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Abstract 

The vertex separator (VS) problem in a graph G = (V, E) asks for a partition of V into 

nonempty subsets A, B, C such that there is no edge between A and B, and ICI is minimized 

subject to a bound on max{IAI, IBI}. We give a mixed integer programming formulation of 

the problem and investigate the vertex separator polytope (VSP), the convex hull of incidence 

vectors of vertex separators. Necessary and sufficient conditions are given for the VSP to 

be full dimensional. Central to our investigation is the relationship between separators and 

dominators. Several classes of valid inequalities are investigated, along with the conditions 

under which they are facet defining for the VSP. Some of our proofs combine in new ways 

projection with lifting. 

ln a companion paper we develop a branch-and-cut algorithm for the (VS) problem based 

on the inequalities discussed here, and report on computational experience with a wide 

variety of (VS) problems drawn from the literature and inspired by various applications. 



1 Introd uction 

A vertex separntor in an undirected graph is a subset of the vertices, whose remova! discon

nccts the graph. Formally, the vertex separator problcm VSP can be stated as follows: 

ll'\STANCE: A connected undirected graph G = (V, E), with IVI = n, an integer b(n) ~ n 

and a cost Ci associated with each vertex i E V. 

PROBLEi\'l: Finda partition of V into disjoint sets A, B, C, with A and B nonempty, such 

tha.t 
(i) E contains no edge (i,j) with i E A, j E B, 

(ii) max{IAl, IBI} ~ b(n) 

(iii) I:(ci : j E C) = min I:(c1 : j E S) 
scv 

A and B are called the shores of the separator C. A separator C that satisfies (i) but 

violates (ii) is termed infeasible; one that satisfies (i) and (ii) is feasible; and a separator 

that satisfies (i), (ii), (iii) is optimal. When we use the term separator we mean feasible 

separator, unless otherwise specified. 

To the best of our knowledge, this is the first polyhedrnl study of the VSP, which otherwise 

has received considerable attention in the literature, due to its widespread applicability to 

all kinds of practical connectivity problems (see, for instance, [2, 3, 5]). One particularly im

portant area of application is linear algebra, namely to minimize the work involved in solving 

systems of equations [4, 6]. Another one is finite element and finite difference problems [7]. 

The VSP is NP-hard. For the case when G is planar and b(n) = 2n/3, a celebrated 

result of Lipton and Tarjan [5] states that a separator of size bounded by 2./2..fií can be 

found in O(n) time; but the question whether the VSP on planar graphs can be solved in 

polynomial time is still open. On the other hand, the VSP defined on an arbitrary graph 

becomes polynomially solvable if b(n) in (ii) is replaced by n - k for some positive constant 

k. To see this, construct a biparti te graph G• = (V., E•), with bipartition v• = (Vt, 12•), as 

follows: ( a) for every i E V, let i1 E Vt, i2 E V2*, and (i 1, i2) E E·. (b) for every (i, j) E E, 

let {(i1,hL (j1, i2)} e E*. Then the (VSP) with the modified condition (ii) is equivalent to 

the problem of finding a maximum-weight stable set S in G• ( with weights Cj, j E 1 '•), such 

that max{IS n Vi*I, IS n v2•1} :$ n - k. Clearly, this problem is solvable in O(n3 • nk) time. 

Before we proceed, we introduce some notation and recall a f ew basic concepts from 

graph theory, to be used throughout this paper. 
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Considera simple undirected graph G = (\/, E). We denote .r(5) = E(x3 : j E 5) for any 

5 e \ '. For i E 1 ·, wc write deg(i) for the dcgrcc of i. G - i denotes the graph obtaincd from 

G by removing vert('X i. For 5 Ç F, G[5] is the subgraph of G induced by 5. For 5, 5' Ç V, 
(5,5') := {(1,J) E E: i E 5, j E 5'}. For 5 e V, o(S) := {(i,j) E E: l{i,j} n SI= 1}, 

and E(S) = {(i,j)} E E: i,j E S}. When S = {i}, wc writc o(i) instead of o({i}). Also 

for Se \ ', Adj(S) := {i E V\ S: (i,j) E E for some j E S}, and when S = {i}, we write 

Adj ( i) for Adj ( { i}). For F Ç E, \I ( F) denotes the set of endpoints of the edges in F. A 

bipartite graph with vertex bipartition Vi, Vi is denoted G = (Vi, Vi; E) . 

A set S Ç \ • such that. E(S) = 0 is called stable or independent. S Ç V such that 

( S. E( S)) is a complete graph, is called a clique. S Ç V such that V Ç ( S U Adj ( S)) is called 

a dommatmg set for G or for V. A dominating set S for G is minimal if no proper subset of 

S is a dominating set for G. 

A vertex i E V is universal if it is adjacent to every j E V\ {i}. 

For the sake of brevity, for the rest of this paper a vertex separator, and a dominating 

set, will be simply referred to as a separator and a dominator, respectively. 

Next we outline the structure of the paper. Section 2 states the mixed integer program

ming formulation used throughout the paper. Section 3 establishes necessary and sufficient 

conditions for the VS polytope to be full dimensional. Section 4 deals with the connection 

between vertex separators and vertex dominators. The remaining five sections, which con

stitute the bulk of the paper, describe various classes of valid inequalities and investigate 

the conditions under which they are facet defining. Section 5 introduces a class of sym

metric inequalities associated with minimal connected dominators, and shows that under 

mild and easily verifiable conditions they define facets of the VS polytope in all but a few 

exceptional situations. For those exceptional cases an alternative inequality is derived that 

is facet defining. Section 6 introduccs a class of asymmetric inequalities associated with min

imal dominators (not necessarily connected), and states the (rather restrictive) conditions 

under which they are facet defining. When those restrictive conditions are not present, this 

asyrnmetric class of inequalities can bc lifted or otherwise generalized to yield facet dcfining 

inequalities, and this is the object of the last three sections. ln Sections 7 and 8 two classes 

of liftcd inequalities are derived. Thc novel feature of this dcrivation is that thc inequality to 

be lifted, when rcstricted to the subspace of its support, is invalid. A combination of projec

tion, restriction and scquential lifting is used to overcome this difficulty. Finally, Section 9 

generalizes the inequality of Sectin 6 in a different direction. 
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2 A Mixed lnteger Programming Formulation 

Let e, be the cost of assigning vertex i to the separator, and let 

if vertex i is assigned to shore A 
else 

if vertex i is assigned to shore B 
else. 

2 

For any S e V and for k = 1, 2, we write uk(S) = L uik, and u(S) = L L Uik· Then 

(YSP) can be formulated as 
iES k=l tES 

max L c,,(ui1 + Ui2) (2.1) 
iEV 

Uil + Ui2 ~ 1, i E V (2.2) 

Uil + Uj2 ~ 1, (i,j)EE (2.3) 

Ujl + Ui2 ~ 1, (i,j) E E (2.4) 

u 1(V) ~b (2.5) 

u2(V) ~b (2.6) 

ui(V) 2: 1 (2.7) 

u2(V) 2: 1 (2.8) 

Uí1, Ui2 2: o, i E V {2.9) 

Uii integer, i E V (2.10) 

It is not hard to see that for any set of ui1 E {O, l }, i E V, the variables u,2, i E V , 

will take on 0-1 values in any basic solution to the resulting linear program. Indeed, if the 

coefficient matrix of the system (2. 1)- (2.7) is written as (Ai, A2), where for k = 1, 2, Ak 

represents the columns corresponding to U1k, i E V, we see that A2 is totally uni modular. 

Hence substituting any 0-1 values for u,1, i E V, wc get 0-1 values for v,2 , i E V. 

With this information, the above system has the following interprctation. Condition (2.1) 

states that vertex i cannot be assigned to both A an<l B, but it !caves open the possibility 

3 



that it is assigned to none. in which case it belongs to C, the separator. Constraints (2.2) and 

(2.3) pre"ent the en<lpoint.8 of any edge to be assigne<l one to A, the othcr to B. Inequalities 

(2.4) and (2.5) rPstrict the size of each of A and B lo b, whilc (2.6) and (2.7) impose the 

conditions A 'f= 0 'f= B. It is easy to see thal thc above formulation is correct. ln the following 

sections we study the YS polytopc, defined as 

P(G,b) := conv{u E B2
n: u satisfies (2.1) - (2.10)}. 

Sometimes we will write P(G) for P(G, b). 

3 The dimension of P(G, b) 

Clearly, if G is complete, (VSP) is trivial. On the other hand, if b = l, then inequalities 

(2.4)-(2.7) hold as equations and (VSP) is again trivial; whereas if b? n- l, then constraints 

(2.4).(2.5) are redundant and (VSP) is polynomially solvable as shown in section l. Thus 

from now on we assume that G is incomplete and connected, !VI ? 3 and that 2 ::; b ::; n - 2. 

A vertex i is called regular, if there exists a separator C e V \ { i} such that CU { i} is 

also a separator. Thus i is regular if and only if there exists a separator C with shores A. B 

such that i E A and IAI ? 2. A vertex that is not regular is called irregular. 

\Ve now give a sufficient condition for P( G, b) to be full dimensional. 

Lemma 3.1. If every i E V is regular, then P(G, b) is full dimensional. 

Proof. Suppose every i E V is regular. Thcn any equation au = o0 satisfied by ali 11 E 

P(G, b) must have coefficients ai = O for j = O, 1, ... , 2n. Indeed, let C e V\ { i} and 

C' = CU { i} be two separators with shores A, B and A', B', respecti\·ely, such that i E A, 

A'= A\ {í}, and B' = B. Further, let u, u' E P(G, b) be the two solutions associated with 

C and C', respectively. Then 

QU - ºº - 0,1 + a-1(A \ {i}) + 02(B) 

au' - oo - C11 (A\ { i}) + et2(B) 

and ou - au' = 0 11 = O. 

Since this argumeut applies to all regular vertices, and sincc the roles of A and B are 

intcrchangeable, it follows that a,1 = a,2 = O for ali i E V, hcncc o0 = O. O 
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. ote that chccking the rcgulariLy of a vertex is an O(IEI) operation. / 

'ext we characlcrizc irregular verlices. First a definition: if G has two nonadjacent 

vcrtic~s i and k. such t hat Adj ( i) = Adj ( k) = V\ { i, k}, then both i and k are irregular, and 

we say that. they form a polar pair of irregular vertices. In such a case every separator of G 

either contains both I and k or none of them, i.e. u11 + U12 = uk1 + uk2 and P( G, b) is not 

full dimensional. A graph that has a universal vertex, or a polar pair of irregular vertices, 

will be called degenerate. 

Lemma 3.2. Let i E V be irregular. Then 

( a) For every separator C with a shore A = { i}, we have that Adj ( i) Ç C and every j E C 

is adjacent to every k in B. Furthermore, if B is a singleton, G is degenerate; and if 

IBI ~ 2, G[B] is a clique whose vertices are ali regular. 

{b} lf G[Adj (i)] is a clique ora clique short of an edge, G is degenerate. 

Proof. (a) Let C be a separator with a shore A= {i}. This clearly implies Adj(i) Ç C. If 

there exists j E C that is not adjacent to some k E B, then C' := (C \ {j}) u (B \ {k}) is a 

separator with shores A'= {i,j}, B' = {k}, contrary to i being irregular. Thus every j E C 

is adjacent to every k E B. Further, if Bis a singleton, say k, then i and k forma polar pair 

of irregular vertices and G is degenerate. Finally, assume IBI ~ 2. Then every vertex in B 
is regular, since removing it from B and adding it to C yields a valid solution. Also, G(B] 

must be a clique; for otherwise, if k,f E B and (k,f) i E, then C' := CU (B\ {k,f}) is a 

separator with shores A'= {i,k}, B' = {f}, and C" := C' U {i} is a separator with shores 

A"= A'\ {i}, B" = B', contrary to i being irregular. 

(b) If G[Adj(i)] is a clique, then every vertex in Adj(i) is universal (from (a)). If, on the 

other hand, G[Adj(i}] is a complete graph minus an edge, say the one between vertices k 

and f, then Adj(k) = Adj(f) =V\ {k, C} i.e. k and e are polar irregular vertice:j, and G is 

degenera te. O 

Lemma 3.3. lf i and k are irregular vertices not adJacent to each other, then they are polar. 

Proof. If V\ ( { i, k} UAdj(k)) is nonempty, then i is regular. Similarly, if V\ ( { i, k} U Adj{i)) 

is nonempty, then k is regular. Hence Adj(i) = Adj(k} = \1\ {i, k}i i.e. i and k are polar. O 

Lemma 3.4. Jf G is nondegenerate, then all irregular t•ertices of G are adjacent to each 

other. 
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Pt·oof lf i is irregular, froin Lemma 3.2(a) all vertices in V\ ( { i} UAdj(i)) are regular. Hence 

all irregular vertices other than i beloug to Adj ( i). Applying this reasoning to ali irregular 

vertices we conclude that they induce a clique in G. O 

Lemma 3.5. Let G be nondegenerate, and let S e V be the set of irregular vertices of G, 

v.1ith ISI ~ 2. Then 

( a) Et,ery i E V either is in S or is adjacent to some k E S. 

(b} EvenJ i E Adj(S) is adjacent to all but possibly one of the vertices in S. 

(e) Every i E íl Adj(k) is adjacent to every j E V\ íl Adj(k) 
kES kES 

{d} lf there exists a nonadJacent pair {i, k} E Adj(S), then both i and k are adjacent to ali 

vertices in 5. h.,o) ~ sn.O<.& \d'- 'f'I cl vc l :::. ~ ,-,,e 
ac wy ~\,~+-co~bl t. ~nc:l , ~ 1"\-:,\..lb .. uo.A-· 

É • nn l>w'.:,o-1- ~ hg. ÔS 
..ç "> ~ 

Proof. (a) If V\ (S u Adj(5)) # 0, then A=~ and B Ç V\ (5 u Adj(S)) are the shores of 

a separator, contrary to the assumed irregularity of the vertices in S. 

(b) If i E Adj(S) is nonadjacent to k E 5 and f E 5, then A= {k,f} and B = {i} are 

the shores of a separator. again contrary to the assumed irregularity of k and t. 

(e) Let i E íl Adj(k) and j E V\ íl Adj(k) be nonadjacent. Then clearly j f/. 5, and 
kES kES 

since j f/. íl Adj(k), there exists some f E S such that (j,f) f/. E. But then A= {i,l'} and 
kES 

B = {j} are the shores of a separator, contrary to the assumption that e is irregular. 

(d) Let {i,k} E Adj(S), (i,k) f/. E, and suppose i is not adjacent to some CE 5. Then 

{ k 1 f} and { í} are the shores of a separator, contrary to the assumed irregularity of e. O 

The conditions of Lemma 3.5 can be restated as 

(a') V= 5 u Adj(5) 

(b') Adj(5) = (U n Adj(k)) u ( n Adj(k)) 
iES kES\{i} kES 

(e') Every i E íl Adj(k) is adjacent to every j E íl Adj(k), for ali CE 5. 
kES kES\{t} 

(d') G( LJ íl Adj(k)] is a clique. 
t• S k.-_S {I} 
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Corollary 3.6. Let S be as defined in Lemma 3.5. Then every pair {i, e} Ç Sisa dominator. 

Proof. i E S dominates each of S, íl A<lj(j) , and íl Adj(k) for all j i= í. Further, any 
j ES kES\ {j} 

C i= i dominates íl Adj(k). Thus i and e together dominate S U Adj(S). D 
kES\ {t} 

Theorem 3.7. Let G be nondegenerate1 and let S be the set of irregular vertices ofG. Then 

P( G, b) is /ttll dimensional if and only if G[ íl Adj ( i)) is not a clique. 
iES 

Prooj. Necessity. If G( íl Adj(i)] is a clique, then from Lemma 3.5(c) every k E íl Adj(i) is 
iES iES 

a universal vertex in G, hence P( G, b) is not full dimensional. 

Sufficiency. Let us write G* := G[ íl Adj ( í)), and assume G• is not a clique. If the 
iES 

complement ê• of G* has exactly one edge, say (k, €) i E, then k and e are polar irregular 
/ 

vertices of G, a case ruled out by the assumption that G is nondegenerate. If ã• has two 
l 

adjacent edges, say ( k, .e) and ( f., !<,), ~~ no others, then .e is easily seen to be an irregular -

vertex of G, a case ruled out by the assumption that S is the set of irregular vertices. Thus 

ã• either has at least two disjoint, i.e. nonadjacent, edges, or it has three edges that form a 

triangle. ln either case G has a separator that contains S. 
V. 

Now let okc, = ao be any equation satisfied by all u E P(G, b). As shown in the proof 

of Lemma 3.1, if j E V is regular, then Ctj 1 = aj2 = O. Hence this holds for all j E V\ S. ,,-~> 

::"Jow let j E S, and consider the separator C with shores A= {j} and B Ç íl Adj(k)," 
kES\{j} 

C 2 Adj(j), as well as a separator C' whose shores A', B' are both contained in íl Adj(k). 
kES 

The exístence of C' was pointed out at the end of the preceding paragraph. Let u, u' E P( G, b) 

correspond to C and C', respectively. Then 

,.,., u = ao = Ctj1 +a2(B), 

au' =ao= 0.1 (A')+a2(B'). 

and au - c/u =O= Oj1, since (B U A' U B') Ç V\ S, hence all thc coefficients indexed by • 

these sets are O as the corresponding vertices are regular. Sincc j E S was chosen arbitrarily, 

a-1 1 = O for all j E S. Reversing the roles of A, B then yields ai2 = O for all j E S, hence 

ao= O. Thus a1 = O for j = O, 1, ... , 2n, which proves that P(G, b) is full dimensional. O 
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4 Separators and Dominators 

ln Scction 1 w<' defined a dominator of l' as a set S Ç V such that V Ç (S U Adj(S)), and 

a minimal dominator as one that does not contain any dominator as a proper subset. Now 

we call a dominator S connected, if G[S] is connected; and we define a minimal connected 

dominator (CD), as a CD that does not contain any CD as a proper subset; i.e. S Ç V is a 

minimal CD if for every i E S, S \ {i} is either disconnected, or is nota dominator of G (or 

both). Thus a minimal CD may or may not be a minimal dominator, but it always contains 

one. 

Separators and connected dominators are in a fundamental relationship similar to that 

between spanning trees and cutsets: 

Proposition 4.1. ln a connected graph, any separator and any connected dominator have 

at least one verlex in common. 

Proof. Let C be a separator with shores A and B, and let S be a connected dominator. If 

CnS = 0, then S Ç (AUB); but since S is connected, this implies either S Ç A, SnB = 0, 
or vice versa, which contradicts the fact that Sisa dominator. Hence C n S # 0. O 

For Se V and k E V\ S, we denote Adj5 (k) := {i E S: (i, k) E E}. 

Definition 1. Let Se V be a domínator of V. For i E S, 

P(i) := {k E V\S: Adj5 (k} = {i}} 

is the set of pendent vertices of i. 

Notice that if the dominator S is minimal and P(i) = 0 for somei E S. then the presence 

of i in S is needed only to dominate i itself. \Ve call such a vertex a sclf-dominator. 

Proposition 4 .2. If S is a minimal dommato1·, then for every i E S. either i is a self

dornmator or P(i) # 0. 

Proof. Follows from the definitions and the minimality of S. o 

The next propositiou characterizes the structure of minimal connected dominators. 

Proposition 4.3. Lct S be a minimal connected dominator, and lct S0 := {i E S: P(i) # 
0}, Sq := S \ Sn. Then 
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(a) If Sq / 0, eve1-y i E SQ is an artiC'Ulation point o/ G[S] 

(b} SD contains no self-dornmating vertices. 

(e) So is the t.mique minimal dominator of V\ S contained in S. 

Proof. (a) Let i E SQ· Then P(i) = 0, hence S \ {i} is a dominator, and the only possible 

reason for the presence of i in S is to make G[S] connected. On the other hand, if G[S \ 

{ i}] is also connected, then S is not a minimal connected dominator. Hence G[ S \ { i}] is 

disconnected, i.e. ·i is an articulation point of G[S]. 

(b) Suppose i E Sois a self-dominator. Then i is an isolated vertex of Sv, and Adj5 (i) Ç 

Sq. But then S \ { i} is a minimal connected dominating set, since i is adjacent to one or 

more j E SQ, a contradiction. 

(e) Since Sisa dominator of V, hence of V\ S, and P(j) = 0 for all j E SQ, Sv = S\Sq 

is itself a dominator of V\ S. Further, since P(i) # 0 for i E Sv, Sv is a minimal dominator 

of V\ S. The uniqueness of Sv follows from the fact that it is the set of precisely tbose 

vertices in S that cover some vertex in V\ S not covered by any other vertex in S. □ 

The next two sections of our paper examine valid inequalit ies for P(G, b) and the condi

tions under which they are facet defining. From now on we will assume that P(G, b) is full 
dimensional. 

5 A Class of Symmetric Facets of P (G,b) 

A valid inequality for P( G, b) is one that is satisfied by every u E P( G, b). We call such 

an inequality symmetric if for all j E V, the coefficients of Ujt and ui2 are equal. A valid 

inequality au $ a0 is maximal if there exists no valid inequality o'u $ o0 with o.' 2'.: o. and 

a~ > a, for some j. For any polyhedron in lR~, ali essential (i.e. facet defining) inequalities 
are maximal, but the converse is of course not true. 

Proposition 5.1. Let S be a minimal connected dommator o/ V. Then 

u(S) $ ISI - 1 (5.1) 

is a valid mequalíty for P(G, b). 
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Prnoj. It. follows directly from Proposition 4.1: as S is a dominator, it must have at least 

one vcrtex in any separator. O 

There is no easy, simplc necessary and sufficient condition for the inequalíty (5.1) to be 

facet defining. r-.1axin1ality is somewhat, casier to establish. To put it simply, (5.1) is maximal 

whenever G does not have a certain kind of vertices. 

Given a minimal connected dominator S of V anda vert.ex v E V\ S, we will say that S 

is v-decomposable if G[S u { v}] has an articulation point i such that G[ S u { v} \ { i}) either 

has two components neither of which is the singleton v, or has at least three components. 

\.Ye call the vertex v E V \ S forbidden if it has each of the following three properties: 

(i} S is not v-decomposable 

(ii) vis adjacent to every j E LJ P(i) 
iES 

(iii) v is adjacent to at least two j E S. 

Proposition 5.2. The inequality (5.1) is maximal if and only if G has no forbidden vertices. 

Proof. Necessity. Suppose G has a forbidden vertex v E V\ S. Then the inequality u(S) + 
uv2 ~ ISI - l can be shown to be valid for P(G,b), hence (5.1) is not maximal. Indeed, 

let uv2 = 1, and call B the separator shore containing v. We claim that the shores of such 

a separator can contain at most ISI - 2 vertices of S. For if S n B = 0, then (S n A) Ç 

(S\Adj(v)), and from property (iii) of v, jSnAj ~ ISl-2. If, on the other hand, SnB-/= 0, 
there are two cases: (a) SnA = 0, and (b) SnA-/= 0. ln case (a), from property (ii) of v, A 

cannot contain any vertex of LJ P(i), which implies that each vertex in A Ç V\S is adjacent 
iES 

to at least two vertices ín S; hence IS n BI ~ ISI - 2. ln case (b), since S n A can have no 

vertex adjacent to S n B, and from (i) it requires the remova} of at least two vertices from S 

to disconnect G[S U { v}] without creating a singleton component consisting of v (while the 

creation of such a component is excluded by (iii)), it follows that jSnAI + jSnBj ~ ISl-2. 

Thus u(S) + Uv2 $ ISI - 1 is valid for P(G, b), i.e. (5.1) is not maximal. 

Sufficiency. Suppose (5.1) is not maximal. Then ou ~ ISI - 1 is valid for some a such 

that aik ~ l for ali j E S, Cljk ~ O for ali j E V \ S, k = 1, 2, and at least one of the 

ínequalities holds strictly. If a;k > l, for some j E S, then any u E P(G, b) corresponding 

to a separator with shore A := S \ { i} for some i -/= j violates a:u ~ ISI - l. Thus a
1

k == l 

for all J E S, k = l, 2. Now Jet O:i,1 > O for some v E V \ S. Then v must. sat.isfy (ii); 
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s 

u(S) $ 3 

Figure 1: Maximal vs. non-maximal inequality 

for if there exists e E P(i) for some i E S such that (v, .e) (/. E, then there is a separator 

with shores A = { e} and B = S U { v} \ { i} such that the corresponding solution ü satisfies 

oü = 1s1 - 1 + CXv1 > 1s1 - 1. Also, V must have property (ili); for otherwise V E P(i) for 

some i E S, and there is a separator with shores A = { v} and B = S \ { i}, whose associated 

solution ft satisfies Q'.U + O'.v1 = 1s1 - 1 + CXv1 > 1s1 - 1. Finally, V must also have property 

(i) , for if S is v-decomposable with articulation point i, then there is a separator with shores 

A= {v}US', B = S11
, where S1 US11 = S\ {i}i S"nAdú(v) = 0, whose associated solution 

ü satisfies aü + O'.v1 = IS' u S"I + O'.vl > 1s1 - 1. o 

Example. ln the graph G shown in Figure 1, S - {l, ... , 4} is a minimal connected 

dominator, and the inequality 

~ + V • 

Uu + U21 + U31 + U41 + U12 + U22 + U32 + U42 $ 3 

is valid for P(G, b), where 4 $ b $ 6. S is v-decomposable for v = 5, 7 and 8 (\vith 

articulation point i = 2 in each case), but not for v = 6, which has property (i). \'ertex 6 

also has property (iíi), and is the only such vertex in V\ S. However, without edge (6, 9) 

shown as a dotted line, vertex 6 does not have property (ii), and so the above inequality is 

maximal. Upon insertion of edge (6, 9) vertex 6 acquires property (ií) and the inequality can 

be strengthened by changing the coefficient of u62 from O to 1. 
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\\'e are now rt>adv to addrl'ss thl' i~RU(' of when (5.1) is facpt <lefining. Cc•rtainly, thc 

condttions on thc' ,·ert1ces in \ \ S rt'quired for maximality arr also r<'quired, i.c. ncccssary, 

for (5.1) to bt' facct defining. Howc\' 'r, they are i11 general not Hufficient. Furthcrmore, there 

are conditions concerning the vcrt1ccs in S that are rathcr complcx. 

Ler F be the face of P(G, b) defined by the inequality (5.1), i.e. let 

F := {u E P(G,b): u(S) = ISI -1}. 

F i::. a facet of P(G, b) if and only if every equation au = ISI -1 satisfied by every u E F 
has coefficients 

{ 

1 if j E S 
O) 

1 = o j 2 = 0 if j E V \ S. 

\\'e will u.e the notation a.u = IS - 1 for a generic equation satisfied by all u E F. and 

will start by stating some sufficient conditions for a vertex j E V \ S to have coefficients 

0 1 1 = 0 12 = O. in this equation. \\'e will say that a separator is in F if the corresponding 
point u E P(G, b) is in F. 

Throughout this section we will repeatedly use the following argument. 

Proposition 5.3. JJ for some v E V\ S there exist two separators in F. C and C', such 
that C = C' LJ {v}, then Ov1 = Ov2 = o. 

Proof. Let u and u' be the points in P(G, b) corresponding to C and C', respectively. Then 

Ujk = u;k for j E V\ { v} and k = 1, 2. Hence au- au' = O= Ovt (uv1 - u~1) + Ov2(u112 - u~2). 

But since either uv1 =/=- u~1 or Uv2 =/=- u~2, it follows that at least one of O.vi and Ov2 is equal 

to O. Since the shores are interchangeable, it then follows that ov1 = 0
1

•2 = O. O 

Proposition 5.4. Jf S is v-decomposable for some v E V \ S, then 0 111 = av2 = O. 

Proof. L<•t S be v-decomposable with articulation point i, and let G[S'U { v}) be a component 

of G[S U { v} \ { i} ], with S' =/=- 0. Thcn therc exists a separator C with shor A - S' u { v}, 

B = S \ (S' u {i}), such that l(A u B) n SI= ISI - 1, i.e. C is in F. But C' =Cu {v} 

is also a SP.para.tor in F, with shores A' = A \ { u}, B' = B; hence from Proposition 5.3. 

Oi;J = Ou2 = 0. 0 

Proposition 5.5. If there ex1sts f. E P(i) for some i E S such that ( v, t) <t. E for· ·orne 
V E V\ S, then nu1 = 0 112 = O. 
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Proof. Let C be Hs assumed; t hen thcre exists a separa tor C in F wi lh shores A = Su { v} \ { i} 
and B = { (}; bu t C' = C U { v} is also a separator in F, wi th shores A' = A \ { v}, B' = B. 

Henc-e from Proposition 5.3, Ov1 = C\v:i = O. D 

Propo ition 5.6. 1/ v E P(i) for somei E S such that IP(i)I 2: 2, then nv1 = O'v2 = O. 

Proof. By assumption, there exists C # v, C E P{i). Thcrefore there exists a separator C 

in F with shores .4 = S \ {i}, B = { C, u }; but C' = CU { v} is also a separator in F, with 

shores A'= A, B' = B \ { v }; hence a.t/1 = a-v2 = O. D 

?'fotice that. while the conditions on v stated in Proposition 5.4 and 5.5 are the exact 

converse of the conditions (i) and (ii), the condition of Proposition 5.6 is stronger than the 

converse of (iii), which would only require that v E P(i) for some i. This is consonant with 

the fact that the maximality of an inequality does not imply that it is also facet defining. 

For this to be the case, additional properties are required. 

·ext we show that if G has a vertex for which none of the three conditions listed in 

Propositions 5.4-5.6 is satisfied, then (5.1) is not facet defining. CJ 

,'v 
Proposition 5. 7. Let v E V \ S satisfy conditions {i), {ii) and à.,. 

li ,, 

~ (iii '){ v/= P(i) for some i E S. ~~ ('b 
~ ( '1 f\ 

Then the inequality (5.1) does not define a facet of P(G,b). 

Proof. From condition (i), for any separator with shores A and B, if AnS # 0 # BnS, then 

,(A u B) n SI ~ 1s1 - 2. Thus e is in F only if either A n s = 0 or B n s = 0. Tow suppose 

B n S = 0 (an analogous reasonin~ applies if A n S = 0) . Then for any separator C in 

with shores A. B, we must have A)= S \ {,i1 for some i E S with P({) # 0, and B Ç P(i). 

From condition (ii), v.., cannot belon&. to A.e. hence v E B U C. If v E B, then u E P(2") and 

from condition (iii') {v} = P(i) = B. If v E C, i.e. P(i) i B, then i must belong to A. 

which must be of the form S \ {e} for some f # i such that P(() :f. 0, and B Ç P(l'). Thus 

v belongs to B if and only if i does not belong to A, hcnce the equation 

u,1 + Uv2 = l 

is satisfied by any u E F and thcreforc F does not define a facet. o 

We are now ready to state 11l!cessary and sufficicnt conditions for a large class of inequal

ities of the form (5.1) to be facet defining for P(G, b). 
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LN S bc a minimal connected dominator, with S = Sn U Sq, where Sv = {i E S : 

P(i) r 0} is the uniquc minimal dominator contained in S, and Sq = S \ Sv, wherc every 

j ~ SQ is nn articulation point of G[S]. We cal! the set S orderly, if either Sq = 0, or cise 

So contains no articulation point of G[S], and Sq can be ord('rcd into a sequence 1
1

, ... , i
9

, 

with the prop<'rty that for r -1, ... ,q, G[S \ {1r}] has exactly two components with vertex 
et ' " cl1 t I t { • • } e S' { • • } e S" :.; ~ • ,SU la l1,,,,,lr-l , lr+J, .. ,,1q . 

\\'(' need some notation. Let s = ISI, d = ISol, q ISql. For any separator C, in F 

with shores A,, B., let a, = IA. n Svl, b, = IB. n Sol- Sincc any separator C
1 

in F contains 

exactly one Yertex i E S. we will call C1 of type 1 if S \ { i} is contained in a single shore, 

and of type 2 if (S \ {i}) Ç A1 U B,, with Ai n S # 0 # B 1 n S. Here we are concerned with 

eparators of type 2, with 1 E SQ, otice that for such a separator ai+ b
1 
= d. A collection 

C of type 2 separators will be called representative if it contains cxactly one member C
1 

for 

each i E SQ. \\'e order the members of such a collcction according to the rule 

and we denote 
a:k+i - a1 + a3 + 

2k 
ª2 - a2 + a4 + 

with bik+ 1 and b~ defined in the sarne way. 

(5.2) 

\Vith this notation, a minimal connected dominator S with an orderly SQ is called ex
ceptional if 

(i) s is odd and 

(ii) for any representative collection of type 2 separators 
ar-• a~ - (d - 1)/2 if q is even 
ar a~-• = d/2 if q is odd. 

\-Ve now state the main result of this section. From Proposition 5.7 we know that if none 

of the conditions of Propositions 5.4-5.6 are satisficd, (5.1) does not define a facet of P(G, b). 
So we can assume the opposite. 

Theorem 5.8. Let S be a minimal connected dominator that is orderly, ISI $ b + I, and 

assume that every v E V\ S satisfies at least onc of the conditions stated in Propositions 5.4. 
5.5 and 5.6. Then thc inequality (5.1) defines a Jacet of P(G,b) if and orily if S is not 
exceptzonal. 
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Proof. Sincc every j E l '\ S sat.isfies at lca.st onc of the conditions stated in Propositions 5.4, 

5.5 and 5.6, 0 11 = a'J2 = O for all J E V \ S for any Q such that au = ISI - 1 for ali 

u E F = {u E P(G.b): u(S) = ISI - 1} . We seck nccessary aud sufficient conditions for 

having a,1 = n12 = 1 for ali J E S, assuming that SQ is orderly. 

If we set. to O all O.;k for j E V\ S, k = 1, 2, wc are left with a system 

I)aj1Uj1 + aj2Uj2) = 1s1 - 1 
jES 

(5.3) 

in the unknowns a·1k, j E S, k = 1, 2. If we denote by Fs the projection of F onto the 
subspace indexed by S, i.e. Fs := { u5 E lR.28 : ( u5 , u v\s) E F for some u V\S E JR2(n-s)}, 

then {5.3) must be satisfied by a for all u E F5. We will show that O:jk = 1 for all j E S, 
k = 1, 2, is the unique solution to (5.3) if and only if S is not exceptional, by exhibiting 2s 

points u E Fs that are affinely independent if and only if S is not exceptional. 

\Ve will use the two types of separators in F defined above. The first typc, C, has shores 

A= S\ {i} and B Ç P (i) for somei E SD. Since by assumption ISI ~ b+l, such aseparator 

obviously exists for each i E SD, and its incidence vector u satisfies u 1(S) = ISl-1, u 2(S) = O, 

hence belongs to Fs. The second type, C', has shores A', B' such that (A' U B') 2 (S \ {i}) 

for some i E SQ, Again, at least one such separator in F exists for every i E Sq. since i is 

an articulation point of G[S): assigning the vertex set S' of one component of G[S \ {i}), 

to A', and the vertex set S" of the second component to B' (since Sq is orderly, there are 

only two components), or vice versa, yields a separator whose incidence vector u satisfies 

u1 (S' ) = IS'I, u2(S') = O, ui (S") = O, u2(S11
) = IS"I, with IS'I + IS"I = ISI - 1. Clearly, 

u E Fs. 

If we choose d vectors u1 E Fs corresponding to separators of the first type, one for each 

i E SD, and q vectors ui E Fs corresponding to a representative collection of separators of 

the second type, that yields d+ q = s vectors ui E Fs. If we now choose for every ui E Fs 

its symmetric counterpart obtained by interchanging the two shores of each separator, i.e. 

interchanging ui and u2 for each i E S, we obtain another s points in F5 . We claim that 

these 2s points are affinely independent if anel only if S is not exceptional. We will show 

this by representing each point as the row of a square matrix .M of order 2s, and proYing 

that M is non-singular if and only if our condition is satisfied. 

We will denote the m x n matrix of all 1 's by Jmxn, the identity of order n by ln, and we 

will write ln for lnxn• Let lf = Jd - Id, i.e. H is the d x d matrix of ali 1 's, except for the 

diagonal, whích has ali O's. Let D and D be q x d matrices of O's and 1 's, with D+ D = Jqxd, 
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and let Q and Q be q x q matrices of O's and 1 's, Q uppcr triangular and Q lower triangular, 

with o·s ou the diagonal, and with Q t Q = Jq - lq. Then our matrix is of thc form 

D Q D Q 

( 

H J O O ) 

1'1 = Q Q H J • 
D Q D Q 

Figure 2 shows the componcnts of an instancc of M with d = 4 and q = 3. 

u 
1 1 

l} (J 
1 

D· D= O 
1 

1 1 ) 
H= 

o 1 
J= 

l o O 1 , 
1 o 1 
1 1 1 

o O 1 

(: o o 

D· Q=O 
1 

D· ( 
o o n D= 1 1 o Q = 1 O 

1 1 o 1 1 

Figure 2: Illustration of the components of M. 

It is not hard to see that each row of (H, J, O, O) is the incidence vector of a u E Fs 

corresponding to a separator C of the first type, with A = S \ {i} for some i E Sv, and 

B n S = 0 (B e P(i)), i.e. uj1 = 1 for all j E S\ {i}, ui1 = O, and uí2 = O for all j E S. The 

O's on the diagonal of H represent the entry corresponding to i in S \ {i}. Similarly, each 

row of (D, Q, D, Q) is the incidence vector of a u E Fs corresponding to a separator C' of 

the second type, with A'= S' represented by the l's in the first half of the row, and B' = S" 

represented by the 1 's in the second half of the row, whereas the i in S \ { i} is represented 

by the O's on the diagonal of Q and Q. This describes the upper half of .M. The lower half 

is obtained by interchanging the roles of u1 and u2 . 

Since S is orderly, if SQ -:j:. 0 then the reprcsentative collection of type 2 separators e: 
corresponding to the rows of (D, Q, D, Q) can be ordered according to increasing or decreas

ing size of their shores A~. Here we choose to arder them decreasingly, which corresponds to 

having Q upper triangular, Q lower triangular (with O's on the diagonal), and the row sums 

of D and D satisfying a1 2: a,+1 and b1 ~ b1+1, i = 1, ... , q - l, rcspectively. 

Now let's first look at the case when SQ = 0 and so S = So, i.e. the minimal connected 

separator S is also minimal as a separator. Then our matrix M reduces to ( ~ i ) , 

which is obviously nonsingular. 
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'cxt assume SQ :f:. 0. i.e. ali thc submatriccs of Af are prcsent. 

Using the standard procedurc for inversion of partitioned matriccs, it is straightforwar<l 

to show that the 2s x 2~ matrix ,'1 is nonsinguJar if and only if the 2q x 2q matrix 

( 

Q _ _ 1 DJ Q __ 1 DJ ) ( Q Q- ) d- 1 d- 1 o o 
R = -------- = -

Q- __ 1 DJ Q __ 1 DJ Qo Qo 
d-1 d-1 

is nonsingular. Furthermore, the sarne tcchniques can be used to show that the 2q x 2q 

matrix Ris nonsingular, if and only if the q x q matrix R := Q0 - Q0Qõ1Qo is nonsingular. 

For R to be well defined, Qõ1 must exist, i.e. Q0 must be nonsingular. This can be 

shown to be always the case. Indeed, 

1 1 
Qo=Q--DJ=

d-1 d-1 

-ai d - 1 - a1 

-a2 -a2 

Subtracting column 1 of this matrix from every other column yields a matrix that is 

upper triangular except for its first column, and whose determinant, like that of Q0 , has 

absolute Yalue aq/(d - 1). Hence Q0 is nonsingular, i.e. Ris well defined. 

To examine the conditions under which R is nonsingular, we start by computing its 

elements. We have 

Q-1 -o -

Q= 1 
d-1 

-1 o o 
1 -1 o 
o 1 -1 

o o o 
o o o 

d-l-a1 
-aq 

a1 -a2 
-aq 

a2-a3 
-aq 

09 - 2-0q-l 

aq 

Oq-1 

-aq 

d - 1 - bq-1 d - 1 - bq-1 

d - 1 - bq d - l - b9 
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and 

62-1 -b!Z_2+1 2 b!Z-1 -b!Z-2+1 2 "2-1-b!Z_2+l 
(lq Clq aq 

bq-bq-1 +1 
2 

bq-b!l-1 +1 
2 

bq-b2-1+1 
-2 

<>q aq Oq 

2 , .. 

brb1+l _ 2 
Oq 

b3 - b2+I -2 
aq 

b!l_1-bg-2+1 (d+l) o.q 

bq-bq-1 +1 
(d+l) Oq 

"9-1-bg-2+1 b +b -b -1 O.q q q-1 q-2 

bq-bg-1 +1 b b 
aq q-aq- q-1 

We claim that R is nonsingular if and only if S is not exceptional. To prove this, we 

will perform a linear transformation on R that does not affect the absolute value of its 

determinant. \Ve will use the fact that many elements of R are equal to each other and some 

pairs of entries differ by the sarne constant. By subtracting column i - 1 from column i for 

i = q, q - 1, ... , 2, and dividing every entry by d - 1, we obtain the following matrix whose 

determinant has the sarne absolute value as that of R: 
b1-da9 1 o o h 
aq(d-l) aq 

(bz-b1 +l)-(d+l)a2 o 1 o bz-b1+l 
aq(d-1) Oq 

(b3-b2+1)-2a2 -1 o o b3-b2+l 

R' = (rij) = 
aq(d-1) Oq 

(b2-1-b2-2+1)-2a2 o o o b2-1-b!Z-2+l+a2 
oq(d-1) aq 

(bcbq-1 + 1}-2a2 o o -1 b9-b9-1+1 
a9 (d-l) aq 

Next, letting r1 denote column j of R', we subtract from column 1 

ru • r2 + r21 • ra + (ru + r31) • r4 + (r21 + r4i)rs + • · · 

{
+(r11 + r31 + · · · + rq-i,1)rq (if q is even) or 

+(r21 + r41 + · · · + rq-1,i)rq (if q is odd), 

and we subtract from column q 

r1q • r2 + r2q • r3 + (r1q + raq) • r4 + (r2q + r-1q)rs + • • • 

{
+(r1q + r39 + · · · + rq-1,q)r9 (if q is even) or 

+(r2q + r4q + · · · + r 9-1,q)r9 {if q is odd). 
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The outcome is thc> nmtrix H', whose dcterminant also has the sarne absolutc value as that 

of R: 
o 1 o o o o 
o o 1 o o o 
o - 1 o o o o 

ll' = 

o o o o 1 o 
Wq-1,l o o -1 o Wq-1,q 

Wq,I o o o - 1 Wq,q 

It is not hard to see that ldet(l1')1 = lwq-1,1 • Wq,q - Wq, 1 • Wq-i,ql• Here 

and 

if q is even 

if q is odd 

if q is even 

if q is odd 

if q is even 

if q is odd 

if q is even 

if q is odd 

Substituting for each riJ its value from R and using the notation (5.2), we obtain: 

• for q even, 

• for q odd, 

Wq-1,1 

Wq,1 

Wq-1,q 

Wq,q 

-
-

-
-

((br1 
- br2

) - (d+ q - 2)aq + ~ - 1) /aq(d - 1) 

( ( bi - bY 1) - ( d + q - 1) aq + V / aq ( d - l) 

((br
1 br2

) + i - 1 + aq) /aq 

((bi - br
1

) + ~) /aq; 

Wq-1,I - ((br
1 

- br
2

) - (d+ q - 2)aq + ~) /aq(d - 1) 

Wq,I - ((bY - br1
) - (d+ q - l)aq + ~) /aq(d - 1) 

Wq-1,q - ((br 1 
- bf 2

) + ~ + aq) /aq 

Wq,q - ((bf - br
1
) + ~) /aq 
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Thus for q even, we havc 

Wq- 1,l • lllq,q - Wq,l • Wq- 1,q = 
[((b1 1 

- br2
) - (d+ q - 2)aq + § - 1) · ((b~ - br1

) + !) 
- ((b~ - br

1
) - (d+ q - l)aq + V · ((br1 - br2) + i - 1 + aq)] /a~(d - 1). 

Clearly, det(H') # O if and only if the numerator is nonzero, so wc may ignore the 

denominator. !Vlultiplying through and collecting terms thcn yields for the numerator the 
expression 

Similarly, for q odd we have 

Wq-1,l • Wq,q - Wq ,l • Wq-1,q = 
[ ( (br1 

- br
2

) - (d+ q - 2)aq + Y) · ( (bt - br 1) + Y) 
- ((b1 - br

1
) - (d+ q - l )aq + Y) · ((br1 

- br2
) + Y + aq)] /a~(d - 1), 

and the expression we get for the numerator, after multiplying through and collecting terms, 
is 

Now we claim that for admissible values of d, q, ªi, bi, j = 1, ... , q, the expression E, if q 

is even, or E', if q is odd, vanishes if and only if S is exceptional. 

Assume first that q is even. Then E= O if and only if br1 
- b~ = (1 - d)/2. But since 

br
1 

- b~ = Jd - ar1 
- ~d+ ag, E= O if and only if ar1 

- a~= (d - 1)/2. This is precisely 

condition (ii) of the definition of S being exceptional when q is even. Furthermore, the last 

equation implies that d is odd, which ín tum implies that s is odd (since q is even). thus 

condition (i) of that definition is also satisfied. 

Assume now that q is odd. Then E' = O if and only if b! - br1 = d/2. But b! - br1 = 
qi

1
d-a~ - qdl +ar

1
' hence E'= o if and only if a1-ar1 = d/2, which is precisely condition 

(ii) of the exceptionality of S when q is odd. Furthermore, in this case d is obviously even, 

and since q is odd, s is also odd, which is condition (i). 

Assume now that S is exceptional, i.e. conditions (i) and (ii) are satisfied. \Ve claim 

that in that case there cxists no set of 2s affinely indepcndent points u E Fs. Indeed, the 

only candidates are scparators of type 1 with i E S0 , or separators of type 2 with i E SQ, 
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since thC' only othcr possiblc case, that of a typ<' 2 scparator with i E So, is excluded by 

th<' fact that if SQ # 0, SD ronta.ins no articulation point of G[S). But thc only separators 

of type 1 with , E: S0 are tho~l' corrcsponding to thc rows of H, and by assumption every 

rcpre'cntativc sct of s<.'parators of type 2 satisfies the conditions that make S exceptíonal, 

which pro\'eS our claim. O 

Turning now to the case when S is exccptional, we start by examining the situation where 

q = ISQI = 1, say SQ = {i}. 

By the definition of exceptionality, d is even, a1 - d/2 - b1, and each of the two 

components of S o is 2-connccted. Let p := d/2. 

Propositiou 5.9. Let S, with Sq = {i}, be exceptional. Then the inequality 

(5.4) 

is val1d for P(G, b). Furthermore, (5.4) is facet defining if and only if every v E V \ S 

satisfies at least one of the conditions of Propositions 5.4, 5.5 and 5.6. 

Proof. Suppose that S, with SQ = {i}, is exceptional. Then the maximum of the left hand 

side of (5.4), say J(u), over ali u E P(G, b), is p(2p - 1). Indeed, let ü E F be a point for 

which J(u) attains its maximum. If i belongs to the separator C associated with ü, then 

the shores of C must be A = S' and B = S" or vice versa, where G[S') and G[S"] are the 

two components of G[S \ { i}]. Thus üi1 = 1, üi2 = O for ali j E S', üJi = O, ü12 = 1 

for ali j E S", üJk = O, k = 1, 2, otherwise, and f (ü) = p • p + (p - l )p = p(2p - 1). If 

the separator does not contain i, it must contain some .e E S, [ f. i, but since €. is not an 

articulation point, all of S \ { .f} must belong to the sarne shore. If this shore is A, with 

B Ç P(f). then ü31 = 1, u12 = O for all j E S \ {i, e}, Üjk = O, k = 1, 2 otherwise, and 

J(ü) = p(2p - 1) + O = p(2p - 1), as claimed. If (S \ {f}) Ç B, with A Ç P(e), then 

ü1 , = O, ü12 = l for ali j E S \ { e} (including j = i), u1k = O, k = l, 2 otherwise, and again 

f(ü) =O+ (p - l)(2p - 1) + (2p - 1) = p(2p - 1). This proves that (5.4) is valid. 

~ow let F' := {u E P(G,b): u satisfies (5.4) at equality}. Then F' is a facet of P(G,b) 

if and only if every a such that au = p(2p- 1) for all u E F' satisfies o1k = O for j E F \ S. 

k = 1,2, and 

0 
_ {p j E S \ {i} 

Jl - Ü j = 1 ª12 = {
p - 1 } E S \ {i} 
2p- 1 j = i (5.5) 

It is easy to see that Propositions 5.3-5. 7, which werc stated for the case of incquality (5.1), 

remain valid for the case of mequality {5.4). Therefore, a 31 = aJ2 = O for ali j E l' \ S if 
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and only if every v E \ • \ S sal isfics at lcast onc of Lhe conditions of Proposition 5.4, 5.5 

and 5.6, with thc impliration that, if thcrc cxists u E \/ \ S that violates all three of these 

condition~, thcn (5A) does not define a facet of P(G, b) . Assmning now that o:1,. = O for ali 

j E l • \ S, k = 1, 2, we show that the co0.ffici0nts o.Jk for j E S, k = l , 2, satisfy (5.5), by 

the procedurr used in the proof of Theorcm 5.8, i.e. by exhibit,ing 2s affinely independent 

point, U E Fs = { tl-. E !R.2~ : ( lt S', U \'\S) E F' for some U V\S E JR2(n-6)}. As in the case of that 

proof. we use the d points tt1 E F5 corrcsponding to the separators C1 of type 1 with shores 

AJ = s \ {J}, j E SD, B; ç P(j), and the onc point 'Ui E Fs corresponding to the separator 

of type 2 e: with shores A~ = S', B: = S", where G[S'] and G[S"] are the two components 

of G[S \ { i}]. This is a collection of d+ l = s points in F5, and taking the symmetric 

counterparts of the e points, obtained by interchanging u1 and u2 , we obtain an additional 

s points. The matrix A1 whose rows are the incidence vectors of these points has the sarne 

structure as the corresponding matrix in the proof of Theorem 5.8, with the only difference 

that here Q = 1. As in that proof, M is nonsingular if and only if R = Q0 - Q0Qõ1Q0 is 

nonsingular, where 

1 1 
Qo = Q---DJ = O---·a1, Q

_1 _ d- l - 1 - 1 d - 1 - b1 
Qo = 1--d---1 DJ = 1--d---1 b1 = -d---1-d-l d-l 

o - ---, 
ª1 

and 

R _ -~ _ d - 1 - b1 (- d - l) d - 1 - b1 

d - l d - 1 a1 d - 1 

(d - 1 - b1)2 - a~ _ l - 2a1 :/= O 
(d - l)a1 (d - l)a1 

This proves that Ris nonsingular, hence (5.4) is facet defining. D 

Remark 5.10. Jf Sv contams an articulation point e =I= i of G[S], then the inequality {5.4) 

ts not valtd. 

Proof. Suppose G(S] has a second articulation point, say e i= i. Let G(S'] bc a component 

of G[S \ { l}) such that ir/. S', and let S" := S \ (S' u { f} ). We claim that in this case (5.4) 

is not valid. Indeed, consider the separator C whosc shores are A = S' and B = S", with 

associated ü E P(G,b). Then 

p • ü1(S \ {i}) + (p- l)ü2(S \ {i}) + (2p- l )ü.2 = 
- P • IS'I + (p- l)(IS"I - 1) + (2p - 1) 

- IS'I + (p - 1)(1S'I + IS"I - 1) + (2p - 1) 

- IS'I + (p- 1)(2p - 1) + (2p - 1) > p(2p - 1). 
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D 

\\'hen thc minimal connected dominator S is not orderly, inequality (5.1) may or may 

not be facet defining. For any speci.fic non-orderly S it is not hard to tel1 whether (5.1) is 

facet-defining1 by applying the sarne analysis as in the proof of Theorem 5.8, with Q and Q 
modifie<l to reflect the structure of S; but this analysis becomes unwieldy for a general S. 

However. when (5.1) is not facet defining cither because S is not orderly, or because S, while 

orderly, is exceptional, there is another family of facet defining inequalities that dominates 
s. 

6 A Class of Asymmetric Facets of P(G, b) 

Consider any minimal dominator S of G, not necessarily connected. The inequality 

{6.1) 

is clearly valid for P(G, b), and various liftings of (6.1) may yield facet defining inequalities. 

The first question that arises in this context, is when does {6.1) define a facet of P(G, b), 

i.e. when is it the case that all the lifting coefficients of (6.1) are equal to O? The next 
Proposition settles this question. 

As before, we assume that ISI ~ b, for otherwise (6.1) is implied by (2.5), hence redun
dant. 

Proposition 6.1. The inequality {6.1), where S is a minimal dominator of G. de.fines a 

facet of P(G, b) if and only if conditions (a), {b) and (e) below are satis.fied: 

{a) V\ S = UiesP(i) 

{b) S contains no self-dominator 

(e) S is an independent set. 

Prooj. Let F be the face of P(G, b) defined by (6.1)_, i.e. F := { u E P(G, B) : u1(S) = 

ISl-1}. 

Necessity. Suppose S violates (a), i.e. thcre exists v E W := ('' \ S) \ (U,esP(i)). This 

means that jAdj(v) n SI~ 2, say {(v, i), (v,j)} ç; E for some i,j E S. Then u11 + uv2 ~ 1, 
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u11 + u,,2 $ 1, hut for ,rny u E F. u11 + 1111 ~ 1, sinC'C Ut1 = 1 for ali but onc índex e E S. It 

follows that u,,2 = O for all u E F, hcncc F is not a fac<'t. 

Supposc now that S \'iolatcs (b), and lct i E S be a self-dominator. We claim that for 

any u E F, u,1 + u,2 = 1. and thus F is not a facct. Inclced, let C bc a scparator in F such 

that l E C; then shore ..-l of C must contain S \ { i} in ordcr to have u1 (S) = ISI - 1, and 

since S \ {i} is a dominant of V\ {i}, there are no vertices left for B. Hence i E A U B, 

whirh is equivalent to u,1 + u,2 = 1. 

Finally, suppose S violates (e), and let ( i, j) be an edge with both ends in S. Then 

u,1 + ui2 $ l, Ut1 + Uj2 $ 1, and uí1 + u 12 $ 1, uj1 + ui2 $ 1. Thus if Uí1 = 1 or u,1 = 1, then 

u,2 = u12 = O. But since ui1 + Uj1 ~ 1 for ali u E F, this is always the case, i.e. Ui2 = Uj2 = O 

for all u E F. Hence again F is not a facet. 

Sufficiency. Since every j E V\ S belongs to some pendent set, say P(i), and since S is 

independent, it is easy to see that A = S \ { i} and B = { i, j} are the shores of a separator 

in F, say C, and that C' = CU {j} is also a separator in F, with shores A' = A and 

B' = B \ {j}. Hence, from Proposition 5.3, for any equation au = ISI - 1 satisfied by all 

u E F. O:Jk = O for ali j E V\ S, k = 1, 2. Now considera coefficient Oj2 , j E S. Since S is 

an independent set, the point defined by ue1 = 1 for e E S\ {j}, Ut1 = O for e E (V\S)U{j}, 

Uj2 = 1, Ut2 = o for e E V\ {j}, is in F. But if O:j2 -:/: o, this point violates Q:U = 1s1 - 1. 

Hence a:j2 = O for ali j E S. 

As to the coefficients Oji, j E S, if we set to O all Ojk, j E V\ S, k = 1, 2, and all oj2 , 

j E S. we obtain the system 

L aj1 uj1 = 1s1 - 1 
jES 

in the unknowns a::, 1, j E S, which must be satisfied for every u E Fs, where Fs := { uf E 

IR" : (ur, ut uv\s) E F for some (ut uV\S) E lRª x JR2(n-s)} with s = ISI. If we choose the 

ISI points ui E Fs, i E S, defined by uí1 = 1 for j E S \ {i}, u!1 = O, we obtain a system 

whose unique solution is O:j1 = 1 for ali j E S. O 

Figure 3 shows an example of an inequality (6.1) that is facct defining for P(G, b). 

From Proposition 6.1 it follows that the inequality (6.1) is facet defining only under the 

very special conditions (a), (b), (e). When these conditions do not hold, (6.1) can be lifted 

or otherwise gencralized to yield some facet defining inequalities. There are many valid 

generalizations, but hcre wc will bc concerned with threc classes of such inequalities: the 
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Figure 3: A facet defining inequality (6.1) 

first class is obtained by lifting the coefficients aj2 , j E S, the second class comes from lifting 

the coefficients a,32 , j E V\ S , before j E S, while the third class involves a different type of 

generalization. 

7 First Generalization 

Let S be a minimal dominator that satisfies conditions (a) and (b), but not condition (e), of 

Proposition 6.1. Further, let S1, ... , Sk be the vertex sets of the components of G[S]. ln each 

component G[St] such that IStl > 1 we choose an ordered set of vertíces It = { V1, ••• , Vq} 

with the following properties (here Adj(vi) refers to adjacency in G[Se]): 

(i) for all i E {2, ... , q }, (vi, vi) rt Ee for all j E {l, ... , i - l}, i.e. It is an independent 

set; 

(ii) for ali i E {2, ... , q}, there exists j E {l , ... , i - 1} such that Adj( vi) n Adj(vi) # 0, 
i.e. vi is at an edge-distance of 2 from the vertex set { v1, ... , Vi-d. 

(iii) It is maximal. 

Such a set always exists and is obviously not unique. Figure 4 shows an example of a 

component G[Se], along with two different sets h Ncxt we define a function ô : St ➔ Z as 

follows: 
IAdj(v1)I if V= V1 

i-1 
õ(v) = IAdj(v,) \ U Adj(v1 )1 + 1 if v = vi for somei 2:. 2 (7.1) 

J=l 

o if v E St \ lt 
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Tht' numbcrs ó( v,) for vJ E Ir cnn b, int crpr<>t.ed as t he dcgrec of vC'rtex v
3 

in a spanning 

trt'l' Tt of G{Sr] ronstrurted as follows. For ali v E Sr, ddin<' Adf(v): {v} UAdj(v). 

Initialization. Choose some 11 E Sr, sct u1 := u and put v1 into T, as a markcd vertcx. 

Put into Tr ali \'CrtkC's II E Adj(vi) anel ali cdges joi11ing th<>m to v
1

. 

k 1 

Iterat ive stcp k. C'hoosc some u E Se \ U Adf ( v1) such that Adj ( u) n Adj ( v1) :/= 0 for 
J 1 

some j E {l, •••• k-1}, set vk := v, and put vk into T, as a marked vertex, by joining it 

through an edge to some (arbitrarily choscn) unmarked vertex of T,. 

k 1 
Put into Tr aJI "ertices v E Adj(vk) \ U Adj(v1) and ali cdges joining them to vk. 

J 1 

Stop when all "ertices of Se have been included in Tr. 

It is not hard to see that the marked vcrtices of T,. form an ordered set satisfying the 

conditions defined for ft. If the set of vertices at edge-distance k from v
1 

is considered levei 

k of Tt, then the set of ali vertices at even levels of Tt, which is the set of all marked vertices 

of T,, is precisely the independent set Ie defined by conditions (i), (ii), (iii). Note, however, 

that the spanning tree Tt is not uniquely defined because of the freedom of choosing the 

unmarked vertex of T, to which a newly marked vertex vk is joined by an edge. Figure 5 

shows an example of a spanning tree Tt associated with the set IJ of Figure 4. 

o 

Il - {1,6,9,10,12} 

Il - {10.2.3,4.5.12} 

) 
: Two ordercd sets IJ, Il in G[St], satisfying (i). (ii), (iii). 
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ó:;:; (4, 3, 2, 1, 1) 

íFigure 5~ A spanning tree Ti associated with Ij of Figure 4. 

~ 
Theorem 7.1. Let S be a minimal dominator of G satisfying conditions (a) and {b}, but 

not ( e). of Proposition 6.1, and let G[Se], e:;:; 1, . . . , k, be the components of G[S]. For each 

singleton component S1. :;:; { i}, set ói = O, and for all other components G[Se] define 6
1 

= õ(j) 
for· ali j E Sl by {7.1}. Then the inequality 

u1 (S) + L ÓjUj2 ~ 1s1 - 1 
jES 

is valid and facet defining for P(G, b). 

(7.2) 

Proof. If the inequality u1 ( S) ~ ISI - 1 were valid for the polytope P( G, b) restrícted to the 

space of the variables Uj1, j E S, then we could lift it to (7.2). However, if we set to O all 

the variables missing from u 1(S) ~ ISI - 1, the remaining polytope is just the unit cube ín 

R" and the inequality u 1(S) ~ ISI -1 is invalid. However, if instead we project P(G, b) onto 
JR26. 

Proj5 (P(G,b)) := {u5 E lR2ª: (u5 ,uv\s) E P(G,b) for some uv\s E JR2(n-s)}, 

then the inequality u1 ( S) ~ 1 SI - 1 is valid for the polytope P* e lRs, 

P* := {u5 E Proj5 (P(G,b)): tLj2:;:; O, j E S}, 

and so it can be lifted by the well known sequential lifting procedure (see e.g. (8]). 

Lct j 1, ••• , j 11 be any numbering of the vertices in S, such that within each component 

GIStl of G[S], vertices in J,_ precede those in St \ It and are numbered according to their 
positíon in I,. 
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\\'e now calculate thc lifting cocfficicnts of the variablcs Uj2 for j = j1, •• . , j 6 in that 

sequenc . But first, we note that u1 (S) ~ ISI - 1 is not only valid for p• , but also facct 

defining. Indeed, for C'ach I E: S thc poinl u8 dcfined by u11 = 1 for j E S \ {i}, uil = O, 

u,2 = O, J E S, is in p• and satisfies u1(S) = ISI - 1. To see this, note that cach such 

point come ' (through projection and restriction) from the incidcnce vcctor 1, E P(G, b) of 

a separator C that has as its shores A = S \ { i} anel B = P(i). Clearly, the ISI points uf 
defined abm·e, one for each i E S, are affinely independent and so u1(S) ~ ISI - 1 defines a 

facet of p•. 

For the first variable, Uj12 , we solve 

and we find that the maximum is ISI - 1 - IAdj(j1)I, since setting uii2 = 1 forces to O u11 1, 

and all the variables Uj1 for j E Adj(j1). This gives for u112 the coefficient 1Adj(j1)1, which is 

the difference between the maximum of the objective function with and without uii2 set to 1. 

But this is precisely 631 as defined by (7.1). Further, if we denote by u(b3J the maximizing 

solution (including the variable fixed at 1) that yielded the coefficient ôjp namely uii2 = 1. 

Uj1 = O for j E Adt(J1), u11 = 1 for j E S \ Adj" (j1), we find that it corresponds to a 

separator C with shores A= S\Adj*(j1), B = {ji}, and satisfies u1(S) +b11 u31 2 ~ ISl-1 

at equality. 

Suppose now that these properties hold for j = j 1,j2 , . .. ,Jk-i, i.e. that the coefficient of 

uí2 is 61 for j = j 1,}2, ... ,Jk-l, and that the solution u(bí) for which the maximand attains 

its bound satisfies the corresponding inequality at equality; and let j = Jk· We then have to 

solve 

J/r-1 

max{u1(S) + LôjUj2: u E Proh(P(G,b)), Uj,.2 = 1, Uj,2 = O for ali r > k}. 
J-)1 

To simplify the discussion, assume for the time being that j 1, ... , Jk belong to the sarne 

component of G(S]. Now the maximum of u1(S) + I:1;]
1 
b3u12 without setting Uj"2 = 1 

is ISI - 1. Furthermore, this value is attained for a solution u(ôk-d that has u12 = 1 for 
k- 1 k-1 

J = j1, ... ,jk-1, uJI = O for j E U Adj*(jr) and u 31 = 1 for S \ U Adf(jr)- This solution 
r=I r=l 

k-1 
corresponds to a separator C with shores A = S \ U Adf(jr), B = {j1, ... ,ik-d, and it 

r 1 
}4 1 

satisfies u1 (S) + 'E 61 u 12 $ ISI - 1 at equality. Since Ó; 2:: 1 for j :::;;; j 1 .... , ik-t, we may 
} }I 
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as.-.umc wlog that thl' impact of forcing uJ,.2 to 1 on thc valuc of the maximum is measured 

by tlw numbcr of vnriables u
11

, j e= S, newly forced to O. But this is prcciscly the number 
k I k 1 

IAdf(jk} \ U Adj(jr)I = IAdj(jk} \ U Adj(jr)I + 1, which is ÓJ4 according to (7.1). Thus 
r l r l 

tht' "alue of thc maximurn is ISI - 1 - c5Jk' and hcncc thc coefficient of uJ,.2 is c51,.. 

ln tlw above discussion we have assum<'d that j 1, •.. , Jk all belong to the first component. 

Rrmo,·ing now this assumption, wc see that nothing changes. If it is the first vertex of a new 

componcnt. then forcing Ui,2 to 1 will reducc th<' value of the maximum by IAdj(jt)I, since 

all the vertices adjacent to j 1 belong to the new component, and evcrything in the sequei 

remains the same. This proves that (7.2) is vali<l for Projs(P(G, b)). Furthermore, (7.2) is 

also facet defining for this polytope, since at every step of the lifting procedure, the solution 

u(ô
11

) that ma.ximizes the objective function, amended with Uj,.2 = 1, is independent of all 

the previous solutions (has a component u J,.2 = 1 in a column in which ali previous solutions 

had a coefficient uJ,.2 = O). 

\\·e can now lift the inequality (7.2) from the subspace of the projection to the full space. 

\Ve claim that the lifting coefficients for Ujk, j E V\ S, k = 1, 2, are all equal to O, and 

that the lifted inequality obtained this way is facet defining for P(G, b). 

The inequality (7.2) is certainly valid for P(G, b). Let F = {u E P(G, b) : u1(S) + 
'E

1
es c5;uJ2 = jSI - l}. Then F is a facet if and only if any equation au = ISI - 1 satisfied 

by all u E F has coefficients a 11 = 1, aj2 = c51 for j E S, and o.1k = O for j E V\ S, k = 1, 2. 

For the coefficient a
1
k, j E S, k = l, 2, this follows from the fact, proved above, that (7.2) 

defines a facet of Proj5 (P(G, b)). As to the coefficients ajk for j E V\ S, a reasoning similar 

to that underlying Proposition 5.3 shows that aj1 = O if there exists a separator C with 

shores A, B such that j E A, and C' = CU {j} is also a separator. Similarly, o.12 = O if 

there exists a separator C with shores A, B such that j E B, and C' = Cu {j} is also a 

separator. Now from the minimality of S and conditions (a), (b) of the theorem, j E P(i) 

for somei E S. Let ü E F be such that ü,1 = O, and define the separator C as having shores 

A= {t E S: ü
11 

= l} and B = {t E S: üt2 = 1} u {j}. C is clearly feasible, since j is not 

adjacent to any vertex in S \ { i}. But thcn C' = C u {J} is also a separator, with shores 

A' = A and B' = B \ {j}. This proves that o.12 = O for all j E V\ S. Now let u E F be 

such that ii,
1 
= 1, and define the separator C as having shores A := { e E S : u11 = 1} U {j} 

and B = { f E S: i.Lt2 = 1 }. Clearly C is feasible, but C' =Cu {j} is also a separator, with 

shores A'= A\ {j} and B' = B. Thus a11 = O for all j E V\ S. □ 
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8 Second Generalization 

:'\ow we turn to thc second class of lifted inequalities. Let S bc a minimal dominator of 

G free of sclf-dominators, anel lct T := {j E V\ S : j r/, UiesP(i)}. ln other words, 

T := {J E \ ' \ S : IAdj(J) n SI ~ 2}. Consider thc graph G[S u T], and denote by G(S, T) 

the biparti te subgraph obtaincd from G[S U T] by deleting all vertices j E S \ Adj(T) and all 

edges (1-1) such that {1,j} e S or {i,j} e T. Let G(St, Te), f = l, ... , k be the components 

of G(S. T). ln each component e E {1, ... , k }, we construct a spanning tree 1é as follows. 

lnitialization. Choose some v E Tt, set v1 := v, and put v1 into 1é as a marked vertex. Put 

into 1é all vertices in Sr adjacent to v 1 and all edges joining these vertices to v1. 

Itera tive Step k. Choose some v E Te \ { v1, ... , Vk-d such that Adj ( v) n Adj (vi) n Se # 0 
for sorne j E {1, ... , k - 1} (i.e. v has a common neighbor with some marked vertex vJ, 

j E {l, ... , k - 1} ), set Vk := v, and put vk into 1é as a marked vertex by joining it through 

an edge to some arbitrarily chosen unmarked vertex of Te. 

Put into 1é all vertices in St \ Te adjacent to vk and all edges joining these vertices to vk. 

Stop when all vertices of G(S1., Te) have been put into Te. 

Clearly, the marked vertices of 1é are precisely those in Tt, and they forro an ordered set 

{ v1, ... , v9}, where q = IT!.1- Furthermore, if Adj ( v) denotes the set of vertices adjacent to v 

in G(S1., T1.), then the degree in Te of v E T1. is 

if V= V1 

if v = Vi for some i > 1. 

The spanning tree 1é depends on the sequence in which the vertices v1 , ... , v9 are selected 

for marking, and on the choice of the edge that joins the newly selected vertex to some 

unmarked vertex of Te, i.e. to some vertex of Se 

t\ext we notice a remarkable property of the spanning trees 7,. 

Proposition 8.1. Let 1é be a spannmg tree of G(St, Tt) constructed as above, let v1, ... , v9 

be the assoczated sequence of vertices m Tt, with q = IT,.j. Define 

1(v) := deg(v) - 1 (8.1) 

for ali v E Tt. Then for any contiguous subsequence of { v1, ... , v9} starting with i·1, say 
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{t·1, ... , t'r}, r $ q. we havc 

r 

L,(v,) = IAdj({v1, .. ,,vr})l- l. 
l 1 

(8.2) 

Prooj. By indurtion. For r = 1 (8.2) holds by definition. Suppose (8.2) holds for r = 
1. .... t - 1. nnd let r = t $ q. Then 

t-1 

- L ;(vi)+ ;(v1) 

t-1 

- IAdj({v1, ... , Vt-d)I - 1 + IAdj(vt) \ LJ Adj(v
3

)1 
J=l 

- IAdj({vi, ... ,vt})l-1. 

o 

Figure 6 shows an instance of the bipartite graph G(St, Tt), along with two spanning 

trees corresponding to different orderings of the vertices of Tt, and the associated numbers 
;. 

:Notice that in the spanning tree T/, 

2 3 

L ;(i) = I: ;(i) = 5 and IAdj( {1, 2} )1 = IAdj( {1, 2, 3} )1 = 6. as required by (8.2). 
i=l i=l 

4 8 

Also. L ;(i) = L ;(i) = 6 and IAdj( {1, ... , 4} )1 = IAdj( {1, ... , 8} )1 = 7. 
i=l i=l 

ln T/, 

3 

I:1(i)=3 
1=1 

4 

I:1(i)=4 
1-1 

5 6 

and IAdj( {1, 2, 3} )1 = 4, 

and IAdj( {1, ... , 4} )1 = 5, 

L 1(i) = }: 1(vi) = 5 and IAdj( {1, ... , 5} )1 = IAdj( { 1, .... 6} )1 = 6 
i=I i=l 

ln all of thcse cases (8.2) is satisfied. On the other hand, subsets of Tt that do not 

representa contiguous subsequence of {v1, ... ,vq}, or do not contain v1, may violate ( .2). 

ln the spanning tree T,1, for instance, -y(2) + 1(4) = 4, but IAdj({2,4})1 = 6. Also. in 7;2, 
-y(6) + ~,(7) = 2, but IAdj( { 6, 7} )l = 4. 

31 



7/ Tl 
,(v) ,(v) 

2 o 

3 1 

o o 

1 1 

o 1 

o 1 

o 1 

o 1 

(Figure 6: An instance of G(St, Tt), with two spanning trees 7/, 7l and associated num
b~( . The ordering of the vcrtices of Tt is (1, 2, ... 1 8) for 7/ 1 and ( , 7, .... 1) for 
T?. 

32 



\\e an' no\\ ready to statc our S<'cond lifting theorem. ln order for the lifted inequality 

to be facet dcfiniug for P(G, b), certain conclitions need to bc satisfied. Without these 

conditions, lhe liftl'd itll'quality is still vnlid for P(G, b), but it may not b<> facet defining. 

Theorem .2. Lct S bc a minimal dommator of G not. conlammg any self-dominator, let 

T := {j E v \ s: IAdj(j) n SI ~ 2} :/: 0, 

and supposc the following conditions are satisfied: 

(a) Jo,· every j E P(i). i E S, there exists e E P(k), k E S, such that f <t Adj(j). 

(b} for et•ery j E P(i) with i E S \ Adj(T), there exzsts e E P(k) with k E S n Adj(T), 

such that C <t Adj(T u {j} ). 

(e) if S Ç Adj(T). then for evcry j E P(i), i E S, there exists CE UiesP(i) \ Adj(T) such 

that C <t Adj(J). 

For j E T, let 71 = -y(j) be defined as m (8.1}, andfor j E s· := S\Adj(T), let Ój = ó(j) 

be defined as in (7.1), wtth s• substituted for S. Then the mequality 

ui(S) + L -Y1Uj2 + L ÓjUj2 $ 1s1 - 1 (8.3) 
jET 1ES\Ad1(T) 

is valid and facet defining for P( G, b). 

Proof. Since the inequality u1 (S) $ ISI - 1 is not valid for P(G, b) restricted to the space 

of u1 1, J E S, we use projection to obtain a polytope for which it is valid. Consider the 

projection of P(G. b) onto the subspace of the variables indexed by S U T: 

Proj5ur(P(G, b)) := { u5ur: u E P (G, b) for some u''\(SuT>}. 

Clearly, u1 (S) $ ISI - 1 is valid for p•• defined as 

P** := { u5ur E Proj5ur(P(G, b)) : u1 1 = O, j E T, it12 = O, j E S U T}. 

Furthermore, u1(S) $ ISI - 1 is facet defining for P ... Indeed, for each i E S, the point 

u5ur defined by u11 = 1, j E S\ {i}, 11,1 = O, j E TU {i}, u12 = O, j E SuT, is in p•• and 

satisfics u, (S) = ISI - 1. To scc that this poiut is in P .. , notice that the separator C with 
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shores A. = S \ { 1} and B = P(i) is feasible. Since thc ISI points dcfined this way, one for 

each i E S, are clearly affinely indepcndcnt, u1 (S) $ !SI - 1 defines a facet of P ... 

\Ve will start the lift.ing with thc coefficicnts of Lhe variables u12, j E T. Lct J1, ... ,j, bc 

any ordering of T such that, within cach component of G(S, T), the sequence of indices is 

the one given by the spanning tree Tt used to define the coefficients 'Y· Th<> sequence of the 

components of G(S, T) themsel\'es is immaterial. 

To calculate the coefficient of u1,2, wc solve 

max{ u1(S) : usur E Projsur(P(G, b)), u.11 2 = 1, Uj2 = O, j E S U T \ {ji}, u11 = O, j E T} 

and find the value of the maximum to be ISI - 1Adj(j1)1, since setting Uj,2 = 1 forces to 

O ali the variables u11 for j E Adj(j1). Here Adj(ji) stands for the set of vertices of S 

adjacent to j 1 E T in G(S, T). Thus the coefficient of u112 , which is equal to the difference 

between the maximum of u1(S) with or without uh2 set to 1, is IAdj(j1)1 - 1, which is 

precisely the coefficient '}11 = '}(j1) given by (8.1). Also, the solution u('Yh) yielding the 

maximum, namely u1.i = O, u11 = O, j E Adj(ji), Uji = 1, j E S \ Adj(j1), amended with 

u112 = 1, satisfies u1 (S) + ,h uJ, 2 $ ISI - 1 at equality. This solution is obviously feasible, 

the associated separator C having shores A = S \ Adj (j1), B = {j1}. 

Assume now that these properties hold for j = j 1, . .. ,Jk-I, and let j = Jk· Y.le then have 

to solve 

]1,.-1 

max{u1(S) + LiJUj2: usur E Proj5ur(P(G,b)),uik2 = l,uj2 = O, 

j E SuT\ {j1,•-·,jk},uj1 = O,j E T}. 

Assume first that j 1 , ... ,jk belong to the sarne component of G(S, T). \Vithout setting 

u1,.2 to 1, the maximum of the above expression is ISI - 1, and it is attained for a solution 
k-1 

u('Y1,,__ 1 ) in which Uj2 = 1 for j = }1, . .. ,}k-1, Uj1 = O for j E U Adj(jr), and Uj1 = 1 for 
r=l 

k-1 J•-1 
j E S \ U Adj(jr)- This solution, which satisfies u1(S) + í: -y1u 12 $ ISI - 1 at equality, 

r=I j=j1 
k· 1 

corresponds to a separator C with shores A = S \ U Adj(jr), B = j 1, ... ,ik-l· Should 
r;::;J 

thc set assigned to A be cmpty ( which may happen at the last step), we set A = { C} 

for some f. E P(k) with k E S n Adj(T) such that e ,t Adj(T), whose existence follows 

from condition (b) of the Theorem. Now setting u1,.2 = 1 forces to O ali variahles u11 such 
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J.-- 1 
that j E Adj(jk) \ U Adj(Jr), Hcnce the valuc by which ISI - 1 is reduced, is precisely 

r:::l 
k - 1 

IAdj(J,,.) \ U Adj(Jr)I = 'Jk' This completes the iuduction. 
r:::1 

Hcre we havc assumed that the vertices j 1, ... , jt belong to the sarne component. Throw

ing out this assumption does not change anything, since the first vertex j of a new component 

has its coefficient ,j defined in a way that takes this situation into account. 

ext we lift the coefficients of the variables Uj2, j E S . Defining s• := S \ Adj(T) and 

letting Si, ... , Si. be the vertex sets of the components of G[S•], we order the vertices of 

each component and define the cocfficients Ój = ó(j) for all j E s• as in Theorem 7.1. These 

are valid lifting coefficients for our inequality, since variables ue2 , e E S*, are not affected by 

the values of ttJ2 , j E T . Thus if s• is ordered as e1, ... , l1s•1, we start by solving 

max{u1(S)+ L 'Yiu,2: u5
UT E Projsur(P(G,b)),ue12 = l,ue2 = o,e E S\{l1},uj1 = O,j E T} 

jET 

and obtain the coefficient Ót, = IAdj(l1)1, where adjacency refers to S* . At the k-th step we 

solve 
lk-1 

max{u1(S) + L 'YjUj2+ LótUt2: t/uT E Projsur(P(G,b)),uek2 = 1, 
jET l=t, 

and obtain óek as the coefficient of uek2. The solution yielding this value corresponds to a 

separator C with shores B =TU { f1, ... , ek-1}, A= S* \ Adj{f1, ... , ek-1}. Should the set 

assigned to shore A be empty, which may occur at the last step, we set A = { l'} for some 

e E U P(i) \ Adj(T), which always exists by condition (b). It is not hard to see that the 
iES\S• 

lk-1 

solution defined this way satisfies u 1 (S) + L ,'juJ2 + L Ót.Ut2 ~ ISI - 1 at equality. At the 
jET l=l1 

end of this procedure, we obtain inequalíty (8.3). 

We may now continue the lifting proccdure for the coefficients uJ2, j E S n Adj(T), but 

it is obvious that these coefficients are ali equal to O, irrespective of the order in which they 

are lifted. This is so because setting to 1 any number of variables uJ2, j E S n Adj(T) does 

not force to O any new variablcs u11, j E S, beyond those already forced to O by the previous 

liftings, and thus cannot reduce thc value of the maximand from ISI - l. Hence a:J2 = O for 

ali j E S n Adj(T) irrespective of the order of lifting. Similarly, lifting the coefficients a:; 1 

for J E T in whatever sequence yields a'J 1 = O, j E T, since setting any of these variables to 

1 does not force to O any of the variables u J 1, j E S. 
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We have lifted the i1wquality u1 (S) $ ISl-1 to thc space of Proj5u7-(P(G, b)) and shown 

that the resulting incquality ( .3) is valid for tbat polytope. Moreover, (8.3) is also facet 

defining for Prot,ur(P(G. b)), sincc at evcry stC'p of thc lifüng procedure, tbc solution that 

maximizes the objccth·e function, amencled with thc variable fix<'d at 1, is independent of 

ali the previous solutions as it has a componcnt equal to 1 in a position where all earlier 

solutions had a component equal to O. 

We now lift the incquality (8.3) from the Rubspace of the projection to the full space. 

Our claim is that the lifting coefficients for u;1, j E V\ (S U T), are ali equal to O, and that 

the inequality (8.3) obtained in this way is facet defining for P(G, b) . 

The validity of (8.3) for P(G, b) is obvious. lf we denote F := { u E P(G, b) : u1 (S) + 
L "r; 1112 + L 63 uii = ISI -1}. then F is a facet if and only if any equation au = ISI - 1 
,er JES\Adj(T) 

satisfied by ali u E F has coefficients equal to those of (8 3). As far as the coefficients O:Jk 

for J E S u T, k = 1, 2 are concerned, this condition is sat1sfied, since (8.3) defines a facet of 

Proj5ur(P(G, b)). For the coefficients Ojk, j E V\ (SUT), notice that each such j belongs to 

some pendent set, say P(i), since Sisa minimal dominator that contains no self-dominators. 

Thus i· \ (S U T) = U P(i). For o:;2, consider three cases. Case 1: S \ Adj(T) =/- 0, and 
iES 

j E P(i) such that i E Adj(T). Then there is a feasible separator C in F with shores 

B =TU {j} and A= S \ Adj(T), such that C' =CU {j} is also a feasible separator, with 

shores A'= A and B' = B\ {j}; thus ai2 = O. Case 2: S\Adj(T) =/- 0 and j E P(i) such that 

i E S \ Adj (T). Consider the separator C with shores B = Tu {j}, A = { e} u ( S \ Adj (T)) 

for some e E P(k) with k E S n Adj(T) such that e <t Adj(T U {j}) (the existence of such 

e is guaranteed by condition (b) of the Theorem). Clearly, C is in F, and C' = Cu {j} 
is also a feasible separator, with shores A' = A and B' = B \ {j}; thus O:j2 = O. Case 3: 

S \ Adj(T) = 0. ln this case there is a separator C in F with shores B = TU {J} and 

A= { f}, where e E UiesP(i) \ Adj(T U {j}) (the existence of such e follows from condition 

(e) of the Theorem). Again, C' - CU {j}, with shores A' = A, B' = B \ {j}, is also a 

feasible separator in F; hence a12 = O in this case too. 

For a,1, if j E P(i), consider the separator C with A= (S \ {k}) U {j} with k =f. i, and 

B = {C} for some e E P(k) such that e <t Adj(j). Thc existence of such k, e is guaranteed 

by con<lition (a) of thc Theorem. Clearly. C is in F. But C' = Cu {j} is also a separator 

in F, with shores A'= A\ {j} and B' = B, which proves that a11 = O. 

Wc havc thus proved that given the conditions of the Theorem, the inequality (8.3) is 

facet defining for P(G, b). O 
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9 Third Generalization 

The inequalities (7.1) and ( .3) wcre clcrived from (6.1) by sequcntial 1ifting. Ncxt wc 

generalize the incquality (6.1) in anothcr dircction. Consider an arbitrary vertex set S. 

Theorem 9.1. Let Se 1 •. 2 $ ISI $ b, and let W(S) :=V\ (S u Adj(S)). The inequality 

(9.1) 

i t 1alid for P( G, b). M oreover, (9.1) is facet defining for P( G, b) if and only if 

( a) S ts independent 

(b} S i a minimal dominator of Adj(S) 

(e) Every v E Adj(S) is adjacent to exactly one vertex in S. 

Proof. (i) (9.1) is Yalid. Let ü E {O, 1 }2n be such that ü 1 (S) - ü2(W(S)) > ISI - l. Then 

ii;1 = 1 for j E S and ü;2 = O for j E W(S), i.e. ü corresponds to a separator C whose shore 

A contains all vertices in S, and whose shore B contains none of the vertices in W(S). But 

since 1 • \ (S U W(S)) = Adj(S), there are no vertices left for B, a contradiction. 

(ii) Conditions (a), (b) and (e) for (9.1) to be facet defining. Let F := {u: u 1(S) -

u2(H'(S)) = ISI - 1 }. 

Necessity. If S is not independent, there exists (i,j) E E with {i,j} Ç S. But this 

together with u E F implies ui2 = u;2 = O, since otherwise u 1(S) $ ISI - 2. Thus (a) is 

necessary. Further, if S is not a minimal dominator of Adj(S), then it contains a vertex 

i E S such that Adj(S\ {i}) = Adj(S). But then for any u E F, Uii + ui2 = 1, i.e. i cannot 

belong to the separator. Indeed, if i E C, then IAI = u1(S) $ ISl-1. But for u E F we need 

u1(S) = ISI - 1 and u2(W(S)) = O, which would imply B Ç Adj(S \ {i}), a contradiction. 

Since every u E F satisfies UiJ + u,2 = 1, F is not a facet. Thus (b} is necessary. Now 

suppose some j E Adj(S) is adjacent to both i E S and k E S, i =f:. k. Then 1,il + u;2 $ 1. 

uk1 + u;2 $ 1, and since u E F implies ui1 + uk1 ~ l, it follows that u12 = O for ali u E F, 
i.e. F is nota facet. Therefore, (e) is nccessary. 

Sufficicncy. We show that any equation ou= ISI - 1 satisfied by every u E F must have 

coefficients 

{
1 j E S 

011 
- O j E V\ S {

-1 
º12 = Q 

i E n·(s) 
j E V\ H'(S). 
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First. rnnsider j E Adj( S). From condi t ion (e), j is adjaceut to exactly one vcrtex in S say 

r. Consi<lcr tht' separator C with shorcs A= S \ {1} , B = {1,j}. Sinc<' S is indcp<'ndcnt 

(condition a), this s('pMator b fcasiblc. But C' = CU {J} is also a feasiblc separator, w1th 

shores 1' = A a11d B' = B \ {j}; hC'nce o;2 = O for ali j E Adj(S). 011 the other hand, 

consider t hC' s 'parator C w1th shores A = ( S \ { k}) U {J} for somC' k f/. Adj (J), and B = { k}. 

Again. C is fcasible, and so is C' = Cu {J }, with shores A' - A\ {j}, B' = B. Hencc 

0,1 = O for all j E .\dj (S). 

Consider next the coefficients a11 , j E i1·(s). For each such J, the separator C with 

shores .4 = (S \ { i}) U {j} for some i E S, and B = { i} is feasible; but so is C' = Cu {j}, 
with shores A' = A\ {j}, B' = B; hence a11 = O for ali j E W(S). Further, consider 

the coefficients aj2 for j E S. From condition (b), there ex1sts some e E Adj(S) such that 

{J} = S n Adj(C). Thus the separator C \\ith shores A= S \ {j} and B = {j, e} is feasible; 

but sois C' =Cu {J }, with shores A'= A and B' = B \ {j}. Hence a 12 = O for ali j E S. 

Now setting a 11 = O for ali J E V\ 8 and aJ~ - U for all j E V\ W(S), we are left with 

a system of equations in the space of the a11 , j E S and aj2, J E W(S), 

L ª11u;1 - L aj2u12 = 1s1 - 1 
jES 1EW(S) 

which has to be satisfied for ali u E F. The followmg is a list of IS U H'(S)I affinely 

independent points u in Fsuw(S), the projection of F onto the subspace of { u11 , j E S} U 

{u12.j E l1'(S)}, whose unique solution is the required ai1 = 1, j E S, a12 = -1. j E H'(S): 

1 _ { 1 j E S \ { i} 
Ujl - Q . . 

J = 1 
u;2 = O,j E W(S), 

. {-1 j=i u' -12 - O j E W(S) \ { i} 

i E S 

i E H'(S). 

This proves the sufficiency of the condítions in the Theorem. o 

Corollary 9.2. Let S be a maximal set satisfymg the conditions of Theorem 9.1, i.e. such 

that there exists no T~S satisfying them. Then for every S' Ç S, IS'I ~ 2, the inequalíty 

{9.1), with S' substituted for S, is valid and facet defining for· P(G, b). 

Proof. If S satisfies the con<litions of Theorem 9.1, so does every S' Ç S, IS'! ~ 2. O 

Notice that the inequality (CU) is a special case of (9.1). 
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Figure 7: Graph illustrating the example. 

Example. Consider the graph G of Figure 7, obtained from t_he Petersen graph by sub
dividing the edges of the outer 5-cycle. The set S = {1, 4, 7, 15} satisfies the conditions of 
Theorem 9.1 for any b 2: 4, with S U Adj(S) = V. Consequently, the inequality 

is valid and facet defining for P(G, b). From Corollary 9.2, the following inequalities are also 
valid and facet defining for P(G, b):

U11 + U41 + U71 - U52 - U12,2 - U13,2 - U1s,2 $ 2

Uu + U41 + U1s,1 - U22 - U32 - U72 $ 2 

Uu + U71 + U1s,1 - U42 - ua2 - U92 - 'U14,2 $ 2 

U41 + U71 + U1s,1 - U12 - U62 - U10,2 - Uu,2 $ 2 

Uu + U41 - U22 - U32 - U52 - U72 - t/12,2 - U13,2 $ 1 

U11 + un - I:(u;2 : j ,t. {1, 7} U Adj( {1, 7} )) $ 1 

uu + U1s,1 - L(u32 : j '1, {I, 15} U Adj( {l, 15} )) $ 1 

u,11 +u11 - I:(u32: J '1. {4, 7} UAdj({4, 7})) $1

1141 + u1s,1 - L:(u12 : j ,t. { 4, 15} U Adj( { 4, 15} )) $ 1 
U11 + U15,1 - L(llj2; J rt. {7, 15} u Adj( {7. 15} )) $ 1. 
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10 Concluding Remarks 

\\'e have gh·en a mixed integer programming formulation of the VS problem, and a partial 

polyhedral description of the convex hull P(G) of feasible points. ln the proccss, we have 

idem ified sewral classes of valid inequalitics and derivcd conditions under which thcy are 

facet dcfining, sometimes using novel proof techniques. 

ln a companion paper [1}, we describe a branch-and-cut algorithm for the VSP, using 

severa! of the inequalities developed here, based on efficient separation routines and bounding 

heuristics. The algorii,hm was tested on a large variety of VSP instances. One of the 

highlights of our computational experiments is the major role of cut density (as distinct 

from cut strength) in the overall efficiency of the algorithm. 
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