pin(p,q) N IR; q and Spin+(p,q) = {g.€ I‘x ,8s =+1} NI
7

P/

as the connected component of Spin(p,q) that contains the identity.

335 SCAiAR PRODUCT OF SPINORS. THE SPINORIAL METRIC

In §2.3 we saw that when IRp q is simple, a minimal 1left ideal
r
I of IR is of the form I = IRP qepq where e is a primitive
r r r
idempotent of IR and F = e mp qepq with F = IR,C , H depending
r

on p-g=0,1,2 (mod 8), p-q = S TTand 6 - p-g = 45,6080 §) xeas
pectively (Table I). We .can then define a right action F in I, I xF—1I,
by IxF> (y,a) — Yo € I. In this way I has a natural Ilinear vector
space structure over the field F, whose elements are the natural "scalars"

of the vector space I.

These remarks suggest us: to search for a natural "scalar
product”" in I, ie, a non-degenerated bilinear mapping TI: I x I — F .
To this end we observe that if f and g are™ F - endomorphims in
IR then we can define a bilinear mapping I' in IR q using £ and g.

’ ’
We simply take T (y,¢) = £(Y)gle), Y, EIRp = Considering that I=quepq
’
has a natural structure of vector space over F we can take the res'tric-
tion of T to I, and ask the following question:

For VY,¢ € I when does T (y,¢) € F?
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As we saw in §2.1 we have three natural isomorphisms defined in

IRp q’ the main involution, the reversion and the conjugation, denoted
’ *

respectively by., and ". Combining these isomorhisms with the identity

mapping we can define the following bilinear mappings

Ti:IXI-—vIRp'q, - i e B

T (0,e) =90 5 T,(0,0) = ¥'e, To(0,0) =iw, VyveI

As already observed in §2.1 the main involution is an automorphism
whereas the reversion and conjugation are antiautomorphisms. An automor-
phism (antiautomorphism) transforms an element of a minimal left ideal
in an element of a minimal left ideal (minimal right ideal).

To see the validity of these statements it is enough to observe
that the image of a primitive idempotent under an isomorphism is a prim-

itive idempotent d that if Lo = IR then = xe with,
PO - e p,a°pq v pq

x € IR and
s P/
w. = (xe ). = x. e. => w.e T = JR e'
Pq Paq P.q Pg P9
tp* = (xe =t Xt mw*é o =e R (8)
r Pq g P.q P9 P.9
o e o e :
= ) = =y € I = e_ IR %
Y ra pa” ¥ S tpia T %paTpeg

Using the isomorphisms mp,q = IF(I) = F(m), m = dimPI '_q(when mp,q is
simple, cf. §2.3) we identify the elements of the minimal left ideals of
IRP'q with the oolum matrices of F(m). Then ilf /] E. Ip,q has a repre-
sentation as a colum matrix of F(m) then ¥ and Y have representation
as row matrices of F(m), and we get that w'v and j¢ are elements of F..

We also observe that 1'2 and I’3 are non-degenerate bilinear 'map-
pings. Indeed, I'i(w,b) =0, i=2,3 then ¥ =0 or ¢ = 0, since ¢ and
¥ are isomorphisms. .

We identity the scalars of the vector space structure of Ip,q with
multipleés of .
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e 2 1=[|0 0 ..... (9)

ie, as matrices in F(m) multiples of the matrix in eq.(9). Through iso-
morphisms of IR (multiplication by a convenient invertible element
u € IRP, ) we can'transport wtv or Ew to the position (1,1) in the ma-
trix representation of these operations. We then conclude that the na-

tural scalar products in I are

P,q
g5 I 5 — F i=1,2 (10)
£} Spuutctpi ¥ g
* -~
Bl(w,v) = uy ¢ and Bz(wm) =uypy , VW,vEIp’q and u € mp,q is a

convenient invertible element..

Lounesto('a) obtains the scalar products in eg(1l0) using similar argu-
ments and immediately proceeds to the classification of the groups of
automorphisms of these scalar products, ie, the homomorphisms of right
F-modules, I , —1I L. Yy — sy, s € IR 'qvmich preserve t::e products
in eq.(10). Observe that from By(s¥,s¢) = B, (¥,¢) we get s s=1 and
from Bz(sw,sv) = Bz(w,w) we get Ss =1 (Y,0p €I Yo Lounestou) calls

: * 2 _P./q
Gl-{sEmp’q;ss=1},G={sEIR s 88 =1},

2 P.q

So in Lounesto paper there does not appear in principle any rela-
tionship between the oroups Spin(p,q) and the groups Gl and G2 with the con-
sequence that we do not have a clear basis to mimic within the Clifford
algebras IR .q (for appropriate p and g) the results described in (i),
(ii), (iii) of §1. We can mimic these results within some Clifford alge-

bras by introducing the concept of Spinorial metric.

Observe that since Spin(p,qg) € rY it seems interesting to define
r

Prq
a scalar product in an ideal I; a =IR:) qepq’ The reason is that such a
r ’
scalar product is now unique, since if s € IR+ , then s. = 8. This

’
unique scalar product will be called in what follows the Spinarial metric

SRR

Big X I —
P.q P,q

P, (11)
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defined by B(¥,¢) = uPy. We see that G = {s € R~ | ss = 1} is the
r
group of automorphisms of the Spinorial metric just defined, and GCG
G €agG,.

2
We now recall a result firstly obtained by Porteous(“): "Spin+(p,q)=

{s € IR; q |$s = 1} for p+qg < 5" [Proposition 13.58].
’ -

1'

With this result we get a new interpretation of the groups
Spin+(p,q) for p+qg < 5, namely, these are the groups that 1leave the
Spinorial metric of eq.(1l) invariant. But even more important is the
fact the now we know the way to mimic within appropriate Clifford alge-
bras (i), (ii), (iii) of §1 and thus we can make a coarreci representation
within Clifford algebras of the Pauli spinors, undotted and dotted bidi-
mensional spinors and Dirac spinors. This is done in §4.

-

4. CLIFFORD ALGEBRA REPRESENTATION OF PAULI SPINORS, UNDOTTED AND DOTTED
TWO-DIMENSIONAL SPINORS AND DIRAC SPINORS

4.1. PAULI SPINORS AND THE GROUP SU(2).

The algebra IR3 0 (Pauli algebra) is isomorphic to C€(2) (see Table

I), the algebra of complex matrices, generated by 1 and Oy # S8 i SR

subject to the conditions aioj + cjai = ZGij ’ Gij =+l or 0 depend}ng if
I=Son £#3.

The element e =l(1 + 0,) is a primitive idempotent of IR .

30 2 3 3,0

We have that a = {e30,01e30} is a spinorial basis for 13’0 = IP =

0% *

We shall see that the elements of I; = m‘;,oe3o (Pauli Spinors)
are the representatives of Pauli spinors ((i) of §1) within the Pauli al-
gebra. The reason is as follows:

In the above basis we have the following matrix representation for

- * 3 e =
X ,X X X
’ r ’ 3'0
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2 2 2 2 Py 2 2
- *
c(z) I x= 3 4 3 X = | I X = o i1 X= 3 1 (12)
2z 2z z .z zZ z -2~ z
)
. 2+ 4+ - * v 0
Defining B:Ip XIp — T, B(p,») =¢ ¢, for y= and
2
7 v I
'Pl 0
Y =
Wz 0

=2 8

Bly,e) = Prel + 32 (13)

We define now the Spinorial metric B8 = ﬁ]I; . We have, B(y,v) =

[8(,¢)]  (hermitian product). As a = (e30’°1e30
basis for I; we have the following representation of B in the a-basis

1 0
[Blu e = 12 (14)

) is _.an orthonormal

0 =l

BW,0) = Blsh,0) <> s's=1, <5 € U(2).

Now, if x € IR; g2 IR0 .- IH we have the following representa-
’ r
tion for x in the a-basis
l’z -0 - . z w
X = and X = X = &
w 2 - z

Observe now that N(x) = Xx = detX1l, and we get N(x) =1 <

det N= 1., So the element s € m; 0 such that B(sy,sv) = B(Y,v), Y,» €
’

I; satisfy Ss = 12 and det s =+1, that means that s € SU(2) and
SU(2) = Sp1n+(3,0), and our assertion that Pauli spinors are represented
- - A

by the elements of Ip m3'0e30 is proved.

4.2. UNDOTTED AND DOTTED TWO COMPONENTS SPINORS AND THE GROUP SL(2,C).
£
We have that IR = IR

3,0
f(oi) = eie‘:> ¢ 250, '1=1,2,3 ',

I 3 where f is the linear extension of
r
o € IR3'(J and eu s V= 0,2,2,3 is an

.
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orthonormal basis of IR1'3.
=1
As e3'0 2(l +03) is a primitive idempotent of 1R3,0 then
1 +
f(e3°) = 5(1 +e3eo) is a primitive idempotent of m1,3' We have that I =
% + .
IR1'3 f(eao)is 2 minimal left ideal of IR1,3 with basis a = {f(e30),

eleof(e3on. Using the isomorphism

+
Pt Ry 35— LX)
u +— p(u) :Iu — Iu (16)
Y — uy

we have the following matrix representation for u € IRI 3 in the a-basis
>

: 2! z2 ghisgd
* 35
€(2) > u = 3 4 7 5B emigge = 3 1 o (17)
z z -z z
Defining
Bt IoxI - &, B(Y,e) = eleo$¢ (18)
we get
B = () = vle? -yt (19)

and the representation of B in the a-basis is

§ 1
8] = (20)
% -1 0

Then, B(uy,uv) = B(Y,¢) <> Tu =1, <>det u=1<+=u€ SL(Z,(!!)ESpi.n+(1,3)

We conclude that the elements of Iu (undotted Spinors) can be -said
to give a representation of undotted two-component . spinors WLth%?/zt%?
D ’

space-time algebra IRl 3 The vector space Iﬁ carries the
’
(1/2,0)

representation of SL(2,C), ie, the group Sp1n+043) .is the D re-

presentation of SL(2,C) within the space-time algebra.

-~
»
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Now remembering that * is an antiautomorphism in the Clifford al-
*
gebra 2 IRI 4 lR"i 3 that preserves the Spin+(l,3) group we have:
’ ’

%

If ue€ spin’(1,3) =>u*€ spint(1,3) = (")t € spin*(1,3).

*

Consider now the minimal right ideal I )) and

+
50 (]Rl'3f(e
the iscmorphism

30

T
p.m1'3 ——»-Cm(Id) 3
— 8w 1 21
u pu.Id-—-v a (21)
(<] 0 -
$ = Wlad

We conclude that the elements of Ig (dotted Spinors) can be said
to give a representation of the dotted two component spinors (ii) of §1)
within the space-time algebra 1R1 3 The vector space I4 carries the
D(O'l/z) representation of SL(Z,G:)'.

)
4.3. REPRESENTATION OF DIRAC SPINORS WITHIN THE SPACE-TIME ALGEBRA IRl 3
’

We have that R, 3 = H (2) and the idempotent f(e30) is also prim-

itive in IR1'3. This means that »ID = m1’3f(e30) is a minimal left

ideal of J‘Rl 3.It is a bi-dimensional cuaternion ideal in IR
’

3;3"
We can consider ID' as a 4-dimensional complex vector'space and
+
is this way we get a complex representation of IR = 1R CIR = C(4).
1,3 4,1 4,1
Calling f(e30) =e,, e we have
ID = IR1’3e = ae + azeoe + aze;e + ase,e + aze e e + aze e,e
(22)
+ a,e e.e + age e,e.e ; a, € I, im0 ,8

Observing that

1,3 e,e,e.e] = H; T = [e,eleze] & eml'3e

we can rewrite eq.(22) as




i

T =R Ea'é(az-baee'é)+e°E(a2'é+a8eeE)

D 1;3 p ! Il o4 i 2
, (23)
+ ele(a3e - a4ele2e)+ eoele(ase - aseleze).
A complex basis for I, is then By - {eoe,ele,e,eoele).
Consider now the injection
Nt IR —sade LT ) \
3 1,3 T
u — y(u) Iy — ID (24)
Y — uy

we get the following representation for eu PR AR R o e e RS T G ap”
basis

N
(™

Y(eo) 2 e om 3 Y(ei) ok TR PR 5 e T (25)
g g i

where ci are the Pauli matrices.

In this basis we have the following representation for x € IEl 3
’

» e I »
xl X2 | Xs XG 7
1
e e L G Ja
TAR) S STN e e Lo o (26)
1 - s
iy R S B BB
|
[ 0y B8 G i¥a ¥

i ;
Considering the restriction VIIR:_ 3 we get far z € IR; , the fol-
’ r

lowing representation in the .uD—basis.
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zl 22 :
) o
b B T S
y(z) = ol Tt e ol S o (27)
: z, ~24
(¢] ! = b
. s ST
Now, since IR £ rt there exists an unigue y € = T(2)
3,0 153 3,0
such that 2z = f(y) and we have
) 0
yLRIphow R s air e y € €(2) (28)
q : (y*)"l
and
Yo £1 Ry g™ LtTy)
Y 4 0
1
- penc i et Y€ Ry o (29)
*o=F
0 Y=}
We see that the restriction yImI 3 gives a complex 4-dimensicnal
representation of Spin+(1,3) = sL(2,e) — namely the representation
p{1/2:0) g p(0:1/2) ¢ gr2 ).

-

We call the elements "V € ID + Space-time Spinors. From the above
discussion it is quite clear that space-time Spinors represent in ]Rl 3
’

the Dirac spinors introduced in (iii) of §1.

We also mimic the spinorial metric in @(4) [(iii) of §1] defining

Byt Ip X I —C, B(y,e) =by'e < (30)

for an appropriated b € IR1 3 -
’
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4.4. REPRESENTATION OF DIRAC SPINORS WITHIN THE 324 1 ALGEBRA
’
From table I we see that IR4 1’ nz3 2 and IR0 g are isomorphic to
’ ’ ’
the algebra €(4) which is the usual Dirac algebra of physicists. In

order to identify the algebra that carries the physical interpretation
associated with space-time 321'3 we proceed as follows. Let be EA ¢ A=
0,1,2,3,4 an orthonormal basis for WP'9 with p+qg = 5. The voluwe ele-

2
ment is EJ = EOE1E223E4 and we get EJ =+l for q=1,3;5. Now: de-
fine
o EuE4 (31)
and impose that eu is an orthonormal basis for IR1’3, ie
o 22 2o deR =
- = Eo}:4 X s O oy ™ EkE4 el ok = X, 273 . (32)
e e, B

Eg.(32) is satisfied when p = 4, g = 1, ie, 54 = Ek = -Eo = 1 and
we conclude that the real Clifford algebra associated with space-time

(IRl'B) and isomorphic to €(4) is IR, , .
- ’

g 3
EqQ.(31) shows that IR, 5 = BRZ 1 where g is the linear exten-
’ ’

sion of g(e )= E E4 , »=20,1,2,3. We already saw in §4.2 and §4.3
that f(e30) is a prinitive idempotent of B!l 3
is a primitive 1dempotent of IR4 1 Then ID = 314 1 g(f(e30)) is a
minimal “ideal of IR4 1 which is a 4-dimensional vector—space over the
complex field and its elements are Spinors which are rep.esentations in

and we have that g(f(eB&)

of the Dirac spinors
4,1

5. CONCLUSIONS

Hesteneéll) said about the theory of spinors: "I have rot met anyone
who was not dissatisf{ied with his first readings on the subject”.

Well, the reasons for such statemen are in our view due to two

facts

(A) the usual presentation of spinors such as introduced in (1
(ii), (iii) of §1 does not emphasize the geometrical meaning of these
objects.



20

(B) There are not clear connection between the abstract concepts
of spinors as introduced in (i), (ii) and (iii) of §1 and the more abs-
tract concept of Spincors as elements of ideals of particular Clifford al-

gebras.

As to (A) we think that the situation has been partially clarified
with the presentation by Hestenes of the geometrical meaning of
Pauli spinors(ls) and of Dirac spinors(l’z)and also by Penrose and Rin-
dler‘lG) of the geometrical meaning of the undotted and dotted two-com-
ponent spinors.

We take this opportunity to clear up the relation between our ap-

(1,2)
proach to Dirac spinors and the approach by Hestenes e

In Ref.(l) Hestenes searchs a representation, using the Clifford
bundle(17) [ over Minkowski space-time (M)] of the usual Dirac equation

u - =
iny (3u un(x))Ws(x) mws(x) (33)

(4) (over M), q

where M3 x — ws(x) is a section of the spinor bundle
is the electric charge, Au, u=0,1,2,3 are the components (is an ortho-
normal frame in M) of the electromagnetic potential, and {u are the Dirac

matrices satisfying yuyv + yvyu = Zg"v = 2 diag(+1,-1,-1,-1). Hestenes

choose the specific standard aepnebentation(s) where the y-matrices are
1 0 0 -0

A LoYg = % (34)
o -1, 9y 0

and where Dirac spinors are represented by the four -dimensional column
matrices called standard Dirac spinors

L
Y = [ ] (35)
A

where ¢ = -L'(€+n) 2.7k - ® Y (£-n), where £ and” n = B(n, ) are the un-
V2 V2
dotted and do*ted 2-component spinors introduced in (iii) of §1l.

Introducing for each x € M a spinor basis i s

A at
s2 s :
the fiber over x (€(4)) in the spinor bundle(4) where

3 4



2%
1 0 0 0
0 1 0 0
u " iu = 2R Pl - (36)
s1 0 s2 0 s3 1 sh o
0 0 0 1
we can show that das has the following representation in IRl 5 -
X 5 r
c(4) v_+— ¥ = yu we mr u 3 Lit4e) ; w2 =u (37)
s ;b S ;e 1 2 o e ¢ 1
where eu, ¥ =0,1,2,3 is an orthonormal basis of IR1'3(*)-, and ul is

the representation of Moy in IRl 3 Interpreting the yY¥ as representa —
» ’
tions of the vectors e" = guvev ; we get the following representation of

eq.(33) in the Clifford bundle over svace time

g - = . = U . = H
(hid ve e qA\p)eoul mzbu1 ; D=¢e Bv § BB Au. (38)
We observe that in eg. (38) the i = yY=1 has been eliminated! Now al-
tough uy has no inverse, the ccefficients of u, can be equated and we
have

-~

thezel - gAYy = mt;'eo 5 (39),
S
Finally considering
[
= SRR :
® yu ; u 2 (l+eo)(l+e3eo) (40)

eq.(39) can be written as

e e.e A (41)

h0de. - qA® = md ; ey = e e,e e,

5
which appears originaly in ref.(18). It is quite clear that ¢ is an ele-

ment of a minimal ideal in IR since u is a primitive idempote:nt.

13
In resune, the standand Dirac Apuw/w are represented in IR1 3 by
the elements of the minimal ideal Il l 34y of m1'3 and a sxmple

Yo

(*) Observe that the Minkowski- space M is the affine space constructed
L3,
with 1R




Dirac eguation is written using the elements of the minimal ideal Loa®

D
g, :
ﬂ21’3u of IR1’3. Obviously Iip and I,, are 1somorphicf
We can show without difficult that I, (or I,.) is the carrier
space of the representation D(1/2,0) (::] D(O'l/z) of SL(2,C). In refs(l,2)

Hestenes calls 'y € IR; 5 @ spinor. This seems to be non-seguitur in the
’

sense that as 1 € 311'3 is a sum of scalar, pseudo-scaler arndl bivector
parts and the space of the Y's is the carrier space of the representation
D(O'O) B D(l/?,O) ® D(O’l/z) 6 D(O’O) of SL(Z,E)(ly). Nevertheless it
is important to emphasize that worki: g directly witii'eqg.(32) (ie, with V)
gives the correct giromagnetic factor for the electron!

These re: 1lts show that it is not certain that the Kahler-Dirac equa-
tion as presented in ref.(17) can correctly represent the Dirac egua-
tion in the Clifford bundle over Minkowski spacre-time. We will analyse

this point in anothor paper. : R

Aé zo (B) we think that the present paper gives the relation be-
tween spinors and Spindrs in a clear way. Our method  of identification
of spinors with Spinors are based on the concept of Spinorial metric and
the observation that for p + q < 5, Spin+(p{q) is the invariance group
of the Spinorial metrics. e

Among the important results obtained we emphsize that here for the
first time there appears the representation of undotted and dotted two-
component and Dirac spinors in IR1 3 In particular we gave a rigorous

r
proof that the space-time Spinors, ie, the elements of I_ = IR f(e,,)
(172,0) , (0,1/2) i A i
carry the representation D ' eDp "’ of S8L(2,C) and thus can be
said to give a representation of Dirac spinors as introduced in (iii) of
S 1%

Also the standard Dirac spinors [eq.(35)] are ‘represented in Ry 4
’

by the elements of the ideal IlD = DQI 3u1 and a simple Dirac equation
r
written using the Clifford bundle uses as field variable the elensent of
+
12D = IRl'3u v <
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