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Abstract

The vertex separator (VS) problem in a graph G = (V, E) asks for a partition of V' into
nonempty subsets A, B, C such that there is no edge between A and B, and |C| is minimized
subject to a bound on max{|A|, |B|}. We give a mixed integer programming formulation of
the problem and investigate the vertex separator polytope (VSP), the convex hull of incidence
vectors of vertex separators. Necessary and sufficient conditions are given for the VSP to
be full dimensional. Central to our investigation is the relationship between separators and
dominators. Several classes of valid inequalities are investigated, along with the conditions
under which they are facet defining for the VSP. Some of our proofs combine in new ways
projection with lifting.

In a companion paper we develop a branch-and-cut algorithm for the (VS) problem based
on the inequalities discussed here, and report on computational experience with a wide
variety of (VS) problems drawn from the literature and inspired by various applications.



1 Introduction

A vertez separator in an undirected graph is a subset of the vertices, whose removal discon-
nects the graph. Formally, the vertex separator problem VSP can be stated as follows:

INSTANCE: A connected undirected graph G = (V, E), with |V/| = n, an integer b(n) < n
and a cost ¢; associated with each vertex i € V.

PROBLEM: Find a partition of V into disjoint sets A, B, C, with A and B nonempty, such
that

(i) E contains no edge (i,7) with i € A, j € B,

(if) max{|A], |B|} < b(n)

(iif) 3(c;: j € C) =min}(c;: j € 5)

A and B are called the shores of the separator C. A separator C that satisfies (i) but
violates (ii) is termed infeasible; one that satisfies (i) and (ii) is feasible; and a separator
that satisfies (i), (i), (iii) is optimal. When we use the term separator we mean feasible
separator, unless otherwise specified.

To the best of our knowledge, this is the first polyhedral study of the VSP, which otherwise
has received considerable attention in the literature, due to its widespread applicability to
all kinds of practical connectivity problems (see, for instance, [2, 3, 5]). One particularly im-
portant area of application is linear algebra, namely to minimize the work involved in solving
systems of equations [4, 6]. Another one is finite element and finite difference problems [7].

The VSP is N'P-hard. For the case when G is planar and b(n) = 2n/3, a celebrated
result of Lipton and Tarjan [5] states that a separator of size bounded by 2v/2/n can be
found in O(n) time; but the question whether the VSP on planar graphs can be solved in
polynomial time is still open. On the other hand, the VSP defined on an arbitrary graph
becomes polynomially solvable if b(n) in (ii) is replaced by n — k for some positive constant
k. To see this, construct a bipartite graph G* = (V*, E*), with bipartition V* = (V}*, V'), as
follows: (a) for every i € V, let iy € Vi', iy € Vi, and (iy,i3) € E*. (b) for every (i,j) € E,
let {(i1,2), (j1,72)} C E*. Then the (VSP) with the modified condition (ii) is equivalent to
the problem of finding a maximum-weight stable set S in G* (with weights c;, j € V*), such
that max{|S N V;|,|S NV, |} € n— k. Clearly, this problem is solvable in O(n® - n*) time.

Before we proceed, we introduce some notation and recall a few basic concepts from
graph theory, to be used throughout this paper.




Consider a simple undirected graph G = (V, E). We denote z(S) = 5 (z; : j € S) for any
S c V. Fori € V, we write deg(7) for the degree of i. G —i denotes the graph obtained from
G by removing vertex i. For § C V, G[9] is the subgraph of G induced by S. For 5,5 C V,
(S, 59 ""{(1_])EE i€S je S} For ScV,S):={Gj) €E:|{ij}nS| =1}
and E(S) = {(i,7)} € E :i,j € S}. When S = {i}, we write (i) instead of 4({i}). Also
for S C V Adj(S) :=={i € V\ S :(i,j) € E for some j € S}, and when S = {i}, we write
Adj(i) for Adj({i}). For F C E, V(F) denotes the set of endpoints of the edges in F. A
bipartite graph with vertex bipartition V;, V; is denoted G = (V4, Va; E).

A set S C V such that E(S) = 0 is called stable or independent. S C V such that
(S, E(S)) is a complete graph, is called a cligue. S C V such that V C (SUAJj(S)) is called
a dominating set for G or for V. A dominating set S for G is minimal if no proper subset of
S is a dominating set for G.

A vertex 1 € V is universal if it is adjacent to every j € V' \ {i}.

For the sake of brevity, for the rest of this paper a vertex separator, and a dominating
set, will be simply referred to as a separator and a dominator, respectively.

Next we outline the structure of the paper. Section 2 states the mixed integer program-
ming formulation used throughout the paper. Section 3 establishes necessary and sufficient
conditions for the VS polytope to be full dimensional. Section 4 deals with the connection
between vertex separators and vertex dominators. The remaining five sections, which con-
stitute the bulk of the paper, describe various classes of valid inequalities and investigate
the conditions under which they are facet defining. Section 5 introduces a class of sym-
metric inequalities associated with minimal connected dominators, and shows that under
mild and easily verifiable conditions they define facets of the VS polytope in all but a few
exceptional situations. For those exceptional cases an alternative inequality is derived that
is facet defining. Section 6 introduces a class of asymmetric inequalities associated with min-
imal dominators (not necessarily connected), and states the (rather restrictive) conditions
under which they are facet defining. When those restrictive conditions are not present, this
asymmetric class of inequalities can be lifted or otherwise generalized to yield facet defining

inequalities, and this is the object of the last three sections. In Sections 7 and 8 two classes %

~ of lifted inequalities are derived. The novel feature of this derivation is that the inequality to

~ be lifted, when restricted to the subspace of its support, is invalid. A combination of projec-
% restriction and sequential lifting is used to overcome this difficulty. Finally, Section 9




2 A Mixed Integer Programming Formulation

Let ¢; be the cost of assigning vertex i to the separator, and let

Ml {
g == {

For any S C V and for k =

(VSP) can be formulated as

1 if vertex i is assigned to shore A

0 else

1 if vertex i is assigned to shore B

0 else.

1,2, we write ug(S)
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It is not hard to see that for any set of u;; € {0,1}, i € V, the variables u;5, i € V,
will take on 0-1 values in any basic solution to the resulting linear program. Indeed, if the
coefficient matrix of the system (2.1)-(2.7) is written as (A;, A;), where for k = 1,2, A
represents the columns correspohding to ux, 1 € V, we see that A, is totally unimodular.
Hence substituting any 0-1 values for u;;, i € V, we get 0-1 values for uy, i € V.

With this information, the above system has the following interpretation. Condition (2.1)
states that vertex i cannot be assigned to both A and B, but it leaves open the possibility
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that it is assigned to none, in which case it belongs to C, the separator. Constraints (2.2) and
(2.3) prevent the endpoints of any edge to be assigned one to A, the other to B. Inequalities
(2.4) and (2.5) restrict the size of each of A and B to b, while (2.6) and (2.7) impose the
conditions A # (0 # B. It is easy to see that the above formulation is correct. In the following
sections we study the VS polytope, defined as

P(G,b) := conv{u € B*" : u satisfies (2.1) — (2.10)}.

Sometimes we will write P(G) for P(G,b).

3 The dimension of P(G,b)

Clearly, if G is complete, (VSP) is trivial. On the other hand, if b = 1, then inequalities
(2.4)-(2.7) hold as equations and (VSP) is again trivial; whereas if b > n—1, then constraints
(2.4),(2.5) are redundant and (VSP) is polynomially solvable as shown in section 1. Thus
from now on we assume that G is incomplete and connected, |V| > 3and that 2 < b < n-—2.

A vertex 1 is called regular, if there exists a separator C C V' \ {i} such that C U {:} is
also a separator. Thus i is regular if and only if there exists a separator C' with shores A, B
such that ¢ € A and |A| > 2. A vertex that is not regular is called irregular.

We now give a sufficient condition for P(G,b) to be full dimensional.

Lemma 3.1. If every i € V is regular, then P(G,b) is full dimensional.

Proof. Suppose every i € V is regular. Then any equation au = aq satisfied by all u €
P(G,b) must have coefficients a; = 0 for j = 0,1,...,2n. Indeed, let C C V \ {i} and
C’ = C U {i} be two separators with shores A, B and A', B', respectively, such that i € A,
A’ = A\ {i}, and B' = B. Further, let u,u’ € P(G,b) be the two solutions associated with
C and C’, respectively. Then

au = ap = ajg + o(A\{i}) + a(B)

/

ot = o9 = a1 (A\{i}) + a(B)
and au — au’' = a; = 0.

Since this argument applies to all regular vertices, and since the roles of A and B are
interchangeable, it follows that o, = ay = 0 for all i € V|, hence ap = 0. 0



Note that checking the regularity of a vertex is an O(|E|) operation.

Next we characterize irregular vertices. First a definition: if G has two nonadjacent
vertices ¢ and k, such that Adj(:z) = Adj(k) = V' \ {4, k}, then both i and k are irregular, and
we say that they form a polar pair of irregular vertices. In such a case every separator of G
either contains both ¢ and k or none of them, i.e. wu; + wj» = ugy + ugz and P(G,b) is not
full dimensional. A graph that has a universal vertex, or a polar pair of irregular vertices,
will be called degenerate.

Lemma 3.2. Let i € V' be irreqular. Then

(a) For every separator C with a shore A = {i}, we have that Adj(i) C C and every j € C
is adjacent to every k in B. Furthermore, if B is a singleton, G is degenerate; and if
|B| > 2, G[B] is a clique whose vertices are all regular.

(b) If G[Adj (7)] s a cligue or a clique short of an edge, G is degenerate.

Proof. (a) Let C be a separator with a shore A = {i}. This clearly implies Adj(i) C C. If
there exists j € C that is not adjacent to some k € B, then C' := (C\ {j})U(B\ {k}) is a
separator with shores A’ = {i, j}, B’ = {k}, contrary to i being irregular. Thus every j € C
is adjacent to every k € B. Further, if B is a singleton, say &, then 7 and k form a polar pair
of irregular vertices and G is degenerate. Finally, assume |B| > 2. Then every vertex in B
is regular, since removing it from B and adding it to C yields a valid solution. Also, G[B]
must be a clique; for otherwise, if k,£ € B and (k,£) € E, then C' :== CU (B \ {k,£}) is a
separator with shores A’ = {i,k}, B' = {{}, and C" := C' U {i} is a separator with shores
A" = A"\ {i}, B" = B', contrary to i being irregular.

(b) If G[Adj(7)] is a clique, then every vertex in Adj(7) is universal (from (a)). If, on the
other hand, G[Adj(i)] is a complete graph minus an edge, say the one between vertices k
and ¢, then Adj(k) = Adj(¢) = V' \ {k,£} i.e. k and ¢ are polar irregular vertices, and G is
degenerate. O

Lemma 3.3. Ifi and k are irreqular vertices not adjacent to each other, then they are polar.
Proof. 1f V\ ({i, k} UAdj(k)) is nonempty, then i is regular. Similarly, if V'\ ({1, k} U Adj(i))
is nonempty, then k& is regular. Hence Adj(:) = Adj(k) = V\{i, k}, i.e. i and k are polar. O

Lemma 3.4. If G is nondegenerate, then all irreqular vertices of G are adjacent to each
other.



Proof. 1f i is irregular, from Lemma 3.2(a) all vertices in V'\ ({i}UAdj(i)) are regular. Hence
all irregular vertices other than i belong to Adj(i). Applying this reasoning to all irregular
vertices we conclude that they induce a clique in G. O

Lemma 3.5. Let G be nondegenerate, and let S C 'V be the set of irreqular vertices of G,
with |S| > 2. Then

(a) Everyi € V either is in S or is adjacent to some k € S.
(b) Every i € Adj(S) is adjacent to all but possibly one of the vertices in S.

(c) Everyi€ () Adj(k) is adjacent to every j € V' \ () Adj(k)
keS kes

(d) If there exists a nonadjacent pair {i, k} € Adj(S), then both i and k are adjacent to all

& £} LC, ‘l\fc

Lise W wu‘\'@‘w “\&V A! J 1

/‘ """ P 0 o L" s ‘r—q ¥g 13 & Prqc* hr-:n-i' UM &\gﬁdg
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Proof. (a) If V \ (S U Adj(S)) # 0, then A S and B C V' \ (SU Adj(S)) are the shores of
a separator, contrary to the assumed 1rregulanty of the vertices in S.

vertices in S.

(b) If i € Adj(S) is nonadjacent toke Sandf€S, then A= {k ¢} and B = {i} are
the shores of a separator, again contrary to the assumed irregularity of & and ¢.

(c) Let i € () Adj(k) and j € V' \ ﬂ Adj(k) be nonadjacent. Then clearly j € S, and
kES :
since j & [ Adj(k), there exists some E E S such that (j,€) € E. But then A = {i,¢} and
keS
= {j} are the shores of a separator, contrary to the assumption that ¢ is irregular.
(d) Let {1,k} € Adj(S), (i,k) € E, and suppose i is not adjacent to some £ € S. Then

{k, £} and {i} are the shores of a separator, contrary to the assumed irregularity of £. [
The conditions of Lemma 3.5 can be restated as

(@) V = SUAdj(S)
(b) Adi(S)= (U N Adj(k))U ([ Adi(k))
€8 ke S\ {4} keS

(c) Every i € [ Adj(k) is adjacent to every j € () Adj(k), forall £ € S.
keS kes\{¢}

(d) GIU N Adj(k)] is a clique.
(€5 keS\{t}



Corollary 3.6. Let S be as defined in Lemma 3.5. Then every pair {i, ¢} C S is a dominator.

Proof. 1 € S dominates each of S, [ Adj(j), and [\ Adj(k) for all j # 7. Further, any
j€8 keS\{j}
£ # i dominates [} Adj(k). Thus ¢ and ¢ together dominate S U Adj(5). O
keS\{i)
Theorem 3.7. Let G be nondegenerate, and let S be the set of irreqular vertices of G. Then
P(G,b) is full dimensional if and only if G[[) Adj(i)] is not a clique.
i€S

Proof. Necessity. If G[[) Adj(¢)] is a clique, then from Lemma 3.5(c) every k € ) Adj(i) is
€S 1ES
a universal vertex in G, hence P(G,b) is not full dimensional.

Sufficiency. Let us write G* := G[ﬂ Adj(i)], and assume G* is not a clique. If the

complemient G* of G* has exactly one edge say (k,£) E E, then k and ¢ are polar irregular <
vertices of G, a case ruled out by the assumption that G is nondegenerate. If G* has two
adjacent edges, say (k,{) and (¢, k) and no others, then £ is easily seen to be an irregular <
vertex of G, a case ruled out by the assumptlon ‘that S is the set of irregular vertices. Thus

G* either has at least two disjoint, i.e. nonadjacent, edges, or it has three edges that form a
triangle. In either case G has a separator that contains S.

Now let oz? = oy be any equation satisfied by all u € P(G,b). As shown in the proof
of Lemma 3.1, if j € V is regular, then a;; = aj, = 0. Hence this holds for all j € V' \ S‘.x/‘f)

-~ 3Now let j € S, and consider the separator C' with shores 4 = {j} and BC () Adj(k),
kes\{j}

C 2 Adj(j), as well as a separator C’ whose shores A’, B’ are both contained in () Adj(k).
kes

The existence of C' was pointed out at the end of the preceding paragraph. Let u,u’ € P(G,b)

correspond to C and (", respectively. Then

(Xu=ar=a; +ay(B),
au' = ap = a1 (A)+ay(B).

and au — o'u = 0 = a;, since (BU A'UB') C V \ S, hence all the coefficients indexed by
these sets are 0 as the corresponding vertices are regular. Since j € S was chosen arbitrarily,
a1 = 0 for all j € 5. Reversing the roles of 4, B then yields aj, = 0 for all j € S, hence
ap = 0. Thus a; = 0 for j = 0,1,...,2n, which proves that P(G,b) is full dimensional. 0O



4 Separators and Dominators

In Section 1 we defined a dominator of V' as a set S C V such that V C (S U Adj(S)), and
a minimal dominator as one that does not contain any dominator as a proper subset. Now
we call a dominator S connected, if G[S] is connected; and we define a minimal connected
dominator (CD), as a CD that does not contain any CD as a proper subset; i.e. SCV is a
minimal CD if for every i € S, S\ {¢} is either disconnected, or is not a dominator of G (or
both). Thus a minimal CD may or may not be a minimal dominator, but it always contains
one.

Separators and connected dominators are in a fundamental relationship similar to that
between spanning trees and cutsets:

Proposition 4.1. In a connected graph, any separator and any connected dominator have
at least one verter in common.

Proof. Let C be a separator with shores A and B, and let S be a connected dominator. If
CnNS =0, then S C (AU B); but since S is connected, this implies either S C A, SNB = 0,
or vice versa, which contradicts the fact that S is a dominator. Hence C N S # 0. (]

For SC V and k € V' \ S, we denote Adjs(k) := {i € S: (i,k) € E}.

Definition 1. Let S C V be a dominator of V. Fori € S,
P(i) :={k e V\ S : Adjs(k) = {i}}
is the set of pendent vertices of i.

Notice that if the dominator S is minimal and P(i) = () for some ¢ € S, then the presence
of i in S is needed only to dominate i itself. We call such a vertex a self-dominator.
Proposition 4.2. If S is a minimal dominator, then for every i € S, either i is a self-
dominator or P(i) # 0.

Proof. Follows from the definitions and the minimality of S. O

The next proposition characterizes the structure of minimal connected dominators.

Proposition 4.3. Let S be a minimal connected dominator, and let Sp := {i € S : P(i) #
0}, S¢ := S\ Sp. Then



(a) If Sq # 0, every i € Sq s an articulation point of G[S]
(b) Sp contains no self-dominating vertices.

(¢) Sp is the unique minimal dominator of V' \ S contained in S.

Proof. (a) Let i € Sg. Then P(i) = 0, hence S \ {i} is a dominator, and the only possible
reason for the presence of ¢ in S is to make G[S] connected. On the other hand, if G[S \
{i}] is also connected, then S is not a minimal connected dominator. Hence G[S \ {i}] is
disconnected, i.e. i is an articulation point of G[S].

(b) Suppose i € Sp is a self-dominator. Then i is an isolated vertex of Sp, and Adje(i) C
Sg. But then S\ {i} is a minimal connected dominating set, since i is adjacent to one or
more j € Sp, a contradiction.

(c) Since S is a dominator of V', hence of V' \ S, and P(j) = 0 for all j € Sg, Sp = S\ So
is itself a dominator of V' \ S. Further, since P(i) # 0 for i € Sp, Sp is a minimal dominator
of V' \ S. The uniqueness of Sp follows from the fact that it is the set of precisely those
vertices in S that cover some vertex in V \ S not covered by any other vertex in S. O

The next two sections of our paper examine valid inequalities for P(G,b) and the condi-
tions under which they are facet defining. From now on we will assume that P(G,b) is full
dimensional.

5 A Class of Symmetric Facets of P(G,b)

A valid inequality for P(G,b) is one that is satisfied by every u € P(G,b).We call such
an inequality symmetric if for all j € V, the coefficients of u;; and u;, are equal. A valid
inequality ou < oy is mazimal if there exists no valid inequality o’u < ag with @' > « and
a} > o for some j. For any polyhedron in R}, all essential (i.e. facet defining) inequalities
are maximal, but the converse is of course not true.

Proposition 5.1. Let S be a minimal connected dominator of V.. Then
u(S) < |8 -1 (5.1)

is a valid inequality for P(G,b).



Proof. 1t follows directly from Proposition 4.1: as S is a dominator, it must have at least

one vertex in any separator. O

There is no easy, simple necessary and sufficient condition for the inequality (5.1) to be
facet defining. Maximality is somewhat easier to establish. To put it simply, (5.1) is maximal
whenever GG does not have a certain kind of vertices.

Given a minimal connected dominator S of V and a vertex v € V' \ 5, we will say that S
1s v-decomposable if G[S U {v}] has an articulation point ¢ such that G[S U {v} \ {i}] either
has two components neither of which is the singleton v, or has at least three components.
We call the vertex v € V' \ S forbidden if it has each of the following three properties:

(i) S is not v-decomposable
(ii) v is adjacent to every j € |J P()
i€S

(iii) » is adjacent to at least two j € S.

Proposition 5.2. The inequality (5.1) is mazimal if and only if G has no forbidden vertices.

Proof. Necessity. Suppose G has a forbidden vertex v € V \ S. Then the inequality u(S) +
U2 < |S| — 1 can be shown to be valid for P(G,b), hence (5.1) is not maximal. Indeed,
let uys = 1, and call B the separator shore containing v. We claim that the shores of such
a separator can contain at most |S| — 2 vertices of S. For if SN B = 0, then (SN A) C
(S\ Adj(v)), and from property (iii) of v, |[SN A| < |S|=2. If, on the other hand, SN B # 0,
there are two cases: (a) SNA =0, and (b) SN A # 0. In case (a), from property (ii) of v, A

cannot contain any vertex of | J P(i), which implies that each vertex in A C V'\ § is adjacent
i€s
to at least two vertices in S; hence [SN B| < |S| — 2. In case (b), since SN A can have no

vertex adjacent to SN B, and from (i) it requires the removal of at least two vertices from S
to disconnect G[S U {v}] without creating a singleton component consisting of v (while the
creation of such a component is excluded by (iii)), it follows that [SNA|+|SNB| < |S]-2.
Thus u(S) + u.p < |S| =1 is valid for P(G,b), i.e. (5.1) is not maximal.

Sufficiency. Suppose (5.1) is not maximal. Then au < |S| — 1 is valid for some a such
that ajz > 1forall j € S, aj > 0forall j € V\S, k= 1,2, and at least one of the
inequalities holds strictly. If aj > 1, for some j € S, then any u € P(G,b) corresponding
to a separator with shore A := S\ {i} for some i # j violates au < |§| — 1. Thus ay = 1
forall j € S, k=12 Nowlet a,; > 0 for some v € V\ S. Then v must satisfy (ii);
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Figure 1: Maximal vs. non-maximal inequality

for if there exists £ € P(i) for some i € S such that (v,£) € E, then there is a separator
with shores A = {¢} and B = SU {v} \ {i} such that the corresponding solution # satisfies
aii = |S| =1+ a, > |S] = 1. Also, v must have property (iii); for otherwise v € P(i) for
some i € S, and there is a separator with shores A = {v} and B = S\ {i}, whose associated
solution 4 satisfies ot + ay; = |S| — 1 + a1 > |S| — 1. Finally, v must also have property
(i), for if S is v-decomposable with articulation point 7, then there is a separator with shores
A= {v}us’, B= 5" where S'US" = §\{i}, " NAdjg(v) = 0, whose associated solution
i satisfies ot + ay; = |S'U S| + an > |S]| - L. _ O

Example. In the graph G shown in Figure 1, S = {1,...,4} is a minimal connected
dominator, and the inequality

S & & o & " . Q
uyy + Ugy + Ugy + Ugy + Upp + Ugp + Usp + Uge 3

is valid for P(G,b), where 4 < b < 6. S is v-decomposable for v = 5,7 and 8 (with
articulation point ¢ = 2 in each case), but not for v = 6, which has property (i). Vertex 6
also has property (iii), and is the only such vertex in V \ S. However, without edge (6,9)
shown as a dotted line, vertex 6 does not have property (ii), and so the above inequality is
maximal. Upon insertion of edge (6,9) vertex 6 acquires property (ii) and the inequality can
be strengthened by changing the coefficient of ug, from 0 to 1.

i




We are now ready to address the issue of when (5.1) is facet defining. Certainly, the
conditions on the vertices in V' \ S required for maximality are also required, i.e. necessary,
for (5.1) to be facet defining. However, they are in general not sufficient. Furthermore, there

are conditions concerning the vertices in S that are rather complex.

Let F be the face of P(G,b) defined by the inequality (5.1), i.e. let

F :={ue€ P(G,b): u(S) = |S| - 1}.

F'is a facet of P(G,b) if and only if every equation au = || — 1 satisfied by every u € F

1 ifjes
W) GRS,

has coefficients

We will use the notation au = |S| — 1 for a generic equation satisfied by all u € F, and
will start by stating some sufficient conditions for a vertex j € V \ S to have coefficients
a;1 = a; = 0 in this equation. We will say that a separator is in F if the corresponding
point u € P(G,b) is in F.

Throughout this section we will repeatedly use the following argument.

Proposition 5.3. If for some v € V \ S there exist two separators in F, C and C', such
that C = C' U {v}, then a,; = ayp = 0.

Proof. Let u and u' be the points in P(G, b) corresponding to C and C", respectively. Then
uji = uy for j € V\ {v} and k = 1,2. Hence au—au' = 0 = ay; (uy; — Uy )+ a (U — uly).
But since either u,; # ul, or u,, # Uy, it follows that at least one of oy, and ay, is equal
to 0. Since the shores are interchangeable, it then follows that Oy = g = 0. O

Proposition 5.4. If S is v-decomposable for some v € V \ S, then ay; = ay = 0.

Proof. Let S be v-decomposable with articulation point i, and let G[S'U{v}] be a component
of G[SU {v} \ {i}], with S’ # 0. Then there exists a separator C with shores A = §' U {v},
B = §\ (8' U {i}), such that [AUB)NS|=|S|-1,ie. Cisin F. But C' = C U {v}
is also a separator in F, with shores A’ = A\ {v}, B’ = B; hence from Proposition 5.3,
Oy = g = 0. O

Proposition 5.5. If there exists { € P(i) for some i € S such that (v,€) € E for some
v € V\S, then ay; = ayn = 0.
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Proof. Let € be as assumed; then there exists a separator C' in F' with shores A = SU{v}\ {i}
and B = {{}; but C’ = C U {v} is also a separator in F, with shores A’ = A\ {v}, B’ = B.
Hence from Proposition 5.3, ay; = ayg = 0. ]

Proposition 5.6. If v € P(i) for some i € S such that |P(i)| = 2, then ay; = a,p = 0.

Proof. By assumption, there exists ¢ # v, £ € P(i). Therefore there exists a separator C
in F with shores A = S\ {i}, B = {{,v}; but C' = C U {v} is also a separator in F, with
shores A’ = A, B' = B\ {v}; hence a,; = ayy = 0. O

Notice that, while the conditions on v stated in Proposition 5.4 and 5.5 are the exact
converse of the conditions (i) and (ii), the condition of Proposition 5.6 is stronger than the
converse of (iii), which would only require that v € P(i) for some i. This is consonant with
the fact that the maximality of an inequality does not imply that it is also facet defining.
For this to be the case, additional properties are required.

Next we show that if G has a vertex for which none of the three conditions listed in
Propositions 5.4-5.6 is satisfied, then (5.1) is not facet defining. {

{
£
%

Proposition 5.7. Let v € V' \ S satisfy conditions (i), (ii) and

(i )fv i) for somei€ S. o (\5’
ﬁ e
Then the inequality (5.1) does not define a facet of P(G,b).

Proof. From condition (i), for any separator w_i)t.h"’shores Aand B, if ANS # 0 # BNS, then |
I(AUB)N S| < |S|— 2. Thus C isin F only if either ANS =0 or BNS = 0. Now suppose \
BN S = ( (an analogous reasonmg,apphes ifANS = 0) Then for any separator C in f‘ RS
with shores A, B, we must have/ A) S\ {,z’} for some z €5 w1th P(z') # 0, and B C P(3).
From condition (ii), v cannot belong;, to A, hence veBUC. fve B, then v € P(ez) and
from condition (iii’ )»’{v} = P(j =B Hve C, i.e. P(i) € B, then i must belong to A,
which must be of the form S\ {£} for some £ # i such that P(£) # @, and B C P(¢). Thus
v belongs to B if and only if ¢ does not belong to A, hence the equation

Ui + Uy = 1

is satisfied by any u € F and therefore F' does not define a facet.

We are now ready to state necessary and sufficient conditions for a large class of inequal-
ities of the form (5.1) to be facet defining for P(G,b).

Vo
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Let S be a minimal connected dominator, with § = Sp U Sq, where Sp = {i € § :
P(1) # 0} is the unique minimal dominator contained in S, and Sg = S\ Sp, where every
J € Sg is an articulation point of G[S]. We call the set S orderly, if either Sg = (), or else
Sp contains no articulation point of G[S], and Sq can be ordered into a sequence iy, ..., %,
with the property that for r = 1,. ... q, G[S\ {i,}] has exactly two components with vertex
sets §', 8", such that {i,,.. SN STy L el 0 £ AT s gt S,

We need some notation. Let s = IS|, d = |Sp|, ¢ = |Sql|. For any separator C; in F
with shores 4;, B;, let a; = |4, N Spl, b = |B; N Sp|. Since any separator C; in F contains
exactly one vertex i € S, we will call C; of type 1 if S\ {i} is contained in a single shore,
and of type 2 if (S\ {i}) C A, U B;, with A;N S # 0 # B;N S. Here we are concerned with
separators of type 2, with i € Sg. Notice that for such a separator a; + b; = d. A collection
C of type 2 separators will be called representative if it contains exactly one member C; for
each i € So. We order the members of such a collection according to the rule

0:’2(1:'+1 (bisbi+l)1 i:]-;'-'aq_la

and we denote ]
ay =6+ a3 + v Ao
(5.2)

ag" = Q3 + Gy A e Aoy,

with 57**! and b defined in the same way.

With this notation, a minimal connected dominator S with an orderly Sy is called ez-
ceptional if

(i) sis odd and

(ii) for any representative collection of type 2 separators

of' - o = (d—1)/2 if qis even
af - o' = 4d/2 if ¢ is odd.

We now state the main result of this section. From Proposition 5.7 we know that if none
of the conditions of Propositions 5.4-5.6 are satisfied, (5.1) does not define a facet of P(G,b).
So we can assume the opposite.

Theorem 5.8. Let S be a minimal connected dominator that is orderly, IS| < b+ 1, and
assume that every v € V' \ S satisfies at least one of the conditions stated in Propositions 5.4,
9.5 and 5.6. Then the inequality (5.1) defines a facet of P(G,b) if and only if S is not
exceptional.
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Proof. Since every j € V'\ S satisfies at least one of the conditions stated in Propositions 5.4,
5.5 and 5.6, a;; = aj2 = 0 for all j € V \ S for any o such that au = |S| — 1 for all
u€ F = {ue€ P(G,b): u(S) = |S| ~ 1}. We seek necessary and sufficient conditions for
having a;; = a;3 = 1 for all ;7 € S, assuming that tSQm orderly.

If we set to 0 all aji for j € V'\ S, k = 1,2, we are left with a system

Y (auuj + ajougp) = 8] — 1 (5.3)
JjES
in the unknowns aji, j € S, k = 1,2. If we denote by Fs the projection of F onto the
subspace indexed by S, i.e. Fs:= {u® € R* : (u®,u"%) € F for some u"\¥ ¢ R2»-9}
then (5.3) must be satisfied by a for all u € Fs. We will show that a;x =1forall j €8S,
k = 1,2, is the unique solution to (5.3) if and only if S is not exceptional, by exhibiting 2s
points u € Fs that are affinely independent if and only if S is not exceptional,

We will use the two types of separators in F defined above. The first type, C, has shores
A = S\{i} and B C P(i) for some i € Sp. Since by assumption |S| < b+1, such a separator
obviously exists for each i € Sp, and its incidence vector u satisfies u;(S) = |S|—1, u2(S) = 0,
hence belongs to Fs. The second type, C', has shores 4’, B' such that (4’'U B") D (S \ {i})
for some i € Sp. Again, at least one such separator in F exists for every ¢ € Sp, since i is
an articulation point of G[S]: assigning the vertex set S’ of one component of G[S \ {i}],
to A’, and the vertex set S” of the second component to B’ (since Sg is orderly, there are
only two components), or vice versa, yields a separator whose incidence vector u satisfies
w(S') = [5], ua(S") = 0, u1(8”) = 0, uy(S") = |8"|, with || + |S”] = |S| — 1. Clearly,
u € Fs.

If we choose d vectors u' € Fg corresponding to separators of the first type, one for each
i € Sp, and ¢ vectors u' € Fg corresponding to a representative collection of separators of
the second type, that yields d + g = s vectors u' € Fs. If we now choose for every u' € Fs
its symmetric counterpart obtained by interchanging the two shores of each separator, i.e.
interchanging uj and uj for each i € S, we obtain another s points in Fs. We claim that
these 25 points are affinely independent if and only if S is not exceptional. We will show
this by representing each point as the row of a square matrix M of order 2s, and proving
that M is non-singular if and only if our condition is satisfied.

We will denote the m x n matrix of all 1's by Jjxn, the identity of order n by I,,, and we
will write J;, for J,x,. Let H = Jy — I, i.e. H is the d x d matrix of all 1’s, except for the
diagonal, which has all 0’s. Let D and D be ¢ x d matrices of 0's and 1's, with D+D = S
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and let Q and Q be g x ¢ matrices of 0's and 1's, Q upper triangular and @ lower triangular,
with 0's on the diagonal, and with Q + Q = Jy = I;. Then our matrix is of the form
A

M=

H
D
0
D

(o=~ fw

Q Q
0 J
Q ‘ Q

Figure 2 shows the components of an instance of M with d = 4 and ¢ = 3.

He= e IR 2 ot (0 BT M o 5 [
S | gk 000 1
s B S 8 0 I |

o

I
T
kb
- O
—_— = O
o OO0
e S
O

Il
—
oo o
o O
S =
O

Il
R
[ - |
-0 o
o o
\.___/

Figure 2: Illustration of the components of M.

It is not hard to see that each row of (H,J,0,0) is the incidence vector of a u € Fg
corresponding to a separator C' of the first type, with A = S\ {i} for some i € Sp, and
BNS=0(BC P(i)),ie uj =1forall j € S\{i}, u}; =0, and u}, =0 for all j € S. The
0’s on the diagonal of H represent the entry corresponding to ¢ in S\ {i}. Similarly, each
row of (D,Q, D, Q) is the incidence vector of a u € Fs corresponding to a separator C" of
the second type, with A’ = S’ represented by the 1’s in the first half of the row, and B’ = 5"
represented by the 1’s in the second half of the row, whereas the i in S\ {i} is represented
by the 0’s on the diagonal of @ and Q. This describes the upper half of M. The lower half

is obtained by interchanging the roles of u; and us.

Since S is orderly, if Sg # 0 then the representative collection of type 2 separators C|
corresponding to the rows of (D, Q, D, Q) can be ordered according to increasing or decreas-
ing size of their shores Al. Here we choose to order them decreasingly, which corresponds to
having @ upper triangular, Q lower triangular (with 0’s on the diagonal), and the row sums
of D and D satisfying a; > a;4; and b; < bjyq, i =1,...,q — 1, respectively.

Now let’s first look at the case when Sg = 0 and so S = Sp, i.e. the minimal connected

separator S is also minimal as a separator. Then our matrix M reduces to ( Ig }]{ ),

which is obviously nonsingular.
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Next assume Sg # 0, i.e. all the submatrices of M are present.

Using the standard procedure for inversion of partitioned matrices, it is straightforward
to show that the 2s x 2s matrix M is nonsingular if and only if the 2g x 2¢ matrix

1

Q- #:DJ | Q- 74D (QO Qo)

o =0 Qs

Q- 7-DJ|Q-DJ

is nonsingular. Furthermore, the same techniques can be used to show that the 2¢ x 2¢
matrix R is nonsingular, if and only if the ¢ x ¢ matrix R := Qo — Qo@; " Qo is nonsingular.

For R to be well defined, Qp' must exist, i.e. Qo must be nonsingular. This can be

shown to be always the case. Indeed,

—a, d=1—-a; ... d=1—a
1 1 —Qa —ay e d=1—ay
st ok e
—Qyq —0q o e g

Subtracting column 1 of this matrix from every other column yields a matrix that is
upper triangular except for its first column, and whose determinant, like that of @y, has
absolute value a,/(d — 1). Hence Qq is nonsingular, i.e. R is well defined.

To examine the conditions under which R is nonsingular, we start by computing its
elements. We have

—aq

(_1 R A d_-!.-_a;\

1 -1 0 .- uu
ey
ST )

B F 8

0/ D 50 o F Bl

O
Il

Y

| |=

-

A et e L TSR R
T 100 U e SR e T
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and

f? o Qo e (DI}QEIQO

/ Pd -1 k1 gk axby+by 1 \
’m‘%ﬂ-m(ﬂ-}-l) Wm(dﬁ«l] a:—abq,+1_2 bz—-:ql-i-l"z bz":qiﬂ‘b.,-lwbz——bl—l
fachati_p  fachdl_(gyn) Moab_(d4) . ARE) ba=batl py +by—by—1 :
-
bq-]."::_z-i—l £ b.,_v.'::-:rt-l_z bq...]—ﬂ:...2+1_2 bq_l-:q_g+l_(d+” bq_l-«::_g+lbq+bq_1_bq_2“1
e e I I e e R

We claim that R is nonsingular if and only if S is not exceptional. To prove this, we
will perform a linear transformation on R that does not affect the absolute value of its
determinant. We will use the fact that many elements of R are equal to each other and some
pairs of entries differ by the same constant. By subtracting column i — 1 from column i for
i=4q,q—1,...,2, and dividing every entry by d — 1, we obtain the following matrix whose
determinant has the same absolute value as that of R:

by —da )l b
&l 0 S

(b2—by+1)~(d+1)a by—by+1
laq(d—l) q 0 Lol 0 o

(b3—b2+1)—2ag feme e 0 by—ba+1
R’ a (T ) et aq(d—l) g

(bq..;-—bq-2+1)-209 o b!_l -_b,z..2+1+ag
ag(d—1) ! _0 P ag
(Bg—=bg—1+1)~2ag e bg—bg_1+1

aq(d"I) 0 0 1 aq

Next, letting r; denote column j of R', we subtract from column 1

Ty To+To1 T3+ (rin +731) ra+ (roy +ran)rs + -

+(r1y + 731+ -+ 1417, (if ¢ is even) or
+(roy + a1 + -+ + 1go1,1)rq (if ¢ I8 0dd),

and we subtract from column ¢ _ :
Tig* T2+ Tog " T3+ (F1g + Tag) T4 + (T2 + Tag)Ts + -+
+(T1g + Tag + ++ + Ta1,0)rq (if ¢ is even) or i
+(rog + Tag + * ++ + Tg-14)7q (if ¢ is odd).
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The outcome is the matrix W, whose determinant also has the same absolute value as that

of R:

5 B T s R S
et el e SR
0 -10-.- 0 0 O
W=
0 pigug S L
Whgtys ol W el =10 0 Wy
\ W 0 0 0 -1 wy, )

It is not hard to see that |det(W)| = |wg—1,1 - wg,q — Wq,1 * Wy—1,4|- Here

ry;  if ¢ is even

Wo-11 = Tge11+Tg—31+ "+ -+
=i Pl i {rm if g is odd

ro1 if g is even

Woi=To1 FTgooid::+
il %! i {r11 if g is odd

and

5 SO Lt if ¢ is even
Wq-1,g = Tg-1,gTTg-3,¢4T """ s
i Bl rog if g is odd

if ¢ is even

R T
9.9 49,9 q—2, {qu if q iS Odd

Substituting for each r;; its value from R and using the notation (5.2), we obtain:

e for g even,

(bq" "”2) —(d+g—2)a; + 1~ 1) Jaq(d —1)
(b8 ~bf7") ~ (d+q - l)aq+§) /aq(d—l)
(
(b3

Wy-11 =
Wedy =

b~ — ) + F—1+ aq) Jag

(
(
W14 = |
(

Weq = L 2) /ag;
e for g odd,
Wt = 8T = b)) = (d+g - a, + 1) fag(d — 1)
wgy = (0] =b7") = (d+q¢—1)ag+ ) /fag(d - 1)
We-1e = (07 bq—z ) + 55+ +a,) /ag

Wweq = ((bf - b"“‘)+9-—) /a,
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Thus for ¢ even, we have

Wo—1,1 ' Woq — Wy * W19 =
(08 —b87%) — (d+q—2)a, + § — 1) - ((b% — b~

1
)+4)
= (B3 -8 ) —(d+g—Vag+ ) - (61 — b1 %) + 4

~ 1+ a,)] fak(d - 1).

Clearly, det(W) # 0 if and only if the numerator is nonzero, so we may ignore the
denominator. Multiplying through and collecting terms then yields for the numerator the
expression

E=ayd+q-1)Q20" " ~b) +d-1).

Similarly, for ¢ odd we have

Wo—11"Wgq — Wy " Wy_14 =
(047! ~b1) ~ (d+ g — 2o, + 552) - (] - 887) + 532)
— (b1 - 857) = (d+ g~ Dag +452) - (67" — 0%) + 3% + ay)] /ajd - 1),

and the expression we get for the numerator, after multiplying through and collecting terms,
is

E' = —a,(d+q— 1)(2(b! — 27" — d).

Now we claim that for admissible values of d,q,a;,b;, j =1,...,q, the expression E, if ¢
is even, or E', if ¢ is odd, vanishes if and only if S is exceptional.

Assume first that ¢ is even. Then E = 0 if and only if 7' — b = (1 — d)/2. But since
b7 — b =4d—af' — 4d+a}, E = 0if and only if a?" — af = (d — 1)/2. This is precisely
condition (ii) of the definition of S being exceptional when ¢ is even. Furthermore, the last
equation implies that d is odd, which in turn implies that s is odd (since ¢ is even), thus
condition (i) of that definition is also satisfied. -

Assume now that ¢ is odd. Then E’ = 0 if and only if 6] — b§™" = d/2. But b7 — 63! =
Lld—af -2 +a"", hence E' = 0 if and only if af —a?™" = d/2, which is precisely condition
(ii) of the exceptionality of S when ¢ is odd. Furthermore, in this case d is obviously even,
and since ¢ is odd, s is also odd, which is condition (i).

Assume now that S is exceptional, i.e. conditions (i) and (ii) are satisfied. We claim
that in that case there exists no set of 2s affinely independent points u € Fs. Indeed, the
only candidates are separators of type 1 with i € Sp, or separators of type 2 with i € So,
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since the only other possible case, that of a type 2 separator with i € Sp, is excluded by
the fact that if Sg # 0, Sp contains no articulation point of G[S]. But the only separators
of type 1 with i € Sp are those corresponding to the rows of H, and by assumption every
representative set of separators of type 2 satisfies the conditions that make S exceptional,
which proves our claim. O

Turning now to the case when S is exceptional, we start by examining the situation where
q = |Sg| = 1, say Sg = {i}.

By the definition of exceptionality, d is even, a; = d/2 = b, and each of the two
components of Sp is 2-connected. Let p := d/2.

Proposition 5.9. Let S, with S, = {i}, be exceptional. Then the inequality

pur(S\ {i}) + (p— Dua(S\ {i}) + (2p — 1)uiz < p(2p—1) (5.4)

is valid for P(G,b). Furthermore, (5.4) is facet defining if and only if every v € V \ S
satisfies at least one of the conditions of Propositions 5.4, 5.5 and 5.6.

Proof. Suppose that S, with Sg = {i}, is exceptional. Then the maximum of the left hand
side of (5.4), say f(u), over all u € P(G,b), is p(2p — 1). Indeed, let & € F be a point for
which f(u) attains its maximum. If ¢ belongs to the separator C associated with @, then
the shores of C must be A = S’ and B = S” or vice versa, where G[S'] and G[S"] are the
two components of G[S \ {i}]. Thus @;; = 1, 4;p = 0forall j € &, G, =0, G4jp = 1
for all j € S” @ =0, k = 1,2, otherwise, and f(a) = p-p+(p—-1)p=p(2p-1). If
the separator does not contain i, it must contain some £ € S, £ # i, but since £ is not an
articulation point, all of S\ {£} must belong to the same shore. If this shore is A, with
B C P({), then ii;; = 1, ;o = 0 for all j € S\ {i,¢}, 4;x = 0, k = 1,2 otherwise, and
f(@) = p(2p = 1)+ 0 = p(2p — 1), as claimed. If (S\ {€}) C B, with A C P(¢), then
ij; =0,%; =1forall j € S\ {¢} (including j = 1), ujx = 0, k = 1,2 otherwise, and again
f(@)=0+(p—1)(2p—1)+ (2p—1) = p(2p — 1). This proves that (5.4) is valid.

Now let F' := {u € P(G,b) : u satisfies (5.4) at equality}. Then F’ is a facet of P(G, b)
if and only if every a such that au = p(2p — 1) for all u € F' satisfies a;; =0 for j € V'\ S,
k=12 and
aﬂ:{p JES\{t} Cm={p—1 J €5\ {i} (5.5)
0 j=1 2p=~1 j=4
It is easy to see that Propositions 5.3-5.7, which were stated for the case of inequality (5.1),
remain valid for the case of inequality (5.4). Therefore, aj; = aj; = 0forall j € V\ S if
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and only if every v € V' \ S satisfies at least one of the conditions of Proposition 5.4, 5.5
and 5.6, with the implication that, if there exists v € V' \ S that violates all three of these
conditions, then (5.4) does not define a facet of P(G,b). Assuming now that aj; = 0 for all
7€ V\S, k=12 we show that the coefficients a;: for j € S, k = 1,2, satisfy (5.5), by
the procedure used in the proof of Theorem 5.8, i.e. by exhibiting 2s affinely independent
points u € F§ = {u® € R* : (u¥,4"\%) € F' for some u"\¥ € R*"~*)}, As in the case of that
proof, we use the d points w/ € F§ corresponding to the separators C; of type 1 with shores
A; =S\ {s}, 7 € Spb, B; C P(j), and the one point u' € F§ corresponding to the separator
of type 2 C] with shores A = §', B! = S”, where G[S'] and G[S”] are the two components
of G[S \ {i}]. This is a collection of d + 1 = s points in Ff, and taking the symmetric
counterparts of these points, obtained by interchanging u, and u,, we obtain an additional
s points. The matrix M whose rows are the incidence vectors of these points has the same
structure as the corresponding matrix in the proof of Theorem 5.8, with the only difference
that here @ = 1. As in that proof, M is nonsingular if and only if R = Qo — Q@5 Qo is
nonsingular, where

e R SRS i e e R T R R
g Syt —on S8 i e e A
and

Rl cid=1 b _d-l)d—l—b1
ide 1 d—1 a d—1
d-l=hfoal 1520
i (d—1)ay “(d-1)ay 7
This proves that R is nonsingular, hence (5.4) is facet defining. 0

Remark 5.10. If Sp contains an articulation point € # i of G[S], then the inequality (5:4)
is not valid.

Proof. Suppose G[S] has a second articulation point, say £ # i. Let G[S'] be a component
of G[S \ {¢}] such that i ¢ §’, and let S” := S\ (S’ U {¢}). We claim that in this case (5.4)
is not valid. Indeed, consider the separator C whose shores are A = S’ and B = S”, with
associated @ € P(G,b). Then

p-ua(S\{i}) + (p— Daa(S\ {i}) + (2p — Vit =
= p- |8+ {-1)(15"-1) +(2p- 1)

15l + (p = D)(IS| + 15" = 1) + (2p = 1)

11+ (p=1)(2p - 1) + (2p - 1) > p(2p — 1).
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When the minimal connected dominator S is not orderly, inequality (5.1) may or may
not be facet defining. For any specific non-orderly S it is not hard to tell whether (5.1) is
facet-defining, by applying the same analysis as in the proof of Theorem 5.8, with Q and Q
modified to reflect the structure of S; but this analysis becomes unwieldy for a general S.
However, when (5.1) is not facet defining either because S is not orderly, or because S, while
orderly, is exceptional, there is another family of facet defining inequalities that dominates
8.

6 A Class of Asymmetric Facets of P(G,b)

Consider any minimal dominator S of G, not necessarily connected. The inequality
u(S) < IS~ 1 (6.1)
is clearly valid for P(G,b), and various liftings of (6.1) may yield facet defining inequalities.

The first question that arises in this context, is when does (6.1) define a facet of P(G, b),
Le. when is it the case that all the lifting coefficients of (6.1) are equal to 0?7 The next
Proposition settles this question.

As before, we assume that |S| < b, for otherwise (6.1) is implied by (2.5), hence redun-
dant.

Proposition 6.1. The inequality (6.1), where S is a minimal dominator of G, defines a
facet of P(G,b) if and only if conditions (a), (b) and (c) below are satisfied:

(@) V\ S = UsesP(i)

(b} S contains no self-dominator

(c) S is an independent set.

Proof. Let F be the face of P(G,b) defined by (6.1), ie. F := {u € P(G,B) : u(S) =
IS —1}.

Necessity. Suppose S violates (a), i.e. there exists v € W = (V \ )\ (UiesP(i)). This
means that [Adj(v) N S| > 2, say {(v,4),(v,j)} C E for some i,j € S. Then u;y + u < 1,
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U1 + Uy < 1, but for any u € F, wy; + u;; 2 1, since ug = 1 for all but one index £ € 5. It
follows that u,, = 0 for all u € F, hence F is not a facet.

Suppose now that S violates (b), and let 1 € S be a self-dominator. We claim that for
any u € F, u;; + ujs = 1, and thus F is not a facet. Indeed, let C' be a separator in F such
that ¢ € C; then shore A of C must contain S\ {i} in order to have u,(S) = |S| = 1, and
since S\ {¢} is a dominant of V' \ {i}, there are no vertices left for B. Hence i € AU B,
which is equivalent to u;; + u; = 1.

Finally, suppose S violates (c), and let (7,7) be an edge with both ends in S. Then
i +up < 1, up +ujp < 1, and ujy +ujp < 1, uj; +up < 1. Thus if u; =1 or u;; = 1, then
ui2 = ujz = 0. But since u;; +wu;; > 1 for all u € F, this is always the case, i.e. uy =uj=0
for all u € F. Hence again F is not a facet.

Sufficiency. Since every j € V' \ S belongs to some pendent set, say P(i), and since S is
independent, it is easy to see that A = S\ {i} and B = {i, j} are the shores of a separator
in F, say C, and that C' = C U {j} is also a separator in F, with shores A’ = A and
B' = B\ {j}. Hence, from Proposition 5.3, for any equation au = |S| — 1 satisfied by all
u€F,a;,=0forall je V\S, k=1,2. Now consider a coefficient a;5, j € S. Since S is
an independent set, the point defined by ug = 1 for £ € S\ {j}, ua =0for £ € (V\S)U{j}.
ujp =1, upp = 0 for £ € V' \ {j}, is in F. But if a;» # 0, this point violates au = |S| — 1.
Hence aj; =0 for all j € S.

As to the coefficients o, j € S, if we set to 0 all ayk, j € V\ S, k = 1,2, and all ajs,
j € S, we obtain the system

Zajlu,-l = lSl -1

jes
in the unknowns a;;, j € S, which must be satisfied for every u € Fg, where Fg := {uls €
R* : (uf,u5,u"\®) € F for some (uj,u”\¥) € R* x R¥"~*)} with s = |S|. If we choose the
|S| points u’ € Fs, i € S, defined by u}; =1 for j € S\ {i}, uj; = 0, we obtain a system
whose unique solution is a;j; =1 for all j € S. O

Figure 3 shows an example of an inequality (6.1) that is facet defining for P(G,b).

From Proposition 6.1 it follows that the inequality (6.1) is facet defining only under the
very special conditions (a), (b), (c¢). When these conditions do not hold, (6.1) can be lifted
or otherwise generalized to yield some facet defining inequalities. There are many valid
generalizations, but here we will be concerned with three classes of such inequalities: the
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Figure 3: A facet defining inequality (6.1)

first class is obtained by lifting the coefficients a;2, j € S, the second class comes from lifting
the coefficients ajz, j € V '\ S, before j € S, while the third class involves a different type of
generalization.

7 First Generalization

Let S be a minimal dominator that satisfies conditions (a) and (b), but not condition (c), of
Proposition 6.1. Further, let Sy, ..., S be the vertex sets of the components of G[S]. In each
component G[S;] such that |S¢| > 1 we choose an ordered set of vertices I = {v1,..., v}
with the following properties (here Adj(v;) refers to adjacency in G[S]):

(i) for alli € {2,....q}, (vi,v;) € Egforall j € {1,...,i— 1}, i.e. I is an independent
set; '

(i) for all i € {2,...,q}, there exists j € {1,...,7 — 1} such that Adj(v;) N Adj(v;) # 0,
i.e. v; is at an edge-distance of 2 from the vertex set {vy,...,vi_1}.

(iii) I, is maximal.

Such a set always exists and is obviously not unique. Figure 4 shows an example of a
component G[S;], along with two different sets I;. Next we define a function d : S¢ — Z as

follows:
|Adj(v1)] if v =
to]
6(v) = < |Adj(v;) \ U Adj(vj)| +1 if v = v; for some i > 2 (7.1)
j=1
0 ifvesS, \ I,
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The numbers §(v;) for v; € I; can be interpreted as the degree of vertex v; in a spanning
tree 7y of G[S,] constructed as follows. For all v € Se, define Adj*(v) := {v} U Adj(v).

Initialization. Choose some v € St, set vy := v and put v, into 7} as a marked vertex.
Put into 7} all vertices v € Adj(v;) and all edges joining them to v,.

k=1
Iterative step k. Choose some v € S;\ |J Adj*(v;) such that Adj(v) N Adj(v,) # 0 for
=1

some j € {1,...,k — 1}, set v := v, and put v, into T; as a marked vertex, by joining it
through an edge to some (arbitrarily chosen) unmarked vertex of T;.

k=1
Put into T} all vertices v € Adj(ve) \ U Adj(v;) and all edges joining them to ;.
=1

Stop when all vertices of S; have been included in T5.

It is not hard to see that the marked vertices of T; form an ordered set satisfying the
conditions defined for I,. If the set of vertices at edge-distance k from v, is considered level
k of Ty, then the set of all vertices at even levels of Ty, which is the set of all marked vertices
of T¢, is precisely the independent set I, defined by conditions (i), (ii), (iii). Note, however,
that the spanning tree 7} is not uniquely defined because of the freedom of choosing the
unmarked vertex of T} to which a newly marked vertex v is joined by an edge. Figure 5
shows an example of a spanning tree 7; associated with the set I} of Figure 4.

I} = {1,6,9,10,12)
I} = {10,2,3,4,5,12}

S/
/

( Figure A: Two ordered sets I}, I? in G[Se), satisfying (i), (i), (iii).
\

N
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g =(4.3.21.1)

|
@g‘ur/es/;f A spanning tree T} associated with I} of Figure 4.

Theorem 7.1. Let S be a minimal dominator of G satisfying conditions (a) and (b), but
not (c), of Proposition 6.1, and let G[Sy], £ = 1,...,k, be the components of G[S]. For each
singleton component Sg = {1}, set ; = 0, and for all other components G[Sy] define 6; = 6(j)
for all j € S¢ by (7.1). Then the inequality
ul(S) <+ Z(Sjﬂjg S |S| -1 (72)
JES

ts valid and facet defining for P(G,b).

Proof. If the inequality u;(S) < |S| — 1 were valid for the polytope P(G,b) restricted to the
space of the variables u;;, j € S, then we could lift it to (7.2). However, if we set to 0 all
the variables missing from u,(S) < |S| — 1, the remaining polytope is just the unit cube in
R* and the inequality 4,(S) < |S| -1 is invalid. However, if instead we project P(G,b) onto
st’

Projs(P(G,b)) := {u® € R : (u®,u¥\%) € P(G,b) for some u¥\ € R2*-9)},
then the inequality u,(S) < |S] — 1 is valid for the polytope P’ C R°, .
P* := {v® € Projs(P(G,b)) : ujs = 0, j € S},
and so it can be lifted by the well known sequential lifting procedure (see e.g. 8]).

Let ji,...,jn be any numbering of the vertices in S, such that within each component
G[S¢] of G[S], vertices in I, precede those in S, \ I, and are numbered according to their
position in I,.
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We now calculate the lifting coefficients of the variables u;, for j = j;,...,7J, in that
sequence. But first, we note that u,(S) < |S| — 1 is not only valid for P*, but also facet
defining. Indeed, for each ¢ € S the point u® defined by u;; = 1 for j € S\ {i}, vy =0,
u; = 0, j € S, is in P* and satisfies u,(S) = |S| — 1. To see this, note that each such
point comes (through projection and restriction) from the incidence vector u € P(G,b) of
a separator C' that has as its shores A = S\ {i} and B = P(i). Clearly, the |S| points uf
defined above, one for each i € S, are affinely independent and so u,(S) < |S| — 1 defines a
facet of P*.

For the first variable, u;,2, we solve
max{u;(S) : u® € Projs(P(G,b)), uj2 =1, uj2=0forall r > 1}

and we find that the maximum is |S| — 1 — |Adj(j1)|, since setting u;,» = 1 forces to 0 uj,1,
and all the variables u;; for j € Adj(j;). This gives for u;,, the coefficient |Adj(j;)|, which is
the difference between the maximum of the objective function with and without u;,, set to 1.
But this is precisely §;, as defined by (7.1). Further, if we denote by u(d;,) the maximizing
solution (including the variable fixed at 1) that yielded the coefficient d;,, namely u;» =1,
u;; = 0 for j € Adj*(j1), ujy = 1 for j € S\ Adj*(j1), we find that it corresponds to a
separator C' with shores A = S\ Adj*(j1), B = {1}, and satisfies u;(S) + 6;,u;,2 < |S| - 1
at equality.

Suppose now that these properties hold for j = ji, jo,..., Jk-1, i.e. that the coefficient of
ujp is 0; for j = 3y, j2,. .., jr—1, and that the solution u(é;) for which the maximand attains
its bound satisfies the corresponding inequality at equality; and let j = j;. We then have to
solve

Ji-1
max{ui(S) + Zdjujg : u € Projg(P(G,b)), uj2 =1, uj,2 =0 forall r > k}.

i=h :

To simplify the discussion, assume for the time being that ji, ..., jx belong to the same
component of G[S]. Now the maximum of u,(S) + Zf;}l 0jujo without setting ujo = 1

is |S| — 1. Furthermore, this value is attained for a solution u(d-;) that has ujo = 1 for

k-1 Ty
J=J1y-- oy Jk=1, uj1 =0 for j € |J Adj*(jr) and uj; =1 for S\ |J Adj*(j;). This solution
r=1

3 |

k-1
corresponds to a separator C' with shores A = S'\ U Adj*(4;), B = {j1,...,Jk-1}, and it
r=1

Jh=1
satisfies u1(S) + 3 d;uj» < |S| =1 at equality. Since §; > 1 for j = jy,...,jx—1, We may
J=n
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assume wlog that the impact of forcing u;,2 to 1 on the value of the maximum is measured

by the number of variables u;, 7 € S. newly forced to 0. But this is precisely the number
k-1 k-1

IAd]* () \ U Adi(Gr)| = [Adj(r) \ U Adj(jr)| + 1, which is d;, according to (7.1). Thus
1 1

r= re=
the value of the maximum is || = 1 = 8;,, and hence the coefficient of uj,2 is 6;,.

In the above discussion we have assumed that ji, ..., ji all belong to the first component.
Removing now this assumption, we see that nothing changes. If j; is the first vertex of a new
component, then forcing u;, to 1 will reduce the value of the maximum by |Adj(j¢)|, since
all the vertices adjacent to j, belong to the new component, and everything in the sequel
remains the same. This proves that (7.2) is valid for Proj s(P(G,b)). Furthermore, (7.2) is
also facet defining for this polytope, since at every step of the lifting procedure, the solution
u(d;,) that maximizes the objective function, amended with u;,2 = 1, is independent of all
the previous solutions (has a component ;2 = 1 in a column in which all previous solutions
had a coefficient u;,» = 0).

We can now lift the inequality (7.2) from the subspace of the projection to the full space.

We claim that the lifting coefficients for u;x, j € V \ S, k = 1,2, are all equal to 0, and
that the lifted inequality obtained this way is facet defining for P(G,b).

The inequality (7.2) is certainly valid for P(G,b). Let F = {u € P(G,b) : u (S) +
> jes Ojuj2 = |S| —1}. Then F is a facet if and only if any equation au = |S| — 1 satisfied
by all u € F has coefficients aj; = 1, ajo = é; for j € S, and ajx = 0for j € V\S k=12
For the coefficient ajx, j € S, k = 1,2, this follows from the fact, proved above, that (7.2)
defines a facet of Projs(P(G,b)). As to the coefficients a;x for j € V'\ S, a reasoning similar
to that underlying Proposition 5.3 shows that a;; = 0 if there exists a separator C with
shores A, B such that j € A, and C' = C U {j} is also a separator. Similarly, aj = 0 if
there exists a separator C with shores A, B such that j € B, and C' = CU{j} is also a
separator. Now from the minimality of S and conditions (a), (b) of the theorem, j € P(1)
for some i € S. Let @ € F be such that @; = 0, and define the separator C as having shores
A={leS:uipn=1}and B={l€ S5 :Up= 1} U {j}. C is clearly feasible, since j is not
adjacent to any vertex in S\ {i}. But then C' = C U {j} is also a separator, with shores
A’ = A and B' = B\ {j}. This proves that aj; = 0 for all j € V\ S. Now let & € F be
such that #;, = 1, and define the separator C' as having shores A := {€ € S : in = 1} U {j}
and B = {{ € § : iy = 1}. Clearly C is feasible, but C' = C U {j} is also a separator, with
shores A' = A\ {j} and B'= B. Thus a;; =0forall j€V \'&. O
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8 Second Generalization

Now we turn to the second class of lifted inequalities. Let S be a minimal dominator of
G free of self-dominators, and let T := {j € V\ S : j € UiesP(i)}. In other words,
T:={jeV\S:|Adj(y) N S| > 2}. Consider the graph G[S U T}, and denote by G(S,T)
the bipartite subgraph obtained from G[SUT] by deleting all vertices j € S\ Adj(T") and all
edges (1, j) such that {i,j} C Sor {i,j} C T. Let G(S,,T;), £ =1,...,k be the components
of G(S,T). In each component £ € {1,...,k}, we construct a spanning tree 7; as follows.

Initialization. Choose some v € T}, set v, := v, and put v, into 7; as a marked vertex. Put
into T; all vertices in S; adjacent to v; and all edges joining these vertices to v;.

Iterative Step k. Choose some v € T \ {v1,...,V-1} such that Adj(v) N Adj(v;) N Se # 0
for some j € {1,...,k — 1} (i.e. v has a common neighbor with some marked vertex v;,
J€{1,...,k=1}), set v := v, and put vy into T; as a marked vertex by joining it through
an edge to some arbitrarily chosen unmarked vertex of 7.

Put into 7; all vertices in S; \ Ty adjacent to v and all edges joining these vertices to vy.
Stop when all vertices of G(S;, T;) have been put into 7.

Clearly, the marked vertices of 7; are precisely those in 7, and they form an ordered set
{vi,...,v,}, where ¢ = |T}|. Furthermore, if Adj(v) denotes the set of vertices adjacent to v
in G(S¢, T), then the degree in T; of v € Ty is

|Adj(v1)| if v=uv

deg(v) = =1
[Adj(v:) \ U Adj(v;)| +1 if v =v; for some i > 1.
J=1

The spanning tree 7; depends on the sequence in which the vertices vy, . .., v, are selected
for marking, and on the choice of the edge that joins the newly selected vertex to some
unmarked vertex of Ty, i.e. to some vertex of S;

Next we notice a remarkable property of the spanning trees ;.

Proposition 8.1. Let T; be a spanning tree of G(Se, T¢) constructed as above, let vy, ..., v,
be the associated sequence of vertices in Ty, with ¢ = |T;|. Define

v(v) = deg(v) - 1 (8.1)
for all v € Ty. Then for any contiguous subsequence of {vy,...,v,} starting with v, say
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{vi,..., v}, r < q, we have

r

Z'}'(vg) = |Adj({v1,..., v, })| = 1. (8.2)

=]
Proof. By induction. For r = 1 (8.2) holds by definition. Suppose (8.2) holds for r =
I,...,t=1,and let r =t < ¢q. Then

t t—1
Do) = 3 v(w) +y(w)

g=] =1

t—1
= |Adj({vr, .. v })| = 1+ |Adj(w) \ | Adi(vy)]

4=1
IAdi({v1, ..., u})| - 1.

I

O

Figure 6 shows an instance of the bipartite graph G(Si, T;), along with two spanning
trees corresponding to different orderings of the vertices of T}, and the associated numbers
¥

Notice that in the spanning tree T

3

é?(i) =2 7(i) =5 and |Adj({1,2})| = |Adj({1,2,3})| = 6, as required by (8.2).

=]

Also, é’)’(z’)-—-iy(i):G and |Adj({1,...,4})| = |Adi({1,...,8)})| = 7.

=1

In 72,
>0 =3 and [Adj({1,2,3})] = 4,
Iéy(z’)=4 and |Adj({1,...,4})| =5,
370 = 3 v(u) =5 and A({L,...,5})] = JAdI({L,.... 6} =6

=]

Ll
Il
A

In all of these cases (8.2) is satisfied. On the other hand, subsets of T, that do not
represent a contiguous subsequence of {v,,... sUg}, or do not contain v,, may violate (8.2).
In the spanning tree 7;', for instance, v(2) + 7(4) = 4, but |Adj({2,4})| = 6. Also, in 72,
7(6) +7(7) = 2, but [Adj({6,7})| = 4.
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f‘igure GQAn instance of G(S, T;), with two spanning trees 7;', 77 and associated num-
ers y(¢). The ordering of the vertices of T is (1,2,...,8) for 7', and (8,7,..., 1) for

‘
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We are now ready to state our second lifting theorem. In order for the lifted inequality
to be facet defining for P(G,b), certain conditions need to be satisfied. Without these
conditions, the lifted inequality is still valid for P(G,b), but it may not be facet defining.

Theorem 8.2. Let S be a minimal dominator of G not containing any self-dominator, let
T:={jeV\S:|Adj(j)NS| =22} #0,

and suppose the following conditions are satisfied:

(a) for every j € P(1), i € S, there exists £ € P(k), k € S, such that ¢ & Adj(j).

(b) for every j € P(i) with i € S\ Adj(T'), there emsts £ € P(k) with k € SN Adj(T),
such that £ € Adj(T U {7}).

(c) if S C Adj(T), then for every j € P(i), i € S, there exists { € U;esP(i) \ Adj(T) such
that € & Adj(7).

For j €T, let v; = v(j) be defined as in (8.1), and for j € S* := S\ Adj(T), let 6; = 6(j)
be defined as in (7.1), with S* substituted for S. Then the inequality

u;(S) sje Z Yiujz + Z 5,'11:,‘2 < IS' -1 (83)

JET JES\Adi(T)

is valid and facet defining for P(G,b).

Proof. Since the inequality u;(S) < |S| — 1 is not valid for P(G,b) restricted to the space
of uj, j € S, we use projection to obtain a polytope for which it is valid. Consider the
projection of P(G,b) onto the subspace of the variables indexed by SUT:

Projs,r(P(G, b)) := {u’"T : u € P(G,b) for some u"\S1},

Clearly, u;(S) < |S| — 1 is valid for P** defined as

P** := {u’T € Projgr(P(G,b)) :ujs =0, €T, ujp=0, j € SUT}.
Furthermore, u,(S) < |S| — 1 is facet defining for P**. Indeed, for each i € S, the point
u®T defined by uj; =1,j € S\ {i}, 1 =0, € TU{i}, uj2=0,j € SUT,is in P** and

satisfies u;(S) = |S| — 1. To see that this point is in P**, notice that the separator C with
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shores A = S\ {i} and B = P(i) is feasible. Since the |S| points defined this way, one for
each i € S, are clearly affinely independent, u,(S) < |S| — 1 defines a facet of P**.

We will start the lifting with the coefficients of the variables ujy, j € T. Let jy,. .., be
any ordering of T such that, within each component of G(S,T), the sequence of indices is
the one given by the spanning tree 7; used to define the coefficients 7. The sequence of the
components of G(S,T) themselves is immaterial.

To calculate the coefficient of u;,5, we solve
max{u;(S) : «®7 € Projg pn(P(G, b)), uj2=1, up=0, j € SUT\ {h}, w1 =0, j€T}

and find the value of the maximum to be |S| — |Adj(j1)|, since setting u;2 = 1 forces to
0 all the variables uj, for j € Adj(j;). Here Adj(j;) stands for the set of vertices of S
adjacent to j; € T in G(S,T). Thus the coefficient of u;,2, which is equal to the difference
between the maximum of u,(S) with or without u;,» set to 1, is |Adj(j;)| — 1, which is
precisely the coefficient v;, = v(j1) given by (8.1). Also, the solution u(vy;,) yielding the
maximum, namely u;,; = 0, u;; = 0, j € Adj(51), u;1 = 1, j € S\ Adj(j;), amended with
u;2 = 1, satisfies u;(S) + v;,u5,2 < |S| — 1 at equality. This solution is obviously feasible,
the associated separator C having shores A = S\ Adj(71), B = {1}

Assume now that these properties hold for j = 7;,...,jk-1, and let 7 = j;. We then have
to solve

k—1
max{u; (S) -+ Z Yilje : ’U.SUT = PI'OjsuT(P(G, b)), Uj2 = 1. Ujo = 0,
J=n

j & SUT\{j],...,jk},Ujl "—"O,J GT}.

Assume first that jj,...,Jj; belong to the same component of G(S, Tj. Without setting
uj,2 to 1, the maximum of the above expression is |S| — 1, and it is attained for a solution

k-1
u('yjb,) in which Uj2 = 1 fOI’j — jl,.. .,jk..l, U1 = 0 for j‘ e U Adj(]r), and Uj1 = 1 for
k-1
jE S\ U Adj(j;). This solution, which satisfies u,(S) + E vujz < |S| — 1 at equality,
J=3
corresponds to a separator C' with shores 4 = S\ U Adj(j;), B = j1,...,Jx-1. Should

the set assigned to A be empty (which may happen at the last step), we set A = {{}
for some £ € P(k) with k € SN Adj(T') such that £ ¢ Adj(T), whose existence follows
from condition (b) of the Theorem. Now setting uj,; = 1 forces to 0 all variables u;, such
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k=1

that 7 € Adj(Jx) \ U Adj(jr). Hence the value by which |S| — 1 is reduced, is precisely
1

r=

k-1
[Adi(Gx) \ U Adj(js)| = v, This completes the induction.
r==l

Here we have assumed that the vertices ji, ..., belong to the same component. Throw-
ing out this assumption does not change anything, since the first vertex j of a new component
has its coefficient ~; defined in a way that takes this situation into account.

Next we lift the coefficients of the variables u;y, j € S. Defining S* := S\ Adj(T’) and
letting S},...,S: be the vertex sets of the components of G[S*], we order the vertices of
each component and define the coefficients d; = 4(j) for all j € S* as in Theorem 7.1. These
are valid lifting coeflicients for our inequality, since variables us, £ € S*, are not affected by
the values of u;5, j € T. Thus if S5* is ordered as ¢, ..., {|s+|, we start by solving
max{u1(5)+z '}fj’il.jg 3 uSUT & PrOjSUT(P(G’ b)), Mg ais= 1, Upp = O, f (= S\{El}, Uj} — 0,] & T}

jET

and obtain the coefficient d,, = [Adj(¢,)|, where adjacency refers to S*. At the k-th step we

solve
l—y
max{u;($) + Y vup+ Y beuer : v € Projs p(P(G, b)), ug2 =1,
JET t=t;

'U-gg=0,£€ S\{Zl,...,ﬂk},uﬂ Eo,j GT}

and obtain d;, as the coefficient of u; 2. The solution yielding this value corresponds to a

separator C with shores B=TU{{,...,l_1}, A= 5 \ Adj{4,...,€—1}. Should the set

assigned to shore A be empty, which may occur at the last step, we set A = {£} for some

fe |J P(i)\ Adj(T), which always exists by condition (b). It is not hard to see that the
1ES\S"°

Cp—1
solution defined this way satisfies u;(S) + Y yjujo+ 3 deuer < |S| — 1 at equality. At the
jer =t
end of this procedure, we obtain inequality (8.3).

We may now continue the lifting procedure for the coefficients ujp, j € SN Adj(T), but
it is obvious that these coefficients are all equal to 0, irrespective of the order in which they
are lifted. This is so because setting to 1 any number of variables u;, j € SN Adj(T) does
not force to 0 any new variables u;,, j € S, beyond those already forced to 0 by the previous
liftings, and thus cannot reduce the value of the maximand from |S| — 1. Hence ay; = 0 for
all j € 5N Adj(T) irrespective of the order of lifting. Similarly, lifting the coefficients a;,
for j € T in whatever sequence yields a;; = 0, j € T, since setting any of these variables to
1 does not force to 0 any of the variables u;;, j € S.
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We have lifted the inequality u,(S) < |S| -1 to the space of Projg r(P(G, b)) and shown
that the resulting inequality (8.3) is valid for that polytope. Moreover, (8.3) is also facet
defining for Projg +(P(G, b)), since at every step of the lifting procedure, the solution that
maximizes the objective function, amended with the variable fixed at 1, is independent of
all the previous solutions as it has a component equal to 1 in a position where all earlier
solutions had a component equal to 0.

We now lift the inequality (8.3) from the subspace of the projection to the full space.
Our claim is that the lifting coefficients for u;,, j € V'\ (SUT), are all equal to 0, and that
the inequality (8.3) obtained in this way is facet defining for P(G,b).

The validity of (8.3) for P(G,b) is obvious. If we denote F := {u € P(G,b) : u:(S) +

Y 7w+ Y. duj = |S|—1}, then F is a facet if and only if any equation au = |S|—1
JET JES\A(T)
satisfied by all u € F has coefficients equal to those of (8.3). As far as the coefficients a;

for j € SUT, k = 1,2 are concerned, this condition is satisfied, since (8.3) defines a facet of
Projs r(P(G,b)). For the coefficients a;i, 7 € V' \ (SUT), notice that each such j belongs to
some pendent set, say P(i), since S is a minimal dominator that contains no self-dominators.
Thus V\ (SUT) = |J P(i). For aj;, consider three cases. Case 1: S\ Adj(T) # 0, and
j € P(i) such that ;Eé Adj(T). Then there is a feasible separator C' in F with shores
B=TuU{j} and A = S\ Adj(T), such that C' = C U {j} is also a feasible separator, with
shores A’ = A and B’ = B\ {j}; thus a;» = 0. Case 2: S\ Adj(T) # 0 and j € P(i) such that
i € §\ Adj(T’). Consider the separator C with shores B =T U {j}, A= {£} U (S\ Adj(T))
for some £ € P(k) with £ € SN Adj(T) such that £ & Adj(T U {j}) (the existence of such
¢ is guaranteed by condition (b) of the Theorem). Clearly, C is in F, and C’' = C U {j}
is also a feasible separator, with shores A’ = A and B’ = B\ {j}; thus a;2 = 0. Case 3:
S\ Adj(T) = 0. In this case there is a separator C' in F with shores B = T U {j} and
A = {{}, where £ € U;csP(i) \ Adj(T' U {j}) (the existence of such ¢ follows from condition
(¢) of the Theorem). Again, C' = C U {j}, with shores A' = A, B' = B\ {j}, is also a
feasible separator in F’; hence aj, = 0 in this case too.

For a;,, if j € P(i), consider the separator C' with A = (S\ {k}) U {;j} with k # i, and
B = {{} for some ¢ € P(k) such that £ ¢ Adj(j). The existence of such k, ¢ is guaranteed
by condition (a) of the Theorem. Clearly, C is in F. But C' = C U {j} is also a separator
in F, with shores A' = A\ {j} and B’ = B, which proves that a;; = 0.

We have thus proved that given the conditions of the Theorem, the inequality (8.3) is
facet defining for P(G,b). O
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9 Third Generalization

The inequalities (7.1) and (8.3) were derived from (6.1) by sequential lifting. Next we
generalize the inequality (6.1) in another direction. Consider an arbitrary vertex set S.

Theorem 9.1. Let SC V,2<|S| < b, and let W(S) := V \ (SU Adj(S)). The inequality
ui(S) —ua(W(S)) < |S] - 1 (9.1)

is valid for P(G,b). Moreover, (9.1) is facet defiming for P(G,b) if and only if

{a) S is independent
(b) S is a minimal dominator of Adj(S)

(c) Every v € Adj(S) is adjacent to exactly one vertez in S.

Proof. (i) (9.1) is valid. Let @ € {0,1}*" be such that @;(S) — @(W(S)) > |S| — 1. Then
i; = 1for j € S and @, = 0 for j € W(S), i.e. T corresponds to a separator C whose shore
A contains all vertices in .S, and whose shore B contains none of the vertices in W(S). But
since V' \ (SUW(S)) = Adj(S), there are no vertices left for B, a contradiction.

(ii) Conditions (a), (b) and (c) for (9.1) to be facet defining. Let F := {u : u;(S) —
up(W(S)) = |S| - 1}.

Necessity. If S is not independent, there exists (i,j) € E with {i,j} C S. But this
together with u € F implies u;; = u; = 0, since otherwise u;(S) < |S| — 2. Thus (a) is
necessary. Further, if S is not a minimal dominator of Adj(S), then it contains a vertex
i € S such that Adj(S\ {i}) = Adj(S). But then for any u € F, u;; + u;p = 1, i.e. i cannot
belong to the separator. Indeed, if i € C, then |A| = u;(S) < |S| - 1. But for u € F we need
u1(S) = |S| — 1 and us(W(S)) = 0, which would imply B C Adj(S \ {i}), a contradiction.
Since every u € F satisfies u;; + u;s = 1, F is not a facet. Thus (b) is necessary. Now
suppose some j € Adj(S) is adjacent to both i € S and k € S, i # k. Then uy + u;p < 1,
ug1 + 42 < 1, and since u € F implies w;; + ugy > 1, it follows that uj, = 0 for all u € F,
i.e. F is not a facet. Therefore, (c) is necessary.

Sufficiency. We show that any equation au = |S| — 1 satisfied by every u € F must have

R 1 j€S8 e -1 jeW(S)
AT e\ S RT100 G eV W(s)

coefficients
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First, consider j € Adj(S). From condition (c), j is adjacent to exactly one vertex in S, say
i. Consider the separator C with shores A = S\ {i}, B = {i,j}. Since S is independent
(condition a), this separator is feasible. But C' = C'U {7} is also a feasible separator, with
shores A' = A and B’ = B\ {j}; hence aj; = 0 for all j € Adj(S). On the other hand,
consider the separator C' with shores A = (S\ {k})U{;} for some k & Adj(j), and B = {k}.
Again, C is feasible, and so is C' = C U {j}, with shores A’ = A\ {j}, B' = B. Hence
a; = 0 for all j € Adj(S).

Consider next the coefficients a;,, 7 € W(S). For each such j, the separator C' with
shores A = (S {i}) U {j} for some i € S, and B = {i} is feasible; but so is C' = C U {j},
with shores A' = A\ {j}, B' = B; hence a;; = 0 for all j € W(S). Further, consider
the coefficients aj; for j € S. From condition (b), there exists some £ € Adj(S) such that
{7} = SN Adj(€). Thus the separator C' with shores A = S\ {j} and B = {j, £} is feasible;
but so is C' = C U {3}, with shores A'= A and B' = B\ {7}. Hence aj=0for all j € S.

Now setting a;; = 0 for all j € V' \ & and a;; = 0 for all j € V'\ W(S), we are left with
a system of equations in the space of the a;y, j € S and a;s, j € W(S),
Y aui - Y ajpup =S| -1
jES FJEW(S)

which has to be satisfied for all u € F. The following is a list of |S U W(S)| affinely
independent points u in Fsyw(s), the projection of F' onto the subspace of {u;,j € S} U
{uj2, 7 € W(S)}, whose unique solution is the required a;; =1, j € S, ajo = —1, j € W(S):

‘ 1 €S\ {i ;
"}:={ J.E.\{z} uj, = 0,5 € W(S), 1eS
0 g=1
T e ;
u;; =1 j€8 Uiy = € W(S).
4 ﬂ {o jew\ g 1€
This proves the sufficiency of the conditions in the Theorem. O

Corollary 9.2. Let S be a mazimal set satisfying the conditions of Theorem 9.1, i.e. such
that there exists no T2S satisfying them. Then for every S' C S, |S'| > 2, the inequality
(9.1), uath S' substituted for S, is valid and facet defining for P(G,b).

Proof. If S satisfies the conditions of Theorem 9.1, so does every S' C S, |S'| > 2. O

Notice that the inequality (6.1) is a special case of (9.1).

38




S

12

13

0a), 3

Figure 7: Graph illustrating the example.

Example. Consider the graph G of Figure 7, obtained from the Petersen graph by sub-
dividing the edges of the outer 5-cycle. The set S = {1,4,7,15} satisfies the conditions of
Theorem 9.1 for any b > 4, with S U Adj(S) = V. Consequently, the inequality

Uy + Uy Fun +us; <3

is valid and facet defining for P(G, b). From Corollary 9.2, the following inequalities are also
valid and facet defining for P(G, b):
Uy + Ug + U — Usp — Uiz — Uiz — Uis2 S 2
U + ugq + U5y — U — Usz — U2 < 2
un + Uz + w5 — Uga — Ugy — Ugz — Upg2 < 2
Ugy + U7 + Us,) — U2 — Us2 — U2 — Un2 < 2
Uy + Ugp — Uy — Ugz — Usy — Uz — Upz2 — U132 S 1
un +un = 3 (w2 € {1, 7} UAdj({1,7})) < 1
Uy + Us,1 — Z(ujg 17 € {1,15} U Adj({1,15})) <1
wa +un — 3 (up2 1 g € {4, 7 UAdj({4,7})) £ 1
wg + s,y — 2_(uj2 1 J € {4,15} U Adj({4,15})) < 1
ur + wisy — 9 (uj2 1 7 € {7,15} U Adj({7,15})) < 1.
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10 Concluding Remarks

We have given a mixed integer programming formulation of the VS problem, and a partial
polvhedral description of the convex hull P(G) of feasible points. In the process, we have
identified several classes of valid inequalities and derived conditions under which they are

facet defining, sometimes using novel proof techniques.

In a companion paper [1], we describe a branch-and-cut algorithm for the VSP, using
several of the inequalities developed here, based on efficient separation routines and bounding
heuristics. The algorithm was tested on a large variety of VSP instances. One of the
highlights of our computational experiments is the major role of cut density (as distinct
from cut strength) in the overall efficiency of the algorithm.
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