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RESUMO

O principal objetivo desta tese é estudar sistemas acoplados de equações de
Schrödinger não linear no caso em que o espaço de energia 9H1pRdq é crítico em relação
ao scaling. O estudo é dividido em duas partes. Na primeira estudamos um sistema com
não linearidades cúbicas, onde o espaço de energia crítica é o 9H1pR4q. Nosso principal
objetivo é mostrar blow-up em tempo finito para soluções cujo o dado inicial é radialmente
simétrico. Começamos aplicando o método do ponto fixo para mostrar boa colocação local
do problema de Cauchy associado. Em seguida, provamos existência de soluções ground
state. Para tal, utilizamos o método de concentração e compacidade para encontrar uma
solução para um problema de minimização restrito deduzido a partir de uma desigualdade
crítica do tipo Sobolev. Por fim, para obter o resultado de blow-up em tempo finito,
utilizamos uma versão modificada do método de convexidade.

A segunda parte trata de um sistema com não linearidades gerais com cresci-
mento do tipo quadrático, onde o espaço de energia é 9H1pR6q. Aqui o principal objetivo é
provar um resultado de scattering e boa colocação global. Iniciamos provando boa colocação
local, onde também utilizamos o método do ponto fixo, entretanto, provamos o resultado
com o dado inicial no espaço de Sobolev não homogêneo H1pR6q e, em seguida, mostramos
um resultado de estabilidade que nos permite trabalhar com o dado inicial no espaço
de Sobolev homogêneo 9H1pR6q. Para provar a existência global, utilizamos o método de
concentração-compacidade e rigidez, que consiste em admitir que o resultado é falso e
provar a existência de uma solução particular, chamada de solução crítica. Em seguida,
provamos que tal solução não pode existir, chegando em uma contradição.

Palavras-chave: Sistema de equações de Schrödinger; Energia crítica; Soluções
ground state; Blow-up; Boa colocação; Scattering;



ABSTRACT

The main goal of this thesis is to study coupled systems of nonlinear Schrödinger
equations in the case where the energy space 9H1pRdq is critical with respect to scaling.
The study is divided into two parts. In the first one, we study a system with cubic
nonlinearities, where the critical energy space is 9H1pR4q. Our main objective is to show
blow-up in finite time for solutions whose initial data is radially symmetric. We start by
applying the fixed point method to show the local well-posedness of the associated Cauchy
problem. Next, we prove the existence of ground state solutions. To this end, we use the
concentration-compactness method to find a solution of a restricted minimization problem
deduced from a critical Sobolev-type inequality. Finally, to obtain the blow-up in finite
time result, we use a modified version of the convexity method.

The second part of the work deals with a system with general nonlinearities
with quadratic growth. In contrast, the critical energy space is 9H1pR6q. Our main goal
is to prove a scattering result and global well-posedness. We start by proving local well-
posedness, where we use the fixed point method. However, we prove the result with the
initial data in the inhomogeneous Sobolev space H1pR6q and then we show a stability result
that allows us to work with the initial data in the homogeneous Sobolev space 9H1pR6q. To
show the global existence, we use the method that consists of admitting that the result is
false and proving the existence of a particular solution, called the critical solution. Then,
we prove that such type of solutions cannot exist, arriving at a contradiction.

Keywords: Schrödinger systems; Energy critical; Well-posedness; Ground
state solution; Blow-up; Scattering.



LIST OF SYMBOLS

N the set of natural number.

R the set of real numbers.

R� the set of nonnegative real numbers.

C the set of complex numbers.

Rd the d-dimensional Euclidean space.

Cd the d-dimensional complex space.

Repzq the real part of the complex number z.

Impzq the imaginary part of the complex number z.

z̄ conjugate of a complex number z.

| � | the euclidean norm
b
x2

1 � ...� x2
d, where x P Rd.

} � }X norm in the space X.

Bxi
� Bi the partial derivative, B

Bxi

, with respect to the xi variable.

uxi
� Bu
Bxi

� Biu.

ut � Bu
Bt � Btu.

∇u the gradient vector pux1 , ..., uxd
q.

∆u the Laplacian operator
ḑ

i�1
uxixi

.



Br � tx P Rn; |x|   ru.»
f �

»
Rd

fpxqdx.

CpXq the set of continuous functions in X.

CkpXq the set of functions with continuous derivatives of order k ¥ 0 in X.

C80 pXq the set of all functions in the class C8 with compact support in X.

LppXq the Lebesgue space of all p-integrable functions.

Hs,ppXq ps P R, 1 ¤ p ¤ 8q Sobolev spaces.

HspXq � Hs,2pXq.
9Hs,p the homogeneous (generalized) Sobolev space.

9HspXq � 9Hs,2pXq.

S 1pXq the space of Schwatrz functions in X.

Fpfq � f̂ the Fourier transform.

F�1pfq � f̌ the inverse Fourier transform.

eitpa∆�bqu0 �
�
e�itpa|ξ|2�bqû0

	_
with a and b constants.

X ãÑ Y continuous inclusion of space X into space Y .

A � Al the product A� ...� A (l times).

v the vector pv1, ..., vlq.u
 the vector p|u1|, ..., |ul|q.

pδλfqpxq the dilation by 1{λ, that is, pδλfqpxq � fpx{λq.

C a constant that may change from one line to the next.



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 NOTATION AND PRELIMINARY RESULTS . . . . . . . . . . 24
2.1 Preliminaries: First part . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Preliminaries: Second part . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Littlewood-Paley theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Linear profile decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Asymptotic decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.5 Coercivity lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.6 Virial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 BLOW-UP OF THE RADIALLY SYMMETRIC SOLUTIONS
FOR A CUBIC NLS TYPE SYSTEM IN DIMENSION 4 . . . . 45

3.1 Local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Existence of ground state solution . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Critical Sobolev-type inequality and localized version . . . . . . . . . . . . 50
3.2.2 Concentration-compactness method . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 SCATTERING FOR A QUADRATIC TYPE NLS SYSTEM IN
DIMENSION 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Local theory in 9H1
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Existence of a critical solution . . . . . . . . . . . . . . . . . . . . . . 85
4.3 The enemies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Finite-time blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Negative Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.7 Low-to-high frequency cascade . . . . . . . . . . . . . . . . . . . . . . 117
4.8 Scattering and blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . 118

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



A APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.1 Almost Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.2 Compactness of almost periodic modulo symmetries . . . . . . . . . 128



12

CHAPTER 1

INTRODUCTION

In this work we will study to distinct nonlinear systems of Schrödinger equations.
The first one is the following cubic-type system,$'&'%

iut �∆u� u�
�

1
9 |u|

2 � 2|w|2


u� 1

3 ū
2w � 0,

iσwt �∆w � µw � p9|w|2 � 2|u|2qw � 1
9u

3 � 0,
(1.1)

where u � upt, xq and w � wpt, xq are complex valued functions with pt, xq P R � R4,
∆ represents the standard Laplacian operator and σ, µ ¡ 0. This model describes the
interaction between an optical beam and its third harmonic in a material with Kerr-type
nonlinear response. For a more detailed explanation of the model, the reader can check
(SAMMUT; BURYAK; KIVSHAR, 1998).

The second one is a l-component nonlinear Schrödinger system with quadratic-
growth nonlinearities. Precisely, we will show a scattering result and global well-posedness
to the following Cauchy problem#

iαkBtuk � γk∆uk � �fkpu1, ..., ulq,
pu1p0, xq, ..., ulp0, xqq � pu10, ..., ul0q, k � 1, ..., l,

(1.2)

where u1, ..., ul are complex-valued functions on the variables pt, xq P R� R6, αk, γk ¡ 0,
are real constants and the nonlinearities fk : Cl ÝÑ C satisfy a quadratic-type growth.

The main goal of this work is to study nonlinear systems of Schrödinger
equations in the energy-critical case. This term comes from the fact that not only the
class of solutions, but also the energy, are left invariant under the transformation

fpt, xq ÞÑ fλpt, xq :� λ
d�2

2 fpλ2t, λxq, pt, xq P R� Rd, (1.3)
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called scaling symmetry. This defines a notion of criticality. Precisely, a quick computation
shows that 9H1pRdq is the critical (scaling invariant) Sobolev space if p :� pd� 2q{pd� 2q,
where p denotes the power of the nonlinearities. Therefore, the critical dimensions for
systems (1.1) and (1.2) are, respectively, d � 4 and d � 6.

The first one is devoted to study system (1.1). From a mathematical point
of view, system (1.1) has been studied in several cases. In (PAVA; PASTOR, 2009), the
authors established local and global well-posedness for the associated Cauchy problem
with periodic initial data in dimension one. Also in one space dimension, (PASTOR, 2010)
is concerned with nonlinear and spectral stability of periodic traveling wave solutions. The
author proved the existence of two smooth curves of periodic solutions depending on the
cnoidal type functions and a stability result under perturbations having the same minimal
wavelength and zero mean over their fundamental period. For the multidimensional case,
(OLIVEIRA; PASTOR, 2021) proved the existence and stability of ground state solutions,
the local and global well-posedness and established several criteria for blow-up in finite
time in the energy space H1pRdq. In (RAMADAN; STEFANOV, 2024), the authors studied
solitary waves for (1.1). They constructed the waves in largest possible parameter space and
provided a complete classification of their stability. In (COLIN; WATANABE, 2023), it was
proved the existence of stable standing wave solutions as well as the correspondence between
minimizers and ground state solutions. In the three dimensional case, (ARDILA; DINH;
FORCELLA, 2021) studied the asymptotic dynamics for solutions to (1.1). They provided
sharp threshold criteria leading to global well-posedness and scattering of solutions, as well
as formation of singularities in finite time for symmetric initial data. Also, in (ZHANG;
DUAN, 2023), it was proved existence results for normalized ground state solutions in
the L2-subcritical case and L2-supercritical cases and established the nonexistence of
normalized ground state solutions in the L2-critical case and a new blow-up criterion which
is related to normalized solutions.

Our goal is to study the system in the energy space H1pRdq. This terminology
comes from the fact that, at least in a formal level, the system conserves energy and mass,
respectively given by,

Epu,wq :� 1
2

»
p|∇u|2�|∇w|2�|u|2�µ|w|2q�

» �
1
36 |u|

4 � 9
4 |w|

4 � |u|2|w|2 � 1
9Repū3wq



(1.4)

and
Mpu,wq :�

»
p|u|2 � 3σ|w|2q. (1.5)

Our main goal is to prove existence of blow-up solutions for system (1.1). To do this, we
will use the ideas presented in (NOGUERA; PASTOR, 2022).

First, we establish the local well-posedness for the Cauchy problem associated
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to (1.1). We set the space

Y pIq :� pC X L8t H
1
xq X L4

tH
1,8{3
x , (1.6)

for a time interval I � r�T, T s with T ¡ 0. The result is the following.

Theorem 1.1. For any u0, w0 P H1pR4q, there exists T pu0, w0q ¡ 0, such that the system
(1.1) admits a unique solution pu,wq P Y pIq � Y pIq, with I � r�T pu0, w0q, T pu0, w0qs. In
addition, the following blow-up alternative holds: There exist times T�, T � P p0,8qsuch
that the solution can be extended to p�T�, T �q and if T �   8, then

lim
tÑT�

p}∇uptq}Lq
t Lr

x
� }∇wptq}Lq

t Lr
x
q � 8,

for any pair pq, rq satisfying 2 ¤ q, r ¤ 8, 2
q
� 2� 4

r
. A similar result holds if T�   8.

We establish the local well-posedness using the fixed point method to find
solutions of the equivalent integral equations$''&''%

uptq � Uptqu0 � i

» t

0
Upt� sqF pupsq, wpsqqds,

wptq � W ptqw0 � i

» t

0
W pt� sqGpupsq, wpsqqds,

(1.7)

where Uptq � eitp∆�1q, W ptq � eitpa∆�bq, are the corresponding unitary groups associated
to the linear part of (1.1), with a � 1{σ, b � µ{σ, and

F pu,wq �
�

1
9 |u|

2 � 2|w|2


u� 1

3 ū
2w and Gpu,wq � ap9|u|2 � 2|w|2qw � 1

9au
3, (1.8)

are the nonlinearities. This will be addressed in Section 3.1

Next, in Section 3.2, we study a special class of solutions called ground states
which are defined as follows. Recall that standing waves are solutions of (1.1) of the form

upt, xq � eiωtP pxq, wpt, xq � e3iωtQpxq, (1.9)

where P and Q are real functions with fast decay at infinity. Using (1.9) in (1.1), one can
see that pP,Qq must satisfy$'&'%

∆P � pω � 1qP �
�

1
9P

2 � 2Q2


P � 1

3P
2Q � 0,

∆Q� pµ� 3σωqQ� p9Q2 � 2P 2qQ� 1
9P

3 � 0.
(1.10)

It is known from (OLIVEIRA; PASTOR, 2021), Lemma 2.2, that if pP,Qq P H1pRdq �
H1pRdq is a solution to (1.10) then the identity

pd� 4q
»
p|∇P |2 � |∇Q|2qdx� dpω � 1q

»
P 2dx� dpµ� 3σωq

»
Q2dx � 0. (1.11)
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is satisfied for all t. Thus, if d � 4 then

pω � 1q
»
P 2dx� pµ� 3σωq

»
Q2dx � 0,

which implies that the system has non-trivial solution only if ω � �1 and µ � 3σ. In these
conditions, the system (1.10) reduces to$'&'%

∆P �
�

1
9P

2 � 2Q2


P � 1

3P
2Q � 0,

∆Q� p9Q2 � 2P 2qQ� 1
9P

3 � 0,
(1.12)

and the corresponding action functional can be written as

SpP,Qq � 1
2KpP,Qq �NpP,Qq, (1.13)

where

KpP,Qq �
» �|∇P |2 � |∇Q|2� dx, NpP,Qq �

» �
1
36P

4 � 9
4Q

4 � P 2Q2 � 1
9P

3Q



dx.

(1.14)
Precisely, we have the definition

Definition 1.2. We say that

(i) A pair of functions pP,Qq P 9H1pR4q � 9H1pR4q is a weak solution to (1.12), if for all
pf, gq P 9H1pR4q � 9H1pR4q,»

∇P �∇fdx �
» �

1
9P

3 � 2Q2P � 1
3P

2Q



fdx,»

∇Q �∇gdx �
» �

9Q3 � 2P 2Q� 1
9P

3


gdx.

(1.15)

(ii) A solution pP0, Q0q P 9H1pR4q � 9H1pR4q is a ground state of (1.12) if

SpP0, Q0q � inftSpP,Qq; pP,Qq P Cu

where C denotes the set of all non-trivial solutions of (1.12). The set of all ground
states of (1.12) will be denote by G.

The main result of Section 3.2 is the following.

Theorem 1.3. There exists a ground state solution pP0, Q0q for system (1.12), i.e., G is
non-empty.

For this purpose, we shall use the concentration-compactness method, intro-
duced in (LIONS, 1985). We proceed in three steps. First, we deduce a critical Sobolev-type
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inequality corresponding to our system and derive a minimization problem. Additionally,
we establish a localized version of the Sobolev inequality, which will be useful to our
purpose. Later, we prove a result inspired in the limit case lemma presented in (LIONS,
1985), which is called concentration-compactness lemma II. Finally, the third step is to
prove that the minimization problem has a minimizer, implying the existence of a ground
state solution. Finally, we establish an optimal constant for the minimization problem.

Finally, in Section 3.3, we prove the main result of this part,

Theorem 1.4. Suppose pu0, w0q P H1pR4q �H1pR4q and let pu,wq be the corresponding
solution of (1.1) defined in the maximal time interval of existence I. If pu0, w0q is a pair
of radially symmetric functions satisfying

Epu0, w0q   EpP,Qq (1.16)

Kpu0, w0q ¡ KpP,Qq, (1.17)

where pP,Qq is any ground state solution, and E is the energy defined in (3.25), then the
time interval I is finite.

As usual we use the convexity method to obtain this kind of result, which
consist in deriving a contradiction by working with the virial identity

Vptq �
»
ϕpxq|upt, xq|2dx�

»
ϕpxqσ2|wpt, xq|2dx,

where ϕ P C8
0 pR4q, and its derivative

V 1ptq � 2Im
»

∇ϕp∇uū� σ∇ww̄qdx� 4
»
ϕIm

�
1
2 ūfpu,wq �

σ

2 w̄fpu,wq


dx, (1.18)

with fpu,wq �
�

1
9 |u|

2 � 2|w|2


u� 1

3 ū
2w and gpu,wq � p9|w|2 � 2|u|2qw � 1

9u
3.

Notice that the second term in (1.18) does not vanishes necessarily , which
brings some difficulties in order to apply the method. To avoid this problem, we used a
modification of the method presented in (INUI; KISHIMOTO; NISHIMURA, 2020), which
consists in working with radially symmetric solutions and the function

Rptq � 2Im
»
R4

∇ϕp∇uū� σ∇ww̄qdx (1.19)

instead of the usual V .

In the second part of this work, we will be focused on system (1.2). In this case
we will assume that the nonlinearities fk, k � 1, ..., l satisfies the following hypothesis

pH1q
fkp0q � 0, k � 1, ..., l.
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pH2q For all z, z1 P Cl

���� BBzm

rfkpzq � fkpz1qs
����� ���� BBz̄m

rfkpzq � fkpz1qs
���� À ļ

j�1
|zj � z1j|, k,m � 1, ..., l.

pH3q There exists a function F : Cl ÝÑ C, such that

fkpzq � BF
Bz̄k

pzq � BF
Bzk

pzq, k � 1, ..., l.

pH4q For all θ P R and z P Cl,

ReF
�
e

i
α1
γ1

θ
z1, ..., e

i
αl
γl

θ
zl

	
� ReF pzq.

pH5q The function F is homogeneous of degree 3, that is, for all z P Cl and λ ¡ 0, it holds

F pλzq � λ3F pzq.

pH6q It holds ����Re
»
Rd

F puqdx
���� ¤ »

Rd

F p
u

qdx.
pH7q The function F is real-valued in Rl, that is, if py1, ..., ylq P Rl then

F py1, ..., ylq P R.

Moreover, the functions fk are nonnegative on the positive cone on Rl, that is, for
yi ¥ 0, i � 1, ..., l

fkpy1, ..., ylq ¥ 0.

pH8q The function F may be written as a sum F1 � ... � Fm, where Fs, s � 1, ...,m, is
super-modular on Rd

�, 1 ¤ d ¤ l, and vanishes on hyperplanes, that is, for any
i, j P t1, ..., du, i � j and k, h ¡ 0, we have

Fspy � hei � kejq � Fspyq ¥ Fspy � heiq � Fspy � kejq, y P Rd
�,

and Fspy1, ..., ydq � 0 if yj � 0 for some j P t1, ..., du.

Remark 1.5. The following system is an example satisfying the conditions (H1)-(H8)#
iBtu1 �∆u1 � �2ū1u2,

iBtu2 � κ∆u2 � �u2
1,

(1.20)

where F pz1, z2q � z̄2
1z2. Other models with quadratic-type growth nonlinearities satisfying

(H1)-(H8) can be found in (KIVSHAR et al., 2000), (NOGUERA; PASTOR, 2022) and
(PASTOR, 2019)
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Hypothesis pH3q � pH5q guarantee that the system (1.2) conserves both mass
and energy given, respectively, by

Qpuptqq :�
ļ

k�1

α2
k

γk

}ukptq}2
L2 , (1.21)

and

Epuptqq :�
ļ

k�1
γk}∇uk}2

L2 � 2Re
»
Rd

F puptqqdx, (1.22)

that is, provided there exists a solution to the system, then

Qpuptqq � Qpu0q and Epuptqq � Epu0q.

We also denote the kinetic energy and potential energy, respectively, by

Kpuq �
ļ

k�1
γk}∇uk}2

L2 and P puq � Re
»
Rd

F puptqqdx.

Thus, with this notation, the energy becomes Epuq � Kpuq � 2P puq.
This kind of system has been studied in (NOGUERA; PASTOR, 2021), where

the local and global well-posedness was proved on L2pRdq and H1pRdq, 1 ¤ d ¤ 6, existence
and stability/instability of ground state solutions, and the dichotomy global existence
versus blow-up in finite time, in the cases 1 ¤ d ¤ 5. In (NOGUERA; PASTOR, 2022)
was treated the H1 critical, that is, when d � 6. The authors proved existence of ground
state solutions and conditions to a radial solution blow-up in finite time. On both works,
the hypothesis (H4) was replaced by

pH4�q There are positive constants σ1, ..., σl such that for any z P Cl

Im
ļ

k�1
σkfkpzqz̄k � 0.

Recall that, a ground state solution in R6 is a solution to the elliptic system

�γk∆ψk � fkpψq, k � 1, .., l, (1.23)

where ψk are real-valued functions with decay to zero at infinity. Under our hypothesis
(see (NOGUERA; PASTOR, 2022), Theorem 3.3), the set of ground state solutions of
(1.23), denoted by G6 is nonempty if d � 6. Besides that, we have the following Gagliardo-
Nirenberg inequality (see (NOGUERA; PASTOR, 2022), Corollary 4.12),

P puq ¤ C6Kpuq3{2, (1.24)

for all functions u P D :� tψ P 9H1pR6q;P pψq ¡ 0u, with optimal constant C6 given by

C6 :� 1
33{2

1
Epψq1{2 �

1
3

1
Kpψq1{2 . (1.25)
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where ψ is a ground state solution to (1.23) (see (NOGUERA; PASTOR, 2022), Corollary
3.14).

Turning back to our problem, we start with the following definitions.

Definition 1.6. (Solution) By a solution to the system (1.2) we will understand a function
u : I � R6, defined on a non-empty time interval I � R, with 0 P I, if it lies in the class
C0

t
9H1

xpK � R6q X L4
t,xpK � R6q for all compact interval K � I, and satisfy the Duhamel

formula $&% ukptq � Ukptquk0 � i

» t

0
Ukpt� sq 1

αk

fkpuqds,
pu1p0, xq, ..., ulp0, xqq � pu10, ..., ul0q :� u0,

(1.26)

where Ukptq denotes the corresponding unitary group defined by Ukptq � e
it

γk
αk

∆, k � 1, ..., l,
and t P I. The interval I is said to be the lifespan of u. We say that u is a maximal
solution if the solution cannot be extended to an interval J � I strictly larger then I. We
say that the solution is global if I � R.

Definition 1.7. (Scattering size). Let u be a solution of (1.2). The scattering size of u
on a time interval I is defined as

SIpuq :�
ļ

k�1

»
I

»
R6
|ukpt, xq|4dxdt.

Definition 1.8. (Blow-up) We say that a solution u of (1.2) blows-up forward in time if
there exists t1 P I such that

Srt1,sup Iqpuq � 8,
and u blows-up backward in time, if there exists t2 P I such that

Spinf I,t2spuq � 8.

We say that u blows-up in finite time, if it blows-up both forward and backward in time.

The local theory for (1.2) will be treated in Chapter 4, Section 4.1. We sum-
marize the results in the following theorem.

Theorem 1.9. Given u0 P 9H1
xpR6q, there exists a unique maximal-lifespan solution

u : I � R6 Ñ C to (1.2) with initial data up0q � u0. This solution has the following
properties:

• (Local existence) I is an open neighborhood of 0.

• (Blow-up criterion) If suppIq is finite, then u blows-up forward in time; if infpIq is
finite, then u blows-up backward in time.
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• (Small data global existenece) If }∇u0}L2 is sufficiently small, then u is a global
solution which does not blow-up either forward or backward in time. Indeed, in this
case, SRpuq À }∇u0}4

L2.

The main result of this part of the work is the following.

Theorem 1.10. (Spacetime bounds). Let d � 6 and assume (H1)-(H8). Consider u0 P 9H1
x

and u : I �R6 ÝÑ Cl the corresponding solution to (1.2). Let ψ P G6 be a ground state. If

Epu0q   Epψq, (1.27)

and
Kpu0q   Kpψq, (1.28)

then
SIpuq   8.

Corollary 1.11. (Global well-posedness and Scattering). Let u be a maximal solution to
(1.2) on the time interval I. Assume also (1.27) and (1.28). Then I � R and

SRpuq   8. (1.29)

In particular, the solution scatters, that is, there exist asymptotic states u� P 9H1
x such that

}uptq �Uptqu�}
9H1

x
Ñ 0 as tÑ �8,

where Uptq � pU1ptq, ..., Ulptqq.

As we will see, the result in Theorem 1.10 is sharp, in the sense that if we
reverse inequality (1.28) then the corresponding solution blows-up in finite time. Precisely,
we have the following result.

Theorem 1.12. Let u0 P 9H1 and let u be the corresponding solution of (1.2) defined in
the maximal time interval of existence I. Assume that

Epu0q   Epψq, (1.30)

and
Kpu0q ¡ Kpψq. (1.31)

Then, if xu0 P L2pR6q or u0 P 9H1 is radially symmetric we have that I is finite.

Remark 1.13. In the radial case, Theorem 1.12 was proved in Theorem 4.1 (ii) of
(NOGUERA; PASTOR, 2022).
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To prove Theorem 1.10, we follow the ideas presented in (KILLIP; VISAN,
2010), which basically consists in assuming that the conclusion of Theorem 1.10 is false
and construct a special type of solution, called critical solution, which we will prove that
cannot exist. This method is called concentration/compactness and rigidity argument and
was first introduced by (KENIG; MERLE, 2006). This will be organized as follows.

In Section 4.1 we will prove the local well-posedness in 9H1
x by using the approach

presented in (KILLIP; VISAN, 2013).We start proving local well-posedness assuming that
the initial data belongs to the inhomogeneous Sobolev space H1

xpR6q, using the usual
method of contraction presented in (CAZENAVE, 2003). The next step is to present some
stability results which allows us to prove continuous dependence of the solution u upon
the initial data u0 in the critical space 9H1

x. This allows us to treat the initial data in the
homogeneous Sobolev space 9H1

x, since every function in 9H1
x can be well approximated by

H1
x functions. At the end of the section, we will prove a standard blow-up result.

In Section 4.2, we will prove the existence of critical solutions. We will see that
such solutions have many properties, one of then is almost periodicity modulo symmetries,
which we define as follows.

Definition 1.14. (Almost periodicity modulo symmetries). A solution u to (1.2) on a
time interval I is said to be almost periodic modulo symmetries if there exist functions
N : I ÝÑ R�, x : I ÝÑ R6 and C : R� ÝÑ R�, such that for all t P I and η ¡ 0:

ļ

k�1

»
|x�xptq|¥Cpηq{Nptq

γk|∇ukpt, xq|2dx ¤ η

and
ļ

k�1

»
|ξ|¥CpηqNptq

γk|ξ|2|ûkpt, ξq|2dξ ¤ η.

N is called scale frequency function of the solution u, x is the spacial center function and
C is the compactness modulus function.

Remark 1.15. We know that a family of functions F � 9H1pR6q, is compact if, and only
if, F is bounded in 9H1pR6q and, for all η ¡ 0, there exists a compactness modulus function
Cpηq ¡ 0, such that»

|x|¥Cpηq{Nptq

|∇fpxq|2dx�
»
|ξ|¥CpηqNptq

|ξ|2|f̂pξq|2dξ ¤ η

for all functions f P F . See Appendix A for more details. In particular, by Sobolev
embedding, every compact set in 9H1

xpR6q is compact in L3
xpR6q. Therefore, any solution

u : I � R6 Ñ C to (1.2) that is almost periodic modulo symmetries must also satisfy
ļ

k�1

»
|x�xptq|¥Cpηq{Nptq

|ukpt, xq|3 À η,

for all t P I and η ¡ 0.
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Remark 1.16. Another consequence of compactness modulo symmetries is the existence
of a function c : R� Ñ R� such that»

|x�xptq|¤cpηq{Nptq

|∇upt, xq|2dx�
»
|ξ|¤cpηqNptq

|ξ|2|pu|2dξ ¤ η,

for all t P I and η ¡ 0. See the Appendix A for more details.

The main result of the section is.

Theorem 1.17. (Reduction to almost periodic solutions). Suppose that Theorem 1.10
fails. Then there exists a maximal solution uc : Ic � R6 ÝÑ Cl to (1.2) such that

sup
tPIc

Kpucq   Kpψq,

uc is almost periodic modulo symmetries and uc blows-up in time. Moreover, uc has
minimum kinetic energy among all solutions that blows-up in time, that is,

sup
tPI

Kpuptqq ¥ sup
tPIc

Kpucq,

for all maximal solutions u that blows-up at least in one direction.

To guarantee the existence of such kind of solution, we will need an auxiliary
result, called Palais-Smale property. In order to show that our system satisfies such
property, we will use the nonlinear profile decomposition and stability theory. All these
tools will be discussed in Chapter 2.

From this, in Section 4.3, we will see that it is possible to classify the solutions
uc to (1.2), founded in Theorem 1.17, with more refined properties, according to different
kinds of scale functions Nptq. Such type of classification was studied in (KILLIP; TAO;
VISAN, 2009) and (KILLIP; VISAN, 2010). The result states the following.

Proposition 1.18. (The enemies). Suppose that Theorem 1.10 fails. Then there exists a
maximal solution uc : Ic � R6 ÝÑ Cl, which is almost periodic modulo symmetries and
satisfy

SIcpucq � 8 and sup
tPIc

Kpucptqq   Kpψq. (1.32)

Moreover, the time interval Ic and the scale function Nptq satisfy one of the three following
scenarios:

(i) We have | inf Ic|   8 or | sup Ic|   8;

(ii) We have Ic � R and
Nptq � 1, @t P R;
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(iii) We have Ic � R and

inf
tPR

Nptq ¥ 1, and lim sup
tÑ8

Nptq � 8.

Remark 1.19. From the literature (see (KILLIP; VISAN, 2010)) the three scenarios are
known, respectively, as Finite-time blow-up, Soliton-like solution and Low-to-high frequency
cascade.

Finally, to conclude the proof of Theorem 1.10, we will show that the critical
solution uc cannot satisfy any one of these conditions, that is, we will exclude case by
case the possibilities, arriving to a contradiction. This is the motivation to call the three
scenarios “the enemies”.

In Section 4.4, we will exclude the first case, showing that the L2-norm of ucptq
converges to zero when t goes to infinty. Since the mass of the system is conserved, this
implies that uc is identically zero.

For the remaining cases, we will need to show that the solution uc has some
negative regularity that is, the solution is in a Sobolev space of negative index, and this is
done in two steps. First, we show that the solution belongs to L8

t pLp
xq, this guarantee that

the function decays at infinity faster than a function in u P L8
t p 9H1

xq. The second step is to
improve the decay previously established to L2 spaces. This will be done in Section 4.5.

Finally, in Section 4.6, we will use the negative regularity to deduce some
compactness properties of uc in L2, then, we show that uc has zero momentum, and finally,
use a virial identity to exclude the Soliton case. Next, in Section 4.7, we use the negative
regularity joint with the conservation of mass to exclude the low-to-high cascade frequency.
Last but not least, in Section 4.8, we show the scattering result of Corollary 1.11 and the
blow-up result of Theorem 1.12.
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CHAPTER 2

NOTATION AND PRELIMINARY RESULTS

Throughout the work we will use the standard notation in PDEs. Indeed, C
will represent a generic constant which may vary from inequality to inequality. If a and b

are positive constants, we denote a À b whenever a ¤ Cb for some constant C ¡ 0, similar
for the case a Á b. We write X� for any quantity of the form X � ϵ for any small ϵ ¡ 0.
Given a subset A, we denote by A the product A� ...� A (l-times). In particular, if A
is a Banach space, then A also is with the usual norm given by the sum. For a complex
number z P C, Re z and Im z represents its real and imaginary parts. Also, z̄ denotes the
complex conjugate of z. We set

z
 for the vector p|z1|, ..., |zl|q. This is not to be confused

with |z| �
a
|z1|2 � ...� |zl|2 which denotes the usual norm of the vector z P Cl.

We denote the stantard Sobolev, the homogeneous Sobolev and the Lebesgue
spaces by Hs,p � Hs,ppRdq, 9Hs,p � 9Hs,ppRdq and Lp � LppRdq, respectively, with its usual
norms. We denote Hs � Hs,2 and 9Hs � 9Hs,2. Given a time interval I, the mixed Lebesgue
space Lp

tL
q
xpI � Rdq is denoted by Lp

tL
q
x and will be endowed with the norm

}f}Lp
t Lq

x
�
�»

I

�»
Rd

|fpt, xq|qdx

p{q

dt

�1{p

,

with the obvious modification if either p � 8 or q � 8.

A pair pq, rq is called admissible with 2 ¤ q, r ¤ 8 if 2
q
� d

2 �
d

r
. For a fixed

space time slab I � Rd, we set the Strichartz norm by

}u}S0pIq :� sup
pq,rq admissible

}u}Lq
t Lr

xpI�Rdq and }u}S1pIq :� }∇u}S0pIq. (2.1)



Chapter 2. Notation and Preliminary results 25

We define the Fourier transform on Rd by

f̂pξq :� p2πq�d{2
»
Rd

e�ix�ξfpxqdx.

For s P R, we define the fractional differentiation/integral operator

{|∇|sfpξq :� |ξ|sf̂pξq,

which defines the homogeneous Sobolev norm

}f}
9Hs

xpRdq :� }|∇|sf}L2
xpRdq.

If no confusion is caused, we denote
»
Rd

fpxqdx simply by
»
f . We start with

the results that will be used throughout the work.

Theorem 2.1. (Strichartz estimates, (CAZENAVE, 2003) Theorem 2.3.3) The following
inequalities hold.

(i) If pq, rq is an admissible pair. Then, for all f P L2pRdq.

}eit∆f}Lq
t Lr

xpR�Rdq À }f}L2
xpRdq.

(ii) Let I be a time interval and t0 P Ī. If pq1, r1q and pq2, r2q are two admissible pairs,
then ����» t

t0

eipt�sq∆fp�, sqds
����

L
q1
t L

r1
x pI�Rdq

À }f}
L

q12
t L

r12
x pI�Rdq

and ����» b

a

eipt�sq∆fp�, sqds
����

L
q1
t L

r1
x pR�Rdq

À }f}
L

q12
t L

r12
x pra,bs�Rdq

.

Proposition 2.2. Let pq, rq be an admissible pair. Given u0 P L2
xpRdq and ϵ ¡ 0 then

there exist T ¡ 0 such that �» T

0
}eit∆u0}r

Lq
x
dt


1{r

  ϵ. (2.2)

In addition, there exist δ ¡ 0 such that if }v0 � u0}L2
x
  δ, then�» T

0
}eit∆v0}r

Lq
x
dt


1{r

  ϵ,

where eit∆ is the unitary group associated to the linear part of the Schrödinger equation.

Proof. See (LINARES; PONCE, 2015), page 100.

Remark 2.3. The above results still holds if we replace eit∆ with Uptq, W ptq and Ukptq,
k � 1, ..., l. defined, respectively, on the pages 12 and 17.
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2.1 Preliminaries: First part

2.1.1 Measures

We denote the set of all continuous bounded functions and all continuous
function with compact support on X, respectively, by CbpXq and CcpXq. When it comes
to Radon measures, if X is a locally compact Hausdorff space, we shall denote by M�pXq
the Banach space of all non-negative measures, by Mb

�pXq the space of all bound (or
finite) measures and M1

� the space of all probability measures. Given two measures ν and
µ, we write ν ! µ if the measure ν is absolutely continuous with respect to the measure µ.
For all µ P Mb

�pXq, }µ} :� µpXq is called the mass of µ.

Let us introduce some convergence notions of measures.

Definition 2.4. (i) A sequence pµmq � M� is said to converge vaguely to µ in M�pXq,
and denoted by µm

�á µ, if
»

X

fdµm Ñ
»

X

fdµ for all f P CcpXq.

(ii) A sequence pµmq � Mb
�pXq is said to converge weakly to µ, in Mb

�pXq, and denoted
by µm á µ, if

»
X

fdµm Ñ
»

X

fdµ, for all f P CbpXq.

(iii) A sequence pµmq � Mb
� is said to be uniformly tight if, for every ϵ ¡ 0, there exists

a compact subset Kϵ � X such that µmpXzKϵq ¤ ϵ for all m. We also say that a set

H � M�pXq is vaguely bounded if sup
µPH

����»
X

fdµ

����   8 for all f P CcpXq.

To finish this section, we state a result that guarantees the existence of vaguely
convergent sequences. The proof can be found in Theorems 30.6 and 31.2 in (BAUER,
2001).

Lemma 2.5. Let X be a locally compact Hausdorff space. Then

(i) Every vaguely bounded sequence in M�pXq contains a vaguely convergent subse-
quence;

(ii) If µm
�á µ in M�pXq and p}µm}q is bounded, then µ is finite.

2.1.2 Some estimates

Now, we presents an adapted version of the generalized Brezis-Lieb Lemma (see
(BRÉZIS; LIEB, 1983), Theorem 2). Let f : Rl Ñ R be a continuous function satisfying
fp0, ..., 0q � 0, for all, a, b P Rl, and ϵ ¡ 0

|fpa� bq � fpbq| ¤ ϵζpaq � ψϵpbq, (2.3)

where ζ and ψϵ are non-negative functions.
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Lemma 2.6. Let vm � um � u be a sequence of measurable functions from Rd Ñ Rl such
that

(i) vm Ñ 0 a. e.;

(ii) fpuq P L1pRdq;

(iii)
»
ζpvmqpxqdx ¤M   8, for some constant M , independent of m;

(iv)
»
ψϵpuqpxqdx   8, for any ϵ ¡ 0.

Then, as mÑ 8, »
|fpumq � fpvmq � fpuq|dxÑ 0.

Lemma 2.7. Let I � R be an open interval with 0 P I, a P R, b ¡ 0 and q ¡ 1. Define
γ � pbqq�1{pq�1q and fprq � a� r � brq, for r ¡ 0. Let Gptq be a nonnegative continuous

function such that f �G ¥ 0 in I. Assume that a  
�

1� 1
q



γ, we have

(i) If Gp0q   γ then Gptq   γ, for all t P I;

(ii) If Gp0q ¡ γ then Gptq ¡ γ, for all t P I.

Proof. See Lemma 3.1 in (PASTOR, 2015).

2.2 Preliminaries: Second part

2.2.1 Some estimates

Lemma 2.8. (Acausal Gronwall’s inequality). Given η, C, γ, γ1 ¡ 0, let txkuk¥0 be a
bounded nonnegative sequence obeying

xk ¤ C2�γk � η
¸
l k

2�γ|k�l|xl � η
¸
l¥k

2�γ1|k�l|xl,

for all k ¥ 0. If, η ¤ 1
4 mint1� 2�γ, 1� 2�γ1 , 1� 2ρ�γu for some 0   ρ   γ, then

xk ¤ p4C � }x}ℓ8q2�ργ.

Proof. See (KILLIP; VISAN, 2011, Lemma 5.3).

From now on we will assume that the hypothesis (H1)-(H8) hold. Furthermore,
for 1 ¤ p ¤ 8 we denote by p1 its Hölder’s conjugate, that is, 1{p � 1{p1 � 1. We start
with the following dispersive estimate.
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Lemma 2.9. If 2 ¤ p ¤ 8 and t � 0, then, for k � 1, ..., l,

}Ukptqf}Lp
xpRdq À |t|�dp 1

2�
1
pq}f}

Lp1
x pRdq

, @f P Lp1

x pRdq.

Proof. See Proposition 2.2.3 in (CAZENAVE, 2003).

Next lemma has an important role in the proof of Palais-Smale condition.

Lemma 2.10. Given ϕ P 9H1
xpRdq, R ¡ 0 and T ¡ 0

}∇eit∆ϕ}3
L2

t,xpr�T,T s�t|x|¤Ruq À T
2

d�2R
3d�2

2pd�2q }eit∆ϕ}
L

2pd�2q{pd�2q
t,x

}∇ϕ}2
L2

x
.

Proof. See (KILLIP; VISAN, 2010), Lemma 2.5.

Next results are some consequences of our assumptions on the nonlinearities
fk, k � 1, ..., l.

Lemma 2.11. Suppose that the nonlinearities fk obey (H1) and (H2). Then

(i) For all z, z1 P Cl, we have

|fkpzq � fkpz1q| À
ļ

m�1

ļ

j�1
p|zj| � |z1j|q|zm � z1m|, k � 1, ..., l.

In particular,

|fkpzq| À
ļ

j�1
|zj|2, k � 1, ..., l.

(ii) Let u and u1 be complex-valued functions defined on Rd. Then

|∇rfkpuq � fkpu1qs| À
ļ

m�1

ļ

j�1
|uj||∇pum � u1mq| �

ļ

m�1

ļ

j�1
|uj � u1j||∇u1m|.

(iii) Let 1   p, q, r   8 be such that 1
r
� 1
p
� 1
q

and s P p0, 1q. Then, for k � 1, ..., l,

}∇fkpuq}Lr À }u}Lp
x
}∇u}Lq

x

and
}fkpuq}Hs,r À }u}Lp

x
}u}Hs,q . (2.4)

Proof. For (i) and (ii) see Lemma 2.2, Corolário 2.3 and Lemma 2.4 in (NOGUERA;
PASTOR, 2021). Part (iii) is a consequence of (H2) and Leibniz’s rule (see Proposition 5.1
in (TAYLOR, 2000) and Corollary 2.5 in (NOGUERA; PASTOR, 2021)).
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Lemma 2.12. Assume that fk satisfy (H2) for all k � 1, ..., l. For all J P N we have�����∇
�

J̧

j�1
fkpujq � fk

�
J̧

j�1
uj

������� À¸
j�i

|∇uj||ui|, k � 1, ..., l.

Proof. Let uj � puj1, ..., ujlq and fkpzq � fkpz1, ..., zlq. By the chain rule

Bfk

Bxj

puq �
ļ

m�1

� Bfk

Bzm

puqBum

Bxj

� Bfk

Bz̄m

puqBūm

Bxj



,

and we get the following

Bfk

Bxi

�
J̧

j�1
uj

�
�

ļ

m�1

�
Bfk

Bzm

�
J̧

j�1
uj

�
B
Bxi

�
J̧

n�1
unm

�
� Bfk

Bz̄m

�
J̧

j�1
uj

�
B
Bxi

�
J̧

n�1
ūnm

��

Therefore, by the triangle inequality,����� J̧

j�1

Bfk

Bxi

pujq � Bfk

Bxi

�
J̧

j�1
uj

������ ¤
����� ļ

m�1

�
J̧

n�1

Bfk

Bzm

punqBunm

Bxi

� Bfk

Bzm

�
J̧

j�1
uj

��
J̧

n�1

Bunm

Bxi

�������
�
����� ļ

m�1

�
J̧

n�1

Bfk

Bz̄m

punqBūnm

Bxi

� Bfk

Bz̄m

�
J̧

j�1
uj

��
J̧

n�1

Būnm

Bxi

������� .
(2.5)

Now, notice that for each m, we get����� J̧

n�1

Bfk

Bzm

punqBunm

Bxi

� Bfk

Bzm

�
J̧

j�1
uj

� �
J̧

n�1

Bunm

Bxi

������
�
����� J̧

n�1

��
Bfk

Bzm

punq � Bfk

Bzm

�
J̧

j�1
uj

��
Bunm

Bxi

������
¤

ļ

n�1

����� Bfk

Bzm

punq � Bfk

Bzm

�
J̧

j�1
uj

������
����Bunm

Bxi

����
À

J̧

n�1

�����un �
j̧

j�1
uj

�����
����Bunm

Bxi

����
À

¸
n�j

|uj|
����Bun

Bxi

���� ,
where we used (H2) in the second last inequality. In the same way,����� J̧

n�1

Bfk

Bz̄m

punqBūnm

Bxi

� Bfk

Bz̄m

�
J̧

j�1
uj

��
J̧

n�1

Būnm

Bxi

������ À ¸
n�j

|uj|
����Būn

Bxi

���� .
Then, for each i � 1, .., l,����� J̧

j�1

Bfk

Bxi

pujq � Bfk

Bxi

�
J̧

j�1
uj

������ À ¸
n�j

|uj|
���� Bu
Bxi

���� ,
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which implies �����∇
�

J̧

j�1
fkpujq � fk

�
J̧

j�1
uj

������� À ¸
n�j

|uj||∇un|.

Lemma 2.13. Supose that (H3) and (H4) hold, then fk satisfies the Gauge condition,
that is, for all θ P R,

fk

�
e

i
α1
γ1

θ
u1, ..., e

i
αl
γl

θ
ul

	
� e

i
αk
γk

θ
fkpuq, k � 1, ..., l.

Proof. See Lema 2.8 in (NOGUERA; PASTOR, 2021).

Next, we show some properties of the potential function F .

Lemma 2.14. Assume that (H1)-(H5) hold.

(i) For all z P Cl,

|ReF pzq| À
ļ

j�1
|zj|3.

(ii) We have

Re
ļ

k�1
fkpuq∇ūk � Rer∇F puqs

and

Re
ļ

k�1
fkpuqūk � Rer3F puqs.

(iii) The potential function vanishes at zero, that is, F p0q � 0.

Proof. For (i) and (ii) see Lemmas 2.10 and 2.11, respectively, in (NOGUERA; PASTOR,
2021). Finally, (iii) is consequence of (H5).

Lemma 2.15. (Refined Fatou’s Lemma) Supose that tfnu � Lp
xpR6q is such that

lim sup }fn}Lp   8. If fn Ñ f almost everywhere, then»
R6
||fn|p � |fn � f |p � |f |p| dxÑ 0.

In particular, }fn}p
Lp � }fn � f}p

Lp Ñ }f}p
Lp.

Proof. The proof can be found in (BRÉZIS; LIEB, 1983).

Lemma 2.16. (Gagliardo-Nirenberg’s Inequality) Let 1   q   p ¤ 8 and s ¡ 0 be such
that

1
p
� 1
q
� θs

d
,

for some 0   θ   1. Then for all f P 9Hs,q
x pRdq we have

}f}Lp
xpRdq Àd,p,q,s }f}1�θ

Lq
xpRdq}f}θ

9Hs,q
x pRdq

.
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Proof. See (TAO, 2006), Apendix A.

Lemma 2.17. (Young’s inequality) Let f P LppRdq and g P LqpRdq, 1 ¤ p, q ¤ 8 with
1
p
� 1
q
¥ 1. Then, f � g P LrpRdq, where 1

r
� 1
p
� 1
q
� 1. Morover

}f � g}Lr ¤ }f}Lp}g}Lq .

Proof. See (LINARES; PONCE, 2015), Section 2.1.1.

2.2.2 Littlewood-Paley theory

Let φpξq be a radial bump function with support on the ball
tξ P R6 : |ξ| ¤ 11{10u and equal to 1 on the ball tξ P R6 : |ξ| ¤ 1u. For each dyadic number
N ¡ 0, that is, N � 2j for j P Z, we set the Fourier multipliers

{P¤Nfpξq :� φpξ{Nqf̂pξq,{P¡Nfpξq :� p1� φpξ{Nqqf̂pξq,zPNfpξq :� pφpξ{Nq � φp2ξ{Nqqf̂pξq,

and in a similar way, P N and P¥N . Note, in particular, the telescoping identities

P¤Nf �
¸

M¤N

PMf ; P¡Nf �
¸

M¡N

PMf ; f �
¸
M

PMf.

Moreover, for M   N , we set

PM �¤N :� P¤N � P¤M �
¸

M N 1¤N

PN 1 ,

Since Littlewood-Paley operators are Fourier multipliers, they comute with the propagator
Ukptq and the operator iαkBt � γk∆. Besides that, using Fourier trasnform properties, up
to a constant, P¤N is a convolution operator, as the following

P¤Nfpxq � 1
p2πqd

»
φ

�
ξ

N



eix�ξ pfpξqdξ

� 1
p2πqd

»
Ndφ̌pNyqfpx� yqdy

� 1
p2πqd rN

dφ̌pN �qs � f.

Using Lemma 2.17 with r � p and q � 1, we obtain

}P¤Nf}Lp � C}rNdφ̌pN �qs � f}Lp À }φ̌}L1}f}Lp À }f}Lp , (2.6)

where C ¡ 0 does not depend on N . Next, we enunciate some estimates that will be useful
in our analysis.
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Remark 2.18. Let f and g be functions and N be a dyadic number. Then

PNpg¤N
10
fq � PNpg¤N

10
f¡N

10
q. (2.7)

Indeed, note that by definition of Littlewood-Paley projections we have

{PNfpξq � ψNpξq pfpξq,
where ψNpξq :� ψ1

�
ξ

N



� φ

�
ξ

N



�φ

�
2ξ
N



and ψ1

�
ξ

N



� 0 if 11

10N ¤ |ξ| ¤ N

2 . Now,
observe that

PNpg¤N
10
fq � PNpg¤N

10
f¡N

10
q � PNpg¤N

10
f¤N

10
q :� PNpg¤N

10
f¡N

10
q � I.

Then, we get (2.7)if we show that I vanishes. More precisely,

pIpξq � ψNpξq{P¤N
10
g � zPN

10
fpξq

� ψNpξq
» {P¤N

10
gpξ � ξ1qzPN

10
fpξ1qdξ1

� ψNpξq
»
φ

�
10pξ � ξ1q

N



φ

�
10 ξ1

N


pgpξ � ξ1q pfpξ1qdξ1

� 0,

since
����10pξ � ξ1q

N

���� ¥ 10
N
p|ξ| � |ξ1|q ¥ 10

N

�
11
10N � 11

100N


¥ 11

10 .

Lemma 2.19. (Bernstein’s estimates). For s ¥ 0 and 1 ¤ p ¤ q ¤ 8:

}P¥Nf}Lp
x
À N�s}|∇|sP¥Nf}Lp

x
,

}P¤Nf}Lp
x
À N�s}|∇|sP¤Nf}Lp

x
,

}|∇|�sPNf}Lp
x
� N�s}PNf}Lp

x
,

}P¤Nf}Lq
x
À N

6
p
� 6

q }P¤Nf}Lp
x
,

}PNf}Lq
x
À N

6
p
� 6

q }PNf}Lp
x
,

Proof. See (TAO, 2006), page 333.

We also need the following vector version of the nonlinear Bernstein’s estimate.

Lemma 2.20. Let g : Cl ÝÑ C be a Hölder continuous function of order 1, then

}PNgpuq}Lp
x
À N�1}∇u}Lp

x
,

for any 1 ¤ p   8 and u P 9H1,p.

Proof. See (KILLIP; VISAN, 2013), Lemma A.13.
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2.2.3 Linear profile decomposition

In this section we follow the ideas presented in (KOCH; TATARU; VISAN,
2014), with suitable adaptations to our case, in order to establish the linear profile
decomposition corresponding to the Schrödinger propagator Ukptq, k � 1, ..., l, for bounded
sequences in 9H1. Such type of decomposition was first obtained by (KERAANI, 2001),
relying on an improved Sobolev inequality proved by (GERARD Y. MEYER, 1997). We
start with the following estimate that is a refinement of the Strichartz estimates which
shows that linear solutions with non-trivial spacetime norm must concentrate on at least
one frequency annulus.

Lemma 2.21. (Refined Strichartz estimate). For all h P 9H1pR6q we have

}Ukptqh}L4
t,x
À }h}1{2

9H1pR6q
sup
NP2Z

}UkptqPNh}1{2
L4

t,x
, k � 1, ..., l.

Proof. See (KOCH; TATARU; VISAN, 2014), Lemma 3.1, page 239.

With this result at hand we may prove the inverse Strichartz’s inequality, which
goes one step further than the last lemma, and shows that linear solutions with non-trivial
spacetime norm contain a bubble of concentration around some point in spacetime. In
this sense, we introduce the notation Uptqu � pU1ptqu1, ..., Ulptqulq.

Lemma 2.22. Let phmq � 9H1pR6q. Suppose that

lim
mÑ8

}hm} 9H1 � A   8 and lim
mÑ8

}Uptqhm}L4
t,x
� ϵ ¡ 0.

Then, there is a subsequence in m, ϕ P 9H1, pλmq � p0,8q, and ptm, xmq � R � R6 such
that

λ2
mrUptqhmspλmx� xmq á ϕpxq, weakly in 9H1, (2.8)

lim inf
mÑ8

 }hm}2
9H1 � }hm � ϕm}2

9H1

( � }ϕ}2
9H1 Á ϵ12A�10, (2.9)

lim inf
mÑ8

!
}Uptqhm}4

L4
t,x
� }Uptqphm � ϕmq}4

L4
t,x

)
Á ϵ24A�20, (2.10)

lim inf
mÑ8

!
}hm}3

L3
t,x
� }hm � ϕm}3

L3
t,x
� }Up�λ�2

m tmqϕ}3
L3

t,x

)
� 0, (2.11)

where,
ϕm :� λ�2

m rUpλ�2
m tmqϕs

�
x� xm

λm



. (2.12)

Proof. We start noticing that, up to a subsequence, we may assume

}hm} 9H1
x
¤ 2A and }Uptqhm}L4

t,x
¥ ϵ

2 .

Then, by Lemma 2.21, we see that for each m, there is Nm P 2Z such that

}UptqPNmhm}L4
t,x
Á ϵ2A�1.
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On the other hand, by Strichartz and nonlinear Bernstein’s inequality, we obtain

}UptqPNmhm}L4
t,x
À }PNmhm}L2

x
À N�1

m A.

By interpolation,

ϵ2A�1 À }UptqPNmhm}L4
t,x

À }UptqPNmhm}2{3
L8{3

t,x

}UptqPNmhm}1{3
L8

t,x

À N�2{3
m A2{3}UptqPNmhm}1{3

L8
t,x
.

Therefore
N�2

m }UptqPNmhm}L8
t,x
Á A

� ϵ
A

	6
.

Then, there is a subsequence ptm, xmq P R� R6 such that

N�2
m |rUptmqPNmhnspxmq| Á A

� ϵ
A

	6
. (2.13)

We define now the special scale λm � N�1
m . It remains to find the profile ϕ and show that

it satisfies (2.8) trough (2.10). Indeed, setting

gmpxq :� λmrUptmqhmspλmx� xmq,
a change of variables gives us

}gm} 9H1
x
� }hm} 9H1

x
À A.

Hence, up to a subsequence, we may choose ϕ such that gm á ϕ weakly in 9H1
x. This

proves (2.8). Note that the assymptotic decoupling statement in (2.9) follows since 9H1
x

is a Hilbert space. To prove the lower bound in (2.9), we consider ψ̌ :� P1δ0 to denote
the convolution kernel associated with P1. Observe that, by definition, ψpξq � pP1δ0q̂ �
pφpξq � φp2ξqq δ̂0 � φpξq � φp2ξq. Therefore, using Plancherel theorem,A

Ukptmqhkm, λ
�4
m ψ̌

�
x� xm

λm


F
L2

x

�
»
Ukptmqhkmpxqλ�4

m ψ̌

�
x� xm

λm



dx

�
»
pUkptmqhkmq̂ pξq

�
λ�4

m ψ̌

�
x� xm

λm


�
p̂ξqdξ

�
»
pUkptmqhkmq̂ pξqλ�4

m λ6
me

ixmξψ pλmξqdξ

� N�2
m

»
pUkptmqhkmq̂ pξqeixmξ

�
φ

�
ξ

Nm



� φ

�
2ξ
Nm


�
dξ

� N�2
m rUkptmqPNmhkmspxmq.

Thus, using change of variables and (2.13),

|xϕk, ψ̌yL2
x
| � | lim

mÑ8
xgkm, ψ̌yL2

x
| �

����� lim
mÑ8

B
Ukptmqhkm, λ

�4
m ψ̌

�
x� xm

λm


F
L2

x

�����
� lim

mÑ8
N�2

m |rUkptmqPNmhkmspxmq|

Á A
� ϵ
A

	6
.

(2.14)
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On the other hand, by Hölder’s inequality and Sobolev’s embedding,

|xϕk, ψ̌yL2
x
| À }ϕk}L6

x
}ψ̌}

L
6{5
x
À }ϕk} 9H1

x
.

Putting both inequalities together and summing over k, we arrive at the lower bound of
(2.9).

We now show (2.10). We start with decoupling for the L4
t,x norm. Observe that,

for k � 1, ..., l,
piαkBtq1{2Ukptq � p�γk∆q1{2Ukptq

as can be checked in (KOCH; TATARU; VISAN, 2014, page 242). Then by Hölder’s
inequality, on any compact set K � R� R6, we obtain, for k � 1, ..., l,

}Ukptqgkm}H
1{2
t,x pKq

À }x�γk∆y1{2gkm}L2
t,xpKq À A.

Using this together with Rellich-Kondrashov theorem, up to a subsequence, we have

Uptqgm Ñ Uptqϕ strongly in L2
t,xpKq,

This is because gm á ϕ weakly in 9H1
x, implies that Uptqgm converge to Uptqϕ in the

distribution sense on R�R6. Passing to another subsequence, we get that Uptqgm Ñ Uptqϕ
almost everywhere on K. Finally, by a diagonal argument and, again, passing to a
subsequence if necessary,

Uptqgm Ñ Uptqϕ a.e. in R� R6.

By Lemma 2.15 and a change of variables

lim
mÑ8

�
}Uptqhm}4

L4
t,x
� }Uptqphm � ϕmq}4

L4
t,x

�
� }Uptqϕ}4

L4
t,x
.

Thus, (2.10) will be proved provided we show that

}Uptqϕ}L4
t,x
Á ϵ

� ϵ
A

	5
. (2.15)

To this end, we use (2.14), Mikhlin multiplier Theorem and Bernstein’s estimate to get

A
� ϵ
A

	6
À
���xϕ, ψ̌yL2

x

��� � ���xUptqϕ,Up�tqψ̌yL2
x

���
À }Uptqϕ}L4

x
}Uptqψ̌}L4{3

x

À }Uptqϕ}L4
x

uniformly on |t| ¤ 1. Then

}Uptqϕ}L4
t,x
�
�»

}Uptqϕ}4
L4

x
dt

�1{4

Á
�» 1

0
}Uptqϕ}4

L4
x
dt

�1{4

Á A
� ϵ
A

	6
� ϵ

� ϵ
A

	5
,
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showing (2.10). Finally, to show (2.11), we observe that, passing to a subsequence if
necessary, we may assume that λ�2

m tm Ñ t0 P r�8,8s. If |t0| � 8, we approximate ϕ on
9H1

x by Schwartz functions and use the fact that by Lemma 2.9

}Ukp�tmλ�2
m qψk}L3

x
Ñ 0, mÑ 8

for any ψk P SpR6q, k � 1, ..., l. Now, if t0 P p�8,8q, then (2.8) may be taken as
λ2

mhmpλmx � xmq á Upt0qϕpxq weakly in 9H1
x. Using Rellich-Kondrashov Theorem and

Lemma 2.15 as before, we get the desired.

Definition 2.23. (Symmetry group) For any position x0 P R6 and scale parameter λ ¡ 0,
we set the unitary transformation gx0,λ : 9H1pR6q Ñ 9H1pR6q by

rgx0,λf spxq :� λ�2f
�
λ�1px� x0q

�
.

Let G be the collection of such transformations. For a function u : I � R6 Ñ C, we define

rTgx0,λ
uspt, xq :� λ�2u

�
λ�2t, λ�1px� x0q

�
.

Thus, if u is a solution to (1.2), then, for g P G, Tgu is also a solution to (1.2)
with initial data gu0.

Remark 2.24. In order to simplify the formulas along the work, we will use the following
notations for λj

n ¡ 0 and xj
n P R6,

pgj
nuqpxq :� pλj

nq�2u
�
x� xj

n

λj
n



and rpgj

nq�1uspxq :� pλj
nq2upλj

nx� xj
nq.

Note that ∇gj
nupxq � pλj

nq�3∇u
�
x� xj

n

λj
n



. Then,

}gj
nu}

9H1
x
�
�»

|∇gj
nupxq|2dx


1{2

�
�» ����pλj

nq�3∇u
�
x� xj

n

λ


����2 dx
�1{2

�
�»

pλj
nq�6pλj

nq6|∇upyq|2dy

1{2

�
�»

|∇upyq|2dy

1{2

� }u}
9H1
x
.

(2.16)

In the same way, it is possible to show that }u}
9H1

x
� }pgj

nq�1u}
9H1

x
and xgj

nu1,u2y 9H1
x
�

xu1, pgj
nq�1u2y 9H1

x
for all u1,u2 P 9H1

x. Besides that, we also use the notation

ϕj
npxq :� pλj

nq�2rUptjnqϕjs
�
x� xj

n

λj
n



� rgj

nUptjnqϕjspxq.
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Remark 2.25. Notice that if f P C8
0 pRdq and tptn, xnqu � R� Rd is a sequence. Then,

for k � 1, ..., l, we have Ukptnqfpx� xnq á 0 weakly in 9H1
x as nÑ 8 whenever |tn| Ñ 8

or |xn| Ñ 8. Indeed, we need to show that for all u P p 9H1
xq�»

∇u �∇Ukptnqfpx� xnq Ñ 0.

Since |xn| Ñ 8, there is no loss of generality in assuming that |xn
1 | Ñ 8 as nÑ 8. Using

Fourier transform and the change of variables xn
1ξ � η, we have»

∇u �∇Ukptnqfpx� xnq � �
»
|ξ|û|ξ|e�itn|ξ|2eixn�ξf̂pξqdξ

� �
» |η|2
|xn

1 |2
û

�
η

xn
1



e
�itn |η|2

|xn
1 |2 e

ixn� η
xn

1 f̂

�
η

xn
1



dη

|xn
1 |d

Ñ 0,

as nÑ 8. The case when |tn| Ñ 8 is treated in the same way with a change of variables
η � ?

tnξ.

Theorem 2.26. (Linear profiile decomposition). Let tunu be a sequence of bounded
functions in 9H1pR6q. Passing to be a subsequence if necessary, there is J� P t0, 1, ...uYt8u,
functions tϕjuJ�

j�1 � 9H1pR6q, symmetry group elements gj
n P G, and tptjn, xj

nqu � R� R6

such that for all 0 ¤ J ¤ J� finite, we have the decomposition

un �
J̧

j�1
rgj

nUptjnqϕjs �wJ
n (2.17)

with the following properties:

lim
JÑJ�

lim sup
nÑ8

}UptqwJ
n}L4

t,x
� 0, (2.18)

lim
nÑ8

�
}∇un}2

L2
x
�

J̧

j�1
}∇ϕj}2

L2
x
� }∇wJ

n}2
L2

x

�
� 0, (2.19)

Up�tJnq
�pgJ

nq�1wJ
n

�á 0 in 9H1pR6q. (2.20)

Moreover, if j � k, then

λj
n

λk
n

� λk
n

λj
n

� |xj
n � xk

n|2
λj

nλk
n

� |tjnpλj
nq2 � tknpλk

nq2|
λj

nλk
n

Ñ 8 as nÑ 8. (2.21)

Proof. We follow the ideias presented in (KOCH; TATARU; VISAN, 2014, Chapter 4,
page 246). We proceed inductively. To start, we define w0

n :� un. Now, suppose that we
have the decomposition up to level J ¥ 0 obeying the hypothesis (2.19) and (2.20). Then,
up to a subsequence, we define

AJ :� lim
nÑ8

}wJ
n} 9H1

x
and ϵJ :� lim

nÑ8
}UptqwJ

n}L4
t,x
.
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If ϵJ � 0, it is enough to choose J� � J . Otherwise, we apply Proposition 2.22 in wJ
n.

Therefore, passing to a subsequence in n, we find ϕJ�1 P 9H1
x, tλJ�1

n u � p0,8q, and
tptJ�1

n , xJ�1
n qu � R� R6, where we denote the time parameters given in Proposition 2.22

as the following: tJ�1
n � �λ�2

n tn.

According to Proposition 2.22, the profile ϕJ�1 is setting as a weak limit,
namely,

ϕJ�1 � lim
nÑ8

pgJ�1
n q�1rUptJ�1

n pλJ�1
n q2qwJ

ns � lim
nÑ8

Up�tJ�1
n qrpgJ�1

n q�1wJ
ns.

Define ϕJ�1
n :� gJ�1

n UptJ�1
n qϕJ�1. Now, setting wJ�1

n :� wJ
n �ϕJ�1

n , by definition of ϕJ�1,
we obtain

UptJ�1
n qpgJ�1

n q�1wJ�1
n á 0, weakly in 9H1

x.

This proves (2.20) up to level J � 1. Moreover, by Proposition 2.22, we also have

lim
nÑ8

!
}wJ

n}2
9H1

x
� }wJ�1

n }2
9H1

x
� }ϕJ�1}2

9H1
x

)
� 0.

Combining with the induction hypothesis, we get (2.19) up to level J � 1.

Passing to a new subsequence, and using, again, Proposition 2.22, we get

A2
J�1 � lim

nÑ8
}wJ�1

n }2
9H1

x
¤ A2

J

�
1� C

�
ϵJ

AJ


12
�
¤ A2

J ,

ϵ4
J�1 � lim

nÑ8
}UptqwJ�1

n }4
L4

t,x
¤ ϵ4

J

�
1� C

�
ϵJ

AJ


20
�
.

(2.22)

If ϵJ�1 � 0, we stop and put J� � J � 1. In this case, (2.18) is immediately verified. If
ϵJ�1 ¡ 0, we proceed with the induction process. If the algorithm does not finishes in
finitely many steps, we choose J� � 8. In this case, (2.22) implies that ϵJ Ñ 0 if J Ñ 8
and then, (2.18) hold.

Next, we show the orthogonality condition (2.21). Suppose that such a condition
is false for some pair pj, kq. Without loss of generality, we may assume that j   k and
(2.21) is true to all pairs pj,mq, with j   m   k. Passing to a subsequence, we may assume
that

λj
n

λk
n

Ñ λ0 P p0,8q, xj
n � xk

nb
λj

nλk
n

Ñ x0 and tjnpλj
nq2 � tknpλk

nq2
λj

nλk
n

Ñ t0. (2.23)

From the inductive relation

wk�1
n � wj

n �
k�1̧

m�j�1
ϕm

n

and from the definition of ϕk, we get

ϕk � lim
nÑ8

Up�tknqrpgk
nq�1wk�1

n s

� lim
nÑ8

Up�tknqrpgk
nq�1wj

ns �
k�1̧

m�j�1
lim

nÑ8
Up�tknqrpgk

nq�1ϕm
n s.

(2.24)
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To reach the contradiction, we prove that these weak limits are all zero, which contradicts
the nontriviality of ϕk.

We write,

Up�tknqrpgk
nq�1wj

ns � Up�tknqpgk
nq�1gj

nUptjnqrUp�tjnqpgj
nq�1wj

ns

� pgk
nq�1gj

nU
�
tjn � tkn

pλk
nq2

pλj
nq2



rUp�tjnqpgj

nq�1wj
ns.

Note that by (2.23)

tjn � tkn
pλk

nq2
pλj

nq2 �
tjnpλj

nq2 � tknpλk
nq2

λj
nλk

n

� λ
k
n

λj
n

Ñ t0
λ0
. (2.25)

Using (2.25), (2.20), together with the following facts: The adjoints of the unitary operators
pgk

nq�1gj
n converge strongly and, if fn á 0 in 9H1

x, then Uptnqfn á 0 in 9H1
x, we get that

the first term on the right-hand side of (2.24) vanishes.

To complete the proof, it remains to show that the second term on the right-hand
side of (2.24) vanishes. To this end, consider j   m   k and write

Up�tknqpgk
nq�1ϕm

n � pgk
nq�1gj

nU
�
tjn � tkn

pλk
nq2

pλj
nq2



rUp�tjnqpgj

nq�1ϕm
n s.

Arguing as before, it suffices to show that

Up�tjnqpgj
nq�1ϕm

n � Up�tjnqpgj
nq�1gm

n Uptmn qϕm á 0 in 9H1
x.

By density, this reduces to show that

In :� Up�tjnqpgj
nq�1gm

n Uptmn qϕá 0 in 9H1
x, (2.26)

for all ϕ P C8
c pRdq. We may rewrite In as the following

In �
�
λj

n

λm
n


2
�

U

�
tmn � tjn

�
λj

n

λm
n


2
�
ϕ

��
λj

nx� xj
n � xm

n

λm
n



.

Recalling that (2.21) holds for the pair pj,mq, we first show that (2.26) holds
when the scaling parameters are not comparable, that is,

lim
nÑ8

�
λj

n

λm
n

� λm
n

λj
n



� 8. (2.27)

By the Cauchy-Schwarz inequality,

|xIn,ψy 9H1
x
| À min

 }∆In}L2
x
}ψ}L2

x
, }In}L2

x
}∆ψ}L2

x

(
À min

"
λj

n

λm
n

}∆ϕ}L2
x
}ψ}L2

x
,
λm

n

λj
n

}ϕ}L2
x
}∆ψ}L2

x

*
,
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which converge to zero if n Ñ 8, for all ψ P C8
c pR6q. Therefore, if (2.27) holds, we get

(2.26).

From now on, we assume that

lim
nÑ8

λj
n

λm
n

� λ1 P p0,8q.

Suppose now that the time parameters diverge, that is,

lim
nÑ8

|tjnpλj
nq2 � tmn pλm

n q2|
λj

nλm
n

� 8.

Thus, we also have�����tmn � tjn

�
λj

n

λm
n


2
����� � |tjnpλj

nq2 � tmn pλm
n q2|

λj
nλm

n

� λ
j
n

λm
n

Ñ 8, as nÑ 8.

Under this condition, (2.26) follows from

λ2
1

�
U

�
tmn � tjn

�
λj

n

λm
n


2
�
ϕ

��
λ1x� xj

n � xm
n

λm
n



á 0 in 9H1

x,

which is a direct consequence of Remark 2.25.

Finally, if we have

λj
n

λm
n

Ñ λ1 P p0,8q, |tjnpλj
nq2 � tmn pλm

n q2|
λj

nλm
n

Ñ t1, but |xj
n � xm

n |2
λj

nλm
n

Ñ 8. (2.28)

Then, we should have tmn � tjnpλj
nq2{pλm

n q2 Ñ λ1t1. Then, it suffices to show that

λ2
1Upt1λ1qϕpλ1x� ynq á 0 in 9H1

x, (2.29)

where

yn :� xj
n � xm

n

λm
n

� xj
n � xm

nb
λj

nλm
n

d
λj

n

λm
n

Ñ 8 asnÑ 8.

and this follows from Remark 2.25.

Finally, we prove the last statement of the theorem, with respect to behavior
of tjn. For each j, passing to a subsequence, we may assume that tjn Ñ tj P r�8,8s. Using
a diagonal argument, we may assume that such limit exists for all j ¥ 1.

Fixing j ¥ 1, if tj � �8, there is nothing to show. Suppose that tj P p�8,8q.
Then, since we change ϕj by Uptjqϕj , we may redefine tjn � 0. Indeed, we may incorporate
the errors into wJ

n, namely,

lim
nÑ8

}gj
nUptjnqϕj � gj

nUptjqϕj}
9H1

x
� 0,

which follows from the strong convergence of the linear propagator, finishing the proof.
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2.2.4 Asymptotic decoupling

We start defining the operators T j
n by

pT j
nuqpt, xq :� pλj

nq�2u

�
t

pλj
nq2 � tjn,

x� xj
n

λj
n



,

where pλj
nq � p0,8q and ptjn, xj

nq � R� Rd. We have the following result

Lemma 2.27. Suppose that the parameters associated to j, k are orthogonal in the sense
of (2.21). Then, for each ψj, ψk P C8

c pR� Rdq,

}T j
nψ

jT k
nψ

k}
L

d�2
d�2
t,x

� }T j
nψ

j∇pT k
nψ

kq}
L

d�2
d�1
t,x

� }∇pT j
nψ

jq∇pT k
nψ

kq}
L

d�2
d

t,x

converges to zero as nÑ 8.

Proof. See (KOCH; TATARU; VISAN, 2014, Lemma 7.1, page 261).

2.2.5 Coercivity lemmas

Lemma 2.28. Let I � R be an open interval with 0 P I, a P R, b ¡ 0 and q ¡ 1. Define
γ � pbqq�1{pq�1q and fprq � a� r � brq, for r ¡ 0. Let Gptq be a nonnegative continuous

function such that f � G ¥ 0 in I. Assume that a   p1 � δq
�

1� 1
q



γ, for some δ ¡ 0

sufficiently small, we have

(i) If Gp0q   γ then there exists δ1 � δ1pδq ¡ 0 such that Gptq   p1� δ1qγ, for all t P I;

(ii) If Gp0q ¡ γ then there exists δ2 � δ2pδq such that Gptq ¡ p1� δ2qγ, for all t P I.

Proof. See Corollary 3.2 in (PASTOR, 2015).

The next lemmas reproduce observations of (KENIG; MERLE, 2006). We
include details for the sake of completeness.

Lemma 2.29. (Coercivity I). Assume that u0 P 9H1pR6q and let u be a solution of (1.2)
with maximal existence interval I. Let ψ P G6 be a ground state. Suppose that

Epu0q   p1� δ̃qEpψq.

(i) If
Kpu0q   Kpψq,

then there exists δ̃1 � δ̃1pδ̃q such that

Kpuptqq   p1� δ̃1qKpψq,

for all t P I.
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(ii) If
Kpu0q ¡ Kpψq,

then there exists δ̃2 � δ̃2pδ̃q such that

Kpuptqq ¡ p1� δ̃2qKpψq,

for all t P I.

Proof. From the conservation of the energy and (1.24), we deduce

Kpuptqq ¤ Epu0q � 2C6Kpuptqq3{2, @t P I. (2.30)

Let Gptq � Kpuptqq, a � Epu0q, b � 2C6 and q � 3{2 in Lemma 2.28. By (2.30) we see
that f �G ¥ 0 on I. Besides that, (1.25) gives us

γ � pbqq� 1
q�1 � p3C6q�2 � Kpψq.

By Lemma 2.28 we get the result.

Lemma 2.30. (Energy coercivity). Under hypothesis of Lemma 2.29 we have

(i) If
Kpu0q   Kpψq,

then there exists δ1 � δ1pδ̃q ¡ 0 such that

Kpuptqq � 3P puptqq ¥ δ1Kpuptqq,

for all t P I.

(ii) If
Kpu0q ¡ Kpψq,

then there exists δ2 � δ2pδ̃q ¡ 0 such that

Kpuptqq � 3P puptqq ¤ �δ2Kpuptqq,

for all t P I.

Proof. We will just show item (i). The second one is proved in an analogous way. Using
(1.24), Lemma 2.28 and Lemma 2.29, we deduce

1� 3P puptqq
Kpuptqq ¥ 1� 3C6Kpuptqq1{2 � 1�

�
Kpuptqq
Kpψq

�1{2

¥ 1� p1� δ̃1q1{2 �: δ1.

Multiplying both sides by Kpuptqq we get the result.
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Lemma 2.31. (Energy trapping). Let u be a solution of (1.2) with maximal existence
interval I and initial data u0. If Epu0q ¤ p1� δqEpψq and Kpu0q ¤ p1� δ1qKpψq, then

Kpuptqq � Epuptqq, @t P I. (2.31)

Proof. By (1.24) and Epu0q ¤ p1� δqEpψq we obtain

Epuptqq ¤ Kpuptqq � |P puptqq|
¤ Kpuptqq � C6|Kpuptqq|3{2

¤ �
1� C6rp1� δ1qKpψq1{2s�Kpuptqq.

On the other hand,

Epuptqq ¥ 1
3Kpuptqq �

2
3rKpuptqq � 3P puptqqs

¥ 1
3Kpuptqq �

2
3δ

1Kpuptqq

� 1
3p1� 2δ1qKpuptqq.

Combining both inequalities, we get the result.

2.2.6 Virial identities

In this section we present some virial identities that will be useful in our
analyses. Originally, these kind of identity was introduced in (GLASSEY, 1973) in the
context of the wave equation.

Proposition 2.32. Assume that u0 P H1pR6q and xu0 P L2pR6q. Define

V ptq �
ļ

k�1

α2
k

γk

}xukptq}2
L2 �

ļ

k�1

α2
k

γk

»
|x|2|ukpt, xq|2dx. (2.32)

Then,

V 1ptq � 4
ļ

k�1
αkIm

»
∇uk � x sukdx (2.33)

and
V 2ptq � 12Epu0q � 4Kpuq, (2.34)

for all t P I.

Proof. See Proposition 5.3 in (NOGUERA; PASTOR, 2021).

Proposition 2.33. Assume that u0 P H1pR6q and let u be the corresponding solution of
(1.2). Let φ P C8

0 pR6q and define

Mptq � 1
2

»
φpxq

�
ļ

k�1

α2
k

γk

|uk|2
�
dx.
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Then,

M 1ptq �
ļ

k�1
αkIm

»
∇φ �∇uk sukdx,

and

M2ptq � 2
¸

1¤m,j¤6
Re

» B2φ

BxmBxj

�
ļ

k�1
γkBxj

ūkBxmuk

�
dx

� 1
2

»
∆2φ

�
ļ

k�1
γk|uk|2

�
dx� Re

»
∆φF puqdx.

(2.35)

Proof. See Theorem 5.7 in (NOGUERA; PASTOR, 2021).
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CHAPTER 3

BLOW-UP OF THE RADIALLY SYMMETRIC SOLUTIONS FOR A
CUBIC NLS TYPE SYSTEM IN DIMENSION 4

In this chapter we will study the following cubic-type system$'&'%
iut �∆u� u�

�
1
9 |u|

2 � 2|w|2


u� 1

3 ū
2w � 0,

iσwt �∆w � µw � p9|w|2 � 2|u|2qw � 1
9u

3 � 0.
(3.1)

We are going to show local well-posedness to the Cauchy problem associated, existence of
ground state solutions and blow-up for radially symmetric initial data.

3.1 Local well-posedness
As mentioned before, this section is devoted to prove the local well-posedness

to the Cauchy problem associated to (1.1) in H1pR4q � H1pR4q. We work in the space
Y pIq, defined in (1.6), in which the norm is given by

}f}Y � }f}L8
t H1

x
� }f}

L4
t H

1, 8
3

x

.

Before proceeding to the main result, notice that, using Hölder and Sobolev’s inequalities,
we have

}fgh}
L

8
5
x

À }f}L8
x
}g}L8

x
}h}

L
8
3
x

À }f}
H

1, 8
3

x

}g}
H

1, 8
3

x

}h}
H

1, 8
3

x

. (3.2)

and
}fgh}

L
4{3
t L

8
5
x

À }f}
L4

t H
1, 8

3
x

}g}
L4

t H
1, 8

3
x

}h}
L4

t H
1, 8

3
x

. (3.3)
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In a similar way, exchanging fgh for the product fg∇h we obtain

}fg∇h}
L

4
3
t L

8
5
x

À }f}
L4

t L
8
3
x

}g}
L4

t L
8
3
x

}∇h}
L4

t L
8
3
x

À }f}
L4

t H
1, 8

3
x

}g}
L4

t H
1, 8

3
x

}h}
L4

t H
1, 8

3
x

. (3.4)

Proof of Theorem 1.1. We start with some estimates for the nonlinearities F and G defined
in (1.8). A direct calculation shows that

|F pu,wq � F pu1, w1q| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1| � |w � w1|q,

and
|Gpu,wq �Gpu1, w1q| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1| � |w � w1|q.

Then, using (3.2), we get

}p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1|q}
L

8
5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2
H

1, 8
3

x

� }w}2
H

1, 8
3

x

� }w1}2
H

1, 8
3

x



}u� u1}

H
1, 8

3
x

and

}p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1|q}
L

8
5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2
H

1, 8
3

x

� }w}2
H

1, 8
3

x

� }w1}2
H

1, 8
3

x



}w � w1}

H
1, 8

3
x

.

Hence,

}F pu,wq � F pu1, w1q}
L

8
5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2
H

1, 8
3

x

� }w}2
H

1, 8
3

x

� }w1}2
H

1, 8
3

x


�
}u� u1}

L
8
3
x

� }w � w1}
L

8
3
x



,

and using (3.3), we get

}F pu,wq � F pu1, w1q}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.5)

In a similar way, we get

}Gpu,wq �Gpu1, w1q}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.6)

Once more, a direct calculation give us

|∇rF pu,wq � F pu1, w1qs| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|∇ru� u1s �∇rw � w1sq
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and

|∇rGpu,wq �Gpu1, w1qs| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|∇ru� u1s �∇rw � w1sq.

By the same argument used previously, we obtain

}∇rF pu,wq � F pu1, w1qs}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



(3.7)

and

}∇rGpu,wq �Gpu1, w1qs}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.8)

By Strichartz’s inequality, (3.5), (3.6), (3.7) and (3.8), we have�����
» t

0
Upt� τqrF pu,wq � F pu1, w1qsdτ

�����
L4

t H
1, 8

3
x

À

}F pu,wq � F pu1, w1q}
L

4
3
t L

8
5
x

� }∇rF pu,wq � F pu1, w1qs}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.9)

Similarly�����
» t

0
W pt� τqrGpu,wq �Gpu1, w1qsdτ

�����
L4

t H
1,8{3
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.10)

Finally, taking pu1, w1q � p0, 0q in (3.9) and (3.10) we have����» t

0
Upt� τqF pu,wqdτ

����
L4

t H
1,8{3
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

(3.11)

and ����» t

0
W pt� τqGpu,wqdτ

����
L4

t H
1,8{3
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

. (3.12)
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Moreover, combining Strichartz’s inequality, (3.5), (3.6), (3.7) and (3.8), we obtain�����
» t

0
Upt� τqrF pu,wq � F pu1, w1qsdτ

�����
L8

t H1
x

À

}F pu,wq � F pu1, w1q}
L

4
3
t L

8
5
x

� }∇rF pu,wq � F pu1, w1qs}
L

4
3
t L

8
5
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



(3.13)

and, similarly�����
» t

0
W pt� τqrGpu,wq �Gpu1, w1qsdτ

�����
L8

t H1
x

À�
}u}2

L4
t H

1, 8
3

x

� }u1}2
L4

t H
1, 8

3
x

� }w}2
L4

t H
1, 8

3
x

� }w1}2
L4

t H
1, 8

3
x


�
}u� u1}

L4
t H

1, 8
3

x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.14)

Taking pu1, w1q � p0, 0q, we get����» t

0
Upt� τqF pu,wqdτ

����
L8

t H1
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

, (3.15)

and ����» t

0
W pt� τqGpu,wqdτ

����
L8

t H1
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

. (3.16)

Existence and uniqueness: Define the operator Hpu,wq � pH1pu,wq, H2pu,wqq where,

H1puptq, wptqq � Uptqu0 � i

» t

0
Upt� sqF pupsq, wpsqqds,

H2puptq, wptqq � W ptqw0 � i

» t

0
W pt� sqGpupsq, wpsqqds.

By the Strichartz inequality, (2.2) and (3.11), we get that for any ϵ ¡ 0 fixed there exists
T ¡ 0 such that

}H1pu,wq}L4
t H

1,8{3
x

À }Uptqu0}L4
t H

1,8{3
x

�
����» T

0
Upt� sqF pu,wqds

����
L4

t H
1,8{3
x

À ϵ�
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

,

(3.17)

and similarly, using (3.12),

}H2pu,wq}L4
t H

1,8{3
x

À }W ptqw0}L4
t H

1,8{3
x

�
����» T

0
W pt� sqGpu,wqds

����
L4

t H
1,8{3
x

À ϵ�
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

.

(3.18)
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On the other hand, by (3.15), we have

sup
tPr0,T s

}H1puptq, wptqq � Uptqu0}H1
x
�
����» t

0
Upt� τqF pu,wqdτ

����
L8

t H1
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

,

(3.19)

and, by (3.16),

sup
tPr0,T s

}H2puptq, wptqq �W ptqw0}H1
x
�
����» t

0
W pt� τqGpu,wqdτ

����
L8

t H1
x

À
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

.

(3.20)

Now, set the norms

|||v|||1 :� }vptq � Uptqu0}L8
t H1

x
� }v}

L4
t H

1, 8
3

x

,

|||v|||2 :� }vptq �W ptqw0}L8
t H1

x
� }v}

L4
t H

1, 8
3

x

,

and consider the ball

B̄pT, aq � tpv, hq P Y � Y ; |||pv, hq|||T :� |||v|||1 � |||h|||2   au .
Then, using (3.17), (3.18), (3.19) and (3.20) we have for all ϵ ¡ 0 there exists T ¡ 0 such
that for pu,wq P B̄pT, aq

|||H1pu,wq|||1 � }H1pu,wq � Uptqu0}L8
t H1

x
� }H1pu,wq}

L4
t H

1, 8
3

x

À ϵ�
�
}u}

L4
t H

1, 8
3

x

� }w}
L4

t H
1, 8

3
x


3

À ϵ� a3

(3.21)

and
|||H2pu,wq|||2 À ϵ� a3. (3.22)

Choosing a � 2ε we have

|||Hpu,wq|||T � |||H1pu,wq|||1 � |||H2pu,wq|||2 À
�

1
2 � a2



a.

Now, choosing ε ¡ 0 such that a2   1
2 we have that H is well defined on B̄pT, aq. It

remains to show that H is a contraction in B̄pT, aq. Indeed, take pu,wq, pu1, w1q P B̄pT, aq.
By (3.9), (3.10), (3.13) and (3.14), we have

|||Hpu,wq �Hpu1, w1q|||T � |||H1pu,wq �H1pu1, w1q|||1 � |||H2pu,wq �H2pu1, w1q|||2

� |||
» T

0
Upt� τqrF pu,wq � F pu1, w1qs|||1 � |||

» T

0
W pt� τqrGpu,wq �Gpu1, w1qs|||2

À a2p}u� u1}
L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x

q

À a2 p|||u� u1|||1 � |||w � w1|||2q
À a2|||pu,wq � pu1, w1q|||T .
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But, we choose ε such that a2   1
2 , so 2a2   1 hence H is a contraction. By the fixed

point theorem, there exists a unique solution on B̄pT, aq.
The blow-up alternative can be done as in Theorem 4.5.1 of (CAZENAVE,

2003). We will omit the details.

3.2 Existence of ground state solution
This section is devoted to prove the existence of ground state solutions. As

mentioned before, we will follow the ideas in (NOGUERA; PASTOR, 2022). We start with
the deduction of a critical Sobolev-type inequality.

3.2.1 Critical Sobolev-type inequality and localized version

The first result states that the function N must be positive for a pair pP,Qq of
non-trivial solutions to (1.12).

Lemma 3.1. Let N :� tpP,Qq P 9H1pR4q � 9H1pR4q; NpP,Qq ¡ 0u. Then C � N , where
C denotes the set of all non-trivial solutions of (1.12) and N is defined in (1.14).

Proof. Let pP,Qq P C. Taking pf, gq � pP,Qq in (1.15) we have»
|∇P |2 �

» 1
9P

4 � 2Q2P 2 � 1
3P

3Q

and »
|∇Q|2 �

»
9Q4 � 2Q2P 2 � 1

9P
3Q.

By summing both equations, we get

KpP,Qq �
» 1

9P
4 � 9Q4 � 4Q2P 2 � 4

9P
3Q � 4NpP,Qq. (3.23)

Since pP,Qq are non-trivial, it follows that NpP,Qq ¡ 0 and pP,Qq P N as desired.

Let us introduce the functional

JpP,Qq :� KpP,Qq2
NpP,Qq , pP,Qq P N . (3.24)

Remark 3.2. (i) The energy functional for system (1.12) is

EpP,Qq :� 1
2KpP,Qq �NpP,Qq, pP,Qq P 9H1pR4q � 9H1pR4q. (3.25)

Then, if pP,Qq is a non-trivial solution, we have EpP,Qq � SpP,Qq.
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(ii) Observe that, using (3.23),

SpP,Qq � 1
2KpP,Qq �NpP,Qq � NpP,Qq.

Moreover,
JpP,Qq � KpP,Qq2

NpP,Qq � 16NpP,Qq � 16SpP,Qq.

Hence, a non-trivial solution of (1.12) is a ground state if, and only if, it has
least energy E among all solutions if, and only if, it minimizes J .

From now on, we will assume that u and w are real-valued functions. We
start noticing that if we apply Hölder’s inequality with p � 4 and q � 4

3 , in view of

ab À pap � bqq and 1
p
� 1
q
� 1, then

»
u3w ¤

»
|u|3|w| ¤ }u3}

L
4
3
}w}L4 � }u}3

L4}w}L4 À pp}u}3
L4q 4

3 � }w}4
L4q À p}u}4

L4 � }w}4
L4q

(3.26)
and u2w2 ¤ |u|2|w|2 À p|u|2q2 � p|w|2q2 � |u|4 � |w|4, thus»

u2w2 À
»
|u|4 � |w|4 � }u}4

L4 � }w}4
L4 . (3.27)

Therefore, we have Npu,wq À }u}4
L4 � }w}4

L4 . Using Sobolev’s inequality

}f}4
L4 À }∇f}4

L2

we get,

Npu,wq À }u}4
L4 � }w}4

L4

À }∇u}4
L2 � }∇w}4

L2

À }∇u}4
L2 � }∇w}4

L2 � 2p}∇u}2
L2}∇w}2

L2q
À Kpu,wq2.

(3.28)

Hence, if pu,wq P N then
Npu,wq À Kpu,wq2. (3.29)

Consequently, there exists a positive constant C such that

1
C
¤ Jpu,wq, @pu,wq P N , (3.30)

that is, the functional J is bounded from below by a positive constant. The best constant
we can place in (3.30) is given by

C�1
4 � inftJpu,wq; pu,wq P N u, (3.31)
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where the subscript 4 in C4 is motivated by the dimension d � 4. To show that this
infimum is attained, we will consider the normalized version of the problem as follows

I � inftKpu,wq; pu,wq P N , Npu,wq � 1u. (3.32)

Since we assumed that N can take negative values outside the origin, we should slightly
modify our problem. For this end, we are considering the problem in N instead of
9H1pR4q � 9H1pR4q.

Definition 3.3. A minimizing sequence for (3.31) is a sequence pum, wmq in N such
that Jpum, wmq Ñ C�1

4 . In the same way, a minimizing sequence for (3.32) is a sequence
pum, wmq in N such that Npum, wmq � 1, for all m and Kpum, wmq Ñ I.

Next, notice that Bxi
|u| � u

|u|Bxi
u thus

|∇|u||2 �
ḑ

i�1

���� u|u|Bxi
u

����2 ¤ ḑ

i�1
|Bxi

u|2 ¤ |∇u|2.

In the same way, |∇|w||2 ¤ |∇w|2 and then Kp|u|, |w|q ¤ Kpu,wq. Moreover,

Npu,wq ¤ |Npu,wq| ¤
» 1

36 |u|
4 � 9

4 |w|
4 � |u|2|w|2 � 1

9 |u|
3|w| � Np|u|, |w|q.

Hence, Jp|u|, |w|q ¤ Jpu,wq, that is, if pum, wmq is a minimizing sequence for (3.31) (or
(3.32)) then so is p|um|, |wm|q. In particular, there is no loss of generality in assuming that
minimizing sequences are always non-negative.

Remark 3.4. Observe that C4 � I�2. Indeed, denote A :� tpu,wq P N , Npu,wq � 1u.
Then, for any pu,wq P A we have Jpu,wq � Kpu,wq2 and, hence, C�1

4 ¤ Kpu,wq2 or,
equivalently, C�1{2

4 ¤ Kpu,wq, for all pu,wq P A, that is, C�1{2
4 is a lower bound to

the set tKpu,wq; pu,wq P N , Npu,wq � 1u. Therefore, C�1{2
4 ¤ I, i.e., I�2 ¤ C4. On

the other hand, since N and K are homogeneous of degree 4 and 2, respectively, we
have that Jpλpu,wqq � Jpu,wq, for any λ ¡ 0. Now, given ϵ ¡ 0, let pu,wq P N be
such that Jpu,wq   C�1

4 � ϵ and set pũ, w̃q :� Npu,wq�1{4pu,wq. Then Npũ, w̃q � 1,
Jpũ, w̃q � Jpu,wq and

I2 ¤ Kpũ, w̃q2 � Jpũ, w̃q � Jpu,wq   C�1
4 � ϵ.

Hence, C4 ¤ I�2 and then C4 � I�2. Therefore, (3.29) becomes

Npu,wq ¤ I�2Kpu,wq2, @pu,wq P N . (3.33)

In addition, if pu,wq is a minimizer for (3.32), then Kpu,wq � I and Npu,wq � 1, so

Jpu,wq � Kpu,wq2
Npu,wq � I2 � C�1

4 .

Thus, pu,wq is also a minimizer for (3.31).
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Before proceeding, it is convenient to set the function

φpu,wq :� 1
36u

4 � 9
4w

4 � u2w2 � 1
9u

3w.

Notice that φ is homogeneous of degree 4. Also, for R ¡ 0 and y P R4, the function
uR,y :� R�1upR�1px� yqq, satisfies

NpuR,y, wR,yq � NpR�1upR�1px� yqq, R�1wpR�1px� yqqq
� R�4

»
φpupR�1px� yqq, wpR�1px� yqqqdx

�
»
φpupzq, wpzqqdz

� Npu,wq,

where we used the change of variables z � R�1px � yq. In the same way, since K is
homogeneous of degree 2, it follows that

KpuR,y, wR,yq � KpR�1upR�1px� yqq, R�1wpR�1px� yqqq
� R�2

»
|∇pupR�1px� yqq|2 � |∇wpR�1px� yqq|2dx

�
»
|∇upzq|2 � |∇wpzq|2dz

� Kpu,wq.

Thus, the functionals K and N are invariant under the transformation

pu,wq ÞÑ puR,y, wR,yq � pR�1upR�1px� yqq, R�1wpR�1px� yqqq. (3.34)

As mentioned before, to finish this part we will set some results about a localized
version of Sobolev’s inequality. We will start with a useful tool to achieve the goal. The
result was essentially proved in (FLUCHER; MüLLER, 1999), Lemma 8.

Lemma 3.5. For all δ ¡ 0, there exists a constant Cpδq ¡ 0 with the following property:
if r{R   Cpδq and x P R4, then there is a cut-off function χr

R P H1,8pR4q such that χr
R � 1

on Bpx, rq, χr
R � 0 outside Bpx,Rq and

Kpχr
Ru, χ

r
Rwq ¤

»
Bpx,Rq

�|∇u|2 � |∇w|2� dy � δKpu,wq, (3.35)

and

Kpp1� χr
Rqu, p1� χr

Rqwq ¤
»
R4zBpx,rq

�|∇u|2 � |∇w|2� dy � δKpu,wq, (3.36)

for any pu,wq P 9H1pR4q � 9H1pR4q.
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Proof. There is no loss of generality in assuming x � 0. Define the function

χr
Rpyq :�

$'''&'''%
1, |y| ¤ r,

logp|y|{Rq
logpr{Rq , r ¤ |y| ¤ R,

0, |y| ¥ R.

Note that for r   |y|   R and 1 ¤ i ¤ 4, we have

Bχr
R

Byi

� 1
logpr{Rq

yi{pR|y|q
|y|{R � yi

logpr{Rq|y|2 .

Since R ¡ r and logpr{Rq � � logpR{rq, we have

|∇χr
R| �

|y|
logpR{rq|y|2 �

1
logpR{rq|y| .

Hence
|∇χr

R|4 �
1

logpR{rq4|y|4 .

Besides that, ∇χr
R � 0 for |y|   r. Therefore, using polar coordinates we have»
Bp0,Rq

|∇χr
R|4dy �

1
logpR{rq4

»
tr¤|y|¤Ru

1
|y|4dy

� 1
logpR{rq4

» R

r

�»
BBp0,tq

1
|y|4dSpyq



dt

� 1
logpR{rq4

» R

r

α4
t3

t4
dt

� α4

logpR{rq4
» R

r

1
t
dt

� α4

logpR{rq3 .

where α4 is the measure of the unit sphere in R4. Now, using Young’s inequality, we have

|∇pχr
Ruq|2 � |u∇χr

R � χr
R∇u|2

� |u|2|∇χr
R|2 � 2pu∇χr

Rqpχr
R∇uq � |χr

R|2|∇u|2

¤ |u|2|∇χr
R|2 �

1
ϵ
|u∇χr

R|2 � ϵ|χr
R∇u|2 � |χr

R|2|∇u|2

� p1� ϵq|χr
R|2|∇u|2 �

�
1� 1

ϵ



|u|2|∇χr

R|2.

In addition, Hölder’s inequality with p � q � 2 implies»
Bp0,Rq

|u|2|∇χr
R|2dy ¤ C}u}2

L4

�»
Bp0,Rq

|∇χr
R|4dy


1{2

.

Hence, using the above estimates and Sobolev’s inequality

}u}2
L4 ¤ C}∇u}2

L2
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we have»
Bp0,Rq

|∇rχr
Rus|2dy ¤

»
Bp0,Rq

p1� ϵq|χr
R|2|∇u|2 �

�
1� 1

ϵ


»
Bp0,Rq

|u|2|∇χr
R|2.

¤
»

Bp0,Rq

p1� ϵq|χr
R|2|∇u|2 �

�
1� 1

ϵ



C}u}2

L4

�»
Bp0,Rq

|∇χr
R|4dy


1{2

¤ p1� ϵq
»

Bp0,Rq

|χr
R|2|∇u|2dy �

�
1� 1

ϵ



Cα

1{2
4

plogpR{rqq3{2
»
R4
|∇u|2dy.

Similarly for w,»
Bp0,Rq

|∇rχr
Rws|2dy ¤

»
Bp0,Rq

p1� ϵq|χr
R|2|∇w|2 �

�
1� 1

ϵ



Cα

1{2
4

logpR{rq3{2
»
R4
|∇w|2dy.

Summing the above estimates, we get

Kpχr
Ru, χ

r
Rwq ¤

»
Bp0,Rq

|∇u|2 � |∇w|2dy �
�
ϵ�

�
1� 1

ϵ



ξ2

logpR{rq3{2
�
Kpu,wq,

where ξ �
?
Cα

1{4
4 . Taking ϵ �

?
δ � 1� 1 and

Cpδq :� exp

�
�
�

ξ?
δ � 1� 1


4{3
�
,

we have that if r{R ¤ Cpδq then�
ϵ�

�
1� 1

ϵ



ξ2

logpR{rq3{2
�
¤ δ

and (3.35) follows. To show (3.36), observe that»
R4zBp0,rq

|∇rp1� χr
Rqus|2dy ¤

p1� ϵq
»
R4zBp0,rq

|1� χr
R|2|∇u|2dy �

�
1� 1

ϵ


»
R4zBp0,rq

|u|2|∇p1� χr
Rq|2dy,

and»
R4zBp0,rq

|∇rp1� χr
Rqws|2dy ¤

p1� ϵq
»
R4zBp0,rq

|1� χr
R|2|∇w|2dy �

�
1� 1

ϵ


»
R4zBp0,rq

|w|2|∇p1� χr
R|2dy.

Thus, since |∇p1� χr
Rq|2 � |∇χr

R|2 and χr
R � 0 outside Bp0, Rq, then (3.36) follows as in

(3.35) thereby, finishing the proof.

With this at hand, we can state the localized version of the Sobolev inequality
as follows.
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Corollary 3.6. Let pu,wq P 9H1pR4q � 9H1pR4q with u,w ¡ 0. Fix δ ¡ 0 and r{R ¤ Cpδq
with Cpδq as in Lemma 3.5. Then»

Bpx,Rq

φpu,wqdy ¤ I�2
�»

Bpx,Rq

|∇u|2 � |∇w|2dy � δKpu,wq
�2

, (3.37)

»
R4zBpx,Rq

φpu,wqdy ¤ I�2
�»

R4zBpx,Rq

|∇u|2 � |∇w|2dy � p2δ � δ2qKpu,wq
�2

. (3.38)

Proof. There is no loss of generality in assuming x � 0. Observe that χr
R � 1 on Bp0, rq

and supppχr
Rq � Bp0, Rq. Then, (3.33) and (3.35) give us»

Bp0,Rq

φpu,wqdx ¤
»
R4
φpχr

Ru, χ
r
Rwqdx

¤ I�2Kpχr
Ru, χ

r
Rwq2

¤ I�2
�»

|∇u|2 � |∇w|2dx� δKpu,wq
�2

,

which is exactly (3.37). For (3.38), we use the function p1�χr
RqχR1

R2 where r   R   R1   R2

and R1{R2 ¤ Cpδq. Naturally, p1� χr
RqχR1

R2 � 1 on Bp0, R1qzBp0, Rq and we have»
Bp0,R1qzBp0,Rq

φpu,wqdx �
»

Bp0,R1qzBp0,Rq

φ
�p1� χr

RqχR1
R2u, p1� χr

RqχR1
R2w

�
dx

¤
»

Bp0,R1q

φ
�p1� χr

RqχR1
R2u, p1� χr

RqχR1
R2w

�
dx

¤ I�2
�»

Bp0,R2q

|∇rp1� χr
Rqus|2 � |∇rp1� χr

Rqws|2dx� δKpp1� χr
Rqu, 1� χr

Rqwq
�2

,

where, in the last inequality, we use (3.37). Taking R1 and R2 as large as we want such
that R1

R2
¤ Cpδq, the last inequality gives us

»
R4zBp0,Rq

φpu,wqdx ¤ I�2rKpp1� χr
Rqu, 1� χr

Rqwq � δKpp1� χr
Rqu, 1� χr

Rqws2.

Finally, using (3.36), we get»
R4zBp0,Rq

φpu,wqdx ¤ I�2
�»

R4zBp0,Rq

|∇u|2 � |∇w|2dy � δKpu,wqq � δp1� δqKpu,wq
�2

,

as desired.

3.2.2 Concentration-compactness method

We start with a result, that is called concentrarion-compactness lemma I, which
is a slightly modification of the Lemma presented in (LIONS, 1984).
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Lemma 3.7. [Concentrarion-compactness lemma I]. Suppose that pνmq is a sequence in
M1

�pR4q. Then, there is a subsequence, still denoted by pνmq, such that one of the following
conditions holds:

(i) (Vanishing) For all R ¡ 0 it holds

lim
mÑ8

�
sup
xPR4

νmpBpx,Rqq


� 0.

(ii) (Dichotomy) There is a number λ P p0, 1q such that for all ϵ ¡ 0 there exists R ¡ 0
and a sequence pxmq with the following property: given R1 ¡ R

νmpBpxm, Rqq ¥ λ� ϵ,

νmpR4zBpxm, R
1qq ¥ 1� λ� ϵ,

for m sufficiently large.

(iii) (Compactness) There exists a sequence pxmq � R4 such that for each ϵ ¡ 0 there is a
radius R ¡ 0 with the property

νmpBpxm, Rqq ¥ 1� ϵ,

for all m.

Proof. One can see the proof in (FLUCHER; MüLLER, 1999) Lemma 23.

To achieve our goal and find a minimizer for the minimization problem (3.32),
we will built a suitable sequence of probability Radon measures and then, as a consequence
of Lemma 3.7, up to a subsequence, it will satisfy one of the three conditions above. From
that, we will avoid vanishing and dichotomy implying in the compactness of the sequence.
Hence, we shall get a vague convergence in Mb

�pR4q. Such convergence allows us to use,
what is called concentration-compactness lemma II, which was inspired in the limit case
lemma in (LIONS, 1985), roughly speaking, this guarantee dilation invariance for the
minimization problem.

Lemma 3.8. [Concentration-compactness lemma II] Let pum, wmq � 9H1pR4q � 9H1pR4q be
a sequence such that um, wm ¥ 0 and$'&'%

pum, wmq á pu,wq, in 9H1pR4q � 9H1pR4q,
µm :� p|∇um|2 � |∇wm|2qdx �á µ, in Mb

�pR4q
νm :� φpum, wmqdx �á ν, in Mb

�pR4q.
(3.39)

Then,
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(i) There exists an at most countable set J , a family of distinct points txj P R4; j P Ju,
and a family of non-negative numbers taj; j P Ju such that

ν � φpu,wqdx�
¸
jPJ

ajδxj
. (3.40)

(ii) Moreover, we have
µ ¥ �|∇u|2 � |∇w|2� dx�¸

jPJ

bjδxj
(3.41)

fore some family tbj; j P Ju, bj ¡ 0, such that

aj ¤ I�2b2
j , @j P J. (3.42)

In particular,
¸
jPJ

a
1{2
j   8.

Remark 3.9. Since um, wm ¥ 0, then φpum, wmq ¥ 0. Thus, νm is indeed a positive
measure. In addition, the weak converge of pum, wmq á pu,wq implies that, up to a
subsequence, we have pum, wmq Ñ pu,wq a.e. in R4. Hence u,w ¥ 0.

Proof. Step 1. Assume that pu,wq � p0, 0q.
Let ξ P C8

0 pR4q. From the weak convergence of pνmq and the homogeneity of φ,»
|ξ|4dν � lim

mÑ8

»
|ξ|4φpum, wmqdx

� lim
mÑ8

»
φp|ξ|um, |ξ|wmqdx

¤ I�2 lim inf
mÑ8

Kpξum, ξwmq2.

(3.43)

Since pum, wmq á p0, 0q in 9H1pR4q � 9H1pR4q, we know that (see Theorem 8.6 of (LIEB;
LOSS, 2001)), for all M � R4 with finite measure, by Lemma 2.5, we have

χMpum, wmq Ñ p0, 0q, (3.44)

strongly in L2pR4q � L2pR4q. Then, taking M � supp|∇ξ| and using the triangular
inequality, we obtain���}∇pξumq}2

L2 � }∇pξwmq}2
L2

�1{2 � p}ξ∇pumq}2
L2 � }ξ∇pwmq}2

L2q1{2
��

¤ �}∇pξumq � ξ∇um}2
L2 � p}∇pξwmq � ξ∇wm}2

L2

�1{2

� �}um∇ξ}2
L2 � }wm∇ξ}2

L2

�1{2

À
�»

|χMum|2 � |χMwm|2

1{2

Ñ 0, mÑ 8.
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Combining with the vague convergence of pµmq, we get

lim inf
mÑ8

Kpξum, ξwmq2 � lim inf
mÑ8

�»
|ξ|2p|∇um|2 � |∇wm|2qdx


2

� lim inf
mÑ8

�»
|ξ|2dµm


2

�
�»

|ξ|2dµ

2

.

Then, from (3.43), we deduce»
|ξ|4dν ¤ I�2

�»
|ξ|2dµ


2

, ξ P C8
0 pR4q. (3.45)

We claim that (3.45) implies that

νpEq ¤ I�2µpEq2, @E P BpR4q. (3.46)

Indeed, let U � R4 be an open set and take a compact set K � U . By C8 Urysohn’s
lemma (see (FOLLAND, 1999), Lemma 8.18), there exists g P C8

0 pR4q obeying 0 ¤ g ¤ 1,
g � 1 on K and supppgq � U . Thus, by (3.45)

νpKq �
»

K

g4dν ¤
»
g4dν ¤ I�2

�»
g2dµ


2

¤ I�2
�»

supppgq
g2dµ


2

¤ I�2
�»

U

dµ


2

.

Thus, νpKq ¤ I�2µpUq2, for all K � U compact. Since ν is a Radon measure, by its inner
regularity, we have

νpUq ¤ I�2µpUq2, @U � R4, U open. (3.47)

Now, if E P BpR4q, where B denotes the Borel σ-algebra, and U is an open set E � U ,
then from (3.47), we get νpEq ¤ νpUq ¤ I�2µpUq2. Since µ is a Radon measure, we can
use its outer regularity to get

νpEq ¤ I�2µpEq2, @E P BpR4q.

Now, consider D � tx P R4; µptxuq ¡ 0u. We may write D �
8¤

k�1
Dk, where

Dk � tx P R4; µptxuq ¡ 1{ku. Since µ is a finite measure, then Dk is finite for all k. Indeed,
assume that exists k0 such that Dk0 has infinitely many elements, i.e., Dk0 � txj, j P Nu.
Then µpDk0q �

¸
jPN

µptxjuq ¡
¸
jPN

1{k0 � 8, which contradicts the fact that µ is finite.

Hence, Dk is finite for all k P N and the set D is at most countable. Thus we write
D � txj; j P Ju, with J � N.

Set bj � µptxjuq, j P J , then for any E P BpR4q, we have¸
jPJ

bjδxj
pEq �

¸
jPJ

xjPE

bj �
¸
jPJ

xjPE

µptxjuq ¤ µpEq, (3.48)
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where δxj
pEq � 1 if xj P E and δxj

pEq � 0 if not. From (3.47) we have (3.41) for the case
pu,wq � p0, 0q.

Now, observe that from (3.46) we have ν ! µ and, by Radon-Nikodym theorem
(see (EVANS; GARIEPY, 1992), Section 1.6) there is a non-negative function h P L1pR4, µq
such that

νpEq �
»

E

hpxqdµpxq, @E P BpR4q. (3.49)

Moreover, h satisfies
hpxq � lim

rÑ0

νpBpx, rqq
µpBpx, rqq , µ a.e. x P R4. (3.50)

Using (3.50) and (3.46), we get 0 ¤ hpxq ¤ I�2µptxuq. Thus, hpxq � 0, µ a.e. on R4zD.
In particular, we can rewrite the integral (3.49) as»

E

hpxqdµpxq �
¸
jPJ

xjPE

hpxjqµptxjuq. (3.51)

Setting aj � νptxjuq, j P J , we have from (3.49) and (3.51) that in fact aj � hpxjqbj,
@j P J . Then, for all E P BpR4q, we have

νpEq �
¸
jPJ

xjPE

hpxjqµptxjuq �
¸
jPJ

xjPE

aj �
¸
jPJ

ajδxj
pEq,

which establishes (3.40) for pu,wq � p0, 0q. Finally, inequality (3.42) follows immediately
from the definitions of aj e bj and (3.46). Note also that by taking E � R4 in (3.48) we
deduce that

¸
jPJ

bj is convergent. Hence, the convergence of the series
¸
jPJ

a
1{2
j follows from

(3.46).

Step 2. Case pu,wq � p0, 0q.
Since um, wm ¥ 0, then we have φpu,wq ¥ 0 thus φpu,wqdx defines a positive

measure.

Claim The measures

µ� p|∇u|2 � |∇w|2qdx and ν � φpu,wqdx (3.52)

are non-negative.

Indeed, set pym, zmq � pum�u,wm�wq and consider the sequence of measures

µ̃m :� p|∇ym|2 � |∇zm|2qdx and ν̃m :� φp|ym|, |zm|qdx.

Since pym, zmq á p0, 0q in 9H1pR4q � 9H1pR4q, the sequence pKpym, zmqq is uniformly
bounded. Hence, since ����» fdµ̃m

���� ¤ }f}L8Kpym, zmq, f P C8
0 pR4q,
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we have that pµ̃mq is vaguely bounded on Mb
�pR4q. Therefore, Lemma 2.5 gives us a

subsequence, still denoted by pµ̃mq, and µ̃ P Mb
�pR4q obeying

µ̃m
�á µ̃, in Mb

�pR4q. (3.53)

Now, if
µm

�á µ̃� p|∇u|2 � |∇w|2qdx, in Mb
�pR4q, (3.54)

then by uniqueness of the vague limit,

µ � µ̃� p|∇u|2 � |∇w|2qdx

and, by the finiteness of all involved measures, we may conclude that µ�p|∇u|2�|∇w|2qdx
is non-negative.

Now, we turn our attention to establish (3.54). Since Bxi
ym á 0 and Bxi

zm á 0
in L2pR4q and fBxi

u, fBxi
w P L2pR4q for each f P CcpR4q, then

lim
mÑ8

»
f∇ym �∇udx � 0,

lim
mÑ8

»
f∇zm �∇wdx � 0.

(3.55)

Thus,

0 ¤
����» fdµm �

»
f
�
dµ̃� p|∇u|2 � |∇w|2qdx�����

�
����» fp|∇um|2 � |∇wm|2qdx�

»
f
�
dµ̃� p|∇u|2 � |∇w|2qdx�����

�
����» f �|∇ym|2 � 2∇ym �∇u� |∇u|2 � |∇zm|2 � 2∇zm �∇w � |∇w|2� dx
�
»
fdµ̃�

»
fp|∇u|2 � |∇w|2qdx

����
¤
����» fdµ̃m �

»
fdµ̃

����� 2
�����» f∇ym �∇udx

����� ����» f∇zm �∇wdx
����� .

Since the first and the second terms goes to zero by (3.53) and (3.55), respectively, then
(3.54) holds.

Now, let us show that pν̃mq is vaguely bounded in Mb
�pR4q. As seen before,

pKpym, zmqq is uniformly bounded. Then, (3.29), implies����» fdν̃m

���� ¤ }f}L8

»
φp|ym|, |zm|qdx � CNp|ym|, |zm|q ¤ CKp|ym|, |zm|q2  M,

for some constant M . Again, from Lemma 2.5, we obtain a subsequece, still denoted by
pν̃mq, such that

ν̃m
�á ν̃, in Mb

�pR4q, (3.56)
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Now, observe that if

νm
�á ν̃ � φpu,wqdx, in Mb

�pR4q, (3.57)

holds, then ν � ν̃ � φpu,wqdx and, hence, ν � φpu,wqdx is non-negative. So, let us prove
(3.57).

We know that φpu,wq ¤ Cp|u|4 � |w|4q. Then, we are able to use Brezis-Lieb’s
Lemma 2.6 with φp|u|, |w|q instead of Gpxq in the following way: We first assume that
pym, zmq Ñ 0 a.e. in R4 (see Remark 3.9). Then, by Sobolev’s inequality }f}2

L4 ¤ }∇f}2
L2 ,

we have pu,wq P L4pR4q � L4pR4q. Then, φp|u|, |w|q P L1pR4q. Moreover, we have that
pym, zmq is uniformly bounded in L4pR4q. Thus,

|φp|a1 � b1|, |a2 � b2|q � φp|b1|, |b2|q| ¤ ϵϕpa1, a2q � ψϵpb1, b2q,

where ϕpa1, a2q � |a1|4 � |a2|4 and ψϵpb1, b2q ¤ Cϵp|b1|4 � |b2|4q with ϵ ¡ 0. Also,»
ϕpym, zmqdx ¤M and

»
ψϵpu,wqdx   8,

for M indenpendent of ϵ and m. The Brezis-Lieb Lemma gives us

lim
mÑ8

»
|φp|um|, |wm|q � φp|ym|, |zm|q � φp|u|, |w|q|dx � 0. (3.58)

Hence, for all g P CcpR4q,

0 ¤
����» gdνm �

»
grdν̃ � φpu,wqdxs

����
�
����» gφpum, wmqdx�

»
gφp|ym|, |zm|qdx�

»
gφp|ym|, |zm|qdx�

»
grdν̃ � φpu,wqsdx

����
¤ }g}L8

»
|φp|um|, |wm| � φp|ym|, |zm|q � φp|u|, |w|q|dx�

����» gdν̃m �
»
fν̃

���� .
The first term vanishes by taking the limit and using (3.58). The second term goes to
zero by the vague convergence of pν̃mq. So (3.57) holds and, consequently, ν � φpu,wqdx
is non-negative, which finish the claim. Therfore,#

p|∇ym|2 � |∇zm|2qdx �á µ� p|∇u|2 � |∇w|2qdx, in Mb
�pR4q,

φp|ym|, |zm|qdx �á ν � φpu,wqdx, in Mb
�pR4q,

and we complete the proof of the lemma after applying Step 1. We notice that Step 1
still holds even if we do not have um, wm ¥ 0; in that case we change pνmq in (3.39) by
νm :� φp|um|, |wm|qdx.

Before proving Theorem 1.3, we will establish an adapted version of Lemma
1.7.4 in (CAZENAVE, 2003), which will help us to avoid the vanishing property.
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Lemma 3.10. Let pum, wmq � L3pR4q � L3pR4q be such that, um, wm ¥ 0 and»
φpum, wmqdx � 1, for any m P N. Let QmpRq be the concentration function of φpum, wmq,

that is,
QmpRq :� sup

yPR4

»
Bpy,Rq

φpum, wmqdx, R ¡ 0.

Then, for each m there is y � ypm,Rq such that

QmpRq �
»

Bpy,Rq

φpum, wmqdx.

Proof. Fix m P N. By the definition of Qm, for any R ¡ 0 there is pyiq in R4 such that

QmpRq � lim
iÑ8

»
Bpyi,Rq

φpum, wmqdx ¡ 0.

Hence, there exists i0 such that if i ¡ i0 then
»

Bpyi,Rq

φpum, wmqdx ¥ ϵ, where ϵ ¡ 0.

Let us show that pyiq is bounded. If not, there is a subsequence, still denoted
by pyiq, such that Bpyj, Rq XBpyi, Rq � H, @i � j. Thus

1 �
»
φpum, wmqdx ¥

¸
i¥i0

»
Bpyi,Rq

φpum, wmqdx � 8,

which is an absurd. Therefore pyjq has a convergent subsequence pyjk
q with limit y �

ypm,Rq. Applying the dominated convergence theorem, we get

QmpRq � lim
jkÑ8

»
Bpyjk

,Rq

φpum, wmqdx �
»

Bpy,Rq

φpum, wmqdx,

which finish the proof.

3.2.3 Proof of Theorem 1.3

Following the strategy in (NOGUERA; PASTOR, 2022), before proceeding to
the proof of Theorem 1.3, we first state the following result.

Theorem 3.11. Suppose that pum, wmq is a minimizing sequence for (3.32) with um, wm ¥
0. Then, up to translation and dilation pum, wmq is relatively compact in N , that is, there
exist a subsequence pumj

, wmj
q and sequences pRjq � R, pyjq � R4 such that the pair

pvj, zjq given by

vj :� R�1
j umj

pR�1
j px� yjqq, zj :� Rjt

�1wmj
pR�1

j px� yjqq,

strongly converges in N to some pv, zq, which minimizes (3.32).
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Proof. The proof will proceed in 6 steps. We start taking pum, wmq in N a minimizing
sequence for (3.32) with um, wm ¥ 0. Then,

lim
mÑ8

Kpum, wmq � I, Npum, wmq �
»
φpum, wmqdx � 1, @m. (3.59)

Step 1. There exist sequences pRmq in R and pymq in R4 such that

vm :� R�1umpR�1
m px� ymqq, zm :� R�1wmpR�1

m px� ymqq (3.60)

satisfies
sup
yPR4

»
Bpy,1q

φpvm, zmqdx �
»

Bp0,1q
φpvm, zmqdx � 1

2 . (3.61)

To show that, let us take R ¡ 0, s P R4 and consider the following scaling

vR,s
m :� R�1umpR�1px� sqq, zR,s

m :� R�1wmpR�1px� sqq.

From (3.34) we get KpvR,s
m , zR,s

m q � Kpum, wmq and NpvR,s
m , zR,s

m q � Npum, wmq � 1. Let
us consider the concentration function corresponding to φpvm, zmq given by

QR,s
m ptq � sup

yPR4

»
Bpy,tq

φpvR,s
m pxq, zR,s

m pxqqdx.

A change of variables give us Qmpt{Rq � QR,s
m ptq for all t ¥ 0 and s P R4, where Qm is

defined as in Lemma 3.10. In particular, for all m, Qm is a non-decreasing function with
Qmp0q � 0, Qmp1{Rq � QR,s

m p1q and Qmptq Ñ 1 as tÑ 8. Therefore,

lim
RÑ0�

QR,s
m p1q � lim

RÑ0�
Qmp1{Rq � 1.

Consequently, for any m we can find Rm ¡ 0 obeying

QRm,s
m p1q � Qmp1{Rmq � 1

2 , @s P R4, (3.62)

i.e.,
sup
yPR4

»
Bpy,1q

φpvRm,s
m , zRm,s

m qdx � QRm,s
m p1q � 1

2 , @s P R4. (3.63)

On the other hand, since
»
φpvRm,s

m , zRm,s
m qdx � 1 and vRm,s

m , zRm,s
m ¥ 0, Lemma

3.10 gives us ym P R4 obeying

sup
yPR4

»
Bpy,1q

φpvRm,s
m pxq, zRm,s

m pxqqdx �
»

Bpym,1q
φpvRm,s

m pxq, zRm,s
m pxqqdx

�
»

Bp0,1q
φpR�1

m umpR�1
m pr � ym � sqq, R�1

m wmpR�1
m pr � ym � sqqqdr,
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where we used the change of variables x � r � ym. Choosing s � 2ym and using (3.63), we
get »

Bp0,1q
φpR�1

m umpR�1
m pr � ymq, R�1

m wmpR�1
m pr � ymqqdr

� sup
yPR4

»
Bpy,1q

φpR�1
m umpR�1

m px� 2ymqq, R�1
m wmpR�1

m px� 2ymqqqdx

� QRm,2ym
m p1q

� 1
2 ,

which is the second equality in (3.61). For the first one, observe

sup
yPR4

»
Bpy,1q

φpvm, zmqdx � sup
yPR4

»
Bpy,1q

φpR�1
m umpR�1

m px� ymqq, R�1
m wmpR�1

m px� ymqqqdx

� sup
yPR4

»
Bpy,1q

φpvRm,ym
m , zRm,ym

m qdx

� 1
2 ,

where in the last equality we used (3.63).

Next, from (3.34) and Step 1, pvm, zmq is also a minimizing sequence for (3.32)
with vm, zm ¥ 0, that is,

lim
mÑ8

Kpvm, zmq � I, Npvm, zmq �
»
φpvm, zmqdx � 1, @m P N. (3.64)

Particularly, pvm, zmq is uniformly bounded in N . Thus, there exist pv, zq P 9H1pR4q �
9H1pR4q such that, up to a subsequence,

pvm, zmq á pv, zq in 9H1pR4q � 9H1pR4q. (3.65)

Let us show that pvm, zmq Ñ pv, zq in N and pv, zq is a minimizer for (3.32). Indeed, from
Remark (3.9) we have v, z ¥ 0. Set the sequence of measure

µm :� p|∇vm|2 � |∇zm|2qdx, νm :� φpvm, zmqdx. (3.66)

The identity in (3.64) give us that pνmq is a probability sequence of measures for all m.
Thus, by Lemma 3.7, up to a subsequence, occurs one of the following cases: vanishing,
dichotomy or compactness. Let us exclude the vanishing and dichotomy cases.

Step 2 Vanishing does not occur.

Indeed, in view of (3.61) it follows that for R � 1

lim
mÑ8

sup
yPR4

νmpBpy, 1qq ¥ 1
2 .

Step 3. Dichotomy does not occur.
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Suppose the opposite. Then, there is λ P p0, 1q such that for all ϵ ¡ 0, there
exist R ¡ 0 and a sequence pxmq in R4 such that given R1 ¡ R and m sufficiently large,

νmpBpxm, Rq ¥ λ� ϵ, νmpR4zBpxm, R
1qq ¥ 1� λ� ϵ. (3.67)

Thus, for m sufficiently large, fixing δ ¡ 0, Corollary 3.6 yields that choosing ρ satisfying
R   ρ   R1 with ρ{R1 ¤ Cpδq and R{ρ ¤ Cpδq then»

Bpxm,Rq

φpvm, zmqdx ¤ I�2
�»

Bpxm,ρq

|∇vm|2 � |∇zm|2dx� δKpvm, zmq
�2

and»
R4zBpxm,R1q

φpvm, zmqdy ¤ I�2
�»

R4zBpxm,ρq

|∇vm|2 � |∇zm|2dy � p2δ � δ2qKpu,wq
�2

.

Combining both inequalities with (3.67), we get

I
�pλ� ϵq1{2 � p1� λ� ϵq1{2� ¤ Kpvm, zmq � p3δ � δ2qKpvm, zmq. (3.68)

From (3.64) the right-hand side of (3.68) is bounded by Kpvm, zmq � p3δ � δ2qM , where
M ¡ 0 does not depend on m. Therefore, taking δ, ϵÑ 0 and mÑ 8 leads to

Irλ1{2 � p1� λq1{2s ¤ I, (3.69)

that is, λ1{2 � p1 � λq1{2 ¤ 1. But this contradicts the fact that if λ P p0, 1q then
λ1{2 � p1� λq1{2 ¡ 1. Hence, dichotomy does not occurs.

Thereby, Lemma 3.7 implies that compactness occurs, that is, there is a sequence
pxmq in R4 such that for all ϵ ¡ 0 there is a radius R ¡ 0 such that

νmpBpxm, Rqq ¥ 1� ϵ, @m. (3.70)

Step 4. The sequence pνmq is uniformly tight.

Indeed, we first show that Bpxm, Rq XBp0, 1q � H, for all m. Otherwise, there
is m0 such that Bpxm0 , Rq XBp0, 1q � H. Taking ϵ P p0, 1{2q in (3.70) leads us to»

Bpxm0 ,Rq

φpvm0 , wm0qdx ¡
1
2 .

Combining with (3.61) we have»
φpvm0 , wm0qdx ¥

»
Bpxm0 ,Rq

φpvm0 , wm0qdx�
»

Bp0,1q
φpvm0 , wm0qdx ¡

1
2 �

1
2 � 1,

which is a contradiction with (3.64). Hence, the claim follows.

Now, since Bpxm, Rq � Bp0, 2R � 1q, for all m, (3.70) give us

νmpBp0, 2R � 1qq ¥ 1� ϵ, @m.
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Then, because pνmq is a sequence of probability measures,

νm

�
R4zBp0, 2R � 1q

	
� 1� νmpBp0, 2R � 1qq ¤ ϵ, @m.

that is, pνmq uniformly tight.

Step 5. Up to a subsequence, pνmq weakly converge to ν P M1
�pR4q.

In fact, note that for each f P CcpR4q,����» fdνm

���� ¤ }f}L8νmpR4q � }f}L8   8.

Hence by Lemma 2.5, there is ν P Mb
�pR4q such that, up to a subsequence, νm á ν weakly

in Mb
�pR4q, that is, »

fdνm Ñ
»
fdν, @f P CbpR4q. (3.71)

In particular, taking f � 1, we have

νpR4q � lim
mÑ8

νmpR4q � 1, (3.72)

which implies that ν P M1
�pR4q.

Now, since Kpvm, zmq is uniformly bounded, then pµmq is vaguely bounded.
Therefore, up to a subsequence, there is µ P Mb

�pR4q obeying

µm
�á µ in Mb

�pR4q. (3.73)

Thus, with (3.65), (3.71) and (3.73) in hand, we can use Lemma 3.8 to get

µ ¥ p|∇v|2 � |∇z|2qdx�
¸
jPJ

bjδxj
, ν � φpv, zqdx�

¸
jPJ

ajδxj
(3.74)

for a family txj P R4; j P Ju with J at most countable and aj, bj ¥ 0 satisfying

aj ¤ I�2b2
j , @j P J (3.75)

with
¸
jPJ

a
1{2
j convergent. Hence, (3.33), (3.72) and (3.75) lead us to

I � lim inf
mÑ8

µmpR4q ¥ µpR4q
¥ Kpv, zq �

¸
jPJ

bj

¥ I

�
Npv, zq1{2 �

¸
jPJ

a
1{2
j

�

¥ I

�
Npv, zq �

¸
jPJ

aj

�1{2

� IrνpR4qs1{2

� I,

(3.76)
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where we have used that λ ÞÑ λ1{2 is a strictly concave function. Then, for all the inequalities
above to be in fact equalities, it is necessary that at most one of the terms Npv, zq or
aj, j P J must be different from zero.

Step 6. aj � 0 for all j P J .

Suppose that there exist j0 P J such that aj0 � 0. Then, by the above discussion,
(3.72) and the decomposition (3.74) it follows that ν � aj0δxj0

, and hence

1 � νpR4q � aj0 . (3.77)

The condition (3.61) gives us
1
2 ¥

»
Bpxj0 ,1q

φpvm, zmqdx � νmpBpxj0 , 1qq, @m,

which leads to
1
2 ¥ lim

mÑ8
νmpBpxj0 , 1qq � νpBpxj0 , 1qq �

»
Bpxj0 ,1q

dν � aj0 ,

where the first equality is a consequence of weak convergence (3.71). But, this contradicts
(3.77) which finish this step.

With this in hand, we must be in the case ν � φpu, vqdx and from (3.72), we
obtain

Npv, zq �
»
φpv, zqdx � 1, (3.78)

which means that pv, zq P N .

To show that pv, zq is a minimizer for (3.32), it remains to guarantee that
Kpv, zq � I. Indeed, from the definition of I and (3.78) it follows that I ¤ Kpv, zq. On
the other hand, the lower semi-continuity of the weak convergence (3.65), gives

Kpv, zq ¤ lim inf Kpvm, zmq � I.

Then Kpv, zq � I and pvm, zmq Ñ pv, zq strongly in N , completing the proof.

Corollary 3.12. There is pv, zq P N satisfying Npv, zq � 1 and Kpv, zq � C
�1{2
4 , where

C4 is the best constant in the critical Sobolev-type inequality (3.29).

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. We start applying Theorem 3.11 to get a minimizer of (3.32), which
will be denoted by pv, zq. By Lagrange’s multiplier theorem, there is a constant Λ such
that for any pair pf, gq P 9H1pR4q � 9H1pR4q it holds

2
»

∇v �∇fdx � Λ
» �

1
9v

3 � 2z2v � 1
3v

2z



fdx,

2
»

∇z �∇gdx � Λ
» �

9z3 � 2v2z � 1
9v

3


gdx.

(3.79)
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Taking f � v and g � z we see that Λ � 0. Then, setting pP0, Q0q :�
�

Λ
2


 1
2

pv, zq we

deduce that pP0, Q0q is non-trivial. Let us show that pP0, Q0q is indeed a ground state
solution for (1.12). Note that»

∇P0 �∇fdx �
�

Λ
2


 1
2
»

∇v �∇fdx

�
» �

Λ
2


 3
2
�

1
9v

3 � 2z2v � 1
3v

2z



fdx

�
» �

1
9P

3
0 � 2Q2

0P0 � 1
3P

2
0Q0



fdx

and »
∇Q0 �∇fdx �

�
Λ
2


 1
2
»

∇z �∇gdx

�
» �

Λ
2


 3
2
�

9z3 � 2v2z � 1
9v

3


gdx

�
» �

9Q3
0 � 2P 2

0Q0 � 1
9P

3
0



gdx.

therefore pP0, Q0q is a solution of (1.12). Also, from Remark 3.2 we have JpP0, Q0q �
4�2SpP0, Q0q. Then,

JpP0, Q0q � KpP0, Q0q2
NpP0, Q0q �

K
��Λ

2

� 1
2 pv, zq

	2

N
��Λ

2

� 1
2 pv, zq

	 �
�Λ

2

�2�Λ
2

�2
Kpv, zq2
Npv, zq � Jpv, zq,

and consequently, pP0, Q0q minimizes J and then minimizes the action functional S. Hence
pP0, Q0q is a ground state solution of (1.12).

Corollary 3.13. The inequality

Npu,wq ¤ Copt
4 Kpu,wq2, (3.80)

holds for all pu,wq P N , with the optimal constant given by

Copt
4 � 1

16EpP,Qq , (3.81)

where pP,Qq is any ground state solution of (1.12).

Proof. We have seen in Remark 3.4 that (3.80) holds with

C�1
4 � pCopt

4 q�1 � inftJpu,wq; pu,wq P N u.

Now, if pP,Qq is a ground state of (1.12), then Remark 3.2 leads to

C�1
4 � JpP,Qq � 16SpP,Qq � 16EpP,Qq,

which is the desired.
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3.3 Blow-up
As mentioned before, the goal of this section is to establish some blow-up

results. We start considering for each ϕ P C8
0 pR4q the funcion

Vptq �
»
ϕpxqp|u|2 � 3σ|w|2qdx.

Now, setting Uptq �
»
ϕ|u|2dx, we have that

U 1ptq � 2Re
»
ϕsuutdx

� 2Re
»
ϕsupi∆u� iu� ifpu,wqqdx

� 2Re
»
iϕsu∆udx� 2Re

»
iϕ|u|2dx� 2Re

»
iϕsufpu,wqdx

� 2Re
»
�ip∇ϕsu� ϕ∇suq∇udx� 2Re

»
iϕ|u|2dx� 2Re

»
iϕsufpu,wqdx

� 2Im
» su∇ϕ∇udx� 2Im

»
ϕ|∇u|2dx� 2Im

»
ϕ|u|2dx� 2Im

»
ϕsufpu,wqdx,

where fpu,wq �
�

1
9 |u|

2 � 2|w|2


u� 1

3 ū
2w. Similarly, for Wptq �

»
ϕ3σ|w|2dx, we obtain

W 1ptq � 2Im
»

3 sw∇ϕ∇wdx� 2Im
»

3 swgpu,wqdx.
where gpu,wq � p9|w|2 � 2|u|2qw � 1

9u
3. Now, if Vptq � Uptq �Wptq, we have

V 1ptq � 2Im
»

∇ϕpsu∇u� 3 sw∇wqdx� 2Im
»
ϕsufpu,wq � 3 swgpu,wqqdx. (3.82)

As mentioned before, since the second term in (3.82) does not necessarily vanishes, we
will follow the ideas presented in (INUI; KISHIMOTO; NISHIMURA, 2020) and work
with radially symmetric solutions and the function

Rptq � 2Im
»

∇ϕpū∇u� 3w̄∇wqdx (3.83)

instead of V . Following the strategy presented in (KAVIAN, 1987, Lemma 2.9), we have

R1ptq �4
¸

1¤m,j¤4
Re

» B2ϕ

BxmBxj

pBxj
ūBxmu� Bxj

w̄Bxmwqdx

�
»

∆2ϕp|u|2 � |w|2qdx� 2Re
»

∆ϕHpu,wqdx,
(3.84)

where Hpu,wq :� ūfpu,wq � w̄gpu,wq. See also Proposition 2.33. This last identity is
known as localized virial identity. Now, observe that if u0, w0 are radially symmetric, so
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are the respective solutions u,w. Besides, if we also take ϕ to be radially symmetric, we
can write ϕpxq � ϕp|x|q, upxq � p|x|q and wpxq � wp|x|q. Then, for r � |x|, we have

Bϕ
Bxm

� ϕ1prqxm

r
and B2ϕ

BxmBxj

� ϕ2prqxmxj

r2 � ϕ1prqδmj

r
� ϕ1prqxmxj

r3 ,

where δmj is the Kroenecker delta. Multiplying the second derivative by pxmxjq{r2 and
summing in m and j, we obtain¸
1¤m,j¤4

B2ϕ

BxmBxj

� xmxj

r2 � ϕ2prq
¸

1¤m,j¤4

x2
mx

2
j

r4 � ϕ1prq
¸

1¤m,j¤4

xmxj

r3 δmj � ϕ1prq
¸

1¤m,j¤4

x2
mx

2
j

r5

� ϕ2prq.

Now, since B
Bxm

u � u1prqxm

r
, then |∇u|2 � |u1prq|2, whence

B
Bxj

ū
B
Bxm

u � |∇u|2xmxj

r2 .

Therefore, gathering all the above information leads to¸
1¤m,j¤4

Re B2ϕ

BxmBxj

pBxj
ūBxmu� Bxj

w̄Bxmwq � ϕ2prq �|∇u|2 � |∇w|2� .
Doing the same for w and replacing in (3.84), we may rewrite R1 as

R1ptq � 4
»
ϕ2p|∇u|2 � |∇w|2qdx�

»
∆2ϕp|u|2 � |w|2qdx� 2Re

»
∆ϕHpu,wqdx (3.85)

Let us introduce the functional

Ppu,wq �
» �

1
36 |u|

4 � 9
4 |w|

4 � |u|2|w|2 � 1
9Repū3wq



dx.

Observe that

Hpu,wq � sufpu,wq � swgpu,wq � 1
9 |u|

4 � 9|w|4 � 4|u|2|w|2 � 3
9su3w � 1

9u
3 sw,

and consequently

Re
»
Hpu,wqdx �

» �
1
9 |u|

4 � 9|w|4 � 4|u|2|w|2 � 4
9Repsu3wq



dx � 1

4Ppu,wq.

Now, we define the “Pohozaev” functional by

τpuptq, wptqq � Kpuptq, wptqq � 4Ppuptq, wptqq (3.86)

Using the definitions of the energy (1.4) and the mass (1.5) we may rewrite

τpu,wq � 4Epu,wq �Kpu,wq � 2Mpu,wq. (3.87)

Our first result reads as follow.
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Theorem 3.14. Assume that pu0, w0q P H1pR4q�H1pR4q and let pu,wq be the correspond-
ing solution of (1.1) defined in the maximal time interval of existence I. If

Epu0, w0q   EpP,Qq (3.88)

and
Kpu0, w0q ¡ KpP,Qq, (3.89)

where pP,Qq is a ground state and E is the energy in (3.25), then there exists δ ¡ 0, such
that τpuptq, wptqq ¤ �δ   0, for all t P I.

Proof. Notice that from the definition of the energy (3.25) and (3.23) we have

KpP,Qq � 4EpP,Qq. (3.90)

Moreover, using (3.80) we get |Ppu,wq| ¤ Np|u|, |w|q ¤ Copt
4 Kp|u|, |w|q2 ¤ Copt

4 Kpu,wq2.
Thus, by conservation of the energy

Kpu,wq � 2Epu0, w0q �Mpu,wq � 2Ppu,wq
¤ 2Epu0, w0q � 2|Ppu,wq|
¤ 2Epu0, w0q � 2Copt

4 Kpu,wq2.
(3.91)

Therefore, taking a � 2Epu0, w0q, b � 2Copt
4 and q � 2 in Lemma 2.7, we have γ � p4Copt

4 q�1

and fprq � 2Epu0, w0q � r � 2Copt
4 r2, for r ¡ 0. Also, setting Gptq � Kpuptq, wptqq, it

follows from (3.91) that

f �Gptq � 2Epu0, w0q �Kpuptq, wptqq � 2Copt
4 Kpuptq, wptqq2 ¥ 0.

Thus,
a  

�
1� 1

q



γ ô Epu0, w0q   1

16pC
opt
4 q�1 � EpP,Qq,

and
Gp0q ¡ γ ô Kpu0, w0q ¡ 1

4Copt
4

� 4EpP,Qq � KpP,Qq.

Therefore, applying Lemma 2.28 we get

Kpuptq, wptqq ¡ KpP,Qq, @t P I. (3.92)

The hypothesis (3.88) together with the energy conservation gives us

4Epuptq, wptqq � 4Epu0, w0q   4EpP,Qq � KpP,Qq   Kpuptq, wptqq,

and as a consequence of (3.87)

τpuptq, wptqq   0, t P I. (3.93)
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Now, let us show that there is θ ¡ 0, such that

τpuptq, wptqq   �θKpuptq, wptqq, @t P I. (3.94)

Indeed, if Epu0, w0q ¤ 0, then we can take θ � 1, and by (3.87) we have the desired
estimate. On the other hand, suppose that Epu0, w0q ¡ 0 and (3.94) does not hold. Thus,
there exist sequences ptmq � I and θm Ñ 0 obeying

�θm
1
4Kpuptmq, wptmqq ¤ τpuptmq, wptmqq   0.

Which implies

Epuptmq, wptmqq � 1
4τpuptmq, wptmqq �

1
4Kpuptmq, wptmqq �

1
2Mpuptmq, wptmqq

¥ p1� θmq14Kpuptmq, wptmqq.

Again, the energy conservation, (3.90) and (3.92) lead to

Epu0, w0q � Epuptmq, wptmqq ¥ p1� θmq14Kpuptmq, wptmqq

¡ p1� θmq14KpP,Qq
¥ p1� θmqEpP,Qq.

Taking m Ñ 8 we arrive at a contradiction with (3.88). Hence, the result follows from
(3.92) and (3.94).

Lemma 3.15. For x P R4, we set r � |x|. Given a constant c ¡ 0, define

χprq �
#
r2, 0 ¤ r ¤ 1,
c, r ¥ 3.

(3.95)

Assume also that χ2prq ¤ 2 and 0 ¤ χ1prq ¤ 2r, @r ¥ 0. Let χRprq � R2χpr{Rq. Then

(i) If r ¤ R,
∆χRprq � 8 and ∆2χRprq � 0. (3.96)

(i) If r ¥ R,
∆χRprq ¤ C and |∆2χRprq| ¤ C

R2 , (3.97)

where C is a constant independent of R.

Proof. piq Since r ¤ R then χRprq � r2. Hence,

Bxi
χRprq � Bxi

p|x|2q � 2xi ñ B2
xi
χRprq � 2.

Thus, ∆χRprq � 8 and ∆2χRprq � 0.
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piiq A straightforward calculation leads to

BkχRprq
Brk

� χpkqpr{Rq
Rk�2 .

So, for k � 0, 1, ... we have ����BkχRprq
Brk

���� ¤ C

Rk�2 . (3.98)

On the other hand,

Bxi
χRprq � R2Bxi

χp|x|{Rq � R
xi

|x| � χ
1pr{Rq

and
B2

xi
χRprq � R

� |x|2 � x2
i

|x|3 � χ1pr{Rq � 1
R

x2
i

|x|2 � χ
2pr{Rq

�
.

Therefore,
∆χRprq � 3

r

BχRprq
Br � B2χRprq

Br2 .

Again, a straightforward calculation leads to

∆2χRprq � B4χRprq
Br4 � 6

r

B3χRprq
Br3 � 3

r2
B2χRprq
Br2 � 3

r3
BχRprq
Br .

Hence, using (3.98) and the fact that 1{r ¤ 1{R, allow us to obtain

∆χRprq ¤ C and |∆2χRprq| ¤ C

R2 .

Now, we are in position to prove Theorem 1.4.

Proof of Theorem 1.4. Consider I � pT�, T �q. Let us focus in the case T �   8, for T� the
argument follows similarly. Suppose by contradiction that T � � 8. Taking ϕpxq � χRp|x|q,
defined as in Lemma 3.15, in (3.83) and (3.85) we obtain

Rptq � 2Im
»

∇χRp∇uū� σ∇ww̄qdx

and

R1ptq � 8τpu,wq � 4
»
pχ2R � 2qp|∇u|2 � |∇w|2qdx�

»
∆2χRp|u|2 � |w|2qdx

� 2Re
»
p∆χR � 8qHpu,wqdx

�: 8τpu,wq �R1ptq �R2ptq �R3ptq.

As in Lemma 3.15, χ2R ¤ 2, for any r ¥ 0, so R1 ¤ 0. Now, using conservation
of the mass and (3.96), we get

R2ptq ¤
»
|∆2χR|p|u|2 � |w|2qdx ¤ CR�2

»
t|x|¥Ru

p|u|2 � |w|2qdx ¤ CR�2Mpu0, w0q.
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Besides, since |Repzq| ¤ |z| for any z P C, then (3.26), (3.27) and (3.96) give us

R3 � �Re
»
t|x|¥Ru

p∆χR � 8qHpu,wqdx

¤ C

»
t|x|¥Ru

|ReHpu,wq|dx

¤ C

»
t|x|¥Ru

|u|4 � |w|4dx

� Cp}u}4
L4p|x|¥Rq � }w}4

L4p|x|¥Rqq.

We know from the literature (see (OGAWA; TSUTSUMI, 1991), equation 3.7), that for
f P H1pR4q radially symmetric, it holds the radial Gagliardo-Nirenberg inequality»

t|x|¥Ru

|f |4 ¤ CR�3}f}3
L2p|x|¥Rq}∇f}L2p|x|¥Rq.

Then, by Young’s inequality, for ϵ ¡ 0, we obtain

R3 � Cp}u}4
L4p|x|¥Rq � }w}4

L4p|x|¥Rqq
¤ CR�3p}u}3

L2p|x|¥Rq}∇u}L2p|x|¥Rq � }w}3
L2p|x|¥Rq}∇w}L2p|x|¥Rqq

¤ CϵR
�6p}u}6

L2p|x|¥Rq � }w}6
L2p|x|¥Rqq � ϵKpu,wq

¤ CϵR
�6Mpu0, w0q3 � ϵKpu,wq,

where Cϵ depends on µ and ϵ.

Now, from (3.87) we have

ϵKpu,wq ¤ �ϵτpu,wq � 4ϵEpu0, w0q,

then, gathering all above estimates we obtain,

R1ptq ¤ p8�ϵqτpu,wq�CR�2Mpu0, w0q�CϵR
�6Mpu0, w0q3�4ϵEpu0, w0q, ϵ ¡ 0. (3.99)

Therefore, for ϵ P p0, 1q, Lemma 3.14 and the energy conservation lead to

R1ptq ¤ �p8� ϵqδ � CR�2Mpu0, w0q � CϵR
�6Mpu0, w0q3 � 4ϵEpu0, w0q. (3.100)

Hence, fixing R as large as necessary and ϵ as small as necessary, we get R1ptq ¤ �2δ.
Integrating in r0, tq we obtain

Rptq ¤ �2δt�Rp0q. (3.101)

On the other hand, by Hölder’s inequality,

|Rptq| ¤ 2R
»
|χ1p|x|{Rq|p|∇u||u| � σ|∇w||w|qdx

¤ CRp}u}L2}∇u}L2 � }w}L2}∇w}L2q
¤ CRMpu0, w0q1{2Kpu,wq1{2.

(3.102)
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Taking T0 sufficiently large such that Rp0q{δ   T0, by (3.101) we get

Rptq ¤ �δt   0, t ¥ T0. (3.103)

Consequently, (3.102) and (3.103) imply that

δt ¤ �Rptq � |Rptq| ¤ CRMpu0, w0q1{2Kpu,wq1{2,

that is, for some positive constant C0,

Kpuptq, wptqq ¥ C0t
2, t ¥ T0. (3.104)

Now, since ϵ can be chosen arbitrarily small, from (3.99) and (3.87), we deduce that

R1ptq ¤ 32Epu0, w0q � 8Kpu,wq � CR�2Mpu0, w0q � CR�6Mpu0, w0q3, (3.105)

where we have used the energy conservation once again. Notice that in the above inequality,
several terms are independent of t. Thus, we may choose T1 ¡ T0, so that

C04T 2
1 ¥ 32Epu0, w0q � CR�2Mpu0, w0q � CR�6Mpu0, w0q3.

Then, from (3.104) and (3.105) we arrive at

R1ptq ¤ �4Kpuptq, wptqq, t ¡ T1.

Hence, integrating in rT1, tq, we get

Rptq ¤ �4
» t

T1

Kpupsq, wpsqqds,

and combining with (3.102), leads to

4
» t

T1

Kpupsq, wpsqqds ¤ �Rptq ¤ |Rptq| ¤ CRMpu0, w0q1{2Kpuptq, wptqq1{2. (3.106)

Setting ηptq :�
» t

T1

Kpupsq, wpsqqds and A :� 16
C2R2Mpu0, w0q , we may write

A ¤ η1ptq
η2ptq ,

taking T 1 ¡ T1 and integrating over rT 1, tq, we get

Apt� T 1q ¤
» t

T 1

η1psq
η2psqds �

1
ηpT 1q �

1
ηptq ¤

1
ηpT 1q ,

that is,
0   ηpT 1q ¤ 1

Apt� T 1q .

Hence, making t Ñ 8 we derive a contradiction. Therefore, T �   8, and the proof is
complete.
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CHAPTER 4

SCATTERING FOR A QUADRATIC TYPE NLS SYSTEM IN
DIMENSION 6

4.1 Local theory in 9H1
x

In this section we will prove the local well-posedness of (1.2) in 9H1
x. We will

use the approach presented in (KILLIP; VISAN, 2013). The first step is to prove the
local well-posedness assuming that the initial data belongs to the inhomogeneous Sobolev
space H1

xpR6q, using the usual method of contraction, presented in (CAZENAVE, 2003).
Next step is to present a stability lemma, which allows us to show uniform continuous
dependence of the solution u to the initial data u0. This result allows us to work with
the initial data in the homogeneous Sobolev space 9H1

x, since every function in 9H1
x can be

well approximated by H1
x functions. At the end of the section,we show a standard blow-up

result. We start with the following result.

Theorem 4.1. (Standard local well-posedness). Suppose the hypothesis (H1) and (H2)
hold. Let u0 P H1

xpRq. Let there exists η0 ¡ 0 such that if 0   η ¤ η0 and I is a compact
interval containing zero such that

}Uptqu0}
L4

t
9H

1, 12
5

x pI�R6q
¤ η, (4.1)

then there exists a unique solution u to (1.2) on I � R6. Moreover, we have the bounds

}u}
L4

t
9H

1, 12
5

x

¤ 2η (4.2)

}∇u}S0pI�R6q À }∇u0}L2
x
� η2 (4.3)
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}u}S0pI�R6q À }u0}L2
x
. (4.4)

Proof. As mentioned before, we will use the contraction mapping argument. Define the
solution map ϕpuqptq � pϕ1puqptq, ..., ϕlpuqptqq, with

ϕkpuqptq :� Ukptquk0 � i

» t

0

1
αk

Ukpt� sqfkpupsqqds,

on the set B1 XB2 where

B1 :�  
u P L8

t H1
xpI � R6q; }u}L8

t H1
xpI�R6q À 2}u0}H1

x
� p2ηq2(

B2 :�
"

u P L4
t H

1, 12
5

x pI � R6q; }u}
L4

t
9H

1, 12
5

x pI�R6q
¤ 2η and }u}

L4
t L

12
5

x pI�R6q
À }u0}L2

x

*
,

with the metric
dpu,vq :� }u� v}

L4
t L

12
5

x pI�R6q
.

Note that, with the metric d, both B1 and B2 are closed, and therefore, complete (see
(CAZENAVE, 2003, Theorem 4.4.1)). Using the Strichartz inequality, Lemma 2.11- (iii),
and Sobolev’s embedding, we get that for u P B1 XB2, k � 1, ..., l

}ϕkpuq}L8
t H1

xpI�R6q À }u0}H1
x
� }fkpuq}

L2
t H

1, 3
2

x pI�R6q

À }u0}H1
x
� }u}

L4
t H1, 12

5
}u}L4

t,xpI�R6q

À }u0}H1
x
� p2η � }u0}L2

x
q}u}

L4
t

9H1, 12
5 pI�R6q

À }u0}H1
x
� p2η � }u0}L2

x
qp2ηq.

Thus,

}ϕpuq}L8
t H1

xpI�R6q �
ļ

k�1
}ϕkpuq}L8

t H1
xpI�R6q À }u0}H1

x
� p2η � }u0}L2

x
qp2ηq

similarly,
}ϕpuq}

L4
t L

12
5

x pI�R6q
À }u0}L2

x
p1� 2ηq.

Arguing as above and using (4.1), we obtain

}ϕpuq}
L4

t
9H

1, 12
5

x

À η � p2ηq2.

Therefore, taking η0 small enough such that 0   η ¤ η0, the functional ϕ maps the set
B1 XB2 to itself. Now, repeating the above computations and using Lemma 2.11 item piq,
allow us to obtain

}ϕpuq � ϕpvq}
L4

t L
12
5

x pI�R6q
À p2ηq}u� v}

L4
t L

12
5

x pI�R6q
.

Then, ϕ : B1XB2 Ñ B1XB2 is a contraction, provided η0 is small enough. The fixed point
theorem guarantees the existence of a unique function u P B1XB2 satisfying ϕpuq � u. In
addition, ϕ maps into C0

t H1
x. So, we may conclude that u is indeed a solution to (1.2).
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Corollary 4.2. There is η0 ¡ 0 such that for all u0 P H1pR6q satisfying }∇u0}L2 À δ0,
then the solution given in of Theorem 1.9 extends globally.

Proof. Note that by the Strichartz inequality,

}∇Uptqu0}
L4

t L
12
5

x pR�R6q
À }∇u0}L2

x
.

Thus, under the hypothesis, (4.1) holds with I � R.

As a next step, we prove a stability result that, as we mentioned before, will
allow us to remove the restriction on the initial data. More precisely, we remove the
condition that the initial data belongs to the inhomogeneous Sobolev space H1

x. This result
is also important to prove the Palais-Smale condition and existence of a critical solution.
In (KOCH; TATARU; VISAN, 2014) can be found a more general result, the one we will
state next is a short version, which is enough for our purpose.

Lemma 4.3. Let I be a compact interval containing 0 and v : I � R6 Ñ Cl be an
approximate solution of (1.2) in the sense that

iαkBtvk � γk∆vk � �fkpvq � ek

for some function e � pe1, ..., elq. Assume also that

}v}L8
t

9H1
x
¤ E, (4.5)

SIpvq ¤ L, (4.6)

where E,L are positive constants and SIpvq is defined on page 17. Let u0 P 9H1. Assume
that

}u0 � vp0q}
9H1

x
¤ ϵ, (4.7)

}∇e}L8{5
t,x
¤ ϵ, (4.8)

for some 0   ϵ   ϵ1, where ϵ1 is a constant depending on E and L. Then, there exists a
unique solution u : I � R6 Ñ Cl to (1.2) with initial data up0, xq � u0 such that

SIpv� uq ¤ CpE,Lqϵ, (4.9)

}∇pu� vq}S0pIq ¤ CpE,Lqϵ, (4.10)

}∇u}S0pIq ¤ CpE,Lq. (4.11)

Proof. We will follow the ideas presented in (KOCH; TATARU; VISAN, 2014). First, we
prove the result under the additional hypothesis that u0 P L2

x (and consequently u0 P H1
x).

This allows us to use Theorem 4.1 to ensure the existence of u. We will remove such
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assumption later. Also, there is no loss of generality in assuming that u is defined on the
interval I.

We start assuming that

}∇v}L4
t L12{5

x pI�R6q
¤ δ (4.12)

for some δ ¡ 0 small enough depending on E. Without loss of generality, we may assume
that 0 � inf I. Now, Let w � u� v. Thus, w solves the following system

piαkBt � γk∆qwk � ek � fkpvq � fkpuq.

Set Aptq �
ļ

k�1
Akptq, where

Akptq :� }∇rpiαkBt � γk∆qwk � eks}L2
t L

3{2
x pr0,ts�R6q

.

Using the integral equation for wk, k � 1, ..., l, and taking the gradient, we deduce

∇wkptq � Ukptq∇wp0q � i

» t

0
Ukpt� sq∇rfkpvq � fkpuq � eksds.

Then, by Sobolev embbeding, Strichartz’s inequality, (4.7) and (4.8), we have for k � 1, ..., l,

}wk}L4
t,xpr0,ts�R6q À }∇wk}L4

t L
12{5
x pp0,ts�R6q

À }wkp0q} 9H1
x
� Akptq � }∇ek}L

8{5
t,x pr0,ts�R6q

À Akptq � ϵ.

Therefore
}w}L4

t,xpr0,ts�R6q À }∇w}L4
t L

12{5
x pr0,ts�R6q

À Aptq � ϵ. (4.13)

On the other hand, by Lemma 2.11 (ii), (4.12) and (4.8), we obtain

Akptq � }∇rfkpuq � fkpvqs}L2
t L

3{2
x

À }u}L4
t,x
}∇w}L4

t L12{5
x

� }w}L4
t,x
}∇v}L4

t L12{5
x

À
�
}w}L4

t,x
� }v}L4

t,x

�
}∇w}L4

t L12{5
x

� }w}L4
t,x
}∇v}L4

t L12{5
x

À rAptq � ϵ� δsrAptq � ϵs � rAptq � ϵsδ,

(4.14)

where all space time norms are taken in r0, ts � R6. Summing over k and taking δ ¡ 0
small enough, we obtain

0 ¤ CAptq2 � Aptq � Cϵ2. (4.15)

Now, observe that if we take hpxq � Cx2 � x� Cϵ2, we have a parabola facing upwards
and roots given by

x � 1�?
1� 4C2ϵ2

2C .
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Moreover, notice that 1�?
1� 4C2ϵ2

2C   ϵ if, and only if, ϵ   1
2C . Then, by (4.15) we get

hpAptqq ¥ 0 and, since Aptq ¥ 0 for all t P I and Ap0q � 0, by continuity we should have

Aptq ¤ 1�?
1� 4C2ϵ2

2C .

for all t P I. Hence, if ϵ is sufficiently small, we deduce

Aptq À ϵ, @t P I, k � 1, ..., l, (4.16)

for 0   ϵ   ϵ1. This, together with (4.13) gives us

SIpv� uq À ϵ. (4.17)

Now, to obtain (4.10) using Strichartz’s inequality, (4.7), (4.8) and (4.16), we
get for k � 1, ..., l

}∇wk}S0pIq À }ukp0q � vkp0q} 9H1
x
� Akptq � }∇ek}L2

t L
3{2
x pI�R6q

À ϵ. (4.18)

Combining with (4.17) and (4.18), we get the desired result under (4.12).

Furthermore, to obtain (4.11), observe that by (4.12) and (4.13), for k � 1, ..., l,

}∇uk}L4
t L

12{5
x pI�R6q

À }∇wk}L4
t L

12{5
x pI�R6q

� }∇vk}L4
t L

12{5
x pI�R6q

À ϵ� δ.

After combine this together with Strichartz’s inequality, Sobolev’s embedding and (4.5),
we deduce

}∇uk}L8
t L2

xpI�R6q À }vkpt0q} 9H1
x
� }ukp0q � vkpt0q} 9H1

x
� }∇uk}2

L4
t L

12{5
x pI�R6q

À E � ϵ� rϵ� δs2 À E,
(4.19)

provided δ, ϵ ¤ ϵ0 � ϵ0pEq.
Next we will remove the assumption (4.12). First, we note that (4.6) implies

∇u P L8t L2
xpI � R6q. Indeed, subdividing I into N0 � p1� L

η
q4 subintervals Ij such that

on each Ij we have
}v}L4

t,xpIj�R6q ¤ η,

and using Strichartz’s inequality, Lemma 2.11 and (4.5), we may estimate, for k � 1, ..., l,

}∇vk}S0pIjq À }vk}L8
t

9H1
xpI�R6q � }∇fkpvq}L2

t,xpIj�R6q � }∇ek}L2
t L

3{2
x pI�R6q

À E � }v}L4
t,xpIj�R6q}∇v}S0pIj�R6q � ϵ

À E � η}∇v}L4
t,xpIj�R6q � ϵ.

Thus, taking η small enough, we get

}∇vk}S0pIjq À E � ϵ, k � 1, ..., l.
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Summing this bound over all intervals Ij, allow us to obtain

}∇vk}S0pI�R6q ¤ CpE,Lq, k � 1, ..., l.

Now, we may subdivide I into N1 subintervals Ji � rti, ti�1s such that on each
Ji we get

}∇v}L2
t L12{5

x pJi�R6q
¤ δ, k � 1, ..., l,

where δ is as in (4.12). Choosing ϵ1 small enough, depending on ϵ0 and N1, the same
argument above, implies that for each i and 0   ϵ   ϵ1,

SJi
pv� uq ¤ Cpiqϵ,

}∇pv� uq}S0pJiq ¤ Cpiqϵ,
}∇u}S0pJiq ¤ CpiqE,

Aptiq ¤ Cpiqϵ,
since (4.7) holds when 0 is replaced by ti. We show this using an inductive argument. By
Strichartz’s inequality, we have, for k � 1, ..., l,

}ukpti�1q � vkpti�1q} 9H1
x
À }ukp0q � vkpt0q} 9H1

x
� }∇ek}L2

t L
3{2
x
� Akpti�1q

À ϵ�
i̧

j�0
Cpjqϵ.

where we take t P r0, ti�1s. Choosing ϵ1 small enough depending on ϵ0 and E, we can
continue the inductive argument.

It remains to remove the additional hypothesis that u0 P L2
x. We use the usual

limiting argument to this end. Let us approximate u0 P 9H1
x by a sequence tun

0u � H1
x,

that is, for any ϵ ¡ 0, there exists n0 ¡ 0 such that for n ¡ n0,

}u0 � un
0} 9H1

x
¤ ϵ. (4.20)

Observe that we can find an interval In such that

}Uptqun
0}L4

t
9H

1, 12
5

x pIn�R6q
� }Uptq∇un

0}L4
t L

12
5

x pIn�R6q
¤ η,

for some 0   η ¤ η0. Then, by Theorem 4.1, we can find a sequence of solutions
un : In � R6 Ñ C to (1.2) in H1

x with initial data unp0q � un
0 , such that, for all n ¡ n0,

}un}L8
t

9H1
xpIn�R6q À }∇un}S0pInq À }∇un

0}L2
x
� η2 ¤ E.

and
}un}L4

t,xpIn�R6q À }un}
L4

t
9H

1, 12
5

x pIn�R6q
À }∇un}S0pInq À }∇un

0}L2
x
� η2 ¤ L.

for some η, E, L ¡ 0. Together with (4.20), we can apply the above result for e � 0
and v :� um, for m ¡ n0. Thus, we get a solution wn : Im � R6 Ñ C, with initial data
wnp0q � un

0 such that
}v�wn} 9H1

x
  ϵ. (4.21)
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But, by uniquiness of solution, we must have wn � un and In � Im for n,m ¡ n0.
Therefore, all solutions un with n ¡ n0 are defined in the same interval, namely, Ĩ.
Rewriting (4.21) with v :� um and wn � un we get that the sequence punq is Cauchy
in 9H1

x. Then, un converge to a solution u : Ĩ � R6 Ñ C with initial data u0 that obeys
∇u P L8

t L2
xpĨq. This completes the proof.

Now we are in a position to prove local well-posedness in the energy critical
norm.

Corollary 4.4. (Local well-posedness) Let u0 P 9H1
x. Then, there exists a compact time

interval I containing 0 and a unique solution u to (1.2) with initial data u0 � up0q.

Proof. Let u0 P 9H1
x. Since 9H

1
x functions can be approximated by H1

x functions, we may
found a sequence pun

0 q � H1
x such that, for any ϵ ¡ 0, there exists n0 ¡ 0 such that for

n ¡ n0,
}u0 � un

0} 9H1
x
¤ ϵ. (4.22)

Now, by Theorem 4.1, given η0 ¡ 0, we can find a sequence of solutions to (1.2), un � H1
x

with initial data unp0q � un
0 , such that

}un}L4
t,x
À }un}

L4
t

9H
1, 12

5
x

À }∇un}S0 À }∇un
0}L2

x
� η2 ¤ L.

for some 0   η ¤ η0 and L ¡ 0. Also, arguing as before, we have that all un is defined in
the time interval I and is a Cauchy sequence in energy space 9H1

x, and therefore,

}un}L8
t

9H1
x
¤ E.

Then, by Lemma 4.3, there exists a solution u : I � R6 Ñ C, to (1.2) with initial data
up0q � u0.

We finish this section showing a standard blow-up criterion for solutions of
(1.2).

Theorem 4.5. (Standard blow-up criterion). Let u0 P 9H1
x and u be the corresponding

solution to (1.2) on r0, T0s � R6 such that

}u}L4
t,xpr0,T0s�R6q   8. (4.23)

Then, there exists δ � δpu0q such that the solution u extends to a solution to (1.2) on the
interval r0, T0 � δs.

Proof. We follow the ideas presented in (TAO; VISAN, 2005). Let us denote the norm
in (4.23) by M . The first step is to establish an 9H1 bound on u. To do this, we start

subdviding r0, T0s into N �
�

1� M

a


4

subintervals Ji such that

}u}L4
t,xpJi�R6q   a, (4.24)
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where a is a small positive constant. By the Strichartz inequality, Lemma 2.11, we have
for k � 1, ..., l,

}uk}L8
t

9H1
xpJi�R6q À }ukptiq} 9H1

xpR6q � }∇fkpuq}
L2

t L
3
2
x

À }ukptiq} 9H1
xpR6q � }uk}L4

t,xpJi�R6q}∇uk}S0pJiq

À }ukptiq} 9H1
xpR6q � a}∇uk}S0pJiq,

for each interval Ji and any ti P Ji. If a is sufficiently small, we conclude

}u}L8
t

9H1
xpJi�R6q À }uptiq} 9H1

x
.

Thus, inductively we may obtain a bound of the form

}u}L8
t

9H1
xpr0,T0s�R6q ¤ Cp}uptiq} 9H1

x
,M, aq,

which implies
}u}

L4
t

9H
1, 12

5
x pr0,T0s�R6q

¤ Cp}uptiq} 9H1
x
,M, aq. (4.25)

Now, let 0 ¤ τ   T0. By the Strichartz inequality, Lemma 2.11 and the Sobolev embedding,
we have for k � 1, ..., l,

}uk � Upt� τqukpτq}
L4

t
9H

1, 12
5

x prτ,T0s�R6q
À }∇fkpuq}

L2
t L

3
2
x prτ,T0s�R6q

À }u}2
L4

t
9H

1, 12
5

x prτ,T0s�R6q
.

(4.26)

Thus, by triangle inequality,

}Ukpt� τqukpτq}
L4

t
9H

1, 12
5

x prτ,T0s�R6q
À }u}2

L4
t

9H
1, 12

5
x prτ,T0s�R6q

� }u}
L4

t
9H

1, 12
5

x prτ,T0s�R6q
.

Let η0 be as in Theorem 4.1. By (4.25), taking τ sufficiently close to T0, we obtain

}Ukpt� τqukpτq}
L4

t
9H

1, 12
5

x prτ,T0s�R6q
¤ η0

2 .

While from Strichartz’s inequality we have

}Ukpt� τqukpτq}
L4

t
9H

1, 12
5

x pR�R6q
  8.

By the monotone convergence theorem, we deduce that there exists δ � δpu0q ¡ 0 such
that

}Ukpt� τqukpτq}
L4

t
9H

1, 12
5

x pr0,T0�δs�R6q
¤ η0.

Again, by Theorem 4.1, there exists a unique solution to (1.2) with initial data vpτq at
time t � τ which belongs to C 9H1

xprτ, T0 � δs � R6q. By using the uniqueness of solution,
we see that u � v on rτ, T0s � R6 and so, v is an extension of u to r0, T0 � δs � R6.

Remark 4.6. Note that in the contrapositive, this lemma asserts that if a solution u connot
be continued beyond a time T�, T � ¡ 0 , that is, u has maximal lifespan I � p�T�, T �q and
both T�, T �   8, then the L4

t,x-norm must blow-up at that time T�, T �, i.e.,

SIpuq � 8.
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4.2 Existence of a critical solution
In this section we prove Theorem 1.17. We first define, for any 0 ¤ K0 ¤ Kpψq,

the function

LpK0q :� sup
"
SIpuq; u : I � R6 Ñ Cl is a solution to (1.2) s.t. sup

tPI
Kpuptqq ¤ K0

*
.

Therefore, L : r0, Kpψqs ÝÑ r0,8s is a nondecreasing function and since the ground state
ψ is time independent, thus SRpψq � 8, and hence LpKpψqq � 8. Let us show that
L is continuous. Indeed, let X � L�1pa, bq � tE P p0, Kpψqq|LpEq P pa, bqu. We show
that XC is closed. Consider pEnq � XC such that En Ñ E when n Ñ 8. Without loss
of generality, we may assume that En is such that LpEnq ¥ b for all n. The case when
LpEnq ¤ a is treated in a similar way. Thus, there exists a sequence pvnq of solutions that
obeys sup

tPIn

Kpvnq ¤ En„ such that SInpvnq ¥ b� 1
n

. Let ϵ ¡ 0 and un
0 P 9H1 be such that

}un
0 �vnp0q}L8

t
9H1

x
  ϵ. By Lemma 4.3, there exists uϵ

n solution with initial data uϵ
np0q � un

0

such that
}vn � uϵ

n}L8
t

9H1 � SInpvn � uϵ
nq ¤ ϵ. (4.27)

Notice that from (4.27), we have for each n,

}uϵ
n}L8

t
9H1 � }vn}L8

t
9H1 ¤ |}uϵ

n}L8
t

9H1 � }vn}L8
t

9H1 | ¤ }uϵ
n � vn}L8

t
9H1   ϵ.

Then
}uϵ

n}L8
t

9H1   }vn}L8
t

9H1 � ϵ ¤ En � ϵ,

which implies
lim sup
nÑ8,ϵÑ0

}uϵ
n}L8

t
9H1 ¤ E. (4.28)

Thus, passing to a subsequence if necessary, we are able to get a famlily of solutions
F � tuϵ

nunPN such that sup
tPI

Kpuϵ
nq ¤ E. Furthermore, by (4.27),

SInpvnq � SInpuϵ
nq ¤ |SIpvnq � SInpuϵ

nq| ¤ SInpvn � unq ¤ ϵ,

where, SInpuϵ
nq ¥ SInpvnq � 1

n
¥ b� 1

n
� ϵ and, therefore,

suptSInpuϵ
nq; un P Fu ¥ b. (4.29)

By arbitrariness of ϵ ¡ 0, combining (4.28) and (4.29), we conclude LpEq ¥ b, that is,
E P XC which shows that XC is closed. Consequently X is open and L is continuous.
Hence, there must exist a critical energy, denoted by Kc, such that

LpK0q
#
  8, K0   Kc

� 8, K0 ¥ Kc.
(4.30)
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In particular, if u : I � R6 ÝÑ Cl is a maximal solution such that suppKpuqq ¤ Kc, then
u is global and

SRpuq ¤ L

�
sup
tPR

Kpuptqq


  8.

The next result is essential to reach the goal of this section. The proof is addapted to the
one presented in (KILLIP; VISAN, 2010).

Theorem 4.7. (Palais-Smale condition) Let un : In�R6 ÝÑ Cl be a sequence of solutions
to (1.2) such that

lim sup
nÑ8

�
sup
tPIn

}∇unptq}2
L2

x



� Kc (4.31)

and let ptnq � In be a sequence of times obeying

lim
nÑ8

S¥tnpunq � lim
nÑ8

S¤tnpunq � 8.

Then, the sequence unptnq has a subsequence that converges in 9H1pR6q modulo symmetries.

Proof. We follow the ideas presented in (KILLIP; VISAN, 2010). Without loss of generality,
we may assume that tn � 0, for all n, by time-translation symmetry. Thus,

lim
nÑ8

S¥0punq � lim
nÑ8

S¤0punq � 8. (4.32)

By (4.31), the sequence unp0q is bounded in 9H1pR6q. Therefore, up to a subsequence, we
may apply Theorem 2.26 to get the following decomposition

unp0q �
J̧

j�1
gj

nUptjnqϕj �wJ
n,

where, for simplicity, we denote by pgj
nuqpxq :� pλj

nq�1{2u
�
x� xj

n

λj
n



.

Refining the subsequence once to each j and using a diagonal argument, for
each j, we may assume that ptjnqn¥1 converge to some tj P r�8,8s. Thus, if tj P p�8,8q,
since Ukp0q � Id, for k � 1, ...., l, changing ϕj by Uptjqϕj, we may assume that tj � 0.
Besides that,

J̧

j�1
gj

nUptjnqϕj �wJ
n �

J̧

j�1
gj

nrUptjnqϕj � ϕj � ϕjs �wJ
n �

J̧

j�1
gj

nϕ
j � w̃J ,

where w̃J �
J̧

j�1
gj

nrUptjnqϕj � ϕjs �wJ . Therefore, we may consider that tjn � 0. Hence,

either tjn � 0 or tjn Ñ �8.

Now, we set the nonlinear profiles vj : Ij � R6 ÝÑ Cl associated to ϕj and tjn

by the following
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• If tjn � 0, then vj is the maximal solution to (1.2) with initial data vjp0q � ϕj.

• If tjn Ñ 8, then vj is the maximal solution to (1.2) which scatters forward in time
to Uptqϕj.

• If tjn Ñ �8, then vj is the maximal solution to (1.2) which scatters backward in
time to Uptqϕj.

Now, for each j, n ¥ 1, consider vj
n : Ij

n � R6 Ñ Cl given by

vj
nptq :� T j

n

�
vjp� � tjnq

� ptq,
where T j

n is defined as in Lemma 2.27 and Ij
n :� tt P R; pλj

nq�2t� tjn P Iju. This way, each
vj

n is a maximal solution to (1.2) with initial data vj
np0q � gj

nvjptjnq defined on the interval
Ij

n � p�T�
n,j, T

�
n,jq, where �8 ¤ �T�

n,j   0   T�
n,j ¤ 8.

Notice that for each J ¥ 1, using (2.19) and (4.31)
J̧

j�1
}∇ϕj}2

L2
x
¤ lim

nÑ8

�
J̧

j�1
}∇ϕj}2

L2
x
� }∇wJ

n}2
L2

x

�
� lim

nÑ8
}∇un}2

L2
x
¤ Kc. (4.33)

Since this holds to everyJ ¥ 1, the series is convergent. Hence, there exists J0 ¥ 1 such
that

}∇ϕj}L2
x
¤ η0, @j ¥ J0,

where η0 is the threshold in Corollary 4.2. Then, for every n ¥ 1 and j ¥ J0, the solutions
vj

n are global and
sup
tPR

}∇vj
nptq}2

L2
x
� SRpvj

nptqq ¤ }∇ϕj}2
L2

x
. (4.34)

Claim 1:(At least a bad profile) There exists 1 ¤ j0   J0 such that

lim sup
nÑ8

Sr0,T�
n,j0

qpvj0
n q � 8.

Indeed, suppose by contradiction that for 1 ¤ j   J0,

lim sup
nÑ8

Sr0,T�
n,j0

qpvj
nq   8. (4.35)

In particular, this implies that T�
n,j � 8, 1 ¤ j   J0 and for all n large enough. Thus,

subdividing r0,8q into subintervals obeying SIpvj
nq   δ, applying Strichartz’s inequality

in each subinterval and summing, we deduce

lim sup
nÑ8

}vj
n}S1pr0,8qq   8, for all 1 ¤ j   J0. (4.36)

Combining (4.34) with (4.35) and using (2.19) and (4.31), we have for n sufficiently large,¸
j¥1

Sr0,8qpvj
nq À

J0�1̧

j�1
Sr0,8qpvj

nq �
¸

j¥J0

Sr0,8qpvj
nq

À 1�
¸

j¥J0

}∇ϕj}2
L2

x

À 1�Kc.

(4.37)



Chapter 4. Scattering for a quadratic type NLS system in dimension 6 88

Now, define the approximation

uJ
nptq :�

J̧

j�1
vj

nptq �UptqwJ
n. (4.38)

Note that,

}uJ
np0q � unp0q} 9H1 À

����� J̧

j�1
gj

nvjptjnq � gj
nUptjnqϕj

�����
9H1

À
J̧

j�1
}vjptjnq �Uptjnqϕj}

9H1 .

Consenquently, by the choice of vj,

lim sup
nÑ8

}uJ
np0q � unp0q} 9H1 � 0.

We show now that uJ
n does not blow-up foward in time. First, let us introduce

the notation

}uv}p
Lp

x
:�

ļ

k�1
}ukvk}p

Lp
x
.

Now, note that
lim sup

nÑ8
}vj

nvi
n}L2

t,x
� 0. (4.39)

Indeed, recall that by (4.34) and (4.36), vj
n P S1pr0,8qq (see (2.1)) for any j ¥ 1 and n

large enough. Combining this with the Strichartz inequality one can see that

}vj}
9X1pr0,8q�R6sq � }vj

n} 9X1pr0,8q�R6sq À 1,

where 9X1 :� L4
t,x X L

8
3
t

9H1, 8
3

x . Then, we may approximate vj
n in 9X1 by C8

0 functions, that
is, given ϵ ¡ 0, there exists ψj

ϵ P C8
0 pR� R6q such that

}vj
n � T j

nψ
j
ϵ} 9X1pR�R6q   ϵ. (4.40)

Moreover, if j � i and ϵ ¡ 0, using (4.36) and Lemma 2.27 we obtain for n sufficiently
large,

}vj
nvi

n}L2
t,xpr0,8q�R6q

¤ }vj
npvi

n � T i
nψ

i
ϵq}L2

t,xpr0,8q�R6q � }pvj
n � T j

nψ
j
ϵqT i

nψ
i
ϵ}L2

t,xpr0,8q�R6q

� }T j
nψ

j
ϵT

i
nψ

i
ϵ}L2

t,xpr0,8q�R6q

À }vj
n} 9X1pRq}vi

n � T i
nψ

i
ϵ} 9X1pRq � }vj

n � T j
nψ

j
ϵ} 9X1pRq}ψi

ϵ}S1pRq

� }T j
nψ

j
ϵT

i
nψ

i
ϵ}L2

t,xpr0,8q�R6q

À ϵ,

(4.41)
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and (4.39) holds. Also, notice that for aj, j � 1, ..., J , we have�
J̧

j�1
aj

�4

�
¸
i�k

4̧

j�0
aj

ia
4�j
k À

J̧

j�1
a4

j � CJ

¸
i�k

a2
ja

2
k.

Then

Sr0,8q

�
J̧

j�1
vj

n

�
�
����� J̧

j�1
vj

n

�����
4

L4
x

À
» ļ

k�1

�
J̧

j�1
|vj

nk|4 � CJ

¸
i�j

|vi
nkv

j
nk|2

�

�
J̧

j�1
Sr0,8qpvj

nq � Cj

¸
i�j

}vi
nvj

n}2
L2

x

(4.42)

Therefore, by (4.42), (2.18), (4.37) and (4.39)

lim
JÑ8

lim sup
nÑ8

Sr0,8qpuJ
nq À lim

JÑ8
lim sup

nÑ8

�
Sr0,8q

�
J̧

j�1
vj

n

�
� Sr0,8qpUptqwJ

nq
�

À lim
JÑ8

lim sup
nÑ8

�
J̧

j�1
Sr0,8qpvj

nq � CJ

¸
j�i

}vj
nvi

n}2
L2

t,x

�
À 1�Kc.

(4.43)

Using the same argument that was used to obtain (4.36) from (4.35), we deduce

lim
JÑ8

lim sup
nÑ8

}∇uJ
n}S0pr0,8qq ¤ C   8, (4.44)

where C depends only on Kc. In order to apply Lemma 4.3, we need to show that, for any
k � 1, ..., l

lim
JÑ8

lim sup
nÑ8

}∇ �piαkBt � γk∆quJ
kn � fkpuJ

nq
� }

L
8{5
t,x pr0,8q�R6q

� 0,

which, by definition of uJ
n, we deduce

riαkBt � γk∆suJ
kn � fkpuJ

nq �
J̧

j�1
fkpvj

nq � fkpuJ
nq

�
J̧

j�1
fkpvj

nq � fk

�
J̧

j�1
vj

n

�
� fkpuJ

n �UptqwJ
nq � fkpuJ

nq.

(4.45)

Therefore, by triangle inequality, this is equivalent to show that

lim
JÑ8

lim sup
nÑ8

�����∇
�

J̧

j�1
fkpvj

nq � fk

�
J̧

j�1
vj

n

�������
L

8{5
t,x pr0,8q�R6q

� 0 (4.46)

and
lim

JÑ8
lim sup

nÑ8

��∇rfkpuJ
n �UptqwJ

nq � fkpuJ
nqs

��
L

8{5
t,x pr0,8q�R6q

� 0. (4.47)
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Let us start with (4.46). Note that, by Lemma 2.12 we may write�����∇
�

J̧

j�1
fkpvj

nq � fk

�
J̧

j�1
vj

n

������� À¸
j�i

|∇vj
n||vi

n|, k � 1, ..., l.

Let us show that for j � i,

lim sup
nÑ8

��vj
n∇vi

n

��
L8{5

t,x pr0,8q�R6q
� 0.

Indeed, recall that we can approximate vj
n and ∇vj

n in 9X1 by C8
0 functions, that is, given

ϵ ¡ 0, there exists ψj
ϵ P C8

c pR� R6q such that

}vj
n � T j

nψ
j
ϵ} 9X1pRq � }∇vi

n �∇pT i
nψ

i
ϵq} 9X1pRq   ϵ. (4.48)

Hence, if j � i and ϵ ¡ 0, using (4.36) and Lemma 2.27 we deduce for n large enough that

}vj
n∇vi

n}L8{5
t,x pr0,8q�R6q

¤ }vj
np∇vi

n �∇pT i
nψ

i
ϵq}L8{5

t,x pr0,8q�R6q
� }pvj

n � T j
nψ

j
ϵq∇pT i

nψ
i
ϵq}L8{5

t,x pr0,8q�R6q

� }T j
nψ

j
ϵ∇pT i

nψ
i
ϵq}L8{5

t,x pr0,8q�R6q

À }vj
n} 9X1pRq}p∇vi

n �∇pT i
nψ

i
ϵq} 9X1pRq � }vj

n � T j
nψ

j
ϵ} 9X1pRq}∇ψi

ϵ} 9X1pRq

� }T j
nψ

j
ϵ∇pT i

nψ
i
ϵq}L8{5

t,x pr0,8q�R6q

À ϵ.

(4.49)

Then,

lim sup
nÑ8

�����∇
�

J̧

j�1
fkpvj

nq � fk

�
J̧

j�1
vj

n

�������
L

8{5
t,x pr0,8qq

À lim sup
nÑ8

¸
i�j

��vj
n∇vi

n

��
L8{5

t,x pr0,8q�R6q
� 0,

(4.50)
which proves (4.46). Now, consider (4.47). Henceforth, unless otherwise is said, the norms
are taken on r0,8q � R6. Combining Hölder’s inequality, (4.38) and Lemma 2.11,

��∇fk

�
uJ

n �UptqwJ
n

��∇fkpuJ
nq
��

L8{5
t,x
¤
�����
�

J̧

j�1
vJ

n

�
∇UptqwJ

n

�����
L8{5

t,x

�}UptqwJ
n}L4

t,x
}∇uJ

n}L8{3
t,x
.

When we take the limit in time, the second term vanishes by (2.18) and (4.44). Hence, is
enough to show

lim
JÑ8

lim sup
nÑ8

�����
�

J̧

j�1
vJ

n

�
∇UptqwJ

n

�����
L8{5

t,x

� 0. (4.51)

Indeed, let η ¡ 0. By (4.37) there exists J 1 � J 1pηq ¥ 1 such that¸
j¥J 1

S¥0pvj
nq ¤ η.
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Using Hölder’s inequality and an argument as in (4.43), we deduce

lim sup
nÑ8

�����
�

J̧

j�J 1

vj
n

�
∇UptqwJ

n

�����
4

L8{5
t,x

À lim sup
nÑ8

�¸
j¥J 1

Sr0,8qpvj
nq
�
}∇UptqpwJ

nq}4
L8{5

t,x

À η.

Since η ¡ 0 is arbitrary, to show (4.51) it suffices to obtain

lim
JÑ8

lim sup
nÑ8

}vj
n∇UptqwJ

n}L8{5
t,x
� 0, 1 ¤ j ¤ J 1. (4.52)

Fix 1 ¤ j ¤ J 1, by a change of variables

}vj
n∇UptqwJ

n}L8{5
t,x
� }vj∇w̃J

n}L8{5
t,x
,

where w̃J
n :� rpT j

nq�1UptqwJ
nsp� � tjnq. Note that,

SRpw̃J
nq � SRpUptqwJ

nq and }∇w̃J
n}L8{3

t,x
� }∇UptqwJ

n}L8{3
t,x
. (4.53)

Again, using Hölder’s inequality

}vj∇w̃J
n}L8{5

t,x
À }vj}L8

t,x
}∇w̃J

n}L2
t,x
.

By a density argument, we may assume vj P C8
0 pR � R6q. Therefore, it is sufficient to

show that
lim

JÑ8
lim sup

nÑ8
}∇w̃J

n}L2
t,xpKq � 0,

for all compact K � R� R6. However, this is a consequence of Lemma 2.10, (4.53) and
(2.18). Hence, (4.47) follows.

Now we are in position to apply Lemma 4.3. Using (4.43), we deduce, for n
sufficiently large,

Sr0,8qpunq À 1�Kc,

which contradicts (4.32). This argument finish the proof of Claim 1.

Now, rearranging the index if necessary, we may assume that there exists
1 ¤ J1   J0 such that$&% lim sup

nÑ8
Sr0,T�

n,jq
pvn

j q � 8, para 1 ¤ j ¤ J1

lim sup
nÑ8

Sr0,8qpvn
j q   8, para j ¡ J1.

(4.54)

We can guarantee, up to a subsequence in n, that Sr0,T�
n,1q
pv1

nq Ñ 8.

For each m,n ¥ 1, we set an integer j � jpm,nq P t1, ..., J1u and an interval
Km

n of the form r0, τ s by ¸
1¤j¤J1

SKm
n
pvj

nq � SKm
n
pvjpm,nq

n q � m. (4.55)
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By the pigeonhole principle, there exists a 1 ¤ j1 ¤ J1 such that, for infinitely many m
and n, we have jpm,nq � j1. Note that the infinite set of n that this holds depends on m.
Rearranging the index, we may assume that j1 � 1. Moreover, by definition of the critical
energy,

lim sup
mÑ8

lim sup
nÑ8

sup
tPKm

n

}∇v1
nptq}2

L2
x
¥ Kc. (4.56)

On the other hand, in view of (4.55), all vj
n have finite scattering size in Km

n

for each m ¥ 1. Then, by the same argument used in Claim 1, we see that, for n and J

large enough, uJ
n is a good approximation for un in each interval Km

n . Precisely, we have
the following

lim
JÑ8

lim sup
nÑ8

}uJ
n � un}L8

t
9H1pKm

n �R6q � 0, @m ¥ 1. (4.57)

Claim 2. For all J ¥ 1, m ¥ 1,

lim sup
nÑ8

sup
tPKm

n

�����}∇uJ
nptq}2

L2
x
�

J̧

j�1
}∇vj

nptq}2
L2

x
� }∇wJ

n}2
L2

x

����� � 0.

Indeed, fix J ¥ 1 and m ¥ 1. Then, for all t P Km
n , by (4.38),

}∇uJ
nptq}2

L2
x
� x∇uJ

nptq,∇uJ
nptqy

�
J̧

j�1
}∇vj

nptq}2
L2

x
� }∇wJ

nptq}2
L2

x
�
¸
j�i

x∇vj
nptq,∇vi

nptqy

�
J̧

j�1

�x∇UptqwJ
n,∇vj

nptqy � x∇vj
nptq,∇UptqwJ

ny
�
.

Thus, to prove the claim, it is enough to show that for all sequence ptnq � Km
n

x∇vj
nptnq,∇vi

nptnqy Ñ 0 as nÑ 8, i � j, 1 ¤ i, j ¤ J (4.58)

and
x∇UptnqwJ

n,∇vj
nptnqy Ñ 0 as nÑ 8, 1 ¤ j ¤ J. (4.59)

We just show the second case, which depends on (2.20). The first one is treated in the
same way using (2.21). After performing a change of variables

x∇UptnqwJ
n,∇vj

nptnqy �
B

∇Uptnpλj
nq�2qrpgj

nq�1wJ
ns,∇vj

�
tn

pλj
nq2 � tjn


F
. (4.60)

Since tn P Km
n � r0, T�

n,jq for all 1 ¤ j ¤ J1, then tnpλj
nq�2 � tjn P Ij, for all j ¥ 1, where

Ij is the maximal interval of existence of vj. By (4.54), for j ¡ J1, Ij � R. Refining the
sequence once for each j and using again the diagonalisation argument, we may assume
tnpλj

nq�2 � tjn converges for all j. Now, we fix 1 ¤ j ¤ J .
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Case 1: If tnpλj
nq�2 � tjn converges to some point τ j in the interior of Ij, then

by continuity of the flow, vj
�
tnpλj

nq�2 � tjn
�

converges to vjpτ jq in 9H1pR6q. On the other
hand, using (4.33), we deduce

lim sup
nÑ8

��Uptnpλj
nq�2qrpgj

nq�1wJ
ns
��

9H1pR6q
� lim sup

nÑ8
}wJ

n} 9H1pR6q ¤ Kc. (4.61)

Combining with (4.60), we get

lim
nÑ8

x∇UptnqwJ
n,∇vj

nptnqy � lim
nÑ8

B
∇U

�
� tn

pλj
nq2



rpgj

nq�1wJ
ns,∇vj

�
tn

pλj
nq2 � tjn


F
� lim

nÑ8

B
U
�
� tn

pλj
nq2 � tjn



∇U

�
� tn

pλj
nq2



rpgj

nq�1wJ
ns,U

�
� tn

pλj
nq2 � tjn



∇vjpτ jq

F
� lim

nÑ8

@
∇Up�tjnqrpgj

nq�1wJ
ns,∇Up�τ jqvjpτ jqD .

(4.62)

Using (2.20), we obtain (4.59).

Case 2: Consider now that tnpλj
nq�2 � tjn converges to sup Ij . Then, we should

have sup Ij � 8 and, consequently, vj scatters foward in time. This holds if tjn Ñ 8 when
nÑ 8. Otherwise, suppose it does not hold. Then

lim sup
nÑ8

Sr0,tnspvj
nq � lim sup

nÑ8
Srtj

n,tnpλ
j
nq�2�tj

ns
pvjq � 8,

which contradicts tn P Km
n . Hence, it must exist ψj P 9H1 such that

lim
nÑ8

��vj
�
tnpλj

nq�2 � tjn
��Uptnpλj

nq�2 � tjnqψj
��

9H1 � 0.

Doing the same as in (4.62), we arrive at

lim
nÑ8

x∇UptnqwJ
n,∇vj

nptnqy � lim
nÑ8

x∇Up�tjnqrpgj
nq�1wJ

ns,∇ψjy,

which, again by (2.20), implies (4.59).

Case 3: Now let us focus on the case that tnpλj
nq�2 � tjn converges to inf Ij.

Since tnpλj
nq�2 ¥ 0 and inf Ij   8, for all j ¥ 1, we see that tjn cannot converge to 8.

Moreover, if tjn � 0, then inf Ij   0. Since tnpλj
nq�2 ¥ 0, then tjn cannot be identically zero.

So, tjn Ñ �8 which leads to inf Ij � �8 and vj scatters backwards in time to Uptqϕj.
Therefore,

lim
nÑ8

��vj
�
tnpλj

nq�2 � tjn
��Uptnpλj

nq�2 � tjnqϕj
��

9H1 � 0.

Repeating the argument in (4.62), we have

lim
nÑ8

x∇UptnqwJ
n,∇vj

nptnqy � lim
nÑ8

x∇Up�tjnqrpgj
nq�1wJ

ns,∇ϕjy,

which, again by (2.20), implies (4.59). Proving Claim 2.
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Finally, by (4.31), (4.57) and Claim 2,

Kc ¥ lim sup
nÑ8

sup
tnPKm

n

}∇uJ
nptq}2

L2
t,x
� lim

JÑ8
lim sup

nÑ8

�
sup

tPKm
n

J̧

j�1
}∇vj

nptq}2
L2

x
� }∇wJ

n}2
L2

x

�
.

By (4.56), this implies J1 � 1, vj
n � 0 for all j ¥ 2, and wn :� w1

n converges to zero
strongly in 9H1, that is,

unp0q � gnUpτnqϕ�wn (4.63)

for some gn P G, τn P R and functions ϕ,wn P 9H1. Moreover, the sequence τn obeys either
τn � 0 or τn Ñ �8.

If τn � 0, then we have that unp0q converges modulo symmetry to ϕ, which is
the desired in this case.

To finish the proof, we show that this is the only possible case. Indeed, suppose
whithout loss of generality that τn Ñ 8. The case τn Ñ �8 is analogous. Thus, by
Strichartz’s inequality SRpUptqqϕ   8. Therefore,

lim
nÑ8

S¥0 pUptqUpτnqϕq � 0.

Since linear solutions and scattering size are preserved by the action of gn, this leads to

lim
nÑ8

S¥0 pUptqgnUpτnqϕq � 0.

Together with (4.63) and the fact that wn Ñ 0 in 9H1, we deduce that

lim
nÑ8

S¥0 pUptqunp0qq � 0.

Applying Lemma 4.3, we deduce

lim
nÑ8

S¥0punq � 0,

which contradicts (4.32). This finishes the proof of Theorem 4.7.

Now we have the necessary tools to prove Theorem 1.17.

Proof of Theorem 1.17. Suppose that Theorem 1.10 fails. Since LpKpψqq � 8, by defini-
tion of critical energy Kc we must have Kc ¤ Kpψq. Therefore, we may choose a sequence
of functions un : In � R6 ÝÑ Cl, with In compact, obeying

sup
n¥1

sup
tPIn

Kpunptqq � Kc and lim
nÑ8

SInpunq � 8. (4.64)

Let tn P In be such that S¥tnpunq � S¤tnpunq � 1
2SInpunq. Then,

lim
nÑ8

S¥tnpunq � lim
nÑ8

S¤tnpunq � 8. (4.65)
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By time-translation symmetry, there is no loss of generality in assuming tn � 0. Using
Palais-Smale condition, we can find a function uc,0 P 9H1 and gn P G such that gnun Ñ uc,0

strongly in 9H1, that is,
lim

nÑ8
}Tgnunp0q � uc,0} 9H1 � 0.

Let uc : Ic � R6 ÝÑ Cl be the maximal solution corresponding to the initial data uc,0. By
Lemma 4.3, we have Ic � lim inf In and

lim
nÑ8

}Tgnun � uc}L8
t

9H1pK�R6q � 0, @K � Ic compact.

Then, by (4.64),
sup
tPIc

Kpucq ¤ Kc. (4.66)

Now, suppose that uc does not blow-up forward in time. Then r0,8q � Ic and S¥0pucq   8.
Invoking again Lemma 4.3, we obtain

S¥0punq � S¥0pTgnunq   8,

for n large enough, which contradicts (4.65). A similar argument is used to the negative
blow-up case. Hence uc blows-up in finite time. Now, by Theorem 4.7,

sup
tPIc

Kpucptqq ¥ Kc. (4.67)

Hence, by (4.66),
sup
tPIc

Kpucptqq � Kc. (4.68)

It remains to show that uc is almost periodic modulo symmetries. For this
purpose, consider a sequence of times tn P Ic. Since uc blows-up in time, we have

S¥tnpucq � S¤tnpucq � 8.

By Palais-Smale, there exists a sequence ucptnq that converges in 9H1 modulo symmetries.
This implies that the orbit Fc :� tTgnucptnq; tn P Icu is pre-compact in 9H1 modulo
symmetries. Hence, by definition of Tgn , it follows that uc is almost periodic modulo
symmetries. This completes the proof.

4.3 The enemies
This section is devoted to prove Proposition 1.18. Since the proof does not

rely on the nonlinearities, for the question of completness, we shall present here a slightly
modified version of the proof given in (KILLIP; VISAN, 2010). We also use some ideas
presented in (KILLIP; TAO; VISAN, 2009). Some of the tools is given in the Appendix
A.1.
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To begin with, we note that the existence of an almost periodic modulo
symmetries solution v : J � R6 Ñ Cl, with minimal kinetic energy is guaranteed by
Theorem 1.17 in the last section. We denote the symmetry parameters of v by Nvptq
and xvptq. It remains to construct a solution uc : Ic � R6 Ñ Cl such that its frequency
function Nptq satisfies one of the following conditions: Finite-time blow-up, soliton or
low-to-high frequency cascade. The construction of uc is made by taking subsequential
limits of normalizations of v at t0 P J , given by (A.5). This is an almost periodic solution
and has symmetry parameters given by (A.6).

Using the definition of almost periodicity, given a sequence tn P J we may get
a subsequence such that vtnp0q converges to some u0 P 9H1

x. Moreover, if we denote by u
the maximal solution with up0q � u0, then u is almost periodic modulo symmetries with
the same compact modulus function as v. Once we have the solution, we set the following
quantities for T ¡ 0,

oscpT q :� inf
t0PJ

suptNvptq; t P J and |t� t0| ¤ TNvpt0q�2u
inftNvptq; t P J and |t� t0| ¤ TNvpt0q�2u

and
apt0q :� Npt0q

suptNptq; t P J and t ¤ t0u �
Npt0q

suptNptq; t P J and t ¥ t0u .

Then, to complete the proof, we divide in three scenarios. The first one is when oscilation
is finite, that is,

(i) lim
TÑ8

oscpT q   8, which allow us to extract a soliton-like solution.

Here, we choose a sequence tn such that

lim sup
nÑ8

suptNptq; t P J and |t� tn| ¤ TNptnq�2u
inftNptq; t P J and |t� tn| ¤ TNptnq�2u   8.

Then, we may find a number A � Av and two sequences, tn P J and Tn Ñ 8, obeying

suptNv; |t� tn| ¤ TnNvptnq�2u
inftNv; |t� tn| ¤ TnNvptnq�2u   A,

for all n. Together with Remark A.5, we get

rtn � TnN
�2
v , tn � TnN

�2
v s � J

and
Nvptq � Nvptnq,

for all t in this interval. Now, define the normalizations vrtns of v at times tn. Then, vrtns

is a maximal solution with lifespan

Jn :� ts P R; tn �Nvptnq�2s P Ju � r�Tn, Tns.
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It is also an almost periodic solution modulo symmetries with compactness modulus
function C and frequency scale function

Nvrtnspsq :� 1
NvptnqNv

�
tn �Nvptnq�2s

�
.

Particularly, we see that if s P r�Tn, Tns then

Nvrtns � 1. (4.69)

Lemma A.4 now implies, up to a subsequence, that vrtns converge locally uniformly (see
Appendix, Definition A.1) to an almost periodic modulo symmetries solution u, with
maximal interval of existence I containing the origin and energy Epvq. As Tn Ñ 8, Lemma
A.1 and (4.69) yield that Nu obeys

0   inf
tPI
Nuptq ¤ sup

tPI
Nuptq   8.

By Corollary A.6, I could not have finite endpoints, therefore I must be R. Also, we can
normalize N � 1 by modifying C by a bounded quantity. Hence, u satisfies the conditions
to be a soliton.

The other two scenarios happen when oscpT q is unbounded. In this cases we
work with apt0q, for t0 P J to distinguish them. The second case is the following

(ii) lim
TÑ8

oscpT q � 8 and inf
t0PJ

apt0q � 0.

Since apt0q � 0, we may choose sequences t�n   tn   t�n from J such that aptnq Ñ 0,
Nvpt�n q{Nvpt�n q Ñ 8 and Nvpt�n q{NvpT�

n q Ñ 8. Then, we choose times t1n P pt�n , t�n q such
that

Nvpt1nq ¤ 2 inftNptq; t P rt�n , t�n su. (4.70)

In this way, we have Npt1nq ¤ 2Nptnq, which allow us to deduce that

Nvpt�n q
Nvpt1nq

Ñ 8 and Nvpt�n q
Nvpt1nq

Ñ 8. (4.71)

Now, let us denote by u the subsequential limit of vrt1ns and let I be its maximal interval
of existence. If I is bounded, then u is a finite-time blow-up solution in the sense of
Proposition 1.18. Thus it remains to consider the case I � R.

Let s�n :� pt�n qNvpt1nq2. From (4.71) we see that Nups�n q Ñ 8 and then, since
u is a global solution, s�n Ñ 8. Combining with (4.70) we have that Nuptq is uniformly
bounded from below in t P R. Rescaling u, we may conclude that Nuptq ¥ 1 for all t P R.

It follows from oscpT q Ñ 8, that Nvptq must show significant oscilation in
neighborhoods of t1n, which also happens to u. Combining this with the lower bound on Nu,
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one can see that lim sup
|t|Ñ8

Nuptq � 8. Then, up to a time-translation, we have constructed

a low-to-high cascade in the sense of Proposition 1.18.

The last case is when apt0q is strictly positive, or

(iii) lim
TÑ8

oscpT q � 8 and inf
t0PJ

apt0q � 2ϵ ¡ 0.

Let us call t0 P J future-spreading if Nptq ¤ ϵ�1Npt0q, for any t ¥ t0 and past-spreading if
Nptq ¤ ϵ�1Npt0q for any t ¤ t0. Thus, by hypothesis, every t0 is past- or future-spreading.

Notice that J must be infinite in backward or forward time direction, since a
single time is past- or future-spreading, respectively. Also, recall that finite-time blow-up
is accompanied by Nv Ñ 8 as t approaches the blow-up time. Next we will show that
either all sufficiently late times are future-spreading or all sufficiently early times are
past-spreading. Otherwise, it would be possible to find a interval large enough such that it
starts with a future-spreading time and it ends with a past-spreading time. This would
be absurd, as it contradicts the divergence of oscpT q. We will focus only in the case
where t ¥ t0 are future-spreading. The past-spreading case is analogous since we have
time-reversal symmetry.

Take T obeying oscpT q ¡ 2ϵ�1. Let us construct an increasing sequence ttnu8n�0

such that
0 ¤ tn�1 � tn ¤ 8TNptnq�2 and Nptn�1q ¤ 1

2Nptnq. (4.72)

Given tn, set t1n :� tn � 4TNptnq�2. If 2Npt1nq ¤ Nptnq we choose tn�1 � t1n and the
properties above follows. If 2Npt1nq ¡ Nptnq, then

Jn :� rt1n � TNpt1nq�2, t1n � TNpt1nq�2s � rtn, tn � 8TNptnq�2s.
As tn is future-spreading, we may ensure that Nptq ¤ ϵ�1Nptnq on Jn, however, by the
choice of T , we can find tn�1 P Jn obeying 2Nptn�1q ¤ Nptnq.

Since we have a sequence of times satisfying (4.72), then any subsequential
limit u of vrtns is a finite-time blow-up solution. Indeed, setting sn :� pt0 � tnqNptnq�2 we
may notice that Nvrtns ¥ 2n. However,

|sn| � Nptnq2
n�1̧

k�0
rtk�1 � tks ¤ 8T

n�1̧

k�0

Nptnq2
Nptkq2 ¤ 8T

n�1̧

k�0
2�pn�kq ¤ 8T.

Thus, sn is bounded and, therefore, the solution u must blow-up at some time �8T ¤ t   0.

This completes the proof of Proposition 1.18.

4.4 Finite-time blow-up
In this section we shall start the process of eliminating of our “enemies”. We

start avoiding the finite-time blow-up solution.
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Theorem 4.8. There is no critical solution, in the sense of Theorem 1.17, for the system
(1.2) which blows-up in finite time.

Proof. Suppose that there exists a maximal finite-time blowing-up solution, namely,
uc : Ic � R6 ÝÑ Cl. There is no loss of generality in assuming that sup Ic   8. Then

lim inf
tÕsup Ic

Nptq � 8. (4.73)

Indeed, if (4.73) does not occur, we may choose ptnq � Ic converging to sup Ic, and set
vn : In � R6 ÝÑ Cl given by

vnpt, xq � 1
Nptnq2 uc

�
tn � t

Nptnq2 , xptnq �
x

Nptnq


,

where In :� ttn � Nptnq�2t : t P Icu. Theorem 1.17 tell us that uc is almost periodic
modulo symmetries, which implies that tvnpt, xqunPN is also a solution for the system.
Besides that, combining with Remark 1.15, we have that tvnp0qu � 9H1pR6q is pre-compact
in 9H1

x. Hence, after passing to a subsequence if necessary, there exists v0 such that

lim
nÑ8

}vnp0q � v0} 9H1 � 0. (4.74)

Suppose that v0 � 0. Then, since }∇vnp0q}L2 � }∇ucptnq}L2 , by (4.74) we have that
}∇ucptnq}L2 Ñ 0 as n Ñ 8, that is, Kpucptnqq Ñ 0, as n Ñ 8. By Lemma 2.31,
Epucptnqq � Kpucptnqq. Taking n Ñ 8, we get Epucptnqq Ñ 0. By conservation of the
energy, this leads to Epucq � 0, which is a contradiction, since uc � 0. Then, v0 � 0.
Let v : I � R6 Ñ Cl be the maximal solution to (1.2) with initial data v0 � vp0q, where
I :� p�T�, T �q satisfies �8 ¤ �T�   0   T � ¤ 8. By the well-posedness, for each
compact interval J � I, we have SJpvq   8. This shows that uc is well-posed with finite
scatterting size on the interval ttn � tpNptnqq�2, t P Ju. However, as tn Õ sup Ic and
lim inf

nÑ8
Nptnq � lim inf

tÕsup Ic

Nptq   8, that is, uc has finite scattering size beyond sup Ic, which
contradicts the existence of t1 P Ic such that Srt1,sup Iqpucq � 8. Hence, (4.73) must hold.

Consider uc � puc1, ..., uclq. Let η P p0, 1q and t P Ic. By Hölder’s inequality and
Sobolev’s embedding, for k � 1, ..., l and R ¡ 0,»

|x| R

|uck|2dx ¤
»
|x�xptq|¤ηR

|uck|2dx�
»
|x|¤R, |x�xptq|¡ηR

|uck|2dx

À η2R2}uck}2
L3

x
�R2

�»
|x�xptq|¡ηR

|uck|3dx

2{3

À η2R2Kpψq �R2
�»

|x�xptq|¡ηR

|uck|3dx

2{3

À η2R2Kpψq �R2η2{3,

where we used (4.73), almost periodicity modulo symmetries and Remark 1.15 in the last
inequality. Then, letting η Ñ 0, we see that

lim sup
tÑsup Ic

»
|x|¤R

|uck|2dx � 0, @R ¡ 0, k � 1, ..., l. (4.75)
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Now, consider

ϕprq �
#

1, r ¤ 1,
0, r ¥ 2,

and

VRptq :�
» �

ļ

k�1

α2
k

γk

|uck|2
�
ϕ

� |x|
R



dx.

By (4.75),
lim sup
tÑsup Ic

VRptq � 0, @R ¡ 0. (4.76)

Using Hardy’s inequality (see (TAO, 2006, Lemma A.2)) and (1.32), we get

|V 1
Rptq| � 2

����� ļ

k�1
αkIm

»
∇ϕR �∇uckūckdx

�����
À }∇uc}L2

x

����uc

|x|
����

L2
x

À rKpucqs2

  rKpψqs2.

By the fundamental theorem of calculus,

VRpt1q À VRpt2q � |t1 � t2|rKpψq|s2, @t1, t2 P Ic, R ¡ 0.

Taking t2 Ñ sup Ic and using (4.76), we see

VRpt1q À | sup Ic � t1|rKpψqs2, @t1 P Ic.

Invoking the conservation of mass and making RÑ 8,

Qpuc0q � Qpucpt1qq À | sup Ic � t1|rKpψq|s, @t1 P Ic.

Letting t1 Õ sup Ic, give us uc0 � 0. By uniquess of solution, it follows that uc � 0, which
contradicts (1.32).

4.5 Negative Regularity
Before proceeding to exclusion of next two “enemies”, we must prove that the

critical solution has some negative regularity. We dedicate this section for this purpose.
We begin by stating the main result of this section.

Theorem 4.9. (Negative Regularity). Let u be a global solution to (1.2) that is almost
periodic modulo symmetries. Suppose also that

sup
tPR

}∇u}L2   8 (4.77)
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and
inf
tPR

Nptq ¥ 1. (4.78)

Then u P L8
t

9H�ϵ
x for some ϵ ¡ 0. In particular, u P L8

t L2
x.

To prove this theorem we will follow the strategy presented in (KILLIP; VISAN,
2010). The proof will be done in two steps. The first one is to prove that our solution
lies in L8

t Lp
x, for 2   p   3. The second is to use the “double Duhamel trick” to improve

regularity to u P L8
t

9H1�s
x for some s ¡ 0. Having disposed of this two preliminary steps,

we may derive Theorem 4.9. Before proceeding, we need to set some usefull tools. The
first one is the following Duhamel’s formula.

Lemma 4.10. Let u be an almost periodic solution to (1.2) with maximal interval of
existence I. Then, for all t P I,

ukptq � lim
TÕsup I

i

» T

t

Ukpt� sqfkpupsqqds

� � lim
T×inf I

i

» t

T

Ukpt� sqfkpupsqqds
(4.79)

as weak limits in 9H1
xpR6q.

Proof. The proof can be found in (TAO; VISAN; ZHANG, 2008), Section 6.

Remark 4.11. Assume that u obeys the hypotheses of Theorem 4.9. Consider η ¡ 0 a
small constant that will be chosen later. By Remark 1.16 combined with (4.78), there is
N0 � N0pηq such that

}∇pP¤N0uq}L8
t L2

x
¤ η, @η ¡ 0. (4.80)

Remark 4.12. Define, for frequencies N ¤ 10N0,

ApNq :� N�1{2}PNuptq}L8
t L4

xpR�R6q. (4.81)

By Bernstein’s inequality, Sobolev’s embedding H1pR6q ãÑ L3pR6q and (4.77) we see

ApNq � N�1{2}PNuptq}L8
t L4

x

À N� 1
2Np 6

3�
6
4q}PNu}L8

t L3
x

À }PNu}L8
t L3

x

À }∇u}L8
t L2

x
,

which implies that ApNq is well defined.

The next result is a recurrence formula to ApNq.



Chapter 4. Scattering for a quadratic type NLS system in dimension 6 102

Lemma 4.13. For all N ¤ 10N0,

ApNq À
�
N

N0


1{2

� η
¸

N
10¤N1¤N0

�
N

N1


1{2

ApN1q � η
¸

N1 
N
10

�
N1

N


1{2

ApN1q, (4.82)

where ApNq is given by (4.81).

Proof. We first fix N such that N ¤ 10N0. By time-translation symmetry, it is sufficient
to show that

N�1{2}PNup0q}L4
x
À
�
N

N0


1{2

� η
¸

n
10¤N1¤N0

�
N

N1


1{2

ApN1q � η
¸

N1 
N
10

�
N1

N


1{2

ApN1q.

(4.83)
By Duhamel’s formula (4.79) and triangle inequality, we have

N�1{2}PNukp0q}L4
x
¤ N�1{2

�����
» N�2

0
Ukptq 1

αk

PNfkpuptqqdt
�����

L4
x

�N�1{2
����» 8

N�2
Ukptq 1

αk

PNfkpuptqqdt
����

L4
x

.

(4.84)

For the first term on the right-hand side of the last inequality, using Lemma 2.19, we may
estimate

N�1{2

�����
» N�2

0
Ukptq 1

αk

PNfkpuptqqdt
�����

L4
x

À N�1{2N3{2

�����
» N�2

0
Ukptq 1

αk

PNfkpuptqqdt
�����

L2
x

À N}PNfkpuptqq}L8
t L2

x

�» N�2

0
1dt

�
À N�1N3{2}PNfkpuptqq}L8

t L
4{3
x

� N1{2}PNfkpuptqq}L8
t L

4{3
x
.

(4.85)

Next, for the second term in the right-hand side of (4.84) we may apply Lemma
2.9 to get

N�1{2
����» 8

N�2
Ukptq 1

αk

PNfkpuptqqdt
����

L4
x

À N�1{2}PNfkpuptqq}L8
t L

4{3
x

�» 8

N�2
|t|�3{2dt



� N1{2}PNfkpuptqq}L8

t L
4{3
x
.

(4.86)

From (4.85) and (4.86), we conclude

N�1{2}PNup0q}L4
x
À N1{2}PNfkpuptqq}L8

t L
4{3
x
.

Hence, to obtain (4.83) we need to estimate N1{2}PNfkpucptqq}L8
t L

4{3
x

. Notice that

fkpucq � fkpucq � fkpP¤N0ucq � fkpP¤N0ucq
�: gkpucq � fkpP¤N0ucq.
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Then,

N1{2}PNfkpucq}L8
t L

4{3
x
¤ N1{2}PNgkpucq}L8

t L
4{3
x
�N1{2}P¤N0fkpucq}L8

t L
4{3
x

�: I � J .
(4.87)

By Lemma 2.11 and the decomposition of the solution

|gkpuq| � |fkpuq � fkpP¤N0uq|
� |fkpP¤N0u� P¡N0uq � fkpP¤N0uq|

¤ C
ļ

m�1

ļ

j�1
p|P¤N0uj � P¡N0uj| � |P¤N0uj|q |P¡N0um|

¤ C
ļ

m�1

ļ

j�1
|P¤N0uj||P¡N0um| � C

ļ

m�1
|P¡N0um|2.

Furthermore, using Hölder’s inequality and Lemma 2.19, the first term in the
right-hand side of (4.87) can be bounded as follows

I À N1{2}gkpuq}L8
t L

4{3
x

À N1{2

�
ļ

m�1

ļ

j�1
}|P¤N0uj||P¡N0um|}L8

t L
4{3
x
�

ļ

m�1
}|P¡N0um|2}L8

t L
4{3
x

�

À N1{2

�
ļ

m�1

ļ

j�1
}uj}L8

t L3
x
}P¡N0um}L8

t L
12{5
x

�
ļ

m�1
}um}L8

t L3
x
}P¡N0um}L8

t L
12{5
x

�

À N1{2N
�1{2
0

�
ļ

m�1

ļ

j�1
}uj}L8

t L3
x
}|∇|1{2um}L8

t L
12{5
x

�
ļ

m�1
}um}L8

t L3
x
}|∇|1{2um}L8

t L
12{5
x

�
.

Using the embbedings 9H1
xpR6q ãÑ 9H

1
2 , 12

5
x pR6q, see (BERGH; LöFSTRöM, 1976, Theorem

6.5.1, page 153), and 9H1
xpR6q ãÑ L3

xpR6q, see (TAO, 2006, page 335, A.11), and (4.77), the
last inequality gives us

I À N1{2N
�1{2
0 �

�
N

N0


1{2

.

To estimate the second term in the right-hand side of (4.87), the fundamental
theorem of calculus allows us to write

fkpzq � fkpz1q �
ļ

m�1
pzm � z1mq

» 1

0

Bfk

Bzm

pz1 � θpz� z1qqdθ �
ļ

m�1
pzm � z1mq

» 1

0

Bfk

Bz̄m

pz1 � θpz� z1qqdθ.
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Taking z � PN
10¤�¤N0

u and z1 � P¤N0u, we arrive at

fkpP¤N0uq � fk

�
PN

10¤�¤N0
u
	
�

ļ

m�1
P N

10
um

» 1

0

Bfk

Bzm

�
PN

10¤�¤N0
u� θP N

10
u
	
dθ

�
ļ

m�1
P N

10
um

» 1

0

Bfk

Bz̄m

�
PN

10¤�¤N0
u�θP N

10
u
	
dθ,

which implies

J À N1{2
���PNfk

�
PN

10¤�¤N0
u
	���

L8
t L

4{3
x

�N1{2
ļ

m�1

����PN

�
P N

10
um

» 1

0

Bfk

Bzm

�
PN

10¤�¤N0
u� θP N

10
u
	
dθ

�����
L8

t L
4{3
x

�N1{2
ļ

m�1

����PN

�
P N

10
um

» 1

0

Bfk

Bz̄m

�
PN

10¤�¤N0
u� θP N

10
u
	
dθ

�����
L8

t L
4{3
x

�: J1 � J2 � J3.

(4.88)

At first, we shall work with J2 and J3. Effectively, it suffices to estimate J2,
because J3 can be treated in an analogous way.

From pH2q, we have for k � 1, ..., l that the complex derivatives of the nonlin-
earities fk are Hölder continuous of order 1, hence Lemma 2.20 gives us, for m � 1, ..., l,����P¡N

10

Bfk

Bzm

puq
����

L8
t L2

x

À
¸

M¡N
10

����PM
Bfk

Bzm

puq
����

L8
t L2

x

À
¸

M¡N
10

M�1}∇u}L8
t L2

x

À N�1}∇u}L8
t L2

x
,

since
¸

M¡N
10

M�1 �
¸
j¡0

2�j 10
N

À N�1. Applying Hölder’s inequality, Remark 2.18, (4.80)

and (4.81),

J2 � N1{2
ļ

m�1

����PN

�
P N

10
um

» 1

0

Bfk

Bzm

�
PN

10¤�¤N0
u� θP N

10
u
	
dθ

�����
L8

t L
4{3
x

À N1{2
ļ

m�1
}P N

10
um}L8

t L4
x

����P¡N
10

» 1

0

Bfk

Bzm

�
PN

10¤�¤N0
u� θP N

10
u
	
dθ

����
L8

t L2
x

À N1{2
ļ

m�1
}P N

10
um}L8

t L4
x
N�1}∇P N0u}L8

t L2
x

À ηN�1{2}P N
10

u}L8
t L4

x

À ηN�1{2
¸

N1 
N
10

}PN1u}L8
t L4

x

� η
¸

N1 
N
10

�
N1

N


1{2

ApN1q.
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Finally, we can estimate J1 in (4.88). By Lemma 2.11,

|fkpzq| À
ļ

m�1
z̄mzm,

so, using Lemma 2.11 and Hölder’s inequality,���PNfk

�
PN

10¤�¤N0
u
	���

L8
t L

4{3
x

À
���fk

�
PN

10¤�¤N0
u
	���

L8
t L

4{3
x

À
ļ

m�1
}pPN

10¤�¤N0
umqpPN

10¤�¤N0
umq}L8

t L
4{3
x

À
¸

N
10¤N1,N2¤N0

�
ļ

m�1
}pPN1umqpPN2umq}L8

t L
4{3
x

�

À
¸

N
10¤N1¤N2¤N0

�
ļ

m�1
}pPN1umq}L8

t L4
x
}pPN2umq}L8

t L2
x

�

�
¸

N
10¤N2¤N1¤N0

�
ļ

m�1
}pPN1umq}L8

t L2
x
}pPN2umq}L8

t L4
x

�
.

(4.89)

Therefore, using Lemma 2.19 and (4.80),���PNfk

�
PN

10¤�¤N0
u
	���

L8
t L

4{3
x

À η
¸

N
10¤N1¤N2¤N0

ļ

m�1
N�1

2 }PN1um}L8
t L4

x

� η
¸

N
10¤N2¤N1¤N0

ļ

m�1
N�1

1 }PN2um}L8
t L4

x

À η
¸

N
10¤N1¤N2¤N0

ļ

m�1

�
N1

N2



N�1

1 }PN1um}L8
t L4

x

� η
¸

N
10¤N2¤N1¤N0

ļ

m�1

�
N2

N1



N�1

2 }PN2um}L8
t L4

x

À η
¸

N
10¤N1¤N0

N
�1{2
1 ApN1q

� η
¸

N
10¤N2¤N1¤N0

�
N2

N1



N

�1{2
2 ApN2q

À η
¸

N
10¤N1¤N0

N
�1{2
1 ApN1q.

(4.90)

Then,

N1{2}PNfkpuq}L8
t L

4{3
x
À
�
N

N0


1{2

� η
¸

N
10¤N1¤N0

�
N

N1


1{2

ApN1q � η
¸

N1 
N
10

�
N1

N


1{2

ApN1q

finishing the proof.



Chapter 4. Scattering for a quadratic type NLS system in dimension 6 106

This Lemma leads us directly to our first result.

Proposition 4.14. Let u be as in Theorem 4.9. Then

u P L8
t Lp

x,
14
5 ¤ p   3. (4.91)

In addition,
∇fkpuq P L8

t Lr
x,

7
6 ¤ r   6

5 . (4.92)

Proof. Combining Lemma 4.13 with Lemma 2.8, we deduce

}PNu}L8
t L4

x
À N1�, for N ¤ 10N0, (4.93)

by setting N � 10 � 2�jN0, xj � Ap2�jN0q and take η sufficiently small. Now, by interpo-
lation, Lemma 2.20 with gpuq � u, (4.93) and (4.77)

}PNu}L8
t Lp

x
À }PNu}

2pp�2q
p

L8
t L4

x
}PNu}

4
p
�1

L8
t L2

x

À N
2pp�2q

p
�
�
N�1}∇u}L8

t L2
x

� 4
p
�1

À N
2pp�2q

p
�N1� 4

p

À N3� 8
p
�.

Now, if 14{5 ¤ p   3, then 3� 8{p ¤ 1{7. Thereby,

}PNu}L8
t Lp

x
À N

1
7�. (4.94)

for all N ¤ 10N0. On the other hand, notice that Lemma 2.16 with s � 1, q � 2 gives us
θ � 3� 6

p
, consequently,

}PNu}L8
t Lp

x
À }∇pPNuq}3� 6

p

L8
t L2

x
}PNu}

6
p
�2

L8
t L2

x
� }PNp∇uq}3� 6

p

L8
t L2

x
}PNu}

6
p
�2

L8
t L2

x
, (4.95)

where we used the commutativity of Littlewood-Paley operators with gradient in the last
inequality. By Lemma 2.6 and (4.77)

}PNp∇ucq}L8
t L2

x
À }∇uc}L8

t L2
x
À 1. (4.96)

Using Lemma 2.20 with gpuq � u, and again (4.77), we deduce

}PNu}L8
t L2

x
À N�1}∇u}L8

t L2
x
À N�1. (4.97)

Inserting (4.96) and (4.97) in (4.95), we obtain

}PNu}L8
t Lp

x
À N2� 6

p . (4.98)
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Finally, by (4.94) and (4.98),

}u}L8
t Lp

x
¤ }P¤N0u}L8

t Lp
x
� }P¡N0u}L8

t Lp
x

¤
¸

N¤N0

}PNu}L8
t Lp

x
�

¸
N¡N0

}PNu}L8
t Lp

x

À
¸

N¤N0

N
1
7� �

¸
N¡N0

N2� 6
p

À 1,

as stated.

In particular, by Lemma 2.11 (iii), with q � 2, and (4.77),

}∇fkpuq}L8
t Lr

x
À }u}L8

t Lp
x
}∇u}L8

t L2
x
À }u}L8

t Lp
x
.

Since 1
r
� 1

p
� 1

2 and u P L8
t Lp

x for 14
5 ¤ p   3, it follows that ∇fkpuq P L8

t Lr
x for

7
6 ¤ r   6

5 . Finishing the proof.

The second step to reach our goal will be done as in (KILLIP; VISAN, 2010),
where we will prove (4.91) by using Lemma 4.10 twice.

Proposition 4.15. (Some negative regularity) Let u be as in Theorem 4.9. If |∇|sfkpuq P
L8t L

r
x for some 7

6 ¤ r   6
5 , s P r0, 1s and k � 1, ..., l, then there is s0 � s0prq ¡ 0 such

that u P L8
t

9Hs�s0�pRq.

Proof. We first notice that

}|∇|s�s0�uk}L8
t L2

x
¤ }|∇|s�s0�PN¤1uk}L8

t L2
x
� }|∇|s�s0�PN¡1uk}L8

t L2
x

:� A�B. (4.99)

We will work the cases separately. We start with A:

A � }|∇|s�s0�
¸

N¤1
PNuk}L8

t L2
x

À
¸

N¤1
}|∇|s�s0�PNuk}L8

t L2
x

�
¸

N¤1
}|∇|�s0�p|∇|sPNukq}L8

t L2
x

À
¸

N¤1
N�s0�}|∇|sPNuk}L8

t L2
x
,

(4.100)

where we used Bernstein’s inequality in the last line. We will show that

}|∇|sPNuk}L8
t L2

x
À N s0 , N ¡ 0 s0 :� 6

r
� 5 ¡ 0. (4.101)

By time-translation, it suffices to prove

}|∇|sPNukp0q}L2
x
À N s0 , N ¡ 0 s0 :� 6

r
� 5 ¡ 0. (4.102)
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By Duhamel’s formula (4.79), both in the future and the past, for k � 1, ..., l, we write

}|∇|sPNukp0q}L8
t L2

x

� lim
TÑ8

lim
T 1Ñ�8

B
i

» T

0
Ukp�tqPN |∇|sfkpuptqqdt,�i

» 0

T 1

Ukp�τqPN |∇|sfkpupτqqdτ
F

¤
» 8

0

» 0

�8

|xPN |∇|sfkpuptqq, Ukpt� τqPN |∇|sfkpupτqqy| dtdτ.
(4.103)

We treat the integral in two ways. First, using Hölder’s inequality and Lemma 2.9,

|xPN |∇|sfkpuptqq, Ukpt� τqPN |∇|sfkpupτqqy|
À }PN |∇|sfkpuptqq}Lr

x
}Ukpt� τqPN |∇|sfkpupτqq}Lr1

x

À |t� τ |3� 6
r }|∇|sfkpuq}2

L8
t Lr

x
.

(4.104)

On the other hand, by Bernstein’s inequality,

|xPN |∇|sfkpuptqq, Ukpt� τqPN |∇|sfkpupτqqy|
À }PN |∇|sfkpuptqq}L2

x
}Ukpt� τqPN |∇|sfkpupτqq}L2

x

À N2p 6
r
�3q}|∇|sfkpuq}2

L8
t Lr

x
.

(4.105)

Then, combining (4.104) with (4.105), and using in (4.103), we deduce

}|∇|sPNukp0q}2
L2

x
À }|∇|sfkpuq}2

L8
t Lr

x

» 8

0

» 0

�8

mint|t� τ |�1, N2u 6
r
�3dtdτ. (4.106)

Now, if t   0   τ hence, |t� τ | � τ � t. If |t� τ |�1 ¤ N2 then τ ¥ t� 1
N2 so» 8

0

» 0

�8

mint|t� τ |�1, N2u 6
r
�3dtdτ �

¼
tτ¥t� 1

N2 u

1
pτ � tq 6

r
�3
dtdτ

�
» 1

N2

0

» τ� 1
N2

�8

1
pτ � tq 6

r
�3
dtdτ �

» 8

1
N2

» 0

�8

1
pτ � tq 6

r
�3
dtdτ.

(4.107)

To simplify notation, we will write q :� 6
r
� 3. Thus,

» 1
N2

0

» τ� 1
N2

�8

1
pτ � tqq dtdτ �

1
q � 1

» 1
N2

0

1
pτ � tqq�1

����τ� 1
N2

�8

dτ

� 1
q � 1

» 1
N2

0

1
pτ � pτ �N�2qqq�1dτ

� 1
q � 1

» 1
N2

0
N2q�2dτ

� 1
q � 1N

2q�4.

(4.108)
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Likewise, » 8

1
N2

» 0

�8

1
pτ � tqq dtdτ �

1
q � 1

» 8

1
N2

1
pτ � tqq�1

����0
�8

dτ

� 1
q � 1

» 8

1
N2

1
τ q�1dτ

� 1
pq � 1qpq � 2q �

1
τ q�2

����8
1

N2

� 1
pq � 1qpq � 2qN

2q�4.

(4.109)

On the other hand, if N2 ¤ |t� τ |�1, then τ ¤ t� 1
N2 . So» 8

0

» 0

�8

mint|t� τ |�1, N2uqdtdτ �
¼

tτ¤t� 1
N2 u

N2qdtdτ

�
» 1

N2

0

» 0

� 1
N2

N2qdtdτ

� N2q

» 1
N2

0

1
N2dτ

� N2q�4.

(4.110)

By (4.107), (4.108), (4.109) and (4.110), and noticing that 2q � 4 � 2
�

6
r
� 3



� 4 �

12
r
� 10 � 2s0, besides that 6

r
� 3 ¡ 2 since r   6

5 , it follows that» 8

0

» 0

�8

mint|t� τ |�1, N2u 6
r
�3dtdτ À N2s0 . (4.111)

Replacing (4.111) in (4.106), we deduce

}|∇|sPNukp0q}2
L2

x
À N2s0}|∇|sfkpuq}2

L8
t Lr

x
.

Then (4.102) holds, and consequently

A À
¸

N¤1
N�s0�N s0 �

¸
N¤1

N0�. (4.112)

To estimate B, by Lemma 2.19, Lemma 2.20 and (4.77), for k � 1, ..., l,

}|∇|s�s0�PNuk}L8
t L2

x
À N s�s0�}PNuk}L8

t L2
x
À N s�s0�pN�1}∇uk}L8

t L2
x
q À N ps�s0�q�1.

Thus
B À

¸
N¡1

}|∇|s�s�0 PNuk}L8
t L2

x
À

¸
N¡1

N ps�s0�q�1. (4.113)

Replacing (4.112) and (4.113) in (4.99), for k � 1, ..., l, we have

}|∇|s�s0�uk}L8
t L2

x
À

¸
N¤1

N0� �
¸

N¡1
N ps�s0�q�1 À 1.

which completes the proof.
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Proof of Theorem 4.9. By proposition 4.14, we may apply Proposition 4.15 with s � 1 to
show that u P L8

t
9H1�s0� for some s0 ¡ 0. Using (2.4) we deduce,

}|∇|1�s0�fkpuq}L8
t Lr

x
À }u}L8

t Lp
x
}u}L8

t
9H1�s0� .

Then, (4.91) guarantees that |∇|1�s0�fkpuq P L8
t Lr

x, for 7
6 ¤ r   6

5 and k � 1, ..., l.
Another application of Proposition 4.15 helps us to get u P L8

t
9H1�2s0�. Iterating this

procedure finitely many times gives us u P L8
t

9H�ϵ for some 0   ϵ   s0.

4.6 Soliton
In this section we exclude the soliton-like solution. For this, we need to show

that the critical solution has zero momentum and, from that, get some compactness
properties. We first define the momentum associated to the solution u by

Ppuq :� 4
ļ

k�1
αkIm

»
∇ukūkdx.

Notice that if upt, xq is a solution to (1.2) then the function uξpt, xq, called
Galilean transformation, given by

uξ
kpt, xq :� e

ix�ξ
αk
γk e

�it|ξ|2
αk
γk ukpt, x� 2tξq, k � 1, ..., l, (4.114)

is also a solution to (1.2). This is a direct consequence of Gauge condition (see Lemma
2.13). The next Lemma gives us some properties of mass and kinetic energy of Galilean
transformation.

Lemma 4.16. For ξ P R6, let uξ be a Galilean transformation. Then

(i)
Qpuξpxqq � Qpupxqq.

(ii) ���∇uξ
kpxq

���2 � α2
k

γ2
k

|ξ|2|ukpxq|2 � 2αk

γk

ξ � Imr∇ukūkspxq � |∇ukpxq|2.
In particular,

Kpuξpxqq � |ξ|2Qpupxqq � ξ � Ppupxqq �Kpupxqq.

Proof. The proof follows by direct calculations, so we omit the details.

In other words, we can write Epuq � Epuξpxqq � p4Mpuqq�1Ppuq2, which
express that total energy can be decomposed as the energy viewed in the center of mass
frame plus the energy arising from the motion of the center of the mass. (see (LANDAU;
LIFSHITZ, 1976, §8)).
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Lemma 4.17. Assume that hypothesis (H3) and (H5) hold. Then, the momentum Ppuq
associated with the solution u is a conserved quantity.

Proof. Suppose that u is a sufficiently regular solution. Then, formally, we multiply (1.2)
by Bxj

ūk, and integrate on R6 and taking the imaginary part to obtain

αkIm
�»

BtukBxj
ūkdx

�
� γkIm

�
i

»
Bt∇ukBxj

ūkdx

�
� Im

�
i

»
fkpuqBxj

ūkdx

�
. (4.115)

First, notice that by integrating by parts i
»
Bt∇ukBxj

ūkdx agrees with the complex
conjugate and then, it is a real number. Thus, the first integral on the right-hand side of
(4.115) vanishes. Hence, (4.115) becomes

αkIm
�»

BtukBxj
ūkdx

�
� Im

�
i

»
fkpuqBxj

ūkdx

�
.

Summing over k � 1, ..., l in the last equality and using Lemma 2.14 (ii), we deduce
ļ

k�1
αkIm

»
BtukBxj

ūkdx �
»
Bxj

ReF puqdx.

Integrating by parts, as a consequence of Lemma 2.14 (iii), the integral on right-hand side
vanishes. Then,

ļ

k�1
αkIm

»
BtukBxj

ūkdx � 0. (4.116)

Now, we use the following identity BtrukBxj
ūks � BtukBxj

ūk �ukBtBxj
ūk, to write (4.116) as

ļ

k�1
αkIm

»
BtrukBxj

ūksdx�
ļ

k�1
αkIm

»
ukBtBxj

ūkdx � 0. (4.117)

Using integration by parts and that uk satisfies (1.2), we may write

αk

»
ūkBtBxj

ukdx � �γk

»
i∆ukBxj

ūkdx� i

»
fkpuqBxj

ūkdx.

Therefore, the second term in(4.117) can be written as

�
ļ

k�1
αkIm

»
ukBtBxj

ūkdx �
ļ

k�1
αkIm

»
ūkBtBxj

ukdx

� �
ļ

k�1
γk

»
i∆ukBxj

ūkdx�
»
Bxj

ReF puqdx,
(4.118)

where in the last integral on the right-hand side of (4.118) we applied Lemma 2.14 (iii).
As before, the two integrals on the right-hand side vanishes. The result follows from this
and (4.117).

Proposition 4.18. (Zero momentum). Assume that uc is a blow-up solution to (1.2) with
minimum kinetic energy and obeys uc P L8

t H1
x. Then Ppucq � 0.
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Proof. Suppose that uc : Ic � R6 Ñ Cl is as in Proposition 4.18. We know that the
mass Qpucq and the momentum Ppucq are conserved quantities. Besides that, Qpucq � 0,
otherwise we would have uc � 0, which is excluded beacuse uc is a blow-up solution. Then,
the vector given by ξ0 :� � Ppucq

2Qpucq is well defined and the function uξ0
c is a solution to

(1.2) by invariance of the Galilean transformation.

By Lemma 4.16, we deduce

|ξ0|2Qpucpxqq � ξ0 � Ppucpxqq � Kpuξ0
c pxqq �Kpucpxqq. (4.119)

Now, SIcpuξ0
c q � SIcpucq � 8, hence uξ0

c is also a blow-up solution to (1.2). Moreover, by
hypothesis, uc has minimum kinetic energy, and then, (4.119) implies that

|ξ0|2Qpucpxqq � ξ0 � Ppucpxqq ¥ 0.

On the other hand, by the definition of ξ0, we deduce

0 ¤ |ξ0|2Qpucpxqq � ξ0 � Ppucpxqq � �|Ppucpxqq|2
4Qpucpxqq ¤ 0. (4.120)

Since Qpucq � 0, it follows from (4.120) that Ppucpxqq � 0, as we desired.

Lemma 4.19. (Compactness in L2) Let uc be a soliton in the sense of Proposition 1.18.
Then, for all η ¡ 0, there is a constant Cpηq ¡ 0 such that

sup
tPR

ļ

k�1

»
|x�xptq|¥Cpηq

|uck|2dx À η.

Proof. The argument takes place in a fixed t, in particular, we may assume xptq � 0.

Initially, we control the contribution of low frequency. Using Bernstein’s in-
equality, (2.6) and Theorem 4.9, we obtain, for k � 1, ..., l,

}P Nuckptq}L2
xp|x|¡Rq ¤ }P Nuckptq}L2

x
À N ϵ}P N |∇|�ϵuck}L8

t L2
x
À N ϵ}|∇|�ϵuck}L8

t L2
x
À N ϵ.

This can be smaller than η choosing N � Npηq sufficiently small.

For the high frequencies case, an application of Schur’s test gives us the following:
For some m ¥ 0 (see (KILLIP; VISAN, 2010), page 408),��χ|x|¥2R∆�1∇P¥Nχ|x|¤R

��
L2ÑL2 À N�1xRNy�m

uniformly in R,N ¡ 0. On the other hand, by Bernstein’s inequality,

}χ|x|¥2R∆�1∇P¥Nχ|x|¥R}L2ÑL2 À N�1.

Together, the above inequalities give us»
|x|¥2R

|P¥Nuck|2dx À N�2xRNy�2}∇uckptq}2
L2

x
�N�2

»
|x|¥R

|∇uck|2dx.
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Choosing R as large as necessary, we can make the first term on the right-hand side
smaller than η. The same holds to the second term because uc is almost periodic modulo
symmetries

sup
tPR

»
|x�xptq|¥Cpηq

|∇uck|2dx ¤ η.

The result follows combining the estimates of P Nuck and P¥Nuck.

Corollary 4.20. (Control of xptq). Let uc be a soliton solution in the sense of Proposition
1.18. Then

|xptq| � optq, tÑ 8.

Proof. We argue by contradiction. Suppose that there exist δ ¡ 0 and a sequence tn Ñ 8
such that

|xptnq| ¡ δtn, @n ¥ 1. (4.121)

By spatial-translation symmetry, we may assume xp0q � 0.

Let η ¡ 0 be a constant that will be chosen later. By Remark 1.15 and Lemma
4.19,

sup
tPR

ļ

k�1

»
|x�xptq|¡Cpηq

�|∇uckpt, xq|2 � |uckpt, xq|2
�
dx ¤ η. (4.122)

Define

Tn :� inf
tPr0,tns

t|xptq| � |xptnq|u ¤ tn and Rn :� Cpηq � sup
tPr0,Tns

|xptq|. (4.123)

Let ϕ be a smooth, radial function such that

ϕprq �
#

1, r ¤ 1
0, r ¥ 2,

and define the “truncated” position

XRptq :�
»
R6
xϕ

� |x|
R



|uckpt, xq|2dx.

By Theorem 4.9, uck P L8t L
2
x. Thus, by (4.123), if |x| ¤ Cpηq then |x|

Rn

¤ 1, hence,

ϕ

� |x|
Rn



� 1 and

����»
|x|¤Cpηq

xϕ

� |x|
Rn



|uckp0, xq|2dx

���� ¤ »
|x|¤Cpηq

|x|
����ϕ� |x|Rn


���� |uckp0, xq|2dx

¤ Cpηq
»
R6
|uckp0, xq|2dx À CpηqQpuq.

(4.124)
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On the other hand, if |x| ¥ 2Rn then ϕ

� |x|
Rn



� 0. Thus, using (4.122), we deduce����»

|x|¥Cpηq

xϕ

� |x|
Rn



|uckp0, xq|2dx

���� À 2Rn

»
|x|¥Cpηq

|uckp0, xq|2dx À 2Rnη. (4.125)

Therefore, combining (4.124) and (4.125),

|XRnp0q| ¤
����»
|x|¤Cpηq

xϕ

� |x|
Rn



|uckp0, xq|2dx

����� ����»
|x|¥Cpηq

xϕ

� |x|
Rn



|uckp0, xq|2dx

����
À CpηqQpuq � 2ηRn.

(4.126)

On the other hand,

XRnpTnq �
»

R6
xϕ

� |x|
Rn



|uckpTn, xq|2dx

�
»

R6
xϕ

� |x|
Rn



|uckpTn, xq|2dx� xpTnqQpuq � xpTnqQpuq

�
»

R6
xpTnqϕ

� |x|
Rn



|uckpTn, xq|2dx�

»
R6
xpTnqϕ

� |x|
Rn



|uckpTn, xq|2dx

� xpTnq
�
Qpuq �

»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�
�
»

R6
rx� xpTnqsϕ

� |x|
Rn



|uckpTn, xq|2dx

� xpTnq
�
Qpuq �

»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�
�
»
|x�xpTnq| Cpηq

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2dx

�
»
|x�xpTnq|¥Cpηq

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2dx.

By triangle inequality combined with (4.122) and (4.123),

|XRnpTnq| Á |xpTnq|
�
Qpuq �

����»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�����
�
����»
|x�xpTnq|¤Cpηq

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2x

����
�
����»
|x�xpTnq|¥Cpηq

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2x

����
Á |xpTnq|rQpuq � ηs � CpηqQpuq � ηr2Rn � |xpTnq|s
Á |xpTnq|rQpuq � ηs � CpηqQpuq � ηr2Cpηq � 2|xpTnq| � |xpTnq|s
Á |xpTnq|rQpuq � 4ηs � 3CpηqQpuq,

(4.127)

where in the last inequality we used that (4.122) implies η Á Qpuq. Thus, from (4.126)
and (4.127), taking η ¡ 0 sufficiently small (depending on Qpuq),

|XRnpTnq �XRnp0q| Á |xpTnq| � Cpηq. (4.128)
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Note that

X 1
Rptq � 2Im

»
ϕ

� |x|
R



∇uckptq�uckptqdx� 2Im

»
x

|x|Rϕ
1

� |x|
R



x �∇uckptq�uckptqdx.

By Lemma 4.18 Ppucq � 0; this together with Cauchy-Schwarz’s inequality and (4.122),
give

|X 1
Rn
ptq| ¤

����2Im
» �

1� ϕ

� |x|
Rn


�
∇uckptq�uckptqdx

����
�
����2Im

»
x

|x|Rn

ϕ1
� |x|
Rn



x �∇uckptq�uckptqdx

����
�
����2Im

»
|x|¡Rn

�
1� ϕ

� |x|
Rn


�
∇uckptq�uckptqdx

����
�
����2Im

»
Rn¤|x|¤2Rn

x

|x|Rn

ϕ1
� |x|
Rn



x �∇uckptq�uckptqdx

����
À 2

»
|x�xptq|¥Cpηq

|∇uckptq�uckptq|dx

� 2
»

Rn¤|x|¤2Rn

|x|2
2R2

n

� |∇uckptq�uckptq|dx

À
»
|x�xptq|¡Cpηq

�|∇uckpt, xq|2 � |uckpt, xq|2
�
dx

À η,

for all t P r0, Tns. Hence, using (4.128) and the fundamental theorem of calculus

|xpTnq| � Cpηq À |XRnpTnq �XRnp0q| À
» Tn

0
|X 1

Rn
ptq|dt À ηTn.

Since |xpTnq| � |xptnq| ¡ δtn ¥ δTn, we have

δ   η � Cpηq
Tn

.

Taking η   δ{2 and making nÑ 8 we get δ   δ{2, which is a contradiction.

We now are in position to exclude the soliton-like solution. When xptq � 0, as
in the radial case, the necessary argument can be found in (KENIG; MERLE, 2006).

Theorem 4.21. There is no solution to (1.2) which is soliton-like, in the sense of
Proposition 1.18.

Proof. Let uc : R�R6 ÝÑ Cl be a soliton like solution. By definition of almost periodicity
and the embedding 9H1pR6q ãÑ L3pR6q, for any η ¡ 0, there exists Cpηq ¡ 0 such that

sup
tPR

»
|x�xptq|¥Cpηq

ļ

k�1
p|∇uck|2 � |uck|3qdx ¤ η. (4.129)
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Corollary 4.20 guarantees that there exists T0 � T0pηq P R such that

|xptq| ¤ ηt, @t ¥ T0. (4.130)

Setting ϕpxq to be radial, smooth and obeying

ϕpxq �
#
r, r ¤ 1
0, |x| ¥ 2,

let ψpxq � R2ϕ

� |x|2
R2



, where R ¡ 0 will be chose later. We define

VRptq �
» �

ļ

k�1

α2
k

γk

|uck|2
�
ψpxqdx.

By Proposition 2.33, we deduce

V 1
Rptq � 2

ļ

k�1
αkIm

»
ϕ1
� |x|2
R2



∇uck �uckdx.

It follows from Theorem 4.9 that uc P L8
t L2

x. By Hölder’s inequality and (1.32),

|V 1
Rptq| � 2

����� ļ

k�1
αkIm

»
ϕ1
� |x|2
R2



ūck∇uckdx

����� À RKpucqQpucq À R, (4.131)

for all t P R and R ¡ 0. Using (2.35), Lemma 2.14, and the fact that, for |x| ¤ R, we have
BjBiϕpxq � 2δij, ∆ϕpxq � 12, ∆2ϕpxq � 0, we obtain

V 2
Rptq � 4

¸
1¤m,j¤6

Re
» B2φ

BxmBxj

�
ļ

k�1
γkBxj

ūkBxmuk

�
dx�

»
∆2φ

�
ļ

k�1
γk|uk|2

�
dx

� 2Re
»

∆φF puqdx� 8
ļ

k�1

»
|x|¡R

γk|∇uk|2dx� 8
ļ

k�1

»
|x|¡R

γk|∇uk|2dx

� 24Re
»
|x|¡R

F puqdx� 24Re
»
|x|¡R

F puqdx

� 8rKpucq � 3P pucqs �O

�»
|x|¥R

ļ

k�1
|∇uck|2 � |uck|3dx

�

�O

�»
R¤|x|¤2R

ļ

k�1
|uck|3dx

� 2
3

.

If for any T0   T1, we choose

R � Cpηq � sup
T0¤t¤T1

|xptq|,

then |x| ¥ R implies |x � xptq| ¥ Cpηq and, consequently, we may control the last two
terms using (4.129). Taking η ¡ 0 sufficiently small, by the conservation of energy, Lemma
2.30 and Lemma 2.31

V 2
Rptq Á Kpucq Á Epuc0q. (4.132)
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Applying the fundamental theorem of calculus in rT0, T1s, by (4.131), (4.132) and (4.130),
we deduce

pT1 � T0qEpuc0q À V 1
RpT1q � V 1

RpT0q À |V 1
RpT1q| � |V 1

RpT0q|
À R � Cpηq � sup

T0¤t¤T1

|xptq|

À Cpηq � ηT1, @T1 ¡ T0.

Setting first η small enough and then making T1 Ñ 8 we get Epuc0q � 0. By the
conservation of energy and Lemma 2.31 Epucptqq � 0, for all t P R, that is, uc � 0, which
contradicts SRpucq � 8.

4.7 Low-to-high frequency cascade
In this part, we use negative regularity and some compactness properties to

preclude the low-to-high frequence cascade.

Theorem 4.22. There is no solution to (1.2) that is low-to-high frequency cascade, in the
sense of Proposition 1.18.

Proof. Let uc : R� R6 ÝÑ Cl be a low-to-high frequency cascade solution. By negative
regularity, we know that uc P L8

t L2
x. By the mass conservation, we have for t P R,

0 ¤ Qpuc0q � Qpucptqq :�
ļ

k�1

α2
k

γk

}uck}2
L2   8,

or, equivalently
}ucptq}2

L2   8, @t P R.

Fixing t P R and choosing η ¡ 0 sufficiently small, according to Remark 1.15, we have
ļ

k�1

»
|ξ|¤CpηqNptq

γk|ξ|2|ûck|2dξ   η. (4.133)

On the other hand, since uc P L8
t

9H�ϵ
x for some ϵ ¡ 0, we know that

ļ

k�1

»
|ξ|¤CpηqNptq

γk|ξ|�2ϵ|ûck|2dξ À 1. (4.134)

By Hölder’s inequality,
ļ

k�1

»
|ξ|¤CpηqNptq

|ûck|2dξ À
ļ

k�1

»
|ξ|¤CpηqNptq

p|ξ||ûck|q
2ϵ

ϵ�1
�|ξ|�ϵ|ûck|

� 2
ϵ�1 dξ

À
�

ļ

k�1

»
|ξ|¤CpηqNptq

�
p|ξ||ûck|q

2ϵ
ϵ�1

	 ϵ�1
ϵ
dξ

� ϵ
ϵ�1

�
ļ

k�1

»
|ξ|¤CpηqNptq

��|ξ|�ϵ|ûck|
� 2

ϵ�1
	ϵ�1

dξ

� 1
ϵ�1

À η
ϵ

ϵ�1 .

(4.135)
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Moreover, by the fact that uc has minimum kinetic energy, we deduce
ļ

k�1

»
|ξ|¥CpηqNptq

|ûck|2dξ À rCpηqNptqs�2
ļ

k�1

»
|ξ|2|puck|2dξ

À rCpηqNptqs�2Kpucptqq
À rCpηqNptqs�2Kpψq.

(4.136)

Combining (4.135) with (4.136) and using Plancherel’s identity, we may estimate

0 ¤ Qpucq À η
ϵ

1�ϵ � rCpηqNptqs�2, @t P R.

From definition of low-to-high frequency cascade, we are able to find a sequence ttnu � R
such that tn Ñ 8 and Nptnq Ñ 8 when nÑ 8. Thus,

0 ¤ lim
nÑ8

Qpucptnqq À η
ϵ

1�ϵ .

Making η Ñ 0, we obtain Qpuptnqq Ñ 0 as n Ñ 8, which implies uc � 0, contradicting
SRpucq � 8.

4.8 Scattering and blow-up
This section is devoted to prove Corollary 1.11 and Theorem 1.12.

Proof of Corollary 1.11. Suppose that I � pT�, T �q. If T�, T �   8, then by Theorem 4.5
we have that SIpuq � 8. But this contradicts the fact that by Theorem 1.10 SIpuq   8.
So I � R.

Now, for the scattering, we will only prove the statement for u�, since the u�

is analogous. Let us start by constructing the scattering state u�. This will be done by
showing that vptq, where vkptq � Ukp�tqukptq for t ¡ 0 and k � 1, ..., l, converges in 9H1

x

as tÑ 8, and then set u� to be the limit. We start applying Duhamel’s formula (1.26),
for k � 1, ..., l, to obatin

vkptq � ukp0q � i

» t

0
Ukp�sq 1

αk

fkpuqds. (4.137)

Therefore, for 0   τ   t, k � 1, ..., l

vkptq � vkpτq � �i
» t

τ

Ukp�sq 1
αk

fkpuqds.

Then, by Strichartz’s inequality, Lemma 2.11 and Hölder’s inequality, we have for k � 1, .., l,

}vkptq � vkpτq} 9H1
x
À }∇pvkptq � vkpτqq}L8

t L2
x

À }∇fkpuq}L2
t L

3{2
x prτ,ts�R6q

À }u}L4
t,xprτ,ts�R6q}u}L4

t L12{5
x prτ,ts�R6q

À }u}L4
t,xprτ,ts�R6q}u}S1prτ,ts�R6q.

(4.138)
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Hence,
}vptq � vpτq}

9H1
x
À }u}L4

t,xprτ,ts�R6q}u}S1prτ,ts�R6q.

However, (1.29) implies that there is a constant L ¡ 0 such that SRpuq ¤ L

and then, by the same argument as in Lemma 4.3, we have }u}S1pR�R6q À CpE,Lq, where
E denotes the kinetic energy of the initial data u0. Also, by (1.29), for any η ¡ 0, there
exists tη P R� such that

}u}L4
t,xprt,8q�R6q À η,

whenever t ¡ tη. Therefore,

}vptq � vpτq}
9H1

x
Ñ 0 as t, τ Ñ 8.

In particular, this implies that u� is well defined. Also, looking at (4.137), one can see
that, for k � 1, ..., l

u�k � ukp0q � i

» 8

0
Ukp�sq 1

αk

fkpuqds (4.139)

and thus
Ukptqu�k � Ukptqukp0q � i

» 8

0
Ukpt� sq 1

αk

fkpuqds. (4.140)

By the same arguments as above, (4.140) and Duhamel’s formula (1.26) imply that

}uptq �Uptqu�}
9H1

x
Ñ 0 as tÑ 8,

which completes the proof of Corollary 1.11.

Now we turn our attention to Theorem 1.12. As we said before, the radial case
was already considered in Theorem 4.1. (ii) of (NOGUERA; PASTOR, 2022). Therefore,
it is left to prove the case xu0 P L2.

Proof of Theorem 1.12. Suppose xu0 P L2. Define

τpuq � Kpuptqq � 3P puptqq.

By definition of the energy

τpuptqq � 3
2Epuptqq �

1
2Kpuptqq.

It was shown in (NOGUERA; PASTOR, 2022), Lemma 4.4, that there exists δ ¡ 0 such
that τpuptqq ¤ �δ   0. Besides, notice that defining

V ptq �
ļ

k�1

α2
k

γk

}xukptq}2
L2 �

ļ

k�1

α2
k

γk

»
|x|2|ukpt, xq|2dx,
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by Proposition 2.32, we have

V 2ptq � 12Epuptqq � 4Kpuptqq
� 8τpuptqq
¤ �8δ.

Hence, the graph of V lies under a parabola that is concave downward and, therefore, the
solution u blows-up in both directions.
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APPENDIX A

APPENDIX

A.1 Almost Periodic Solutions
For completeness of the work, we present here some basic facts about the

frequency scale function Nptq that were needed in the proof of Proposition 1.18. We
reproduce here the proofs established in (KILLIP; TAO; VISAN, 2009). We start with the
following definition.

Definition A.1. (Convergence of solutions). Let upnq : Ipnq � Rd Ñ C be a sequence
of solutions to (1.2), let u : I � Rd Ñ C be another solution, and let K be a compact
time interval. We say that upnq converges uniformly to u on K if we have K � I and
K � Ipnq for all sufficiently large n, and furthermore, upnq converges strongly to u in
L8

t H1
xpK�R6qXL4

t H1, 12
5

x pK�R6q as nÑ 8. We say that upnq converges locally uniformly
to u if upnq converges uniformly to u on every compact interval K � I.

The first result about the frequency scale function is the following.

Lemma A.2. (Quasi-uniquess of N) Let u be a non-zero solution to (1.2) with lifespan I

that is almost periodic modulo symmetries with frequency scale function N : I ÝÑ R� and
compact modulus function C : R� ÝÑ R� and also almost periodic modulo symmetries with
frequency scale function N 1 : I ÝÑ R� and compact modulus function C 1 : R� ÝÑ R�.
Then we have

Nptq � N 1ptq,
for allt P I.
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Proof. By symmetry, it suffices to establish the bound N 1ptq À Nptq. We write x1ptq for
the spatial center function associated to N 1 and C 1. To begin, fix t and let η ¡ 0 to be
choosen later. By Definition 1.14, for k � 1, ..., l, we have»

|x�x1ptq|¥C1pηq{N 1ptq

|∇ukpt, xq|2dx À η

and »
|ξ|¥CpηqNptq

|ξ|2|ûkpt, ξq|2dξ À η.

We split ukpt, xq � uk1pt, xq � uk2pt, xq, where uk1pt, xq � ukpt, xqχ|x�x1ptq|¥C1pηq{N 1ptq and
uk2pt, xq � ukpt, xqχ|x�x1ptq| C1pηq{N 1ptq. Then, by Plancherel’s theorem we have»

R6
|ξ|2|puk1pt, ξq|2 À η, (A.1)

while by the Cauchy-Schwarz inequality we have

sup
ξPR6

|ξ|2|puk2pt, ξq|2 À EpuqN 1ptq�6.

Integrating the last inequality over the ball |ξ| ¤ CpηqNptq and using (A.1), we conclude
that »

R6
|ξ|2|pukpt, ξq|2dξ À η �OpEpuqNptq6N 1ptq�6q.

Then, by the Plancherel theorem and energy conservation,

Epuq À η �OpEpuqNptq6N 1ptq�6q.

Choosing η to be small multiple of Epuq, we get the result.

Lemma A.3. (Quasi-continuous dependence of N on u). Let upnq be a sequence of solutions
to (1.2) with lifespans Ipnq, which are almost periodic modulo symmetries with frequency
scale function N pnq : Ipnq ÝÑ R� and compactness modulus functions C : R� ÝÑ R�,
independent of n. Suppose that upnq converge locally uniformly to a non-zero solution u to
(1.2) with lifespan I. Then u is almost periodic modulo symmetries with frequency scale
function N : I ÝÑ R� and compactness modulus function C. Furthermore, we have

Nptq � lim inf
nÑ8

N pnqptq � lim sup
nÑ8

N pnqptq, (A.2)

for all t P I.

Proof. We first show that

0   lim inf
nÑ8

N pnqptq ¤ lim sup
nÑ8

N pnqptq   8, (A.3)

for all t P I. Indeed, if one of these inequalities fail for some t, the (by passing to a
subsequence if necessary) N pnqptq would converge to zero or to infinity as nÑ 8. Thus,
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by Definition 1.14, upnqptq would converge weakly to zero, and hence, by the local uniform
convergence, would converge strongly to zero. But, this contradicts the hypothesis that u
is not identically zero. This establishes (A.3).

From (A.3), we see that for each t P I the sequence N pnqptq has at least one
limit point Nptq. Thus, using the local uniform convergence we easily verify that u is
almost periodic modulo scaling with frequency scale function N and compactness modulus
function C.

It remains to establish (A.2), which we prove by contradiction. Suppose it fails.
Then given any A � Au, there exists a t P I for which N pnqptq has at least two limit
points which are separated by a ratio of at least A, and so u has two frequency scale
functions with compactness modulus function C which are separated by this ratio. But
this contradicts Lemma A.2 for A large enough depending on u. Hence (A.2) holds.

Lemma A.4. (Compactness of almost periodic solutions) Let upnq be a sequence of
solutions to (1.2) with lifespans Ipnq Q 0, which are almost periodic modulo symmetries
with frequency scale function N pnq : Ipnq ÝÑ R� and compactness modulus functions
C : R� ÝÑ R�. Assume that we also have a uniform energy bound

0   inf
n
Epupnqq ¤ sup

n
Epupnqq   8. (A.4)

Then, up to a subsequence, there exists a non-zero maximal solution u to (1.2) which is
almost periodic modulo symmetries such that upnq converge locally uniformly to u.

Proof. By hyphotesis and Definition 1.14 we see that for every ϵ ¡ 0 there exists R ¡ 0
such that »

|x|¥R

|∇upnqk p0, xq|2dx À ϵ

and »
|ξ|¥R

|ξ|2|pupnqk p0, ξqdξ À ϵ,

for all n. From this, (A.4), and the Ascoli-Arzela Theorem, we see that the sequence
upnqp0q is precompact in the strong topology of 9H1

xpR6q. Thus, by passing to a subsequence
if necessary, we can find u0 P 9H1

xpR6q such that upnqp0q converge strongly to u0 in 9H1
xpR6q.

Again, by (A.4) we see that u0 is not identically zero. Now let u be the maximal solution to
(1.2) corresponding to u0, with lifespan I. By Theorem 4.3, upnq converge locally uniformly
to u.

Let u be a solution to (1.2) with lifespan I Q 0, which is almost periodic modulo
symmetries, with frequency scale function N and position center function x. We say that
u is normalized if

Np0q � 1, xp0q � 0.
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We can define the normalization of u at time t0 P I by

urt0s :� Tg�xupt0q
Nupt0q

,Nupt0q
pup� � t0qq � N�2

upt0q
upN�2

upt0q
t� t0, N�1

upt0q
px� xupt0qNupt0qqq (A.5)

Observe that ut0 is a normalized solution which is almost periodic modulo symmetries
with lifespan

I rt0s :� ts P R; t0 � sNptq�2 P Iu,
frequency scale and center spatial functions given by, respectively,

Nut0 ptq � Nupt0 � tNupt0q�2q
Nupt0q and xut0 ptq � Nupt0qrxupt0�tNupt0q�2q�xupt0qs. (A.6)

and the same compactness modulus function as u. Moreover, if u is maximal solution,
then upt0q also is maximal solution.

Lemma A.5. Let u be a non-zero maximal solution to (1.2) with lifespan I that is almost
periodic modulo symmetries with frequency scale function N : I ÝÑ R�. Then there exists
δ ¡ 0, depending on u such that for every t0 P I we have

rt0 � δNpt0q�2, t0 � δNpt0q�2s � I (A.7)

and
Nptq � Npt0q, (A.8)

whenever |t� t0| ¤ δNpt0q�2.

Proof. Let us first establish (A.7). Assume that it fails. So, there exists sequences tn P I
and δn Ñ 0 such that tn � δnNpTnq�2 R I for all n. Define the normalization urtns of u by
(A.5). Then urtns are maximal normalized solutions where I rtns contain 0 but not δn. They
are also almost periodic modulo symmetries with frequency scale functions N rtns given by

N rtnspsq :� Nptn � sNptnq�2q{Nptnq (A.9)

and the same compactness modulus function as u. By Lemma A.4, passing to a subsequence
if necessary, we conclude that by Theorem 1.9, J is open and so contains δn for all sufficiently
large n. This contradicts the local uniform convergence since, by hypothesis, δn does not
belong to I rtns. Hence (A.7) holds.

Now, we proceed to show (A.8). Again, assume that it is false no matter how
small δ is. Then, we may find sequences tn, t1n P I such that sn :� pt1n � tnqNptnq2 Ñ 0
but Npt1nq{Nptnq converge to either zero or infinity. If we define urtns and N rtns as before
and apply Lemma A.4, once again urtns converge locally uniformly to a maximal solution
v with lifespan J Q 0. But, then N rtnspsnq converge to either zero or infinity. Hence,
Definition 1.14 gives us that urtnspsnq are converging weakly to 0. On the other hand, since
sn Ñ 0 and urtns are locally uniformly convergent to v, we may conclude that urtnspsnq
converge strongly to vp0q in 9H1

x. Therefore, vp0q � 0 and Epurtnsq converge to Epvq � 0.
By conservation of energy, u must vanishes, which is a contradiction. So, (A.8) holds.
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Corollary A.6. (Blow-up criterion). Let u be a non-zero maximal solution to (1.2) that
is almost periodic modulo symmetries with frequency scale function N : I Ñ R�. If T is a
finite endpoint of I, then Nptq Á |T � t|�1{2; in particular, lim

tÑT
Nptq � 8.

Proof. Suppose without loss of generality that T � sup I. By (A.7) we have that for t P I,

|T � t| ¥ |t� t� δNptq�2| � δNptq�2 ô Nptq Á |T � t|�1{2.

In particular, lim
tÑT

Nptq � 8.

A.2 Compactness of almost periodic modulo symmetries
This section is devoted to discuss some compactness properties of almost

periodic modulo symmetries functions. We start with the following definition.

Definition A.7. A subset A of a metric space X is called totally bounded (pre-compact)
if admits a finite cover consisting of open sets of diameter at most ϵ, for any ϵ ¡ 0.

The next theorem gives us sufficient and necessary conditions for a subset of
p-integrable functions space to be totally bounded.

Theorem A.8. (Kolmogorov-Riesz-Sukadov). Let 1 ¤ p   8. A subset F of LppR6q is
totally bounded if, and only if,

(i) for every ϵ ¡ 0 there is R ¡ 0 such that, for every f P F ,»
|x|¡R

|fpxq|pdx   ϵp,

(ii) for every ϵ ¡ 0 there is ρ ¡ 0 such that, for every f P F and y P Rd with |y|   ρ,»
R6
|fpx� yq � fpxq|pdx   ϵp.

Proof. See Theorem 1 in (HANCHE-OLSEN; HOLDEN; MALINNIKOVA, 2019).

From the above Theorem, we can derive a similar result about totally bounded
subsets of 9H1pR6q.

Corollary A.9. A subset F of 9H1pR6q is totally bounded if, and only if,

(C1) for every ϵ ¡ 0 there is R ¡ 0 such that, for every f P F ,»
|x|¡R

|∇fpxq|2dx   ϵ2,
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(C2) for every ϵ ¡ 0 there is ρ ¡ 0 such that, for every f P F and y P R6 with |y|   ρ,»
R6
|∇fpx� yq �∇fpxq|2dx   ϵ2.

Proof. Note that F is totally bounded in 9H1pR6q if, and only if, the set t∇f, f P Fu is
totally bounded in L2pR6q. Hence, the result follows from Theorem A.8.

The next corollary states alternative conditions for totally boundness of subset
F � 9H1pR6q.

Corollary A.10. Let F be a bounded subset of 9H1pR6q. Then, F is totally bounded if,
and only if,

lim
rÑ8

sup
fPF

»
|x|¡r

|∇fpxq|2dx � 0 (A.10)

and
lim
ρÑ8

sup
fPF

»
|ξ|¡ρ

|ξ|2| pfpξq|2dξ � 0 (A.11)

Proof. Suppose that (A.10) and (A.11) hold. By Corollary A.9, it is sufficient to prove
that pC1q and pC2q holds. Observe that pC1q follows directly from the limit in (A.10). For
pC2q, fix ρ ¡ 0. By Plancherel’s theorem,»

R6
|∇fpx� yq �∇fpxq|2dx �

»
R6
| {∇fp� � yqpξq � x∇fpξq|2dξ

�
»
R6
|ξ|2|eiyξ pfpξq � pfpξq|2dξ

�
»
R6
|ξ|2|eiyξ � 1|2| pfpξq|2dξ

¤
»
|ξ| ρ

|ξ|2|eiyξ � 1|2| pfpξq|2dξ � 4
»
|ξ|¥ρ

|ξ|2| pfpξq|2dξ.
By (A.11), for every ϵ ¡ 0, there exist ρ ¡ 0 large enough such that for all f P F ,»

|ξ|¥ρ

|ξ|2| pfpξq|2dξ   ϵ

8 .

Moreover, since F is bounded, if M ¡ 0 is such that }f}
9H1  M , for all f P F , then»

R6
|∇fpx� yq �∇fpxq|2dx ¤M2 sup

|ξ| ρ

|eiyξ � 1|2 � ϵ2

2 .

Now, using the fact that |eiθ � 1| ¤ |θ|, @θ P R,»
R6
|∇fpx� yq �∇fpxq|2dx ¤M2 sup

|ξ| ρ

|yξ|2 � ϵ2

2 ¤M2|y|2ρ2 � ϵ2

2 ¤ ϵ2,

provided |y|   ϵ

Mρ
?

2
:� δ. Then, F is totally bounded.
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Now, suppose that F is totally bounded. By Corollary A.9, pC2q holds, and
then (A.10) follows immediately. It remains to show that (A.11) holds. To this end, we
will follow the ideas presented in (PEGO, 1985), Theorem 4. First, observe that pC2q is
equivalent to

lim
yÑ0

sup
fPF

»
R6
|∇fpx� yq �∇fpxq|2dx � 0. (A.12)

Let ψpxq � p2πq�d{2e�|x|
2{2 and set ψρpxq � ρ6ψpρxq, ρ ¡ 0. Then, ψ and pψpξq � e�|ξ|

2{2

lies on Schwartz space and pψp0q � »
R6
ψρpxqdx � 1. Also, observe that for |ξ| ¥ 2ρ, we

have 1
2 ¤ 1� pψρpξq, and then, for each f P F , by Plancherel’s theorem,

1
2

�»
|ξ|¥2ρ

|ξ|2| pfpξq|2dξ
1{2

¤
�»

|ξ|¥2ρ

|ξ|2|p1� pψρpξqq pfpξq|2dξ
1{2

¤
�»

R6
|∇fpxq � ψρ �∇fpxq|2dx


1{2

�
�»

R6

����»
R6
p∇fpxq �∇fpx� yqqψρpyqdy

����2 dx
�1{2

.

Since pψρp0q � 1, Jensen’s inequality applied to tÑ t2 together with Fubini’s theorem,

1
2

�»
|ξ|¥2ρ

|ξ|2| pfpξq|2dξ
1{2

¤
�»

R6

�»
R6
|∇fpxq �∇fpx� yq|2ψρpyqdy



dx


1{2

�
�»

R6

�»
R6

����∇fpxq �∇f
�
x� y

ρ


����2 dx
�
ψpyqdy

�1{2

¤
�»

R6
H

�
y

ρ



ψpyqdy


1{2

,

where H is the continuity modulo function in L2 for F , that is,

Hpzq � sup
fPF

»
R6
|∇fpx� zq �∇fpxq|2dx.

By (A.12), we have Hpy{ρq Ñ 0 as ρÑ 8. Furthermore, since H is bounded (beacuse F
is bounded), the dominated convergence theorem implies that the right-hand side of the
last inequality goes to zero as ρÑ 8. Hence, (A.11) holds.

The Corollary A.10 tells us that if F is a bounded subset of 9H1pR6q and if
given ϵ ¡ 0, there exist δ ¡ 0 such that»

|x|¥δ

|∇fpxq|2dx�
»
|ξ|¥δ

|ξ|2| pfpξq|2dξ   ϵ, @f P F ,

then F is totally bounded in 9H1pR6q. This is equivalent to say that for every η ¡ 0, there
is a function C : R� Ñ R� such that»

|x|¥Cpηq

|∇fpxq|2dx�
»
|ξ|¥Cpηq

|ξ|2| pfpξq|2dξ   η, @f P F .



APPENDIX A. Appendix 131

With this in hand, we have the following proposition.

Proposition A.11. A family of functions F is totally bounded (or pre-compact) in 9H1pR6q
if, and only if, it is bounded and there exists a function C : R� Ñ R� such that»

|x|¥Cpηq

|∇fpxq|2dx�
»
|ξ|¥Cpηq

|ξ|2| pfpξq|2dξ   η, @η ¡ 0, @f P F .

Now, using Definition 2.23 of symmetry group G, we recall the fact that for
g P G,

}gu}
9H1

x
� }u}

9H1
x
.

Also, setting the transformation Tgupt, xq :� λ�2upλ�2t, λ�1px � x0qq, we have that the
map u ÞÑ Tgu maps a solution to (1.2) into a solution with the same energy and scattering
size as u.

Definition A.12. We say that a family of functions F in 9H1
xpR6q is pre-compact modulo

symmetries if the set GF � tgf ; g P G, f P Fu is pre-compact in 9H1
xpR6q.

According to Proposition A.11, the set GF is pre-compact if, and only if, it is
bounded and there exist a function C : R� Ñ R� such that»

|x|¥Cpηq

|∇pgfqpxq|2dx�
»
|ξ|¥Cpηq

|ξ|2|xgfpξq|2dξ   η, (A.13)

for all η ¡ 0, f P F and g � gx0,λ P G, Also, if gfpxq � λ�2fpλ�1px� x0qq, the first term
in (A.13) gives us»

|x|¥Cpηq

|∇rλ�2fpλ�1px� x0qqs|2dx �
»
|x|¥Cpηq

|λ�3∇fpλ�1px� x0qq|2dx

� λ�6
»
|x|¥Cpηq

|∇fpλ�1px� x0qq|2dx

� λ�6
»
|λy�x0|¥Cpηq

||∇fpyq|2λ6dy

�
»
|x�x0

λ |¥Cpηq
λ

|∇fpxq|2dx.

To the second term in (A.13), since xgfpξq � λ�2 {fpλ�1p� � x0qqpξq � λ�2e�ix0�ξλ�6 pfpλξq,
we have »

|ξ|¥Cpηq

|ξ|2|xgfpξq|2dξ � »
|ξ|¥Cpηq

|ξ|2|λ�2e�ix0�ξλ�6 pfpλξq|2dξ
� λ8

»
|ξ|¥Cpηq

|ξ|2| pfpλξq|2dξ
� λ8

»
|λ�1ζ|¥Cpηq

λ�2|ζ|2| pfpζq|2λ�6dζ

�
»
|ξ|¥Cpηλq

|ξ|2| pfpξq|2dξ.
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Hence, the set F is pre-compact in 9H1pR6q modulo symmetries if, and only if, there exist
a function C : R� Ñ R� such that, for any η ¡ 0, f P F , x0 P R6 and λ ¡ 0,»

|x�x0
λ |¥Cpηq

λ

|∇fpxq|2dx�
»
|ξ|¥Cpηqλ

|ξ|2| pfpξq|2dξ   η.

Combining the above results, one can see that a solution u : I �R6 Ñ C to (1.2) is almost
periodic modulo symmetries if, and only if, the orbit tuptq; t P Iu � tλ2fpλpx� x0qq : λ P
p0,8q, x0 P R6 and f P Ku for some compact subset K of 9H1

xpR6q.
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