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ABSTRACT

Early disease detection can increase the chances of successful treatment and improve

the efficiency of healthcare resource use. One method to achieve early detection is through

the identification of biomarkers, which are quantifiable physiological parameters that indi-

cate the potential presence of a specific disease. Biomarkers can enhance healthcare delivery

by providing valuable insights that improve diagnosis, prognosis, and therapeutic monitor-

ing. This work focuses on Diffuse Optical (DO) techniques, which offer a potential solution

for identifying biomarkers for vascular diseases. DO techniques estimate hemodynamic-

related parameters such as blood volume, flow, and oxygen saturation, which can help detect

physiological differences between patients and healthy individuals. Despite their potential,

DO techniques have limitations due to oversimplified assumptions about tissue structure,

such as homogeneity and flatness. In this context, this research aims to refine these method-

ologies by investigating the impact of tissue heterogeneity and curvature on DO estimations.

The thesis proposes enhanced models that better represent the macroscopic structural com-

plexities of tissues, such as heterogeneity and non-planar geometries, which could signifi-

cantly improve the accuracy of physiological parameter estimations.

The thesis encompasses a comprehensive approach to validate the methodologies that

consider tissue heterogeneity and curvature when analyzing DO data. Furthermore, the re-

search explores the combined effects of tissue curvature and heterogeneity on real DO data.

It also addresses the biases introduced by darker skin tones on blood oxygen saturation es-

timations using optical methods, offering a preliminary correction strategy to mitigate this

bias. The conclusion reached is that the refined methodologies enhance the accuracy of

physiological parameter estimations, which could potentially improve early diagnosis and

patient care. The investigation also concluded that a crucial aspect of accurate model pre-

dictions is integrating prior knowledge about the individual anatomy. By proposing and val-

idating methodologies that can improve parameter accuracy by incorporating tissue macro-

scopic complexity, the research suggests that diffuse optical techniques could potentially

meet the precision required for clinical applications in the future, moving a step closer to

practical healthcare implementation.



RESUMO

A detecção precoce de doenças pode aumentar as chances de que um tratamento seja

bem-sucedido e melhorar a eficiência do uso dos recursos de sistemas de saúde. Uma alter-

nativa para se obter esta detecção precoce é através da identificação de biomarcadores, ou

seja, parâmetros fisiológicos quantificáveis que sugerem a presença de uma doença especí-

fica. Os biomarcadores podem melhorar os cuidados de saúde de individuos, fornecendo

informações valiosas que aprimoram o diagnóstico, prognóstico e monitoramento terapêu-

tico. Este trabalho foca em técnicas Ópticas de Difusão (OD), que são uma potencial al-

ternativa para seleção de biomarcadores de doenças vasculares. As técnicas de OD estimam

parâmetros relacionados à hemodinâmica, bem como volume, fluxo e saturação de oxigênio

sanguíneos, que podem ser úteis para viabilizar a detecção de diferenças fisiológicas entre

pacientes e indivíduos saudáveis. Apesar de seu potencial, estas técnicas tem limitações de-

vido a hipóteses simplificadas sobre a estrutura dos tecidos, como homogeneidade e planici-

dade. Neste contexto, esta pesquisa visa refinar as metodologias usadas com técnicas de OD

investigando o impacto da heterogeneidade e curvatura dos tecidos nas estimativas. Esta

tese propõe metodologias aprimoradas que representam melhor as complexidades estrutu-

rais macroscópicas dos tecidos, como heterogeneidade e geometrias não planares, capaz de

melhorar significativamente a precisão das estimativas dos parâmetros fisiológicos.

Este texto traz abordagens que visam validar as metodologias que consideram a het-

erogeneidade e a curvatura dos tecidos ao analisar dados de OD. Além disso, a pesquisa ex-

plora os efeitos combinados de curvatura e heterogeneidade em dados reais. A tese também

aborda os erros introduzidos por tons de pele mais escuros nas estimativas de saturação

de oxigênio no sangue usando métodos ópticos, discutindo uma estratégia preliminar de

correção para mitigar esse viés. Em resumo, concluiu-se que as metodologias refinadas ap-

resentadas neste trabalho melhoram a precisão das estimativas dos parâmetros fisiológicos,

o que pode potencialmente melhorar o diagnóstico precoce e o cuidado ao paciente no fu-

turo. A investigação também concluiu que um aspecto fundamental por trás da precisão das

estimativas dos modelos é a integração do algum conhecimento prévio sobre a anatomia in-

dividual. Ao propor e validar metodologias que podem melhorar a acurácia dos parâmetros

incorporando a complexidade macroscópica dos tecidos, esta pesquisa sugere que técnicas

de OD podem potencialmente atender à precisão necessária para aplicações clínicas no fu-

turo, aproximando-se de uma implementação concreta no cuidado à saúde.
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CHAPTER 1

INTRODUCTION

In clinical settings, early detection of diseases could improve healthcare delivery and

patient care. This improvement is a consequence of the increased likelihood of successful

treatment and more efficient use of resources in healthcare, which are made possible by

detecting diseases prior to significant clinical progression. Early detection, or at least early

screening, is facilitated by analyzing biological indicators that reflect the health status of

tissues. In this context, biomarkers, defined as quantifiable physiological indicators of tis-

sue health, provide valuable insights that can guide clinical decision-making by offering a

better understanding of disease mechanisms, improving diagnosis and prognosis, and aid-

ing in developing and monitoring therapeutics [1]. By employing biomarkers, healthcare

professionals can improve traditional diagnostic methods, leading to a more effective and

patient-specific approach to disease management.

Current clinical practice already comprises the use of several specific biomarkers asso-

ciated with unhealthy status across well-known diseases. For example, measuring glycosy-

lated hemoglobin levels in blood provides an efficient manner of diagnosing and monitoring

diabetes, in contrast to more invasive and time-consuming glucose tolerance tests [2]. Sim-

ilarly, low-density lipoprotein cholesterol levels indicate cardiovascular disease risk, serving

as a simpler assessment method than imaging-based diagnostics, such as angiography, that

could be used for pre-screening purposes [3, 4]. The detection of salivary alpha-amylase has

been extensively used to indicate stress and certain metabolic conditions [5, 6]. Prostate-

specific antigens for prostate or CA-125 for ovarian cancer have significantly improved the

ability to monitor disease evolution, offering an alternative to surgical biopsies or imaging

procedures [7,8]. These examples highlight the potential of biomarkers in reducing the need

for expensive and burdensome diagnostic procedures, thus enhancing the efficiency of dis-

ease detection and management at a potentially lower cost.

A particular class of diseases in which early prognostics are critical are those with vas-

cular impact. Such diseases are a leading cause of preventable death and disability, with

significant social and economic impacts [9]. Conditions such as ischemic stroke, which

results from an interruption of blood supply to specific brain regions, have the potential

to ideally be anticipated by hemodynamic biomarkers that can provide blood flow, blood

volume, or blood oxygenation within particular brain areas. Similarly, peripheral artery
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diseases are related to impaired blood delivery to extremities and might be detected early

by hemodynamic-related parameters. Identifying and accurately assessing hemodynamic

biomarkers that reflect vascular impact in these cases can guide treatment decisions and

potentially prevent severe outcomes.

Diffuse Optics (DO) offers the possibility of estimating blood flow and blood oxygena-

tion in deep tissue (1-2 cm), thus holding promise as a tool for providing biomarkers for

vascular diseases. Broadly speaking, diffuse optical techniques, such as Diffuse Optical Spec-

troscopy (DOS) and Diffuse Correlation Spectroscopy (DCS), involve emitting radiation in the

near-infrared region (from ∼ 700 to 900 nm). As biological tissue significantly scatters such

radiation, one can acquire the backscattered light on the same illumination plane, a few

centimeters from the illumination point. The detected signal provides information about

the optical and dynamic properties of the tissue. These properties can be related to the tis-

sue composition and dynamics, providing estimates of local oxygenation, blood volume, and

blood flow. These physiological parameters enable insights regarding the tissue’s hemody-

namic and metabolic states, including changes in oxygen consumption and cellular activity

indicative of various disease states [10]. Additionally, diffuse optical techniques are nonin-

vasive and portable, and the optical data can be readily analyzed to estimate physiological

information.

However, the impact of any biomarker on patient outcomes is dependent on various

factors, including diagnostic accuracy [11]. Imprecise estimation can lead to incorrect phys-

iological parameters and, consequently, to data misinterpretation and erroneous conclu-

sions. This is precisely where most diffuse optical techniques currently fall short. Despite

their great potential, the accuracy of optical properties obtained for biological tissue in vivo

has room for improvement. Previous research has indicated that the optical properties ob-

tained with diffuse optical techniques are often significantly underestimated, resulting in

lower-than-expected hemoglobin concentrations [12, 13]. Similarly, the dynamical indices

derived from DCS are also underestimated [14, 15], although it remains unclear whether

these discrepancies in DCS arise primarily from this technique itself or are merely a con-

sequence of the lower optical properties on which DCS relies.

The primary reason why optical properties obtained from diffuse optical spectro-

scopies are underestimated relates to spatial resolution. Since these techniques sample bulk

regions, they lack the resolution to distinguish between different types of tissues within the

sampled volume. This bulk averaging can distort the true signal from any specific tissue

components, especially in highly heterogeneous samples, leading to partial volume effects.

In the tissue bulk, the contribution of the microvasculature (which is the main structural

tissue to which diffuse optics is sensitive) to the overall signal is overshadowed by other sur-

rounding tissues, resulting in an underestimation of the properties measured with diffuse

optical methods. In addition, most mathematical models used to interpret diffuse optical

data often assume homogeneous tissue properties (i.e., that the tissue has the same physio-
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logical properties) throughout the entire bulk. Despite their simplicity, these models do not

account for partial volume effects, thus producing underestimated or inaccurate estimates

of optical properties.

One potential solution to minimize partial volume effects in diffuse optical techniques

is to increase spatial resolution by using multiple light sources and detectors to sample the

same volume. While high-density devices can target smaller volumes of tissue, they lead to

more complex devices that restrict their use in some clinical settings, particularly in appli-

cations targeting pre-screening [16–18]. Another possibility is to utilize more sophisticated

models that account for tissue heterogeneity and other macroscopic features, reflecting the

measurement more reliably. This latter option also enables accounting for other geometric

features of real data acquisition, such as the biological tissue’s curvature. Models of opti-

cal data analysis usually assume the air-tissue as a planar interface, which is not a suitable

approximation for most real applications. As previously observed, this mismatch between

the real and the assumed interface of data acquisition reduces the reliability of the tissue

properties estimations [19–22].

In this context, this work aimed to investigate how modeling could improve the quan-

tification of optical properties in biological tissue using diffuse optical spectroscopy. Here,

I defend the thesis that models considering the macroscopic structural complexity of tis-

sue can mitigate partial volume effects and thereby increase the accuracy of measurements

obtained with diffuse optical techniques to the level they could be used as biomarkers for

vascular diseases. To test this hypothesis, I approached this problem by using more detailed

models that incorporate the most well-known sources of variability affecting the estimation

of optical properties, which typically lead to a lack of accuracy. Importantly, I propose new

methodologies that effectively utilize these detailed models to estimate optical properties in

tissue. By comparing the accuracy of the estimated properties using these novel methodolo-

gies with the homogeneous, flat models broadly used in the literature, I was able to assess

the impact of each feature from actual data acquisition on the estimations through optical

data.

In order to present the work, I organized this thesis into eight chapters, including this

one. Chapter 2 details the foundational principles of diffuse optical techniques, introducing

the models that I utilized to analyze optical data. This chapter also contains information on

how tissue physiology can be readily assessed from the backscattered detected light and the

instrumentation used during this work. In Chapter 3, I present a clinical study performed

with one diffuse optical technique in an intensive care unit (ICU) during COVID-19. This

chapter illustrates the potential of optical properties to serve as biomarkers, showing that

the physiological parameters derived with diffuse optical spectroscopy can provide valuable

information about the microvasculature function status in patients diagnosed with severe

acute respiratory syndrome (SARS) that correlates with clinical outcome.
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Chapters 4 and 5 present my main contributions to improving the accuracy of optical

estimations through models that consider the macroscopic structural complexity of tissue.

In Chapter 4, I investigate the performance of an algorithm proposed to estimate the optical

properties using the analytical solution of a heterogeneous model. In this work, we com-

pared this model to the homogeneous model and investigated the influence of heterogene-

ity on optical estimations. In Chapter 5, I targeted the influence of curvature in the interface

of data acquisition when estimating the optical properties. To approach this problem, I em-

ployed a numerical model to generate a set of possible configurations that could be used to

solve the inverse problem using an exhaustive approach. This chapter presents the results

obtained, as well as the implications of curvature on the accuracy of the optical properties.

Chapter 6 deals with an overwhelmingly ignored problem in the scientific commu-

nity regarding the influence of skin color on the estimation of optical properties with diffuse

optics. As the COVID-19 pandemic highlighted the problem of poor oxygen saturation es-

timations in black people, we decided to investigate this effect in diffuse optics as well. To

approach this problem, I employed the heterogeneous model presented in Chapter 4 to ac-

count for the presence of a thin layer representing skin.

The previous three chapters investigated different factors that could affect the accu-

racy of the optical properties in diffuse optics separately. In Chapter 7, I present the pilot

results of an analysis that combines more than one factor simultaneously. More specifically,

I introduce one last model that accounts simultaneously for tissue heterogeneity and for the

curvature in the interface of data acquisition and attempts to estimate the optical properties

based on a previously defined configuration set generated with an exhaustive approach for

the parameters of interest. Lastly, Chapter 8 finishes this thesis with the main conclusions

from the different experiments performed throughout the previous chapters and points out

future directions and perspectives on the problem of absolute quantification of the optical

properties with diffuse optical spectroscopies.
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CHAPTER 2

REVIEW ON THE PRINCIPLES OF DIFFUSE

OPTICS

Diffuse Optical (DO) techniques are a set of methods that study how the backscattered

radiation can provide information about a turbid medium in which an incident wave propa-

gates. This chapter discusses the theoretical background of such techniques and the mech-

anisms for estimating information regarding biological tissue used in this work. To this end,

I first introduce the relevant interactions between light and such medium. Then, I present

the techniques used in this research and how they can be utilized to obtain physiological

information on biological tissue. Although I aimed to be as general as possible, restrictions

and assumptions made throughout the text were made considering applications to biolog-

ical tissue, which is the focus of this work. I decided to move most of the calculations to

Appendix A, which I highly recommend reading since it discusses some assumptions in the

development of important equations in this chapter.

2.1 Light interaction with a medium

There are several possible interactions between radiations of any kind and matter. For this

work, we will assume that the radiation is such that the only relevant interactions with the

media are the absorption and elastic scattering events. As we will further discuss, this is the

case for low-power radiations in the near-infrared region (650− 900 nm) propagating into

biological tissue.

When light enters an absorbing medium, its intensity is attenuated due to absorption

events. Briefly, the molecules inside the medium absorb photons and transition to a higher

vibrational or rotational energetic level. The excited molecules have expanded mechanical

movements and generally release this extra energy through heat when colliding with other

particles. Since the collisions occur faster than the molecule’s relaxation time, the absorbed

photon is not re-emitted. Therefore, each absorbed photon decreases the total light inten-

sity. Since the number of interactions increases with the traveled distance, the medium

attenuates the amplitude of the light beam while it travels through. Statistically speaking,

one option to characterize this phenomenon is using the absorption coefficient, µa (⃗r ,λ, t ),
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which represents the average number of absorption events experienced by light per unit of

length traveled inside the medium. Such quantity depends on the light wavelength, λ, time,

t , and position, r⃗ , since the medium may not be homogeneous. In other words, the higher

the µa , the higher the probability of absorption in r⃗ . Alternatively, the absorption mean free

path, ℓa = 1/µa , which is the average distance traveled by the radiation between subsequent

absorptions, characterizes absorption events in a medium.

When several molecules may be present in a medium, µa is the linear sum of the ab-

sorption contribution of each molecule:

µa (⃗r ,λ, t ) =∑
i
εi (λ)Ci (⃗r , t ), (2.1)

where Ci is the concentration of the i -th chromophore (i.e., constituents of the medium that

absorb light), and εi is the extinction coefficient, which measures the absorption power per

unit mole of a specific molecule in a given λ. This formulation is, in fact, the Beer-Lambert

law, proposed centuries ago [23]. It is straightforward to see that if there are m chromophores

in the medium and µa is known (or measured) for at least m wavelengths, it is possible to

solve the set of m linear equations to find the concentrations of the chromophores inside

the medium.

In addition to absorption, a medium may scatter light while it travels through. Briefly,

scattering arises primarily from variations in the refractive index, which results from the het-

erogeneity within the medium. In this case, the interaction does not change the total light

intensity within the medium, but it changes the direction of propagation of the light beam.

On this limit, the incoming radiation forces the charges inside the medium to oscillate with

the same frequency of the light, re-emitting this same frequency in several directions. As this

phenomenon may occur outside the frequency of vibration of the particles, the amplitudes

of oscillation are such that there is no energy loss by collisions, making it possible for the

particles to re-emit light. Additionally, the light may cross an interface inside the medium,

refracting and changing its direction. To statistically characterize scattering, the scattering

coefficient, µs (⃗r ,λ, t ), represents the average number of scattering events experienced by

light per unit length traveled into the medium. Similarly to absorption, the scattering mean

free path, ℓs = 1/µs , which is the average distance traveled by light between subsequent scat-

tering events, also characterizes scattering.

2.2 Models of Light Propagation in Turbid Media

The absorption and scattering events discussed in Section 2.1 co-occur (although in an ex-

clusive way) for a given light beam traveling through a medium. Thus, when we shine light

into a medium, the detected intensity differs from the incident one due to the combination

of both interactions. Therefore, comparing both signals provides information regarding µa
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Figure 2.1: Representation of the quantities used to study light propagation in this section: the radiation (L),
the photon flux (⃗J ), and the photon fluence rate (φ).

and µs . This section exhibits the theory that aims to estimate these coefficients for a par-

ticular medium. First, we derive the Radiative Transport Equation (RTE). Then, after some

manipulations, the Photon Diffusion Model is obtained. A representative illustration of the

variables used in this chapter is in Figure 2.1. It is worth noting that this section follows the

same rationale as [10, 24], which I highly recommend reading for a deeper understanding.

2.2.1 Radiative Transport Equation

Although Maxwell’s equations describe light propagation in any media, including biological

tissue, their complexity in handling multiple scattering/absorption motivates the search for

another approach. In situations where light travels many times its wavelength, λ, between

interactions, the electric field propagation is well approximated by lines, and we can use the

light radiance, L(⃗r ,Ω̂, t ), to quantify the power per unit area traveling in the Ω̂ direction out-

side an infinitesimal volume at position r⃗ and time t . The radiance can be used to describe

light propagation through a medium in which several interactions occur. This assumption

implies that ℓa ,ℓs >> λ, and that light interference is negligible. For unpolarized light, L is

proportional to the square of the electric field, |E⃗ (⃗r ,Ω̂, t )|2, which is the only case we will dis-

cuss in this work. The RTE is a conservation equation that characterizes the changes in L in

a specific position r⃗ , in a given direction Ω̂ at time t (see the development in Appendix A.1):

1

v

∂L

∂t
+ Ω̂ · ∇⃗L =−(µa +µs)L+Q (⃗r ,Ω̂, t )+µs

∫
4π

L(⃗r ,Ω̂
′
, t ) f (Ω̂,Ω̂

′
)dΩ

′
. (2.2)

This equation explicitly states that the RTE represents the conservation of the radiance.

The temporal and spatial changes over L are on the left side of the equation. On the right

side, the first term represents the radiance losses due to scattering and absorption events.

The following terms stand for the gains in L, either by sources that shine light at position

r⃗ and direction Ω̂, or by summing all scattering events that produce photons at the same

direction and position of L.
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2.2.2 Photon Diffusion Model

Despite its simplicity compared to any other formulation, Equation 2.2 is still complex to

solve. However, it can become simpler under some assumptions. For biological tissue, the

radiance is nearly isotropic, so we can expand L using a spherical harmonics basis:

L(⃗r ,Ω̂, t ) =
N∑

l=0

l∑
m=−l

√
2l +1

4π
φlm (⃗r , t )Ylm(Ω̂).

By employing the steps described in Appendix A.2, we can write:

L(⃗r ,Ω̂, t ) = 1

4π
φ(⃗r , t )+ 3

4π
J⃗ (⃗r , t ) · Ω̂≡ L1(⃗r ,Ω̂, t ), (2.3)

where φ and J are defined in the Appendix terms of spherical harmonics quantities.

Equation 2.3 allows some insights about the physical interpretation of the previously

defined φ(⃗r , t ) and J⃗ (⃗r , t ). By integrating the radiance over all solid angles:

∫
L(⃗r ,Ω̂, t )dΩ= 1

4π

∫
φ(⃗r , t )dΩ+ 3

4π

∫
J⃗ (⃗r , t ) · Ω̂dΩ⇒∫

L(⃗r ,Ω̂, t )dΩ= 1

4π
φ(⃗r , t )

∫
dΩ+ 3

4π
J⃗ (⃗r , t ) ·

∫
Ω̂dΩ.

As
∫

dΩ= 4π and
∫
Ω̂dΩ= 0⃗:

φ(⃗r , t ) =
∫

L(⃗r ,Ω̂, t )dΩ. (2.4)

In other words, Equation 2.4 tells that φ(⃗r , t ) is the total power per unit area radially

traveling outside the infinitesimal volume in r⃗ at time t . φ(⃗r , t ) is called the photon fluence

rate, or simply fluence.

Now, multiplying Equation 2.3 by Ω̂ and integrating over all solid angles:∫
L(⃗r ,Ω̂, t )Ω̂dΩ= 1

4π
φ(⃗r , t )

∫
Ω̂dΩ+ 3

4π

∫
(⃗J (⃗r , t ) · Ω̂)Ω̂dΩ.

For any vector V⃗ , the integral,
∫

(V⃗ · Ω̂)Ω̂dΩ= 4
3πV⃗ . Thus:

J⃗ (⃗r , t ) =
∫

L(⃗r ,Ω̂, t )Ω̂dΩ. (2.5)

Equation 2.5 says that J⃗ (⃗r , t ) is a vectorial sum of the radiance emerging from the in-

finitesimal volume in position r⃗ at time t . Moreover, J⃗ (⃗r , t ) · Ω̂ is the power per unit area

traveling at the direction Ω̂ outside the infinitesimal volume in position r⃗ at time t . J⃗ (⃗r , t )

is called the photon flux, or simply flux. Note that in cases where L is perfectly isotropic(
L(⃗r ,Ω̂, t ) = L(⃗r , t )

)
, it comes out of the integral in Equation 2.5 and the right side vanishes,

meaning J⃗ = 0⃗, i.e., there is no privileged direction. Yet, by Equation 2.4, φ = 4πL(⃗r , t ) ̸= 0.
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Thus, in cases where the radiance is approximately isotropic, φ>> |⃗J |.
As J⃗ (⃗r , t ) and φ(⃗r , t ) come from L, we can employ few steps (see Appendix A.3) to ob-

tain:

∇⃗φ=−3(µa +µs )⃗J +3µs g J⃗ ,

assuming isotropic sources, Q (⃗r ,Ω̂, t ) = Q (⃗r , t ), and slow temporal variation, 3∂ J⃗
v∂t << 3(µa +

µs−gµs )⃗J (see next section for more details). By defining the reduced scattering coefficient,

µ
′
s ≡ (1− g )µs , we have:

∇⃗φ=−3(µa +µ
′
s )⃗J =⇒ J⃗ =− 1

3(µa +µ′
s)
∇⃗φ, (2.6)

which is a Fick law between φ and J⃗ . Using Equation 2.6 in Equation A.5:

−∇⃗ ·
( v

3(µa +µ′
s)
∇⃗φ

)
+ vµaφ+ ∂φ(⃗r , t )

∂t
= vS (⃗r , t ).

The photon diffusion coefficient can be defined as D (⃗r ) ≡ v
3(µa+µ′s )

. Note that, in general,

D = D (⃗r , t ), since µa =µa (⃗r , t ) and µ
′
s =µ

′
s (⃗r , t ). The above equation then becomes:

∇⃗ ·
(
D (⃗r , t )⃗∇φ(⃗r , t )

)
− vµaφ(⃗r , t )− ∂φ(⃗r , t )

∂t
=−vS (⃗r , t ). (2.7)

Equation 2.7 is known as the Photon Diffusion Model since it is a diffusion equation for light

fluence propagating through a medium.

Note thatµs and g are never apart. Indeed, they always appear together, in the term we

defined as µ
′
s . Although there are estimations of g around 0.8 on biological tissue [25], using

the RTE only allows the assessment of µ
′
s . When g is closer to 1, a bias exists for scattering

events oriented in the forward direction, which implies that the direction of each photon

is not completely randomized after each scattering event. However, after a longer distance

traveled, the number of partially biased scatterings combined randomize the direction of

the photons, making it undergo a random walk step. Such distance is known as the transport

mean free path, and it is approximately ℓtr ≃ 1/µ
′
s . An illustration of the phenomenon is in

Figure 2.2. Note that as g ≈ 1, µs >> µ′
s and ℓs << ℓtr , which means the photon experiences

several scatterings over length ℓtr . The photon travels through this scheme until absorbed

or leaves the medium.

The central assumption through all this algebra is that the radiance is nearly isotropic,

which implies that φ >> |J |. Indeed, if µ
′
s >> µa (at least ten times, as a rule of thumb [26])

and the medium is large compared to ℓtr , this condition is fulfilled. In this context, photons

travel tens of ℓtr before they are absorbed. Media whose µs
′ >> µa are known as turbid

media, and they are the target of this thesis, as biological tissue behaves as a turbid medium

for near-infrared light.
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Figure 2.2: Photon path in a medium with a high anisotropic factor g and µ
′
s >> µa (turbid medium). Note

that the photon experiences several scattering events, biased in the forward direction until its macroscopic
direction is randomized. The average distance traveled between scatterings is ℓs = 1/µs and the randomization
happens over a length of ℓtr = 1/µ

′
s = 1/((1− g )µs ). Image based on [24].

2.3 Diffuse Optical Spectroscopy

Equation 2.7 rules the light fluence propagating in a turbid media with absorption coeffi-

cient µa , reduced scattering coefficient µ
′
s , and refractive index n, given a source S. Solving

this equation makes it possible to predict φ and use this prediction to adjust experimental

data. Asφ depends on the medium’s optical properties, the solution that best fits the data es-

timates the medium’s optical properties. Experimental techniques that employ this strategy

are known as Diffuse Optical Spectroscopy (DOS) techniques.

However, since Equation 2.7 depends on the source term, the kind of information that

we can obtain using DOS relates to the illumination pattern used. There are, essentially,

three illumination techniques used in DOS: Frequency-Domain (FD-DOS), Time-Domain

(TD-DOS), and Continuous-Wave (CW-DOS). Since we did not use TD-DOS in this work,

and the analytical solutions for this method are inverse Fourier Transforms of the FD-DOS

ones, we will focus only on FD-DOS and CW-DOS techniques. The temporal patterns of both

methods are illustrated in Figure 2.3. For CW-DOS measurements (Figure 2.3b), a light with

continuous amplitude is shined, and the detected intensity is attenuated due to scattering

and absorption events. A light with intensity sinusoidal amplitude modulated over time is

used for FD-DOS acquisitions (Figure 2.3c). Consequently, the detected signal is also oscilla-

tory. TD-DOS measurements use pulsed lasers to obtain information regarding the medium.

A light source and detector used to obtain information regarding the medium is known

as a source-detector pair, also referred to as a channel or source-detector separation (SDS, Fig-

ure 2.3a). Typically, light is irradiated using optical fibers and is detected a distance ρ away

from the incidence point on the same plane. This arrangement is generally referred to as

reflection geometry. It is worth pointing out that the directed light from the source fiber does

not violate the assumption of isotropic sources discussed in the previous section within cer-
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Figure 2.3: (a) Illustration of a channel (source-detector pair) used in DOS to obtain information regarding the
media. (b) Illumination pattern used in CW-DOS measurements: the light intensity is constant over time. (c)
Illumination pattern used in FD-DOS measurements: the light intensity is modulated sinusoidally over time.

tain restrictions. Indeed, the light source from an optical fiber is well approximated by an

isotropic and point-like source at a distance ℓtr inside the medium if the source-detector

separation is larger than 3ℓtr [27]. It makes sense since the photons’ direction of propaga-

tion is randomized after it travels ℓtr on average. By respecting this constraint, solutions to

the photon diffusion model can estimate the medium’s optical properties through an inver-

sion procedure. The following sections deduce solutions for φ for some media under certain

assumptions.

2.3.1 Frequency-Domain Diffuse Optical Spectroscopy

Within the scope of this work, FD-DOS is the most complex DOS technique in terms of illu-

mination pattern. The main idea behind this method is to shine an intensity-modulated light

at a point source, S (⃗r , t ) = (SDC +S AC e iωt )δ(⃗r −r⃗s), and use both the attenuation and the time

delay between the input and output signals to estimate the optical properties of the medium.

Here, ω= 2π f , where f is the modulation frequency, r⃗s is the position of the source, and δ is

the Dirac delta function. Since the goal is to obtain information from the amplitude and the

phase shift, the period of oscillation of the light source must “experience the medium” at the

same time. In practice, this means that the period of oscillation of S must be small compared

to the time spent by light in the medium between leaving the source and reaching the detec-

tor. As a rough estimate, if we assume the source-detector separation is 1 cm, that light trav-

els approximately six times the distance between the source and the detector, and the refrac-

tive index of tissue is 1.4, the time spent by the light is ∼ (6·1)/v = (1.4·6)/(3·108) ∼ 2.8·10−8s.

Thus, f must be greater than 1/(2.8 ·10−8) ∼ 35M H z for detecting photons at 1 cm source-

detector separation. Considering that we are interested in distances longer than 1 cm for

probing deep tissue, commercial FD-DOS systems usually have f ∼ 100M H z or more.

Modulating S at hundreds of MHz suggests that the flux J will vary quickly, and it would

violate the hypothesis of slow temporal variation. To hold the assumption true, we must

have:
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3∂ J⃗

v∂t
<< 3(µa +µ

′
s )⃗J ,

or, more precisely, as previously discussed,

3∂ J⃗

v∂t
+3(µa +µ

′
s )⃗J ≈ 3(µa +µ

′
s )⃗J .

Rewriting the left side, we have:

3∂ J⃗

v∂t
+3(µa +µ

′
s )⃗J ≈ 3(µa +µ

′
s)

(
ℓtr

v

∂ J⃗

∂t
+ J⃗

)
.

Let’s consider that light spends ttr time to travel ℓtr . Additionally, if we consider that the flux

oscillates with the same frequency as S, J⃗ ≈ J⃗ e iωt , then:

3∂ J⃗

v∂t
+3(µa +µ

′
s )⃗J = 3(µa +µ

′
s)(ttr iω J⃗ + J⃗ ) = 3(µa +µ

′
s)(iωttr +1)⃗J .

In other words, we must have:

3(µa +µ
′
s)(iωttr +1)⃗J ≈ 3(µa +µ

′
s )⃗J ,

which is true if ωttr << 1. Again assuming n = 1.4 and typical values for optical properties

of tissue (µa = 0.1cm−1 and µ
′
s = 10cm−1), we must have f << 34G H z. Then, assuming that

we shine a light modulated with a frequency higher than tens of MHz and much smaller

than tens of GHz, FD-DOS can estimate the medium’s optical properties by using analytical

solutions of the photon diffusion model.

Considering a source that can be represented as S (⃗r , t ) = (SDC +S AC e iωt )δ(⃗r − r⃗s), it is

reasonable to find solutions to two terms: one related to the continuous component (DC

component), and another associated with the oscillating (AC) component of the source.

More specifically, it makes sense to expect the fluence to oscillate with the same frequency

ω. In other words, we are searching for solutions with the form:

φ(⃗r , t ) =φDC (⃗r )+φAC (⃗r )e iωt .

Substituting this expression into Equation 2.7 results in a set of two equations:

∇⃗ · (D (⃗r )⃗∇φDC )− vµaφDC =−vSDCδ(⃗r − r⃗s);

∇⃗ · (D (⃗r )⃗∇φAC )− (vµa + iω)φAC =−vS ACδ(⃗r − r⃗s),

since complex exponentials of different arguments are linearly independent. If we assume

the medium is homogeneous, i.e., D (⃗r ) = D , the equations become:

(∇2 −k2
0)φDC =−vSDC

D
δ(⃗r − r⃗s); (2.8)
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(∇2 −k2)φAC =−vS AC

D
δ(⃗r − r⃗s), (2.9)

where k2
0 = vµa/D and k2 = (vµa + iω)/D . Note that the Equation 2.8 is Equation 2.9 with

ω→ 0 and S AC → SDC . In other words, if we find a solution for one of these equations, we

would have solved both. Additionally, S AC ,SDC is usually taken as 1, and φ is calculated as a

ratio of the source amplitude.

In summary, the equation for the fluence in turbid media is a Helmholtz equation in

the frequency domain; its solution depends on the geometry and the boundary conditions

assumed. The following subsections present the solutions for some geometries of interest. It

is also important to consider that one can use fluence expressions to fit data; however, when

using the reflection geometry (Figure 2.3a), the reflected intensity might be assumed as the

flux expression using Fick’s Law aiming a better agreement with experimental data.

Homogeneous, infinite media

Although this medium does not realistically represent tissue, finding the analytical solu-

tion of Equation 2.9 for this medium provides a physical intuition regarding the behavior

expected for light propagation inside any turbid media. Since the medium is infinite, let’s

assume the source is centered at r⃗s = 0⃗ and the boundary condition is such that φ(⃗r ) → 0

when r → ∞. Note that assuming S AC = 1 and omitting the sub-index AC , we can write

Equation 2.9 as:

−(∇2 −k2)
Dφ(⃗r )

v
= δ(⃗r ) ⇒ (∇2 −k2)ψ(⃗r ) = δ(⃗r ),

where ψ(⃗r ) ≡−Dφ(⃗r )/v . As this is a case of spherical symmetry, it is reasonable to suppose

that ψ(⃗r ) =ψ(r ), which reduces the equation to:

1

r

d 2(rψ(r ))

dr 2
+k2ψ(r ) = δ(⃗r ).

It is possible to verify that the solution of the above equation is

ψ(r ) =−e−kr

4πr
,

by remembering that ∇2(FG) =∇2F +2∇⃗F · ∇⃗G +∇2G and ∇2(1/r ) =−4πδ(⃗r ). Thus:

φ(⃗r ) = v

4πD

e−kr

r
.

Since k is a complex number, this solution means that the fluence through the medium is

an overdamped wave. Including the temporal part (usually omitted since the reference is

always the incident wave, e iωt ), the full solution is:

φ(⃗r ,ω) = v

4πDr
e−kr r e i (ωt−ki r ) ≡ A(r )e i (ωt−θ(r )),
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Figure 2.4: Illustration of an FD-DOS measurement in an infinite media. a) Infinite media, represented in blue,
with one light source (red, S) and four detectors (blue, D1 up to D4). b) Behaviour of l n(A(r )) against the SDSs
for the channels SDSn (between source and detector Dn), n = 1, ...4. Dots represent ”experimental” data. c)
Same as (b), but for θ(r ).

where kr and ki are the real and imaginary parts of the complex wave-vector, k, A(r ) =
v exp(−kr r )/(4πDr ), and θ(r ) = ki r . Ideally, it would be possible to determine µa and µ

′
s

(implicit dependencies on D and k) with just one channel using the previous expression.

However, since we cannot be sure of the magnitude of S AC that penetrates the medium, DOS

usually employs more than one source-detector distance. A simple experimental setup (Fig-

ure 2.4a) measures the amplitude, A, and the phase shift, θ, of φ at several distances (usually

three or more), and kr and ki can be obtained by calculating the slopes of ln (A(r )) vs r and

θ(r ) vs r (Figure 2.4b and 2.4c, respectively). After taking the square root of k, we can find

that:

kr =
√

vµa

2D

√√√√√
1+

( ω

vµa

)2 +1;

ki =
√

vµa

2D

√√√√√
1+

( ω

vµa

)2 −1,

or, conversely,

µa = ω

2v

(
kr

ki
− ki

kr

)
;

µ
′
s =

2v

3ω
kr ki −µa .

Thus, using multiple source-detector separations, one can readily assess kr and ki

from the experimental data, which can be used to estimate µa and µ
′
s . Although the expres-

sions for more realistic media are not as simple, this solution provides a general framework

to readily obtain optical information using FD-DOS measurements. Additionally, the exper-

imental curves measured using FD-DOS resemble Figure 2.4.
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Figure 2.5: Illustration of the semi-infinite media. The turbid media is assumed as infinite in any direction
perpendicular to the ẑ axis. The air-tissue interface is positioned at z = 0 for convenience. Also, the figure
exhibits important lengths in the algebra of the model.

Homogeneous, semi-infinite media (SI)

A more realistic approach for biological applications is the semi-infinite (SI) approach. In

this geometry, we approximate the medium as infinite in two directions (e.g., the x y plane)

and finite in the remaining one, where the interface with the outside medium is located (Fig-

ure 2.5). Although the SI medium is still a simplified model, this approach produces robust,

average results in practice.

We must first set a boundary condition to find the analytical expression for this geome-

try. There are some choices, but the most common is the extrapolated-zero boundary condi-

tion, which assumes that the fluence decreases linearly outside the turbid medium and goes

to zero at a distance zb (see Equation B.4 in Appendix B).

The solution to this geometry can be obtained using the method of images [28]. The

goal is to find a plane where φ= 0 at a distance zb outside the medium (see Figure 2.5), and

since the point source alone is not able to achieve that, we add another fictional source (or

image source) on the other side of the plane. To make sure the fluence is zero at the plane,

this new source must have the opposite sign of the real one and must be at the same distance

from the plane (i.e., zo + zb , where zo = ℓtr = 1/µ
′
s by the point source approximation). The

fluence produced on the detector is the sum of the (infinite media) fluences of both sources:

φ(ρ) = v

4πD

(
e−kr1

r1
− e−kr2

r2

)
, (2.10)

where r1 =
√

(z −ℓtr )2 +ρ2 and r2 =
√

(z + zb +ℓtr )2 +ρ2, being z the detector position.
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Figure 2.6: Illustration of a layered media. Note that, in this picture, the turbid medium is assumed to be a
composition of several layers with different optical properties

If we assume that ρ >> 2zb +ℓtr , Equation 2.10 simplifies to:

φ(ρ) = ve−krρ

4πDρ2
[2k(zbℓtr + z2

b)]e−i kiρ ≡ Ã(ρ)e−i θ̃(ρ),

and the slopes of ln
(
ρ2 Ã(ρ)

)
vs ρ and θ̃(ρ) vs ρ are kr and −ki , respectively. From this point,

one can estimate the optical properties using the same approach presented before for the

infinite medium (Figure 2.4).

Alternatively, one can use Equation 2.10 as a model to predict the fluence at a point

on the interface where the detector is located and define a cost function that compares the

predicted and measured fluences. The minimization of this cost function with respect to the

model parameters (µa and µ
′
s in this case) provides an optimal solution that approximates

the optical properties of the medium. This approach can be formalized as an inverse prob-

lem discussed in Section 2.5.

Layered media

A sophistication of the SI model is to consider a turbid media as a composition of several

homogeneous slices of different optical properties (Figure 2.6). Although it increases the

complexity of the model, it captures more nuances in realistic situations. When used in vivo

experiments, such as on acquisitions on the head, the different layers can mimic the scalp,

skull, cerebrospinal fluid, and cortex. Since there is no further gain of physical intuition

regarding this geometry, I will only present the main results below. For more information, I

suggest reading the deduction of this solution for two layers in a cylinder of radius a that is

available in the literature [29]. In my opinion, the only step that is not clear enough is the

calculation of the z function, Gk (sn , z,ω), so you can find a more detailed development in

Appendix C.
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Briefly, Equation 2.9 is solved for each layer as a homogeneous medium, with the

source located in the first layer. Then, the extrapolated-zero boundary condition is imposed

at all interfaces with the external medium, as well as continuity of φ and J through each

layer:

n2
k+1

(
φk

)|k;k+1 = n2
k

(
φk+1

)|k;k+1;

Dk
(

J⊥k
)|k;k+1 = Dk+1

(
J⊥k+1

)|k;k+1,

where Ak is a notation denoting quantity A of layer k, A|k;k+1 indicates the quantity A evalu-

ated at the interface between layers k and k +1, and J⊥ is the component of J⃗ perpendicular

to the interface between two layers. For a point source located at the center of the first layer:

φk (ρ) = 1

πa ′2

∞∑
n=1

Gk (sn , z,ω)J0(snρ)J−2
1 (a

′
sn), (2.11)

where Jm is the Bessel function of order m, a
′ = a + zbk , sn are such that Jm(a

′
sn) = 0,n =

1,2,3..., and:

G1(sn , z,ω) = e−k1|z−z0|−e−k1(z+z0+2zb1)

2D1k1
+ si nh(k1(z0 + zb1))si nh(k1(z + zb1))

D1k1ek1(ℓ1+zb1)
×

D1k1n2
1β3 −D2k2n2

2γ3

D1k1n2
1β3cosh(k1(ℓ1 + zb1))+D2k2n2

2γ3si nh(k1(ℓ1 + zb1))
,

where β3 = si nh (k2(ℓ2 + zb2)) and γ3 = cosh (k2(ℓ2 + zb2)). Since DOS methods acquire the

fluence on the first layer in a reflective geometry (as in Figure 2.6), only G1 is needed. Us-

ing these equations, the only possibility to estimate µa and µ
′
s of each layer is through an

optimization approach. The more layers considered in the model, the greater the number

of variables to estimate. Thus, DOS studies usually use two-layer (2L) or three-layer (3L)

models, and even in these cases, problems with accuracy and numerical stability are com-

mon [13, 29–32].

Alternative Geometries

The analytical solutions obtained when using the symmetries and boundary conditions I

exhibited so far yield numerically stable solutions that closely resemble experimental DO

measurements (i.e., Figure 2.4). However, those geometries lack characteristics of real data

acquisition. For instance, both the SI and 2L models do not consider the curvature at the

acquisition data interface. One alternative to this problem I investigated is to change the

position of the source at the Liemert’s 2L model [29] to the side of the cylinder, so that the

cylinder curvature may mimic the biological tissue curvature. However, this new analytical

solution only resembles DO measuremets for small cylinder radius (around 2 cm), which is
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not reliable for real cases.

Aiming to obtain an analytical solution that takes into account more macroscopic fea-

tures of real data acquisition, I solved the Photon Diffusion Model for a homogeneous sphere

and for a heterogeneous cylinder (which I refer to as the two-layered concentric cylinder).

The highlights of the solutions are in Appendix D. However, my analytical solutions fail to

produce reliable curves that match experimental observations. I hypothesize that those dis-

crepancies are primarily due to numerical instabilities that arise during the computation

process, as when dealing with exponential functions of large numbers or other mathemat-

ically complex functions related to these geometries. The exponential growth or rapid os-

cillations in the functions can lead to computational errors or the breakdown of numerical

methods, resulting in unreliable results. Thus, to address this problem, I decided to use nu-

merical models to solve the Photon Diffusion Model, which I will further discuss in Section

2.3.3.

2.3.2 Continuous-Wave Diffuse Optical Spectroscopy

In CW-DOS, only the amplitude of light intensity is available as a measurement. From a

theoretical perspective, one can analyze the behavior of photon transport by taking ω→ 0

in the solutions to Equation 2.9 derived above. Thus, for an infinite, homogeneous medium,

the CW solution is:

φ(ρ) = v

4πD

e−k0ρ

ρ
,

where k2
0 = vµa/D . It is straightforward to note that it is not possible to separate µa and

µ
′
s using this single expression [33]. Therefore, most CW-light approaches estimate µa con-

sidering some assumptions regarding D or µ
′
s . Despite this intrinsic limitation compared to

FD or TD techniques, CW approaches have the advantage of using simpler instrumentation,

which is more affordable than its FD and TD counterparts.

Spatially-Resolved Spectroscopy (SRS)

Considering the SI approximation for the medium and making the large ρ approximation,

the fluence for the CW case can be derived from Equation 2.10 in the limit ω→ 0:

φ(ρ) = v

4πD
(2k0(zbℓtr + z2

b))
e−k0ρ

ρ2
.

The optical density1, defined as OD(ρ) =−ln(φ(ρ)/SDC ), is (since we assumed SDC = 1):

1It is also common to define the absorbance, which represents the same as the optical density, but the log10
is used instead of the natural logarithm.
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OD(ρ) =−ln

(
v

4πD
(2k0(zbℓtr + z2

b))

)
+k0ρ+2ln(ρ),

thus

∂OD(ρ)

∂ρ
= k0 + 2

ρ
.

As µ
′
s >>µa , D ≈ v/(3µ

′
s) and the expression becomes:

∂OD(ρ)

∂ρ
=

√
3µaµ

′
s +

2

ρ
.

Since we can measure OD(ρ), and the goal is to estimate the optical properties, the best that

the above equation can provide is:

µaµ
′
s =

1

3

(
∂OD(ρ)

∂ρ
− 2

ρ

)2

.

In other words, this approach can only estimate the product µaµ
′
s , which is not of great help

in obtaining physiological information regarding the tissue. As previously discussed, µa is

related to the concentration of absorbers inside the medium. Thus, in exchange of properly

determining µ
′
s , it is preferred to estimate µa . Assuming all the particles inside the medium

are spherical and of a size similar to the λ of the light, the scattering can be modeled as

µ
′
s = aλ−b [34,35]. Considering near-infrared radiation (650−900nm), this expression is well

approximated for biological tissue by µ
′
s =α(1−βλ) [36, 37]. Thus:

αµa = 1

3(1−βλ)

(
∂OD(ρ)

∂ρ
− 2

ρ

)2

.

Usually, data acquisition involves collecting data with a few source-detector separations,

making it impossible to calculate a numerical derivative. To adjust for real measurements,

we write:

αµa = 1

3(1−βλ)

(
∆OD(ρ)

∆ρ
− 2

ρ

)2

.

An illustration of how to estimate the term between parenthesis is the following: let’s say we

have a source at the origin and two detectors, one at the position ρ1 = 1cm and the other at

ρ2 = 2cm. In this situation, the term in parenthesis is:

OD(ρ2)−OD(ρ1)

ρ2 −ρ1
− 2

1.5
,

assuming (ρ2 +ρ1)/2 = 1.5cm.

One can calibrate the device and estimate α and β using phantoms that mimic the

medium under study. By assuming these constants would not change in real situations, this
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technique provides estimates of µa for each λ. Since fluence measurements may be sub-

ject to different coupling factors under different media (see section 2.3.4), the most accurate

estimation of SRS is αµa . This approach is known as spatially-resolved spectroscopy (SRS).

Modified Beer-Lambert approach

Although SRS is a robust method for estimating optical properties, it depends on appropri-

ately calibrating the acquisitions for µ
′
s . Considering that µ

′
s >> µa , the fluence for infinite

media is:

φ(ρ) = v

4πD

e−
√

3µ
′
sµaρ

ρ
≡ v

4πDρ
e−µe f f ρ,

where µe f f =
√

3µ
′
sµa . This expression is similar to the Beer-Lambert law for purely absorb-

ing media, I (ρ) = I0exp(−µaρ), but with the attenuation coefficient depending addition-

ally on scattering. On purely absorbing media, µa is estimated through the optical density,

OD(µa) ≡−ln(I (ρ)/I0) =µaρ.

In some circumstances, we are interested in the changes in absorption coefficient in

a short period of time (i.e., from seconds to minutes). For these cases, there is an implicit

dependence on time t , i.e., µa = µa(t ). However, in scattering media, OD = OD(µe f f ) =
OD(µa ,µ

′
s). Thus, we can relate temporal changes in OD in a small timestamp from t = 0 to

t to changes in the optical properties by [28]:

OD(t ) =OD(0)+
(
∂OD

∂µa

)∣∣∣∣
0
(µa(t )−µa(0))+

(
∂OD

∂µ
′
s

)∣∣∣∣
0
(µ

′
s(t )−µ′

s(0)) ⇒

∆OD = L(ρ)∆µa + µa(0)

µ
′
s(0)

L(ρ)∆µ
′
s ,

where L(ρ) ≡ (∂OD/∂µa)|0 is the differential pathlength, which is an estimation of the dis-

tance traveled by the light between the source and the detector when they are ρ apart. The

second term on the right side is small when compared to the first since µ
′
s >> µa . Addi-

tionally, in biological tissues, scattering changes are negligible in the time scale considered.

Under these conditions, ∆OD = L(ρ)∆µa is an approximation that relates the changes in the

optical density, measured in an experiment, with changes in µa . In turn, changes in µa re-

late to changes in the concentrations of the absorbers inside the medium. Although it is out

of the scope of this work, it is worth mentioning that tracking changes in µa is the pillar of

functional neuroimaging.
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2.3.3 Numerical Models

Light fluence can also be estimated through numerical models. Methods such as the Fi-

nite Element Method (FEM) are suitable to simulate outcomes at irregular geometries or

in media with a highly varying range of optical properties [38, 39]. Essentially, this method

subdivides the entire domain into smaller parts (the so-called finite elements). In practice,

one defines a domain under analysis through a mesh, i.e., a set of K tetrahedrons (elements)

joined at U vertices, organized side-by-side to build a specific volume. Each element is taken

as a finite element in the FEM. The light transport equation (2.9) is then numerically solved

within each element, resulting in a detailed representation of light propagation.

Since the FEM might be used for heterogeneous media, it can deal with the Photon

Diffusion Model originally written for FD-DOS as:

(⃗∇·D (⃗r )⃗∇− vµa (⃗r )− iω
)
φ(⃗r ) =−S (⃗r ).

A solution of this equation for φ(⃗r ) is also a solution of:∫
V
ψ(⃗r )

(⃗∇·D (⃗r )⃗∇− vµa (⃗r )− iω
)
φ(⃗r )dV =−

∫
V
ψ(⃗r )S (⃗r )dV ,

where V is the entire domain under analysis, and ψ(⃗r ) is a test function attending the same

boundary conditions as φ(⃗r ). Integrating by parts the first term on the left-hand side, we

obtain:

∫
V
ψ(⃗r )⃗∇·D (⃗r )⃗∇φ(⃗r )dV =

∮
A
ψ(⃗r )D (⃗r )⃗∇ψ(⃗r ) ·d A⃗−

∫
V

D (⃗r )⃗∇φ(⃗r ) · ∇⃗ψ(⃗r )dV ,

where A is the surface that encloses the volume V . Thus:

∫
V

(
D (⃗r )⃗∇ψ(⃗r ) · ∇⃗φ(⃗r )+ vµaψ(⃗r )φ(⃗r )+ iωψ(⃗r )φ(⃗r )

)
dV =

∫
V
ψ(⃗r )S (⃗r )dV

+
∮

A
ψ(⃗r )D (⃗r )⃗∇ψ(⃗r ) ·d A⃗.

Thus, solving the Photon Diffusion Model is the same as solving the previous equation

for∀ψ(⃗r ). For the purpose of the method, the choice is to expandψ(⃗r ) in a basisψi ∈ {ψi }, i =
1, ...,U , and ifφ satisfies the equation∀ψi , than it is the optimal solution of this FEM problem

with U nodes. In practice, since ψ(⃗r ) is expanded, the formulation finds φ(⃗r ) =∑U
i=1φiψi (⃗r )

[40, 41]. Using this expansion choices for φ and ψ, the Photon Diffusion Model becomes a

matrix expression:

(
A(D)+B(vµa + iω)

)
φ=C +β,
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Ai j =
∫

V
D (⃗r )⃗∇ψ j (⃗r ) · ∇⃗ψi (⃗r )dV ,

Bi j =
∫

V
(vµa (⃗r )+ iω)ψ j (⃗r )ψi (⃗r )dV ,

C j =
∫

V
ψ j (⃗r )S (⃗r )dV ,

β j =
∮

A
ψ j (⃗r )D (⃗r )⃗∇ψ(⃗r ) ·d A⃗.

Thus, the problem is to find the nodal fluence, φi , for each vertex. In other words, it

becomes a problem of inverting a sparse matrix. In diffuse optics, a popular choice to sim-

ulate light transport using FEM is NIRFASTer [39, 42]. This software employs a piecewise

continuous polynomial function as the expansion basis choice and uses a bi-conjugate gra-

dient stabilized iterative solver to solve this matrix problem. Additionally, the source term is

treated as a Gaussian source to match the profile at the end of the optical fiber.

Usually, FD-DOS (i.e., |φ| and ar g (φ)) and DCS (G1(τ), refer to Section 2.4) are esti-

mated using a mesh by setting a position for the light source and the detectors and solving

the set of equations for each vertex. Meshes can reproduce the assumed geometry of the

SI and 2L models. However, as one can build any mesh, this method is particularly useful

for situations in which a more realistic model of the medium is required, and there is no

analytical expression for the geometric model. Also, FEM can be used together with high-

quality volume meshes generated from medical images, improving the mesh quality and the

reliability of optical simulations through the forward problem [42].

2.3.4 Coupling factors between optical fibers and turbid media

Previous sections discussed how light fluence, φ, can be readily estimated in turbid media

from a theoretical perspective (using either analytical or numerical approaches). Experi-

mentally, however, diffuse optical spectroscopy measures the backscattered light intensity,

which is proportional to φ. The proportionality coefficient depends on the details of the

optical fibers used and how they are coupled with tissue (see Appendix E). In practice, the

fluence measured through intensity, φm , is related to the theoretical fluence by:

φm =Cφ,

where C is the coupling factor between the optical fiber and the turbid medium. C depends

on the detector’s sensitivity, the fiber material, the physical coupling between the fiber and

the medium, the surface properties, and other factors [43–45]. In systems where optical

fibers guide light in both ends (sources and detectors), C = CSCD , where CS and CD are the
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coupling factors of the source and the detector, respectively.

For a source-detector pair, C is an additional unknown. Since φ is a complex quantity,

it is expected that C =C Ae−iCθ . Thus, there are at least four parameters to be determined in a

real problem: C A,Cθ,µa ,µ
′
s . Adding more source-detector pairs would not necessarily solve

the problem since it would introduce more unknowns (amplitude and phase of the coupling

factor for each pair introduced).

One possible solution is to use calibrating phantoms, i.e., blocks large enough to be

considered semi-infinite media. Considering that the optical properties of these phantoms

are known, µr e f
a and µ

′r e f
s , it is possible to use this information to find the coupling factors.

Since we know the source-detector separation, the λ of the radiation, ω, and n, the expected

fluence can be estimated using Equation 2.10: φ(µr e f
a ,µ

′r e f
s ) = Ateoexp(−iθteo). By collect-

ing experimental data on the phantoms, we obtain φm = Amexp(−iθm). Thereby:

C = φm

φ
⇒C Ae−iCθ = Am

Ateo
e−i (θm−θteo ).

Consequently, C A = Am/Ateo and Cθ = θm −θteo . Performing this process for every source-

detector separation and light wavelength, one can estimate the calibration factors that must

be used to compare experimental measurements with their predicted values. This method,

however, relies on the assumption that the coupling factors between the turbid medium and

the optical fibers are the same as in the phantom. Hairy regions, for example, compromise

the coupling between the fibers and the tissue, so the calibration method does not work well

in these regions.

Given that the coupling factors for a specific source-detector pair can change through-

out an experiment due to uncontrolled circumstances (e.g., motion artifacts), it is common

to rely on several SDSs and normalize the intensity of each channel by the intensity mea-

sured at the shortest separation (or any channel with a good signal-to-noise ratio).

2.4 Diffuse Correlation Spectroscopy (DCS)

So far, I have discussed how the DOS techniques involved in this work obtain information

about a turbid medium from the backscattered light. Another technique to obtain infor-

mation about a medium is Diffuse Correlation Spectroscopy (DCS). In DCS, fluctuations of

the detected light intensity are quantified and related to the movement of the scatterers in-

side the medium. As DCS is not the main focus of this work, this section will focus more

on presenting the general idea of the technique. Please refer to [24, 46] for a more detailed

development and discussion.

Consider a continuous-wave light beam propagating through a turbid medium. Sup-

pose the intensity of the incident light is constant, and the configuration of the medium

does not change over time. In that case, the detected intensity is expected to be constant for
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a time interval ∆t long enough so that any statistical fluctuations of photon arrivals are av-

eraged out. At short time scales t ≪∆t , however, the stochastic nature of scattering will give

rise to small fluctuations in the detected light. The fact that particles are constantly moving,

either by Brownian motion or due to directed motion (as is the case of cells in blood vessels),

changes the spatial configuration of the scatterers, which produces a different intensity on

the detector and increases the intensity fluctuations at short time scales. Thus, the fluctu-

ations in the recorded intensity (Figure 2.7b) carry information regarding the motion of the

scatterers.

Figure 2.7: a) Set of scatterings that produce the path traveled by the light at time t (red) and at a posterior
time, t +τ (rose). The dark blue circles represent the scatterers at time t +τ, while the blue ones represent some
of them at time t . The wave vector before the j-th scattering is k⃗ j , and it becomes k⃗ j+1 after the interaction,
rotating at an angle θ j . As an example, a particle moves ∆r⃗ j (τ) from t to t +τ. b) Intensity recorded at a scale
of µs. c) Autocorrelation function of the intensity at b).

In the event of light traveling through a dilute medium, where it will be scattered at

maximum once before leaving the medium, the detected electric field, E⃗(t ), is a superposi-

tion of all the contributions from each scatterer. Since the particles are in motion, the phases

of the scattered fields change and the recorded light also changes as a consequence. One can

extract information from the detected fluctuations through a temporal autocorrelation func-

tion. The temporal autocorrelation function of some quantity A(t ) is defined as:

g (τ) ≡
〈A∗(t )A(t +τ)〉

〈|A(t )|2〉
,

where 〈 · 〉 represents an ensemble average and τ is known as delay time. Note that g (τ) = 1 if

A(t ) is constant. Additionally, A(t ) ̸= A(t +τ) unless τ is much smaller than the typical time

of fluctuation in A. Thus, A(t +τ) is similar (or correlated) with A(t ) if τ is small. However,
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the similarity between A(t +τ) and A(t ) is lost as τ increases. Therefore, the autocorrelation

function is a metric of how much A(t ) is getting different from itself through a time transla-

tion, and it decreases with increasing τ (Figure 2.7c). The denominator, 〈|A(t )|2〉, normalizes

the fraction since the maximum value of 〈A∗(t )A(t +τ)〉 occurs when τ= 0.

For independent particles with isotropic dynamics, the electric field autocorrelation

function is [46]:

g1(τ) ≡
〈E⃗∗(t )E⃗(t +τ)〉

〈|E⃗(t )|2〉
⇒ g s

1(τ) = e2πi f τe−q2〈∆r 2(τ)〉/6, (2.12)

where f is the light frequency, and q⃗ ≡ k⃗ f − k⃗i , where k⃗ f and k⃗i are the wave vector after

and before the scattering event, respectively. 〈∆r 2(τ)〉 is the mean-square displacement of

the scatterers at τ. Note that the greater the motion of the scatterers (greater 〈∆r 2(τ)〉), the

faster the decay in g1(τ). This is expected since the motion of the particles changes the spa-

tial configuration that produced the measured signal, and this change in intensity becomes

faster when scatterers move quickly.

However, obtaining g1(τ) directly in experiments is hard. In turn, the intensity auto-

correlation function, g2(τ) = 〈I (t )I (t +τ)〉/〈I (t )2〉 can be measured, and g1(τ) is estimated

through the Siegert’s relation [47],

g2(τ) = 1+β|g1(τ)|2, (2.13)

where β is a constant related to the experimental setup. Typically, β= 0.5 for highly scatter-

ing media with single-mode fibers and unpolarized light (see Appendix F).

Equation 2.12 results from a model for single scattering. In turbid media (Figure 2.7a),

each scattering event contributes to the fluctuations in the detected intensity. Although

there are methods to treat this problem, there is a more interesting approach through the

same formalism of the radiative transport equation (Equation 2.2). The idea is that the radi-

ance could be written as

L(⃗r ,Ω̂, t ) = 〈I (⃗r ,Ω̂, t )〉∝ 〈E⃗∗(⃗r ,Ω̂, t ) · E⃗ (⃗r ,Ω̂, t )〉 =G1(⃗r ,Ω̂, t ,τ= 0),

where G1(⃗r ,Ω̂, t ,τ) ≡ 〈E⃗∗(⃗r ,Ω̂, t )·E⃗ (⃗r ,Ω̂, t+τ)〉 is the unnormalized temporal autocorrelation

function for the electric field. With this modification, a Correlation Transport Equation for

turbid media can be derived [48]:

1

v

∂G1(⃗r ,Ω̂, t ,τ)

∂t
+ Ω̂ · ∇⃗G1(⃗r ,Ω̂, t ,τ) =

(µa +µs)G1(⃗r ,Ω̂, t ,τ)+Q (⃗r ,Ω̂, t )+µs

∫
4π

G1(⃗r ,Ω̂, t ,τ)g s
1(Ω̂,Ω̂

′
,τ) f (Ω̂,Ω̂

′
)dΩ

′
, (2.14)

where g s
1 is the single scattering function defined in Equation 2.12. For τ= 0, Equation 2.14
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reduces to Equation 2.2. To write Equation 2.14, it is assumed that the speed of light is greater

than the speed of the particles, which means that the autocorrelation function is calculated

instantaneously for each τ, i.e., the particles may be considered static for a given (small) τ.

A more detailed discussion can be found on [48], but the general idea is that the electric

field autocorrelation is not conserved in scattering events (as energy and radiance are). For

each scattering and each increase in τ, less G1 should be transported. Thus, we must analyze

carefully the terms µsL and the last term of Equation 2.2 to change to Equation 2.14.

It is easy to see that the first term should be only switched to µsG1, since scattering

out of Ω̂ decreases the radiance in that direction but also decreases the G1 function due to

the scattering outward Ω̂. In Equation 2.2, however, the scatterings that resulted in a photon

propagating in the Ω̂ direction increase the radiance due to energy conservation. However,

since it comes from a scattering event, the amount of G1 transferred into the Ω̂ direction

depends also on the correlation after a single scattering event, given by g s
1. So, we must

account not only for the probability of the scattering results in Ω̂ but also for the amount of

correlation lost on the scattering by including g s
1 inside the integral.

The advantage of using Equation 2.14 is that it is identical to Equation 2.2. Thus, we

can implement similar steps as the one previously exhibited to obtain a diffusion model for

the autocorrelation function [49]:

(⃗
∇· (D(r )⃗∇)− vµa(r )− α

3
vµ

′
sK 2

0 〈∆r 2(τ)〉
)
G1(r,τ) =−vS(r ),

where G1(r,τ) = ∫
G1(r,Ω̂,τ)dΩ= 〈E⃗∗(r, t ) · E⃗(r, t +τ)〉, S(r ) = ∫

Q(r,Ω̂)dΩ, K0 = 2π/λ, and α

is the fraction of scattering events due to moving (i.e., not static) particles. For homogeneous

media, the equation becomes:

(∇2 −K 2(τ))G1(⃗r ,τ) = −vSDC S

D
δ(⃗r − r⃗s), (2.15)

where K 2(τ) ≡ v(3µa +αµ′
sK 2

0 〈∆r 2(τ)〉)/(3D); we usually assume SDC S = 1. Note that Equa-

tion 2.15 is the same as Equation 2.9 with φ→G1 and k → K . Thus, G1 and φ must have the

same solutions (with k → K ) for the same geometries and boundary conditions, including

the SI and 2L geometries calculated in Section 2.3.

As in DOS measurements, the temporal autocorrelation function can also be estimated

with numerical models, such as the FEM using volumetric domains through meshes [39,42].

Thus, by normalizing the predicted G1 and using Siegert’s relation, one can predict g2(τ)

to compare with experimental measurements. At this step, β must be assumed as it is an

experimental parameter.

In experiments, a photon counter records the light intensity through single-mode op-

tical fibers and feeds a correlator that computes g2(τ). A long-coherence light source must

be used to maximize speckle contrast in acquisitions. Siegert’s relation allows the estima-

tion of g1(τ) from experimental data, from which 〈∆r 2(τ)〉 can be inferred. Since DCS also
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depends on the optical properties µa and µ
′
s , ideally DOS and DCS are performed together.

When DCS is used alone, typical values of optical properties must be assumed, unless DCS

is performed with at least two wavelengths [50, 51]. Additionally, the type of the scatterers’

motion must be considered. Two theoretical models fit experimental evidence: Brownian

motion and random flow [52–54]. In the first one, 〈∆r 2(τ)〉 = 6DBτ, where DB is an effec-

tive Brownian diffusion coefficient, but orders of magnitude greater than Einstein’s. In the

second model, 〈∆r 2(τ)〉 = 〈V 2〉τ2, where 〈V 2〉 is the second moment of the distribution of

particles’ speed.

2.5 Solving the Inverse Problem

The models presented in Section 2.3 can be used to solve the so-called forward problem:

given the geometry (which defines the model) and its optical properties, one can predict the

optical measurements (i.e., the fluence in DOS or the autocorrelation function in DCS) at

any location. Both analytical and numerical models are suited for this purpose. Analytical

expressions are generally faster and more general to work with. On the other hand, numeri-

cal models are able to deal with more complex geometries at the cost of more computational

time and memory.

However, in practice, real experiments involve the inverse problem. Here, one acquires

experimental data (DOS and/or DCS) using a predefined array of sources and detectors in

a given geometry, while the optical properties (µa , µ
′
s in DOS, and 〈∆r 2(τ)〉 in DCS) are un-

known. This problem can be mathematically formulated as a combinatorial optimization

problem, i.e., it requires minimizing an objective function2 H(w) with respect to a set of all

possible configurations, W :

w⋆ = argmin
w ′∈W

H(w ′), (2.16)

so that w⋆ is the optimal configuration solution. Any combinatorial optimization problem

can always be solved exhaustively by computing H(w ′) for all w ′ ∈W , and then selecting the

optimal solution. While this method is exact (i.e., it’s guaranteed to find the global optimal

solution), it is intractable for most real-world problems due to combinatorial explosion.

When the set W is infinite (e.g., if w can assume any real value), it is possible to find

an optimal solution by discretizing the configuration set (W ′) and creating a look-up table

which contains a list of every value of the input, w ′ ∈ W ′, and its associated output, H(w ′).

This approach, however, is only exact within the reduced configuration space, which is de-

pendent on the discretization resolution.

In the specific problem involving DO techniques, the configuration set W is the Eu-

clidean space RD , where D is the number of parameter dimensions. Typically, the objective

2The objective function can also be called cost function, loss function, or error function, depending on the
context.
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function H(w) is not convex and has many local optima, so the method to solve 2.16 does not

necessarily seek to find the global optima. In this case, one of the most widely used meth-

ods for solving problem 2.16 is the sequential gradient descent. In this approach, the optimal

configuration is found through an iterative process guided by the gradient of the objective

function:

wn+1 = wn −αHw (w),

with w0 ∈ RD being an initial guess. Here, Hw is the gradient of H(w) with respect to the

parameters w , andα> 0 is a constant that determines how quickly the minimum is reached.

It is clear from the formulation above that this approach requires the objective function to

be differentiable.

A common objective function employed in this situation is the square loss function,

which is the square of the difference between the prediction of the model, denoted as

f (w, xi ), and the corresponding output, yi :3

H(w) =
N∑

i=1

(
f (w, xi )− yi

)2 , (2.18)

Here, we assume the model is a function of the parameters to be optimized, w , and N in-

dependent variables, xi . For example, considering the DOS problem in a semi-infinite ge-

ometry, x represents the different source-detector separations, yi is the fluence measured

by the detector at the i -th source-detector separation, w = [µa ,µ
′
s]T ∈ R2, and f (w, xi ) is

the fluence predicted by the SI model at each source-detector separation considered in the

problem (Equation 2.10).

When the model is linear, so that f (w, x) = w1x1 +w2x2 + ...+wk xk , the optimization

problem with the square loss function is the so-called least squares regression. For this prob-

lem, the gradient can be analytically computed, and the expression can be used within the

gradient descent approach to find the approximate optimal solution. For nonlinear mod-

els, computing the gradient can be quite complex, although there are methods available to

approximate the gradient, such as the Levenberg–Marquardt or Newton-Raphson. In this

work, I used an algorithm based on the interior-point method [55] implemented in MATLAB

(fmincon function), which allows for the definition of boundaries and constraints on the pa-

rameters. Briefly, this method adds barrier functions to the original problem, penalizing any

parameter that violates the constraints of the problem, ensuring that the subsequent inter-

actions remain within the feasible region.

3It is worth noting that the most general form of the square loss function should be given by

H(w) =α
N∑

i=1

(
f (w, xi )− yi

)2 , (2.17)

where α is a constant. On several occasions, it is common to define the mean squared error (MSE) function,
which represents the square loss function with α= 1/N .
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When the forward problem uses a numerical model (Section 2.3.3), the iterative na-

ture of the gradient descent approach requires the reevaluation of the model at each step,

which involves performing the simulation with the new set of parameters. This is a slow

process that requires a high computational cost. For this reason, when dealing with numer-

ical models in the forward problem, I opted to use a look-up table solution. Although this

approach is even slower than computing the gradient descent steps, it can provide a more

reliable (global) solution within a certain parameter resolution. In addition, the range of op-

tical properties for actual tissue can be greatly reduced based on previous experimental data.

In this work, we constrained µa from 0.05 to 0.3 cm−1 in steps of 0.005cm−1, and µ
′
s from 5

to 15 cm−1 in steps of 0.1 cm−1 (unless stated otherwise). This choice led to a resolution of

1.5 µmol ar in [HbO], 0.9 µmol ar in [HbR] and approximately 0.4% in StO2. Considering

the noise observed in FD-DOS brain data, those resolutions were enough for our research.

2.6 Diffuse Optical Techniques and the Biological Tissue:

Near-Infrared Spectroscopy (NIRS)

Once the optimal solution for the optical properties is found through the inverse problem,

we can use them to estimate physiological parameters of biomedical interest. As it has been

implied since the beginning of this chapter, biological tissue behaves as a turbid media for

radiations between ∼ 650−900nm, which means that all the discussion above holds for it.

Because of this specific window in the electromagnetic spectra, DOS (which, historically, was

the first DO technique attempted in biological tissue) is often referred to as Near-Infrared

Spectroscopy (NIRS). This section discusses specifically how µa (obtained from DOS) and

〈∆r 2(τ)〉 (obtained from DCS) carry physiological information.

Typical values of µa in tissue are around 0.1cm−1, while µ
′
s ∼ 10cm−1 [56–58], validat-

ing the main assumption that µ
′
s >> µa . To make sure that the point source approximation

holds, the separation between source and detector should exceed 3ℓtr ≈ 0.6cm since it is not

hard to find tissues with µ
′
s ∼ 5cm−1. In this context, ℓtr is far greater than λ, validating the

approximation ℓtr >>λ. Additionally, g is close to 1 (typically 0.8), so the photon path inside

biological tissue is as illustrated in Figure 2.2. However, it is worth noting that the photon dif-

fusion model is not perfect. The rotational assumption may fail close to the more superficial

axon fiber bundles in the cortex [59].

In biological tissue, scattering is mainly due to spatial changes in the refractive index,

such as when light travels in and out of some tissue, cell, or organelle, or simply because

light travels through regions of different densities so that the refractive index changes on the

scale of λ. Thus, light scattering can be seen as a rough estimation of tissue heterogeneity.

Since light interacts with particles of size comparable to λ, scattering in biological tissue can

be well modeled with Mie scattering [60], which is not isotropic, to reinforce the bias toward
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Figure 2.8: Extinction coefficient of the main absorbers of NIRS light. Note that we multiplied the water values
by 106 since it is roughly the ratio of how much it is more concentrated than oxyhemoglobin. Data available on
https://omlc.org/spectra/index.html.

forward scatterings.

A small fraction (∼ 10%) of all scatterers in tissue come from red blood cells, which

are moving within the blood and carry hemoglobin [61, 62]. Red blood cells are a major

component of biological tissue that interacts with NIR light. Despite their directed motion

within blood vessels, it has been found that DCS data are better adjusted by considering a

diffusive model (〈∆r 2(τ)〉 = 6DBτ, where DB is an effective diffusion constant) [63]. Since

α can not be directly measured, a Blood Flow Index (F ) is commonly defined as F ≡ αDB .

Thus, although F is not a direct measurement of blood flow, it has been shown that this

quantity is proportionally related to blood flow [64].

Lastly, recalling Equation 2.1, µa brings information about the composition of biolog-

ical tissue that absorbs near-infrared light. Figure 2.8 illustrates the extinction coefficients,

ε, of the main tissue absorbers, which are essentially oxyhemoglobin (HbO) and deoxyhe-

moglobin (HbR). Lipids are absorbers below 600nm, while H2O is a main absorber beyond

900nm.4 Thus, NIRS brings information regarding tissue oxygenation through hemodynam-

ics. Metabolic information can also be inferred in certain cases since the hemoglobin carries

oxygen (HbO) and delivers it (becoming HbR) to tissues around the body.

Considering the above, Equation 2.1 can be written as:

4To estimate the ε of water (H2O) in Figure 2.8, I divided the tabulated absorption coefficient by 55 mol/ℓ,
its molar concentration. To graph it, I multiplied by 7 · 105 since it is roughly the ratio between water and
hemoglobin concentration in biological tissue.

https://omlc.org/spectra/index.html
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µa(λ) = εHbO(λ)[HbO]+εHbR (λ)[HbR]+εH2O(λ)[H2O],

where [HbO] and [HbR] are the concentrations of oxy and deoxy-hemoglobin, respectively.

Since the absorption coefficient of H2O, µH2O
a , is tabulated, it is more useful to write the

previous equation as:

µa(λ) = εHbO(λ)[HbO]+εHbR (λ)[HbR]+ fH2Oµ
H2O
a (λ),

where 0 ≤ fH2O ≤ 1 is the fraction of water in tissue. Thus, at least three wavelengths must be

used to properly account for all chromophores. An often-used alternative to decrease exper-

imental complexity is to assume a value for fH2O and use only two wavelengths to estimate

[HbO] and [HbR], or simply (but less desirable) neglect that water term since it is smaller

than the other two terms, especially in cases where the exact absolute value is not so im-

portant (e.g., comparisons between groups). Of course, using more wavelengths than the

minimum necessary is positive since it reduces the systematic errors in the estimations of

[HbO] and [HbR].

The concentrations of HbO and HbR allow the assessment of other two relevant pa-

rameters for clinical applications. The first one is the total hemoglobin concentration,

[HbT ] = [HbO]+ [HbR], which is proportional to local blood volume. The second one is the

blood oxygen saturation, StO2 = (100%)× [HbO]/[HbT ], which provides a picture of the lo-

cal oxygenation 1−2cm depth in the biological tissue. Together with F , these parameters are

often suggested as indicators of the physiological health of tissues in general. Clinical prob-

lems that lead to vascular impacts, such as stroke, disturb these values from a physiological

healthy range.

To close this section, two final comments are worth making. First, source-detector

separations (SDSs) must be chosen wisely. Typically, DO techniques estimate information

from approximately one-third to half the SDS depth. This means that smaller channels, 1−
2cm, with a high signal-to-noise ratio (SNR), bring very little information of deep tissues.

As the SDS increases, DO techniques probe deeper tissues but with a worse SNR. From my

experience, SDSs way above 3.5cm are too noisy to obtain information in most applications

(forehead acquisitions, for example, are exceptions). Techniques that use several SDSs, such

as FD-DOS and SRS, must ideally spread the channels in the range of 1.5− 3.5 or 4 cm at

most. Second, specifically for SRS, what is estimated is kµa , which allows estimations for

k[HbO] and k[HbR] (see section 2.3.2). Despite the k factor, the technique still estimates

absolute values of StO2 since k cancels out in the division.
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Figure 2.9: General framework of obtaining biological tissue information through DO techniques.

2.7 Brief Overview of Optical Estimations Framework

The general expression to describe the light propagation in a turbid media is written in Figure

2.9. There,Λ is eitherφwhen considering the FD-DOS technique or G1 when considering the

DCS technique (in this case, k → K ). Solving the diffusion model means finding a model for

Λ, relating experimental measurements with the properties DO techniques aim to estimate

regarding biological tissue (i.e.,µa ,µ
′
s , and F ). For a specificΛ expression obtained, this issue

can be split into the forward and the inverse problems. The model at last must satisfy the

forward problem, i.e., given the tissue properties, Λ=Λ(µa ,µ
′
s ,F ) must generate curves that

resemble experimental optical data, illustrated by ln(A(r )) versus r in Figure 2.9. However,

the main interest is solving the inverse problem. In other words, the goal is to find a model

that estimates µa and F from experimental data with high accuracy since these quantities

are related to physiological parameters.

As in the solution of any differential equation, findingΛ involves making assumptions

for the macroscopic and geometrical features of the medium (i.e., the biological tissue). Cur-

rently, the SI model is the most used approach in the area. Although it estimates optical

properties with high accuracy on homogeneous phantoms [65], the accuracy decreases in

heterogeneous media that mimic tissues stratified into layers [13], such as in cortical investi-

gations using DO. This suggests that the accuracy of the SI model has room for improvement

in real scenarios. An available model to better incorporate the macroscopic complexity of

biological tissue in the estimations is the 2L model. Although research suggests that it in-

creases the accuracy when compared to the SI model in heterogeneous phantoms (errors

reducing from 5-20% to 5-7%) [13], the accuracy in estimating parameters is still not ideal

due to the cross-talk between the numerous parameters to be assessed [32]. Thus, develop-
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ing a method that increases the numerical stability of estimations when solving the inverse

problem is relevant in achieving high accuracy.

I aim to list two other macroscopic biological tissue features that influence estimations’

accuracy when solving the inverse problem: curvature and superficial layers. Both have not

been extensively investigated in DO literature. The former is because available analytical

models do not deal with the forward problem since they do not reproduce experimental

acquisitions. The few investigations use non-reasonable assumptions, such as a huge cur-

vature or µa = 0 [21]. The latter is probably because the issues when estimating StO2 in

people with darker skin tones became more evident during the COVID-19 pandemic. Since

pulse oxymeters were the most used technique, research using DO techniques (as described

in this work) has yet to be made.

This work aims to increase the accuracy when solving the inverse problem using DO

techniques. I approached the heterogeneity feature by developing methodologies that im-

prove the stability of 2L estimations. Additionally, I proposed methods to incorporate the

curvature and the influence of the superficial layers, such as skin, in optical estimations.

The following chapters aim to further elucidate these issues and introduce the approaches I

developed.

2.8 Diffuse Optical Systems used in this work

This research comprised experiments involving FD-DOS, DCS, and SRS acquisitions. Figure

2.10 shows a photo of the optical devices used: a commercial SRS device (Portamon, Artinis

Medical Systems, The Netherlands), a commercial FD-DOS device (Imagent, ISS Inc., USA),

and a homemade continuous-wave DCS device.

Figure 2.10: Optical systems used in this research. a) A combined system with DOS (red) and DCS (blue).
b) A commercial SRS system (Portamon, Artinis). Right-corner image from: https://neurolite.ch/en/
products/nirs/portamon.

The Portamon was used in the investigation of patients with severe acute respiratory

syndrome (Chapter 3). Considering the situation in which this study was performed (mostly

https://neurolite.ch/en/products/nirs/portamon
https://neurolite.ch/en/products/nirs/portamon
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during the COVID-19 pandemic), we needed a simple and portable instrument that was easy

to use by healthcare personnel without much experience in NIRS. This device is small (its di-

mensions are 8.4×4.3×1.7cm3) and operates via Bluethooth, powered by a Li-polymer bat-

tery, with a sampling rate of 10 Hz. It was designed specifically for muscle research, making it

easy to use inside the ICU. The optical probe comprised three light sources, each containing

two LEDs centered at 760 and 850 nm, and one photodiode as a detector, forming three SDSs

of 3.0, 3.5, and 4 cm that can be analyzed together to provide one single channel of absolute

oxygen saturation. To estimate scattering, the system uses the approximation µ
′
s =α(1−βλ),

with α= 1.1mm−1 and β= 4.6×10−4nm−1 [66].

The FD-DOS system was used in the remainder of this work. It contains 32 laser diode

sources (eight on each wavelength of 690, 705, 750, and 850 nm) with amplitude modulated

at 110 MHz, and four photomultiplier tubes (PMTs) as detectors. The detectors use a het-

erodyne scheme to demodulate the detected light and provide information on its amplitude

and phase shift with respect to the incident light. The system can operate with sampling

rates as fast as 50 Hz. It is easy to note that the system is less portable than the Portamon one

and depends on optical fibers as waveguides for delivering/collecting light to/from tissue,

making it portable but not wearable.

For the study presented in Chapter 7, the FD-DOS system was combined with a home-

made DCS system developed in our laboratory [67]. The DCS comprises one long-coherent

continuous-wave laser source (785 nm) and 16 single photon-counting detectors (APDs) that

feed a correlator to provide a measurement of g2(τ). The FD-DOS and DCS measurements

described in Chapter 7 were performed sequentially, with a cycle of 10 s of FD-DOS (acqui-

sition rate of 4.5 Hz) followed by a cycle of 50 s of DCS (2.8 Hz).

2.9 Conclusion and Next Chapters

In this chapter, I reviewed the physical principles of diffuse optical techniques and discussed

how they can be used to obtain information on tissue. In the process, I also discussed the an-

alytical and numerical forward models that are commonly used to predict FD-DOS and DCS

measurements and introduced how the inverse problem can be solved to find the optical

properties based on DOS/DCS measurements. Once the optical properties are estimated,

one can readily infer physiological information about hemoglobin concentration and the

blood flow index. In the end, I presented the systems used throughout this work. In the

next chapter, I will demonstrate how the measurements performed with DOS can be used as

biomarkers of vascular diseases through an application in the intensive care unit (ICU).
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CHAPTER 3

MICROREACTIVITY ASSESSMENT OF PA-

TIENTS USING DIFFUSE OPTICAL SPEC-

TROSCOPY

As discussed in the previous chapter, DO techniques provide estimations regarding

local oxygenation and hemodynamics. These parameters hold the potential to serve as

biomarkers of diseases with vascular impact as they relate to tissue physiology. The origi-

nal plan was to test this hypothesis at the end of my project using FD-DOS and DCS tech-

niques in patients with carotid artery stenosis. However, the unexpected COVID-19 pan-

demic forced a change in the schedule. Aiming to take advantage of this unfortunate sit-

uation, I explored how DO techniques could help in the prognosis of patients diagnosed

with Severe Acute Respiratory Syndrome (SARS). Considering the restrictions imposed by

the pandemic, including social distance, the only possibility to make measurements in the

ICU was with a portable, fiberless, and ready-to-use device that could be readily used by

healthcare workers in ICU environments.

In this chapter, I discuss part of the results obtained during a multicenter study that

started during the pandemic (Hemocovid project) with the goal of investigating microvas-

cular reactivity in severe cases of COVID-19. Section 3.1 introduces the research question

and its rationale. Section 3.2 presents the experimental methods of the clinical study. In Sec-

tion 3.3, I present the results obtained, while Section 3.4 discusses their implications for the

problem investigated. Lastly, Section 3.5 brings the main conclusions of this investigation.

3.1 Introduction

COVID-19, caused by the SARS-CoV-2 virus, has spread globally in recent years [68]. Its clin-

ical symptoms vary from asymptomatic cases to severe pneumonia [69], often requiring me-

chanical ventilation in acute cases [70]. A primary complication is severe acute respiratory

syndrome (SARS), a pulmonary inflammatory process that often results in hypoxia (i.e., low

arterial blood oxygen concentration) [71, 72]. For severe COVID-19 patients, there is a high

mortality rate and long-term sequels [73–76] despite the use of strategies aimed at increasing
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oxygenation during hospitalization.

Another consequence of SARS is the alveolar diffuse damage. Those damages lead

to endothelial dysfunction and changes in the microcirculation, usually correlated with the

severity of the case and its outcome [77–79]. Thus, information about oxygenation and cir-

culatory disturbance can lead to better understanding and predict the severity and outcome

of blue in ICU environments.

DOS techniques can estimate local oxygenation in deep tissue, as discussed in the pre-

vious chapter. Indeed, DO monitoring during a Vascular Occlusion Test (VOT) can bring

valuable information regarding the microvascular reactivity of healthy individuals and pa-

tients, including SARS [80–84]. During a VOT, the blood supply to a specific region is tem-

porarily interrupted, being re-established after some time. The StO2 desaturation and resat-

uration rates reflect the local oxygen consumption and the microvascular hyperemic capac-

ity, respectively [85, 86]. Microvascular tests have shown that blood microcirculation evalu-

ated in muscle regions is disturbed in several clinical contexts [80, 82, 83]. Still, there is little

data on patients with SARS, even though the monitoring of tissue oxygen saturation with DO

techniques has been shown to hold the potential to predict clinical outcomes [83].

Moreover, COVID patients who survived the disease have presented medium- to long-

term sequelae due to alveolar damage regardless of their severity [87]. The mechanisms

underlying long COVID are not fully understood due to their relatively new emergence. In

severe cases, it is known that, after the acute phase of SARS, the subsequent clinical evolu-

tion in survivors has been associated with functional sequelae due to pulmonary limitations,

thus affecting their quality of life [68]. Furthermore, survivors of acute respiratory distress

syndrome, which is one complication of COVID-19 pneumonia, have been shown to have a

decrease in strength and mobility [88, 89], as well as cognitive damage and psychiatric dys-

function [90, 91], up to five years after the acute phase.

In this context, this study aimed to assess the microvascular condition of patients diag-

nosed with SARS in ICU environments, correlating this information with clinical outcomes.

Additionally, a secondary goal was to evaluate the medium- to long-term sequelae after

ICU discharge, correlating it with the patients’ physical improvement. For that purpose,

we acquired diffuse optical data during a VOT and analyzed the parameters that might be

extracted from the protocol. For longitudinal analysis, we also analyzed the patients’ perfor-

mance during a physical test to track their recovery over time.

3.2 Materials and Methods

3.2.1 Study Design

We investigated four groups of distinct participants in this study (demographics are in Ta-

ble 3.1). Two of them consisted of patients admitted to the ICU of the Hospital of Clinics
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Table 3.1: Enrolled patient’s demographics.

ICU Groups non-ICU Groups
COVID non-COVID post-COVID Controls

Total 36 40 69 79
Excluded 2 7 16 13
Females 17 10 8 50

Age(std) [years] 63±13 58±10 56±17 39±14

Table 3.2: Time (in months) between the ICU discharge and the data acquisition for the non-excluded partici-
pants within the post-COVID group.

Months after discharge 0 1 2 3 4 5 6 7 8
N 5 2 0 8 11 11 10 4 2

(University of Campinas). The COVID group consisted of patients who tested positive for

COVID-19 infection. To identify possible correlations of oxygenation with other conditions

in the ICU, we also acquired data from patients admitted with other diagnostic hypothe-

ses, such as stroke, neoplasm, and others. We refer to this group as non-COVID group. To

understand the remaining effects of COVID-19 infection after the acute clinical phase, we

recruited patients from a few days to nine months after their ICU discharge Ideally, each

participant should have undergone an acquisition within three, six, and nine months after

discharge. Unfortunately, due to the difficulty in guaranteeing the participants’ return, we

could acquire data on 69 participants, with only nine of them returning just one more time.

We called this group the post-COVID group. The time (in months) between the ICU discharge

and the data acquisition is exhibited in Table 3.2. Lastly, to have a comparison basis of the

values estimated in COVID, non-COVID, and post-COVID groups, we also included a control

group consisting of participants who did not test positive for COVID-19 infection within the

21 days prior to data acquisition. We call this group the Control group.

The main goal of this investigation is to assess the microvascular condition of COVID-

19 patients. To this end, we submitted the participants to the VOT. This test consisted of lay-

ing the participant supine with the optical sensor above the brachioradialis muscle, aligned

with a sphygmomanometer (Figure 3.1a). We used a commercial SRS-NIRS system (Porta-

mon, Artinis, see Figure 2.10b). After acquiring three minutes of data in a resting condition,

the pressure on the sphygmomanometer was inflated to 50 mmHg above the (previously

measured) systolic pressure of the participant. The occlusion was held for three minutes.

After this period, the pressure on the sphygmomanometer was suddenly released, while op-

tical data was collected for three more minutes.

Figure 3.1b exhibits a typical StO2 VOT curve. From the curve, we obtained the base-

line oxygen saturation (Sto), the desaturation slope (DS), the minimum of oxygen saturation

(Stmi n), the resaturation slope (RS), the maximum saturation after the occlusion (Stmax) and

the hyperemic area (AUC ). DS and Stmi n are parameters related to the patient’s oxygen con-

sumption at the microvascular level. DS reflects the speed of the consumption, while Stmi n
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Figure 3.1: Illustration of (a) the probe placement for VOT protocol and (b) a typical StO2 curve extracted from
a VOT protocol, with the parameters extracted from the curve. Of note, we obtained the baseline oxygen sat-
uration (Sto), the desaturation slope (DS, related to oxygen consumption), the minimum of oxygen saturation
(Stmi n), the resaturation slope (RS, related to the microvascular reactivity), the maximum saturation after the
occlusion (Stmax ) and the hyperemic area (AUC ).

is related to the ability to sustain a smaller oxygenation condition. Conversely, RS and AUC

are related to the patient’s microvascular reactivity. RS reflects the speed at which blood ful-

fills the vasculature, while AUC is related to the overshoot of excess blood inside the vascular

system after the occlusion. Additionally, the system estimates the total hemoglobin concen-

tration, [HbT ]. We discarded data where the StO2 curve did not resemble Figure 3.1b (see

Table 3.1).

To further correlate oxygenation levels with physical recovery in post-COVID patients,

we also conducted a walking test to evaluate their performance. This test required partici-

pants to walk as much as they could for six minutes. For each participant, we calculated the

expected walking distance using the Enright and Sherrill Equation [92] and assessed the per-

formance by comparing the actual distance walked to the expected distance. Results were

expressed as a percentage of the predicted distance (WD, ranging from 0 to 100%). This

protocol was approved by the local Ethics Committee at the University of Campinas (CAAE

34454920.7.0000.5404). Participants were instructed concerning the experiment protocol

before signing an informed consent form prior to participation (Appendix H for controls

and I for patient enrollment).

3.2.2 Statistical Analysis

For each parameter extracted from the VOT curve, we compared the distributions between

the patient groups and the Control group. Additionally, we compared the distributions ob-

tained among ICU groups (i.e., COVID and non-COVID). To this end, we tested the normality

of the distributions with a Lilliefors test. Then, we compared two distributions using a T-test
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if both parameters were normal and using a Wilcoxon test otherwise. We considered a sig-

nificant difference between the two groups if the p-value was smaller than 0.05.

To better highlight the potential of optical estimation in clinical scenarios, we also re-

lated them to clinical outcomes (i.e. obit or not) for ICU measurements. For that purpose, we

used a generalized linear mixed effects approach [66, 93–95], initially through the following

expression:

O =
N∑

i=1

(
Xi +

∑
j>i

Xi X j

)
+ (1|par ti ci pant )+ (1|covi d) (3.1)

as a complete model. Here, O is the clinical outcome (1 if obit; 0 if surviving), and Xi , i =
1, ..., N are the VOT variables. Note that we included random, specific intercepts for each

patient, as well as for the presence of COVID-19, denoted by (1|par ti ci pant ) and (1|covi d).

We also included first-order interactions between the VOT parameters through the products

Xi X j . We adjusted Equation 3.1 by assuming a binomial distribution for O and using a logit

link function. We subtracted Xi by its mean and divided it by its standard deviation before

adjusting the model.

To reduce the model, we followed a reduction procedure of the whole equation

[96–100]. To this end, we adjusted the expression, obtaining the first model, M1. Then, we

identified the independent variable with the greatest p-value. If this variable is an interaction

variable (i.e., of the Xi X j kind), we remove this variable and fit the remaining model, obtain-

ing the second model, M2. Otherwise, we remove the variable Xi and all their interactions

(i.e., Xi X j ,∀ j ) and fit the remaining model to obtain M2. To decide which model is better,

M1 or M2, we used the Aikake Information Criterion (AIC), Bayesian Information Criterion

(BIC), and the logarithm of the likelihood function (Log-Likelihood). If M2 has a smaller AIC,

a smaller BIC, and a greater (or statistically similar) Log-Likelihood, we repeated the previ-

ously described variable removal procedure with the new-largest p-value. We repeated this

interaction until removing a new variable worsened the model. If the variable on occasion

is an interaction variable (Xi X j ), we stopped. If it was a first-order variable (of the Xi kind),

we removed the interaction variable with the greatest p-value to improve the model even

more. Then, we stop if the model worsens or when the highest p-value of the Xi X j variables

is smaller than 0.1, which we understand is a robust significance cutoff.

Additionally, we used a linear mixed-effects approach to track trends of VOT parame-

ters regarding the time after ICU discharge. We started with the following relation:

TD =
N∑

i=1

(
Xi +

∑
j>i

Xi X j

)
+ (1|par ti ci pant ), (3.2)

where TD is the time (in days) between the ICU discharge and the VOT protocol. As the out-

put is not binary in this situation, we were able to include age as an independent variable

together with the VOT parameters. The reduction process followed the same methodology
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Table 3.3: Parameters obtained from the VOT curve (Figure 3.1b) for the ICU groups with a positive test for
COVID-19 infection (COVID), without a positive test for COVID-19 infection (non-COVID) and for the control
group. The results are exhibited in median(first quantile; third quantile) pattern.

COVID non-COVID Controls
Sto(%) 69(64;74)b,c 62(57;67)a,c 67(64;70)a,b

[HbT ](µmol ar ) 35(29;47) 43(30;58) 39(32;46)
DS(%/s) −0.08(−0.10;−0.06)b,c −0.11(−0.14;−0.08)a −0.12(−0.15;−0.10)a

Stmi n(%) 56(47;60)b,c 43(36;50)a 47(40;53)a

RS(%/s) 1.1(0.7;1.4) 1.3(0.7;1.8) 1.2(0.9;1.9)
Stmax(%) 75(72;78)b 72(66;76)a,c 76(73;80)b

AUC (% ·mi n) 5.0(3.0;7.5)c 5.2(3.2;9.9)c 8.4(6.1;12.0)a,b

a - Significative difference in relation to the COVID group
b - Significative difference in relation to the non-COVID group
c - Significative difference in relation to the Control group

previously described. In addition, to analyze more individualized clinical evolutions, we also

investigated the subgroup of participants that have returned to one more protocol acquisi-

tion by correlating changes in W D and VOT parameters between the two acquisitions as a

preliminary approach.

3.3 Results

3.3.1 ICU Parameters Analysis

Group Comparisons

The comparisons of VOT parameters among the COVID, non-COVID, and Control groups

are exhibited in Table 3.3. We can see that VOT parameters are sensitive to the presence of

COVID-19 infection and other clinical hypotheses induced by respiratory syndromes or by

worsening the clinical condition and/or intensive use of pharmaceuticals and other external

supports. This fact is especially noticeable for parameters directly induced by occlusion,

except for RS. The evoked AUC seems to be similar in both COVID and non-COVID groups,

although different from the control group. On the other hand, DS and Stmi n , parameters

more related to oxygen consumption and tissue metabolism, distinguish COVID and non-

COVID groups from the control group.

Relationship between VOT parameters and clinical outcome

To investigate the correlation between VOT parameters and clinical outcomes, we performed

a reduction in a linear mixed-effects model to relate obit cases to VOT variables (Equation

3.1). After the reduction, we obtained the final model:
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Table 3.4: Parameters obtained from the VOT curve (Figure 3.1b) for the post-COVID and the Control group.
The results are exhibited in median(first quantile; third quantile) pattern.

post-COVID Controls
Sto(%)∗ 61(58;65) 67(64;70)
[HbT ](µmol ar ) 40(34;50) 39(32;46)
DS(%/s)∗ −0.14(−0.17;−0.11) −0.12(−0.15;−0.10)
Stmi n(%)∗ 43(36;46) 47(40;53)
RS(%/mi n)∗ 1.6(1.3;2.3) 1.2(0.9;1.9)
Stmax(%)∗ 73(70;76) 76(73;80)
AUC (% ·mi n) 10.0(6.4;13.2) 8.4(6.1;12.0)

* - p<0.05

O = DS +RS +Stmax + AUC +Sto · AUC + (1|sub j ect )+ (1|covi d).

Only two parcels were significant: DS (estimate(95% confidence interval) β =
−0.87(−1.68;−0.06), p=0.035, T=2.2) and AUC (β = −1.32(−2.29;−0.37), p=0.008, T=2.8).

This suggests that these parameters are more related to obit outcomes than those extracted

from the VOT curve. Moreover, as β < 0, the higher the AUC and the steeper DS, the less

likely the obit outcome.

3.3.2 Post-discharge Parameters Analysis

Group Comparisons

As in the ICU data, we first compared the post-COVID VOT parameters with those of the

Control group. The results are in Table 3.4. Data suggest that the optical parameters mea-

sured during the VOT protocol can distinguish even between a control group and a previ-

ously infected group in recovery. More specifically, Sto (p<0.00001), DS (p=0.0134), Stmi n

(p=0.0130), RS (p=0.0015), and Stmax (p=00010) are statistically different between those two

groups. These results are independent of the lag time between the ICU discharge and the

VOT protocol.

Individual Trends with 6-minute Walking Distance Score

We investigated the subgroup of participants that have returned to one more acquisition of

the protocol. They all have increased the W D compared to the first acquisition (an average

increase of 11%), suggesting a physical improvement between the two sessions. This change

might reflect an attenuation of COVID-19 sequelae. To investigate which VOT variables may

reflect this attenuation (if any), we correlated the changes in W D to the changes in the hemo-

dynamic variables. The greatest correlations found were 0.91 for RS (p = 0.033) and 0.90 for

Sto (p = 0.039), both statistically significant. In sequence, 0.89 for Stmax (p = 0.052), and 0.86

for DS (p = 0.060) and [HbT ] (p = 0.064). The remaining variables presented correlations
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with p > 0.1. Although these results do not have enough statistical power, they encourage us

to investigate trends in VOT parameters concerning the lag time between ICU discharge and

data acquisition since these changes might be correlated to physical improvements.

Trends of VOT Parameters After Discharge

To investigate changes in VOT parameters over time after the ICU discharge, we used the

same approach as in ICU data with the Equation 3.2. However, in this situation, there

were not many steps to reduce the model. Of the 34 remaining parcels, 16 were statisti-

cally significant, suggesting that most variables were related to the dependent variable TD .

Among those 16, only four first-order variables: DS (β = 0.93(0.40;1.47),p=0.0018, T=3.7),

RS (β = −0.42(−0.82;−0.02), p=0.039, T=2.2), Stmax (β = 1.06(0.51;1.61), p=0.0007, T=4.1),

and AUC (β = −0.56(−0.92;−0.19), p=0.0048, T=3.2). Additionally, there are seven interac-

tions with high estimates (i.e., β> 0.8 on the relation between the normalized Xi X j and TD ):

DS ·Stmi n (β=−2.10(−3.24,−0.96), p=0.0011, T=3.9), Sto ·DS (β= 1.51(0.47,2.54), p=0.0067,

T=3.1), Stmax ·ag e (β= 1.27(0.35,2.19), p=0.0098, T=2.9), Sto ·Stmi n (β=−1.12(−2.01,−0.16),

p=0.249, T=2.5), Stmi n · Stmax (β = 1.10(0.16,2.05), p=0.0245, T=2.5), RS · Stmax (β =
0.97(0.10,1.85), p=0.3112, T=2.3), and RS · AUC (β=−0.82(−1.41,−0.23), p=0.0090, T=2.9).

3.4 Discussion

In this work, we used SRS-NIRS to evaluate StO2 during a VOT in patients who tested positive

for COVID-19 infection to investigate the impact of the disease on microvascular reactivity.

To this end, we performed the VOT protocol inside the ICU in two groups: one that tested

positive for the infection (the COVID group) and another group with other disabilities (the

non-COVID group). Additionally, we acquired data from a group outside the ICU that had

not tested positive for COVID-19 infection in the previous 21 days, which we called the Con-

trol group. Our goal was to compare the VOT parameters obtained in the ICU groups with

those of the Control group, taken as a cohort that does not suffer any influence of the infec-

tion.

The main limitation of our study is related to the data acquisition period. We started

the acquisition of the Control group a few months after the beginning of the pandemic when

there were few people infected with COVID-19. However, as we kept data acquisition for

years, there came a time when the new acquisitions of this group were people who probably

already had COVID-19 once and, therefore, had their microvascular parameters compro-

mised, as we can see by our post-COVID study. Although we tried to control this influence

by asking if they tested positive (or had some symptoms) in the previous 21 days, now we

know the recovery time is far beyond that period.

A second limitation of this study was the age difference between the Control and ICU
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groups (39 years on average versus 58 and 63 for the non-COVID and COVID groups, respec-

tively). Aging influences optical estimations of physiological parameters [12, 101, 102] (see

also Chapter 5). To estimate the aging effect in the Control group of this work, I adjusted

a linear fit (also refer to Chapter 5) and calculated the Pearson correlation between VOT pa-

rameters and age. Only Stmax yielded a significant slope (−0.08±0.04%/year , p=0.05), while

only DS yielded a correlation close to 0.2, but with no significance (r=0.17, p=0.16). It might

suggest that the aging effect over the VOT variables is less pronounced than the effect due to

the presence of the diagnostic hypotheses of ICU participants. Nevertheless, since we can-

not untangle age from COVID-19 effects within this cohort, further investigations matching

age between groups are necessary.

This work reinforces previous research that found alterations in microcirculation in

COVID patients, evidencing the relation between endothelial dysfunction and the disease

[103–105]. In particular, Sto , DS, and Stmi n statistically differ between the COVID and Con-

trol and non-COVID groups. The less steep DS and higher Stmi n indicate a smaller oxygen

consumption in the COVID group [106]. Additionally, ICU patients have, in general, smaller

AUC and RS compared to the Control group. It suggests that a late ischemic condition due

to a high ICU period added to the severity of the disease, and the use of vasoactive drugs

makes the resaturation process slower [103, 107–110]. The statistical difference among VOT

parameters between non-COVID and Control groups highlights that endothelial dysfunc-

tion results from several diseases such as hypertension, stroke, and diabetes [111–114]. In

this protocol, we also assessed the pulse oxygen saturation through pulse oxymeters for the

ICU patients, aiming to correlate low values of this parameter, especially in the COVID group,

with low StO2 values (data not shown). However, all measurements were above 92%, a reg-

ular saturation value. We understand those normal values are due to the ICU ventilatory

support, which makes it hard to correlate low saturation values.

Since clinical practice aims to predict which cases are more likely to become an obit

outcome to put more effort into it, we investigated which VOT variable is more sensitive to

the outcome. With that purpose, we reduced a complete linear mixed-effects model with

binary output, including the VOT variables and their first-order interactions as independent

variables and random intercepts regarding the subject and the COVID-19 infection. Our re-

sults show that DS and AUC are related to clinical outcomes, with a more pronounced effect

on AUC (β estimations of 1.32 versus 0.87 in the obit outcome model). The higher the AUC

and the steeper the DS, the less likely the obit outcome. Note that this result also suggests

that AUC and DS parameters closer to the Control group values are less likely to become

an obit output. Although further investigation with higher cohorts is necessary, this result

suggests that these parameters, estimated with a fast VOT protocol with DOS, can be used as

prognostics of ICU disease severity in the future.

We also acquired data on a group of previously infected COVID-19 patients after their

ICU discharge. The first comment regarding this group is that their VOT parameters are
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statistically different from those of the Control group. This suggests that DO techniques can

separate post-discharge COVID patients from healthy ones. Ideally, we aimed to acquire data

for every participant three times (i.e., 3, 6, and 9 months after the discharge). However, the

difficulty in making them return with no clinical necessity forced us to conduct this study as

a transversal study.

With the small subgroup of 9 participants that returned to one more acquisition, we

correlated the changes in W D , taken as a surrogate of the physical and physiological condi-

tion of the participant, with the changes in VOT parameters to investigate if there is a relation

between both. We found a strong and significant correlation between changes in W D and

changes in RS and Sto , but also strong correlations with Stmax , DS, and [HbT ]. This result

suggests that changes in VOT parameters, related to changes in the microvascular condition

of the participants, could be related to changes in the physical condition. It motivates the

investigation of trends of VOT parameters with time after ICU discharge. However, based on

Table 3.2, it is hard to make an even split regarding the months after discharge since there

is a high concentration of participants between the third and the sixth month. Thus, we de-

cided one more time to use a linear mixed-effects model to correlate the time (TD , in days)

after ICU discharge and VOT parameters. As we have a continuous variable as output at this

time, we were able to add age and its first-order interactions as independent variables. Our

data revealed several variables with a statistically significant relation to TD , which suggests

that most parameters are correlated. This is reinforced by the fact that several first-order in-

teractions remain significant after the reduction of the model. Among the VOT variables, we

found that DS gets steeper, RS gets less steep, and there is an increase in Stmax and a de-

crease in AUC with TD . This result suggests that the VOT parameters and the microvascular

condition of post-COVID patients change for at least eight months after the ICU discharge.

3.5 Conclusions and Next Chapters

In this research, we investigated parameters associated with microvascular health and reac-

tivity of ICU patients who tested positive for COVID-19 infection and post-discharge COVID-

19 patients and compared them with a control group. Our results suggest that DO techniques

parameters during a VOT protocol are sensitive to diseases with vascular impact so that they

can separate the COVID group from the non-COVID and Control groups. Additionally, the

parameters distinguish the post-COVID group from the Control group. These results high-

light the potential of DO techniques to achieve biomarkers of diseases with vascular impact.

On top of that, this research also indicates that DS and AUC are related to clinical outcomes,

and the microvascular parameters are still changing eight months after the ICU discharge.

These results further highlight the potential of DO techniques in clinical scenarios.

From a methodological perspective, it is worth noting that this analysis was performed

assuming the SI model. This model assumes that tissue is homogeneous, i.e., it has the same
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optical properties throughout its bulk and, therefore, the same physiological properties ev-

erywhere. Additionally, it assumes the interface of data acquisition (the surface where the

optical sensor is coupled) is planar. All those assumptions suggest that estimations through

this model might not be useful for studying biological tissue due to the inaccuracies arising

from the hypothesis. However, this model estimates parameters that can distinguish be-

tween healthy and unhealthy groups. It is probably because acquisitions targeting muscle

tissues are performed in regions reasonably homogeneous. Beyond that, the surface is so

that the coupling between the optical sensor and the tissue might be manipulated so that

the influence of the curvature of the region does not harm optical estimations.

However, this approximation is not robust for biological tissues in general. For exam-

ple, when the target is the brain, the sources and detectors lie on curved surfaces (e.g., the

forehead). Additionally, light travels through tissues with different physiological properties,

such as skin, skull, and cerebrospinal fluid. This non-flat and local heterogeneity jeopar-

dizes optical estimations with DOS. In this context, the following two chapters of this thesis

investigate these influences in optical estimations. In these chapters, I also propose and test

methodologies to incorporate such features of real data acquisition in optical estimations.
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CHAPTER 4

INFLUENCE OF TISSUE HETEROGENEITY ON

DIFFUSE OPTICAL TECHNIQUES ESTIMA-

TIONS

This chapter is the first of a series of methodologies I am proposing to increase the

accuracy of optical and physiological estimations through DO techniques. As previously

discussed, the use of layered models, especially the 2L model (Equation 2.11), is not an in-

novation in the diffuse optics field. However, since the model depends on several variables

(i.e., the optical and dynamical properties of each layer and its thicknesses), it is subject to

numerical instability when solving the inverse problem. Thus, developing a method to accu-

rately estimate the absorption coefficient (µa2) and the blood flow index (F2) of the second

layer with high stability is useful for DOS/DCS applications. In this chapter, I propose an al-

gorithm to use the 2L model with higher reliability. By restricting the parameter space from

R8 (absorption/scattering coefficients, blood flow, and thicknesses of the first/second layer)

to R5 (absorption coefficient and blood flow of first/second layer and scattering coefficient),

the inverse problem becomes more stable. In this context, Section 4.1. introduces the prob-

lem through further clarifications of the issues of using a homogeneous model. In Section

4.2, I describe the methods I used to generate FD-DOS and DCS data and the proposed al-

gorithm to solve the inverse problem. I exhibit the results of the investigation in Section 4.3,

while Section 4.4 is the discussion of such results. Finally, Section 4.5 summarizes the main

conclusions of this investigation. It is worth noting that the results and development of this

chapter are part of a bigger work, already published [15].

4.1 Introduction

The use of DO techniques in vivo over the human head through FD-DOS and DCS is a

promising approach to estimate cerebral blood flow (CBF) and parameters which provide

estimations of blood oxygenation and oxygen metabolism [10, 115, 116]. However, the val-

idation studies with pediatric populations and animals use the SI model to analyze optical

data. Since the SI model assumes the biological tissue as a homogeneous media, the model
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averages the optical and dynamical properties of all tissues where light has gone through.

It means that there are significant extracerebral tissue (scalp and skull) contributions to the

cerebral estimated values, and neglecting such contributions can result in large errors, espe-

cially in adults [13, 14, 117, 118].

To overcome this issue and increase sensitivity to brain tissue, analytical layered tis-

sue models have been investigated in the literature for both FD-DOS and DCS estimations

[13, 14, 30, 32, 118–121]. However, as the layered model depends on several parameters (op-

tical properties, blood flow, and thickness of each layer), the inverse problem is usually ill-

posed, which leads to high variability and potentially large errors when estimating physi-

ological parameters [32, 120, 121]. When constraining the inverse problem (e.g., assuming

known optical properties to adjust blood flow or assuming known thicknesses), layered esti-

mations are usually higher than SI estimations [13,14,119], even though still subject to errors.

However, layered estimations are still below the simulated or expected values [13]. Addition-

ally, errors in the assumed parameters also lead to inaccuracies in estimations [13, 14, 30].

In this context, we investigated the accuracy of CBF and µa measurements derived

from a constrained two-layer (2L) model algorithm to FD-DOS and DCS simulated data. To

my knowledge, the simultaneous use of layered models to fit both DCS and FD-DOS data

in combination has not yet been demonstrated. Such an approach is particularly relevant

for CBF estimations since this quantity also depends on the optical properties. The pro-

posed method uses the 2L model exhibited in 2.11, assuming the first layer is infinitely thin

compared to the second one. A cylindrical geometry is used instead of a slab one because

the numeric approximation of the solution for 2.9 is more robust [13]. The method further

incorporates the constraint of homogeneous µ
′
s , i.e., µ

′
sk = µ

′
s ,∀k, which I justify below, to

reduce the risk of crosstalk between unknown fitting parameters. Finally, the method fits

multidistance FD-DOS (eight distances; 0.8 to 4 cm) and DCS (0.8 and 2.5 cm distances)

data in sequential steps to constrain the recovery of µa , µ
′
s and F . Note that, as I used a

2L model, the second layer properties represent cerebral information. To test the method,

I characterized its errors across a wide range of tissue optical properties and blood flows in

forward-model simulations, simulations in a 2L cube, and simulations using a realistic head

geometry. I also characterized the approach’s sensitivity to extracerebral layer thickness.

4.2 Materials and Methods

This section explains the methods of data generation and data analysis. Briefly, I generated

FD-DOS and DCS data using both the forward 2L model and software that generates optical

measurements numerically (NIRFASter). I analyzed this data with the SI model and with an

algorithm that uses the 2L model in steps to estimate the optical properties and flow.
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Figure 4.1: Geometry used for the 2L model and the simulations. (a) Our 2L model comprised a homogeneous
cylindrical extracerebral layer of thickness ℓ and radius a (corresponding to the extracerebral scalp and skull
tissue) above an infinitely thick homogeneous cylindrical cerebral layer (corresponding to the brain cortex).
The tissue absorption coefficient, reduced scattering coefficient, and blood flow index of the extracerebral layer
are µa1, µ

′
s1, and F1, respectively. The corresponding properties of the cerebral layer are µa2, µ

′
s2, and F2. A

point source (S1) is incident on the middle of the cylinder top, and multiple point detectors D1, D2, ..., Dn are
positioned at different distances from the source. (b) Using the NIRFASTer package, we generated synthetic
data for a 10 × 10 × 10 cm3 2L cube, with an extracerebral layer thickness of ℓ = 1.2cm. (c) We additionally
used NIRFASTer to generate synthetic data for a realistic adult head geometry, wherein the scalp and skull
were combined to form a homogeneous extracerebral layer, and the CSF, white matter, and gray matter were
combined to form a homogeneous cerebral layer. The source and detectors were positioned on the right side
of the head, and we used the average skin-to-brain distance under the middle portion of the optical probe (i.e.,
the average thickness of the 2-cm long gray line in (c)), as ℓ. Figure taken from [15]

4.2.1 Forward Models

Two-Layer Head Model

The 2L model consists of modeling the head as a cylinder with radius a. In this approxi-

mation, the top layer represents a homogeneous extracerebral layer of thickness ℓ, which

is located above an infinitely thick homogeneous cerebral layer (Figure 4.1a). The tissue ab-

sorption coefficient, reduced scattering coefficient, and blood flow index of the extracerebral

layer are µa1, µ
′
s1 and F1, respectively. The corresponding properties of the cerebral layer are

µa2, µ
′
s2 and F2. I assumed the refractive index to be the same for both tissue layers. In this

model, a point source was located at the center of the top of the cylinder, and multiple detec-

tors were positioned on the same plane at different distances from the source. The distance

between the source and the i-th detector is ρi .

To evaluate the 2L fitting algorithm, we simulated data for 8 FD-DOS SDSs (ρi =
{0.9,1.2,1.6,2.0,2.8,3.2,3.6, 4} cm) and 2 DCS SDSs (ρi = 0.8 and 2.5cm) across a wide range

of values for the optical properties and blood flow indices. At each detector position, the

fluence’s amplitude and phase were computed, i.e., ACmeas(ρi ) and θmeas(ρi ). Also, for each

detector, the normalized intensity temporal autocorrelation function, g meas
2 (ρi ,τ) was com-

puted at multiple delay times, τ.
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Analytical Model Simulations

I employed the analytical solution of the photon diffusion model for the 2L geometry (Equa-

tion 2.11) to generate FD-DOS and DCS data. Of note, I opted to use a cylindrical geometry

since it provides analytical solutions more numerically stable than a rectangular one. For

FD-DOS, data were obtained using f = 110M H z, a = 30cm, and n = 1.4. Note that 110 MHz

is a commonly used modulation frequency in FD-DOS instrumentation (e.g., Imagent, ISS),

and a was sufficiently large such that the solution for FD-DOS and DCS at the detector posi-

tions was not affected by the cylindrical boundary.

For each of the eight ρi ’s (see previous section), data were obtained across a wide range

of optical properties for four evenly spaced ℓ between 1.0 and 1.6 cm, since this range ap-

proximates the range of thicknesses for adult humans [122, 123]. Specifically, at each thick-

ness, Equation 2.11 was computed for 2,030 different combinations of optical properties. To

mimic the range of properties observed in adult humans in the NIR spectral range, µa1 and

µa2 were randomly selected between 0.08 and 0.18 cm−1, and µ
′
s1 and µ

′
s2 were randomly

selected between 6 and 15 cm−1, subjected to the constraint that the fractional difference

between µ
′
s1 and µ

′
s2 was lower than 20 % [56–58]. This latter constraint is justified by a re-

cent study that observed considerable variations in overall scattering across the NIR range

but small scattering differences between skin, skull, and brain tissue [57].

Random amplitude and phase noise were derived from a Gaussian noise model with

zero mean and then added to each SDS for every combination of optical properties. For the

amplitude, I generated data with a signal-to-noise ratio (SNR)1 of 100. For the phase, I added

noise with a standard deviation equal to 0.1 degrees. These amplitude and phase noise lev-

els were chosen based on previously published in vivo data in adults [124]. I assumed that

noise was independent of λ and SDS. This roughly resembles the case in practice wherein

the detected intensities at short SDSs are attenuated to approximately the same scale as the

intensities at longer SDSs (i.e., to reduce the dynamic range of detection across separations).

For DCS, we used λ= 785nm and evaluated the solution at two ρi (0.8 and 2.5 cm) and

100 different τs (spanning from 0.6 µs to 3.7 ms in a multitau scheme [125]). Specifically, for

each FD-DOS optical properties combination, I evaluated the correlation diffusion solution

for a randomly selected F1 and F2 combination. To mimic adult humans, F1 was selected

between 10−9 and 2× 10−8cm2/s, and F2 was selected between 10−9 and 10−7cm2/s. The

normalized intensity autocorrelation function, g theo,2L
2 , was then obtained via the Siegert

relation (Equation 2.13), where β = 0.5 was assumed. Intensity autocorrelation noise was

independently added to each g theo,2L
2 . The autocorrelation noise was derived using a cor-

relation noise model [126] evaluated with DCS photon count rates of 200 and 40 kHz for

the short and long SDSs, respectively. Note that 40 kHz is on the high end for the 2.5-cm

SDS, but it is still within the range observed in previously published in vivo measurements

1The signal-to-noise ratio, SNR, is defined as SN R ≡ µ/σ, where where µ and σ are, respectively, the mean
and the standard deviation of the time series.
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on adults [127]. I added random Gaussian noise (with zero mean and a standard deviation

based on the correlation noise model described above) independently for each delay-time

and SDS and independently for each combination of optical properties and flow indices.

NIRFASTer Simulations

I used the open-source finite-element software package NIRFASTer [39,42] to generate addi-

tional synthetic datasets for the same set of eight FD-DOS and two DCS SDSs placed in two

different geometries. The first geometry was a 10 × 10 × 10 cm3 2L cube (Figure 4.1b) with

a node size of 0.07 cm, which provided a final mesh containing 482,460 nodes. The extrac-

erebral layer thickness and absorption coefficient were set to ℓ= 1.2cm and µa1 = 0.1cm−1,

respectively. The reduced scattering coefficients of both layers in the cube were set to the

same value, i.e., µ
′
s1 = µ

′
s2 = 10cm−1 = µ

′
s , and held constant. NIRFASTer was then used to

simulate AC (ρi ) and θ(ρi ) via a finite-element method for 11 evenly spaced cerebral layer

absorption coefficients (µa2) between 0.08 and 0.18 cm−1. Similar to the analytical simu-

lations, I added Gaussian noise to AC and θ to obtain 20 different pairs of ACmeas(ρi ) and

θmeas(ρi ) synthetic data for each value of µa2 (amplitude SNR = 100; phase σ= 0.1 degrees).

For each combination of optical properties, NIRFASTer was also used to generate

G theo,2L
1 (ρi ,τ) via a finite-element method for 16 different CBF indices between 10−9 and

10−7cm2/s (the extracerebral flow index was held constant at F1 = 10−8cm2/s). Then, corre-

lation noise was added to G theo,2L
1 to obtain a synthetic DCS measurement (i.e., g meas

2 (ρi ,τ))

independently for each SDS. For each combination of optical properties, flow indices, and

noise additions from FD-DOS, 15 synthetic DCS measurements were generated (in total, we

generated 300 autocorrelation curves for each SDS at each combination of optical property

and flow).

The second geometry was a realistic adult head mesh created using an open-source

library (brain2mesh, with a Delaunay sphere radius of 0.11 cm, radius-to-edge ratio of 1.24,

and maximum element volume of 4 mm3) [128]. The head was segmented into the scalp,

skull, cerebral spinal fluid (CSF), white matter, and gray matter, containing ∼ 1.4 million

nodes. I removed the nodes further than 10 cm from the simulated source, reducing the fi-

nal mesh to 663,470 nodes. For these simulations, the scalp and skull were merged to form

one homogeneous tissue type (i.e., the extracerebral layer), whereas the CSF, gray matter,

and white matter were merged to form a second homogeneous tissue type (i.e., the cere-

bral layer). The synthetic data for this geometry were generated with NIRFASTer in the

same manner as the cube simulations (including the same combinations of extracerebral

and cerebral tissue properties and noise additions). Note that although the scalp and skull

blood flow indices are quite different under normal conditions, the concatenation of the

scalp and skull into one layer is closer to reality for applications wherein a transient high

probe pressure can be applied against the scalp to reduce the scalp flow closer to levels in

the skull [118]. The results are thus most relevant for these conditions.
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We did, however, conduct a pilot test of the algorithm under conditions of the scalp

flow being higher than the skull flow. This test used simulated data for the same realistic

head geometry, except that the scalp and skull tissues were assigned distinct optical prop-

erties and flow indices (i.e., a three-layer realistic head geometry). Specifically, we simu-

lated data in which the absorption coefficients for the scalp and skull were µscal p = 0.1cm−1

and µskul l = 0.15cm−1 [57], respectively, and the blood flow indices were equal to Fscal p =
10−8cm2/s and Fskul l = 10−9cm2/s, respectively. Here, we varied the true cerebral absorp-

tion coefficient µa2,act between 0.08 and 0.16 cm−1 (in steps of 0.02 cm−1). For each change

in cerebral absorption, we also varied the cerebral flow, F2,act , between 4×10−8 and 10−7 (in

steps of 10−8cm2/s). As with the other simulations, homogeneous scattering was assumed,

and we fixed µ
′
s = 10cm−1. We added random Gaussian noise to generate multiple datasets

from each simulation.

4.2.2 Two-Layer Fitting Algorithm

The 2L fitting scheme is depicted in Figure 4.2. The scheme assumes homogeneous tis-

sue reduced scattering (i.e., µ
′
s1 = µ

′
s2 = µ

′
s ; see Section 4.3.2); it also assumes that the ex-

tracerebral layer thickness is known a priori. We first used a nonlinear constrained global

optimizer implemented in MATLAB R2020a (fmincon, Mathworks, Natick, Massachusetts,

United States) to obtain estimates of µa1, µa2, and µ
′
s by fitting multidistance FD-DOS data

(i.e., ACmeas(ρi ), θmeas(ρi )) to the 2L analytical solution (i.e., ACtheo,2L(ρi ) and θtheo,2L(ρi )).

Specifically, I used fmincon to find the set of parameters that minimize the cost function

HF D =p
HAC +√

Hθ, where:

HAC =
N∑

i=1

(
l n

( ACmeas(ρi )

ACmeas(ρ1)

)
− l n

( ACtheo,2L(ρi )

ACtheo,2L(ρ1)

))2

,

Hθ =
N∑

i=1

((
θmeas(ρi )−θmeas(ρ1)

)− (
θtheo,2L(ρi )−θtheo,2L(ρ1)

))2
.

Here, N = 8 is the total number of SDSs. The minimization was also subject to the following

constraints: 0.005 ≤ µa1 ≤ 0.6, 0.005 ≤ µa2 ≤ 0.6, and 4 ≤ µ
′
s ≤ 20. These constraints were

based on an adult head’s expected ranges of optical properties [56, 57]. The extracerebral

layer thickness (ℓ = 1.22cm), refractive index (n = 1.4), and cylindrical radius (a = 30cm)

were used as inputs in the minimization, and the initial guesses used for µa1, µa2, and µ
′
s in

the minimization were 0.1, 0.1, and 10 cm−1, respectively. In the cost function, the normal-

ization of the amplitude and phase by the shortest SDS removes the need to fit for additional

amplitude and phase scaling factors since the global factor cancels out (see Section 2.3.4).

Additionally, because the amplitude decreases exponentially with increasing the SDS, I used

the logarithm of the amplitude to minimize bias to the shorter distances (i.e., such that fitting

errors at each distance are weighted approximately evenly in the cost function).
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Figure 4.2: 2L fitting scheme. The scheme assumes a priori knowledge of the extracerebral layer thickness
(ℓ). First, we fit the multidistance FD-DOS amplitude (ACmeas (ρi )) and phase (θmeas (ρi )) data to the two-
layer (2L) cylindrical solution to recover the intracerebral and cerebral layer absorption coefficients (µa1, µa2),
and the reduced scattering coefficient (µ

′
s , assuming µ

′
s1 = µ

′
s2 = µ

′
s ). Next, using the recovered µa1 and µ

′
s

as inputs, we fit the DCS measurement at the short SDS (g meas
2 (ρs ,τ)) to the SI solution (Equation 2.10) to

recover the extracerebral flow index (F1), assuming knowledge of the β factor from Siegert’s relation (βs = 0.5).
Finally, using µa1, µa2, µ

′
s , and F1 as inputs, we fit the DCS measurements at a long SDS (g meas

2 (ρL ,τ)) to the 2L
cylindrical solution to recover the cerebral flow index (F2), assuming βL = 0.5. Figure taken from [15]

From µa1 and µ
′
s estimated by the procedure above, I fit the short-separation DCS

data, g meas
2 (ρs ,τ), to the SI correlation solution to obtain the extracerebral flow index, F1.

The short separation (ρs = 0.8cm) was chosen such that the detected light is predominantly

confined to the extracerebral layer for the adult head geometry [129, 130]. The use of a ho-

mogeneous SI model for the short-separation data is thus reasonable. I employed the same

nonlinear optimizer (fmincon) to find an F1 value that minimizes the cost function HDC S,ρs :

HDC S,ρs =
∑
τi

(
g meas

2 (ρs ,τi )−
(
1+βs

∣∣∣G theo,SI
1 (ρs ,τi )

G theo,SI
1 (ρs ,τ0)

∣∣∣2))2

,

where τi was summed over values satisfying the limit g meas
2 (ρs ,τ) ≥ 1, G theo,SI

1 (ρs ,τ) is the

analytical solution to the correlation diffusion equation for the SI homogeneous geometry

(Equation 2.10), and βs is the Siegert relation coefficient for the short separation, assumed

to be 0.5. The minimization was constrained within 10−11 ≤ F1 ≤ 10−5cm2/s, and the initial

guess for F1 in the minimization was 10−8cm2/s.

In the third and final step, I fit the long-separation DCS data, g meas
2 (ρL ,τ), to the 2L

correlation solution to obtain the cerebral flow index, F2, given the inputs of µa1, µa2, µ
′
s ,

and F1 from the previous two steps. Additional inputs in the fit were the extracerebral layer

thickness, ℓ, refractive index, n, DCS wavelength (λ = 785nm), the cylindrical radius (a =
30cm), and βL = 0.5. I used fmincon to find the F2 value that minimizes the cost function

HDC S,ρl :
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HDC S,ρl =
∑
τi

(
g meas

2 (ρL ,τi )−
(
1+βL

∣∣∣G theo,2L
1 (ρL ,τi )

G theo,2L
1 (ρL ,τ0)

∣∣∣2))2

,

where τi was summed over values satisfying the limit g meas
2 (ρL ,τ) ≥ 1, G theo,2L

1 (ρs ,τ) is the

analytical solution to the correlation diffusion equation for the 2L geometry (Equation 2.11),

and βL is the Siegert relation coefficient for the short separation, assumed to be 0.5. The

minimization was constrained within 10−11 ≤ F2 ≤ 10−5cm2/s, and the initial guess for F2 in

the minimization was 10−8cm2/s.

4.2.3 Data Analysis

Accuracy of the two-layer and homogeneous approaches

To compare the results of the 2L scheme with the commonly used SI model, I used the SI so-

lution of the diffusion equation to recover FSI , µa,SI , and µ
′
s,SI . For this analysis, we focused

on the longer SDSs: for FD-DOS, we used ρ = 2.8,3.2,3.6, and 4.0cm; for DCS ρ = 2.5cm,

and we also assumed βL = 0.5 for Siegert’s relation. In addition, we restricted our analysis to

g meas
2 (ρL ,τ) ≥ 1.25 to increase the sensitivity to cerebral tissue [129, 131].

I applied the homogeneous SI analysis described above and the scheme described in

Section 4.2.2 and Figure 4.2 to the synthetic datasets generated with the 2L forward model,

NIRFASTer in the 2L cube geometry, and NIRFASTer in the 2L realistic adult head geometry.

Of note, for the realistic adult head geometry, I used the average skin-to-brain distance under

the middle portion of the probe (ℓ = 1.22cm, see Figure 4.1) as the extracerebral thickness.

All DCS estimations were obtained with an integration time of T = 10s, corresponding to an

acquisition rate of f = 0.1H z.

By defining the absolute percent error as (100%)× |actual - recovered|/actual, I com-

puted the median absolute percent error (MAPE) and the interquartile range (IQR) of the ab-

solute percent errors of the recovered parameters obtained with the constrained 2L and ho-

mogeneous fitting algorithms across all simulations in each synthetic dataset. I used paired

Wilcoxon sign-rank tests to compare the MAPE between the 2L and homogeneous recon-

structions of the cerebral tissue absorption coefficient and the CBF index. All statistical tests

were two-sided, and p < 0.05 was considered to indicate significance.

I also plotted the medians and IQRs of the recovered parameters as a function of the

actual values in each synthetic dataset (i.e., Fi ,act , µai ,act , and µ
′
s,act ). The IQRs represent

the robustness of the recovered parameters in the presence of noise. They are also a mea-

sure of the stability of the recovered flow indices with varying optical properties. I further

used linear regression to investigate the agreement between the recovered 2L cerebral tissue

absorption coefficient (µa2) and the actual cerebral tissue absorption coefficient (µa2,act ), as

well as between the recovered SI tissue absorption coefficient (µa,SI ) and µa2,act . Addition-

ally, I investigated the agreement between the recovered 2L cerebral flow index (F2) and the
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actual cerebral flow index (F2,act ), and between the recovered SI flow index (FSI ) and F2,act .

Sensitivity of the FD-DOS two-layer solution to changes in tissue optical properties

In a secondary analysis, I sought to justify the homogeneous reduced scattering coeffi-

cient assumption (µ
′
s1 = µ

′
s2 ≡ µ

′
s) by evaluating the sensitivity of the 2L FD-DOS amplitude,

ACtheo,2L and phase, θtheo,2L , to changes in µa1, µa2, µ
′
s1 and µ

′
s2. If the amplitude and phase

values are minimally sensitive to changes in µ
′
s2, I argue that the extraction of all four op-

tical properties from fitting the FD-DOS data to the 2L model will be inaccurate because

of high crosstalk between µ
′
s2 and the other fitting parameters. Instead, it is better to as-

sume homogenous reduced scattering, especially given the evidence from a recent study

that found small scattering differences between skin, skull, and brain [57]. To assess the

sensitivities, I computed the partial derivatives ∂ln(ACtheo,2L(ρi ))/∂xi and ∂θtheo,2L(ρi )/∂xi ,

where xi refers to µa1, µa2, µ
′
s1 and µ

′
s2. The derivatives for each parameter were evaluated

at SDS between 0.8 and 5 cm for the tissue properties at the midpoints of the ranges used for

the forward simulations (µa1 =µa2 = 0.13cm−1, µ
′
s1 =µ

′
s2 = 10.5cm−1, and ℓ= 1.2cm).

Errors arising from inaccurate extracerebral thickness

The final secondary analysis estimated the sensitivities of the recovered F2 and µa2 to the

extracerebral layer thickness ℓ in the 2L realistic adult head geometry. I applied the 2L fitting

algorithm using nine evenly spaced ℓ between 1.0 and 1.4 cm. For each ℓ, the algorithm

was applied to the same subset of the synthetic data with F2,act > F1,act . We focused on this

subset to mimic the typical case of CBF greater than extracerebral blood flow [132]. The

MAPE (IQR) of the recovered F2 and µa2 was determined for each ℓ.

4.3 Results

4.3.1 Accuracy of the two-layer and homogeneous approaches

The first step of the 2L fitting algorithm was the recovery of the optical properties of each

layer from the FD-DOS measures of ACmeas and θmeas . With the algorithm, I recovered the

tissue absorption and reduced scattering coefficients with excellent agreement between the

recovered and actual values for the analytical model, 2L cube, and 2L realistic head simu-

lations (see Figure 4.3 and Table 4.1). In these geometries, median errors were < 8%. The

best-fit linear regression lines for the comparison of µa2 and µa2,act approached the unity

line. However, the agreement for the SI analysis was not as good. The slope of the linear

best-fit line between µa,SI and µa2,act (0.5) deviated from the unity line.

Regarding the fit of F1 and F2 from DCS, the forward-model and 2L cube simulations

were able to accurately recover F1 with median errors below 3% (Table 4.1, Figure 4.4a and
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Figure 4.3: Recovered versus actual tissue optical properties. (a)–(c) The recovered tissue absorption (µai )
and reduced scattering coefficient (µ

′
si ) for the extracerebral (green lines) and cerebral (red lines) layers are

plotted against the actual values of the second-layer absorption (µa2,act ) for the (a), (d) forward-model, (b),
(e) cube, and (c), (f) realistic head simulations (circles denote the medians of the recovered values across all
simulations run for each actual value; shaded areas represent the IQR). The corresponding recovered tissue
absorption (µa,SI ) and reduced scattering coefficients from the SI model are also plotted against the actual
cerebral absorption values (blue diamonds). Dashed lines represent the actual relationships between each
parameter and the cerebral absorption coefficient. Figure taken from [15]

Figure 4.4b). For the 2L realistic head simulations, the method of using an SI model to re-

cover F1 from a short DCS SDS was modestly less accurate, with errors around 13% (Table

4.1 and Figure 4.4c).

I observed excellent agreement between the recovered and actual F2 for the forward-

model and 2L cube simulations (Table 4.1 and Figures 4.4d and 4.4e). For both datasets, the

errors were < 10% on average, and the best-fit linear regression lines approached the unity

line (Table 4.1). In the 2L realistic head simulations, however, the recovered F2 systematically

underestimated the true value by a median error of 34% (Table 4.1 and Figure 4.4f). The

small IQRs of the recovered flow values demonstrate robustness against noise and optical

absorption changes.

When neglecting the extracerebral layer using an SI model to estimate F2,act , the sys-

tematic errors (i.e., MAPE > 69%) were larger than the errors recovered with our 2L approach

in all simulated datasets (p < 0.001). The SI homogeneous model recovered the correct di-

rectional trends for the 2L cube and realistic head simulations, where the first-layer flow was

held constant. However, for the forward-model simulations, the recovered FSI values were

highly sensitive to variations in first-layer flow (F1,act , Figure 4.4a). Note that the small IQRs

for F2 across variations in extracerebral blood flow indicate minimal cross-talk between ex-

tracerebral and CBF (Figure 4.4d).
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Table 4.1: MAPE of the optical properties (µa1, µa2, and µ
′
s ) and flow indices (F1 and F2) recovered with the 2L

approach and with the SI approach (µa,SI , µ
′
s,SI , and FSI ) for all datasets generated. The linear best-fit relations

between the recovered and actual values for the second layer are also reported.

MAPE(IQR) (%) Linear regression
Analytical model Absorption µa1 2.4(1.1,4.5) −

µa2 7(3,12) 1.011µa2,act −0.002
µa,SI 11(5,19) 0.51µa2,act +0.06

Scattering µ
′
s 8(4,13) −

µ
′
s,SI 9(5,15) −

Flow F1 2.4(1.0, 4.1) −
F2 7(3,13) 0.098F2,act +0.05
FSI 79(65,88) 0.004F2,act +0.95

2L Cube Absorption µa1 2.7(1.4,4.3) −
µa2 5.0(3.0,7.9) 0.841µa2,act +0.001
µa,SI 10(5,19) 0.50µa2,act +0.05

Scattering µ
′
s 0.8(0.3,1.4) −

µ
′
s,SI 5.3(2.8,7.3) −

Flow F1 1.7(0.8,2.8) −
F2 6(3,13) 1.02F2,act +0.08
FSI 69(35,90) 0.008F2,act +1.03

Realistic head (2L) Absorption µa1 7.7(4.7,9.8) −
µa2 4.6(2.4,7.2) 1.020µa2,act −0.007
µa,SI 12(6,21) 0.47µa2,act +0.05

Scattering µ
′
s 3.6(2.8,4.8) −

µ
′
s,SI 9(5,11) −

Flow F1 13(11,16) −
F2 34(30,42) 0.70F2,act −0.09
FSI 69(33,80) 0.06F2,act +1.14
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Figure 4.4: Recovered versus actual flow indices. The (a)–(c) recovered extracerebral flow (F1, green lines) and
(d)–(f) cerebral flow (F2, red lines) indices are plotted against the actual values of the second-layer flow (F2,act )
for the (b) and (e) (cube) and for (c) and (f) (realistic head simulations). For the forward-model simulations
(a) and (d), we plot the extracerebral and CBF values against their actual values. The corresponding recovered
flow indexes (FSI ) from the SI model are also plotted against the actual values (blue diamonds). Dashed lines
represent the actual relationships between each parameter and the x-axis. In all cases, circles denote the me-
dians of the recovered values across all simulations (with varying noise, flow indices, and varying absorption),
and shaded areas represent the IQR. Figure taken from [15]
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4.3.2 Sensitivity of the FD-DOS two-layer solution to changes in tissue op-

tical properties

I found that the 2L cylindrical FD-DOS solution was minimally sensitive to changes in µ
′
s2

for SDSs (ρ) up to 5 cm (Figure 4.5). Variations in the solutions for FD-DOS amplitude

(ACtheo,2L) and phase (θtheo,2L) by variations in µ
′
s2 from 5 to 15 cm−1 were smaller or on

the same order of the expected noise (Figures 4.5a and 4.3d). Here, I fixed the other tissue

parameters at ℓ= 1.2 cm, µa1 = 0.13 cm−1, µa2 = 0.13 cm−1, and µ
′
s1 = 10.5 cm−1. The sensi-

tivities of the FD-DOS amplitude and phase to extracerebral and cerebral layer optical prop-

erties are also plotted vs. SDS in Figure 4.5. The sensitivities are defined by the evaluation of

the derivatives ∂log (ACtheo,2L)/∂xi and ∂θtheo,2L/∂xi at µa1 = µa2 = 0.13 cm−1, µ
′
s1 = µ

′
s2 =

10.5 cm−1, and ℓ = 1.2 cm (xi denotes µa1, µ
′
s1, µa2, and µ

′
s2). Note that the sensitivities to

µ
′
s2 are lower than those for the other optical properties. For example, at ρ = 4 cm, the sen-

sitivities of the FD-DOS amplitude and phase to µ
′
s2 are 5% and −3% of the corresponding

sensitivities to µ
′
s1, and < 0.5% of the sensitivities to µa1 and µa2. Given its minimal sensi-

tivity to the FD-DOS measurements, µ
′
s2 is not a good fitting parameter. These results justify

the need to assume homogeneous tissue reduced scattering.

Figure 4.5: Sensitivity of the 2L FD-DOS solution to changes in tissue optical properties. The (a) amplitude
logarithm (l og (ACtheo,2L)) and (d) phase θtheo,2L of the cylindrical 2L FD-DOS solution are plotted against

SDS (ρ) for a wide range of cerebral tissue reduced scattering coefficients (µ
′
s2 between 5 (blue) and 15 cm−1

(red)). For each µ
′
s2 evaluation, the extracerebral and cerebral tissue absorption coefficients (µa1 and µa2)

were both fixed at 0.13 cm−1, the extracerebral tissue reduced scattering coefficient (µ
′
s1) was fixed at 10.5

cm−1, and the extracerebral layer thickness was fixed at 1.2 cm. The sensitivities of the amplitude logarithm
( ∂log (ACtheo,2L)/∂xi ) in (b) and (c) and phase (∂θtheo,2L/∂xi , (d) and (e)) to tissue optical property changes

are also plotted against ρ; xi refers to µa1, µ
′
s1, µa2, and µ

′
s2. All derivatives were evaluated at the same optical

properties used for (a) and (d) with µ
′
s2 fixed at 10.5 cm−1. Figure taken from [15].
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4.3.3 Errors arising from inaccurate extracerebral thickness

I also used realistic head simulations to investigate the influence of errors in the extracere-

bral layer thickness on the recovery of F2 and µa2. The influence was significant for the F2

recovery but more modest for the µa2 recovery (Figure 4.6). For example, ± 0.2 cm errors

in ℓ resulted in median errors of up to 15% in µa2 and up to 60% in F2. Surprisingly, the

minimum error for the recovery of F2 occurred when the extracerebral layer thickness was

overestimated by ∆ℓ≈ 0.1 cm.

Figure 4.6: Reconstruction errors in CBF and tissue absorption arising from inaccurate extracerebral layer
thickness (ℓ). Errors in the recovered (a) CBF (F2) and (b) cerebral tissue absorption coefficient (µa2) plot-
ted against errors in the extracerebral layer thickness used for the 2L fits of the realistic head synthetic data.
∆ℓ is the difference between the extracerebral layer thickness used in the fits and the actual extracerebral layer
thickness (1.22 cm). The circles and dashed lines denote the median and IQR of the absolute percent errors
across all simulations with actual CBF larger than actual extracerebral blood flow.

4.4 Discussion

Using multilayer tissue models is an effective strategy for separating cerebral signals from ex-

tracerebral artifacts. Their implementation, however, is often confounded by noise-induced

cross-talk in the fitting parameters. To mitigate cross-talk between each parameter, here I

used a constrained 2L model in which, instead of fitting for all unknowns simultaneously,

the algorithm fits the multidistance FD-DOS and DCS data in sequential steps (Figure 4.2).

Other constraints are a priori knowledge of the extracerebral layer thickness and homoge-

neous tissue reduced scattering coefficient. I used hybrid FD-DOS and DCS simulations with

noise to characterize the algorithm’s accuracy and stability. The simulations were carried out

in slab and realistic head geometries and featured typical SDSs for cerebral hemodynamic

monitoring with DCS (0.8 and 2.5 cm distances) and FD-DOS (0.8 to 4 cm). I found that the

constrained 2L algorithm recovered CBF and tissue absorption with higher accuracy than

the conventional SI approach. The small IQRs of the parameters recovered across multiple

distinct simulations also demonstrate robustness to noise. The comparable IQR between the
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SI and the 2L models also suggests that the numerical stability of both models is similar.

The homogeneous reduced scattering assumption is justified by the minimal sensitiv-

ity of the FD-DOS signals to changes in cerebral tissue reduced scattering (Figure 4.5). Note

that this minimal sensitivity was also previously reported for time-domain DOS [133]. Fit-

ting for a parameter when a signal is minimally sensitive to it leads to increased recovery

errors due to increased numerical instability, which might explain the low cerebral reduced

scattering coefficients (e.g., 2 cm−1 at 830 nm) reported in previous studies that employed

multilayer models to analyze DOS data [13, 58]. One mitigating strategy is to assume the

same cerebral tissue scattering coefficient for every subject based on literature values (e.g.,

from ex vivo measurements). Instead, I opted to fit for a homogeneous reduced scattering

coefficient based on a prior study that observed similar skin, skull, and brain tissue reduced

scattering coefficients [57]. Note that the minimal sensitivity of FD-DOS signals to changes

in cerebral tissue reduced scattering reported herein is valid for adult geometries sampled

with SDSs ≤ 5 cm. For applications wherein thinner extracerebral layers are expected (e.g.,

in children) or larger SDSs are used, alternative methodologies that separately recover the

reduced scattering coefficient from the first and second layers could be feasible and should

be investigated.

Surprisingly, the minimum error for the recovery of F2 in the realistic head geometry

occurred when the extracerebral layer thickness was ∆ℓ≈ 0.1 cm higher than the estimation

of the “actual” thickness (Figure 4.6). This suggests that the method of estimating the ac-

tual extracerebral layer thickness was suboptimal. In the realistic head geometry simulation,

the skin-to-brain distance varied between 1.09 and 1.33 cm across the length of the optical

probe. Recall from Figure 4.1 that the estimated actual thickness of ℓ = 1.22 cm for the 2L

fitting algorithm was obtained by averaging the skin-to-brain distance across the 2-cm-long

middle portion of the optical probe. However, if we average the thickness across the 1-cm-

long middle portion of the DCS SDS instead, the resulting extracerebral thickness is larger,

i.e., ℓ= 1.30 cm. Note that this larger thickness is equivalent to the thickness that minimizes

the error in the recovery of F2 in Figure 4.6. These findings, as well as prior studies [134,135],

show the importance of the method used for estimating the extracerebral layer thicknesses

in multilayer tissue models. Future work is needed to test and optimize estimation methods

such as the recently proposed pressure modulation paradigm (which derives an effective

layer thickness that differs from direct MRI anatomical measurements) [119] and the direct

fitting of the extracerebral layer thickness [121].

One concern for the use of multilayer models is regarding the procedure to solve the

inverse problem. Indeed, one of the troublesome issues is the sensitivity of the recovered fit-

ting parameters to the initial guesses for these parameters in the fitting since the method is

subjected to converge to local minima. To evaluate this, I reanalyzed a subset of our realistic

head simulations using 20 different random initial guesses for each fit (we used the Multi-

Start function implemented in MATLAB 2020a to this end). Specifically, I reanalyzed the data
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from all cerebral flow and absorption changes for five of the different noise additions for FD-

DOS and DCS. With this approach, the recovered optical properties and flow indices differed

by ∼ 10−5% when compared with the approach of using a fixed initial guess. This reanalysis

suggests that the algorithm is numerically stable (i.e., independent of the initial guess used

in the fitting procedure).

4.5 Conclusion and Next Chapters

In this work, I used high-fidelity simulations of FD-DOS and DCS data at commonly used

SDSs to demonstrate that the proposed constrained 2L approach improves the accuracy of

cerebral measurements compared with the conventional SI approach, thus mitigating the

inversion procedure problems. The 2L approach takes into account the head’s heterogeneity

– or at least part of it – separating cortical from extracortical contributions. On the other

hand, the SI approach assumes the head is a homogeneous medium.

Importantly, I observed that the numerical stability of the reconstructions with the

constrained 2L and SI approaches were comparable. One of the constraints used is ho-

mogeneous tissue reduced scattering, which is necessary because the FD-DOS signals are

minimally influenced by the cerebral tissue reduced scattering coefficient (at SDSs up to 5

cm). Compared with cerebral absorption, the recovery of CBF was less sensitive to inhomo-

geneous tissue scattering but more sensitive to errors in the extracerebral layer thickness.

The impact of the extracerebral layer thickness errors on FD-DOS and DCS measurements

can be mitigated with future strategies that boost their brain sensitivity.

In summary, the 2L approach increases the accuracy of the estimations when com-

pared to the SI approach. However, the results exhibited in Figures 4.3 and 4.4 suggest that

the estimations with the proposed 2L algorithm still underestimate the real properties, espe-

cially in realistic head simulations. I hypothesize that this remaining lack of accuracy might

be coming from the assumption of a planar interface, still present in the 2L approach. In this

context, the next chapter introduces the investigation I performed regarding the influence of

curvature in the interface of optical data acquisition in estimations through DO techniques.
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CHAPTER 5

INFLUENCE OF TISSUE CURVATURE ON THE

ABSOLUTE QUANTIFICATION IN FREQUENCY-

DOMAIN DIFFUSE OPTICAL SPECTROSCOPY

As I previously discussed, there are two assumptions behind the SI model for which I

aimed to develop methods to better deal with. In the last chapter, I discussed an algorithm

to better incorporate the heterogeneity of biological tissue over optical estimations. There, I

concluded that there is still room for improvement even when considering this feature in the

analysis model. In this chapter, I aimed to deal with the second assumption: the flatness at

the acquisition interface. This assumption is present even in heterogeneous models (such as

the 2L model). Although it is common sense that it also jeopardizes the accuracy of optical

estimations, there is little research available aiming to deal with this issue. In this chapter,

Section 5.1 introduces the problem within DOS. In Section 5.2, I describe the methods of

data generation, acquisition, and analysis. Section 5.3 exhibits the results, while I discuss

them in Section 5.4. Lastly, in Section 5.5, I summarize the conclusions of this investigation.

5.1 Introduction

Over the past three decades, DO techniques have emerged as a powerful noninvasive tech-

nique for studying human brain function [10,115,136–138]. However, to obtain reliable cere-

bral physiology parameters for clinical use, accurate estimation of tissue optical properties

is crucial. This problem is directly dependent on the reliability of the model used for data

analysis. The most common approach, the SI model, only partially captures the complexity

of actual biological tissues due to assumptions of homogeneity and flatness. As discussed in

Chapter 4, although layered models improve accuracy in recovering optical parameters, their

estimated optical coefficients are still underestimated, indicating that more factors other

than extracerebral contributions should be accounted for achieving accurate and precise

quantification [13–15, 29, 139–143]

In addition to the inner geometry of the medium in which light propagates, the acqui-

sition interface can also influence the estimation of optical properties with DOS. Although
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not so numerous, previous studies have highlighted the impact of interface assumptions

on various DOS techniques. For instance, assuming a planar interface has been shown to

cause spatial misregistration of functional magnetic resonance imaging and diffuse optical

imaging [19]. Additionally, removing data points obtained in poor optode coupling con-

ditions due to interface curvature has effectively reduced image artifacts in diffuse optical

tomography [20]. When working with optical data acquired from a curved interface, errors

in the blood flow index measured with diffuse correlation spectroscopy were estimated to be

approximately 25% [22]. Furthermore, Monte Carlo simulations in time-domain DOS (TD-

DOS) have demonstrated that accounting for the interface geometry results in more accurate

assessments of the optical properties [21]. These findings emphasize the importance of con-

sidering interface characteristics in optical property estimations with DOS techniques.

In this work, I aimed to reassess the influence of local curvatures at the acquisition in-

terface on the optical properties estimated with FD-DOS and propose a numerical method to

account for curved surfaces, improving the absolute quantification of optical properties with

FD-DOS. I approached this problem by performing numerical simulations of light propaga-

tion in homogeneous media with curved interfaces and using the results to build a lookup

table, which is then used to search for the closest solution to the inverse problem. The pro-

posed methodology was initially tested in planar and curved phantom surfaces and head

simulations, and we compared the results using our lookup table approach to the standard

SI approach. Subsequently, I evaluated the performance of the algorithm using human data.

5.2 Materials and Methods

5.2.1 Methods to Solve the Inverse Problem

I compared the performance of three different models to fit the simulated and experimental

FD-DOS data (Figure 5.1). For simplicity, all models were assumed to be homogeneous, so I

could only investigate the effects of the curvature and the proposed nonlinear optimization

procedures without adding any cofactors to the analysis of the methodology.

Analytical Semi-Infinite Approach

The first model I tested was the analytical solution of the photon diffusion equation to the

semi-infinite (SI) geometry with the extrapolated boundary condition (Equation 2.10). The

SI approach is widely used in the literature due to its simplicity and low computational cost.

It assumes the biological tissue as a homogeneous media, infinite in the x and y directions

and with a single air-tissue boundary in the z-direction (Figure 5.1a).

Since the SI model provides an analytical solution to the diffusion equation, we used

Equation 2.10 to fit any collected FD-DOS data by minimizing the following cost function,

H , using the fmincon function in MatLab (The MathWorks Inc., Natick, MA, USA):
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Figure 5.1: Representation of the three models used to estimate the optical properties, shown from the side (top
row) and top (bottom row) views for illustrative purposes. (a) Semi-infinite (SI) model, in which the medium
is infinite in any direction parallel to the acquisition interface; (b) planar model, in which the sources and
detectors were positioned at the top of the cylinder; and (c) curved model, where the optodes were positioned
on the side of a cylinder to add non-planarity to the acquisition interface. In all cases, the source and the
detectors are represented in red and blue, respectively.

H = HA +Hθ, (5.1)

where

HA =
N∑

i=1

(
ln

(
Atheo(ρi )

Atheo(ρ1)

)
− ln

(
Aexp (ρi )

Aexp (ρ1)

))2

Hθ =
N∑

i=1

(
(θtheo(ρi )−θtheo(ρ1))− (θexp (ρi )−θexp (ρ1))

)2.

Here, i is the i-th source-detector separation (SDS), N is the total number of SDSs, A(ρi ) is

the fluence amplitude of ρi , and θ(ρi ) is the phase shift measured at ρi . The superscripts

theo and exp denote theoretical (predicted) and experimental (measured) quantities, re-

spectively. The minimization of Equation 5.1 was used to estimate µa and µ
′
s in the SI ap-

proach without further assumptions.

Numerical Models

In addition to the SI approach, I used a finite-element method to solve the inverse problem.

I simulated the expected amplitude and phase of FD-DOS data for two specific geometries

using the open-source software NIRFASTer [39, 42] with a node size of 0.065 cm, which pro-
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vided final meshes containing approximately 610,001 nodes. For each geometry, I varied µa

from 0.05 to 0.30 in steps of 0.005 cm−1, and µ
′
s from 5 to 15 in steps of 0.1 cm−1. I used SDSs

of 1.5, 2.0, 2.5, and 3.0 cm. The amplitude and phase for each cross combination were stored

as a lookup table that was used to estimate the absolute optical properties from the FD-DOS

data. For solving the inverse problem, the combination of µa and µ
′
s that minimizes the cost

function described by Equation 5.1 was chosen as the optimal solution to the problem. This

approach guarantees that the global minimum is selected. Of note, the theoretical ampli-

tude and phase described in Equation 5.1 consisted of the simulated amplitude and phase

obtained for each combination of µa and µ
′
s when we use lookup tables.

The first geometry consisted of a homogeneous cylinder (radius and height of 9 cm)

with the source and detectors positioned on the top planar surface (Figure 5.1b). The planar

model aimed to confirm the reliability of the numerical solution compared to the analytical

approach since the findings should closely match those of the SI method.

In the second geometry, I simulated the same medium as before. Still, the sources and

detectors were positioned on the curved side of the cylinder, on a plane parallel to the cylin-

der basis, to account for local curvature effects (Figure 5.1c). With this approach, the side

of the cylinder can mimic biological tissue curvatures, as the cylinder radius, R, determines

the curvature (i.e., κ= 1/R). To investigate how different curvatures influence the simulated

data, we simulated two curved models with cylinders with radii of 9 and 7 cm (κ= 0.111cm−1

and κ= 0.143cm−1, respectively), which we will refer to as Curved Model 1 and Curved Model

2, respectively. I chose these values because they are close to our estimations of different

forehead curvature regions of adults.

5.2.2 Datasets for Methods Validation

The four methods above were tested with three distinct datasets generated for validation:

numerical simulations mimicking standard optical phantoms in diffuse optics, experimental

data collected on two homogeneous optical phantoms with known optical properties, and

numerical simulations performed on an adult human head.

Numerical Simulations Mimicking Phantoms

The first step to validate the proposed methodology involved performing numerical simu-

lations on media that mimicked optical phantoms. I created meshes consisting of homoge-

neous cylinders with two different radii and positioned the sources and detectors at different

locations along the interface. For the cylinder with low curvature (11 cm radius, curvature

κ = 0.091cm−1; mesh node size of 0.9 cm, comprising 645,643 nodes), I placed the sources

and detectors on both the curved and planar sides. For the cylinder with high curvature (5

cm radius, curvature κ = 0.200cm−1; mesh node size of 0.9 cm with 148,836 nodes), I posi-

tioned the optodes exclusively on the curved side. These simulations were performed with
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the same range of optical properties previously described using SDSs of 1.5, 2.0, 2.5, and 3.0

cm.

To each simulation, I added random amplitude and phase noise independently, sim-

ilarly to Chapter 4. The noise was based on a Gaussian model with zero mean for each

simulation independently. For the phase, the standard deviation was set at 0.1 degrees; for

amplitude, the noise was incorporated such that the signal-to-noise ratio of the resulting

curve reached 100, similar to the previous chapter. Then, I fitted the resulting data using the

methods previously outlined for each combination of optical properties and curvature. The

performance of each fitting method was assessed by the median of the absolute percentage

error (MAPE), as in the previous chapter.

Phantom Measurements

In addition to the phantom simulations described in the section above, I obtained ex-

perimental FD-DOS data from phantoms (Figure 5.2). Acquisitions were performed with

the commercial FD-DOS system exhibited in Figure 2.10. We used two wavelengths (690

and 847 nm), and SDS were 1.5, 2.0, 2.5, and 3.0 cm. The temporal resolution of the

data acquisition was 18.4 Hz. I used two solid phantoms with known optical properties

(phantom 1: µa(690nm) = 0.113cm−1, µa(847nm) = 0.113cm−1, µ
′
s(690nm) = 10.1cm−1,

µ
′
s(847nm) = 9.0cm−1; phantom 2: µa(690nm) = 0.108cm−1, µa(847nm) = 0.110cm−1,

µ
′
s(690nm) = 11.1cm−1, µ

′
s(847nm) = 9.9cm−1). Each phantom has three different interfaces

for data acquisition: the planar top of the block and two curved sides with the same radius as

the simulations (i.e., one with a 5 cm radius and the other with an 11 cm radius). I collected

data at all interfaces in both phantoms for 2 minutes and fitted the data to the different mod-

els separately. To assess the stability of each method in situations with real noise, I evaluated

the 95th percentile of MAPE distribution for phantom real data. Before every measurement,

I calibrated the device using a standard procedure (Section 2.3.4) to ensure the accuracy of

the measured amplitude and phase against the flat surface reference.

Numerical Simulations on a Human Head

The last validation of the curved model consisted of testing it in data obtained from numer-

ical simulations employing a mesh of an adult human head created with the same open-

source library previously described in the last chapter (brain2mesh, with a Delaunay sphere

radius of 0.11 cm, radius-to-edge ratio of 1.24, and maximum element volume of 4 cubic

voxels). This head mesh was used as input into NIRFASTer, yielding FD-DOS simulations at

two locations with distinct curvatures: a 7 cm and a 20 cm radius location, which I refer to

as high and low curvatures (κ = 0.143cm−1 and 0.050 cm−1), respectively. At each location,

I estimated the curvature by computing the radius of the circumcenter that passes through

the boundary vertices located between the source and the farthest detector. In both cases, I
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Figure 5.2: One exemplar of the phantoms used to investigate the accuracy of the models under comparison.
Note that the phantom has a planar side, one surface with a slight curvature (11 cm radius) and other with a
high curvature (5 cm radius).

used the same SDSs of the experimental probe (i.e., 1.5, 2.0, 2.5, and 3.0 cm) and performed

simulations varying µa from 0.1 to 0.25 cm−1 in steps of 0.05 cm−1, and µ
′
s from 6 to 12

cm−1 in steps of 2 cm−1, always assuming the head to be homogeneous. These parameter

ranges cover all the values we previously measured in human studies. Then, I applied the

same noise model previously described to the simulations before attempting to recover the

optical parameters by the different models.

5.2.3 Datasets for Methods Exploration

Diffuse Correlation Spectroscopy Simulations

Considering that the estimation of blood flow in Diffuse Correlation Spectroscopy (DCS) re-

lies on absolute optical properties, I explored the impact of curvature on the accuracy of

blood flow determination. For that purpose, I created a cylindrical mesh with a 7 cm ra-

dius (node size of 0.065 cm, 610,001 nodes), positioned one source and one detector on the

curved side of the cylinder, and used NIRFASTer to simulate the temporal electric field auto-

correlation functions.

I examined all permutations of µa set at 0.10, 0.17, and 0.25 cm−1, and µ
′
s set at 6, 9,

and 12 cm−1. For each pair of optical properties, I simulated ten Blood Flow Indices (F)

values spaced evenly at a log scale: 0.056, 0.100, 0.178, 0.316, 0.562, 1.00, 1.78, 3.16, 5.62, and

10.0×10−8 cm2/s, at 100 lag times ranging from 0.6 µs up to 3.7 ms, using the same multitau

scheme as last chapter. I fixed the wavelength at 785 nm and the source-detector separation

at 2.5 cm. DCS data was fitted using the planar, homogeneous model (G1), minimizing the

following cost function:

HDC S =∑
τ

∣∣∣∣G theo
1 (τ)

G theo
1 (0)

∣∣∣∣2

−
∣∣∣∣Gexp

1 (τ)

Gexp
1 (0)

∣∣∣∣2

,
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Table 5.1: Demographic data of all participants separated by the cofactors analyzed in this work. The values in
parenthese represent the standard deviation across the distribution.

Total Biological Sex Skin Color
Men Women White Non-White

Participants 152 55 97 99 53
Age[years] 39(17) 39(18) 38(17) 37(17) 41(17)

Figure 5.3: Regions of the PFC where optical data was acquired: right and left lateral frontal areas, right and left
inferior frontal areas, right and left superior frontal regions, and the central frontal area.

where the sum was performed over all lag times, τ. Since the goal was to isolate the influ-

ence of curvature on F estimations, I used the simulated optical properties as inputs for G1

instead of fitting the FD-DOS simulated data. In addition, I opted not to add noise to the

simulated DCS curves since our aim was not to assess a method for fitting F in the presence

of curvature. Analyzing the simulations without noise allowed us to gain intuition regarding

the impact of curvature on the DCS planar fit with no additional confounders.

Characterization of Human Brain Data in the Presence of Curvature

Last, I employed the proposed curved model to analyze FD-DOS data previously obtained

from 152 healthy participants [144], whose demographic data is presented in Table 5.1. Ac-

quisitions were performed with the commercial FD-DOS system exhibited in Figure 2.10 at

two wavelengths (690 and 847 nm) and SDS of 1.5, 2.0, 2.5, and 3.0 cm. The temporal reso-

lution of the data acquisition was 18.4 Hz. Before every participant session, I calibrated the

FD-DOS device as we did for phantom acquisitions. All participants were instructed to sit in

a comfortable chair, stay relaxed, and not move. The optical probe was then placed on seven

regions of interest (ROIs) around the prefrontal cortex (PFC), illustrated through ’X’ in Fig-

ure 5.3, using adhesive tape. For every participant, we collected a two-minute data segment

for each ROI. All experimental procedures were reviewed and approved by the local ethics

committee at the University of Campinas.

For data analysis, I discarded time points where (1) amplitude did not decrease, or

phase did not increase, with an increase of SDS, and (2) data whose µ
′
s at 690 nm was higher

than at 847 nm. Both conditions do not match the expected response and likely result from

experimental errors due to poor probe contact. From the estimation of the optical prop-
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erties, we used the modified Beer-Lambert law to calculate [HbO] and [HbR], directly from

µa . As we acquired data only at two wavelengths, I assumed a water fraction of 75% to obtain

chromophore concentrations with more reliability. From [HbO] and [HbR], we calculated

[HbT ] and StO2.

After fitting the experimental data using curved and planar models, I conducted tests

to determine whether the distributions and their moments differed significantly between

the approaches. Initially, I assessed the normality of the distributions using the Lilliefors

goodness-of-fit test. Subsequently, if the distributions were found to be normal, I performed

comparisons using a Student’s T-test; otherwise, a Wilcoxon rank sum test was applied. For

the statistical moments, I calculated the mean, standard deviation (STD), skewness (s), and

kurtosis (k) values of the distributions.

5.3 Results

5.3.1 Phantom Validations

Figure 5.4 presents the MAPEs for the recovered absorption coefficients when applying the

four different fitting methods to both planar and curved interfaces over the range of optical

properties tested.

When the sources and detectors were positioned on the planar surface (Figure 5.4a),

the errors of the recovered optical properties were consistently low regardless of the fitting

model; in this condition, MAPEs were less than 10% when compared to the ground truth,

with the lowest MAPEs obtained when fitting the data with planar models (i.e., analytical

SI and numerical planar model). Across all optical properties simulated, the average MAPE

(95th percentile) for the SI model was 2.8 (0.5, 4.6)%, while the planar simulation achieved

0.2 (0.0, 3.2)%. The Curved Models 1 and 2 resulted in slightly higher MAPEs of 4.5 (2.2, 8.0)%

and 6.5 (4.3, 9.5)%, respectively. These differences were statistically significant when I com-

pared the MAPE distributions (p< 0.001, Wilcoxon test). Additionally, the robust Cohen’s D

effect size between planar and curved models (2.4 on average) is larger than the one com-

puted between the planar models and among the curved models (1.2 on average). It is also

worth noting the lower errors achieved by the planar simulation when compared to the stan-

dard SI approach (p<0.001, Wilcoxon test), suggesting that the numerical approach is robust

and can yield precise results.

For the highly curved surface (Figure 5.4c), curved models significantly outperformed

planar models. The lowest error rate was obtained when the mismatch between the curva-

ture of the interface and the simulated model was minimal (Curved Model 2, MAPE: 5.6 (2.8,

8.7)%). However, the error was small even when the curvature of the curved model was dis-

tant from the actual interface curvature (Curved Model 1, MAPE: 6.8 (4.2, 10.3)%). On the

other hand, the use of planar models resulted in errors as high as 25%, with average MAPEs
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Figure 5.4: Median Absolute Percentage Errors (MAPE) of each fitting method in simulations that mimic (a)
planar, (b) 11 cm, and (c) 5 cm phantom sides. Additionally, for each fitting method and curvature condition,
the MAPE obtained when fitting real data in phantoms are exhibited (circle markers for Phantom 1, 690 nm;
square markers for Phantom 1, 850 nm; diamond markers for Phantom 2, 690 nm and triangle markers for
Phantom 2, 850 nm).
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of 13.3 (10.3, 16)% for the SI model and 12.3 (9.1, 25)% for the planar simulations. A Wilcoxon

test yielded statistically significant differences among all distributions (p < 0.001), and D val-

ues between curved and planar models (4.9 on average) are larger than the ones between

models that assume curvature or not (0.7 on average).

For the interface with a less pronounced curvature (Figure 5.4b), all models showed

statistically different yet comparably modest MAPEs (p < 0.001, Wilcoxon test). Unlike other

surfaces, D values between curved and planar models (0.8 on average) are similar to the ones

between both planar and both curved models (0.9 on average). Across all optical properties,

the curved model which closely matched the actual interface curvature achieved a smaller

error of 2.2 (0, 5.3)%, slightly better than the Curved Model 1 model’s MAPE of 3.8 (0, 7.7)%.

The use of planar models in this low curvature interface resulted in comparable MAPEs of 4.8

(2.5, 6.8)% and 3.6 (0, 9.1)% for the SI model and planar simulation, respectively. Note, once

more, that in addition to the small error obtained with Curved Model 2 (2.6%), the additional

error of Curved Model 1 is 0.7% on average, which suggests that a mismatch in the assumed

curvature introduces a smaller error than not considering it at all (2.2% additional error on

average).

Real phantom experimental data revealed higher errors than the simulated data, indi-

cating that simulations may not fully capture the nuances of actual data acquisition, even

after the addition of noise models. I observed that phantom data MAPEs were about 5%

higher than simulation MAPEs when the model curvature matched the interface curvature

of data simulation, and approximately 8% higher when there was a curvature mismatch.

Despite the larger errors than the simulations, the experimental data followed the same

trends observed for the mimicking phantom simulations. The highest errors were obtained

when using planar models to fit data of a highly curved interface, yielding an average MAPE

of 12(7,18)% (planar numerical) and 15(13,19)% (analytical SI) across wavelengths and phan-

toms. Conversely, curved models achieved MAPEs as low as 3–7%. When fitting planar in-

terfaces, curved models yielded average MAPEs of 14(9,19)% across wavelengths and phan-

toms, substantially higher than the 4(0,7)% obtained with planar models for this condition

across all wavelengths and both phantoms for the planar numerical and the analytical SI

models, respectively. However, as the measurement surface exhibited a nonzero curvature

(11 cm radius side), the MAPEs obtained with planar models significantly increased (5(2,9)%

across all phantoms and wavelengths), and the errors of curved models decreased (6(0,11)%)

up to the conditions of high curvature.

Lastly, I assessed the stability of the models using the 95th percentile of MAPE dis-

tribution over the 2-minute data acquisition in real data. Simulation methods and SI model

yielded a 95th percentile around 5% (Table 5.2), which indicated that the stability of our sim-

ulations is similar to the analytical model. Additionally, real phantom data suggests that the

results obtained with the planar numerical model are essentially the same as those obtained

through the SI model, given the overlapping of its 95th percentiles.
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Table 5.2: Mean absolute percentage error (MAPE) of each fitting algorithm for estimating the absorption coef-
ficient of the optical phantoms collected at different sides of the phantom. The values in parenthesis represent
the boundaries of the 95th percentile across time points collected over 2 minutes of data acquisition.

Phantom 1 Phantom 2
Curved Models Planar Models Curved Models Planar Models

λ (nm) Model 1 Model 2 Simulations SI Model 1 Model 2 Simulations SI

Planar surface of the phantom
690 15(15,19) 15(11,15) 6(6,10) 6(5,9) 16(11,16) 11(11,16) 6(2,6) 5(3,7)
847 11(11,15) 11(11,11) 2(2,2) 1(0,2) 14(9,14) 9(9,14) 5(0,5) 1(0,2)

Curved side (R = 11 cm, κ= 0.09cm−1)
690 11(6,11) 6(6,11) 2(2,3) 2(1,4) 6(2,6) 2(2,6) 3(3,7) 6(4,8)
847 6(6,6) 2(2,6) 3(3,7) 6(5,6) 5(0,5) 1(0,1) 9(5,9) 9(8,9)

Curved side (R = 5 cm, κ= 0.20cm−1)
690 2(2,3) 3(3,3) 12(7,12) 13(12,15) 3(3,7) 7(3,7) 12(12,12) 16(15,17)
847 3(3,3) 7(3,7) 12(12,12) 15(15,16) 9(5,9) 9(9,9) 14(14,18) 16(16,17)

5.3.2 Numerical Simulations on a Realistic Head

To comprehensively examine the influence of curvature on recovering the absolute optical

properties in realistic brain geometries, I also evaluated the performance of the proposed

models in fitting simulated data in an adult homogeneous head with added noise. Given the

similarity in performance between the numerical planar model and the analytical SI model

in the previous results, I focused the comparison on curved models paired with the SI model

to enhance visualization clarity.

Figure 5.5 shows the MAPE of the recovered absorption coefficient (µ f i t
a ) relative to the

simulated absorption coefficient (µsi m
a ) for simulations with four different reduced scatter-

ing coefficients for the two curvatures examined. In regions of the head with low curvature

(Figure 5.5a), the behavior of the curved models closely paralleled that of the SI model. The

average MAPE across all tested values of µa and µ
′
s was approximately 4(0,16)%, 5(0,18)%,

and 6(1,19)% for the Curved Model 2, Curved Model 1, and SI models, respectively. The sta-

bility of the models was also similar: the 95th percentile range was around 4.1% for the SI

model on average, close to the 5.5% measured for the curved models. A Wilcoxon test was

not able to distinguish between Curved Models 1 and 2 MAPEs (p=0.10) nor between curved

and the SI models (p=0.28). When analyzed as a function of the optical properties, errors

tended to increase with higher values of µa , and decrease with higher values of µ
′
s .

However, in regions of the head with high curvature (Figure 5.5b), the planar approach

yielded significantly higher errors than the curved models. The average MAPE for recovering

µa over all the simulations was 10(3,22)% for the analytical SI model, which is larger than the

5(0,15)% and 5(0,10)% average MAPE obtained for both Curved Model 2 and Curved Model 1,

respectively. The 95th percentile range obtained for the curved and SI models were 3.3% and

2.8%, respectively. A Wilcoxon test distinguished curved from planar models (p<0.001), but
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Figure 5.5: Mean absolute percentage error (MAPE) of the estimated absorption coefficient (µ f i t
a ) when using

the analytical SI approach (blue) and the two curved models with curvatures of 0.11 (green) and 0.14 (red)
cm−1 to fit simulated data in a head model. We simulated data in head regions with (a) low curvature and (b)
high curvature for varying values of µa and µ

′
s with added experimental noise. The simulated µ

′
s is displayed at

the top of the graphs, while the simulated absorption coefficient (µsi m
a ) is along the horizontal axis. Error bars

represent the 95th percentile of MAPE distributions. Of note, for lookup table methods (i.e., Curved Models 1
and 2), the median MAPE usually coincides with a border of the shaded error bar. It suggests that the noise
makes the fitted values oscillate between two specific values.

did not find statistical differences between Curved Models 1 and 2 (p=0.11). The influence of

curvature was particularly high in regions with highµa and lowµ
′
s values, wherein the planar

models consistently yielded higher MAPE values. Similar to what I found with the optical

phantoms, I did not observe any substantial differences in MAPE between the two curvature

values investigated, suggesting that small discrepancies in curvature do not inherently lead

to a significant increase in MAPE.

5.3.3 Diffuse Correlation Spectroscopy Simulations

To preliminary investigate the effect of the curvature on blood flow estimations, I simulated

DCS data on a 7-cm radius mesh for F = 0.056, 0.100, 0.178, 0.316, 0.562, 1.00, 1.78, 3.16, 5.62

and 10.0×10−8 cm2/s using all the combinations between µa = 0.10, 0.17, and 0.25 cm−1 and

µ
′
s = 6, 9, and 12 cm−1. I adjusted the simulated data using the planar G1 model and the actual

simulated optical properties. Across all pairs of simulated optical properties, the MAPEs

obtained was 1.3(0.5,3.2)%. This value, smaller than the 5-15% errors obtained in FD-DOS

data, suggests that F estimations are less affected by the presence of curvature. Additionally,

MAPEs from F estimations are approximately constant despite the simulated flow in this

range (amplitude variation, i.e., the difference between the maximum and minimum MAPE,

of 0.03(0.01,0.08)%).
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Figure 5.6: Quantities estimated by planar (SI, blue) and curved (Curved Model 2, orange) models. The first
row shows the optical properties (i.e., µa and µ

′
s ) for both same wavelengths (690 and 850 nm). The second row

shows the hemodynamic parameters derived from the absorption coefficient (i.e., [HbO], [HbR], [HbT ], and
StO2) estimated by both models.

5.3.4 Human Brain Data

To better understand how accounting for curvature can affect the estimation of the optical

properties of actual brain FD-DOS data, I compared the distributions of µa and µ
′
s at both

wavelengths across all participants and ROIs, as well as the derived hemodynamic param-

eters [HbO], [HbR], [HbT ], and StO2, estimated using both SI and curved models (Figure

5.6).

Considering the similar performance observed for both curvatures in the previous

head simulations, I opted to simplify the comparison by exclusively contrasting the SI model

(represented in blue) with the higher curvature model (depicted in red). Across all subjects,

the addition of curvature increased the optical properties estimates by 10(5)% when com-

pared to the SI approach at both wavelengths (10(5)% increase for µa and 1(6)% increase for

µ
′
s). The variability of the estimates across the population, as measured by the standard de-

viation, was slightly larger for the curved model (2% increase in µa standard deviation and

17% in µ
′
s across all wavelengths). As expected, the disparities in absorption coefficients ex-

tended to the estimations of HbO, HbR, and HbT concentrations, which were 15(10), 9(8),

and 12(5)% higher for the curved model when contrasted with planar models. Across all

hemodynamic properties, it is worth noting that StO2 exhibited the least sensitivity to cur-

vature; we observed a nonsignificant increase of 2(6) in StO2 when considering the effects of

curvature.

The higher statistical moments related to the shape of the distributions are exhibited
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Table 5.3: Median, standard deviation (STD), kurtosis (k), and skewness (s) for the distributions of the optical
properties and physiological parameters estimated by SI and Curved Model 2

Optical properties

µa (cm−1) µ
′
s (cm−1)

690 nm 850 nm 690 nm 850 nm
Curved Model 2 SI Curved Model 2 SI Curved Model 2 SI Curved Model 2 SI

Median 0.115 0.103 0.130 0.117 10.2 9.0 9.1 8.1
STD 0.047 0.045 0.042 0.042 2.2 1.9 1.9 1.6

k 5.2 7.0 4.8 7.6 2.9 3.1 3.4 4.8
s 1.2 1.6 1.0 1.5 -0.4 0.0 -0.1 0.4

Physiological Parameters
[HbO] (µmol ar ) [HbR] (µmol ar ) [HbT ] (µmol ar ) StO2 (%)

Curved Model 2 SI Curved Model 2 SI Curved Model 2 SI Curved Model 2 SI
Median 29 25 19 17 48 43 60 59

STD 13 14 9 9 20 20 9 10
k 6.7 12.1 5.6 7.7 4.5 6.7 4.8 4.7
s 1.3 2.1 1.4 1.8 0.9 1.4 -0.5 -0.5

in Table 5.3. Across all cases, the skewness values, s, remained consistently close to zero,

indicating that the inclusion of curvature, while increasing the variance, did not affect the

symmetry of the distributions. Furthermore, I observed that the kurtosis values, k, for the

curved model estimates were consistently lower than the planar estimates. This suggests that

the distributions associated with the curved model had a slightly flatter profile. In addition,

the kurtosis values for the curved model tended to approach a value of 3, implying that the

inclusion of curvature made the distributions more closely resemble a Gaussian (normal)

distribution. Additionally, all the distributions in Figure 5.6 exhibited significant differences

(p < 0.05) when compared, except for StO2 (p=0.052).

Relationship Between Optical Estimates and Demographic Factors

Given that the curved model yielded optical-based hemodynamic estimates with distribu-

tions that are wider and more even than the standard SI approach based on k and s values,

I posited that this model might be better equipped to discern fluctuations in population

demographic factors, which are often entangled with optical property estimations using FD-

DOS. As this dataset encompasses a substantial cohort, I also sought to explore the variations

in properties concerning age, biological sex, and skin color.

First, I investigated the dependence of the distribution of the hemodynamic parame-

ters on the categorical cofactors (i.e., sex and skin color) independently (Figure 5.7). I found

no significant difference between the distributions neither in terms of sex (male vs. female)

or skin color (white vs. non-white). The median and standard deviations for these cofactors

were within the same range (Table 5.4). This finding was also true for kurtosis and skewness

of the paired distributions.

In addition, I quantitatively compared the pair of frequency histograms for each cofac-

tor using the scaled robust estimator for Cohen’s D to account for non-parametric distribu-
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Figure 5.7: The first row shows the men (orange) and women (blue) distribution of (a) [HbO], (b) [HbR], (c)
[HbT ], and (d) StO2 estimated by Curved Model 2. The second row shows the white (orange) and black and
brown, described as non-white (blue), distribution of (e) [HbO], (f) [HbR], (g) [HbT ] and (h) StO2 estimated
by the same model.

[HbO] (µmol ar ) [HbR] (µmol ar ) [HbT ] (µmol ar ) StO2 (%)

Physiological parameters according to biological sex
Men Women Men Women Men Women Men Women

Median 31 27 20 18 53 46 60 59
STD 14 13 8 9 19 20 9 9

s 1.1 1.5 1.5 1.4 0.9 1.0 -0.9 -0.3
k 5.8 7.9 6.6 5.2 4.6 4.8 6.2 4.2
D 0.34 0.23 0.33 0.19

Physiological parameters according to skin color
White NW White NW White NW White NW

Median 29 28 20 19 49 47 60 60
STD 13 14 9 8 20 19 9 9

s 1.1 1.5 1.4 1.2 0.9 1.0 -0.6 -0.4
k 5.8 8.2 5.4 5.7 4.3 5.2 5.0 4.5
D 0.05 0.15 0.11 0.09

Table 5.4: Median, standard deviation (STD), skewness (s), and kurtosis (k) for the distributions of [HbO],
[HbR], [HbT ], and StO2 estimated by Curved Model 2 according to biological sex and skin color. For each
case, the comparison between each cofactor was assessed with the robust Cohen’s D (D).
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Figure 5.8: Parameters estimated by the curved model as a function of age and its linear regression (black solid
line).

tions. Despite no observed differences in the distributions, the effect size of D suggests that

the influence of sex on the physiological parameters, although small (D = 0.34 for HbO and

D = 0.33 for HbT), may not be negligible in a cohort larger than ours.

As age is a numerical cofactor, I examined the relationship between the hemodynamic

parameters and age as a continuous variable. (Note, I used the median value for analy-

sis for ages with multiple data points.) Across all different types of hemoglobin concen-

trations, I observed a consistent decrease in chromophore concentration with increasing

age (Figure 5.8). Pearson correlation coefficients, r , indicated strong negative correlations

of 0.5 (p=0.00005) for both [HbO] and [HbT ] and 0.3 (p=0.03) for [HbR] concerning age.

Linear regression analysis of the data from Figure 5.8 revealed the following relationships:

[HbO] = (38±2)−(0.23±0.05)×Ag e (slope p=0.00001), [HbR] = (22±2)−(0.08±0.04)×Ag e

(slope p=0.03), and [HbT ] = (64±4)− (0.36±0.08)× Ag e (slope p=0.00007). However, I did

not observe a significant correlation between oxygen saturation and age (r = 0.2, p=0.2). The

linear relationship between oxygen saturation and age was measured as StO2 = (62± 2)−
(0.03±0.04)× Ag e (slope p=0.46).

5.4 Discussion

This work aimed to quantitatively assess how curvature at tissue interfaces impacts the esti-

mation of optical properties and their derived hemodynamic quantities as measured using

FD-DOS. It is worth noting that the majority of previous investigations have been performed

under the simplifying assumption of flat tissue surfaces, thus ignoring their curvature. Al-

though it is possible to place optical probes in head regions with low curvature to minimize

these effects in some cases, specific scenarios necessitate dealing with curved tissues. For in-

stance, curvature cannot be avoided when measuring small heads, such as infants’, or when

targeting inherently curved regions like the occipital lobe or specific upper limb muscles.

Therefore, understanding the implications of curvature on FD-DOS results and proposing

strategies to account for its effect within experimental protocols can yield substantial im-

provements in the accuracy of the optical properties estimation.
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One might initially assume curvature primarily affects the distance between the light

source and detector, a well-known critical factor for quantification in diffuse optical tech-

niques since it also affects the optical pathlength between the source and the detector. How-

ever, even in regions with relatively high curvature, the change in SDS is rather small; for

example, a curvature of 0.2 cm−1 changes SDS by 3% at a 4 cm distance, which is insufficient

to account for MAPEs higher than the 10–20% observed in this work. The primary challenge

posed by curved interfaces lies in the change of symmetry and boundary conditions for the

photon diffusion model.

To approach this challenge, I employed lookup tables based on numerical models to

estimate optical properties by minimizing the difference between predicted and measured

amplitude and phase data using multi-distance FD-DOS. The analytical solution for light

transport in curved interfaces presents challenges to its computational implementation due

to its inherent nonlinearities, which limits its practical utility. In contrast, lookup tables

can significantly reduce computational time once generated, albeit at the cost of memory

requirements to create and store the precomputed solutions. The similar performance of

the planar model and the analytic SI model underscores the accuracy of our lookup table

methodology. If enhanced resolution is needed, an alternative approach would interpolate

simulated values [145]. Alternatively, machine learning methods such as deep learning can

be used to extract the optical properties. However, this approach would not necessarily con-

verge to the optimal global solution (as is the case of any machine learning algorithm).

In the presented analysis, I purposely constrained the local curvature, R, to two values

to explore the effects of its presence under specific limits. While I recognize that expand-

ing flexibility in curvature choices could enhance the resolution of the parameter space, the

findings indicate that when R values of curvature are close enough to the actual curvature

of the interface, adding this feature to the model of data analysis exerts a more substantial

influence on the accuracy of optical properties estimates than fine-tuning its specific value

within the explored range for this parameter (7-20 cm). For future applications, this pa-

rameter can be effectively held constant by measuring the local curvature of the sampled

tissue. Despite the challenge, the measurement can be accomplished by collecting a few

reference points along the tissue using digital tracking systems (e.g., a digitizer) and subse-

quently fitting these points to estimate R. In cases where the exact local curvature cannot be

determined but falls within the analyzed range, data suggests that the error associated with

a slight deviation in curvature falls within the range of (5±2)% (see Figure 5.4, Figure 5.5, and

Table 5.2), which is smaller than the error when using the planar approximation.

Overall, the validation of the proposed methodology for addressing curvature revealed

that, in most investigated scenarios, curved models outperform planar models. The only

exception was the ideal flat surface case, as found in the calibration of optical phantoms. In

this scenario, curved models exhibited an error in optical properties estimation within the

range of (11 ± 5)%. However, this scenario does not reflect reality, as all tissue surfaces have
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some degree of curvature.

In cases where curvature is present, even if slight, the validation experiments indicated

that incorporating curved models does not harm the estimation of the optical properties.

Both optical phantoms and head simulations demonstrated that fitting the data acquired

from regions with low curvature using curved models produced results similar to those ob-

tained with planar models. In both cases, the MAPEs were relatively small and within the

experimental uncertainty due to noise, ranging from 2 to 13%, depending on the optical

properties of the medium.

However, as the curvature of the tissue surface increases, curved models consistently

outperformed planar models across nearly all circumstances. Not accounting for curvature

in these scenarios resulted in errors of up to 20%, particularly in media characterized by

low scattering and high absorption (Figure 5.5). Considering curvature reduced these errors

to less than 10% in most cases. This result is consistent with earlier findings, which also

reported a 15–20% inaccuracy in estimating µa due to a mismatch between the model and

the actual interface [21]. Of note, I addressed the analysis in surfaces of a minimum radius

of 5 cm for practical purposes. For smaller radius (i.e., greater curvatures), the fine-tuning of

the actual curvature might be crucial to obtain high accuracy.

It is worth noting that using curved models in the inverse problem, while effective, is

not the only way of addressing curvature in FD-DOS. An alternative approach would involve

calibrating the FD-DOS device on an optical phantom with known optical properties and a

curved surface. In fact, when the curvature of the calibration surface matches the measured

surface, MAPEs decreased to an average (standard deviation) of 3(1)% (result not shown).

While this fact reinforces the relevance of considering the curvature of the data acquisition

interface, calibration using appropriately matched phantoms represents a more intricate so-

lution than considering curvature in fitting models. In addition, this approach would require

a curvature match between the calibration phantom and the measured tissue. Using both

curved sides of our phantom, I noticed that in cases where there is a mismatch between the

curvature of the calibration phantom and the measured surface, the MAPEs obtained were

on the order of 10(1)%, slightly higher than the MAPEs obtained with the proposed curved

model.

Additionally, the stability of the models, assessed using the 95th percentile of MAPE

distribution over the 2-minute data acquisition on phantoms, are similar between simula-

tions and the analytical SI model (Table 5.2). In spite of the lookup table methods (i.e., pla-

nar simulations, Curved Model 1, and Curved Model 2) estimating discrete values due to the

0.005 cm−1 step over µa in simulations, its 95th MAPE percentile are similar to the one ob-

tained with the continuous estimations of SI model, which reinforces the choice of step in

simulated optical properties. Moreover, the 95th percentile of the SI model and the planar

simulations overlap, which suggests that the accuracy using the lookup tables is similar to

the analytical SI model.
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As a secondary investigation, I also quantified the MAPEs from the DCS fit of F in

curved surfaces using the planar, homogeneous model G1. To make the lookup tables for FD-

DOS used in this work, I performed 5151 simulations for each curvature. Thus, for building

up a lookup table for DCS fitting, I should have performed simulations covering the desired

range of F (i.e., from F ∼ 10−10 cm2/s to F ∼ 10−6 cm2/s) for each one of the 5151 simu-

lations of each curvature, which, in addition to the computational cost, is out of the scope

of this work. However, I performed a preliminary approach to better understand the error

due to the curvature. Data revealed that MAPEs in the 7-cm radius region are 1.3(0.5;3.2)%,

which suggests that the impact of curvature is less pronounced in DCS than in FD-DOS es-

timations, potentially eliminating the need for accounting for this factor. These MAPEs are

smaller than previously reported ones with µa = 0.5 cm−1 (around 8% [22]). A potentially

great source of error over F estimations is using the wrong optical properties in the G1 model,

as it is known in literature [15, 146]. Indeed, when I used the estimated µa and µ
′
s through

the SI model, the mismatch in the actual optical properties led to a MAPE of 9.1(1.0,17.4)%

across all the simulations (data not shown). Additionally, the errors for a given condition (i.e.,

optical properties and curvature) are approximately constant despite the F value over our

simulated range. This suggests that the curvature does not influence the relative F changes,

as well as errors in optical properties [146]. It is worth noting that these results are based on

preliminary observations, and further investigations are required.

In our final analysis, I attempted to quantify the impact of incorporating curvature

into the study of human data. To this end, I utilized a comprehensive dataset comprising

measurements from a large number of healthy subjects sampled at seven locations on the

forehead. When compared to the standard SI approach, the introduction of assumed curva-

ture resulted in an average 10(5)% increase in the estimation of the absorption coefficient.

This increase translated into a 15(10)% increase in [HbO], a 9(8)% increase in [HbR] and a

12(5)% increase in [HbT ] (Table 5.3). The hemodynamic parameter least affected by cur-

vature was StO2, showing only a 2% increase. This is due to the fact that changes in [HbT ]

mirror changes in [HbO], and they compensate for each other when calculating StO2.

Furthermore, not only did the median values increase with curved models, but their

distributions also displayed a more uniform spread across the estimated range, more closely

resembling a normal distribution. This pattern aligns with what one would expect from a

relatively large sample drawn from a random cohort of healthy participants.

While few studies have explored adult cohorts as extensive as the one in this work, the

findings are consistent with prior reports [12,101,102,119,147–152]. Previous FD-DOS mea-

surements in cohorts of at least tens of individuals have reported total hemoglobin concen-

tration and StO2 values mainly within the 40 – 50 µmol ar and 50 – 60% range, respectively,

when using homogeneous models [12,102,150–152]. These values align with those obtained

in this study using the same SI model. However, even after correcting for curvature, esti-

mates remained slightly lower than those acquired through TD-DOS measurements using
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the same models. TD-DOS has reported averages (standard deviations) for HbT and StO2 of

57(16) µmol ar and 58(4)%, respectively [101].

At least part of the difference between our curvature-corrected estimations and TD-

DOS results can be attributed to assumptions about tissue composition. Despite the im-

provements achieved by accounting for curvature, it is important to acknowledge that the

estimations should still be underestimated as the curved model relies on a homogeneous

assumption. Research has indicated that incorporating tissue heterogeneity through layered

models improves accuracy [13–15,30,120,134,139,140,153]. Typically, errors associated with

recovering µa in layered models decrease from 20–30% to 10% or less in phantoms and head

simulations, depending on the mismatch between the absorption of the layers. Correcting

for tissue heterogeneity also leads to increased estimates of µa and hemoglobin concentra-

tions, similar to the effects observed with curvature.

Notably, FD-DOS studies with large cohorts that considered the influence of layers re-

ported parameters higher than those I obtained by only adding the curvature. When incor-

porating water content, as we did in this work, cortical values estimated with layered models

were around 44 µmol ar , 20 µmol ar , 64 µmol ar for HbO, HbR, HbT, respectively, and 65%

for StO2 [119, 148]. Unfortunately, the appropriate use of layered models requires a more

extensive setup with additional sources and detectors beyond what the optical probe used

contained [13, 15]. Future investigations incorporating both layered models and curvature

in human data will likely provide even more accurate results.

Nevertheless, given the large number of subjects and the potential of the curved model

to provide estimates that can be used as biomarkers more effectively, I also explored how

the optical-based hemodynamic properties vary with the primary demographics of the sub-

jects. Although I found no significant differences in hemodynamic parameters related to

sex, the data hinted at a minor difference concerning this cofactor that could have been ob-

served in a larger cohort. Differences related to sex have been reported in the literature for

neonates [149]. Additionally, although prior studies reported differences in estimated physi-

ological parameters regarding skin color in cerebral and pulse oxymeters [154–157], we have

not found differences in our FD-DOS estimations due to this cofactor. This might be due

to uneven distributions when comparing whites to non-whites or even the softening of the

effect due to the fact I brought together blacks and browns.

The large sample size available allowed the visualization of the physiological param-

eters continuously with age. Although this relationship might not be strictly linear, linear

regression analysis demonstrated a notable and consistent decrease in hemoglobin con-

centrations with increasing age, similar to what has been previously reported [12, 101, 102].

The equations outlined of physiological parameters regarding age can be readily applied to

any age, offering utility in studies adopting the SI assumption. This applicability extends

to investigations seeking to infer absolute optical properties for assessing oxygen saturation

changes, particularly in functional experiments with CW-DOS.
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Due to small sample sizes, previous studies have often grouped participants into young

and elderly categories, with average ages around 30 years for the young and 78 years for

the elderly group. For young individuals, FD-DOS studies have reported parameter values

around [30,22,52,58], whereas elderly individuals typically exhibited values of [20,18,38,52]

for [HbO, HbR, HbT, StO2]. In our dataset, employing a 55-year cutoff, as in [101], resulted

in values of [31,20,52,60] for the young group and [29,18,47,59] for the elderly group. When

considering the average ages from previous FD-DOS studies, the predicted values for the

elderly at age 78 were [20,16,36,60], with no significant change in the values for the young

group compared to the cutoff approach. These values are closer to previous reports using

FD-DOS, reinforcing the robustness of the regression models. In contrast, TD-DOS studies

reported notably higher values: [39,27,66,59] for young participants and [31,23,54,57] for el-

derly participants. This discrepancy may be attributed, at least in part, to the heterogeneity

accounted for by TD-DOS models, as mentioned previously.

5.5 Conclusion and Next Chapters

In conclusion, this study has provided valuable insights into the impact of incorporating tis-

sue curvature on the estimation of optical properties and associated hemodynamic param-

eters using FD-DOS. This work demonstrated that considering tissue curvature in FD-DOS

analysis is crucial for accurate results. The curved model proposed in this work consistently

outperformed standard planar models in all realistic scenarios, reducing errors significantly

from 20% to less than 10%. Importantly, in surfaces with slight curvature, introducing a cur-

vature does not result in an increased error compared to standard planar models. Interest-

ingly, I found that accounting for the presence of curvature close to the actual one with a

curved model is more relevant than fine-tuning its specific value within the range I investi-

gated.

I also explored the impact of curvature in human data, revealing substantial increases

of approximately 12% in the estimation of optical properties and hemoglobin concentrations

when curvature was considered. The analysis of demographics revealed significant decreas-

ing trends in hemoglobin concentrations with age, emphasizing the potential of FD-DOS as

a tool for studying brain physiology.

While the approach significantly improved accuracy, it is important to acknowledge

that this model relies on a homogeneous tissue assumption, which still leads to underesti-

mations. Future studies could enhance accuracy by also incorporating tissue heterogeneity

through layered models. This is the investigation exhibited in Chapter 7, where I preliminary

introduced a model that accounts for tissue curvature and heterogeneity simultaneously.

A final interesting result of this investigation is regarding the lack of statistical differ-

ence between estimations in whites and non-whites. Especially after the Coronavirus pan-

demic, it is well known that StO2 estimations might be jeopardized by the presence of skin
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with darker tones. Thus, I better investigated the influence of skin tissue on FD-DOS estima-

tions and exhibited the results in the next chapter.
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CHAPTER 6

INFLUENCE OF SKIN TISSUE IN FREQUENCY-

DOMAIN DIFFUSE OPTICAL SPECTROSCOPY

ESTIMATIONS

The COVID-19 pandemic highlighted a long-ignored bias when using near-infrared

light to estimate pulse oxygen saturation in people with dark skin tones. Although this prob-

lem has been known for decades [158], it has become more troublesome since it started af-

fecting a large number of clinical decisions worldwide. As this issue is well-characterized for

pulse oximeters, my goal was to investigate how skin color affects the optical properties esti-

mated with FD-DOS. Section 6.1 introduces the problem of occult hypoxemia. In Section 6.2,

I discuss the methods of data generation under the skin’s influence. In Section 6.3, I present

the results obtained from our approach, while I discuss them in Section 6.4. Finally, Section

6.5 summarizes the conclusions of this investigation.

6.1 Introduction

During the COVID-19 pandemic, pulse oxygen saturation (SpO2) measurements guided

clinical protocols. Usually, SpO2 was measured using pulse oxymeters and taken as surro-

gates of the oxygenation level at the arterial blood, SaO2. To maintain the survival chances

high, cases with a low SaO2 should receive special treatment over those with normal lev-

els of such quantity, highlighting the importance of pulse oxymeters SpO2 levels at that

time [159, 160].

However, a severe problem during pandemic times was occult hypoxemia, i.e., cases

where actual SaO2 was smaller than 88% when readings of SpO2 were equal or greater than

92%. By protocol, the patient is submitted to a specific treatment under the necessities of

its clinical case. A recent 2022 study showed that racial and ethnic factors biased occult hy-

poxemia cases [161]. Indeed, the occurrence of this discrepancy was 30.2% in Asians, 28.5%

in Blacks, 39.8% in non-Black Hispanics, and only in 17.2% in White patients. In addition to

that, StO2 overestimated SaO2 by 1.7% on Asians, 1.2% on Blacks, and 1.1% on non-Black

Hispanics, on average, when compared to Whites. Moreover, Black patients had a 29%, and
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non-Black Hispanics had a 23%, lower hazard of treatment eligibility recognition, and 54.8%

of the patients that never had treatment eligibility recognized were Black. The Blacks that

eventually had their recognition of eligibility were 1 hour delayed on average compared to

Whites. Additionally, Whites who do not show occult hypoxemia on a given measurement of

a day are unlikely to exhibit it in another measurement. In contrast, Blacks show a less regu-

lar pattern beyond measurements [162]. The bias due to dark skin was confirmed by several

reviews [163, 164].

Apart from physiological differences due to racial characteristics, a significant factor

contributing to this disparity was the low accuracy of SpO2 estimations in the presence of

non-white skin, especially with darker tones. The calibration of optical systems in oximetry

has traditionally been conducted in media that do not accurately replicate biological tissue

covered by the skin when it is far different from the underlying biological tissue or in a pool

of subjects with lighter skin tones [165, 166]. This discrepancy introduces biases in deter-

mining optical properties under these conditions, given that melanin and bilirubin, more

abundant in darker and yellowish skins, absorb light differently than in the calibration and

test conditions.

Although the bias is characterized for SpO2 measurements through pulse oximeters

based on clinical occurrences, the presence of skin biases the physiological estimations of

every light-based technique. Previous research has attempted to better characterize such

bias using phantoms or tasks [154–156, 161, 162]. Still, to the best of my knowledge, there

is no research investigating such bias in FD-DOS. The blood oxygen saturation (StO2) es-

timated from deep tissues could also be affected by skin absorbance, not included in the

model of data analysis. Thus, I aimed to investigate the errors due to the skin layer on FD-

DOS measurements. For that, I first studied the relationship between the optical properties

of the skin and the skin tone. Then, I quantified the errors in the optical properties of FD-

DOS data in the presence of the skin. Lastly, I proposed a preliminary correction on FD-DOS

data to account for skin and evaluated the impact of such correction in real data.

6.2 Materials and Methods

I followed a three-step approach to account for the influence of skin tissue on FD-DOS es-

timations. First, I built a relationship between the skin’s optical properties and skin tone.

Then, I used the 2L model to generate FD-DOS data with the skin as the first layer to quan-

tify the errors introduced by this tissue. Lastly, I compared the FD-DOS outputs of the 2L

model in the presence and absence of skin tissue to investigate a potential correction factor.
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6.2.1 Skin Tone Classification

There are several comparative and subjective scales for determining tones, but few objective

parameters have been consolidated. Although the Fitzpatrick scale is the most popular in the

dermatologic context, more objective scales are available. The trichromatic theory (RGB, for

Red, Green, and Blue, CIE1931) might be the most popular. Still, the most objective and re-

cent basis for characterizing tones is based on the opponent process theory (LAB, CIE1976).

In this theory, a specific tone is described by a trio of parameters: L, which determines the

grayscale of the tone (from white, 0, to black, 100); a∗ (from −50 to 50), which determines

whether the tone is more greenish or reddish; and b∗ (also from −50 to 50), which deter-

mines whether the tone is more yellowish or bluish. Although there is a conversion between

a trio (L, a∗,b∗) and a trio (R,G,B), the LAB space is more interesting in the context of the

epidermis’ tone classification because L is related to the level of melanin pigmentation and

b∗ to the presence of carotenoids or bilirubin, which gives the skin a yellowish coloration.

In this sense, the individual topology angle, I T Ao ≡ at an((L−50)/b∗), is a robust parameter

used to determine skin tones, being able to separate different ranges of epidermal pigmen-

tation [167]. Colorimeters often estimate I T Ao between −60o and 60o for the population in

general.

6.2.2 Relationship Between Skin’s Optical Properties and Skin Tone

To estimate the optical properties (i.e., the absorption coefficient, µa , and the reduced

scattering coefficient, µ
′
s) of the skin, I used data previously published with the Spatial

Frequency-Domain Spectrometry method [168–170]. The system (OxImager RST M - Mod-

ulim, Inc., Irvine, California), which also provides estimations of (L, a∗,b∗), was used to ac-

quire optical data on ten body regions (forehead, cheek, ventral forearm, palm, back, ventral

upper arm, dorsal forearm, shin, neck, and chest) in a pool of 15 subjects. Demographic data

and protocol were described elsewhere [171, 172].

To build a relationship between the skin’s absorption coefficient, µski n
a , and I T A, I fit-

ted the data of all the body regions of the participants according to the expression ln(µski n
a ) =

α · I T Ao +β for each wavelength separately. This expression is based on previous research

that established this linear expression in ex-vivo measurements [173, 174]. I also adjusted

this expression to two specific regions to understand if there is variability between the body

regions: the forehead, since it is the region where most DO techniques applications are fo-

cused, and the ventral upper arm since it is a muscle region, thus more homogeneous.
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6.2.3 Influence of the Skin Tissue on Frequency-Domain Diffuse Optical

Spectroscopy Estimations

I used the analytical 2L model (Equation 2.11) to generate FD-DOS amplitude and phase data

with the first layer mimicking the skin tissue to quantify the changes and errors due to super-

ficial absorption. To this end, I used three values for the first layer thickness: 1.00, 1.25, and

1.5 mm, since it is expected to find melanin in the basal layer of the epidermis, i.e., from 0.5

to 1.5 mm depth [175–178], and thicknesses lower than 1.0 mm cause numerical instability in

the 2L model. I varied I T Ao between −50o and 50o and selected the absorption coefficient of

the skin based on the equations described in the previous section for 691 and 851 nm. I used

a homogeneous scattering coefficient of 8.8 and 7.3 cm−1 for those wavelengths and varied

the absorption coefficient of the second layer (that mimics the tissue under the skin) from

0.05 to 0.45 in steps of 0.005 cm−1. I also generated amplitude and phase curves through the

analytical 2L model using homogeneous absorption (i.e., the same first and second layers

absorption coefficient) as ground truth for measurements without skin tissue. SDSs were

1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 cm. Of note, this section is entirely oriented to forehead data

since it is the main goal of my thesis. To quantify the differences between FD-DOS curves

due to skin influence, I computed the complex ratio K = Koexp(iθo) ≡ Ri deal /Rr eal , where

Ri deal and Rr eal are the generated reflected intensities in the absence and the presence of

skin tissue, respectively.

To investigate the error of the estimated optical parameters due to skin influence, I an-

alyzed Rr eal and computed the MAPE of µa estimations. I also investigated the propagated

errors from µa to the physiological parameters [HbO], [HbR], and StO2. To this end, I evalu-

ated the MAPE of the physiological properties using the estimated µa in the presence of skin

tissue for all the combinations of 691 and 851 nm. I excluded data where [HbO] > 5µmol ar ,

[HbR] > 5µmol ar , and StO2 > 40%. As these values are not physiologically expected, they

might be coming from unrealistic combinations of µa in 691 and 851 nm.

6.2.4 Methods to Solve the Inverse Problem and Correction Factors

I fitted each FD-DOS amplitude and phase generated using the SI model since it is the stan-

dard approach to analyzing DO data. As this model averages the optical properties of the bi-

ological tissue, skin presence is expected to introduce a bias in estimations. To mitigate this

bias, I investigated whether the median of the K factors across all simulated optical prop-

erties would be a good correction factor to be applied to FD-DOS amplitude and phase. To

this end, I fitted K ·Rr eal for each I T Ao and wavelength and compared the MAPEs obtained

when estimating µa , [HbO], [HbR], and StO2 before and after such correction.
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6.2.5 Impact of Correction Factors in Real FD-DOS Data

As a final step, I aimed to investigate the change in real FD-DOS data introduced by apply-

ing the previously established K factors at the 690-nm wavelength. To this end, I acquired

2 minutes of data on the ventral upper arm of 15 subjects (8 males, average (standard de-

viation) age of 35(12) years) with I T Ao ranging from −38o to 46o . ITA was measured with

a ColorMeter Pro (VINCKOLOR) system, and FD-DOS measurements were performed with

the system described in Figure 2.10 (SDSs of 2.0, 2.5, 3.0, and 3.5 cm). Optical properties

at 690 and 847 nm and physiological parameters were estimated using the SI model before

and after applying the correction factor. I evaluated the percentual change induced by the

correction by:

∆P = |Pcor r ected −Puncor r ected |
Puncor r ected

×100%,

where P is µa , [HbO], [HbR], or StO2. This protocol was approved by the local Ethics Com-

mittee at the University of Campinas (CAAE 50436921.3.0000.5404). Participants were in-

structed concerning the experiment protocol before signing an informed consent form prior

to participation (Appendix J).

6.3 Results

6.3.1 Relationship Between Skin’s Optical Properties and Skin Tone

I fitted the estimated slope and intercept coefficients for the expression ln(µski n
a ) =α·I T Ao+

β for each wavelength considering (1) all data points and (2) only the data points available for

the forehead and forearm. Constants are on Table 6.1 with the standard error of the fit. The

first thing to be noted is that the coefficients are dependent on the wavelength used, as ex-

pected. Additionally, the influence of the skin is more pronounced on smaller wavelengths,

as β decreases with λ. The negative sign on α suggests that µski n
a decreases with I T Ao , i.e.,

with lighter tones. In the NIR region, µski n
a reaches values as high as 4 cm−1 for small I T Ao ,

which is way above the expected range for deeper biological tissue (under 0.5 cm−1). How-

ever, for higher I T Ao , µski n
a is as low as 0.2 cm−1. Additionally, although α values are similar

across all the groups analyzed when considering its error, there is almost no overlap between

the β values of the three groups.

6.3.2 Influence of the Skin on Optical Properties Estimations with FD-

DOS

To investigate the influence of skin tissue on FD-DOS, I generated data using the 2L model

both considering the skin tissue (i.e., using the optical coefficient of the first layer equal to
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Table 6.1: Angular and linear coefficients of the expression l n(µski n
a ) =α · I T Ao +β for all acquired data and for

forehead data.

α β

Wavelength (nm) Forearm Forehead All data Forearm Forehead All data
471 −0.017±0.002 −0.016±0.002 −0.0146±0.0005 1.90±0.06 2.05±0.05 1.82±0.02
526 −0.017±0.001 −0.017±0.002 −0.0159±0.0005 1.49±0.05 1.62±0.05 1.40±0.02
591 −0.019±0.001 −0.022±0.002 −0.0191±0.0005 0.72±0.04 0.78±0.05 0.62±0.02
621 −0.024±0.002 −0.029±0.002 −0.0252±0.0007 0.09±0.07 0.05±0.07 −0.05±0.03
659 −0.024±0.002 −0.029±0.002 −0.0259±0.0008 −0.18±0.07 −0.24±0.07 −0.35±0.03
691 −0.023±0.002 −0.029±0.003 −0.0258±0.0009 −0.48±0.08 −0.55±0.07 −0.67±0.03
731 −0.020±0.002 −0.028±0.003 −0.0249±0.0009 −0.74±0.06 −0.85±0.07 −0.99±0.03
851 −0.013±0.002 −0.017±0.002 −0.016±0.001 −1.36±0.09 −1.30±0.06 −1.55±0.04

Figure 6.1: Amplitude (Ko) and phase (φo) of the ratio K between the reflected intensity in the absence and in
the presence of skin tissue for two wavelengths (691 nm in the first and 851 nm in the second row) and SDSs (1
cm in the first and 4 cm in the second column of each quantity). Skin thickness was assumed as 1.5 mm.

µski n
a and assuming a thickness of 1.00, 1.25, or 1.5 mm) and not considering it (i.e., using

the first layer equal the second one, taken as the depth tissue).

For each combination of skin tissue, I T Ao and simulated depth tissue absorption coef-

ficient, µa , I computed the complex ratio K = Ri deal /Rr eal . Figure 6.1 exhibits the amplitude

and the phase of K , i.e., Ko and φo , for two wavelengths (691 and 851 nm), all generated µa

and I T Ao ranging from −50o and 50o for two different SDSs (1 and 4 cm) and skin thickness

of 1.5 mm. For the other thicknesses, the trends on Ko and φo are essentially the same. Note

that, althoughφo is dependent on both SDS andµa , its values are around 0.02 radians, which

are negligible compared to the values of phases usually measured, Rr eal . Amplitude ratios,

on the other hand, are less SDS and µa dependent. Both Ko and φo decrease with I T Ao , as

expected.
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Figure 6.2: Median amplitude and phase of K factors among all the simulated optical properties for all wave-
lengths, skin thicknesses, and SDS used.
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Figure 6.3: MAPEs obtained when estimating µa through the SI model when fitting the reflected intensity gen-
erated in the presence of skin tissue (Rr eal ) and after applying the ratio K at the generated data for all skin
thicknesses (1.00, 1.25 and 1.50 mm) and both wavelengths used (691 and 851 nm).

In real situations, µa is unknown. Thus, I took the median of Ko and φo among all

the simulated µa values to estimate the amplitude ratio and phase shift introduced due to

skin tissue. Figure 6.2 shows the results for all generated SDSs, I T Ao , and skin thicknesses.

Although negligible, median φo values are slightly dependent on skin thickness but are sen-

sitive to SDS. Median Ko , on the other hand, are sensitive to skin thickness for the smaller

wavelength but are less sensitive to SDS in both wavelengths. Interestingly, Ko assumes val-

ues smaller than 1 for high I T Ao , which suggests that for µski n
a < µa , the reflected intensity

is more intense than the ideal one. These values are the best estimation of changes in ampli-

tude and phase of reflected intensity due to skin presence in the range of expected µa values.

The next step was translating the changes introduced due to skin presence to devia-

tions in the estimated absorption coefficient. To this end, I adjusted the reflected intensities

generated with skin presence, Rr eal , with the SI model and computed the MAPE for each

combination of µa , I T Ao , and skin thickness. The results, exhibited in Figure 6.3, show that

errors are as high as 9.5 % for low I T Ao at 691 nm. Additionally, errors across all generated

I T Ao , µa , and skin thickness at 691 nm (median and boundaries of the 95th percentile of

1.6 (0.1;6.7)%) are significantly larger than the errors at 851 nm (1.0(0.0;4.2)%, p<0.00001 in

a T-test). The effect size between both is 0.4, measured with Robust Cohen’s D. The 95th
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percentile of MAPEs at skin thickness of 1.00, 1.25, and 1.50 mm are 1.4(0.0,5.9), 1.6(0.0,6.6),

and 1.8(0.0,7.3)% at 691 nm and 0.9(0.0,3.9), 1.0(0.0,4.1), and 1.1(0.0,4.4)% at 851 nm. Al-

though all differences between the distributions are statistically significant, their effect size

is small, ranging between 0.1 and 0.2 among MAPEs distributions of the same wavelength

and different skin thicknesses. This result suggests that the effect of thickness is smaller than

the effect of the wavelength used on the correct estimation of µa . To investigate the depen-

dence of the errors regarding I T Ao , I compared the 95th inter-percentile range of the MAPEs

at I T Ao =−50o to the ones at I T Ao = 50o across all generated µa , skin thickness, and wave-

length. For I T Ao =−50o , errors are 3.0(0.4;8.0)%, statistically different from the 0.8(0.0;4.8)%

of I T Ao = 50o , which evidences the influence of I T Ao over optical estimations. Moreover,

the effect size of this difference is D = 1.0, which suggests that I T Ao is more relevant for

MAPEs when estimating µa than skin thickness.

To preliminarily investigate a method of accounting for the skin absorbance when es-

timating µa , I fitted the multiplication of the reflected intensity generated with skin tissue,

Rr eal , for the median of the K ratios between the intensity generated in the absence and the

presence of skin tissue. In this sense, the median K is used as a correction factor to Rr eal .

Since skin thickness is the less relevant factor over µa MAPEs, I only applied the median K

factor calculated at 1.00 mm as a correction factor. Results are also in Figure 6.3. After the

correction, µa MAPEs are 0.6(0.0,4.6)% for I T Ao = −50o and 1.0(0.1,6.7)% for I T Ao = 50o

and, although the difference between both is still statistically significant, the effect size de-

creases to D = 0.5, suggesting a mitigation of skin tone effect. At skin thickness of 1.0 mm,

the errors statistically decrease from 1.4(0.2,5.6)% to 0.9(0.2,1.6)% (D = 0.7) at 691 nm and

increase from 0.9(0.1,4.2)% to 1.2(0.2,1.6)% at 851 nm, but with no statistically significant

difference (p=0.32, T-test).

6.3.3 Influence of the Skin on Physiological Parameters Estimated by FD-

DOS

After characterizing the errors introduced onµa recovery due to the presence of skin, I quan-

tified how these errors translated to [HbO], [HbR], and StO2. To this end, I used all the com-

binations of the previously generated FD-DOS data (Rr eal ) at both wavelengths to mimic

a real data acquisition. In other words, I estimated [HbO], [HbR], and StO2 of all combi-

nations of the estimated µa in the presence of skin for 691 and 851 nm assuming a water

fraction of 0.7. I excluded combinations that yielded [HbO] ≤ 5µmol ar , [HbR] ≤ 5µmol ar ,

and StO2 ≤ 40% since they are not physiologically expected. The MAPEs of the estimations

for skin thickness of 1.00 mm are in Figure 6.4 for three situations: straightly converting µa

estimated from Rr eal (Figure 6.4a), converting µa estimated from K ·Rr eal (Figure 6.4b), and

using µa estimated from K ·Rr eal for 691 nm and from Rr eal for 851 nm.

For [HbO], the MAPEs (95th percentile) due to the presence of skin were 1.6(0.1,5.6)%.
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Figure 6.4: MAPEs of the estimations of [HbO] (first column), [HbR] (second column), and StO2 (third column)
for skin thickness of 1.00 mm. a) Errors when using µa estimated straightly from the generated data in skin
presence, Rr eal . b) Errors when using µa estimated from the generated data in skin presence after applying the
correction factor, K ·Rr eal , for both wavelengths. c) Errors when using µa estimated from the generated data in
skin presence after applying the correction factor, K ·Rr eal , for 691 nm but not 851 nm. Errors above 9.5% were
painted with red.
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Figure 6.5: Percentage change due to the correction of skin influence through the proposed method. The error
bar indicated the 95th percentile across all the estimations during the 2-minute acquisition.

When the correction factor was applied to both wavelengths, the errors increased to

2.9(0.3,10.1)% (D = 0.6). When using the correction factor only at the smaller wavelength,

however, errors were 1.8(0.2,5.2)%. The median error increases, but the larger errors de-

crease (D = 0.1). For [HbR], errors decreased from 2.4(0.1,8.3)% to 1.6(0.1,10.4)% when

correcting both wavelengths (D = 0.2). When applying the correction factor only on the

smallest wavelength, errors further decreased to 1.5(0.2,7.0)% with an effect size of D = 0.4.

The smallest MAPEs were obtained when estimating StO2: 1.1(0.1,4.3)%. These errors in-

creased to 1.3(0.1,3.6)% when applying the correction on both wavelengths (D = 0.1), but

decreased to 0.9(0.1,3.4)% correcting 691 nm only (D = 0.2). It is worth noting that although

StO2 MAPEs distribution is mostly smaller than 4%, outliers are as high as 9% in generated

data, which is above the occult hypoxia problem.

6.3.4 Impact of Correction Factors in Real FD-DOS Data

In a cohort of 15 subjects, I used the SI model to obtain the optical properties and physiolog-

ical parameters of 2 minutes of data acquisition in the biceps. After that, I used the I T Ao of

each participant to compute the average K factors for the 690-nm wavelength in the ventral

upper arm. Then, I applied this factor to the acquired data and once more used the SI model

to estimate the optical properties and physiological parameters, similarly as performed in

Section 6.3.3. The percentage change induced by the correction is exhibited in Figure 6.5 for

the 690-nm wavelength µa and for the physiological parameters.

Changes are around 1% on average for all parameters: (0.67(0.04,3.04)% for µa ,

0.44(0.02,2.10)% for [HbO], 1.05(0.06,4.99)% for [HbR], and 0.55(0.03,2.62)% for StO2).

Wilcoxon tests were unable to distinguish between the analyzed optical properties and phys-

iological parameters prior to and after correction (D values around 0.03). However, as

expected, percentage changes were greater for low I T Ao . Indeed, comparing percentage

changes for I T Ao ≤ 0 with those for I T Ao > 0 yielded distinctions with effect size D of 1.8

(1.41 versus 0.10% on average, p=0.004, Wilcoxon test) for µa , 1.7 (1.10 versus 0.06% on aver-

age, p=0.029, Wilcoxon test) for [HbO], 1.6 for [HbR] (2.18 versus 0.14% on average, p=0.004,

Wilcoxon test) and 1.7 for StO2 (1.35 versus 0.08% on average, p=0.014, Wilcoxon test), high-
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lighting the impact of skin tissue for low I T Ao values. Of note, some percentage changes in

StO2 after correction reach up to 6.0%, which is the scale of the occult hypoxia problem.

6.4 Discussion

In this work, I investigated the impacts of the skin tissue layer on FD-DOS data. To this end,

I used previously acquired data to build a phenomenological relationship between the skin’s

absorption coefficient, µski n
a , and the skin tone, as quantified by I T Ao . Using a 2L model and

considering skin as a very thin first layer, I was able to generate FD-DOS data to compare how

skin affected the fluency detected and, therefore, the recovery of the optical properties. I was

not concerned about DCS estimations at this point. Still, I hypothesize it is a minor problem

with this technique since minimal blood flow is expected at this depth. Thus, any impact on

estimating F would arise from errors in the optical properties.

I decided to use I T Ao to quantify skin tone since it provides an objective and contin-

uous scale for classification. Although the most known graduation for classifying skin tone

is the Fitzpatrick scale, it provides a discrete classification (i.e., types I to VI) based on how

each group responds to sun exposure. Since I aimed to build a relationship with a continuous

parameter (µski n
a ), using I T Ao enables more precision in quantifying each skin absorbance

based on its tone.

One alternative method to investigate skin absorbance is by estimating its chro-

mophore concentrations, such as melanin and bilirubin. However, it is an experimentally

challenging solution to implement in vivo through optical techniques in general since the

skin depth ranges from 0.5 to 1.5 mm. It gets even harder using most DO techniques since

the penetration depth is roughly half of SDS, and there is a breakdown of diffusive approx-

imation for SDSs smaller than ∼0.6 cm. The Frequency-Domain Spectrometry method, on

the other hand, allows the estimation of optical properties up to 2.5 mm depth, making the

concern regarding the skin’s constituents pointless. Thus, I used the absorption coefficient

estimated through this technique as an estimation of µski n
a .

Based on previous research [173, 174], I used an expression of the form ln(µski n
a ) =

α · I T Ao +β for all acquired data and oriented specifically for forehead measurements. I

found a good agreement between experimental data and the linear fits: R2 = 0.83 on average

for all data and R2 = 0.89 on average for forehead data, with the smallest value around 0.7.

However, I can see from Table 6.1 that the forehead’s parameters of the linear trends differ

from the fit of all data. It suggests that the relationship between µski n
a and I T Ao obtained

with the Frequency-Domain Spectrometry method is sensitive not only to skin characteris-

tics (i.e., I T Ao) but to the tissue underneath the skin. This might be due to the depth at which

the technique obtains information regarding biological tissue, which is slightly greater than

the skin depth, making the estimated optical properties carry some information regarding

the deep biological tissue. Thus, any correction method must be developed using a relation-



6. Influence of skin tissue in Frequency-Domain Diffuse Optical Spectroscopy estimations 116

ship between µski n
a and I T Ao oriented to the target body region. Previous research [174] also

suggests a linear relationship between the constants of the fit, α, and β, with the wavelength

used. These expressions would eliminate the necessity of matching wavelengths between

different techniques (i.e., Frequency-Domain Spectrometry and FD-DOS in this case). How-

ever, when using this approach, I noticed a smaller agreement with our experimental data

(i.e., R2 around 0.5 or less, data now shown). Thus, I decided to useα and β adjusted accord-

ing to Table 6.1 instead of constraining them to the wavelength.

After establishing relationships between µski n
a and I T Ao , I aimed to investigate the im-

pact of skin on FD-DOS data. To this end, I used the 2L model, assuming skin as the first layer.

I used only two wavelengths (691 and 851 nm) and three skin thicknesses (1.00, 1.25, and 1.50

mm). This approach gives rise to two main limitations of this work. The first concerns the re-

duced scattering coefficient, µ
′
s . Since the first layer is thin compared to the second, and the

mismatch between the scattering coefficients of skin and the underneath biological tissue

is smaller than between their absorption coefficients [171, 172], I hypothesize that the ana-

lytical 2L model would not be able to properly distinguish between scattering of both layers.

Thus, I decided to assume homogeneous scattering and focus only on the impacts due to the

skin’s absorption coefficient. Although the main interest is the light attenuation due to skin,

there is cross-talk between the effects ofµa andµ
′
s on FD-DOS data, so further investigations

are needed. The second is related to the first layer thickness. The 2L model assumes that the

FD-DOS source might be approximated by a point-like source at a depth of 1/µ
′
s and relies on

the first layer. For the µ
′
s assumed in this work, the first layer thickness would be at least 1.37

mm, which is not the case for our methodology. However, the general trends of the results

would possibly remain the same, given the similarity of the results between skin thicknesses

of 1.00, 1.25 (where this assumption is violated), and 1.50 mm. Additionally, skin µ
′
s is usu-

ally higher than the underneath biological tissue [171, 172], which also mitigates this issue

by decreasing the point-like source depth. Nevertheless, further validation with simulation

methods such as through NIRFASTer is required.

By looking at the FD-DOS curves generated including skin tissue and not including it,

I hypothesized that the difference between Rr eal and Ri deal was a multiplicative complex

constant (i.e., a multiplicative constant at |Rr eal | and an additive constant at ar g (Rr eal ) to

match Ri deal ), which I denoted as K = Koexp(iθo) (Figure 6.1 for all the generated µa and

6.2 for the median value). The generated data suggests that φo values are negligible since

they are around 0.02 rad, which means that skin tissue does not introduce significant phase

shifts at the reflected intensity. However, this might result from assuming homogeneous

scattering at the 2L model since phase shifts are more related to scattering events. Ko , on the

other hand, ranges from 0.4 to 14.7, which indicates a wide range of attenuation due to skin

tissue. It is worth noting that Ko values also do not include the effect of mismatch between

the scattering of skin and deep tissue.

I also investigated the errors in estimating µa of deep tissue due to the presence of
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a skin layer by using the SI model to fit for Rr eal . Errors range up to 9.5% and are smaller

at 851 than at 691 nm. As expected, I T Ao is the more relevant variable regarding errors

when estimating µa . Additionally, the small dependence on skin thickness (D = 0.1 ∼ 0.2)

suggests that the presence of skin tissue at the correct I T Ao is more relevant to the lack of

accuracy when determining the optical properties than fine-tuning other parameters. This is

a promising result since, to my knowledge, no method exists to estimate the depth in which

melanin can be found in each subject.

Errors arising from µa estimations translate to errors up to 8% in [HbO], 19% in [HbR],

and 9% in StO2. Errors are greater in [HbR] as it is more related to the smaller wavelength,

where the larger errors at µa occur. Note that, although the median errors of the physiolog-

ical properties are not huge (1.6, 2.4, and 1.1% respectively for [HbO], [HbR], and StO2), an

error of 4.3% in StO2 = 92% is enough to generate occult hypoxia. However, FD-DOS seems

less sensitive to inaccuracies due to the skin layer than pulse oxymeters, as this issue hap-

pens only with a small percentage of the generated data. I hypothesized that FD-DOS is less

sensitive to skin influence since it relies on several SDSs to estimate optical properties. As

skin influence is similar among all tested SDSs, this impact is mitigated when estimating µa .

This also might explain the minimal differences observed between whites and non-whites

described in Chapter 5. Nevertheless, deeper investigations are necessary.

One preliminarily endeavor to minimize skin effects was to multiply Rr eal for the me-

dian of K factors to correct the skin influence, since K = Ri deal /Rr eal . By looking at Figure

6.2, we might be led to think that we must first adjust for skin thickness since Ko depends on

it. However, as a global complex multiplicative constant on FD-DOS data does not alter the

adjusted optical properties, the dependence of Ko on skin thickness would not be a prob-

lem if it is a global constant along the several SDSs. Indeed, Ko ranges from 5 to 13 between

skin thicknesses for I T Ao = −50o in SDS of 4 cm but ranges from 1.4 to 1.5 if normalized

by the shortest SDS Ko , and this pattern is also true for other SDSs (data not shown). Thus,

added to the fact the errors on µa estimations are slightly dependent on skin thickness, this

dependence of Ko should not significantly alter the corrections performed at Rr eal .

I investigated the effect of this correction (i.e., multiplying by K ) over the estimated µa

at 691 and 851 nm. Errors slightly decrease at 691 nm after the correction but slightly in-

crease at 851 nm. This might be because errors were already smaller and more evenly spread

across all generated µa and I T Ao before the correction for the greater wavelength. Thus,

the uncertainty of taking the median of K among all the simulated µa potentially worsens

the estimations at 851 nm. Based on this result, I investigated the change at [HbO], [HbR],

and StO2 errors due to both wavelengths and the correction of 691 only. Of course, there

are other possibilities for correcting FD-DOS data using these K factors, such as performing

the correction up to a certain I T Ao value. Indeed, it is reasonable to expect that when Ko

approaches unity, the correction is meaningless. In this sense, Ko ≥ 1.1 up to I T Ao = 20o for

691 and up to I T Ao = −15o for 851 nm. In the future, fine-tuning the correction based on
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I T Ao ranges would improve the accuracy even further. Still, for the exploratory purpose of

this investigation, I chose to apply the correction for all I T Ao at 691 nm.

Data suggests that correcting only 691 nm slightly reduces the MAPEs when estimat-

ing the physiological parameters from 1.7 to 1.4% on average, while correcting both wave-

lengths potentially worsens the estimations. At first glance, this might be taken as a negli-

gible correction. However, MAPEs obtained when estimating StO2 reduce from 1.1(0.1,4.3)

to 0.9(0.1,3.4)%. It suggests that there is a reduction in the number of StO2 estimations with

errors above 4%. Indeed, 6.25% of the generated data has StO2 MAPEs above 4% before the

correction. After the correction, this fraction reduces to 3.21%. Recalling that an error of

4.3% on StO2 = 92% is enough to create occult hypoxia, this correction, even preliminarily,

is potentially effective in reducing the incidence of such clinical complication.

Lastly, I investigated the impact of the correction in real data. To this end, I acquired

data in the ventral arm of a small number of participants. I decided to conduct this investi-

gation in the arm (over the biceps) since it is a more homogeneous region regarding tissue

stratification than the forehead. Thus, the changes due to the correction procedure are less

subject to other confounders. A methodological limitation in this exploration in that the

colorimeter used in this acquisition is different from the one used to tabulate skin’s opti-

cal properties. Thus, the I T Ao measured for the participants might not be the same as the

ones accounted in the relationship between ln(µa) and I T Ao . Nevertheless, the conclusions

regarding groups of participants with low versus high I T Ao stand. Data suggest that the cor-

rection is smaller for high (0.10% across all optical properties and physiological parameters)

than for low I T Ao (1.51% on average), which highlights the importance of accounting for

skin tissue when acquiring data on darker skin tones. Additionally, changes range up to 6%

on StO2, suggesting that correcting for skin absorption might reduce the incidence of the

occult hypoxia situation.

6.5 Conclusion and Next Chapters

In summary, this work investigated the effects of skin tissue on FD-DOS data and its estima-

tions. I concluded that errors in the absorption coefficient are around 1-7%, while errors in

the physiological parameters range within 1-9%. At the NIR spectral region, errors are higher

for 691 nm than for 851 nm. I computed the complex ratio between the reflected intensity

in the ideal situation and including the skin tissue (through the 2L model) and used it as

a correction factor applied to FD-DOS data generated in skin presence. Data suggest that

correcting only the smaller wavelength is the best approach to reduce the errors to 1-4% for

the absorption coefficient and 1-7% for the physiological parameters. In real data, this cor-

rection is enough for introducing a change up to 6% on StO2, suggesting a reduction of the

occult hypoxia incidence. Additionally, FD-DOS might be less sensitive to skin influence as

it relies on several SDSs, which are jeopardized similarly, to estimate optical parameters.
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The next chapter of this text discusses the other loose ends from Chapter 5. In Chap-

ter 7, I aimed to introduce a model that accounts for analyzing DO techniques acquisitions

accounting for tissue curvature and heterogeneity simultaneously.
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CHAPTER 7

ASSESSING CRITICAL CLOSING PRESSURE

WITH DIFFUSE OPTICAL TECHNIQUES

THROUGH IMPROVED MODELS

In the previous chapters, I discussed the hypothesis assumed when using the SI model

(the standard approach in DO techniques applications) and how those assumptions jeopar-

dize optical and physiological estimations. More specifically, I investigated the influence of

tissue heterogeneity and curvature in optical estimations and proposed methods to consider

these features in data analysis. In this chapter, I introduce a methodology that simultane-

ously accounts for both influences in real data acquisitions. The primary aim of this chapter

is the assessment of the Critical Closing Pressure (CrCP) through this enhanced model. Hav-

ing acquired both FD-DOS and DCS data concurrently with a systemic physiological mon-

itor, I could also estimate this parameter. CrCP is an important parameter in clinical sce-

narios, as it is compromised by various diseases, making it a potential biomarker. Thus,

accurately estimating CrCP is relevant to the future clinical applications of DO techniques.

In Section 7.1, I introduce this parameter and the problem of analyzing optical data con-

sidering both tissue curvature and heterogeneity. In Section 7.2, I present the protocol and

acquisitions I performed in this new pool of participants. Section 7.3 exhibits the pilot re-

sults I obtained, together with the discussion they led to. Finally, in Section 7.4, I summarize

the main conclusions of this investigation.

7.1 Introduction

The human brain is an organ with high metabolic demands and limited capacity to store en-

ergy. Thus, Cerebral blood flow (CBF) is a clinically relevant parameter, as proper CBF values

ensure that the delivery of nutrients and oxygen matches the metabolic needs [179]. Altered

CBF values may lead to ischemic cell or parenchymal damage [180], potentially leading to

hypoxia, ischemia, and brain tissue damage [181, 182].

An important parameter in CBF management is cerebral perfusion pressure (CPP), the

pressure gradient that drives the blood to flow through the brain capillaries [183]. Of note,
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the primary concern for blood delivery throughout the brain occurs in the small vessels, as

this is where molecular exchange occurs. CPP is the difference between the arterial blood

pressure (ABP), which pumps blood to the brain, and the opposing pressures to the flow on

small vessels. One common approach to estimating CPP is to use the intracranial pressure

(ICP) as a proxy of CBF resistive pressure, i.e., C PP = ABP − IC P . ABP can be assessed in-

vasively through the arterial line method or noninvasively through physiological monitors

using photoplethysmography [184]. On the other hand, gold standards for ICP assessment

are invasive measurements (e.g., assessed with a ventricular catheter), and estimates are of-

ten around 5-15 mmHg [185]. Non-invasive techniques, such as transcranial Doppler ultra-

sonography (TCD), have emerged as alternatives to ICP estimations. Although their estima-

tions usually correlate well with invasive assessments, they may lack accuracy in absolute

estimations [186].

Although CPP is usually taken as ABP − IC P , this definition is not aligned to the actual

meaning of CPP. ICP is not directly associated with the resistive pressure at the microscopic

level, as it is a macroscopic quantity. Thus, it does not consider the vasomotor tone (i.e., the

wall tension of vessels exerting pressure on the blood) [187,188]. This local resulting pressure

over the small vessels is known as Critical Closing Pressure (CrCP) [189]. Thus, a more ac-

curate definition for CPP is through ABP −CrC P . In other words, CrCP is the value at which

intraluminal pressure is insufficient to keep the vessel open, resulting in its collapse and ces-

sation of CBF. Despite the fact that it can be estimated through physiological parameters,

note that CrCP is rather a conceptual quantity (ABP - CPP) than a physiological quantity,

which makes it hard to obtain a gold standard for this value. Moreover, the estimation of

CrCP also reflects other features of brain vessels, such as its capacity to adjust to a greater

CBF [190].

Unlike ICP, CrCP cannot be invasively assessed in humans as it is local information.

Thus, non-invasive CrCP estimation methods are gaining popularity due to their reduced

risk and ease of use [191, 192]. TCD is a common non-invasive method to estimate CrCP

through cerebral blood flow velocity. However, TCD is still sensitive to large vessels instead

of the capillaries. One alternative is to use laser-Doppler fluxmetry (LDF). Even so, the pene-

tration depth of the technique is so that it requires a burr hole [193]. In this context, DCS pro-

vides an alternative to estimating CrCP since F estimations are sensitive to small vessels, and

the penetration depth provided by this optical technique is around 1-2 cm. Previous research

found high correlations between CrCP estimations of DCS with TCD [116, 127, 194, 195].

However, DCS-based CrCP estimations are usually between 20-30 mmHg, while esti-

mations based on invasive measurements are spread around 45 mmHg [191]. In this work,

I hypothesized that this difference is due to two main sources. The first one is that most in-

vestigations using DCS do not simultaneously use another optical technique to estimate µa

and µ
′
s . Usually, optical properties are assumed instead of assessed, which introduces errors

in F estimations. The second is that prior research has used the SI model, which jeopardizes
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F estimations through the previously discussed heterogeneity and planarity issues.

Since I discussed methods to analyze optical data considering those influences sep-

arately in Chapters 4 and 5, I aimed to investigate the impact of adding both corrections

together in CrCP and other physiological estimations. To the best of my knowledge, both

effects were not simultaneously considered when analysing DO data so far. For this pur-

pose, I acquired both FD-DOS and DCS data from a healthy cohort and analyzed it with a

novel numerical model I aim to test in this dataset. Additionally, I acquired ABP data using a

commercial system, which allowed CrCP estimations.

7.2 Materials and Methods

7.2.1 Measurement Systems

7.2.2 Participants and Experimental Protocol

I acquired data on 44 participants (19 female), with an average (standard deviation) age of

41(17) years and no clinical diagnosis of neurological disorders. I acquired FD-DOS and

DCS simultaneously with the system exhibited in Figure 2.10. FD-DOS measurements con-

tained one detector and eight sources at 705, 750, and 850 nm, providing SDSs of 0.7, 1.2,

1.6, 2.1, 2.6, 3.0, 3.5, and 4.0 cm at a sampling frequency of 4.5 Hz. DCS acquisition data

was performed with one source (785 nm) and two detectors positioned 0.8 and 2.5 cm away

from the source at a sampling frequency of 2.8 Hz. For detection, I used three independent

single-photon counting detectors at each detection position to improve SNR. Additionally,

I acquired simultaneous arterial blood pressure (ABP) data with a commercial system (Fi-

nometer, Finapress) at a sampling frequency of 200 Hz.

The experimental protocol consisted of laying the participant in a hospital bed for 10

minutes to stabilize their heartbeat while the measurement systems were positioned. I posi-

tioned the optical probe (FD-DOS and DCS acquisitions) on the participant’s forehead later-

ally to avoid the central sagittal plane. The finometer’s arm and finger cuffs were positioned

on the participants’ left arm. After synchronizing FD-DOS, DCS, and Finometer systems

through a trigger, the protocol started with five minutes of resting data, while the partic-

ipants were lying motionless and with their eyes closed. Each minute of data acquisition

consisted of 10 seconds of FD-DOS data followed by 50 seconds of DCS data acquisition. The

FD-DOS readings were previously calibrated using the phantom calibrating method (Section

2.3.4). This protocol was approved by the local Ethics Committee at the University of Camp-

inas (CAAE 50436921.3.0000.5404). Participants were instructed concerning the experiment

protocol before signing an informed consent form prior to participation (Appendix J).
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7.2.3 Models of Optical Data Analysis

I analyzed FD-DOS data using four different approaches described below (the SI model,

the 2L model, simulations in a curved medium, and simulations in a two-layered curved

medium). I used these pipelines to analyze the average curve of each 10 seconds of FD-DOS

data acquisition, which provides five sets of optical properties. I discarded sets where µ
′
s did

not decrease as a function of wavelength and assumed the fit as the median values of the

remaining sets. DCS data were also analyzed through the four approaches using the optical

properties estimated by FD-DOS as inputs. F values were estimated for each point of the

DCS time series to calculate CrCP (see next section) and for the average 50-second curve of

data acquisition to estimate the average blood flow value.

Semi-Infinite Model (SI)

This analysis followed the previously discussed SI model as described in Chapter 5 for FD-

DOS data. DCS estimations were also based on this model, using the optical properties esti-

mated through FD-DOS.

Curved Model (CM)

In the absence of an analytical forward model to consider the curvature at the acquisition

data interface, I used the lookup table method described in Chapter 5 to analyze FD-DOS

data. However, I decided to use a 9-cm radius mesh because it would better match the ac-

tual curvature of the forehead of most participants. DCS estimations relied once more upon

the SI model using the optical properties estimated considering curvature. I referred to this

model as the Curved Model (CM).

Two-Layered Model (2L)

The pipeline of FD-DOS analysis through the 2L model followed the same procedure of

Chapter 4 with a few modifications based on the lack of knowledge of the first layer thickness

ℓ. Since there was no anatomical information from the participants available to estimate ℓ,

I first used FD-DOS data to estimate this parameter. To this end, I analyzed the data of the

three smallest SDSs (0.7, 1.2, and 1.6 cm) with the SI model to estimate the optical proper-

ties of the first layer (µ0
a1 and µ

′0
s1). As the depth penetration of a regular FD-DOS channel is

half the SDS rounded up, using SDSs smaller than 2 cm allows robust estimation of the first

layer properties since ℓ is expected to be 1 cm or more. Next, I used the 2L model (assuming

homogeneous scattering) to analyze all SDSs, allowing a variation of 20% over µ0
a1 and µ

′0
s1 to

estimate the first layer thickness on 705, 750 and 830 nm. I assumed ℓ as the median value of

those three. Then, I fixed ℓ and fitted the data once more. This time, I allowed a variation of

40% downwards and 20% upwards in µ0
a1 and µ

′0
s1, since the previous research using layered
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models reported an underestimation of the optical properties obtained using the SI model

when compared to layered models. At the end of this procedure, I estimated ℓ, and the first

and second layer optical properties (µa1, µa2 and µ
′
s). DCS data analysis followed the same

algorithm described in Chapter 4 using the previously estimated ℓ and optical parameters.

Since β is not known a priori but it is expected to be around 0.5, I averaged the first 50 sec-

onds of DCS data and adjusted the resulting autocorrelation curve (subjected to g2(τ) ≥ 1.25)

to estimate the β of each curve using the SI model before analyzing data using the 2L model.

Curved, Layered Model (CLM)

Aiming to consider both influences of tissue curvature and heterogeneity together, I used the

same mesh as in the CM to build a numerical forward model for DOS analysis. To this end, I

assumed a thickness of ℓ= 1.1cm and homogeneous scattering, and created a lookup table

varying µ
′
s from 5 to 15 in steps of 0.1 cm−1, and the absorption of the first and second layers

(µa1 and µa2) from 0.05 to 0.3 cm−1 in steps of 0.005cm−1. In this model, I estimated F using

the 2L model through the algorithm described in Chapter 4. I used the previously estimated

optical properties and fixed ℓ= 1.1cm. I referred to this model as the Curved, Layered Model

(CLM).

7.2.4 Estimation of Physiological Parameters

Once the absorption coefficient was estimated, I used Equation 2.1 to compute [HbO] and

[HbR] assuming a water fraction of 70%. Then, I calculated the total hemoglobin concentra-

tion [HbT ] = [HbO]+[HbR] and the blood oxygen saturation StO2 = (100%)×[HbO]/[HbT ].

To estimate CrCP, I used a two-compartment Windkessel model [163, 196, 197] for

modeling the cerebral arterial compartment between arteries and capillaries. In this ap-

proach, the vascular bed is modeled through a parallel RC circuit, and CrCP may be esti-

mated through the phase shift between ABP and F time series [127]:

CrC P = γ〈ABP〉
(
1− |ABP ( fhr )| 〈F 〉

|F ( fhr )| 〈ABP〉
√

1+ (2π fhrτ)2

)
, (7.1)

where fhr is the heartbeat frequency, 〈 · 〉 denotes the temporal average value, | · | denotes

the amplitude of the Fourier transform, γ is the ratio between the arterial pressure at the be-

ginning of the arteriole compartment and ABP (taken as 0.6 based on animal studies [164]),

and τ=−t an(ϕhr )/(2π fhr ). Here, ϕhr is the phase shift between ABP and F at the heartbeat

frequency ( fhr ). A brief deduction of Equation 7.1 may be found in Appendix G. Thus, I first

estimated fhr by finding the cardiac peak at the power spectrum (maximum value between

0.7 Hz and 2.2 Hz) of the entire time series of ABP data. Then, I downsampled ABP data to

the same frequency acquisition of DCS data. For each 50-second segment of F data, I esti-

mated ϕhr using transfer functions based on the Welch’s method (tfestimate, MATLAB) and
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a CrCP value. I took the CrCP estimation as the median of the values from each one of the

five segments.

7.2.5 Data exclusion criteria

I discarded participants where the average of the 10 seconds FD-DOS acquisition resulted in

R2 < 0.99 for log (ρ2|φ(ρ)|) v sρ or ar g (φ(ρ)) v sρ. I also discarded participants where µ
′
s did

not decrease in terms of λ. Based on DCS data, I discarded participants where |β−0.5| ≥ 0.12

and the cardiac frequency is greater than 1.4H z = 84bpm as it would not allow the cardiac

frequency at DCS data. Lastly, I discarded participants where [HbO] ≤ 5µmol ar , [HbR] ≤
5µmol ar and StO2 ≤ 20% since it might result from acquisition with poor coupling with

biological tissue.

7.3 Results and Discussion

In this work, I acquired FD-DOS, DCS, and ABP data with a set of sources and detectors that

enable estimations through homogeneous models (SI and CM) and layered models (2L and

CLM). All methods considering curvature on the data acquisition interface (CM and CLM)

were lookup table-based. On the other hand, planar models (SI and 2L) were analytical.

Also, I decided not to correct for skin absorbance through the methodology discussed in

Chapter 6. In that chapter, I tested a preliminary methodology to increase the accuracy of

physiological estimations accounting for darker skin presence through the SI model. As I did

not test if that correction is a confounder in the accuracy of the first layer estimation through

layered models, I only compared estimations of SI, Curved, 2L, and CL models.

Figure 7.1 shows the physiological parameters estimated using the four models de-

scribed in the previous section. The ABP estimation for all participants was 95 (86; 103)

mmHg. I tested the significance of the differences between the four approaches using a

Wilcoxon test or a T-test, depending on the parametricity of the distributions, assessed

through a Lilliefors test. As discussed in previous chapters, I expected an increase in the

µa as well as a reduction in the variability (e.g., the interquartile range) estimated through

the layered models (i.e., 2L and CLM) when compared to homogeneous models since this

methodology is supposed to improve the accuracy when solving the inverse problem. How-

ever, results suggest that there is no statistical difference between the µa estimations of the

four models. This result is reflected in physiological estimations. There is no statistical dif-

ference between [HbO], [HbT ], and StO2 among the tested models. Differences were found

between [HbR] of CM and CLM (median(interquartile range) of 20(15;21) against 13(9;18)

µmol ar , p=0.0035) and among 2L and CLM (17(13;22) against 13(9;18) µmol ar , p=0.0094).

A possible cause of this unexpected similarity between the models is the lack of ac-

curacy of ℓ as the 2L model algorithm I validated in Chapter 4 relies on the knowledge of
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Figure 7.1: Absorption coefficient and physiological parameters estimated using the SI, CM, 2L, and CLM mod-
els. The right y-axis in F estimations relates to layered estimations (i.e., 2L and CLM boxplots).
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this parameter. I tried to mitigate this issue using the smallest SDSs first and then fitting ℓ

through the 2L model. Still, there is a cross-talk between ℓ and other parameters that might

influence 2L estimations. Indeed, in Chapter 4, I discussed that an error of ∼ 15% on ℓ is

enough to introduce errors of ∼ 20% or more in estimations through DO techniques. Thus,

the lack of increase in estimations when comparing layered to homogeneous models might

result from poor ℓ estimations. In this sense, the errors introduced by this issue should be

even more pronounced in the CLM, where I fixed ℓ = 1.1 cm. Although potentially far from

the real value, the 2L approach used here provides some flexibility in terms of dealing with

ℓ. Thus, it is reasonable to expect that the estimated thicknesses are closer to the real value

than the fixed 1.1 cm. To investigate this issue, I assessed the percentage differences between

the estimated values and the fixed ℓ= 1.1cm value of the CLM. This deviation is 32(10;33)%,

potentially jeopardizing CLM estimations even further. It is noteworthy that including the

curvature in the CLM is insufficient to provide the expected increase in estimations faced

with this error in ℓ. This suggests that properly adjusting the heterogeneity of the tissue

through layered models and fine-tuning ℓ (using a Magnetic Resonance Image, for example)

is more relevant to estimations than considering the curvature in the acquisition interface.

On the other hand, the errors introduced due to the lack of knowledge about ℓ seem

insufficient to undo the expected trends for F estimations. F values are statistically differ-

ent between SI (1.2(1.1;1.4) cm2/s) and layered models (9.4(2.2;16) cm2/s for the 2L model

(note the right y-xis for layered models), p=0.0074; 7.6(1.7;18) cm2/s for the CLM model, p

= 0.0081) and between CM (1.1(0.8;1.3) cm2/s) and layered models (p=0.0018 between CM

and 2L; p = 0.0024 between CM and CLM). Estimations are almost ten times greater for lay-

ered models than for homogeneous models. Additionally, curvature seems not to influence

blood flow estimations as F values are similar between SI and CM, and between 2L and CLM.

This result suggests that the preliminary investigation of the influence of tissue curvature on

F exhibited in Chapter 5 points in the right direction. Still, further investigations are needed.

Lastly, the main goal of this investigation was to investigate CrCP estimations since

they are relevant non-invasive measurements in clinical scenarios. A reliable estimation of

CrCP depends on an accurate estimation of F (Equation 7.1), which, in turn, depends on

the optical properties estimation. Thus, CrCP should pile up all the previous errors. Pre-

vious research aiming to estimate CrCP relied on DCS acquisitions only (assuming optical

properties), providing estimations from 5 to 30 mmHg in healthy participants using the SI

model [127, 195]. Using this same model, the values estimated in this work (ranging from

40 to 60 mmHg) are considerably higher than previous estimations. These estimations are

closer to previous research using invasive measurements and TCD/LDF methods (around

45 mmHg [191, 193]), which suggests that properly accounting for the optical properties in

F estimations improves CrCP assessment. This result is not aligned with previous reports

that claim the optical properties do not alter CrCP estimations due to the maintenance of F

pulsatile pattern [146].
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I also found that layered models estimate statistically smaller CrCP values than homo-

geneous models in this pool of participants. Indeed, CrCP estimated through homogeneous

models (50(45;52) mmHg for both the SI and CM models) are statistically different from the

2L estimations (41(24;46) mmHg; p=0.0289 between SI and 2L, and p=0.0227 between CM

and 2L). Thus, considering tissue heterogeneity through layered models also impacts CrCP

estimations. Additionally, as in F estimations, curvature seems not to influence CrCP es-

timations, as planar and curved model estimations are similar. This result is aligned with

the minimal influence of the tissue curvature on F estimations I preliminarily discussed in

Chapter 5. It also reinforces the conclusion that adjusting for tissue heterogeneity is more

relevant than considering the curvature in the data acquisition interface.

In addition to that, the average estimations through 2L and CLM (40-50 mmHg) are

similar to previous research using invasive measurements and TCD/LDF methods [191,193],

suggesting that accounting for layered structure is relevant in terms of increasing the accu-

racy of CrCP estimations. Although there is no statistical difference between the CLM and 2L

models in the estimation of CrCP, several factors indicate the superior potential of the CLM

model. First, the CLM model integrates both layered structure and curvature considerations,

potentially making it more versatile in facing anatomical variability across participants. As

discussed for physiological and optical estimations, errors in ℓ estimations might be over-

shadowing the improvements related to considering curvature. Interestingly, the fixed ℓ

value in CLM seems to not harm CrCP estimations as it jeopardizes optical estimations.

When fine-tuned, this model could lead to even more consistent and reliable estimations.

Ultimately, while both models perform comparably in this study, the CLM range is closer to

gold-standard measurements, which suggests that an appropriate adjustment of this model

would lead to more accurate estimations when compared to other models.

7.4 Conclusions

In this work, I analyzed FD-DOS and DCS data through four models (homogeneous or

not; planar or not) and compared the differences between the physiological estimations of

[HbO], [HbR], [HbT ], StO2, F , and CrCP. The main conclusion is that the prior knowledge

of the thickness of the first layer is crucial for an accurate estimation of optical data since

heterogeneity plays a more important role than curvature. Additionally, layered models es-

timate substantially higher F values and more accurate CrCP values.
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CHAPTER 8

OVERALL CONCLUSIONS AND FUTURE DI-

RECTIONS

8.1 Overview

In this work, I explored the hypothesis that parameters estimated through diffuse optics hold

the potential to serve as biomarkers of diseases with vascular impact since the estimations

are hemodynamic-related. The hypothesis seems to hold for muscle applications, as dis-

cussed in Chapter 3. Muscle tissue is homogeneous, and the coupling between the optical

sensor and the interface is so that curvature might not harm optical estimations through the

homogeneous, planar SI model. Unfortunately, the accuracy of this model is not enough

for clinical environments. Acquisitions aiming to obtain information about the brain cortex

struggle with tissue heterogeneity and curvature problems.

In this context, the thesis I defended is that models considering the macroscopic struc-

tural complexity of tissue can increase the accuracy of measurements obtained with diffuse

optical techniques to the level they could be used as biomarkers for vascular diseases. To this

end, I investigated the effects of tissue heterogeneity (Chapter 4) and curvature (Chapter 5),

primarily in FD-DOS estimations and in DCS estimations as a consequence. In both cases, I

proposed and validated methods to analyze DO data, taking those features into account. In

Chapter 7, I aimed to combine both corrections. Additionally, in Chapter 6, I investigated an

ignored problem regarding the influence of skin on optical estimations. Overall, I conclude

that those modifications in the SI model are actually improvements since they increase the

accuracy of estimations. This chapter summarizes the key findings and outlines potential

future directions for further research.

8.2 Main Messages

One of the central topics of this thesis was the impact of tissue heterogeneity on DO data.

I discussed that the literature suggests that the SI model often underestimates optical esti-

mations due to the contribution of extracerebral tissue to measurements. Available layered

models increase the sensitivity to the deep layer, often taken as the cortical tissue, but strug-
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gle with numerical stability when solving the inverse problem. Thus, I proposed an algo-

rithm to use the 2L model in steps, improving accuracy in optical estimations. At this point,

I decided to assume ℓ as a known quantity as it might be estimated through a Magnetic Res-

onance image. I also found that the model is not sensitive to second-layer scattering. Thus,

assuming homogeneous scattering reduces the number of adjusted parameters, increasing

the model’s stability. However, in the exhibited investigations, there is still a lack of accuracy

when analyzing simulations in templates of a realistic head. I hypothesized that this issue

could potentially be solved by adding the tissue curvature to the model.

Another feature of real data acquisition investigated in this work was the effect of tis-

sue curvature on optical estimations. In the absence of an analytical model that deals with

this issue, I used a numerical model, lookup-table-based, to perform this study. I concluded

that incorporating tissue curvature into the model of data analysis improved the accuracy of

optical estimations in surfaces with nonzero curvature. On top of that, it is more important

to consider this feature in the model than adjust it for the actual curvature of the data ac-

quisition interface in the investigated range (from 5 to 20 cm). Moreover, the addition of the

curvature also increases the optical estimations in real data.

The COVID-19 pandemic highlighted the need for more accurate StO2 measurements

across diverse populations, especially for non-white individuals. In this sense, I investigated

the influence of skin tissue on FD-DOS estimations. I concluded that skin absorption is

around 10 times higher than the absorption of deep tissue for darker tones. This influence

could lead to an error up to 5% in StO2, enough to cause the occult hypoxemia problem. I

also propose a method for removing the bias of skin influence over optical estimations. This

method decreases the upper boundary of the 95th MAPE StO2 percentile from 4.3 to 3.4%. In

real data, this approach introduces percentage changes up to 6% on estimations. It suggests

that, although preliminary, this method is promising in terms of increasing the accuracy of

optical estimations facing darker skin tones.

Based on the investigations exhibited in this work, I concluded that accounting for

tissue heterogeneity increases the accuracy of optical estimations, just as considering the

tissue curvature does. In order to improve the reliability even more, I tried to perform both

corrections simultaneously in DO data. To this end, I acquired FD-DOS and DCS data simul-

taneously, which allowed me also to calculate CrCP. As I had no prior knowledge of ℓ since

the participants did not have a Magnetic Resonance image, I tried to estimate it through

FD-DOS data or fixed it at a reasonable value. I concluded that the fine-tuning of the het-

erogeneity through an accurate estimation of ℓ is more relevant to optical estimations than

accounting for tissue curvature. Moreover, CrCP values estimated through heterogeneous

models aligned better with values available in the literature.
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8.3 Future Directions

The methods I propose in this work aim to increase the accuracy of estimations using DO

techniques. However, I failed to combine those methodologies to improve even further the

model to analyze data. I found out that fine-tuning the architecture of the layered model

through a precise ℓ value impacts the estimations more than adjusting for the curvature.

Thus, it is crucial to develop more accurate methods for estimating this parameter. How-

ever, it is not easily assessable information since not always a participant has magnetic res-

onance imaging available. In this sense, novel approaches to estimate ℓ must be explored.

I proposed an approach using FD-DOS data, but the results suggest that estimations were

not ideal. In this sense, machine learning algorithms could be trained on large datasets with

known ℓ or simulations to improve the accuracy when predicting this parameter. Another

alternative is to try to use anatomical atlases to estimate ℓ based on participant demograph-

ics and anatomical characteristics. The ability to accurately estimate the first layer thickness

without a magnetic resonance image would reduce costs and complexity in clinical applica-

tions.

Additionally, improvements in the methods of generating FD-DOS data in skin pres-

ence are needed. While the method I presented has shed light on the impact this feature has

on physiological estimations through FD-DOS, it has some limitations. Of note, it assumes

homogeneous scattering between the skin and the underneath tissue, and it also assumes

that the point-source is deeper than the first layer in some approaches. Although the results

I discussed have the right trend, more accurate approaches are needed. Future simulations

should rely on more precise methods (e.g., using NIRFASTer with meshes with small node

sizes). Once the method is set, investigations of this effect over other techniques, such as

using continuous light as pulse oxymeters, must also be conducted. This will be crucial in

addressing disparities in healthcare outcomes.



132

REFERENCES

[1] Jain, K. Role of Biomarkers in Healthcare (Humana Press, 2017).

[2] Zhang, B., Zhang, B. J., Zhou, Z. L., Guo, Y. T. & Wang, D. The value of glycosylated

hemoglobin in the diagnosis of diabetic retinopathy: a systematic review and meta-

analysis. Bmc Endocrine Disorders 21, 11 (2021).

[3] Stanciulescu, L. A., Scafa-Udriste, A. & Dorobantu, M. Exploring the associa-

tion between low-density lipoprotein subfractions and major adverse cardiovascular

outcomes-a comprehensive review. International Journal of Molecular Sciences 24, 12

(2023).

[4] Chary, A., Tohidi, M. & Hedayati, M. Association of ldl-cholesterol subfractions with

cardiovascular disorders: a systematic review. Bmc Cardiovascular Disorders 23, 10

(2023).

[5] Samson, C. & Koh, A. Stress monitoring and recent advancements in wearable biosen-

sors. Frontiers in Bioengineering and Biotechnology 8, 8 (2020).

[6] Akiyoshi, J. Acute Stress in Patients with Panic Disorders Produces Effects on Salivary

Amylase and Cortisol (IntechOpen, 2011).

[7] Dochez, V. et al. Biomarkers and algorithms for diagnosis of ovarian cancer: Ca125,

he4, rmi and roma, a review. Journal of Ovarian Research 12, 9 (2019).

[8] Saini, S. Psa and beyond: alternative prostate cancer biomarkers. Cellular Oncology

39, 97–106 (2016).

[9] O’Neill, B. J., Rana, S. N. & Bowman, V. An integrated approach for vascular health: A

call to action. Canadian Journal of Cardiology 31, 99–102 (2015).

[10] Durduran, T., Choe, R., Baker, W. B. & Yodh, A. G. Diffuse optics for tissue monitoring

and tomography. Reports on Progress in Physics 73, 43 (2010).

[11] Bruns, D. E. & Boyd, J. C. Assessing the impact of biomarkers on patient outcome: An

obligatory step. Scandinavian Journal of Clinical I& Laboratory Investigation 70, 85–89

(2010).

[12] Hallacoglu, B. et al. Absolute measurement of cerebral optical coefficients,

hemoglobin concentration and oxygen saturation in old and young adults with near-

infrared spectroscopy. Journal of Biomedical Optics 17, 8 (2012).



REFERENCES 133

[13] Hallacoglu, B., Sassaroli, A. & Fantini, S. Optical characterization of two-layered turbid

media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. Plos

One 8, 15 (2013).

[14] Gagnon, L., Desjardins, M., Jehanne-Lacasse, J., Bherer, L. & Lesage, F. Investigation

of diffuse correlation spectroscopy in multi-layered media including the human head.

Optics Express 16, 15514–15530 (2008).

[15] Forti, R. M., Martins, G. G., Baker, W. B. & Mesquita, R. C. Optimizing a two-layer

method for hybrid diffuse correlation spectroscopy and frequency-domain diffuse op-

tical spectroscopy cerebral measurements in adults. Neurophotonics 10, 26 (2023).

[16] Vidal-Rosas, E. E., von Luhmann, A., Pinti, P. & Cooper, R. J. Wearable, high-density

fnirs and diffuse optical tomography technologies: a perspective. Neurophotonics 10,

18 (2023).

[17] Wheelock, M. D., Culver, J. P. & Eggebrecht, A. T. High-density diffuse optical tomogra-

phy for imaging human brain function. Review of Scientific Instruments 90, 24 (2019).

[18] Zhao, H. B. & Cooper, R. J. Review of recent progress toward a fiberless, whole-scalp

diffuse optical tomography system. Neurophotonics 5, 11 (2018).

[19] Boas, D. A., Dale, A. M. & Franceschini, M. A. Diffuse optical imaging of brain activa-

tion: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroim-

age 23, S275–S288 (2004).

[20] Li, S. Y., Huang, K. X., Zhang, M. H., Uddin, K. M. S. & Zhu, Q. Effect and correction of

optode coupling errors in breast imaging using diffuse optical tomography. Biomedi-

cal Optics Express 12, 689–704 (2021).

[21] Sassaroli, A., Martelli, F., Zaccanti, G. & Yamada, Y. Performance of fitting procedures

in curved geometry for retrieval of the optical properties of tissue from time-resolved

measurements. Applied Optics 40, 185–197 (2001).

[22] Zhang, S., Chen, S. Y., Liu, Y. X., Liu, Y. H. & Tan, Z. J. Effects of tissue surface curvature

and incident light angle on diffuse correlation spectroscopy. Journal of Modern Optics

66, 93–99 (2019).

[23] Berberansantos, M. N. Beer law revisited. Journal of Chemical Education 67, 757–759

(1990).

[24] Baker, W. B. Optical Cerebral Blood Flow Monitoring of Mice to Men. Thesis, University

of Pennsylvania (2015).



REFERENCES 134

[25] Cheong, W. F., Prahl, S. A. & Welch, A. J. A review of the optical-properties of biological

tissues. Ieee Journal of Quantum Electronics 26, 2166–2185 (1990).

[26] Jacques, S. L. & Pogue, B. W. Tutorial on diffuse light transport. Journal of Biomedical

Optics 13, 19 (2008).

[27] Kaplan, P. D., Kao, M. H., Yodh, A. G. & Pine, D. J. Geometric constraints for the design

of diffusing-wave spectroscopy experiments. Applied Optics 32, 3828–3836 (1993).

[28] Arridge, S. R., Cope, M. & Delpy, D. T. The theoretical basis for the determination of

optical pathlengths in tissue - temporal and frequency-analysis. Physics in Medicine

and Biology 37, 1531–1560 (1992).

[29] Liemert, A. & Kienle, A. Light diffusion in a turbid cylinder. ii. layered case. Optics

Express 18, 9266–9279 (2010).

[30] Zhao, H. T., Sathialingam, E. & Buckley, E. M. Accuracy of diffuse correlation spec-

troscopy measurements of cerebral blood flow when using a three-layer analytical

model. Biomedical Optics Express 12, 7149–7161 (2021).

[31] Zhao, H. T. et al. Comparison of diffuse correlation spectroscopy analytical models for

measuring cerebral blood flow in adults. Journal of Biomedical Optics 28, 13 (2023).

[32] Liao, Y. K. & Tseng, S. H. Reliable recovery of the optical properties of multi-layer tur-

bid media by iteratively using a layered diffusion model at multiple source-detector

separations. Biomedical Optics Express 5, 975–989 (2014).

[33] Arridge, S. R. & Lionheart, W. R. B. Nonuniqueness in diffusion-based optical tomog-

raphy. Optics Letters 23, 882–884 (1998).

[34] Vanstaveren, H. J., Moes, C. J. M., Vanmarle, J., Prahl, S. A. & Vangemert, M. J. C. Light-

scattering in intralipid-10-percent in the wavelength range of 400-1100 nm. Applied

Optics 30, 4507–4514 (1991).

[35] Yalavarthy, P. K., Pogue, B. W., Dehghani, H. & Paulsen, K. D. Weight-matrix structured

regularization provides optimal generalized least-squares estimate in diffuse optical

tomography. Medical Physics 34, 2085–2098 (2007).

[36] Suzuki, S., Takasaki, S., Ozaki, T. & Kobayashi, Y. A tissue oxygenation monitor us-

ing nir spatially resolved spectroscopy. In Conference on Optical Tomography and

Spectroscopy of Tissue III, vol. 3597 of Proceedings of the Society of Photo-Optical In-

strumentation Engineers (Spie), 582–592 (Spie-Int Soc Optical Engineering, BELLING-

HAM, 1999).



REFERENCES 135

[37] Matcher, S. J., Kirkpatrick, P., Nahid, K., Cope, M. & Delpy, D. T. Absolute quantifi-

cation methods in tissue near infrared spectroscopy. In Conference on Optical To-

mography, Photon Migration, and Spectroscopy of Tissue and Model Media - Theory,

Human Studies and Instrumentation, vol. 2359 of Proceedings of the Society of Photo-

Optical Instrumentation Engineers (Spie), 486–495 (Spie - Int Soc Optical Engineering,

BELLINGHAM, 1995).

[38] Liu, W. K., Li, S. F. & Park, H. S. Eighty years of the finite element method: Birth, evo-

lution, and future. Archives of Computational Methods in Engineering 29, 4431–4453

(2022).

[39] Dehghani, H. et al. Near infrared optical tomography using nirfast: Algorithm for nu-

merical model and image reconstruction. Communications in Numerical Methods in

Engineering 25, 711–732 (2009).

[40] Arridge, S. R., Schweiger, M., Hiraoka, M. & Delpy, D. T. A finite-element approach for

modeling photon transport in tissue. Medical Physics 20, 299–309 (1993).

[41] Paulsen, K. D. & Jiang, H. B. Spatially varying optical property reconstruction using a

finite-element diffusion equation approximation. Medical Physics 22, 691–701 (1995).

[42] Jermyn, M. et al. Fast segmentation and high-quality three-dimensional volume mesh

creation from medical images for diffuse optical tomography. Journal of Biomedical

Optics 18, 10 (2013).

[43] Bargo, P. R., Prahl, S. A. & Jacques, S. L. Collection efficiency of a single optical fiber in

turbid media. Applied Optics 42, 3187–3197 (2003).

[44] Bargo, P. R., Prahl, S. A. & Jacques, S. L. Optical properties effects upon the collection

efficiency of optical fibers in different probe configurations. Ieee Journal of Selected

Topics in Quantum Electronics 9, 314–321 (2003).

[45] Papaioannou, T. et al. Effects of fiber-optic probe design and probe-to-target distance

on diffuse reflectance measurements of turbid media: an experimental and computa-

tional study at 337 nm. Applied Optics 43, 2846–2860 (2004).

[46] Brown, W. Dynamic Light Scattering: The Method and Some Applications (Clarendon

Press, 1993).

[47] Lemieux, P. A. & Durian, D. J. Investigating non-gaussian scattering processes by us-

ing <i>n</i>th-order intensity correlation functions. Journal of the Optical Society of

America a-Optics Image Science and Vision 16, 1651–1664 (1999).



REFERENCES 136

[48] Ackerson, B. J., Dougherty, R. L., Reguigui, N. M. & Nobbmann, U. Correlation transfer

- application of radiative-transfer solution methods to photon-correlation problems.

Journal of Thermophysics and Heat Transfer 6, 577–588 (1992).

[49] Boas, D. A., Campbell, L. E. & Yodh, A. G. Scattering and imaging with diffusing tem-

poral field correlations. Physical Review Letters 75, 1855–1858 (1995).

[50] Farzam, P. & Durduran, T. Multidistance diffuse correlation spectroscopy for simul-

taneous estimation of blood flow index and optical properties. Journal of Biomedical

Optics 20, 10 (2015).

[51] Shang, Y. et al. Portable optical tissue flow oximeter based on diffuse correlation spec-

troscopy. Optics Letters 34, 3556–3558 (2009).

[52] Boas, D. A. & Yodh, A. G. Spatially varying dynamical properties of turbid media probed

with diffusing temporal light correlation. Journal of the Optical Society of America a-

Optics Image Science and Vision 14, 192–215 (1997).

[53] Yu, G. Q. et al. Noninvasive monitoring of murine tumor blood flow during and af-

ter photodynamic therapy provides early assessment of therapeutic efficacy. Clinical

Cancer Research 11, 3543–3552 (2005).

[54] Buckley, E. M. et al. Cerebral hemodynamics in preterm infants during positional in-

tervention measured with diffuse correlation spectroscopy and transcranial doppler

ultrasound. Optics Express 17, 12571–12581 (2009).

[55] Byrd, R. H., Gilbert, J. C. & Nocedal, J. A trust region method based on interior point

techniques for nonlinear programming. Mathematical Programming 89, 149–185

(2000).

[56] Jacques, S. L. Optical properties of biological tissues: a review. Physics in Medicine and

Biology 58, R37–R61 (2013).

[57] Mosca, S. et al. Optical characterization of porcine tissues from various organs in the

650-1100 nm range using time-domain diffuse spectroscopy. Biomedical Optics Ex-

press 11, 1697–1706 (2020).

[58] Farina, A. et al. In-vivo multilaboratory investigation of the optical properties of the

human head. Biomedical Optics Express 6, 2609–2623 (2015).

[59] Heino, J., Arridge, S., Sikora, J. & Somersalo, E. Anisotropic effects in highly scattering

media. Physical Review E 68, 8 (2003).



REFERENCES 137

[60] Mohlenhoff, B., Romeo, M., Diem, M. & Woody, B. R. Mie-type scattering and non-

beer-lambert absorption behavior of human cells in infrared microspectroscopy. Bio-

physical Journal 88, 3635–3640 (2005).

[61] Bonner, R. & Nossal, R. Model for laser doppler measurements of blood-flow in tissue.

Applied Optics 20, 2097–2107 (1981).

[62] Ninck, M., Untenberger, M. & Gisler, T. Diffusing-wave spectroscopy with dynamic

contrast variation: disentangling the effects of blood flow and extravascular tissue

shearing on signals from deep tissue. Biomedical Optics Express 1, 1502–1513 (2010).

[63] Durduran, T. et al. Diffuse optical measurement of blood flow, blood oxygenation, and

metabolism in a human brain during sensorimotor cortex activation. Optics Letters

29, 1766–1768 (2004).

[64] Mesquita, R. C. et al. Direct measurement of tissue blood flow and metabolism with

diffuse optics. Philosophical Transactions of the Royal Society a-Mathematical Physical

and Engineering Sciences 369, 4390–4406 (2011).

[65] Fantini, S., Franceschini, M. A. & Gratton, E. Semi-infinite-geometry boundary-

problem for light migration in highly scattering media - a frequency-domain study

in the diffusion-approximation. Journal of the Optical Society of America B-Optical

Physics 11, 2128–2138 (1994).

[66] Liu, X. Linear mixed-effects models (Academic Press, 2016).

[67] Forti, R. M. Determination of the dynamical properties in turbid media using diffuse

correlation spectroscopy: applications to biological tissues. Thesis, University of Camp-

inas (2015).

[68] Lu, R. J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:

implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

[69] Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among

5700 patients hospitalized with covid-19 in the new york city area. Jama-Journal of the

American Medical Association 323, 2052–2059 (2020).

[70] Wu, C. M. et al. Risk factors associated with acute respiratory distress syndrome and

death in patients with coronavirus disease 2019 pneumonia in wuhan, china. Jama

Internal Medicine 180, 934–943 (2020).

[71] Ranieri, V. M. et al. Acute respiratory distress syndrome the berlin definition. Jama-

Journal of the American Medical Association 307, 2526–2533 (2012).



REFERENCES 138

[72] Huang, C. L. et al. Clinical features of patients infected with 2019 novel coronavirus in

wuhan, china. Lancet 395, 497–506 (2020).

[73] Mutlu, G. M. & Budinger, G. R. S. Incidence and outcomes of acute lung injury. New

England Journal of Medicine 354, 416–416 (2006).

[74] Mikkelsen, M. E. et al. The epidemiology of acute respiratory distress syndrome in

patients presenting to the emergency department with severe sepsis. Shock 40, 375–

381 (2013).

[75] Bienvenu, O. J. et al. Depressive symptoms and impaired physical function after acute

lung injury a 2-year longitudinal study. American Journal of Respiratory and Critical

Care Medicine 185, 517–524 (2012).

[76] Linko, R. et al. One-year mortality, quality of life and predicted life-time cost-utility in

critically ill patients with acute respiratory failure. Critical Care 14, 9 (2010).

[77] Orfanos, S. E., Mavrommati, I., Korovesi, I. & Roussos, C. Pulmonary endothelium in

acute lung injury: from basic science to the critically ill. Intensive Care Medicine 30,

1702–1714 (2004).

[78] Cross, L. J. M. & Matthay, M. A. Biomarkers in acute lung injury: Insights into the

pathogenesis of acute lung injury. Critical Care Clinics 27, 355–+ (2011).

[79] Moussa, M. D. et al. Evaluation of endothelial damage in sepsis-related ards using

circulating endothelial cells. Intensive Care Medicine 41, 231–238 (2015).

[80] Pareznik, R., Knezevic, R., Voga, G. & Podbregar, M. Changes in muscle tissue oxygena-

tion during stagnant ischemia in septic patients. Intensive Care Medicine 32, 87–92

(2006).

[81] Gomez, H. et al. Use of non-invasive nirs during a vascular occlusion test to assess

dynamic tissue o<sub>2</sub> saturation response. Intensive Care Medicine 34, 1600–

1607 (2008).

[82] Bezemer, R. et al. Assessment of tissue oxygen saturation during a vascular occlusion

test using near-infrared spectroscopy: the role of probe spacing and measurement site

studied in healthy volunteers. Critical Care 13, 7 (2009).

[83] Cortes, D. O. et al. Microvascular reactivity is altered early in patients with acute respi-

ratory distress syndrome. Respiratory Research 17, 7 (2016).

[84] De Backer, D., Donadello, K. & Cortes, D. O. Monitoring the microcirculation. Journal

of Clinical Monitoring and Computing 26, 361–366 (2012).



REFERENCES 139

[85] van Beekvelt, M. C. P., Colier, W., Wevers, R. A. & van Engelen, B. G. M. Performance

of near-infrared spectroscopy in measuring local o<sub>2</sub> consumption and

blood flow in skeletal muscle. Journal of Applied Physiology 90, 511–519 (2001).

[86] Bopp, C. M., Townsend, D. K. & Barstow, T. J. Characterizing near-infrared spec-

troscopy responses to forearm post- occlusive reactive hyperemia in healthy subjects.

European Journal of Applied Physiology 111, 2753–2761 (2011).

[87] Leo, F. B., Wormanns, D. & Grohe, C. Covid-19 from the perspective of pneumol-

ogy long-term consequences and implications for pneumological aftercare. Deutsche

Medizinische Wochenschrift 145, 1086–1092 (2020).

[88] Schelling, G. et al. Pulmonary function and health-related quality of life in a sam-

ple of long-term survivors of the acute respiratory distress syndrome. Intensive Care

Medicine 26, 1304–1311 (2000).

[89] Herridge, M. S. et al. Functional disability 5 years after acute respiratory distress syn-

drome. New England Journal of Medicine 364, 1293–1304 (2011).

[90] Bein, T., Weber-Carstens, S. & Apfelbacher, C. Long-term outcome after the acute res-

piratory distress syndrome: different from general critical illness? Current Opinion in

Critical Care 24, 35–40 (2018).

[91] Chiumello, D., Coppola, S., Froio, S. & Gotti, M. What’s next after ards: Long-term

outcomes. Respiratory Care 61, 689–699 (2016).

[92] Enright, P. L. & Sherrill, D. L. Reference equations for the six-minute walk in healthy

adults. American Journal of Respiratory and Critical Care Medicine 158, 1384–1387

(1998).

[93] Kato, B. S. et al. Application of multilevel models to structured repeated measure-

ments. Quality I& Quantity 39, 711–732 (2005).

[94] Gurka, M. J. & Edwards, L. J. Mixed Models (2007).

[95] Koerner, T. K. & Zhang, Y. Application of linear mixed-effects models in human neuro-

science research: A comparison with pearson correlation in two auditory electrophys-

iology studies. Brain Sciences 7, 11 (2017).

[96] Venables, W. N. & Ripley, B. D. Regression and Correlation, book section 11 (Springer,

2002).

[97] Burnham, K. P. & Anderson, D. R. Practical Use of the Information-Theoretic Approach

(Springer, 2002).



REFERENCES 140

[98] Burnham, K. P. & Anderson, D. R. Information and Likelihood Theory, book section 2

(Springer, 2002).

[99] Andel, J., Perez, M. G. & Negrao, A. I. Estimating the dimension of a linear-model.

Kybernetika 17, 514–525 (1981).

[100] Akaike, H. Citation classic - a new look at the statistical-model identification. Current

Contents/Engineering Technology I& Applied Sciences 22–22 (1981).

[101] Giacalone, G. et al. Cerebral time domain-nirs: reproducibility analysis, optical prop-

erties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects.

Biomedical Optics Express 8, 4987–5000 (2017).

[102] Gatto, R., Hoffman, W. E., Mueller, M., Paisansathan, C. & Charbel, F. Age effects on

brain oxygenation during hypercapnia. Journal of Biomedical Optics 12, 4 (2007).

[103] Mesquida, J. et al. Peripheral microcirculatory alterations are associated with the

severity of acute respiratory distress syndrome in covid-19 patients admitted to in-

termediate respiratory and intensive care units. Critical Care 25, 10 (2021).

[104] Varga, Z. et al. Endothelial cell infection and endotheliitis in covid-19. Lancet 395,

1417–1418 (2020).

[105] Fernandez, S. et al. Distinctive biomarker features in the endotheliopathy of covid-19

and septic syndromes. Shock 57, 95–105 (2022).

[106] Ostergaard, L. Sars cov-2 related microvascular damage and symptoms during and

after covid-19: Consequences of capillary transit-time changes, tissue hypoxia and in-

flammation. Physiological Reports 9, 12 (2021).

[107] Bateman, R. M., Sharpe, M. D., Jagger, J. E. & Ellis, C. G. Sepsis impairs microvascular

autoregulation and delays capillary response within hypoxic capillaries. Critical Care

19, 14 (2015).

[108] Cusack, R., Leone, M., Rodriguez, A. H. & Martin-Loeches, I. Endothelial damage and

the microcirculation in critical illness. Biomedicines 10, 20 (2022).

[109] Jacob, M., Chappell, D. & Becker, B. F. Regulation of blood flow and volume exchange

across the microcirculation. Critical Care 20, 13 (2016).

[110] Skarda, D. E., Mulier, K. E., Myers, D. E., Taylor, J. H. & Beilman, G. J. Dynamic near-

infrared spectroscopy measurements in patients with severe sepsis. Shock 27, 348–353

(2007).



REFERENCES 141

[111] Ikonomidis, I. et al. Impaired endothelial glycocalyx predicts adverse outcome in sub-

jects without overt cardiovascular disease: a 6-year follow-up study. Journal of Cardio-

vascular Translational Research 15, 890–902 (2022).

[112] Ikonomidis, I. et al. Association of impaired endothelial glycocalyx with arterial stiff-

ness, coronary microcirculatory dysfunction, and abnormal myocardial deformation

in untreated hypertensives. Journal of Clinical Hypertension 20, 672–679 (2018).

[113] Zhang, C. E., Staals, J., van Oostenbrugge, R. J. & Vink, H. Uncoupling of microvas-

cular blood flow and capillary density in vascular cognitive impairment. Frontiers in

Neurology 10, 6 (2019).

[114] Mitsides, N. et al. Extracellular overhydration linked with endothelial dysfunction in

the context of inflammation in haemodialysis dependent chronic kidney disease. Plos

One 12, 15 (2017).

[115] Ayaz, H. et al. Optical imaging and spectroscopy for the study of the human brain:

status report. Neurophotonics 9, 65 (2022).

[116] Giovannella, M. et al. Validation of diffuse correlation spectroscopy against

<sup>15</sup>o-water pet for regional cerebral blood flow measurement in neona-

tal piglets. Journal of Cerebral Blood Flow and Metabolism 40, 2055–2065 (2020).

[117] Mesquita, R. C. et al. Influence of probe pressure on the diffuse correlation spec-

troscopy blood flow signal: extra-cerebral contributions. Biomedical Optics Express

4, 978–994 (2013).

[118] Baker, W. B. et al. Pressure modulation algorithm to separate cerebral hemodynamic

signals from extracerebral artifacts. Neurophotonics 2, 20 (2015).

[119] Choi, J. et al. Noninvasive determination of the optical properties of adult brain: near-

infrared spectroscopy approach. Journal of Biomedical Optics 9, 221–229 (2004).

[120] Verdecchia, K. et al. Assessment of a multi-layered diffuse correlation spectroscopy

method for monitoring cerebral blood flow in adults. Biomedical Optics Express 7,

3659–3674 (2016).

[121] Wu, J. Y. et al. Two-layer analytical model for estimation of layer thickness and flow

using diffuse correlation spectroscopy. Plos One 17, 20 (2022).

[122] Hori, H., Moretti, G., Rebora, A. & Crovato, F. Thickness of human scalp - normal and

bald. Journal of Investigative Dermatology 58, 396– (1972).



REFERENCES 142

[123] Milej, D. et al. Quantification of cerebral blood flow in adults by contrast-enhanced

near-infrared spectroscopy: Validation against mri. Journal of Cerebral Blood Flow

and Metabolism 40, 1672–1684 (2020).

[124] Doulgerakis, M., Eggebrecht, A. T. & Dehghani, H. High-density functional diffuse op-

tical tomography based on frequency-domain measurements improves image quality

and spatial resolution. Neurophotonics 6, 14 (2019).

[125] Schatzel, K. Correlation techniques in dynamic light-scattering. Applied Physics B-

Photophysics and Laser Chemistry 42, 193–213 (1987).

[126] Zhou, C. et al. Diffuse optical correlation tomography of cerebral blood flow during

cortical spreading depression in rat brain. Optics Express 14, 1125–1144 (2006).

[127] Baker, W. B. et al. Noninvasive optical monitoring of critical closing pressure and arte-

riole compliance in human subjects. Journal of Cerebral Blood Flow and Metabolism

37, 2691–2705 (2017).

[128] Tran, A. P., Yan, S. & Fang, Q. Improving model-based functional near-infrared spec-

troscopy analysis using mesh-based anatomical and light-transport models. Neu-

rophotonics 7, 015008 (2020).

[129] Selb, J. et al. Sensitivity of near-infrared spectroscopy and diffuse correlation spec-

troscopy to brain hemodynamics: simulations and experimental findings during hy-

percapnia. Neurophotonics 1, 15 (2014).

[130] Brigadoi, S. & Cooper, R. J. How short is short? optimum source-detector distance for

short-separation channels in functional near-infrared spectroscopy. Neurophotonics

2, 9 (2015).

[131] Middleton, A. A. & Fisher, D. S. Discrete scatterers and autocorrelations of multiply

scattered-light. Physical Review B 43, 5934–5938 (1991).

[132] Ohmae, E. et al. Cerebral hemodynamics evaluation by near-infrared time-resolved

spectroscopy: Correlation with simultaneous positron emission tomography mea-

surements. Neuroimage 29, 697–705 (2006).

[133] Selb, J., Ogden, T. M., Dubb, J., Fang, Q. Q. & Boas, D. A. Comparison of a layered slab

and an atlas head model for monte carlo fitting of time-domain near-infrared spec-

troscopy data of the adult head. Journal of Biomedical Optics 19, 10 (2014).

[134] Wu, M. M. et al. Improved accuracy of cerebral blood flow quantification in the pres-

ence of systemic physiology cross-talk using multi-layer monte carlo modeling. Neu-

rophotonics 8, 24 (2021).



REFERENCES 143

[135] Wu, M. M. et al. Complete head cerebral sensitivity mapping for diffuse correlation

spectroscopy using subject-specific magnetic resonance imaging models. Biomedical

Optics Express 13, 1131–1151 (2022).

[136] Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-

infrared spectroscopy (fnirs) development and fields of application. Neuroimage 63,

921–935 (2012).

[137] Fantini, S. & Sassaroli, A. Frequency-domain techniques for cerebral and functional

near-infrared spectroscopy. Frontiers in Neuroscience 14, 18 (2020).

[138] Fantini, S., Frederick, B. & Sassaroli, A. Perspective: Prospects of non-invasive sensing

of the human brain witn diffuse optical imaging. Apl Photonics 3, 15 (2018).

[139] Kienle, A., Glanzmann, T., Wagnieres, G. & van den Bergh, H. Investigation of two-

layered turbid media with time-resolved reflectance. Applied Optics 37, 6852–6862

(1998).

[140] Kienle, A. et al. Noninvasive determination of the optical properties of two-layered

turbid media. Applied Optics 37, 779–791 (1998).

[141] Ripoll, J. et al. Recovery of optical parameters in multiple-layered diffusive media: the-

ory and experiments. Journal of the Optical Society of America a-Optics Image Science

and Vision 18, 821–830 (2001).

[142] Alexandrakis, G., Farrell, T. J. & Patterson, M. S. Accuracy of the diffusion approxi-

mation in determining the optical properties of a two-layer turbid medium. Applied

Optics 37, 7401–7409 (1998).

[143] Hielscher, A. H., Liu, H. L., Chance, B., Tittel, F. K. & Jacques, S. L. Time-resolved photon

emission from layered turbid media. Applied Optics 35, 719–728 (1996).

[144] Rodriguez, R. C. Utilizacao da fase para estimativa das propriedades opticas absolutas

do tecido biologico com espectroscopia optica de difusao. Thesis, University of Camp-

inas (2014).

[145] Lee, S. Y., Zheng, C., Brothers, R. & Buckley, E. M. Small separation frequency-domain

near-infrared spectroscopy for the recovery of tissue optical properties at millimeter

depths. Biomedical Optics Express 10, 5362–5377 (2019).

[146] Sutin, J. Development of a novel diffuse correlation spectroscopy platform for moni-

toring cerebral blood flow and oxygen metabolism: from novel concepts and devices to

preclinical live animal studies. Ph. d. thesis, Boston University (2017).



REFERENCES 144

[147] Jonasson, H. et al. In vivo characterization of light scattering properties of human skin

in the 475-to 850-nm wavelength range in a swedish cohort. Journal of Biomedical

Optics 23, 6 (2018).

[148] Auger, H. et al. Quantification of extra-cerebral and cerebral hemoglobin concentra-

tions during physical exercise using time-domain near infrared spectroscopy. Biomed-

ical Optics Express 7, 3826–3842 (2016).

[149] Farzam, P. et al. Shedding light on the neonatal brain: probing cerebral hemodynamics

by diffuse optical spectroscopic methods. Scientific Reports 7, 10 (2017).

[150] Moreau, F., Yang, R., Nambiar, V., Demchuk, A. M. & Dunn, J. F. Near-infrared mea-

surements of brain oxygenation in stroke. Neurophotonics 3, 8 (2016).

[151] Kainerstorfer, J. M., Sassaroli, A., Tgavalekos, K. T. & Fantini, S. Cerebral autoregulation

in the microvasculature measured with near-infrared spectroscopy. Journal of Cerebral

Blood Flow and Metabolism 35, 959–966 (2015).

[152] Yang, R. Z. & Dunn, J. F. Reduced cortical microvascular oxygenation in multiple scle-

rosis: a blinded, case-controlled study using a novel quantitative near-infrared spec-

troscopy method. Scientific Reports 5, 9 (2015).

[153] Milej, D., Abdalmalak, A., Rajaram, A. & St Lawrencea, K. Direct assessment of extrac-

erebral signal contamination on optical measurements of cerebral blood flow, oxy-

genation, and metabolism. Neurophotonics 7, 17 (2020).

[154] Afshari, A. et al. Evaluation of the robustness of cerebral oximetry to variations in skin

pigmentation using a tissue-simulating phantom. Biomedical Optics Express 13, 2909–

2928 (2022).

[155] Shi, C. H. et al. The accuracy of pulse oximetry in measuring oxygen saturation by

levels of skin pigmentation: a systematic review and meta-analysis. Bmc Medicine 20,

14 (2022).

[156] Al-Halawani, R., Charlton, P. H., Qassem, M. & Kyriacou, P. A. A review of the effect

of skin pigmentation on pulse oximeter accuracy. Physiological Measurement 44, 22

(2023).

[157] Wassenaar, E. B. & Van den Brand, J. G. Reliability of near-infrared spectroscopy in

people with dark skin pigmentation. J Clin Monit Comput 19, 195–9 (2005).

[158] Zeballos, R. J. & Weisman, I. M. Reliability of noninvasive oximetry in black subjects

during exercise and hypoxia. American Review of Respiratory Disease 144, 1240–1244

(1991).



REFERENCES 145

[159] Barrot, L. et al. Liberal or conservative oxygen therapy for acute respiratory distress

syndrome. New England Journal of Medicine 382, 999–1008 (2020).

[160] Chu, D. K. et al. Mortality and morbidity in acutely ill adults treated with liberal versus

conservative oxygen therapy (iota): a systematic review and meta-analysis. Lancet

391, 1693–1705 (2018).

[161] Fawzy, A. et al. Racial and ethnic discrepancy in pulse oximetry and delayed identifi-

cation of treatment eligibility among patients with covid-19. Jama Internal Medicine

182, 730–738 (2022).

[162] Valbuena, V. S. M. et al. Racial bias and reproducibility in pulse oximetry among med-

ical and surgical inpatients in general care in the veterans health administration 2013-

19: multicenter, retrospective cohort study. Bmj-British Medical Journal 378, 9 (2022).

[163] Mandeville, J. B. et al. Evidence of a cerebrovascular postarteriole windkessel with de-

layed compliance. Journal of Cerebral Blood Flow and Metabolism 19, 679–689 (1999).

[164] Baumbach, G. L. & Heistad, D. D. Remodeling of cerebral arterioles in chronic hyper-

tension. Hypertension 13, 968–972 (1989).

[165] Caughey, A. B. Hidden in plain sight-reconsidering the use of race correction in clinical

algorithms. Obstetrical I& Gynecological Survey 76, 5–7 (2021).

[166] Okunlola, O. E. et al. Pulse oximeter performance, racial inequity, and the work ahead.

Respiratory Care 67, 252–257 (2022).

[167] Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L. & Del Bino, S. Research techniques

made simple: Cutaneous colorimetry: A reliable technique for objective skin color

measurement. Journal of Investigative Dermatology 140, 3–+ (2020).

[168] Dognitz, N. & Wagnieres, G. Determination of tissue optical properties by steady-state

spatial frequency-domain reflectometry. Lasers in Medical Science 13, 55–65 (1998).

[169] Dognitz, N., Wagnieres, G., Kienle, A. & van den Bergh, H. Determination of the ab-

sorption and reduced scattering coefficients of human skin and bladder by spatial fre-

quency domain reflectometry. In Laser-Tissue Interaction, Tissue Optics, and Laser

Welding III Conference, vol. 3195 of Proceedings of the Society of Photo-Optical In-

strumentation Engineers (Spie), 102–109 (Spie-Int Soc Optical Engineering, BELLING-

HAM, 1998).

[170] Gioux, S., Mazhar, A. & Cuccia, D. J. Spatial frequency domain imaging in 2019: prin-

ciples, applications, and perspectives. Journal of Biomedical Optics 24, 18 (2019).



REFERENCES 146

[171] Phan, T. et al. Quantifying the confounding effect of pigmentation on measured skin

tissue optical properties: a comparison of colorimetry with spatial frequency domain

imaging. Journal of Biomedical Optics 27, 14 (2022).

[172] Phan, T. et al. Characterizing reduced scattering coefficient of normal human skin

across different anatomic locations and fitzpatrick skin types using spatial frequency

domain imaging. Journal of Biomedical Optics 26, 11 (2021).

[173] Junior, L. B. d. C. Optical Characterization of Highly Turbid Samples in the Visible and

Near Infrared Spectra. Thesis, University of Sao Paulo (2023).

[174] Cruz, J., L. B., Girasol, C. E., Coltro, P. S., Guirro, R. R. J. & Bachmann, L. Absorption and

reduced scattering coefficient estimation in pigmented human skin tissue by experi-

mental colorimetric fitting. Journal of the Optical Society of America a-Optics Image

Science and Vision 40, 1680–1685 (2023).

[175] Modules, S. T. Layers of the skin.

[176] Goldsmith, L. A. et al. Biology of Pigment Cells, book section 7 (McGraw-Hill Educa-

tion, 2019).

[177] Betts, J. G. et al. The Integumentary System, book section 5 (OpenStax, Rice University,

2013).

[178] Joly-Tonetti, N., Wibawa, J. I. D., Bell, M. & Tobin, D. J. An explanation for the myste-

rious distribution of melanin in human skin: a rare example of asymmetric (melanin)

organelle distribution during mitosis of basal layer progenitor keratinocytes. British

Journal of Dermatology 179, 1115–1126 (2018).

[179] Le Roux, P. Physiological monitoring of the severe traumatic brain injury patient in the

intensive care unit. Current Neurology and Neuroscience Reports 13, 16 (2013).

[180] Tzeng, Y. C. & Ainslie, P. N. Blood pressure regulation ix: cerebral autoregulation un-

der blood pressure challenges. European Journal of Applied Physiology 114, 545–559

(2014).

[181] Jones-Muhammad, M. & Warrington, J. P. Cerebral blood flow regulation in pregnancy,

hypertension, and hypertensive disorders of pregnancy. Brain Sciences 9, 15 (2019).

[182] Donnelly, J., Budohoski, K. P., Smielewski, P. & Czosnyka, M. Regulation of the cerebral

circulation: bedside assessment and clinical implications. Critical Care 20, 17 (2016).

[183] Schmidt, J. M. et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia

and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 42, 1351–1356

(2011).



REFERENCES 147

[184] Samria, R. et al. Noninvasive cuffless estimation of blood pressure using photoplethys-

mography without electrocardiograph measurement. 2014 Ieee Region 10 Symposium

254–257 (2014).

[185] Kirkman, M. A. & Smith, M. Intracranial pressure monitoring, cerebral perfusion pres-

sure estimation, and icp/cpp-guided therapy: a standard of care or optional extra after

brain injury? British Journal of Anaesthesia 112, 35–46 (2014).

[186] Canac, N., Jalaleddini, K., Thorpe, S. G., Thibeault, C. M. & Hamilton, R. B. Review:

pathophysiology of intracranial hypertension and noninvasive intracranial pressure

monitoring. Fluids and Barriers of the Cns 17, 21 (2020).

[187] Dewey, R. C., Pieper, H. P. & Hunt, W. E. Experimental cerebral hemodynamics - va-

somotor tone, critical closing pressure, and vascular bed resistance. Journal of Neuro-

surgery 41, 597–606 (1974).

[188] Weyland, A. et al. Cerebrovascular tone rather than intracranial pressure determines

the effective downstream pressure of the cerebral circulation in the absence of in-

tracranial hypertension. Journal of Neurosurgical Anesthesiology 12, 210–216 (2000).

[189] Maas, J. J., de Wilde, R. B., Aarts, L. P., Pinsky, M. R. & Jansen, J. R. Determination

of vascular waterfall phenomenon by bedside measurement of mean systemic filling

pressure and critical closing pressure in the intensive care unit. Anesthesia and Anal-

gesia 114, 803–810 (2012).

[190] Yonas, H. & Pindzola, R. R. Physiological determination of cerebrovascular reserves

and its use in clinical management. Cerebrovascular and Brain Metabolism Reviews 6,

325–340 (1994).

[191] Kaczmarska, K. et al. Critical closing pressure during controlled increase in intracra-

nial pressure-comparison of three methods. Ieee Transactions on Biomedical Engineer-

ing 65, 619–624 (2018).

[192] Varsos, G. V. et al. A noninvasive estimation of cerebral perfusion pressure using criti-

cal closing pressure. Journal of Neurosurgery 123, 638–648 (2015).

[193] Lopez-Magana, J. A. et al. Critical closing pressure: comparison of three methods.

Journal of Cerebral Blood Flow and Metabolism 29, 987–993 (2009).

[194] Elizondo, L. Critical Closing Pressure by Diffuse Correlation Spectroscopy in a Neonatal

Piglet Model (Springer, Cham, 2021).

[195] Lafontant, A. et al. Comparison of optical measurements of critical closing pressure

acquired before and during induced ventricular arrhythmia in adults. Neurophotonics

9, 11 (2022).



References 148

[196] Westerhof, N., Lankhaar, J. W. & Westerhof, B. E. The arterial windkessel. Medical I&

Biological Engineering I& Computing 47, 131–141 (2009).

[197] Varsos, G. V. et al. Critical closing pressure determined with a model of cerebrovascular

impedance. Journal of Cerebral Blood Flow and Metabolism 33, 235–243 (2013).



149

APPENDIX A

AUXILIARY STEPS FOR CHAPTER 2

A.1 Section 1

Since L is a function of Ω̂, t , and r⃗ = (r1,r2,r3), where rn are the components of r⃗ in a coor-

dinate system, the infinitesimal change over the radiance when it travels a distance dr at a

specific (and fixed) direction Ω̂ is:

dL = ∂L

∂t
d t +∑

i

∂L

∂ri
dri = ∂L

∂t
d t +∇⃗L ·dr⃗ = ∂L

∂t
d t + v d t Ω̂ · ∇⃗L. (A.1)

Here, dr⃗ = dr r̂ = v d tΩ̂, where v = c/n is the speed of light in the medium with refractive

index n. From now on, we will omit the redundant dependences over the variables. We will

also assume v as a constant to avoid writing v = v (⃗r , t ). However, this is not a significant

restrictive condition since the RTE is still valid if v is constant between two scattering events

and independent of Ω̂.

In the medium, radiance may decrease by absorption and scattering events through

dr , and it may also increase due to scatterings resulting in a photon traveling at Ω̂. Also,

let’s denote Q (⃗r ,Ω̂, t ) as the power emitted per unit of volume by the sources at r⃗ in the Ω̂

direction at time t . Numerically speaking:

dL =−µaL(Ω̂)dr −µs

∫
Ω̂∗

L(Ω̂) f (Ω̂,Ω̂
′
)dΩ

′
dr +µs

∫
Ω̂∗

f (Ω̂
′
,Ω̂)L(Ω̂

′
)dΩ

′
dr +Q (⃗r ,Ω̂, t )dr,

where f (Ω̂,Ω̂
′
) is the normalized differential cross-section, i.e., the probability of a certain

photon traveling at the Ω̂
′
, ends up traveling at the Ω̂ direction after a scattering event.

Ω̂∗ denotes that the integral is over all Ω̂
′

except Ω̂. Now, let’s sum and subtract the term

µsL(Ω̂) f (Ω̂,Ω̂)dΩdr to the right side of the previous equation. Grouping the negative term

with the second term on the right side, we have:
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−µs

∫
Ω̂∗

L(Ω̂) f (Ω̂,Ω̂
′
)dΩ

′
dr −µsL(Ω̂) f (Ω̂,Ω̂)dΩ̂dr =

−µsL(Ω̂)

(∫
Ω̂∗

f (Ω̂,Ω̂
′
)dΩ

′
dr + f (Ω̂,Ω̂)dΩ̂dr

)
=

−µsL(Ω̂)

(∫
4π

f (Ω̂,Ω̂
′
)dΩ

′
dr

)
=−µsL(Ω̂) v d t .

Using the same logic, grouping the positive term with the third term makes the integral sum

over all 4π steradians. Thus:

dL =−(µa +µs)L(Ω̂)v d t +µs

∫
4π

L(⃗r ,Ω̂
′
, t ) f (Ω̂,Ω̂

′
)dΩ

′
v d t +Q (⃗r ,Ω̂, t )dr. (A.2)

By making Equation A.1 equal to Equation A.2 and dividing all terms by dr = v d t , we obtain

the RTE:

1

v

∂L

∂t
+ Ω̂ · ∇⃗L =−(µa +µs)L+Q (⃗r ,Ω̂, t )+µs

∫
4π

L(⃗r ,Ω̂
′
, t ) f (Ω̂,Ω̂

′
)dΩ

′
. (A.3)

A.2 Section 2

For biological tissue, the radiance is nearly isotropic, so we can expand L using a spherical

harmonics basis:

L(⃗r ,Ω̂, t ) =
N∑

l=0

l∑
m=−l

√
2l +1

4π
φlm (⃗r , t )Ylm(Ω̂),

and keep only the terms up to N = 1, obtaining:

L(⃗r ,Ω̂, t ) = 1p
4π

φ00Y00 +
√

3

4π

(
φ1−1Y1−1 +φ10Y10 +φ11Y11

)
.

Using the definition of Ylm , the equation above becomes:

L(⃗r ,Ω̂, t ) = 1

4π
φ00 + 3

4π

(
1p
2
φ1−1si nθe−iϕ+φ10cosθ− 1p

2
φ11si nθe iϕ

)
.

Defining φ00 ≡ φ(⃗r , t ) as a quantity independent of orientation, and writing the complex

exponentials as trigonometric functions:
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L(⃗r ,Ω̂, t ) = 1

4π
φ(⃗r , t )

+ 3

4π

(
1p
2

si nθcosϕ(φ1−1 −φ11)− ip
2

si nθsi nϕ(φ1−1 +φ11)+ cosθφ10

)
.

Now, writing that si nθcosϕ= Ω̂ · x̂, si nθsi nϕ= Ω̂ · ŷ e cosθ = Ω̂ · ẑ, the equation becomes:

L(⃗r ,Ω̂, t ) = 1

4π
φ(⃗r , t )+ 3

4π

(
1p
2

(φ1−1 −φ11)x̂ − ip
2

(φ1−1 +φ11)ŷ +φ10ẑ

)
· Ω̂.

Defining J⃗ (⃗r , t ) ≡ 1p
2

(φ1−1 −φ11)x̂ − ip
2

(φ1−1 +φ11)ŷ +φ10ẑ, finally:

L(⃗r ,Ω̂, t ) = 1

4π
φ(⃗r , t )+ 3

4π
J⃗ (⃗r , t ) · Ω̂≡ L1(⃗r ,Ω̂, t ). (A.4)

A.3 Section 3

As J⃗ (⃗r , t ) and φ(⃗r , t ) come from L, there must be a relation between them. By integrating

Equation 2.2 over all solid angles, we have:

1

v

∂

∂t

∫
L dΩ+

∫
Ω̂ · ∇⃗L dΩ=−

∫
(µa +µs)LdΩ+

∫
Q (⃗r ,Ω̂, t )dΩ

+
∫
µs

∫
L(⃗r ,Ω̂, t ) f (Ω̂,Ω̂

′
)dΩ

′
dΩ.

We can now make two assumptions. The first one is that µa and µs are independent of

Ω̂. The second is that f (Ω̂,Ω̂
′
) = f (Ω̂ ·Ω̂′

), i.e., f (Ω̂,Ω̂
′
) depends only on the angle between Ω̂

and Ω̂
′
. In practice, these approximations hold for cases where the medium is symmetrical

by rotations at a length of ∼ ℓs ,ℓa , where the next interaction will occur. Note that both

assumptions are similar and usually work well for biological tissue.

To continue, let’s assume that Ω̂= ẑ, so we can solve the previous equation using spher-

ical coordinates. This is a reasonable approach since the equation is integrated over all Ω̂
′
.

Thus, Ω̂·Ω̂′ = cosθ
′

and
∫

f (Ω̂·Ω̂′
)dΩ

′ = ∫
f (cosθ

′
)dΩ

′ = 1, since f is a normalized function.

Therefore: ∫
L(⃗r ,Ω̂, t )

(∫
f (Ω̂ · Ω̂′

)dΩ
′)

dΩ=
∫

L(⃗r ,Ω̂, t )dΩ=φ(⃗r , t ).

The integral of the RTE over all solid angles results in:

1

v

∂φ

∂t
+

∫
Ω̂ · ∇⃗L dΩ=−(µa +µs)φ+

∫
Q (⃗r ,Ω̂, t )dΩ+µsφ.
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Defining the power per unit of volume emitted radially outside the infinitesimal volume in r⃗

at time t as
∫

Q (⃗r ,Ω̂, t )dΩ≡ S (⃗r , t ):

S (⃗r , t ) = 1

v

∂φ

∂t
+µaφ+

∫
Ω̂ · ∇⃗L dΩ.

On the other hand, the divergence of J⃗ is:

∇⃗ · J⃗ = ∇⃗ ·
∫

L Ω̂dΩ=
∫ (⃗

∇L · Ω̂+L∇⃗ · Ω̂
)

dΩ=
∫

∇⃗L · Ω̂dΩ,

since ∇⃗ · Ω̂= 0. Finally:

S (⃗r , t ) = 1

v

∂φ

∂t
+µaφ+∇⃗ · J⃗ . (A.5)

Taking L as L1 in the RTE, i.e., using Equation 2.3 in Equation 2.2, results in

1

v

∂

∂t

( 1

4π
φ+ 3

4π
J⃗ · Ω̂

)
+ Ω̂ · ∇⃗

( 1

4π
φ+ 3

4π
J⃗ · Ω̂

)
=

− (µa +µs)
( 1

4π
φ+ 3

4π
J⃗ · Ω̂

)
+Q (⃗r ,Ω̂, t )+µs

∫
4π

( 1

4π
φ+ 3

4π
J⃗ · Ω̂′)

f (Ω̂,Ω̂
′
)dΩ

′
.

Multiplying both sides by Ω̂, integrating over all solid angles, and using the fact that, for any

vector V⃗ ,

i)
∫
Ω̂dΩ= 0⃗,

ii)
∫

(V⃗ · Ω̂)Ω̂dΩ= 4π
3 V⃗ , and

iii)
∫
Ω̂[Ω̂ · (⃗∇(V⃗ · Ω̂)

)
]dΩ= 0⃗,

the approximation becomes:

1

v

∂ J⃗

∂t
+ 1

3
∇⃗φ=−(µa +µs )⃗J +

∫
Q (⃗r ,Ω̂, t )Ω̂dΩ

+ µs

4π

[
φ

∫ (∫
f (Ω̂ · Ω̂′

)dΩ
′)
Ω̂dΩ+3

∫ (∫ (
J⃗ · Ω̂′)

f (Ω̂ · Ω̂′
)dΩ

′)
Ω̂dΩ

]
.

Since f is normalized, the second to last term on the right side vanishes. For the last one, we

again take Ω̂= ẑ to solve it in spherical coordinates. Thus:

∫ (
J⃗ · Ω̂′)

f (Ω̂ · Ω̂′
)dΩ

′ =∫
f (cosθ

′
)[si nθ

′
cosφ

′
Jx + si nθ

′
si nφ

′
Jy + cosθ

′
Jz]si nθ

′
dθ

′
dφ

′ =∫
f (cosθ

′
)cosθ

′
Jz dΩ

′ = Jz

∫
f (cosθ

′
)cosθ

′
dΩ

′ ≡ g Jz ,
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where g ≡ ∫
f (cosθ

′
)cosθ

′
dΩ

′ = 〈cosθ〉 is the anisotropic factor. The closer g is to 1, the

greater the probability that the photon will travel in a direction close to the incident one

after a scattering event. However, since ẑ is an arbitrary direction, the previous calculations

show that the component of J⃗ that survives the integration is the one parallel to Ω̂, J⃗ · Ω̂.

Therefore, the last term is 3 g
∫

(⃗J · Ω̂)Ω̂dΩ= 4πg J⃗ , and approximating L by L1 results in:

1

v

∂ J⃗

∂t
+ 1

3
∇⃗φ=−(µa +µs )⃗J +

∫
Q (⃗r ,Ω̂, t )Ω̂dΩ+ µs

4π
[4πg J⃗ ] ⇒

∇⃗φ=−3

v

∂ J⃗

∂t
−3(µa +µs )⃗J +3

∫
Q (⃗r ,Ω̂, t )Ω̂dΩ+3µs g J⃗ .

At this point, we will assume isotropic sources, Q (⃗r ,Ω̂, t ) =Q (⃗r , t ), and slow temporal varia-

tion, 3∂ J⃗
v∂t << 3(µa +µs − gµs )⃗J :

∇⃗φ=−3(µa +µs )⃗J +3µs g J⃗ .
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APPENDIX B

EXTRAPOLATED-ZERO BOUNDARY CONDI-

TION

Usually, we assume that a non-scattering medium, usually air, involves the turbid

medium under study. Thus, rarely do photons that leave the medium enter again since their

direction of propagation remains approximately constant. As DOS assumes sources at a dis-

tance ℓtr inside the medium, the radiance that enters at some specific location on the inter-

face must be due to reflections of the light trying to escape (see Figure B.1). For simplicity, we

will assume the refraction index of the outside medium as nout = 1 and let n be the index of

the turbid media. If this is not the case, assume n as the ratio between the refraction indexes.

Figure B.1: Illustration of internal reflection of the radiance in an interface.

In terms of the flux, the radiance entering the medium in a given interface position is:

J =
∫

Li n(Ω̂)Ω̂dΩ · ẑ =
∫

RF (Ω̂)Lout (Ω̂)Ω̂dΩ · (−ẑ),

where RF (Ω̂) is the Fresnel reflection coefficient. Using Equation 2.3 on the left side of the

previous equation:

J =
∫ π

2

0

∫ π
2

0

(
φ

4π
+ 3 J⃗

4π
· Ω̂

)
Ω̂ · ẑ si nθdϕdθ =
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∫ π
2

0

∫ π
2

0

(
φ

4π
+ 3 J⃗

4π
· (si nθcosϕx̂ + si nθsi nϕŷ + cosθẑ)

)
cosθsi nθdϕdθ⇒

J = φ

4
+ Jz

2
, (B.1)

where Jz = J⃗ · ẑ. Similarly, using the right side:

J =
∫ π

2

0

∫ π
2

0
RF (θ)L(π−θ,ϕ)(−cos(π−θ))si n(φ−θ)dϕdθ =

∫ π
2

0

∫ π
2

0
RF (θ)

(
φ

4π
− 3Jz

4π
cosθ

)
cosθsi nθdϕdθ⇒

J = Rφ
φ

4
−R J

Jz

2
, (B.2)

where:

Rφ ≡
∫ π

2

0
2si nθcosθRF (θ)dθ;

R J ≡
∫ π

2

0
3si nθcos2θRF (θ)dθ.

To remember, for unpolarized light where the medium has a higher refraction index than the

outside, RF (θ) = 1 if θc ≤ θ ≤π/2, where θc is the critical angle (nsi nθc = 1), and:

RF (θ) = 1

2

(
ncosθ

′ − cosθ

ncosθ′ + cosθ

)2

+ 1

2

(
ncosθ− cosθ

′

ncosθ+ cosθ′

)2

,

if 0 ≤ θ ≤ θc . Here, θ
′

is such that nsi nθ = si nθ
′
. Merging Equation B.1 and Equation B.2:

φ=−2
1+Re f f

1−Re f f
Jz ,

where Re f f ≡ (Rφ+R J )/(2−Rφ+R J ). Using 2.6 in the previous equation, we obtain:

φ= 2

3ℓtr

1+Re f f

1−Re f f

∂φ

∂z
≡ zb

∂φ

∂z
, (B.3)

since ∂φ/∂z = (⃗∇φ)z . Here,

zb = 2

3

1

ℓtr

1+Re f f

1−Re f f
. (B.4)

As the integral evaluated so far was over 2π steradians instead of 4π, the boundary

condition described in Equation B.3 is known as partial-flux boundary condition. However,

it is hard to obtain analytical solutions for Equation 2.9 using this condition. An alternative

to this condition involves expanding φ at the interface. Assuming a linear approximation as

the outside medium is not as scattering as the inside:
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φ(z) ≈φ(0)+ ∂φ

∂z

∣∣∣∣
z=0

z.

Using B.3:

φ(z) =φ(0)+ φ(0)

zb
z,

which means that:

φ(−zb) = 0. (B.5)

This condition is known as extrapolated-zero boundary condition.
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APPENDIX C

OBTAINING THE G1(sn, z,ω) FUNCTION FOR

THE LAYERED MODEL

Now, our problem is illustrated in Figure C.1 based on Liemert’s paper [29]. As data

acquisition is performed on the first layer (surface), we want to solve the Photon Diffusion

Model in the region 0 ≤ z ≤ l1, finding φ1. The steps shown in the paper lead to the solution

of layer k:

Figure C.1: Scheme of the layered cylinder geometry

φk (ϕ,ρ) = 1

π(a ′)2

∞∑
n=1

Gk (sn , z,ω)
J0(snρ)

J 2
m+1(a ′sn)

,Lk−1 ≤ z ≤ Lk ,

where Lk = l1 + l2 +· · ·+ lk , a′ = a + zbk , J is the Bessel function and a
′
sn is the nth root of J .

As there are only sources in the first layer, the paper discuss that we can write that G is the

solution of:

∂2G1(sn , z,ω)

∂z2
−α2

1G1(sn , z,ω) =− 1

D1
δ(z − zo),0 ≤ z ≤ l1 (C.1)
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∂2Gk (sn , z,ω)

∂z2
−α2

kGk (sn , z,ω) = 0,k ̸= 1,Lk1 ≤ z ≤ Lk (C.2)

where Dk = 1
3µ

′
sk

and

α2
k ≡ s2

n + µak

Dk
+ iω

Dk c
.

Let’s solve equation C.1 first. We know that a G1 solution is a linear combination of

a homogeneous and a particular solution. I will first find the particular solution. In other

words, let’s solve:

∂2G(sn , z,ω)

∂z2
−α2G(sn , z,ω) =− 1

D
δ(z − zo)

where we omit the subindex 1. Performing a Fourier transformation:

∫ ∞

−∞
∂2G(sn , z,ω)

∂z2
e−i kzd z −α2

∫ ∞

−∞
G(sn , z,ω)e−i kzd z =

− 1

D

∫ ∞

−∞
δ(z − zo)e−i kzd z ⇒

−
∫ ∞

−∞
(−i k)

∂G(sn , z,ω)

∂z
e−i kzd z −α2G̃ =− 1

D
e−i kzo ⇒

−i k
∫ ∞

−∞
(−i k)Ge i kzd z −α2G̃ =−e−i kzo

D
⇒

−k2G̃ −α2G̃ =−e−i kzo

D
⇒

G̃ = 1

D

e−i kzo

α2 +k2
(C.3)

where we can find G through the inverse Fourier transform of C.3:

G(z) = 1

2πD

∫ ∞

−∞
e−i kzo

α2 +k2
e i kzdk ⇒

G p (z) = 1

2πD

∫ ∞

−∞
e i k(z−zo )

α2 +k2
dk (C.4)

where p denotes that it is a particular solution. Now, let’s evaluate:

I =
∫ ∞

−∞
e i k(z−zo )

α2 +k2
dk =

∫ ∞

−∞
e i k(z−zo )

(k + iα)(k − iα)
dk

To this end, we must use the complex plane, as illustrated in Figure C.2, writing k =
Rek+i Imk as a complex number. The poles are located at k =±iα. We must split the solution

into two cases to properly solve the problem.
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Figure C.2: Complex plane used for integral evaluation. Note the presence of poles and paths used.

i) z > zo

The exponential on integrating becomes:

e((z−zo )i (Rek+i Imk ) = e((z−zo )(i Rek−Imk )).

The absolute value of this term is exp(−(z −zo)Imk ). As z −zo > 0 in this case, we must have

Imk > 0, so the integral does not diverge for large Imk . Thus, I will use the residue theorem

over the red (r) path in Figure C.2. This path can be separated into the original integral I and

the red semicircle (scr). So: ∮
r
= I +

∫
scr

= 2πi
∑

j
Res j ,

where Res j is the j-th residue of the integrating inside the red path. To properly evaluate I , I

must let Imk →∞, i.e., assume the radius of scr goes to ∞. In this limit, the integral over scr

goes to zero according to Jordan’s theorem.

The general expression to evaluate a n-th order residue at the pole xo is:

Res(n)
xo

f (x) = lim
x→xo

1

(n −1)!

d n−1

d xn−1
{(x −xo)n f (x)}.

So, the residue at k = iα is:

Res = lim
k→iα

(k − iα)
e i k(z−zo )

(k + iα)(k − iα)
= e−α(z−zo )

2iα
,

thus:

I = 2πi

2iα
e−α(z−zo ) ⇒
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I = π

α
e−α|z−zo |, (C.5)

as |z − zo | = (z − zo).

ii) z < zo

The integrating exponential becomes:

e((z−zo )i (Rek+i Imk )) = e((z−zo )(i Rek−Imk )).

The absolute value is exp(−(z − zo)Imk ). As z − zo < 0, we must have Imk < 0, so the

integral does not diverge for a large Imk limit. Thus, I will use the residue theorem over the

blue (b) path in Figure C.2. This path can be split into the original integral I and the blue

semicircle (scb). So: ∮
b
= I +

∫
scb

=−2πi
∑

j
Res j ,

since now the integration is clockwise. To recover I properly, I must once more let Imk →∞,

which makes the semicircle radius large enough so that the integral over scb goes to zero

according to Jordan’s theorem. The residue at k =−iα is:

Res = lim
k→−iα

(k + iα)
e i k(z−zo )

(k + iα)(k − iα)
=−eα(z−zo )

2iα
,

so:

I = 2πi

2iα
eα(z−zo ) ⇒

I = π

α
e−α|z−zo | (C.6)

as |z − zo | = −(z − zo).

As I on both conditions are the same, we can use C.5 or C.6 to write:

G p
1 = e−α1|z−zo |

2D1α1
, (C.7)

where I put back the subindex 1.

The next step is to find the homogeneous contribution of the solution. All homoge-

neous equations for G are essentially the same regardless of the layer:

∂2Gh
k

∂z2
−α2

kGh
k = 0 ⇒

Gh
k = Ak eαk z +Bk e−αk z , (C.8)

where h denotes a homogeneous solution. Finally, using C.7 and C.8, we can write all solu-

tions for each layer:
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G1(sn ,ω, z) = A1eα1z +B1e−α1z + e−α1|z−zo |

2D1α1
,0 ≤ z ≤ l1 (C.9)

Gk (sn ,ω, z) = Ak eαk z +Bk e−αk z ,k > 1,Lk−1 ≤ z ≤ Lk (C.10)

The constants Ak and Bk are yet to be determined. There are four kinds of boundary

conditions to find all free constants. The first two are related to the extrapolated-zero fluency

boundary condition of the first and last layer:

1) G1(z =−zb1) = 0;

2) GN (z = Lk + zbN ) = 0;

The third is related to the flux continuity at the interface between two layers:

3) Dk
∂Gk
∂z (z = Lk ) = Dk+1

∂Gk+1
∂z (z = Lk );

And the last is related to the fluency continuity at the interface between two layers:

4) n2
k+1Gk (z = Lk ) = n2

kGk+1(z = Lk )

With Equations C.7, C.8 and these four boundary conditions, the constants provided

in the paper can be determined. For the two-layer model, k ranges up to 2, so there are only

four constants to be found (A1, B1, A2, and B2), yet only two constants are of interest (A1 and

B1).
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APPENDIX D

ALTERNATIVE GEOMETRIES WHERE I

SOLVED THE PHOTON DIFFUSION MODEL

In this appendix, I aim to exhibit the highlights of the alternative solutions I developed

for the Photon Diffusion Model. Figure D.1 illustrates the two geometries I approached. In

this figure, variables with subindex o are related to source location, while the superindex *

refers to the extrapolated-zero boundary condition surfaces (refer to Appendix B). The first

one (Figure D.1a) is a homogeneous sphere, where I aimed to obtain an analytical equation

that takes into account the curvature at the acquisition interface. The second (Figure D.1b)

is a composition of a cylinder and a cylinder shell. Here, my goal was to obtain a model that

simultaneously accounts for tissue heterogeneity and curvature. For this second solution, I

thank a lot Professor Jayme Vaz for the help and meaningful discussions. Unfortunately, both

solutions I achieved are not numerically robust, which makes me use a numerical model to

solve the forward/inverse problem.

Figure D.1: Alternative geometries in which I solved the Photon Diffusion Model. a) Homogeneous sphere. b)
Two-layered concentric cylinders.
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D.1 Homogeneous Sphere

In spherical coordinates, the Photon Diffusion Model becomes:

1

r 2

∂

∂r

(
r 2∂φ

∂r

)
+ 1

r 2si nθ

∂

∂θ

(
si nθ

∂φ

∂θ

)
+ 1

r 2si n2θ

∂2φ

∂ϕ
−k2φ=

− 1

Dr 2
δ(r − ro)δ(cosθ− cosθo)δ(ϕ−ϕo),

where the source is located at the position (ro ,θo ,ϕo). It is easier to solve this problem by

expanding φ in terms of the spherical harmonics Ylm :

φ=
∞∑

l=0

l∑
m=−l

Y ∗
lm(θo ,ϕo)Yl m(θ,ϕ)Gl (r,ro),

where:

Ylm = (−1)m

√
2l +1

4π

(l −m)!

(l +m)!
e i mϕP m

l (cosθ),

where P m
l are the Legendre polynomials. This is a useful expansion since:

(
1

si n2θ

∂2

∂ϕ2
+ 1

si nθ

∂

∂θ

(
si nθ

∂

∂θ

))
Ylm =−l (l +1)Ylm ,

∂

∂ϕ
Ylm = i mYl m ,

∞∑
l=0

l∑
m=−l

Y ∗
l m(θo ,ϕo)Yl m(θ,ϕ) =

∞∑
l=0

l∑
m=−l

θ(cosθ− cosθo)δ(ϕ−ϕo).

Thus, the equation becomes:

∂

∂r

(
r 2∂Gl

∂r

)
− l (l +1)Gl −k2r 2Gl =− 1

D
δ(r − ro) ⇒

r 2 d 2Gl

dr 2
+2r

dGl

dr
− (l (l +1)+k2r 2)Gl = δ(r − ro). (D.1)

Let u ≡ kr . Thus, d/dr = k ·d/du and d 2/dr 2 = k2 ·d 2/du2. Thus:

u2 d 2Gl

du2
+2u

dG

du
+ (u2 + l (l +1))Gl = 0

for r ̸= ro . Now let v =−i u, d/du =−i ·d/d v , and d 2/du2 =−d 2/d v2. Thus:

v2 d 2G

d v2
+2v

dG

d v
+ (v2 − l (l +1))G = 0.
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This equation is the so-called spherical Bessel equation, whose solution is:

Gl = A jl (v)+B yl (v) = A jl (−i kr )+B yl (−i kr ) ⇒

Gl = A

√
π

−2i kr
Jl+1/2(−i kr )+B

√
π

−2i kr
Yl+1/2(−i kr ), (D.2)

where jl and yl are the spherical Bessel functions of the first and second kinds, while Jl and

Yl are the Bessel functions of the first and second kinds.

Now, let’s split this solution into two regions. In r ≤ ro , we must have G i
l = A jl (−i kr )

as yl diverges at r = 0. In the region r ≥ ro , G i i
l = B jl (−i kr )+C yl (−i kr ). Here, using the

extrapolated-zero boundary condition, we must have G i i
l (r ∗) = 0, where r ∗ = R+zb , being R

the sphere radius. Thus:

B = −C yl (−i kr ∗)

jl (−i kr ∗)
⇒

G i i
l =−C

(
yl (−i kr ∗) jl (−i kr )

jl (−i kr ∗)
− yl (−i kr ) jl (−i kr ∗)

jl (−i kr ∗)

)
≡ −C

jl (−i kr ∗)
Fl (kr ∗;kr )

To find the constants A and C , we must deal with the continuity of G at r = ro . There

are two conditions. The first one is:

G i
l (ro) =G i i

l (ro) ⇒ A jl (−i kro) = −C

jl (−i kr ∗)
Fl (kr ∗;kro) ⇒

A = −C Fl (kr ∗;kro)

jl (−i kr ∗) jl (−i kro)
.

The second one comes from integrating the remaining radial equation from r = ro −ε
to r = ro +ε with ε→ 0:∫ ro+ε

ro−ε

(
d

dr

(
r 2 dGl

dr

)
− (k2r 2 + l (l +1))Gl

)
dr =

∫ ro+ε

ro−ε
−δ(r − ro)

D
dr.

As Gl is continuous at ro , the equation becomes:

r 2
o

(dG i i
l (ro)

dr
− dG i

l (ro)

dr

)
=− 1

D
.

Using the relationship between A and C:

i kC F
′
l (kr ∗;kro)

jl (−i kr ∗)
− i k

C Fl (kr ∗;kro)

jl (−i kr ∗) jl (−i kro)
j
′
l (−i kro) =− 1

r 2
o D

⇒
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C =− 1

i kr 2
o D

jl (−i kr ∗) jl (−i kro)

F
′
l (kr ∗;kro) jl (−i kro)−Fl (kr ∗;kro) j

′
l (−i kro)

.

Thus:

G i i
l (r,ro) =− C

jl (−i kr ∗)
Fl (kr ∗;kr ),

and, finally:

φ(r ≥ ro) =
∞∑

l=0

l∑
m=−l

Y ∗
lm(θo ,ϕo)Ylm(θ,ϕ)G i i

l (r,ro).

To use this equation in the forward problem, one must evaluate φ(r = R,θ = θD ,ϕ =
ϕD ), where θD and ϕD are the angular positions of the detectors.

D.2 Two-layered Concentric Cylinders

Let’s start splitting the problem into two regions, ρ ≤ R1 and ρ ≥ R1. In the inner cylinder, the

Photon Diffusion Model in cylindrical coordinates is:

∂2φ1

∂ρ2
+ 1

ρ

∂φ1

∂ρ
+ 1

ρ2

∂2φ1

∂θ2
+ ∂2φ1

∂z2
−k2

1φ1 = 0.

Dealing with the variables θ and z with Fourier transforms, i.e.:

φ̃1(ρ,m,n) ≡ 1

2πz∗
1

∫ π

−π

∫ z∗1

−z∗1
φ1(ρ,θ, z)e−i mθsi n(Mn(z + z∗

1 ))d z dθ,

φ1(ρ,θ, z) =
∞∑

m=−∞

∞∑
n=1

φ̃1(ρ,m,n)e i mθsi n(Mn(z + z∗
1 )),

where Mn = nπ/(2z∗
1 ), z∗

1 = h + zb1 where the cylinder high is 2h, n = 0,1,2, ..., m ∈ Z, we

have, by applying a Fourier transform in the Photon Diffusion Model:

∂2φ̃1(ρ,m,n)

∂ρ2
+ 1

ρ

∂φ̃1(ρ,m,n)

∂ρ
− m2

ρ2
φ̃1(ρ,m,n)− (M 2

n +k2
1)φ̃1(ρ,m,n) = 0.

The previous equation is a modified Bessel equation of order m, whose general solu-

tion is:

φ̃1 = Amn Im(αnρ)+BmnKm(αnρ),

where α2
n = M 2

n +k2
1 and Im and Km are the modified Bessel functions. As Km diverges when

ρ→ 0, Bmn = 0 and:
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φ̃1 = Amn Im(αnρ) ⇒

φ1(ρ,θ, z) =
∞∑

m=−∞

∞∑
n=1

Amn Im(αnρ)e i mθsi n(Mn(z + z∗
1 )). (D.3)

For ρ ≥ R1, the equation becomes:

∂2φ1

∂ρ2
+ 1

ρ

∂φ1

∂ρ
+ 1

ρ2

∂2φ1

∂θ2
+ ∂2φ1

∂z2
−k2

2φ1 =− 1

D2

1

ρ
δ(ρ−ρo)δ(θ−θo)δ(z − zo).

Similar to the previous approach, I will use Fourier transforms to solve the problem in

θ and z with z∗
1 → z∗

2 and Mn → M̃n = nπ/(2z∗
2 ). Thus:

ρ
∂2φ̃2(ρ,m,n)

∂ρ2
+ ∂φ̃2(ρ,m,n)

∂ρ
− m2

ρ
φ̃2(ρ,m,n)− (M̃ 2

n +k2
2)ρφ̃1(ρ,m,n)

=− 1

D2
δ(ρ−ρo)e−i mθo si n(M̃n(zo + z∗

2 )) ≡−Fδ(ρ−ρo). (D.4)

As is the homogeneous spherical case, I will split this region (ρ ≥ R1) into two subre-

gions. For R1 ≤ ρ < ρo , the right-hand side of the previous equation is 0, and the solution

is:

φ̃i
2 = AIm(κρ)+BKm(κρ),

where κ2 = M̃ 2
n +k2

2 . For ρo < ρ ≤ ρ∗ = R2 + zb2, the solution is:

φ̃i i
2 =C

′
Im(κρ)+D

′
Km(κρ).

using that φ̃2(ρ∗) = 0, we obtain that C
′ =−D

′
Km(κρ∗)/Im(κρ∗). Defining D ≡−D

′
/Im(κρ∗):

φ̃i i
2 = D(Km(κρ∗)Im(κρ)− Im(κρ∗)Km(κρ)) ≡ DΥm(κρ∗;κρ).

Constants A, B, and D might be related by analyzing φ̃2 at ρ = ρo . Since it is a continu-

ous function:

φ̃i
2(ρo) = φ̃i i

2 (ρo) ⇒

DΥm(κρ∗;κρo) = AIm(κρo)+BKm(κρo). (D.5)

Equation D.4 may be written as:
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∂

∂ρ

(
ρ
∂φ̃2

∂ρ

)
−

(
m2

ρ
+ (M̃ 2

n +k2
2)ρ

)
φ̃2 =−Fδ(ρ−ρo).

Using the same strategy as in the spherical homogeneous case (i.e., integrating from

ρ = ρo −ε to ρ = ρo +ε and letting ε→ 0):

∂φ̃i i
2 (ρo)

∂ρ
− ∂φ̃i

2(ρo)

∂ρ
= −F

ρo
⇒

DΥ
′
m(κρ∗;κρo)−

(
AI

′
m(κρo)+BK

′
m(κρo)

)
= −F

κρo
. (D.6)

Using Equation D.5 into Equation D.6:

A
(
Im(κρo)K

′
m(κρo)− I

′
m(κρo)Km(κρo)

)
−D

(
Υm(κρ∗;κρo)K

′
m(κρo)−Υ′

m(κρ∗;κρo)Km(κρo)
)
= −F

κρo

⇒ A = D
Υm(κρ∗;κρo)K

′
m(κρo)−Υ′

m(κρ∗;κρo)Km(κρo)

W [Im ,Km](κρo)
− F

κρo

Km(κρo)

W [Im ,Km](κρo)
, (D.7)

where W [Im ,Km](x) is the Wronskian of Im and Km , i.e., W [Im ,Km](x) = Im(x)K
′
m(x) −

I
′
m(x)Km(x). Thus:

A = DKm(κρ∗)− F

κρo

Km(κρo)

W [Im ,Km](κρo)
.

Using it to solve for B in Equation D.5:

B = D
Υm(κρ∗)

Km(κρo)
−D

Km(κρ∗)Im(κρo)

Km(κρo)
+ F

κρo

Im(κρo)

W [Im ,Km](κρo)
⇒

B =−D Im(κρ∗)+ F

κρo

Im(κρo)

W [Im ,Km](κρo)
. (D.8)

As W [Im ,Km](x) = 1/x, φ̃i
2 = AIm(κρ)+BKm(κρ) becomes, using Equations D.7 and

D.8:

φi
2 = DΥm(κρ∗;κρ)+FΥm(κρo ;κρ).

We finally can write:
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φ̃2 =
DΥm(κρ∗;κρ)+FΥm(κρo ;κρ),R1 ≤ ρ ≤ ρo ,

DΥm(κρ∗;κρ),ρo ≤ ρ ≤ ρ∗.

To standardize the notation used in φ̃1, let’s write:

Θmn(ρo ,θo , zo ,ρ) = 1

D2
e−i mθo si n(M̃n(zo + z∗

2 ))Υm(βnρo ;βn ,ρ)

βn = κ,Dmn = D.

Thus:

φ̃2 =
DmnΥm(βnρ

∗;βnρ)+Θmn(ρ),R1 ≤ ρ ≤ ρo ,

DmnΥm(βnρ
∗;βnρ),ρo ≤ ρ ≤ ρ∗,

and to obtain the actual solution:

φ2(ρ,θ, z) =
∞∑

m=−∞

∞∑
n=0

φ̃2(ρ,m,n)e i mθsi n(M̃n(z + z∗
2 )).

φ2 for ρ ≥ R1 is the expression we aim to use since it is related to the acquisition data

interface. Still, there is the Dmn constant to be determined. Recalling that:

φ̃1 = Amn Im(αnρ),

there is two conditions that φ̃ must attend at ρ = R1. From now on, I will assume z = 0

without loss of generality. The first one is:

n2
2φ̃1(R1) = n2

1φ̃2(R1),

where ni is the refractive index of the region i . Thus:

Amn =
(

DmnΥm(βnρ
∗;βnR1)

Im(αnR1)
+ Θmn(R1)

Im(αnR1)

)(n1

n2

)2
. (D.9)

The second one is:

D1
∂φ̃1(R1)

∂ρ
= D2

∂φ̃2(R1)

∂ρ
⇒

D1 Amnαn I
′
m(αnR1) = D2DmnβnΥ

′
m(βnρ

∗;βnρ)+D2βnΘ
′
mn(R1). (D.10)

Putting Equation D.9 into Equation D.10:
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Dmn = n2
2D2βnΘ

′
mn(R1)Im(αnR1)−n2

1D1αnΘmn(R1)I
′
m(αnR1)

n2
1D1αnΥm(βnρ∗;βnR1)I

′
m(αnR1)−n2

2D2βnΥ
′
m(βnρ∗;βnR1)Im(αnR1)

.
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APPENDIX E

COUPLING FACTOR FROM A SINGLE FIBER

To illustrate the problem, let’s consider the detection procedure using an optical fiber

(Figure E.1). The recorded intensity is the integral of the radiance:

Figure E.1: Illustration of an optical fiber used as a detector to measure the emerging radiance from a turbid
medium.

I =
∫

A

∫ θc

0
si nθD(θ)

∫ 2π

0

1

4π
(φ+3 J⃗ · Ω̂)dϕdθd A,

where D is the probability of the detector successfully detects a photon and θc is the max-

imum cone angle that light can propagate through the fiber. Since Ω̂ = si nθcosϕx̂ +
si nθcosϕŷ − cosϕẑ,

I =
∫

A

∫ θc

0
D(θ)

1

2

(
φ−3Jzcosθ

)
si nθdθd A.

Using B.3:

I =
∫

A
φd A

∫ θc

0
D(θ)

1

2

(
1+ 3

2

1−Re f f

1+Re f f

)
dθ ≡C ′

∫
A
φd A

If φ is constant over the detection area, the integral over A results in Aφ and the equation

becomes:

I =Cφ,

where C = AC ′ is the coupling factor between the optical fiber and the turbid medium.
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APPENDIX F

SIEGERT ’S RELATION

This appendix discusses the highlights of [47] applied for our case. The most simple

scenario is to assume that the electric field E⃗(t ) is linearly polarized, which means it can be

assumed as linear in one dimension. Thus, the intensity is I (t ) = E∗(t )E(t ). By letting the

medium be a set of N volumes, the scattered electric field is:

E(t ) =
N∑

i=1
E j (t ).

Even in cases where the subregions inside the medium are not correlated, it is acceptable

since we can assume large N anytime. Additionally, if N → ∞ and each E j are statisti-

cally independent (〈E j Ek〉 = 〈E j 〉〈Ek〉), E(t ) and E∗(t ) are Gaussian variables of zero mean

according to the limit central theorem. The intensity autocorrelation is 〈I (t )I (t + τ)〉 =
〈E∗(t )E(t )E∗(t +τ)E(t +τ)〉. Since Gaussian variables of zero mean are described by their

second moment (variance), the previous equation, which ranges up to the 4th order in the

electric field, may be written as the sum of the second moments:

〈I (t )I (t +τ)〉 = 〈E∗(t )E(t )〉〈E∗(t +τ)E(t +τ)〉+〈E(t )E(t +τ)〉〈E∗(t )E∗(t +τ)〉

+〈E∗(t +τ)E(t )〉〈E∗(t )E∗(t +τ)〉⇒

〈I (t )I (t +τ)〉 = 〈I 〉2 +
∣∣∣〈E(t )E(t +τ)〉

∣∣∣2 +
∣∣∣〈E∗(t )E(t +τ)〉

∣∣∣2
,

since 〈E∗(t )E(t )〉 = 〈E∗(t + τ)E(t + τ)〉 = 〈E∗(0)E(0)〉. Moreover, E(t ) typically has a

exp(−iω0t ) dependence, where ω0 = 2π f , f the light frequency. Thus, E(t )E(t +τ) depends

on exp(−2iω0t ), making its time average neglectable compared to E(t )E∗(t +τ). Therefore:

g2(τ) = 1+

∣∣∣〈E∗(t )E(t +τ)〉
∣∣∣2

∣∣∣〈E∗(t )E(t )〉
∣∣∣2 ,

where g2(τ) is the intensity autocorrelation function. However, the detection of the scattered

light does not occur at a single point, but in a detection area A. Indeed, if there are several

scatterers on the medium, the scattered intensity forms a speckle pattern. The typical size
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of the speckles is d ∼ λρ/ℓ, where λ is the light wavelength, ρ is the distance between the

medium and the detector, and ℓ is the size of the scattering volume. Thus, a detector of area

A measures M = A/d 2 speckles with Gaussian statistics (as the electric field, 〈I j (t )Ik (t+τ)〉 =
〈I j 〉〈Ik〉, j ̸= k):

I (t ) =
M∑

i=1
I j (t ),

〈I j (t )Ik (t +τ)〉 = 〈I j 〉2(
1+|g1(τ)|2

)
, j = k,

g1(τ) ≡
〈E∗(t )E(t +τ)〉2

〈E∗(t )E(t )〉2

where we use the expression for g2(τ) to obtain the second equation. We now can compute

the intensity autocorrelation function, g2(τ), for real light detection:

〈I (t )I (t +τ)〉 = 〈
M∑

j ,k=1
I j (t )Ik (t +τ)〉 = 〈 ∑

j ̸=k
I j (t )Ik (t +τ)〉+〈 ∑

j=k
I J (t )Ik (t +τ)〉;

g2(τ) =
〈∑ j ̸=k I j (t )Ik (t +τ)〉+〈∑ j 〈I j 〉2(1+|g1(τ)|2)〉

〈I 〉2

=
∑

j ̸=k 〈I j 〉〈Ik〉+
∑

j 〈I j 〉2(∑
j 〈I j 〉

)2 +
∑

j 〈I j 〉2|g1(τ)|2(∑
j 〈I j 〉

)2 .

Let’s look at the first ratio on the right side of the previous equation for g2(τ). If we sum over

all values on the first sum, the values missing ( j ̸= k) are exactly the second sum over j . Thus:

g2(τ) =
(∑

j 〈I j 〉
)2

(∑
j 〈I j 〉

)2 +
∑

j 〈I j 〉2|g1(τ)|2(∑
j 〈I j 〉

)2 = 1+
∑

j 〈I j 〉2|g1(τ)|2(∑
j 〈I j 〉

)2 ⇒

g2(τ) ≡ 1+β|g1(τ)|2,

β=
∑

j 〈I j 〉2(∑
j 〈I j 〉

)2 .

Note that β, in summary, is an experimental parameter that depends on the light de-

tection setup.

However, the electric field is typically unpolarized. Thus, we can say that the light is

a composition of two polarized light and the recorded intensity is a superposition of two

independent speckle patterns with an average intensity ratio of p = 〈I1〉/〈I2〉. Assuming the
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detector is a single-mode optical fiber (i.e., only one speckle is recorded), we can neglect the

spatial average we just performed and assume the detected intensity is I (t ) = I1(t )+ I2(t )

from both polarizations. Thus:

β=
∑2

j=1 〈I j 〉2(∑2
j=1 〈I j 〉

)2 = 〈I1〉2 +〈I2〉2

〈I1〉2 +2〈I1〉〈I2〉+〈I2〉2 = p2 +1

p2 +2p +1
⇒

β= 1+p2

(1+p)2
.

In case the light is unpolarized, p = 1 and β= 0.5. However, as there are several experi-

mental phenomena that may compromise all these assumptions, it is useful not to predict β

theoretically, but to adjust around 0.5 based on the acquired data.
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APPENDIX G

CRITICAL CLOSING PRESSURE EQUATION

In this appendix, I exhibit the highlights of the deduction of Equation 7.1. A more

detailed description and exploration may be found in [163]. Briefly, the arteriole compart-

ment is modeled through an RC parallel circuit (Figure G.1), in which the capacitor mod-

els the vascular compliance. In this analogy, F plays the role of the electric current, while

the pressure gradient is the driving force (i.e., similar to the electromotive force). Assuming

that the incoming pressure at the arteriole compartment is a fraction of the arterial pres-

sure, P A = γABP (usually γ = 0.6), and the opposing pressure to the blood flows to the pre-

capillary sphincter is CrCP, Ohm’s law for this circuit is:

Figure G.1: RC circuit used to model the arteriole compartment.

P A −CrC P

F
= Z , (G.1)

where Z is the impedance. Since the resistor impedance is XR = R and the capacitor

impedance is XC = 1/iωC , where ω is the angular oscillation frequency of F :

Z = R/iωC

R +1/iωC
= R

1− iωC R

1+ω2R2C 2
≡ R(1−2π f τ)

1+ (2π f τ)2
, (G.2)

where τ = RC . As P A, CrCP and F oscillate, we can write their Fourier transforms as

P A( f ) = |P A( f )|cos(2π f t ), CrC P ( f ) = |CrC P ( f )|cos(2π f t ), and F ( f ) = |F ( f )|cos(2π f t −
ϕ( f )), where ϕ( f ) is the phase shift between the pressure quantities and the blood flow.

Thus, Equation G.1 in the frequency-domain is:

|P A( f )|− |CrC P ( f )|
|F ( f )| e iϕ( f ) = R

1+ (2π f τ)2
(1− i 2π f τ). (G.3)
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Since CrCP is constant at the heartbeat frequency ( fc ), |CrC P ( fc )| = 0 and the previous

equation becomes:

|P A( fc )|
|F ( fc )| e iϕ( fc ) = R√

1+ (2π fcτ)2
e i at an(−2π fcτ). (G.4)

By matching the phases of Equation G.4:

τ= −t an( fc )

2π fc
, (G.5)

and by matching the amplitudes:

R = |P A( fc )|
|F ( fc )|

√
1+ (2π fcτ)2. (G.6)

Taking f = 0 in Equation 2.8:

|P A(0)|− |CrC P (0)|
|F (0)| e iϕ(0) = R ⇒

〈P A〉−CrC P

〈F 〉
= R, (G.7)

since f = 0 is the frequency related to the temporal average, denoted by 〈·〉. As 〈P A〉 = γ〈ABP〉
and using G.6 in G.7:

γ〈ABP〉−CrC P

〈F 〉
= |P A( fc )|

|F ( fc )|
√

1+ (2π fcτ)2 ⇒

CrC P = γ〈ABP〉
(
1−

|ABP ( fc )|/〈ABP〉
|F ( fc )|/〈F 〉

√
1+ (2π fcτ)2

)
,

where τ is given by Equation G.5.
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO 

Projeto: Caracterização não invasiva da reatividade microvascular em pacientes 
com COVID-19 e outras doenças respiratórias graves com a espectroscopia do 
infravermelho próximo 

CAAE: 34454920.7.0000.5404 

Pesquisadores: Rickson C. Mesquita, Rodrigo M. Forti, Andrés F. Q. Soto, Italo K. Aventurato, Gabriela 

Lívio Emídio, Lígia dos Santos Roceto Ratti, Antonio L. E. Falcão 

Você está sendo convidado a participar como voluntário de uma pesquisa clínica. A participação não é 

obrigatória, e não haverá nenhum tipo de penalização ou prejuízo se você não aceitar participar. Após 

aceitar, você poderá desistir durante qualquer etapa da pesquisa, também sem qualquer prejuízo. Para 

garantir seus direitos como participante, o pesquisador fornecerá todas as informações necessárias 

através deste documento chamado “Termo de Consentimento Livre e Esclarecido”, o qual está elaborado 

em duas vias, ambas assinadas por você e pelo pesquisador. Ao finalizar os esclarecimentos, uma via 

assinada será entregue para cada parte.  

Por favor, leia com atenção e calma, aproveitando para esclarecer suas dúvidas. Se houver 

perguntas antes ou mesmo depois de assiná-lo, você poderá esclarecê-las com o pesquisador. Se preferir, 

pode levar este Termo com você para consultar seus familiares ou outras pessoas antes de decidir 

participar.  

Justificativa e objetivos: 

O objetivo geral deste projeto de pesquisa é introduzir e testar clinicamente um sistema não invasivo para 

monitorar pacientes internados em unidades de terapia intensiva (UTI) devido a síndrome respiratória 

aguda. O estudo poderá fornecer novas informações com grande potencial para melhorar os 

procedimentos clínicos, e os resultados obtidos poderão ajudar os médicos a entenderem melhor os 

efeitos da COVID-19 e outras doenças respiratórias agudas. A técnica utilizada neste estudo é conhecida 

como NIRS (Espectroscopia do infravermelho próximo), e ela usa luz infravermelha de baixa potência para 

medir a oxigenação no músculo. 

Procedimentos: 

Aceitando a participação no estudo, usaremos suas informações para termos controles sobre as variáveis 

que podem afetar os resultados deste estudo. Deste modo, os pesquisadores responsáveis por esse 

estudo farão perguntas sobre seu histórico clínico. Mais especificamente, antes do início do teste os 

pesquisadores poderão coletar seus dados demográficos e os valores dos seus sinais vitais. Caso 

necessário, algumas informações serão confirmadas diretamente com você.  

Um sensor de NIRS será posicionado no seu antebraço, juntamente com uma braçadeira inflável para 

realização de um teste de oclusão vascular. O teste de oclusão vascular consiste em inflarmos a braçadeira 
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

para temporariamente obstruir o fluxo sanguíneo do braço. O protocolo consiste em um período de 

repouso inicial de 5 minutos, seguido por um período de 3 minutos onde inflaremos a braçadeira com 

uma pressão de até 50mmHg acima da sua pressão arterial. O período de oclusão será seguido por um 

segundo período de repouso de 5 minutos. Durante o teste o você não precisará realizar nenhuma ação, 

e terá apenas de ficar em repouso enquanto realizamos o teste, que durará cerca de 10 a 15 minutos. 

Desconfortos e riscos: 

NIRS tem sido usado em diferentes situações de pesquisa desde 1990, desde recém-nascidos até idosos, 

incluindo voluntários sadios e pacientes com distúrbios e doenças neurológicas. Não há nenhum risco 

previsto da técnica, pois a potência da luz utilizada é muito baixa para produzir algum dano ao tecido. 

Durante o teste, você poderá sentir algum desconforto temporário devido a pressão do manguito. Se o 

desconforto for excessivo, pararemos o teste instantaneamente. Todos os testes serão realizados por 

profissionais da saúde, e todos os cuidados necessários para evitar a transmissão da COVID-19 serão 

tomados. Isto é, os profissionais da saúde estarão sempre com todos os equipamentos de proteção 

necessários e todos os equipamentos utilizados durante o estudo serão sempre desinfectados antes e 

depois de todos os testes realizados. Em caso de qualquer evento adverso relacionado à pesquisa, você 

terá direito a assistência médica imediata, gratuita e pelo tempo necessário. 

Benefícios: 

Você não obterá nenhuma vantagem direta com a sua participação nesse estudo. Contudo, os resultados 

da pesquisa podem, a longo prazo, trazer melhorias nos diagnósticos e tratamentos clínicos para pacientes 

com síndrome respiratórias aguda graves causada pelo COVID-19 e outras doenças. Os resultados do 

exame ficarão à disposição caso você e/ou seu médico tenham interesse no futuro. 

Sigilo e privacidade: 

Você tem a garantia de que sua identidade será mantida em sigilo e nenhuma informação pessoal será 

dada a outras pessoas que não façam parte da equipe de pesquisadores. Na divulgação dos resultados 

desse estudo, seu nome não será citado. Este estudo faz parte de uma colaboração internacional, e os 

dados coletados e analisados serão adicionados a um banco de dados compartilhado com os outros 

parceiros, porém sempre garantindo a sua privacidade. 

Ressarcimento e Indenização: 

Você não será reembolsado pela sua participação na pesquisa, uma vez que a mesma não vai gerar 

nenhum gasto. Embora seja muito pouco provável que algum dano seja causado no decorrer da pesquisa, 

caso algo aconteça você terá a garantia ao direito a uma indenização diante de eventuais danos. 

Contato: 

Em caso de dúvidas sobre a pesquisa, você poderá entrar em contato com o pesquisador Rickson Coelho 

Mesquita no Laboratório de Física Médica do Hospital das Clínicas da UNICAMP, localizado na Rua Tessália 

Vieira de Camargo, 126, telefone (19) 3521-0137, e-mail: rickson@ifi.unicamp.br. 

Em caso de denúncias ou reclamações sobre sua participação e sobre questões éticas do estudo, você 

poderá entrar em contato com a secretaria do Comitê de Ética em Pesquisa (CEP) da UNICAMP das 
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

08:30hs às 11:30hs e das 13:00hs as 17:00hs na Rua: Tessália Vieira de Camargo, 126; CEP 13083-887 

Campinas – SP; telefone (19) 3521-8936 ou (19) 3521-7187; e-mail: cep@fcm.unicamp.br. 

 

O Comitê de Ética em Pesquisa (CEP): 

O papel do CEP é avaliar e acompanhar os aspectos éticos de todas as pesquisas envolvendo seres 

humanos. A Comissão Nacional de Ética em Pesquisa (CONEP), tem por objetivo desenvolver a 

regulamentação sobre proteção dos seres humanos envolvidos nas pesquisas. Desempenha um papel 

coordenador da rede de Comitês de Ética em Pesquisa (CEPs) das instituições, além de assumir a função 

de órgão consultor na área de ética em pesquisas. 

Consentimento livre e esclarecido: 

Após ter recebido esclarecimentos sobre a natureza da pesquisa, seus objetivos, métodos, benefícios 

previstos, potenciais riscos e o incômodo que esta possa acarretar, aceito participar e declaro estar 

recebendo uma via original deste documento assinada pelo pesquisador e por mim, tendo todas as folhas 

por nós rubricadas: 

Nome do (a) participante: ________________________________________________________ 

Contato telefônico: _____________________________________________________________ 

E-mail (opcional): ______________________________________________________________ 

_______________________________________________________ Data: ____/_____/______. 

(Assinatura do participante ou nome e assinatura do seu RESPONSÁVEL LEGAL) 

Responsabilidade do Pesquisador: 

Asseguro ter cumprido as exigências da resolução 466/2012 CNS/MS e complementares na elaboração do 

protocolo e na obtenção deste Termo de Consentimento Livre e Esclarecido. Asseguro, também, ter 

explicado e fornecido uma via deste documento ao participante. Informo que o estudo foi aprovado pelo 

CEP perante o qual o projeto foi apresentado. Comprometo-me a utilizar o material e os dados obtidos 

nesta pesquisa exclusivamente para as finalidades previstas neste documento ou conforme o 

consentimento dado pelo participante. 

______________________________________________________ Data: ____/_____/______. 

(Assinatura do pesquisador) 
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO 

Projeto: Caracterização não invasiva da reatividade microvascular em pacientes 
com COVID-19 e outras doenças respiratórias graves com a espectroscopia do 
infravermelho próximo 

CAAE: 34454920.7.0000.5404 

Pesquisadores: Rickson C. Mesquita, Rodrigo M. Forti, Andrés F. Q. Soto, Italo K. Aventurato, Gabriela 

Lívio Emídio, Lígia dos Santos Roceto Ratti, Antonio L. E. Falcão 

Você está sendo convidado a participar como voluntário de uma pesquisa clínica. A participação não é 

obrigatória, e não haverá nenhum tipo de penalização ou prejuízo no tratamento se você não aceitar 

participar. Após aceitar, você poderá desistir durante qualquer etapa da pesquisa, também sem qualquer 

prejuízo. Para garantir seus direitos como participante, o pesquisador fornecerá todas as informações 

necessárias através deste documento chamado “Termo de Consentimento Livre e Esclarecido”, o qual 

está elaborado em duas vias, ambas assinadas por você e pelo pesquisador. Ao finalizar os 

esclarecimentos, uma via assinada será entregue para cada parte. Nos casos onde houver dificuldade na 

obtenção da assinatura em uma cópia de papel deste termo devido à pandemia da COVID-19, este termo 

poderá também ser assinado digitalmente. Nos casos em que houver necessidade da assinatura digital 

deste termo de consentimento, ambas as partes devem salvar uma cópia impressa ou digital da versão 

assinada deste documento. 

Por favor, leia com atenção e calma, aproveitando para esclarecer suas dúvidas. Se houver perguntas 

antes ou mesmo depois de assiná-lo, você poderá esclarecê-las com o pesquisador. Se preferir, pode levar 

este Termo com você para consultar seus familiares ou outras pessoas antes de decidir participar.  

Justificativa e objetivos: 

O objetivo geral deste projeto de pesquisa é introduzir e testar clinicamente um sistema não invasivo para 

monitorar pacientes internados em unidades de terapia intensiva (UTI) devido a síndrome respiratória 

aguda. O estudo poderá fornecer novas informações com grande potencial para melhorar os 

procedimentos clínicos, e os resultados obtidos poderão ajudar os médicos a entenderem melhor os 

efeitos da COVID-19 e outras doenças respiratórias agudas. A técnica utilizada neste estudo é conhecida 

como NIRS (Espectroscopia do infravermelho próximo), e ela usa luz infravermelha de baixa potência para 

medir a oxigenação no músculo. 

Procedimentos: 

Aceitando a participação no estudo, usaremos suas informações para termos controles sobre as variáveis 

que podem afetar os resultados deste estudo. Deste modo, os pesquisadores responsáveis por esse 

estudo terão acesso ao seu histórico clínico através do prontuário fornecido pelo hospital. Mais 

especificamente, antes do início de todos os testes coletaremos seus dados demográficos, os valores dos 

seus sinais vitais, os dados do ventilador mecânico, entre outros parâmetros clínicos. Caso necessário, 

algumas informações serão confirmadas diretamente com você ou seu responsável legal. Dependendo da 
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

sua condição clínica, você poderá ser convocado para realizar o teste óptico mais de uma vez durante a 

sua internação. Repetiremos o teste no máximo duas vezes por dia durante o tempo que você estiver 

internado no hospital.  

Um sensor de NIRS será posicionado no seu antebraço, juntamente com uma braçadeira para realização 

de um teste de oclusão vascular. O teste de oclusão vascular consiste em inflarmos a braçadeira para 

temporariamente obstruir o fluxo sanguíneo do braço (similar a uma medida de pressão arterial). O 

protocolo consiste em um período de repouso inicial de 5 minutos, seguido por um período de 3 minutos 

onde inflaremos a braçadeira com uma pressão acima da sua pressão arterial. O período de oclusão será 

seguido por um segundo período de repouso de 5 minutos. Durante o teste o você não precisará realizar 

nenhuma ação, e terá apenas de ficar em repouso enquanto realizamos o teste, que durará cerca de 10 a 

15 minutos. 

Desconfortos e riscos: 

NIRS tem sido usado em diferentes situações de pesquisa desde 1990, desde recém-nascidos até idosos, 

incluindo voluntários sadios e pacientes com distúrbios e doenças neurológicas. Não há nenhum risco 

previsto da técnica, pois a potência da luz utilizada é muito baixa para produzir algum dano ao tecido. 

Durante o teste, você poderá sentir algum desconforto temporário devido a pressão da braçadeira. Se o 

desconforto for excessivo, pararemos o teste instantaneamente. Todos os testes serão realizados por 

profissionais da saúde, e todos os cuidados necessários para evitar a transmissão da COVID-19 serão 

tomados. Isto é, os profissionais da saúde estarão sempre com todos os equipamentos de proteção 

necessários e todos os equipamentos utilizados durante o estudo serão sempre desinfectados antes e 

depois de todos os testes realizados. Em caso de qualquer evento adverso relacionado à pesquisa, você 

terá direito a assistência médica imediata, gratuita e pelo tempo necessário. 

Benefícios: 

Você não obterá nenhuma vantagem direta com a sua participação nesse estudo. Contudo, os resultados 

da pesquisa podem, a longo prazo, trazer melhorias nos diagnósticos e tratamentos clínicos para pacientes 

com síndrome respiratórias aguda graves causada pelo COVID-19 e outras doenças. Os resultados do 

exame ficarão à disposição caso você e/ou seu médico tenham interesse no futuro. 

Sigilo e privacidade: 

Você tem a garantia de que sua identidade será mantida em sigilo e nenhuma informação pessoal será 

dada a outras pessoas que não façam parte da equipe de pesquisadores. Na divulgação dos resultados 

desse estudo, seu nome não será citado. Os resultados do estudo poderão fazer parte do prontuário 

médico, mesmo que retrospetivamente. Este estudo faz parte de uma colaboração internacional, e os 

dados coletados e analisados serão compartilhados com os outros parceiros, porém sempre garantindo a 

sua privacidade. 

Ressarcimento e Indenização: 

Você não será reembolsado pela sua participação na pesquisa, uma vez que a mesma não vai gerar 

nenhum gasto. Embora seja muito pouco provável que algum dano seja causado no decorrer da pesquisa, 

caso algo aconteça você terá a garantia ao direito a uma indenização diante de eventuais danos. 
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Rubrica do pesquisador: ____________           Rubrica do participante: ____________ 

Contato: 

Em caso de dúvidas sobre a pesquisa, você poderá entrar em contato com o pesquisador Rickson Coelho 

Mesquita no Laboratório de Física Médica do Hospital das Clínicas da UNICAMP, localizado na Rua Tessália 

Vieira de Camargo, 126, telefone (19) 3521-0137, e-mail: rickson@ifi.unicamp.br. 

Em caso de denúncias ou reclamações sobre sua participação e sobre questões éticas do estudo, você 

poderá entrar em contato com a secretaria do Comitê de Ética em Pesquisa (CEP) da UNICAMP das 

08:30hs às 11:30hs e das 13:00hs as 17:00hs na Rua: Tessália Vieira de Camargo, 126; CEP 13083-887 

Campinas – SP; telefone (19) 3521-8936 ou (19) 3521-7187; e-mail: cep@fcm.unicamp.br. 

O Comitê de Ética em Pesquisa (CEP): 

O papel do CEP é avaliar e acompanhar os aspectos éticos de todas as pesquisas envolvendo seres 

humanos. A Comissão Nacional de Ética em Pesquisa (CONEP), tem por objetivo desenvolver a 

regulamentação sobre proteção dos seres humanos envolvidos nas pesquisas. Desempenha um papel 

coordenador da rede de Comitês de Ética em Pesquisa (CEPs) das instituições, além de assumir a função 

de órgão consultor na área de ética em pesquisas. 

Consentimento livre e esclarecido: 

Após ter recebido esclarecimentos sobre a natureza da pesquisa, seus objetivos, métodos, benefícios 

previstos, potenciais riscos e o incômodo que esta possa acarretar, aceito participar e declaro estar 

recebendo uma via original deste documento assinada pelo pesquisador e por mim, tendo todas as folhas 

por nós rubricadas: 

Nome do (a) participante: ________________________________________________________ 

Contato telefônico: _____________________________________________________________ 

E-mail (opcional): ______________________________________________________________ 

_______________________________________________________ Data: ____/_____/______. 

(Assinatura do participante ou nome e assinatura do seu RESPONSÁVEL LEGAL) 

Responsabilidade do Pesquisador: 

Asseguro ter cumprido as exigências da resolução 466/2012 CNS/MS e complementares na elaboração do 

protocolo e na obtenção deste Termo de Consentimento Livre e Esclarecido. Asseguro, também, ter 

explicado e fornecido uma via deste documento ao participante. Informo que o estudo foi aprovado pelo 

CEP perante o qual o projeto foi apresentado. Comprometo-me a utilizar o material e os dados obtidos 

nesta pesquisa exclusivamente para as finalidades previstas neste documento ou conforme o 

consentimento dado pelo participante. 

______________________________________________________ Data: ____/_____/______. 

(Assinatura do pesquisador) 
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TERMO DE CONSENTIMENTO LIVRE ESCLARECIDO 

 

Obtenção de propriedades ópticas e dinâmicas de tecidos 

biológicos com espectroscopias ópticas de difusão 

 

Giovani Grisotti Martins, Andrés Fabián Quiroga Soto, Antonio Luis Eiras Falcão,  

Rickson Coelho Mesquita 

Protocolo CAAE: 50436921.3.0000.5404 

 

Rubrica do pesquisador: ____________                          Rubrica do participante: ____________ 

 

1 de 3 

 

Você está sendo convidado a participar de uma pesquisa. Este documento, chamado 

Termo de Consentimento Livre e Esclarecido, visa assegurar os seus direitos como participante e 

é elaborado em duas vias, uma que deverá ficar com você e outra com o pesquisador.  

 Por favor, leia com atenção e calma, aproveitando para esclarecer suas dúvidas. Se houver 

perguntas antes ou depois de assiná-lo, você pode esclarecê-las com o pesquisador. Se preferir, 

pode levar para casa e consultar seus familiares ou outras pessoas antes de decidir participar. Se 

você não quiser participar, ou quiser retirar sua autorização para participar, você poderá fazer 

isso a qualquer momento. Não haverá nenhum tipo de penalização ou prejuízo.  

Justificativa e Objetivos:  

O objetivo deste estudo é usar uma técnica nova, chamada espectroscopia óptica de 

difusão (ou DOS), para estimar algumas características fisiológicas do seu corpo (isto é, 

características que estão relacionadas com o funcionamento do corpo). A DOS usa luz na região 

do infravermelho próximo, que se parece com o vermelho, mas é invisível aos nossos olhos. Nosso 

grupo de pesquisa na UNICAMP desenvolve esta tecnologia no Brasil construindo equipamentos 

nacionais para serem utilizados no hospital. Como esta técnica é nova e ainda pouco conhecida, 

ela precisa ser melhorada – e este estudo é uma parte deste esforço, que visa especificamente 

testar modelos mais detalhados na análise de dados visando aumentar a acurácia das 

características que estimamos com esta técnica. A DOS é uma técnica inofensiva, e as 

características que ela mede são a oxigenação e o fluxo de sangue no tecido biológico, como, por 

exemplo, o cérebro. Por isto, a DOS apresenta um alto potencial para o acompanhamento de 

diversos distúrbios neurológicos. Ou seja, a participação nesta pesquisa poderá ajudar 

indiretamente diversas pessoas portadoras de doenças e/ou distúrbios neurológicos no futuro 

como, por exemplo, epilepsia, traumatismo craniano, AVC e Alzheimer, além possibilitar 

melhorias em outras áreas de pesquisa como o esporte e o ensino.  

Procedimentos 

Ao concordar em participar deste estudo, primeiramente você vai responder algumas 

perguntas a respeito da sua saúde, do seu histórico clínico e dos seus hábitos usuais. Não há 

nenhum julgamento nestas perguntas, mas precisamos ter estas informações para melhor 

interpretar os dados que vamos coletar com o nosso equipamento. A seguir, os pesquisadores 
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colocarão um arranjo de fibras ópticas que agem como fontes e detectores de luz na sua cabeça. 

Fique tranquilo porque essas fontes de luz são LEDs ou lasers que operam com baixíssima energia 

e potência, e não têm riscos de machucá-lo ou afetá-lo de qualquer forma. Você poderá apenas 

sentir um desconforto se o arranjo ficar muito apertado na sua cabeça. Se isso acontecer, nos avise 

imediatamente para que possamos afrouxar o arranjo com as fontes e detectores, de forma que 

ocorra tudo bem durante o experimento. Além disso, um outro sensor será colocado no seu dedo 

indicador esquerdo. Este sensor vai monitorar sua pressão sanguínea, o batimento do seu coração 

e saturação de oxigênio no seu pulso. Novamente, este sensor funciona por pressão e radiação de 

baixa potência, sendo incapaz de oferecer algum risco.  

Durante o experimento, você vai precisar ficar sentado, quieto e em silêncio enquanto 

coletamos os dados. Em alguns momentos, o pesquisador vai pedir para você prender a 

respiração até quando você conseguir, ou até um máximo de 30 segundos (o que acontecer 

primeiro). Nesta etapa, utilizaremos um capnógrafo para medir a quantidade de CO2 expirada 

pelo seu nariz e boca. Este equipamento também não oferece riscos, visto que sua função é apenas 

analisar o ar expirado por você. Existe a possibilidade de, nesta etapa, usarmos um outro 

equipamento, chamado de Doppler transcraniano ou TCD, que usa sons fora da faixa audível 

para medir o fluxo de sangue nas grandes artérias cerebrais. Este equipamento é comumente 

utilizado no hospital e não oferece riscos. No total, a coleta dos dados terá duração de 10 a 40 

minutos, incluindo a montagem do aparato. Dependendo da sua disponibilidade, os 

pesquisadores irão pedir para que você retorne em outras datas para repetir a aquisição de dados. 

Este retorno é importante porque queremos verificar a variabilidade da técnica utilizada. 

Entretanto, você pode optar por não retornar, sem qualquer prejuízo.   

  Durante todo o tempo do exame, você estará acompanhado pelos pesquisadores. Caso 

queira ou se sinta mal, você poderá solicitar que o estudo seja interrompido, sem prejuízos para 

você. Além disto, os pesquisadores lhe passarão informações detalhadas e esclarecerão as suas 

dúvidas a respeito de cada etapa do procedimento de aquisição de dados. É importante que você 

esclareça todas as suas dúvidas, então não hesite em perguntar. Os pesquisadores estarão sempre 

dispostos a responder todas as suas perguntas. 

Desconfortos e riscos: 

Não há nenhum risco previsível das técnicas de coleta de dados. Estas técnicas têm sido 

utilizadas em pesquisas clínicas no mundo inteiro há vários anos e nunca um dano, problema ou 

risco foi reportado, nem a curto nem a longo prazo. Entretanto, é possível que você sinta alguns 

desconfortos devido à colocação dos sensores dos equipamentos. Caso o desconforto seja grande, 

por favor avise imediatamente os pesquisadores e o procedimento de coleta de dados será 

interrompido para que os ajustes sejam feitos. Caso necessário, pararemos toda a coleta sem 

qualquer prejuízo para você.  

Benefícios: 

Você não obterá nenhum benefício direto com a sua participação nesse estudo. Contudo, 

muitas pessoas poderão ser ajudadas de forma indireta com a sua participação a partir dos 

resultados que obtivermos ao final desta pesquisa.  
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Acompanhamento e assistências: 

Durante toda a coleta de dados, os pesquisadores estarão presentes no local com você. 

Qualquer dúvida e/ou problema, você poderá questioná-los a qualquer momento da pesquisa. 

Sigilo e privacidade: 

Você tem a garantia de que sua identidade será mantida em sigilo e nenhuma informação 

será dada a outras pessoas que não façam parte da equipe de pesquisadores cadastrados nesta 

pesquisa. Na divulgação dos resultados desse estudo, seu nome não será citado.  

Ressarcimento: 

 Embora improvável, no caso de qualquer dano decorrente direta ou indiretamente da 

participação na pesquisa está garantida a assistência integral e imediata, de forma gratuita, sem 

ônus de qualquer espécie pelo tempo que for necessário. Você também tem direito a indenização 

em caso de danos. 

 

Contato:  

 Em caso de dúvidas sobre o estudo, você poderá entrar em contato com os pesquisadores: 

• Giovani Grisotti Martins, telefone (11) 9 9591 3360 e e-mail ggrisoti@ifi.unicamp.br;  

• Andrés Fabián Quiroga Soto, telefone (19) 9 8380 1835 e e-mail a153906@dac.unicamp.br ou; 

• Rickson Coelho Mesquita, telefone (19) 3251 0137 e e-mail rickson@ifi.unicamp.br. 

Em caso de denúncias ou reclamações sobre sua participação e sobre questões éticas do 

estudo, você pode entrar em contato com a secretaria do Comitê de Ética em Pesquisa (CEP) da 

UNICAMP: Rua: Tessália Vieira de Camargo, 126; CEP 13083-887, Campinas - SP; telefone (19) 

3521 8936; fax (19) 3521 7187; e-mail: cep@unicamp.br. 
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Consentimento livre esclarecido:  

Após ter sido esclarecido sobre a natureza da pesquisa, seus objetivos, métodos, benefícios 

previstos, potenciais riscos e o incômodo que esta possa acarretar, aceito participar:  

 

Nome do(a) participante_______________________________________________________________ 

 

 

 

________________________________________________________________ Data:___/_____/______. 

(Assinatura do participante ou nome e assinatura do seu responsável LEGAL) 

 

Responsabilidade do Pesquisador: 

Asseguro ter cumprido as exigências da resolução 466/2012 CNS/MS e complementares 

na elaboração do protocolo e na obtenção deste Termo de Consentimento Livre e Esclarecido. 

Asseguro, também, ter explicado e fornecido uma das vias deste documento ao participante. 

Informo que o estudo foi aprovado pelo CEP perante o qual o projeto foi apresentado. 

Comprometo-me a utilizar o material e os dados obtidos nesta pesquisa exclusivamente para as 

finalidades previstas neste documento ou conforme o consentimento dado pelo participante.  

 

 

 

_______________________________________________________________ Data:___/_____/______.                  

                    (Assinatura do pesquisador) 
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