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All progress is based upon
a universal innate desire
of every organism
to live beyond its income.

(Samuel Butler)
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Resumo

Um dos principais desafios no campo de pontuação de crédito é a indisponibilidade de
informação sobre a capacidade de pagamento de clientes que tiveram suas solicitações
de crédito negadas (clientes rejeitados). A maioria dos modelos básicos de pontuação
de crédito considera apenas a população de clientes aceitos, o que pode introduzir viés
contra indivíduos fora dessa distribuição. Para enfrentar esse viés, métodos de Inferência
de Rejeitados (RI) visam inferir informações faltantes de indivíduos rejeitados e assim
integrá-los ao sistema de pontuação de crédito. Métodos tradicionais de inferência de re-
jeitados na literatura frequentemente presumem a viabilidade da estratégia de extrapolar
o comportamento de clientes rejeitados a partir de dados de clientes aceitos. Apesar das
possíveis diferenças nas distribuições de dados entre esses grupos. Portanto, para mitigar
a extrapolação cega entre clientes aceitos e rejeitados, introduzimos um novo framework
de Confident Inlier Extrapolation framework (CI-EX). Primeiramente, o CI-EX identifica
distribuições das amostras dos rejeitados de forma iterativa usando um modelo de detec-
ção de outliers. Em seguida, atribui rótulos aos indivíduos rejeitados mais próximos da
distribuição da população aceita, com base em probabilidades derivadas de um modelo
supervisionado de classificação. Especificamente, apenas as amostras para as quais o mo-
delo fornece maior confiança na previsão são incorporadas ao novo conjunto de dados de
treinamento, abordando assim os viéses de extrapolação no processo de inferência. Além
disso, propomos o framework Confident Inlier Label Spreading (CI-LS), onde rótulos para
amostras rejeitadas são inferidos usando um modelo de classificação semi-supervisionado.
A eficácia de nossos métodos propostos é validada através de experimentos realizados nos
conjuntos de dados de crédito HomeCredit e Lending Club. Os resultados são avaliados
usando a Área Sob a Curva (AUC), uma métrica muito relevante em crédito, e métricas
específicas de RI como Kickout e a métrica introduzida neste trabalho, denominada Área
Sob o Kickout (AUK). É importante notar que a avaliação da AUC é baseada exclusiva-
mente em amostras de clientes aceitos. Nossos resultados demonstram que os métodos de
RI, incluindo os frameworks propostos, geralmente envolvem um trade-off entre as métri-
cas AUC e RI. No entanto, nossos métodos consistentemente superam os modelos de RI
existentes na literatura de crédito em termos de métricas específicas de RI na maioria dos
experimentos.



Abstract

One of the main challenges in the field of credit scoring is the unavailability of the re-
payment capacity data of clients who have had their credit applications denied (rejected
clients). Most basic credit scoring models only consider the population of accepted clients,
potentially introducing bias against individuals outside of that distribution. To address
this bias, Reject Inference (RI) methods aim to infer missing information from rejected
individuals and integrate them into the credit scoring system. Traditional reject inference
methods from the literature often assume the feasibility of extrapolating the behavior of
rejected clients from accepted client data, despite potential differences in data distribu-
tions between these groups. Therefore, to mitigate blind extrapolation between accepted
and rejected clients, we introduce a novel Confident Inlier Extrapolation framework (CI-
EX). Initially, CI-EX iteratively identifies the distributions of samples from rejected clients
using an outlier detection model. It then assigns labels to rejected individuals closest to
the distribution of the accepted population based on probabilities derived from a super-
vised classification model. Specifically, only samples for which the model gives higher
prediction confidence are incorporated into the new training dataset, thus addressing ex-
trapolation biases in the inference process. Additionally, we propose the Confident Inlier
Label Spreading framework (CI-LS), where labels for rejected samples are inferred us-
ing a semi-supervised classification model. The effectiveness of our proposed methods is
validated through experiments conducted on the HomeCredit and Lending Club credit
datasets. Results are evaluated using the Area Under the Curve (AUC), a pertinent met-
ric in credit, and RI-specific metrics such as Kickout and the novel metric introduced in
this work, denoted Area under the Kickout (AUK). It is important to note that AUC eval-
uation is based exclusively on accepted client samples. Our findings demonstrate that RI
methods, including the proposed frameworks, generally involve a trade-off between AUC
and RI metrics. However, our methods consistently outperform existing RI models from
the credit literature in terms of RI-specific metrics across the majority of experiments.
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Chapter 1

Introduction

1.1 Motivation

Credit Scoring affects the vast majority of people worldwide. Whenever a client requires
a loan (or a credit card), the bank calculates their credit score to evaluate their ability
to pay their debts (Mester et al., 1997). The fear of granting loans to many default
applicants leads companies to use harsh credit scoring policies. Such lending standards
could exclude many good debtors and exacerbate harm to underrepresented communities.
A credit model trained with only a small and under-representative subset of society is not
ideal to classify the whole population reasonably and precisely. This phenomenon is known
as sample bias and it occurs when a credit model is trained with only accepted clients
(Guo et al., 2023; Nikita Kozodoi et al., 2019; Kang et al., 2021). Due to harsh policies
applied by the companies, most applicants are denied a loan, which means, in many cases,
the rejected applicants constitute the majority of data in credit datasets(Kang et al., 2021;
Shen et al., 2020). There are some approaches which assimilate information from both
rejected and accepted clients to improve credit scoring systems. This group of techniques
is called Reject Inference (RI). The incorporation of RI techniques grants substantial
advantages: (1) A considerable decrease of sample bias — coming from more robust
models of credit scoring trained with information of a bigger population; (2) Minimization
of data waste; (3) Better evaluation of marginalized communities.

RI literature has advanced considerably in the last few decades and many papers were
published highlighting the importance of RI application on the credit scoring process.
From simple assumptions, considering all reject as bad cases (potential defaults) to an
entire network using rejected clients’ information to classify credit scoring (Siddiqi, 2017;
Liu et al., 2022b). However, there are some strong assumptions in RI literature that
can not be ignored. The first one is that the behavior of the rejected population can
be extrapolated based on the accepted population. This is often not the case, as there
are many differences in the distribution of accepted and rejected clients. The second
assumption is that a small gain in accuracy is the objective of RI applications (Sabato,
n.d.). When the entire pipeline, from training to testing, is based solely on the accepted
population, credit scoring models can already have high predictive accuracy. However, we
believe ignoring the existence of sample bias is not a good way to tackle credit scoring,
as many people historically outside the distribution of the accepted population can be
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harmed.
A large number of recent papers in RI literature propose frameworks combining sev-

eral RI and machine learning techniques to label and filter out samples. This combination
seems to lead to models with high classification power (Shih et al., 2022; Shen et al., 2020;
Liao et al., 2022). However, most of the RI literature is based on at least one of the two
assumptions mentioned before. This research proposes two novel frameworks consisting of
several verification steps to assure confidence in the RI process utilize. Confident-Inline
Extrapolation for Rejection Inference (CI-EX) uses outlier detection and classification
probabilities to label and filter the most confident samples, and Confident-Inline Label
Spreading for Rejection Inference (CI-LS) is similar but applies a semi-supervised tech-
nique called Label Spreading (Zhou et al., 2003) instead of a classifier. They are built
on an iterative procedure, where each iteration implies a new model more inclusive of
the RI population than its predecessor. This is made to avoid the extrapolation bias.
We tackle the second assumption problem by using metrics that take into consideration
the RI population. We argue that these metrics are more suited to evaluate the actual
performance of RI techniques. We evaluate our methods with the Reject Inference metric
kickout, presented by Kozodoi et al. (2020) as having a higher correlation with correctly
evaluating the unbiased population. We also propose a new metric for RI based on kick-
out, called Area under Kickout (AUK). Our proposed techniques consistently outperform
other Reject Inference techniques in the literature at these RI metrics.

1.2 Hypotheses

This work is motivated by the following hypotheses:

• Accepted clients data is not enough to fairly train a credit scoring model;

• It is possible to infer the behaviour of rejected clients data using the data from the
accepted clients;

• Evaluating RI models with only data from accepted clients can not effectively reflect
the RI models true performance;

• Using data from rejected clients it is possible to create a credit scoring model than
performs better than a model that is trained with only accepted clients data.

1.3 Contributions

To address our hypotheses, we propose two frameworks based on Reject Inference for
credit scoring CI-EX and CI-LS and evaluate these framework with metrics that take into
consideration data from both accepted and rejected clients data. More specifically, our
contributions are:

• The semi-supervised framework Confident-Inline Extrapolation for Rejection Infer-
ence (CI-EX);
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• A variation of our proposed semi-supervised framework CI-EX, called Confident-
Inline Label Spreading for Rejection Inference (CI-LS);

• The proposition of Area Under the Kickout metric (AUK) for Reject Inference mod-
els;

• The evaluation of classical Reject Inference models from literature with metrics that
take into consideration both accepted and rejected clients.

1.4 Outline

This dissertation is organized as follows. Chapter 2 presents an introduction to Reject
Inference concepts and literature, as well as other related concepts to this research like
credit scoring and outlier detection. Chapter 3 presents the motivation and details of the
structure of our proposed framework. Chapter 4 presents the detailing of our experiments
structure, the datasets used on this research, as well as the evaluation metrics considered.
Chapter 5 presents the results of our experiments as well as our considerations about
them. And finally Chapter 6 presents our conclusions about this research, limitations
found, and plans for future works.
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Chapter 2

Background

2.1 Credit Scoring

Credit scoring is critical to many processes in granting loans, leasing properties, and
other commodities. The decision to approve or to deny a loan to a borrower hinges on
their ability to convincingly assure the lender of their trustworthiness (Anderson, 2022).
However, if this decision is made without a protocol or transparency, many problems
can arise. The most obvious problem is the financial loss caused by lending funds to
borrowers who will not repay them. They are traditionally called bad payers in credit
scoring literature (the borrowers who pay back on time are called good payers). Therefore,
implementing an automatic, or at least semi-automatic, trustworthiness system is crucial.
This system is known as credit scoring (Kang et al., 2021). For simplicity, without loss of
generality, from now on, we will limit our discussion to the process of credit scoring that
involves a company lending funds to an individual.

The credit scoring process generally involves obtaining information about an individual
and comparing this information to other individuals, from which we have payment be-
havior data. In machine learning, this information about an individual is called features,
and the classification of whether the individual is a good or bad payer is called class or
target. The assumption is the payment behavior of an individual can be estimated based
on their features. The features that may assist in this estimation are often related to
the client’s economic situation, the loan itself, or the individual’s historical credit data
(which, in many cases, is unavailable to the company). With the use of these features
and respective targets, classification models can be fitted by the company to assist in the
process of selecting trustworthy clients to grant loans.

2.2 Reject Inference

When building a classifier to automate the decision of who should be worthy of receiving
a loan, an essential requirement is that such a classifier is good at generalization. In
realistic terms, such a model should perform well even with data that differs, to some
extent, from the data it was trained upon. This is why we separate the data between
training, validation, and testing when training Machine Learning models. The model’s
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generalization directly relates to how much the data it was fitted reflects the real world
in which it will be applied. Therefore, when only data from accepted clients is used
in training the credit pipeline, as illustrated on Figure 2.1 a), a clear sample bias is
identified. Figure 2.1 a) illustrates a credit pipeline from a company that builds its
classification model based only on approved clients from previous iterations. However,
not only approved clients, but also the population rejected by earlier iterations as well as
clients coming from unseen distributions may ask for a loan from this company. Therefore,
we have a model based on a sample that does not accurately reflect the entire population,
resulting in what is known as sample bias. At each iteration of this pipeline, the sample
bias will only grow, leading the company to use models of classification that are less
applicable to the entire population each time (Siddiqi, 2017).

Figure 2.1: (A) Pipeline that discards rejected clients data, versus (B) pipeline that
applies Reject Inference.

The biggest obstacle in avoiding sampling bias in credit scoring is the lack of labels
for the rejected clients. Approved clients, as illustrated in Figure 2.1, can have their
behavior observed. Depending on whether they repay the loan within the stipulated
time, for example, they can be almost accurately classified as good or bad payers. The
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same cannot be applied to rejected clients. The company has their data when they asked
the loan, but can not retrieve accurate labels based on their repayment behavior. One
solution would be to approve all clients and classify them according to their behavior
(Anderson, 2022). However, this would be too costly for most loan companies. Luckily,
there are more applicable solutions from both literature and business. These solutions
are known as Reject Inference (RI), and most of them can be described as making the
classification model aware of the rejected client population. Figure 2.1 b) illustrates RI
in a credit pipeline. As shown in the Figure 2.1 b), the behavior of the rejected clients is
inferred through some technique, and a label is given to them based on that. The data
from these clients is then concatenated to the training set to build the new classifier.
The model resulting from this process is a model which has more knowledge of the whole
population in comparison to the model built with only accepted clients.

However, Reject Inference is not without flaws and caveats. First, it should be men-
tioned that there are other approaches to the technique, other than using it to inflate the
training set, some of which will be described in the next subsections. Second, RI and
statistical processes are built on a series of assumptions, such as the type of missing data
problem, the viability of inferring the missing features and labels of rejected clients, and
the evaluation process capable of measuring the actual performance of the credit pipelines.

Reject Inference (RI) techniques vary significantly in incorporating the rejected data
into the credit model pipeline. Even RI techniques in the same family can have very
different approaches, as is the case for augmentation techniques (Siddiqi, 2017). Because of
such diversity, there is no consensus on the best technique for all scenarios. Each technique
also has flaws and restraints (Crook and Banasik, 2004). Despite their limitations, the
application of an RI technique should bring a credit scoring model that is more robust,
less biased toward the whole population, and less wasteful of data.

Many authors (El Annas et al., 2022; Shen et al., 2020; Liu et al., 2022b; Anderson,
2022) mention the three types of missingness of data proposed by Little and Rubin (2019)
when introducing the lack of rejected data in most credit scoring systems (El Annas et al.,
2022):

• Data can be missing due to completely random reasons (MCAR) when there is not
any relation between the missingness of the data and any other variable related to
the system or sample;

• Data can be missing at random (MAR) when there is a relation between the miss-
ingness of the variable of interest and some other variable in the dataset which is
not the variable of interest;

• Data can also be missing not at random (MNAR), when the missingness is related
with the missing data itself and may be caused by some unobserved variables.

According to Liu et al. (2022b), MNAR can play a significant role in RI due to the
subjective reasons that can influence the approval of a loan in not fully automated credit
scoring systems. Anderson (2022) also affirms that most cases of missing data in credit
scoring systems can be attributed to MNAR due to the outside factors that can not
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be represented in a credit model but influence the decision of which applicants will be
rejected.

The RI technique can be applied in different stages of the model pipeline. Maybe the
most intuitive approach would be to infer the labels of the rejected clients to eventually
expand the training set with their data, like extrapolation (Siddiqi, 2017), parceling (Sid-
diqi, 2017) and label spreading (Zhou et al., 2003): the Data Inflating Methods. Some
techniques, however, only apply the rejected data in the form of adjusting the weights of
the credit model, which is the case for most types of augmentation (Siddiqi, 2017; Ander-
son, 2022): the Weight Adjusting Methods. Some authors go a step further and propose
new machine learning models built to consider the existence of rejected data (Liu et al.,
2022b): the Model Approach Methods.

Siddiqi (2017) explains that the usefulness of RI techniques is highly linked to our
confidence in our previous system for Approval/Rejection of loans. RI may not be indi-
cated if the confidence is too low, as in close to decided randomly, or too high, together
with a high approval rate. Although it is not a recommended strategy, if the confidence
is too high, one straightforward RI technique that can be applied is to assume all rejects
as bad payers (Siddiqi, 2017; Anderson, 2022). There are, however, many reasons for the
application of RI techniques. The most known reason is to avoid sample bias by using a
subset not truly representative of the whole population (Siddiqi, 2017; Kang et al., 2021;
Song et al., 2022; Shen et al., 2020). Another strong reason for applying RI techniques
is to fix past decisions made in credit scorecard development. For example, RI can help
make marginalized individuals more considered and less prejudiced in the credit process
(Siddiqi, 2017). For financial institutions, RI can inform a more accurate default rate of
the population, avoiding monetary losses (Liao et al., 2021; Siddiqi, 2017). The following
subsections describe the three groups of RI techniques mentioned in this section.

2.2.1 Weight Adjusting Methods

Augmentation, also known as Reweighing, is a technique where the weights of the accepted
data are adjusted to consider the probabilities of rejection (Siddiqi, 2017; Anderson, 2022).
An Approval/Rejection (AR) model is fitted with accept and reject status being used as
the classes. The model is then applied to the accepted data, and the probability of
each accepted sample is retrieved. In Upward Augmentation (A-UW), the new weight is
calculated by equation 2.1, while in Downward Augmentation (A-DW), the new weight
is calculated by equation 2.2. Where ŵ is a new weight, w is the previous weight (we can
assume one as its value), and p(A) is the probability of being accepted given by the AR
model (Anderson, 2022).

ŵ =
w

p(A)
(2.1)

ŵ = w · (1− p(A)) (2.2)

Another way to use Augmentation is to sort the accepted and rejected samples by
the p(A), then separate these samples in n splits according to the p(A). For each split,
the proportion of accepts between accepts and rejects contained in that split is calculated



20

(AF = nA
nA+nR

). Then the augmentation factor for that split will be 1
AF

. The AF will
then be used as the new weight for all accepted samples in that split. This technique
is called Augmentation with Soft Cut-Off (A-SC) (Siddiqi, 2017; Ehrhardt et al., 2020).
One more very well-known Augmentation method is Fuzzy-Augmentation (A-FU), also
known as Fuzzy-Parcelling (Anderson, 2022). A differential of this technique is that it is
both a Data Inflating Method and a Weight Adjusting Method. In this technique an AR
model is also fitted, however, the rejected data is concatenate to the new dataset twice.
First, it is appended receiving 0 as a label and p(A) as weight, then it is again appended
but with 1 as a label and p(R) (probability of rejection) as weight. The accepted samples
receive 1 as weight.

2.2.2 Data Inflating Methods

The use of information about the labeled (accepted) data to infer the labels of the non-
labeled (rejected) data is known as Extrapolation (Anderson, 2022). Simple extrapolation
techniques use a classifier fitted in the accepted data to infer the labels of the rejected
data. Suppose we assume our classifier is good enough to do this inference process. In
that case, we can use the inferred labels for the rejected samples as actual labels and
concatenate the rejected samples in the new training set. However, it may not be wise
to append all the rejected samples at once to the new training set. If we are interested
in balance the number of bad payers in the training set we could, for example, add only
the samples inferred as bad payers from the rejected group, we will call this alternative
"Bad Extrapolation" (BE). Another choice would be to consider our confidence in the
predictions of our extrapolation model, and to add only the samples most far from the
classification threshold, we will call this alternative "Confident Extrapolation" (E-C).

Instead of using a fitted classifier to infer the labels of the rejected data, we can infer the
labels of the rejected data alongside the training of a label-spreading classifier. Proposed
by Zhou et al. (2003), this technique relies upon the assumption that nearby samples in a
dataset are inclined to have the same labels. After the label spreading classifier is fitted,
we can retrieve the labels attributed to the rejected samples by the model. Then, we
can expand the training set by concatenating the rejected samples labeled by the label
spreading classifier to the training data. We will abbreviate this technique as LSP.

A technique similar to ASC is Parcelling (PAR) (Siddiqi, 2017). However, instead of
changing the weights of accepts, we use the splits to label the rejected samples in this
technique. First, a classifier is fitted with accepted data. This classifier is then used
to calculate the probability of default on both accepts and rejects. These samples are
then sorted based on their probability of default and split based on score intervals. The
number n of score intervals is an arbitrary parameter. For each split, we calculate the
ratio of true bad payers (β) between all accepts included in that split. But, since we
are interested in labeling the rejects, we multiply the bad rate by a prejudice factor ρ.
With the updated bad rate (β̂), we can calculate the new expected good rate: κ̂ = 1− β̂.
The rejected samples in the split are then randomly assigned a label in proportion to the
updated good and bad rate for that split. Once this process is concluded for all splits,
the rejected samples can be concatenated to the new training set.
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2.2.3 Model Approach Methods

A more recent approach to RI is the creation of machine learning models built specifically
to work with both accepts and rejects. In their work, Liu et al. (2022b) propose a Reject
Aware Multi-Task Network (RMT-Net) that takes into consideration the high correlation
between the tasks of classification between approval/rejection and default/non-default
clients to improve its learning capabilities. Another RI network, proposed by Guo et al.
(2023), Transductive Semi-Supervised Metric Network (TSSMN) consists of the union of
two networks, the first one is responsible to map the samples into a metric space. The
second one uses transductive label propagation to label the samples according to the
proximity given by the first network.

2.3 Outlier Detection

Outlier Detection is a relevant concept in machine learning. An outlier is a sample that
differs too much from the samples of a distribution, which implies it does not belong to that
distribution. Subsequently, an inlier is seen as a sample that belongs to that distribution
on which the outlier detection (OD) algorithm was trained (Xia, 2019; Ali et al., 2023).
Generally, removing outliers from the training dataset is expected to translate to a model’s
higher performance. Therefore, the OD models, such as Isolation Forest (Liu et al., 2008),
are usually employed to identify outliers samples that should be removed from the dataset.
However, some authors have found OD as a tool for more ambitious tasks (Xia, 2019;
Nikita Kozodoi et al., 2019; Coenen et al., 2020).

Since data for rejected clients does not contain ground truth labels, OD algorithms
are well suited for RI techniques because most are based on unsupervised learning, which
does not require labels for training (Xia, 2019). In their work, Xia (2019) proposed using
OD as a Data Inflating Method for RI. They use Isolation Forest to label samples in the
rejected dataset. Outliers in the rejected dataset are seen as samples that should not have
been rejected and are reclassified as suitable applicants. The inliers are seen as samples
that are correctly rejected and should be classified as bad applicants. The authors claim
to be the first to employ OD as a RI technique, and their work inspired others.

Another combination of OD and RI techniques is found in the works of Nikita Kozodoi
et al. (2019), Coenen et al. (2020) and more recently in Shih et al. (2022). Nikita Kozodoi
et al. used OD to iteratively identify inadequate samples from the rejected dataset based
on the distribution of the accepted population, ignoring those samples too close and too
far from the accepted population. Where Coenen et al. approach was to use OD to
reclassify samples from both the accepted and rejected population in the pre-processing
stage. Accepted samples marked as outliers were removed from the accepted dataset,
and outliers in the rejected population were incorporated into the training set as suitable
applicants. Shih et al. followed an approach more similar to Xia, however. In their
work, OD was applied to identify potential good cases between the rejected population
and remove potential bad cases from the accepted population, effectively using OD for
relabeling samples.
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2.4 Related Work

In their work, Xia (2019) proposed one of the first applications of outlier detection in
RI. Different from most works at the time, they applied outlier detection after the pre-
processing phase of the pipeline to label rejected samples. However, although the authors
criticized previous literature assumptions on direct extrapolation of behaviours from the
accepted to rejected population, they also applied outlier detection with a similar princi-
ple. Labeling all outliers of the rejected group as good payers, they assumed the entire
rejected population can be directly divided between good and bad payers. However, ac-
cording to Coenen et al. (2020), not all samples from the rejected group can be reliable
labeled based i.e. there will be some cases where there will just be not enough information
to infer the label of a sample based on its features. Besides, the number of individuals
selected as outliers in the reject set will be influenced by the contamination threshold pre-
defined, and if this is the only criteria utilized the number of inferred good payers between
the rejected population can be vastly exaggerated. Despite that, their work achieved great
results, surpassing the models trained with only accepted samples, and influenced others
in the RI literature (Coenen et al., 2020; Shih et al., 2022).

More recently, Shih et al. (2022) proposed a similar application of outlier detection for
RI. Adding to the method proposed by Xia (2019), the authors ruled that outliers among
rejected samples would be classified as good payers, whereas outliers in accepted samples
should actually be excluded from the training set (as rejects). Another contribution from
the authors was the use of K-nearest neighbor to fill in missing features in the rejected
dataset, addressing the significant discrepancy between the number of features in the
accepted and rejected datasets. From this combination of techniques the authors achieved
great results with their proposed framework at the Lending Club dataset. However, the
authors only measured the performance of their techniques solely on accepted samples
and utilized of features that could only be obtained after the loan approval phase.

In their work, Liao et al. (2021) applied a self-training method for RI where rejected
samples would be iteratively added to the training set and labeled based on its prediction
confidence. The authors claim that labeling data with low certainty has low chance of
improving classification performance. With this, the authors were able to augment the
training dataset by 126% and achieve better results in the majority of experiments than
the model trained with approved only samples and others RI methods studied. However,
the authors demonstrated their results only with one private and relatively small sized
dataset.

Outlier detection, as an unsupervised method, has a great potential in reject inference,
where labels of most of the data are missing. However, we identified a gap in the RI liter-
ature, as no work has yet applied outlier detection in an iterative and controlled manner.
This could help avoid biased assumptions that affect most extrapolation methods, which,
despite their flaws, remain one of the most promising groups of RI techniques.
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Chapter 3

Proposed Framework

In this research, we propose a novel framework for RI that presents a semi-supervised
learning method combining outlier detection (OD) and a confidence rule to infer the
unlabeled sample classes. We call this framework Confident-Inline Extrapolation for Re-
jection Inference (CI-EX). Our approach, as many other studies involving RI and OD,
is inspired by the methodologies of Xia (2019). However, we do not use OD as a clas-
sification tool for the rejected data. Instead, we chose an approach similar to that of
Nikita Kozodoi et al. (2019), who also proposed an iterative method. However, unlike
their approach, we did not use OD to filter out outliers but to select inlier samples at
each iteration. And, differently from Shih et al., we propose an iterative method in which
OD is not the actual labeler tool but only a filter step.

Table 3.1: Mathematical notations for Algorithm 1 and 2
Notation Description

Xtrain set with labeled data
Ytrain set with labels
Xrej set with unlabeled data
η the number of samples to be added
ρ ratio expected between good and bad payers
c desired number of samples to be retrieved
∆ class (0 - non-default, 1 - default)

XΘ set with inliner samples
X∆ set with retrieved data
Y∆ inferred labels for retrieved data

Xtrain∆
set with data labeled as ∆

xj feature vector of example j
P (Xrej = ∆) probability of Xrej being ∆

To identify the samples from the rejected set we are most confident are from a specific
class ∆, we propose an algorithm that performs a two-step verification on each sample.
First, we check if the rejected sample is a non-outlier for the class ∆. Then we check if
that sample belongs to the subset of c samples with the highest probability of belonging to
that class. At each iteration, our algorithm labels and adds η samples from the unlabeled
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set to the training set and removes those samples from the unlabeled set.

3.1 Retrieve Confident Samples

The Retrieve Confident Samples Algorithm (Algorithm 1) describes the core of our frame-
work, and Table 3.1 constitutes of a quick guide for better reading of our proposed algo-
rithms. The algorithm takes as input a labeled training dataset, where Xtrain represents
the informative features of the dataset, and Ytrain represents the target feature of the
dataset. Due to changes during method iterations, Ytrain may consist of both ground
truth labels and inferred labels, and Xtrain may consist of both accepted and rejected
client data. The proportion between accepted and rejected data will depend on the cur-
rent iteration of the framework as new data is added to the training set.

As mentioned before, our framework employs a two-step verification to ensure the
rejected samples added at each iteration have a bigger probability of being the ones we
are most confident should get the inferred labels. The first step uses Isolation Forest
(Liu et al., 2008), an outlier detection algorithm, to divide the rejected samples between
outliers and non-outliers. Instead of fitting the model with the entire training set, we
fit the model with one class at each time from the training set (Xtrain∆

). Our first
hypothesis is that samples considered non-outliers based on Xtrain∆

are likelier to belong
to that class. In Algorithm 1, this set of samples considered non-outliers, XΘ, move on to
the next step. We have experimented with two modes for labeling the rejected set, which
will be described subsequently.

Extrapolation Mode

We call this version of the proposed framework Confident-Inline Extrapolation (CI-EX).
Figure 3.1, illustrate how this version of Algorithm 1 works. As can be seen in the figure,
and in the step 2 and 3(a) of the algorithm, in the CI-EX mode, the current training data
is used to train the Isolation Forest algorithm and the classifier. However, although the
whole training data is used to train the classifier, only the samples from the respective
class ∆ are used to train the Isolation Forest. Because of this, the Algorithm 1 needs to be
executed twice at each iteration returning c samples with label ∆ — or less if fewer than
the stipulated number of samples match the criteria. In step 4, using the Isolation Forest,
we classify the Rejects Data into outliers and inliers. Outiers are ignored temporally, but
will belong to the updated rejects dataset at the end of the iteration of the Algorithm 1.
Inliers, however, are further subdivided into top confident, which go to set XΘ, and less
confident samples.

With this strategy, the step 5.1 of Algorithm 1 uses the probabilities derived from a
classifier with balanced weights1 to label the inliers samples and filter the c most confident
samples2 (steps 5.2 to 5.3). However, the less confident samples, will also become part of

1In our implementation, instead of using the default learning procedure that makes all samples equally
important, the weight of each sample is inversely proportional to the number of samples of its class.

2Since our classifier uses balanced weights, we can use 0.5 as the threshold to classify the samples
between good and bad cases.
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the updated rejects dataset at step 5.4 of the iteration of the Algorithm 1. The algorithm
then returns c samples with label ∆ — or less if fewer than the stipulated number of
samples match the criteria. After the Algorithm 1 is executed for both classes, the rejected
dataset and the training dataset are updated, as illustrated in Figure 3.1.

Figure 3.1: Representation of CI-EX framework to perform Reject Inference.

Label Spreading Mode

We call this version of the proposed framework Confident-Inline Label Spreading (CI-
LS). Figure 3.2, illustrate how this version of Algorithm 1 works. As the figure shows,
the algorithm’s execution proceeds in a very similar way to the CI-EX mode. However,
instead of using a typical classifier to label our samples after the fitting process, we get the
labels directly from the training process with this strategy, using a semi-supervised model
called Label Spreading (Zhou et al., 2003). In step 3(b) the label spreading algorithm is
fitted with both the labeled and unlabeled samples. The unlabeled samples receive −1
as a label and, during the fitting process, receive a score from the label_distribution_
function. Similarly to the extrapolation mode, in step 5.2 of the algorithm, we use this
score to choose the most confident samples. The following steps of the algorithm are
precisely as described for the extrapolation mode.

3.2 Expand Dataset

The Expand Dataset Algorithm (Algorithm 2) can be understood as an iteration of our
framework. We take as input a labeled train set (Xtrain and Ytrain) and an unlabeled
set (Xrej), and two other parameters, η and ρ, to control how many good and bad cases
should be added to the training set at this iteration. The parameter η is the total number
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Algorithm 1: Retrieve Confident Samples
INPUT : Xtrain, Ytrain, Xrej,∆, c,mode

// 1 - Initialization
X∆ ← {}; Y∆ ← {}
N ← |Xrej|
// 2 - Fitting Isolation Forest
Fit IsolationForest with Xtrain∆

// 3(a) - Fitting Classifier
if mode = extrapolation then

Fit Classifier with Xtrain, Ytrain

// 3(b) - Fitting Label Spreading
if mode = labelSpreading then

Fit LabelSpreading with Xtrain, Ytrain, XΘ;
// 4 - Detect inliers
XΘ ← {(xi) ∈ Xrej, outlier(xi) == False | i = 1, ..., N }
// 5 - Selecting samples
while |X∆| < c and |Xrej| > 0 do

// 5.1 - Sample identification
xj ← argmaxj P (Xrej = ∆)

// 5.2 - Sample scoring and evaluation
if score(xj) ≥ 0.5 then

yj = 1

else
yj = 0

// 5.3 - Adding sample to sets
if xj ∈ XΘ then

X∆ ← X∆ ∪ xj

Y∆ ← Y∆ ∪ yj

// 5.4 - Removing sample from rejects set
Xrej ← Xrej − {xj}

OUTPUT: X∆, Y∆
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Figure 3.2: Representation of CI-LS framework to perform Reject Inference.

of samples we want to add at this iteration, and the parameter ρ defines the proportion
of bad to good payers in the total number of added samples we want to add.

We then call the Retrieve Confident Samples Algorithm (Algorithm 1) within the
Expand Dataset Algorithm for both classes, to retrieve c0 samples with inferred labels
for the class good payers (X∆=0, Y∆=0), and c1 samples with inferred labels for the class
bad payers (X∆=1, Y∆=1). The samples inferred for both groups are then concatenated to
the new training set (X̂train and Ŷtrain) and removed from the unlabeled set, Xrej. The
expanded training and updated unlabeled sets are returned as the algorithm output.

Algorithm 2: Expand Dataset
INPUT : Xtrain, Ytrain, Xrej, η, ρ

c0 ← η − (η · ρ);
c1 ← η · ρ;
X∆=0, Y∆=0 ← RetrieveTS(Xtrain, Ytrain, Xrej, 0, c0);
X∆=1, Y∆=1 ← RetrieveTS(Xtrain, Ytrain, Xrej, 1, c1);
X̂train ← Concat(Xtrain, X∆=0, X∆=1);
Ŷtrain ← Concat(Ytrain, Y∆=0, Y∆=1);
X̂rej ← Xrej \ X̂train

OUTPUT: X̂train, Ŷtrain, X̂rej
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Chapter 4

Methodology

4.1 Data

We use data from the HomeCredit European dataset (Montoya and KirillOdintsov, 2018)
for this research. As well as from the Lending Club dataset (George, 2017), a popular
online credit loan platform in the US (Liu et al., 2022a) and used for much research
in credit scoring. They are two of the most extensive credit datasets publicly available
online. Both datasets were made available on the Kaggle website1, where competitions
related to the identification of bad payers in credit scoring scenarios using these datasets
were held.

For the Homecredit dataset, from different files, with different levels of information
about the clients’ data, we choose to consider only the information present in the appli-
cation_train.csv file for this study. It contains 307, 507 samples from approved clients,
with 122 informative features and one target feature. Of the informative features, 106
were numerical, and 21 were categorical. Other files were not considered for this study
since they were composed chiefly of information that would only be available for approved
clients. This data type would not be useful for us as we are focusing only on the credit
granting process.

The Lending Club dataset contains an even more extensive amount of credit data:
2260701 samples for accepted clients and 27648741 samples from rejected clients from 2007
to 2018. Due to this, it can be utilized to train and test a reject inference credit scoring
model sufficiently well. This dataset comprises tabular data and contains 151 features for
the accepted clients but only nine for the rejected clients. Data from accepted clients can
be labeled between good and bad debtors using the column Loan_Class. This data was
used to train and test our supervised models. The rejected clients’ data is unlabeled and
was used to perform Rejected Inference.

4.2 Data pre-processing

Most data pre-processing was made automatically using scikit-learn pipelines (Pedregosa
et al., 2011). Due to their structure, which combines several steps of data pre-processing

1https://www.kaggle.com/
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and classification, they are a helpful tool for data science. By fitting all models inside
the pipeline, from processing to classification, with the training data, they also help to
avoid data leakage from the testing set. As illustrated in the Figure 4.1 (A), the training
data is used to fit the pipeline, and from that, the pipeline can be used to transform
and make predictions. When a function is called to predict a testing set, it will apply
transformations (pre-processing) to the testing set as necessary based on the values fitted
with the training set.

The Figure 4.1 (B) describes the steps implemented on the pipeline created for our
experiments. Our pipeline separates features into three categories: numerical Features,
categorical Features A, and categorical features B. Group A has categorical features with
less than 3 unique values, and group B has at least 3 unique values. Both groups of
categorical features are submitted to the same type of null values filling. The mode of
the feature is fitted and used to fill the possible missing values of that feature. The null
values of the numerical features are filled with the mean instead. Group A is encoded
with one hot encoding, which replaces each categorical feature with a column for each
unique value. The column will contain the value 1 if the sample has that unique value
and the value 0 if it does not. Group B uses a more complex encoding based on Empirical
Bayesian Estimation (EBE), avaliable at scikit-learn library as Target Encoder. The
Target Encoder replaces categorical values with a value that reflects the proportion of
positive cases observed for each category during the fitting process.

Figure 4.1: (A) Outside view of the pipeline. (B) Inside view of the Pipeline. The pipeline
is fitted with the training set and used for pre-processing and classification on all datasets.

4.2.1 HomeCredit

We separated the informative features of the HomeCredit dataset into three subgroups S1,
S2, and S3. In S1, we allocated the features we considered more relevant to the study of
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Reject Inference, such as information such as age, number of children, education, and score
of a client in other sources, among others, totaling 15 informative features. S1 features
descriptions are listed in Table 4.12. The S2 subgroup consisted of 71 informative features
such as the client’s housing situation, the number of times the client’s credit information
was checked before the loan, and statistics about the building where the client lives.
Finally, the S3 subgroup of features was composed of features like sensitive information
such as gender, occupation, and family status of the client, as well as extremely unbalanced
features like binary features with information about certain documents, where more than
99% of values were the same for all samples.

Table 4.1: Description of S1 group of Homecredit features
ID Features Description

F1 AMT_CREDIT Credit amount of the loan
F2,F3 and F4 EXT_SOURCE_1,2 and 3 Normalized score from external data

sources
F5 REGION_POPULATION_RELATIVE Normalized population of region where

client lives
F6 DAYS_EMPLOYED How many days before the application

the person started current employment
F7 DAYS_BIRTH Client’s age in days at the time of ap-

plication
F8 AMT_INCOME_TOTAL Income of the client
F9 CNT_CHILDREN Number of children the client has
F10 CNT_FAM_MEMBERS How many family members does client

have
F11 REG_CITY_NOT_WORK_CITY Flag if client’s permanent address does

not match work address
F12 AMT_GOODS_PRICE For consumer loans it is the price of the

goods for which the loan is given
F13 ALAG_OWN_CAR Flag if the client owns a car
F14 NAME_EDUCATION_TYPE Level of highest education the client

achieved
F15 NAME_CONTRACT_TYPE Identification if loan is cash or revolving
F16 TARGET Target variable (1 - client with payment

difficulties: he/she had late payment
more than X days on at least one of
the first Y installments of the loan in
our sample, 0 - all other cases)

4.2.2 Lending Club

For the Lending Club dataset, we took inspiration from the work of Shih et al. (2022)
to make our feature selection for the accepted and rejected clients dataset. However, we
decided to avoid certain features in the dataset that would lead to target leaking. These
were features related to the credit payment behavior of the client and, thus, were not
available to the rejected population. The feature descriptions for the accepted client’s
dataset are available at Table 4.2. Respectively, Table 4.3 brings the descriptions of the
selected features for the rejected clients. The issue_d feature on Table 4.2 and Application

2The descriptions are provided by the Kaggle repository.
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Date on Table 4.3 feature were used to separate the datasets between train and test and
were not used to train the models.

Table 4.2: Description of features for accepted clients dataset
ID Features Description

A1 addr_state The state the borrower provides in the loan applica-
tion.

A2 annual_inc The self-reported annual income provided by the bor-
rower during registration.

A3 delinq_2yrs The number of 30+ days past-due incidences of delin-
quency in the borrower’s credit file for the past 2
years.

A4 dti A ratio calculated using the borrower’s total monthly
debt payments on the total debt obligations, exclud-
ing mortgage and the requested LC loan, divided by
the borrower’s self-reported monthly income.

A5 emp_length Employment length in years.
A6 home_ownership The home ownership status provided by the borrower

during registration or obtained from the credit re-
port.

A7 int_rate Interest Rate on the loan.
A8 issue_d The month which the loan was funded.
A9 last_fico_range_high The upper boundary range the borrower’s last FICO

pulled belongs to.
A10 last_fico_range_low The lower boundary range the borrower’s last FICO

pulled belongs to.
A11 inq_last_6mths The number of inquiries in past 6 months (excluding

auto and mortgage inquiries).
A12 loan_amnt The listed amount of the loan applied for by the bor-

rower.
A13 revol_util Revolving line utilization rate, or the amount of

credit the borrower is using relative to all available
revolving credit.

A14 term The number of payments on the loan. Values are in
months and can be either 36 or 60.

A15 loan_status Current status of the loan.

4.3 Evaluation metrics

4.3.1 Area Under the Curve

One evaluation problem in credit scoring is the class imbalance in credit risk datasets.
To bypass this problem, metrics such as Area Under the Curve (AUC) are welcomed.
AUC is a metric that is not sensitive to threshold values. The higher the AUC value, the
better the classifier (Dastile and Celik, 2021). It also reflects the model’s performance,
even when dealing with unbalanced datasets. The Area Under the Curve is given by:

AUC = P [p(y = 1|Xi) > p(y = 1|Xj)|yi = 1, yj = 0] (4.1)
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Table 4.3: Description of features for rejected clients dataset
ID Features Description

R1 Amount Requested The total amount requested by the borrower.

R2 Application Date The date which the borrower applied.

R3 Risk_Score For applications prior to November 5, 2013, the risk
score is the borrower’s FICO score. For applications
after November 5, 2013, the risk score is the bor-
rower’s Vantage score.

R4 Debt-To-Income Ratio A ratio calculated using the borrower’s total monthly
debt payments on the total debt obligations, exclud-
ing mortgage and the requested LC loan, divided by
the borrower’s self-reported monthly income.

R5 State The state provided by the borrower in the loan ap-
plication.

R6 Employment Length Employment length in years.

4.3.2 Kickout

Kickout, proposed by Nikita Kozodoi et al. (2019), is a metric that aims to evaluate
the performance of a RI model relative to a benchmark model. As illustrated on ?? to
calculate this metric we need a labeled test set (from the accepts) and an unlabelled test
set (from the rejects). The labeled test set is used to evaluate the benchmark model, and
both datasets are used to assess the RI model. It evaluates the number of good and bad
cases the model accepts with and without using RI, following the formula in equation 4.2.
Considering that we have a benchmark model (BM) without RI, with SB bad payers, KB

is the number of bad payers accepted by the benchmark model (i.e. false negative cases)
now rejected by a method with RI, and KG is the number of good payers accepted in the
benchmark model (i.e. true negative cases) now rejected by a method with RI. p(B) and
1−p(B) are the probability of bad and good payers, given that the benchmark model has
accepted them. So, KB

p(B)
− KG

1−p(B)
is the difference in the numbers of bad to good payers

in proportion to the number of bad and good payers accepted by the benchmark model.
And SB

p(B)
is the ratio between the number of ground truth bad payers accepted by the

benchmark model and the probability of a ground truth bad payer being accepted by the
benchmark model. A good RI model is expected to have a higher kickout value.

kickout =
KB

p(B)
− KG

1−p(B)

SB

p(B)

(4.2)

This metric is essential in credit scoring because it can capture the risk of giving credit
to bad payers when we include more clients using reject inference. The acceptance rate,
α, defines the proportion of clients the models will accept. The decision threshold that
separates the clients between accepted and rejected is calculated in the accepted set for
the benchmark and in the accepted and rejected set using RI. In the last case, we give
credit to more people, and the kickout evaluates how well our exclusion of bad payers
went in the RI scenario. A higher kickout reflects a better quality score system when
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Figure 4.2: Illustration of how the Kickout metric is calculated. TP stands for True
Positives, FP for False Positives, TN for True Negatives, and FN for False Negatives.

compared with the benchmark.
The importance of the acceptance rate, α, is worth mentioning. This parameter can

create different kickout values depending on its selection. (Nikita Kozodoi et al., 2019)
did not explicitly stipulate any value to this variable. For these reasons, we also made a
study that evaluated all RI techniques by a range of values for α.

4.3.3 Area Under the Kickout

Our study of how different values of α create an enormous range of kickout values. This
leads us to realize focusing on a single value for α may lead to biased conclusions. There-
fore, we propose a new metric called Area Under the Kickout (AUK). This metric evaluates
the mean of the kickout values for each value of α ranging from 1% to 100%. The formula
for calculating the AUK value is given by equation 4.3. In the equation, α represents the
percentage of clients the model accepts. The bigger the value of the AUK, the better the
model identifies bad clients.

AUK =

∑100
α=1 kickout(α)

100
(4.3)

4.4 Experiment design

We selected the LightGBM (Ke et al., 2017) as our main classifier due to its high per-
formance and faster training speed with tabular data, in particular with the HomeCredit
dataset as verified by Daoud (2019). The Label Spreading Algorithm and Isolation Forest
implementation came from the Sklearn Library in Python (Pedregosa et al., 2011). We
only applied hyper-parameter optimization on LightGBM to the accepted training and
validation set. Since all RI techniques tested used the same parameters for the classifier,
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we concluded that further parameter tuning was unnecessary.

4.4.1 Experiment I - HomeCredit

In Reject Inference, two types of datasets are necessary — labeled data from the accepted
population and unlabeled data from the rejected population. It is essential to compare how
employing rejected clients’ information will improve the credit scoring system concerning
the benchmark model. However, finding public datasets with high levels of information
on both accepted and rejected real clients can be pretty challenging. Because of such
limitation, taking inspiration from Liu et al. (2022b), we simulated an accept/reject policy
using the HomeCredit accepted clients’ data to access both an accepted and a rejected
data distribution.

AR Policy

HomeCredit Dataset
246006 samples

123 features

Train
(51.2%)

16 features

 Policy Set 
(12.8%)

72 features

Train Accepts Val RejectsVal AcceptsTrain Rejects Test RejectsTest Accepts

K-fold Split

Val
(16%)

16 features

Test
(20%)

16 features

Figure 4.3: The split of the HomeCredit dataset into seven subsets

Figure 4.3 outlines our methodology for splitting the datasets into different subsets of
accepted and rejected clients. In this methodology, each reject subset would be considered
as unlabeled data. The process of generating each subset starts with the isolation of 20%
of samples from the dataset and the cherry-picked features to fit a Logistic Regression
classifier. Using Logistic Regression here is inspired by the work of Nikita Kozodoi et al.
(2019). According to the authors, this weak learner with L1 regularization is a more
reliable way to use the probabilities of default given by the model as a separator between
the two classes. We choose ϵ = 0.4 as the threshold value that divides good from risk
clients. Whichever sample received a probability of default higher than 0.4 would be
allocated to the rejected group of the set. This threshold was chosen to have a large
number of rejected individuals, having approximately 1 accepted clients to each 2 rejected
ones. Thus following real life scenarios where the number of rejected clients is usually
much higher than the number of accepted clients (Nikita Kozodoi et al., 2019; Liu et al.,
2022b).



35

In this experiment, to ensure the robustness of our results, we used K-fold validation
to split the training, validation, and test dataset. The simulated accept/reject policy was
fitted with 20% of the training set — these samples were ignored temporarily until the
next fold split. The proportion of samples for the policy set, as well as for the initials
training, testing and validation sets are listed on Figure 4.3. The policy model was applied
to each dataset at each K-fold iteration. So for each iteration of the K-fold algorithm, we
had seven different subsets, as shown in Table 4.4.

Table 4.4: Description of Dataset Categories
Category Description

Policy Set The set used only for fitting the accept/reject policy
Train Accepts Labeled training set
Train Rejects Unlabeled training set
Val Accepts Set used to evaluate the best iteration of our method
Val Rejects Set used to evaluate the best iteration of our method
Test Accepts Set used to evaluate all methods
Test Rejects Set used to evaluate the kickout Metric

Both our techniques produce several versions of progressively bigger training datasets.
We choose the TOPSIS method (Chakraborty, 2022) to identify the best version from
these datasets that provides the best combination of AUC, with weight 1, and kickout
value, with weight 10 according to the stipulated α value. This weight choice was done
because we believe that kickout is a more relevant metric than AUC, and in preliminary
experiments with validation set, it presented small reduction in AUC.

In this experiment, for our proposed technique, we set η as 1000 and ρ as 0.07, and
0.12 as the value for contamination threshold for the Isolation Forest algorithm. The
value of these parameters was obtained through manual fine-tuning.

4.4.2 Experiment II - Lending Club

For the experiments using the Lending Club dataset we choose a different approach.
Instead of random K-fold validation, we choose to separate the training and testing sets
by time. So for each specific year, the training set is composed of the loans dated from
January to September, and the testing set is composed from the loans dated from October
to December. However the training and validations sets were created using the widely
adopted train and test split function from Scikit-learn library. 70% of the initial training
set was kept as training and the remaining 30% used as validation. We followed this
protocol for both the accepted and rejected clients datasets. Ultimately, we got six distinct
subsets for each year studied. Each subset was used for the same purposes listed in
Table 4.4. Figure 4.4 describes the data separation protocol utilized.

Figure 4.4 also lists the years chosen to be analysed in this research, 2009 to 2012,
as well as the final number of features selected from each dataset. As mentioned in
Section 4.2.2, we took inspiration from the work of Shih et al. (2022) to do the feature
selection. We also based our year selection on their work. However, the bigger inspiration
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from their work was the data imputation on missing features. As Figure 4.4 there is
a different number of features for the rejected and accepted clients datasets, which is a
big impediment in machine learning research. Shih et al. (2022) overcomes this issue by
applying k-nearest imputation method to fill out the values of missing features on the
rejected dataset. This method was proposed by Troyanskaya et al. (2001) and it works
by using sample similarity between the accepts training dataset and the rejects datasets
to estimate the missing values of the features on the latter, based on the former.

Figure 4.4: The split of the Lending Club dataset into six subsets

Table 4.5: Final Lending Club Dataset Features
Features Commentary

Present on both datasets

R1 and A12 Same Feature.
R2 and A8 Same Feature. Used for dataset

splitting.
R3 and A9-A10 Same Feature. The mean values

of A9 and A10 were used.
R4 and A4 Same Feature.
R5 and A1 Same Feature.
R6 and A5 Same Feature.

Present only on Accepts A2, A3, A6, A7,
A11, A13, A14

Values on Rejects were filled with
KNN inputation.

A15 Used as target feature.

Table 4.5 describes the final version of the features utilized for this experiment. As
mentioned in the table, Instead of using both features A9 and A10 from the accepts
dataset, we choose to use the mean of these two features. By doing this, the resulting
feature represents the same information of feature R3, risk score, on the rejects dataset.
With the exception of the feature A15, which was used as the target feature of our
experiment, all the features present only on the accepts dataset were filled on the rejects
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dataset with the values obtained using the k-means imputation from scikit-learn. In the
end, for this experiment we had 12 informative features and 1 target feature to train our
models.

In this experiment, for our proposed technique, we set η as 1000 and ρ as 0.2, and 0.12

as the value for contamination threshold for the Isolation Forest algorithm. The value
of these parameters was obtained through manual fine-tuning. For this experiment we
also choose the TOPSIS method to identify the best version from the resulting datasets
obtained by our proposed techniques. However, instead of making the selection using
kickout values, we used the AUK metric, which is less biased towards a acceptance rate
value.
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Chapter 5

Results and Discussion

Given the distinct methodology made for both the Homecredit and Lending Club datasets,
we will analyse their experiment results individually. However, for both experiments all
the classification steps of both ours and the compared techniques were made using a
different instance of the Lightgbm model with the same parameters and seed number.
We compared our proposed frameworks with the techniques previously mentioned in the
Section 2.2.1 and Section 2.2.2.

• BM - Benchmark model: Model trained with only data from accepted set;

• A-SC - Augmentation with Soft Cut-Off : Weight Adjusting and Data Inflating
Method;

• A-UW - Upward Augmentation: Weight Adjusting Method;

• A-DW1 - Downward Augmentation: Weight Adjusting Method;

• A-FU - Fuzzy-Augmentation: Weight Adjusting Method;

• E-C - Confident Extrapolation: Data Inflating Method;

• PAR - Parcelling: Data Inflating Method;

• LSP - Label Spreading: Data Inflating Method.

• CI-EX - Confident-Inlier Extrapolation for Reject Inference : Data Inflat-
ing Method;

• CI-LS - Confident-Inlier Label Spreading for Reject Inference: Data In-
flating Method.

5.1 Results Using Simulated Rejected Clients

For the experiment using the Homecredit dataset, with simulated rejected clients, we
evaluated the performance of our models through three aspects, which included comparing

1Only used for experiment with the HomeCredit dataset.
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the kickout Value at the common threshold α of 50%2, exploring the kickout value for
multiples values of α, and the trade-off between AUC and kickout metrics.

The Figure 5.1 presents the mean kickout value for all techniques on 5 K-fold validation
when using an acceptance rate of 50%. All the values of kickout for the BM model are zero
because it is compared with itself when calculating this metric. From this figure, we can
observe that Data Inflating Methods generally lead to higher values of kickout. Although
we had contrasting results between the E-C and the LSP technique, both simpler versions
of the ones we proposed, which the Figure 5.1 shows, have the best performance in this
metric.

Figure 5.1: Comparing kickout value at an acceptance rate of 50% for all techniques. The
common classification threshold for machine learning models.

Figure 5.2 shows our proposed methods slightly decrease AUC performance when
compared with the base model (BM). However, the AUC loss is less than 2 percent
points even when compared to the BM model. This figure shows our proposed methods
(and other RI techniques) do not improve AUC value for the accepted population nor
decrease this value significantly. In this scenario, the capability of the proposed method
of improving the kickout measure is quite important, allowing a more qualified inclusion
of rejected clients.

During our experiments, we observed the value of kickout is heavily influenced by the
acceptance rate α. Therefore, we present in the graph of figure 5.3 the evolution of kickout
metric with changing acceptance rates. We can observe a clear growth tendency for the
kickout values for all techniques when we increase the value of α. The second conclusion
from this graph is that our proposed techniques, CI-EX and CI-LS, frequently offer the

2We featured this value for comparison, with the assumption this a safe value for separate between
good and bad payers.
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Figure 5.2: Comparison of average AUC values (5 K-fold).

Figure 5.3: Comparing evolution of kickout value by acceptance rate for all techniques
(5-fold cross-validation).
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highest kickout values regardless of the stipulated acceptance rate. The CI-EX technique,
in particular, is more indicated for strict credit policies when the rejection rate desired is
higher.

The AUC value is an important credit scoring metric. However, it has strong limita-
tions in the task of evaluating RI techniques since, in most cases, it can only evaluate the
accepted population due to the lack of labels of the rejected clients, and RI techniques
aim at improving the classification of the whole population (Kozodoi et al., 2020). For
this reason, even though the RI techniques did not offer higher results of AUC than the
BM model, as shown in Figure 5.2, we argue the kickout results shown in Figure 5.3,
demonstrate the ability of RI metrics at correctly identifying bad cases in comparison
with the BM model, creating better quality credit scoring policies. Finally, by observing
the slight AUC decrease with a robust and consistent increase in kickout, we can say that
the proposed method is a competent RI method that can improve credit scoring quality.

5.2 Results Using Real Rejected Clients

For the experiment using the Lending Club dataset, with real rejected clients, we evaluated
the performance of our models through three aspects, which included comparing the AUC
of the RI methods versus the model with only accepts, comparing the kickout value of the
RI models at the common threshold α of 50%3, and finally exploring the mean of kickout
values of the RI models for a complete range of percentages of acceptance rate with the
AUK metric. The final results for these metrics can be found in Table 5.1 and in the
following figures.

Figure 5.4 shows a graph of how the models performed based in the AUC metric for
the years 2009 to 2012. As can be seen in the figure, for most years, the BM model
offers the highest perform in AUC compared to the RI models. The A-SC and A-UW got
very good AUC values, almost matching the BM model, and in one case even surpassing
the BM model. From our proposed models, CI-EX and CI-LS, only in the year 2011,
CI-EX surpassed the BM model. However, for most cases it offered competitive results.
The same can not be said about our CI-LS model, which along with the LS model, both
models used label spreading, were usually one of the models with the worst AUC values.

Figure 5.5 shows another graph of how the models performed for the years 2009 to
2012, but this time based in the metric kickout with 50% acceptance rate. The results
showed in this figure express a more clear advantage of our proposed methods, CI-EX
and CI-LS, compared to the others RI techniques studied. It can be seen in the figure
that for this acceptance rate, the kickout value of most RI techniques is equal to 0. This
means that these techniques are not identifying any bad cases that the BM model did
not already identify. The only time methods others than our proposed ones present any
value of kickout different than zero was the year 2009, which was the year with the least
amount of samples for all datasets. Except for the year 2009, our proposed method CI-LS
was the model with the highest kickout value, being followed by our other method CI-EX

3Again we featured this value with the assumption this a safe value for separate between good and
bad payers.



42

Figure 5.4: Mean results for AUC metric of the studied models from 5 experiments with
different seeds. Lending Club dataset from years 2009 to 2012.

in the years 2010 and 2012.
Figure 5.6 shows a more detailed view of how the RI models perform at the task

of correctly avoiding approving loan for bad cases in proportion to avoiding incorrectly
denying loans to good cases. In the figure, displayed in blue are the models that had a
positive value of AUK, that means they were, in mean, better than the BM model at
kicking out bad cases. Displayed in red, are the models with negative values of AUK,
which means they were, in mean, worst than the BM model at denying loans to good
cases, without actually avoiding enough bad cases. It can be seen in the graphs the
models A-FU, E-C, and PAR had negative values for all years studied. In contrast, our
model, CI-LS had positive values, as well as the highest values, for all years studied. Our
other model, CI-EX, as well as the LS model, only had a result lower than zero for the
year 2011.

As mentioned at the end of Section 5.1, the AUC metric alone can not identify the best
RI model. Yet, the kickout metric is neither perfect. Because it depends on a parameter,
α, that does not have a unique indicated value for all scenarios, it is hard to ascertain its
reflection in practical application results. And although we could not verify in real world
applications our proposed AUK metric, we argue it is a strong indicative of how well the
studied RI models would rank in a real world scenario. As it is seen in the graphs, and in
the Table 5.1, RI models with highest AUC values in most cases did not achieve positive
performance in neither kickout or AUK metrics. In contrary, the models with the lowest
AUC were the ones that had consistent good values for AUK. However, our proposed
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Figure 5.5: Mean results for kickout metric (α = 0.5) of the studied models from 5
experiments with different seeds. Lending Club dataset from years 2009 to 2012.

Figure 5.6: Mean results for AUK metric of the studied models from 5 experiments with
different seeds. Lending Club dataset from years 2009 to 2012.
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model CI-EX, for most years studied, is the exception. The CI-EX model was able to
achieve positive results for AUK and kickout without losing much AUC.

Both our models, due to their iterative nature, are much more time consuming to train
than the other studied models. And the CI-LS model is even more slow at training than
our other proposed CI-EX model. This seems to indicate to achieve higher AUK values
it is necessary to compromise some AUC value as well as invest more training time. But
this may be worth considering how most studied models with high AUC achieve negative
AUK values, raising the question of whether they were really of any improvement to the
BM model.

Table 5.1: Comparison of Model Metrics
Year Metrics BM A-SC A-UW A-FU E-C PAR LSP CI-EX CI-LS

2009
AUC 0.743 0.742 0.742 0.732 0.728 0.724 0.663 0.729 0.722

Kickout - 0.009 - - - - 0.159 0.114 0.144
AUK - -0.003 - -0.004 -0.009 -0.011 0.091 0.037 0.098

2010
AUC 0.868 0.864 0.868 0.867 0.860 0.865 0.844 0.846 0.849

Kickout - – - - - - - 0.052 0.103
AUK - -0.001 - -0.002 -0.009 -0.002 0.026 0.046 0.065

2011
AUC 0.886 0.886 0.887 0.885 0.881 0.884 0.868 0.887 0.845

Kickout - - - - - - - - 0.184
AUK - - - -0.002 -0.044 -0.006 -0.078 -0.006 0.027

2012
AUC 0.890 0.890 0.890 0.884 0.883 0.881 0.880 0.887 0.863

Kickout - - - - - - - 0.021 0.245
AUK 0.002 -0.003 - -0.020 -0.031 -0.024 0.028 0.019 0.200
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Chapter 6

Conclusions and future work

This research proposes two novel semi-supervised frameworks for Reject Inference. They
are both variations of a confident inlier approach proposed by this work. In this approach,
we apply outlier detection as a filter to pre-select samples closer to each class distribution
and confident criteria to make a rigid selection of samples from those. However, while the
CI-EX variation uses the probabilities of a classifier trained with the accepted samples
to label rejects, the CI-LS variation labels the rejected population using semi-supervised
learning with the label spreading algorithm. Using two large public datasets, we compare
our proposed methods with relevant RI techniques from the literature. We use two liter-
ature performance criteria, AUC and kickout, and a novel metric for RI, AUK. Using the
HomeCredit dataset, the results of the proposed methods offered the highest predictive
power concerning the kickout metric for all acceptance rates tested without a significant
AUC loss. Using the Lending Club dataset, our proposed methods achieve more contrast-
ing results than the other RI models from the literature, with some more significant loss
in AUC in some cases but with consistently good results for kickout and AUK metrics.

The results of this work support the usefulness of outlier detection and semi-supervised
learning in Reject Inference, as well as the importance of looking at Reject Inference from
a different perspective. To the best of our knowledge, this is the first paper evaluating
classical Reject Inference techniques with kickout, a much less unbiased metric for this
type of technique. It is one of the few works that propose a new way of evaluating RI
methods in a less biased way. We conclude from these experiments that even classical
techniques can improve the baseline model (trained with only accepts), challenging the
conclusions of Crook and Banasik (2004).

However, our work has some limitations. First, our proposed frameworks take longer to
train than the compared methods. Second, we only tested the RI models with one classifier
model. Future work should aim to improve the computational cost of our algorithms, test
different models and strategies for filtering confident samples, and increase the rate of
incorporating rejected data into the training set. A relevant way to continue this work is
to use this framework on Brazilian credit datasets. We would also like to investigate new
metrics for validating the positive impact of RI approaches on marginalized populations
and improving the RI metric already proposed in this work.
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6.1 Ethics Statement

All data used in this study were anonymized and sourced from publicly available datasets,
ensuring that no personally identifiable information was included or processed. We rec-
ognize the importance of fairness and transparency in predictive modeling, especially in
financial services where decisions can significantly impact individuals’ lives. However, we
did not submit our models to fairness metrics to guarantee they did not favor nor harm
any particular group, although we plan to address this in future work. We view our work
not as the final step towards a fair credit scoring system, but as one of many steps nec-
essary to achieve it. We plan to release our code publicly to facilitate transparency and
reproducibility of our results.
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