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ABSTRACT. Let A be a subalgebra of C(T,IR), where T is a compact

Hausdorff space. It is well known that the uniform closure of A is prox
iminal in C(T,IR) equipped with the sup-norm. In this paper we show that

the uniform closure of A': ={f € A; £ > 0}, say V, is proximinal too.

Moreover, for any bounded non-empty subset B C C(T,IR), the set cent(B;V)
of relative Chebyshev centers of B (with respect to V) is non-empty. The
proof relies on a generalization of Bernstein's Theorem on approximation
of a positive continuous function f on [0,1] by its Bernstein pelyno
mials Bn(f).
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Let T be a topological space and let Cb(T;ﬂU be the mmad1§nxn
of all bounded continuous real-valued functions on T, equipped with the
sup-norm , lfll = sup{|f(t)|;t € T}. Wwhen T is compact, Cb(T:n0= CIT;R) ,;
the space of all continuous real-valued functions on T. In this case it
is well known that any closed subalgebra A of C(T;IR) is proximinal
and several proofs have been presented. Smith and Ward [4] extended this
result by proving that any closed subalgebra A of C(T;IR), for compact
T , has the relative Chebyshev center property in C(T;IR). Applying this
result to the algebra A = C(T;IR) one gets that C(T;IR) , for compact
T , admits Chebyshev centers. This result was obtained for T = la,b]l by
Kadets and Zamyatin [6], and for any compact T by Garkavi [7]. It was
extended by Mach [8]: indeed, it follows from Theorems 3 and 4 of Mach [8]
that, for any topological space T, the alyebra Cb(T;uu has the  relative
Chebyshev center property in ¢ (T;IR) and the map B *cent(B;Cb(T:IR))
is lower semicontinuous . See also Mach [7]. The result that Cp (T, R)
admits Chebyshev centers, for any topological space T, was also noticed
Franchetti and Cheney [4]. All these results were generalized and extended
by, Prolla, Chiacchio and Roversi |10], who showed that any closed sub-
alLebra AC Cb(T;nU, for an arbitrary topological space '1', has the
relative Chebyshev center property in both Cb(T;HU and 7’ (T;IR) and the
map B —* cent(B;A) is Lipschitz continuous in the Hausdorff metric d, with
Lipschitz constant not greater than 2. This result was proved using among
other things the Stone-Weierstrass Theorem. Since we extended recently
this theorem to a description of the closure of A+, for compact T (see
[11] or [12]), it is natural to atempt to extend this result of [10] to
theruniform closure of A+. Our Theorem 3 below achieves this objective,
even for A C 2_(T;IR).

Let us explain our notation and terminology. For any Banach space
E , the open and closed balls of center a and radius r are denoted ,
respectively, by B(a;r) and B(a;r). If V is any non-empty subset of E
and a € E, then

dist(a;V): = infllla-vll; v € Vv}.

We denote by Pv(a) the set of all best approximants to a from V,
P ;



Pv(a):f fvEV;llv-all = dist(a;n 1.

TE Pv(a) #¢ for all a € E, we say that V is proximinal in E. If
B € E is any bounded non-empty subset, then

rad(B;V): = inf{ sup If - vll; v € V]
fER
is called the relative Chebyshev radius o4 B with nespect te V. Wwhen
V = E we write simply rad(B) and call it the Chebyshev nadius of B. 2n
element v € V such that

sup lIf- vll = rad(B;V)

fEBR
is called a aefative Chebyshev centen o4 B with respeet to VvV, and we
denote by cent(B;V) the set of all such elements. When V = E , we write
simply cent(B) and its elements are called the Chebushev centens of B.

When cent(B;V) # ¢ for any bounded B T B, we say that V has the
relative Chebyshev centen propenty in E. When cent(B) # ¢ for all such
B, we say that E admits Chebyshev centens.

If T is any non-empty set, we denote by ? (T,IR) the vector space
of all bounded real-valued functions defined on T. When we oquip ¢ (T; )
with the sup-norm

NeEll = sup {|£(t)]; t € T}

it becomes a Banach space. When 71‘ is a topological space, then the vec
tor subspace of all elements of . (T;IR), wich are continuous on T, is
denoted by Cy(T;IR) . Since is is closed in C,(T;IR) , it is a Banach
space too. When T is compact, then all continuous real-valued functions
on T are bounded, i.e., C(T;IR) = Cb(T;]R) for compact T. For any
topological space T , the space Cb(T,IR) is isometrically, algebraically
and lattice isomorphic to C(K;IR) for some compact Hausdorff space K.
When T is a completely regular Hausdorff space, then we may take X to
be the Stone-Cech compactification of T. The set of all f €2 (T;IR)
such that £(t) > 0, for any t € T, is denoted by 2.:('1‘,-110 . Por any

subset A C 2 _(T,m), A*:=aniir,m.



The following definition was introduced in [10].

DEFINITION 1. Let V be a closed non-empty subset of a Banach space E,
and let B be a class of bounded non-empty subsets of E. We say that the
pair (V,B) has propeaty (C) in E, if given BE€ B, w€V, r >0 and

€ >0 such that v N 0O B(fsr) #¢ and lf-wll <r+e , for all
fEB

f € B, there exists v € V such that llv-wl < € and lf-vl < r for
£25 W SR L - S

Let us say that V has propeaty (C) <n E, if the pair (V,B(E))
has property (C) in E, where B(E) is the class of all bounded non-empty
subsets of E. Clearly, if V has property (C) in E, and F is a closed
vector subspace such that V CF CE, then V has property (C) in the
Banach space F too.

The following result was proved in [10]. (See Proposition 2.2 and
Theorem 2.4 of [10].)

THEOREM 1. Let V be a closed non-empty subset of a Banach space E. 1§
V has propenty (C) in E, and F 4s any closed vector subspace of E con
taining VvV, then

(1) cent(B;V) # ¢ , for every bounded and non-empty subset B of F.

(2) The map B = cent(B;V) {8 Lipschitz dy - continuous, with Lipschitz
constant not greater than 2 , i.e.,

¥ dy (cent (K;V), cent(L;V)) < 2 d,(K,L)
forn any pain K,L o4 bounded and non-empty subsets of F.
(3) V 48 proximinal in F.

(4) dy (Py (£) ,Py(g)) < 2 IE -gll 4o any pain £,3 4n F .

(5) The metnic projection B, admits a continuous selection.

REMARK. The Hausdorff metric dH is defined as follows:

dH(A,B)=1nf{r>0:ACB+rU S B CN A O



where U = {v € E; Il vll < 1}, for any pair A,B of bounded and non-empty
subsets of E.

THEOREM 2. Let K be a clesed and nen-empty subset of £_(T;IR) such
that, fon any pain w,h € K and & > 0 the function ((w+ £)a h)v(w=-¢)
belongs to K. Let TOC T, and et Ko = {f €EK; £(t) = 0 for all t C'I‘O".
I§ V=K or {f§f V= Ko s A4 K, 3 non-empty , and E L (rsmr) ,  thew

(1)=(5) 04 Theorem 1 are thue.

PROOF. We have to prove that V has property (C) in 2 (T;IR), and it
suffices to show that V = K has property (C) in 2 _(T;IR) . Indeed , K,
is closed too and if w,h € K, , then by hypothesis g =((w+¢e) ah)viw -1)
belongs to K, since w and h belong to K. Now, if we take t ¢ 'I‘U .
then w(t) = h(t) = 0, and therefore g(t) = 0. Hence g € K-

We claim that K has property (C) in f (T;TR). Indeed, let B C ¢ (T; )
be a bounded non-empty subset, let w€ K, r >0 and ¢ > 0 be given
with KN N B(f;r) #¢ and Nf-wl < r + e\ for all f € B . Choose

fE€EB
h € K such that |If - hll < r, for all f € B.Iet v={(w+ r)A hv(w~-+).

Then v € K and |llv-wl < ¢ . We claim that llf -vil < r for all f €B.
Indeed, let x €T and £ € B be given.

CASE 1. [h(z) = w(x)]| < €.

Then v(x) = h(x) and [f(x) - v(x)| = |[£(x) -h(x)] < r.
CASE 2. h(x) - w(x) > & .

Then v(x)=w(x)+ ¢t and -r < f(x) - hix) < F(x) - wlx)- P E € argi= Py
CASE 3. hi(x) - w(x) < -¢ .

Then v(x)=w(x)-¢ and -r=-(r+e)+e < f(x) ~wx+e < f(x)-h(x) <
<y B

REMARK. It is obvious from the proof of Theorem 2 , that whenever a set
K C 2 (T;IR) is such that , for any pair w,h € K and ¢ > 0 the function
((w + €) Ah)v(w - €) belongs to K, then the set Ko= {f EK; £(t) =0
for all t € To} has the some property, for any subset o C T. Hence,

to each corollary listed below, there is a corresponding result for Ko F



whenever Ko is non-empty. Most of the time we will not state explicitly

the corresponding corollary.

COROLLARY 1. Llet a,b€ ¢ (T;IR) , with a<b , et V =[a,b]:=
{h € ¢ (T:R) ; alx) £ hi(x) < b(x) , fon akt x € T} and Let E=1 (T;R).
Then (1)-(5) of Theorem 1 are thue.

PROOF. It is easy to see that for any pair w,h in [a,b],the function
(w+€) aAh) v(w=-2¢) belongs to [a,b]l. O

REMARK. Franchetti and Cheney proved the proximinality of any order interval
in any Banach lattice (see [4, Lemma 3.5]). Roversi proved that [a,b] C
€ 7_(T;R) has the relative Chebyshev center property in P (T;IR) (see
[13, Proposition 2.6]). Notice that Corollary 1 applies to the set
v =1{(h €2 _(T;R); h(T) € [a,bl} when [a,b] € IR. Indeed , this case

corresponds to take a and b 1in Corollary 1 to be constant functions .

COROLLARY 2. Let (T,<) be a preondened set and Let VvV be zthe subset
0f akt £ € ¢ (T;IR) which ane non-decneasing (esp. non-increasing) on
T, and Let E = L_(T;IR). Then (1)-(5) of Theorem 1 axne true.

PROCF. The set V is a closed sublattice of ¢ (T;IR) and w* ¢ belong
to V, for each w€ V and € >0. 0O

REMARK. When T is a topological space and V is as in Corollary 1 or
2 " then v N Cb(T,l'R) has the same property in £ (T,IR) as o and
analogous results can be formulated. Roversi had proved that the closed
sublattice V of Corollary 2 has the relative Chebyshev center property
in ¢ _(T;IR). (See Proposition 2.4 of [13].)

COROLLARY 3. Let K be a closed sublattice ¢f £_(T;IR) such that fon
any w€ K and € > 0, the functions w + ¢ and w - ¢ belong to K.
Let TOCT, and K°={f€K;f(t)=0 fon att tF.TO).Iﬁ V=K on

v = Ko and E = % _(T;IR) , then (1)-(5) o4 Theorem 1 are true.

PROOF. Clearly, K satisfies the hypothesis of Theorem 2. O



REMARK. The hyphotesis of Corollary 3 are verified if K is a closed
sublattice such that K + K € K and K contains the constants; in par-
ticular, if K is a closed sublattice containing the constants which is
also a convex cone. Hence Corollary 3 is a generalization of an Approximatior
Theorem of Blatter and Seever [2], [3]. Under the latter hypothesis they
proved that Ko is proximinal in & (T;IR). Their proof uses their theory
of interposition of functions. In [3] they establish a formila for  dist(f;K)
in terms of the quasi-proximity defined by K on T. The approximation
theorem of Blatter and Seever extends an approximation theorem of Nachbin
[9, Appendix, §5, Theorem 6] which préves that any closed lattice cone
K C C(T;IR) , containing the constants, is proximinal in C(T;IR) , for T
a compact Hausdorff space. (When T o= P then Blatter and Seever's result
follows from Nachbin's). Nachbin also proved a formula for dist(f;K).

In [10] it is considered the case in which V 1is a closed vector
subspace of 2 (T;IR). Then Theorem 2 takes the following simplified form.

N
THEOREM 2'. Let V be a closed vector subspacd of 0_(T;IR) such that,
fon any h €V and ¢ > 0, the function (o h)vi=+) befongs to v.
Then V has property (C) in 9 _(T;IR) .

Using Theorem 2' the following result was proved in [10].

THEOREM 3. 'let V be a closed subafgebra of & (T;R),and Let E =9 (T;TR).
Then (1)-(5) o4 Theorem 1 are taue.

The proof of Theorem 3 is reduced to the case of a closed sub-
algebra V of C(K;IR), where K is a compact Hausdorff space, and in
this case the proof that V satisfies the hypothesis of Theorem 2' uses
the Stone-Weierstrass Theorem. (See [10].) Since any closed subalgebra of
Cb(T;nU , is closed in %, (T;IR) , Theorem 3 implies our next result. -

COROLLARY 4. Let T be a topological space. Let V be a cfosed sub-
algebra of CL(TiR) and Let E =2 (T;TR) or E = Cp (T7IR) . Then (1)=(5)
0f Theorem 1 ane taue. 1§ T 4is Locally compact, and V is4 a closed
subalgebra of CO(T;nn and E = 2_(T;IR) , then (1)-(5) of Theokem 1
are thue.



Let us now extend Theorem 3 and Corollary 4 to the uniform closure
of the set of positive elements of a given subalgebra A . Firstly , we
show that our version of the Stone-Weierstrass theorem ([11] or [12]) ,
describing the wuniform closure of A+, for A C C(K;IR) , K compact,
can be used to prove that such a closed convex cone satisfies the hypothe
sis of Theorem 2.

LEMMA 1. Let A be a subalgebra of C(K;IR), where K (4 a compact
Hausdorfg space. Fon any w and h 4in the uniform closure of A" and any
£ > 0, the function ((w + €) A h)v (w - €) belongs to the uniform clo-
sure of A

PROOF. Let g = ((w +¢€) A h)v (w - €). By Theorem 3, Prolla [11] there
exists a point x € K such that

dist(g:A") = dist (g 5 Af,)
where [x ] is the equivalence class of x mod. A", laeez [ %] = % €°K;
a(t) = a(x) for all a € a*). since both w and h  belong to the

uniform closure of A’ , they are constant on [x]. Let w, and ho be

constant value of w and h, respectively, on the set |x|. Notice that

w030 and hogo.Hence ((w0+n) Aho)v(wo-r)>0.
CASE 1. For any a € At , a(x) = 0.
In this case w, = ho =0, and g(t) = 0 for all t € [x]. Hence
+ +
= = i € i ; =
llg 0I|[x] 0 and, since 0 Av.,.. diat (q[x]’A[xl) [ B

CASE 2. For some a € At » al(x) > 0.

Let fo = (((wo+ €) A ho) v (wo- €))/a(x) and f = foa . Then

£E€A" and £(t) = g(t) for all t € [x]. Hence llg - £, = 0 and
” ¢
dist(q[x], A[x]) =0.

In both cases, dist (g; I\+) =

0 and therefore g belongs to the
uniform closure of A" in Cc(k;m®). O

THEOREM 4. Let A be a subalgebra of & _(T;IR) ,Llet Vv be the unifonm



closure of At in 2_(T;IR) and Let E =2, (T;R), Then (1)-(5) of The

orem 1 are true.

PROOF. Let K be the Stone-Cech compactification of T equipped with
the discrete topology. Then 2_(T;IR) is isometrically, algebraically and
lattice isomorphic to C(K;IR). The result now follows from Lemma 1 and
Theorem 2. 0O

COROLLARY 5. Let T be a topological space and Let A, be a subalgebra
04 Cb(T;IR). 14 V denotes the uniferm clesune of A" in (.‘b(T;IR) and

E = ¢_(T;IR), then (1)-(5) of Thecrem 1 are truce.

PROOF. The algebra A is a subalgebra of £_(T;IR) and the uniform clo-
sure of A’ in cb(T;m) is the same as the uniform closure of A’ in

2. (T;IR) , since Cb(’r‘;lR) is closed in ?_(T;IR) . O

COROLLARY 6. Let T ¢ a Locally compact space and Let A be a sub-
algebra of CO(T;IR). 14 V denotes the uniform closure of A in
CO(T;m) and E = 2_(T;IR), then (1)-(5) 0§ Thecrem 1 axre true.

PROOF. The algebra A is a subalgebra of both Cb(’r‘,—m) and 2_(T;IR)
and the uniform closure of A" in CO('I‘;IR) is the same as the uniform
closure of A" in Cb(T;IR) and in 2 _(T;IR) , since C_(T;IR) is closed
in both Cb(T;lR) and £ (T:Ry . O

COROLLARY 7. Let T be a topelogical space (resp.a Locatly compact space),
Let V = CL(T;R) (resp. V = Cp(T;IR)) , and Let E = 4 (T;R).Then (1) =
(5) of Theorem 1 are ftrue.

=N

COROLLARY 8. Let V = &l (resp. c;) and Let E = & . Then ()= (5) o
Theorem 1 are true.

PROOF. In Corollary 7 take T = IN with the discrete topology. O
COROLLARY 9. Let ¢ > 0 be defined on T x T, and Let V=I[f€Q (T;R);

[£(t) = £(u)| < ¢(t,u) foxr all (t,u) € T x T}. Then (1)-(5) of Theexem 1,
are Zrue.
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PROOF. It is easily seen that ((w + £) A h) v (w - ¢) belongs to V,
whenever w and h belong to V. Indeed, V is a lattice containing
wte forany w€YV and € >0. 0O

As an example of application of Corollary 9, assume that (T,d) is a

metric space (or even a pseudo-metric space) and let plt,u) = Md(t,u)q

for some fixed M > 0 and o € R. Then V consists of all f € 1 _(T;R)

such that [£(t) - £(uw)| < Md(t,u)” for all (t,u) € T x T ,i.e., all
- g Lipa with Lipschitz constant not greater than M.

In order to state our last corollary let us recall the definition of

CIR(T;IR) when T 1is a locally compact Hausdorff space . For any

e Cb(T;IR) and v € IR, we say that lim f(t) = v if, given e >0
Lt =

there exists a compact subset K C T such that |[f(t) - v| - ¢ for all

t€T, t¢&K. Following Amir and Deutsch [1 ], CIR(’I‘;IR) denotes the
closed subalgebra of Cb(T;IR) of all functions that have "limit at in-
finity". when T = IN with the discrete topoloyy, we write c me(lN:lR).

COROLLARY 10. Let T be a £ocally compact Hausdonff space (resp. T = IN
with the discrete topology), Let V = CIR(T; IR) (resp. V = ), and tet
E =2 (T;IR) (resp. E = %_). Then. (1)-(5) of Theorem 1 are Zhrue.
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