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RESUMO 

Santos, Daniel Rodrigues dos, Novas Abordagens de Parametrização e Aprendizado de 

Máquina para o Gerenciamento Eficiente de Campos de Petróleo, Campinas, Faculdade 

de Engenharia Mecânica, Universidade Estadual de Campinas, 2023. 171 p. Tese 

(Doutorado) 

A seleção da estratégia de produção sob incertezas é uma etapa importante no 

desenvolvimento e gerenciamento de campos de petróleo, pois impacta diretamente o fator de 

recuperação de óleo e o retorno econômico do projeto. A abordagem mais confiável para 

determinar a estratégia ótima envolve a realização de inúmeras simulações usando modelos 

numéricos de reservatórios para otimizar um grande número de variáveis. 

Apesar dos avanços computacionais, as simulações necessárias para determinar a 

estratégia ideal ainda requerem tempo significativo, especialmente em situações reais, que 

exigem uso de modelos de maior fidelidade para representar o campo, hidrocarbonetos com 

múltiplos componentes e incertezas. Além do alto esforço computacional, outra desvantagem 

comumente identificada nos procedimentos tradicionais é o fato de fornecerem estratégias 

excessivamente complexas de serem implementadas. 

A fim de abordar os problemas mencionados, esta tese propõe procedimentos que 

aceleram o processo de otimização das variáveis de controle de poço ao longo do ciclo de vida 

do campo, ao mesmo tempo que geram estratégias bem-comportadas para implementação 

prática em casos de injeção de água e de injeção alternada de água e gás (WAG). 

Este trabalho foi dividido em quatro artigos. O primeiro explora quatro regras de 

parametrização das variáveis de controle do ciclo de vida do campo buscando maximizar o 

retorno econômico do projeto. A parametrização inicial otimiza a distribuição das vazões e o 

tempo de fechamento dos poços. As outras três consistem em equações paramétricas, incluindo 

a logística e as polinomiais de primeira e segunda ordem, para definir a pressão de fundo de 

poço (BHP) ao longo do tempo. No segundo artigo, apresentamos o método IDLHC-ML, o 

qual integra técnicas de aprendizado de máquina ao algoritmo hipercubo latino discretizado 

iterativo (IDLHC). Esse método visa diminuir a quantidade de simulações necessárias no 

processo de otimização da melhor parametrização encontrada no trabalho anterior. No terceiro, 

apresentamos o IDLHC-MLR, uma extensão do IDLHC-ML, que visa incorporar incertezas 



 

 

através da otimização robusta de modelos representativos. Expandindo o conceito de 

parametrização introduzido no primeiro artigo, o quarto estudo apresenta uma nova equação 

paramétrica para acelerar o processo de otimização de injeção WAG. Essa equação define a 

prioridade de injeção de água ou gás para cada poço em cada intervalo. Para isso, a equação 

considera dados de produção do reservatório, incluindo corte de água, razão gás óleo e 

produção acumulada de gás dos poços.  

As parametrizações propostas para as variáveis de controle de poço do ciclo de vida do 

campo, seja para definição do BHP ou da injeção WAG ao longo do tempo, melhoraram a 

convergência do algoritmo de otimização para soluções melhores quando comparadas com as 

de abordagens tradicionais. Além disso, essas estratégias exibiram comportamentos favoráveis 

para aplicação prática. O método de aprendizado de máquina também foi bem-sucedido 

reduzindo o número de simulações necessárias sem comprometer o retorno econômico nos 

cenários nominal e probabilístico. 

  



 

 

ABSTRACT 

The selection of production strategy under uncertainties is a crucial step in the 

development and management of oil fields, as it directly impacts the oil recovery factor and 

the economic return of the project. The most reliable approach to determine the optimal strategy 

involves conducting numerous simulations using reservoir numerical models to optimize a 

large number of variables. 

Despite computational advancements, the simulations required to ascertain the optimal 

strategy still demand a substantial amount of time, particularly in real-world scenarios that 

necessitate the use of higher-fidelity models to represent the field, hydrocarbons with multiple 

components, and uncertainties. In addition to the high computational effort, another drawback 

frequently observed in traditional procedures is their tendency to yield excessively intricate 

implementation strategies. 

In order to address the mentioned issues, this thesis proposes procedures that accelerate 

the well control life-cycle optimization process while also generating well-behaved strategies 

for practical implementation in cases of water injection and water alternating gas injection 

(WAG). 

This work has been divided into four articles. The first explores four parameterization 

rules for the well control life-cycle variables, aiming to maximize the project's economic return. 

The initial parameterization optimizes the distribution of flow rates and the well shut-in time. 

The other three consist of parametric equations, including logistic and first and second-order 

polynomial equations, to define the wells bottom-hole pressure (BHP) over time. In the second 

article, we present the IDLHC-ML method, which integrates machine learning techniques into 

the iterative discretized Latin hypercube (IDLHC) algorithm. This method aims to reduce the 

number of simulations required in the optimization process of the best parameterization found 

in the previous work. In the third article, we introduce the IDLHC-MLR, an extension of 

IDLHC-ML that aims to incorporate uncertainties through robust optimization of the 

representative models. Expanding on the parameterization concept introduced in the first 

article, the fourth study presents a new parametric equation to expedite the optimization process 

of WAG injection. This equation defines the priority of water or gas injection for each well in 

each interval. To achieve this, the equation considers reservoir production data, including water 

cut, gas-oil ratio, and the wells’ cumulative gas production. 



 

 

The parameterizations proposed for the well control life-cycle variables, whether for 

defining BHP or WAG injection over time, improved the optimization algorithm's convergence 

towards better solutions when compared to those of traditional approaches. Furthermore, these 

strategies exhibited favorable behaviors for practical implementation. The machine learning 

method was also successful in reducing the number of required simulations without 

compromising the economic return in both nominal and probabilistic scenarios. 
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1 Introduction 

The development and management of oil field projects pose significant challenges, 

including high investments, extended payback periods, economic risks (Yanting and Liyun, 

2011), uncertainties, along with a multitude of decision variables. Such projects require a 

thorough investigation conducted by a multidisciplinary team and the implementation of a 

systematic field development and management plan to improve decision making-process and 

profitability while mitigating risks stemming from high investments and uncertainties. 

In an effort to enhance the decision-making process in petroleum field development and 

management, Schiozer et al. (2019) put forth a meticulously model-based methodology 

integrating reservoir simulation, risk analysis (Risso et al., 2011; Santos et al., 2017b; Santos 

et al., 2018a), history matching, uncertainty reduction, representative models, and production 

strategy selection under uncertainties. These steps are iteratively executed utilizing 

accumulated information over time in order to maximize the project's objective function in a 

process known as closed-loop field development and management (CLFDM). 

The step of selecting a production strategy under uncertainties is important for 

maximizing the economic return and minimizing the risks (Santos et al., 2018b) of the project. 

To achieve an optimal strategy is necessary to optimize a multitude of variables. According to 

Gaspar et al. (2016) these variables can be separated into three distinct groups based on their 

impact on economic returns, the stage of the field's life cycle during which they are 

implemented, and the need for investment. These groups are named as follows: group 1 (G1) 

includes design variables, group 2 (G2) comprises control variables, and group 3 (G3) consists 

of revitalization variables. 

The G1 variables relate to the pre-development implementation of the field's complete 

production system. They have a significant impact on the project's economic return and involve 

substantial investments. Examples of G1 variables include well number, type, placement, 

platform capacity, and the recovery method selected (e.g., water flooding, water alternating 

gas). The G2 variables encompass equipment operation specifications during field 

management and can be easily adjusted throughout the field's lifespan with minimal costs. They 

have a smaller, yet significant impact on the economic return compared to G1. The G2 variables 

can be further categorized into three subcategories as proposed by Schiozer et al. (2022): (1) 

life-cycle control rules (G2L) representing control operations over the field's entire life, (2) 
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closed-loop cycle control rules (G2C) referring to the control within the current closed-loop 

cycle, (3) short-term controls (G2S) involving real-time or short-term equipment control in the 

field. Examples of G2 variables include control of choke at both the platform and well region 

level, alongside WAG cycles. The G3 variables consist of the reconfiguration of the production 

system with additional investments during the field management. Their purpose is to provide 

future alternatives to G1 as the uncertainties decrease over the management period. Some 

examples include wells conversion, infill drilling and recompletion. 

This work focuses on planning the G2L strategy at the beginning of field management, 

so costs incurred in the development stage cannot be reversed even if the G2L strategy suggests 

G1 modifications. Nevertheless, it is crucial to emphasize that a preliminary assessment of G2 

should be conducted during the developmental phase. This is because it wields influence over 

field design variables (Li and Jafarpour, 2012; Zandvliet et al., 2008), and neglecting these 

interdependence could yield suboptimal outcomes. 

The management of wellbore valves is typically executed indirectly by controlling the 

bottom-hole pressure (BHP) or flow rate overtime (Isebor, 2009; Isebor et al., 2014; Van Essen 

et al., 2009). This entails creating rules to govern the operational mode of the wells. These rules 

are generally based on monitoring variables (e.g., BHP, water cut, and oil rate) that guide or 

trigger specific actions in the operation mode of the valves. For instance, monitoring water cut 

(Wcut) allows for the well to be scheduled for shutdown when it reaches a predefined threshold. 

These rules can be classified as reactive, proactive, or hybrid. The reactive approach 

(Barreto et al., 2010; Van Essen et al., 2009; Van Essen et al., 2011) consists of responding to 

undesired events, such as partially closing a valve after a specific volume of water is produced 

by the well. Notably, this type of control typically demands less computational effort compared 

to other methods, as it involves assessing fewer variables in most cases (Pinto et al., 2012). 

In proactive control strategies (Bellout et al., 2012; Isebor, 2009; Isebor et al., 2014), 

preventive measures are taken to mitigate undesirable phenomena. For instance, one might 

reduce the injection rate of a well to impede the influx of water. The proactive approach 

demands increased computational effort when implemented over the field's lifespan. This is 

because, depending on the optimization procedure, a new variable is introduced for each valve 

and time period. Consequently, the optimization task becomes a product of the number of 

valves and its intervention periods. 
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Applying both reactive and proactive control extends to the hybrid approach. In this 

scenario, the optimization parameters comprise variables from both proactive and reactive 

methods. Consequently, this procedure requires a higher computational cost (Pinto, 2013), but 

it also encompasses more solutions that can yield better results if properly optimized. To 

alleviate computational challenges, one can optimize in stages, with proactive control being 

initially implemented, followed by reactive control, or vice versa (Santos, 2017). 

Ebadi and Davies (2006) presented a study that underscores all three mentioned control 

types. In the reactive strategy, they partially close the valve upon reaching a specific Wcut 

threshold. The proactive approach involves preemptively reducing the valve opening before 

water breakthrough. Finally, they implement the hybrid approach, using proactive control 

initially, and if there's an excess of Wcut, applying the reactive method to further diminish the 

valve orifice. 

The G2L process is generally quite costly, and measures to expedite it can contribute 

to the production strategy selection stage and the overall CLFDM. This computational effort is 

attributed to various factors, such as the multitude of variables involved, numerous 

uncertainties (e.g., geological, operational, and economic), the use of numerical reservoir 

simulation, and the complex nature of oil fluids as a mixture of reservoir hydrocarbons. 

Uncertainties present additional challenge in the selection of the production strategy 

because they demand the evaluation of numerous scenarios. Nevertheless, it is imperative to 

consider these uncertainties to minimize risk (Schiozer et al., 2004). Failing to address them 

adequately during the determination of the optimal strategy can result in a production plan that 

may appear optimal in simulation models but fail to deliver the expected results when applied 

in real-world field operations (Botechia et al., 2018). 

In general, the incorporation of uncertainties follows a systematic process. Initially, 

relevant uncertainties (e.g., geological, fluid properties and relative permeability) are identified 

and assessed during the reservoir characterization. These uncertainties are then combined using 

sampling techniques to generate a suitable number of scenarios for numerical reservoir 

simulation. Subsequently, data assimilation methods are employed to reduce uncertainties, 

resulting in a set of simulation models for production strategies optimization. The reservoir 

characterization, data assimilation, and production strategy optimization process can be 

revisited using a closed-loop approach as additional data, such as dynamic and seismic data, 

becomes available over time. 
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Two most common approaches are employed in the pursuit of developing optimal 

production strategies under uncertainties. The first approach, known as ensemble nominal 

optimization, involves optimizing deterministic objective function(s) for each individual model 

derived from the data assimilation process. This generates multiple production strategies, each 

one corresponding to a specific model. The second approach, referred to as robust optimization, 

focuses on optimizing probabilistic objective function(s) across the entire set of data 

assimilated models. This method aims to create a single production strategy that exhibits the 

best average performance considering the entire ensemble of models. 

Optimizing the production strategy through ensemble nominal optimization or robust 

optimization approaches can be challenging and resource-intensive when dealing with a large 

number of scenarios derived from the data assimilation process and optimizing a large set of 

variables. To address this issue, Meira et al. (2017) introduced the RMFinder 2.0 tool that 

utilizes a mathematical function to identify representative models (RMs) within the entire 

ensemble. These RMs capture the probability distribution of input variables, such as reservoir 

and operational uncertainties, as well as the variability of important output variables like 

production and injection forecasts. By working with RMs, both RM robust optimization and 

RM nominal optimization can be performed, eliminating the need to optimize the ensemble of 

models selected during the data assimilation process. Subsequently, the optimal strategies 

derived from RMs are often assessed within the ensemble of models before being implemented 

in the real field to ensure a more accurate evaluation of the risk curve. 

As mentioned earlier, another significant factor contributing to the high computational 

effort in the strategy selection process is the numerical reservoir simulation. This process 

involves solving several finite difference equations in the reservoir model grid cell at each time 

step, adding to the resource demands. However, it is a necessary tool as it allows for a more 

precise estimation of the behavior of pressures, saturations, compositions, and productions in 

a hydrocarbon reservoir over time (Mello, 2015). In order to mitigate the computational burden, 

the commonly employed approach is to utilize the Black-Oil model, which simplifies the 

composition of reservoir fluids into three primary phases: water, oil, and gas. Nonetheless, 

advanced compositional modeling is necessary to accurately represent the fluid behavior in 

complex scenarios characterized by light oil, high gas content, water alternating gas (WAG) 

injection as recovery mechanism and fully gas reinjection, as observed in certain Brazilian pre-

salt fields. This enhanced accuracy comes at the expense of increased computational demands 

in reservoir simulations, as a higher number of pseudo-components are required to precisely 
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describe the fluids present in the field (Schlijper, 1986). These demanding reservoir simulations 

are performed thousands of times during the optimization process due to the large number of 

variables to be optimized, uncertainties to be incorporated into the reservoir models, and the 

iterative nature of the closed-loop process.  

Machine learning (ML), which has been widely applied in the oil industry and other 

engineering fields over the last few decades (Tariq et al., 2021), can be an ally in easing 

computational efforts. Overall, machine learning revolves around the use of algorithms and 

statistical models to enable computers to learn from data and make predictions or decisions 

without the need for explicit programming for each specific task. One advantage of ML lies in 

its ability to swiftly process vast amounts of data, identifying trends and patterns with good 

precision at a much faster pace than traditional physics-based simulation models. 

Strategy optimization problems present other challenges beyond computational effort, 

especially related to G2L parameterization, which is the focus of this thesis. One primary issue 

arises from the vast number of optimization variables, leading the algorithm to prematurely 

converge towards suboptimal solutions. An example of such a parameterization is the stepwise 

approach, commonly found in literature (Bellout et al., 2012; Forouzanfar et al., 2015; 

Humphries et al., 2014; Wang et al., 2019). In this approach, the optimization variables consist 

of the bottom-hole pressure (BHP) or flow rate values at each time interval and well throughout 

the field's lifespan. While this method works well for simple models with a limited number of 

wells and intervals, it faces significant challenges when applied to real-world projects as the 

number of variables grow significantly. 

Another concern with an inappropriate G2L parameterization is the potential generation 

of strategies with adverse effects from a production-engineering perspective. For instance, 

strategies involving repeated large changes in BHP can lead to equipment and formation 

damage (Sorek et al., 2017). Moreover, the parameterization approach may produce highly 

complex solutions, making their implementation in actual field operations significantly 

challenging. 

In this study we investigate and propose methodologies to expedite the optimization 

process of G2L variables under different recovery methods, aiming to generate feasible 

solutions for real-world applications while maintaining or enhancing the economic return 

compared to traditional approaches. 
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 Motivation 

The computational burden associated with each step of the oil field development and 

management plan can hinder the decision-making process, leading to delays and potentially 

requiring simplifications or even omitting certain steps. These constraints can ultimately have 

negative impacts on production levels and economic returns. Therefore, methodologies that 

effectively reduce the execution time for critical steps, including reservoir characterization, 

data assimilation modeling, and production strategy selection, are highly valued. 

There are several research endeavors in making simplifications that ultimately help to 

expedite the production strategy selection process. One such approach involves replacing high-

fidelity models with low-fidelity models that feature a reduced number of grid blocks during 

the reservoir characterization step. Another approach involves simplifying fluid 

characterization using a Black-Oil model, which requires solving fewer equations per block 

and per time step. Also, many studies developed techniques to select representative models 

specifically for the optimization of production strategies, rather than employing the entire set 

of data assimilated models. 

Despite the use of various techniques, production strategy optimization can still be 

costly, particularly when multiple scenarios are required to accurately represent the 

uncertainties and when numerous variables need to be optimized. Thus, there is room for the 

development of procedures that can complement the aforementioned techniques and further 

expedite the production strategy selection process and subsequent decision-making. One 

opportunity for improvement lies in enhancing the parameterization of optimization variables 

to reduce their number. Another approach involves leveraging machine learning techniques to 

predict production behavior, which can serve as a valuable tool for reducing the reliance on 

extensive simulations. 

Aside from reducing computational time, it is essential that the method used to select 

the production strategy yield results of equivalent or superior quality compared to traditional 

approaches. Furthermore, a common limitation observed in many optimization approaches 

discussed in the literature is their tendency to generate strategies, particularly for life-cycle 

control rules (G2L), that prove excessively complex to implement or unfavorable from a 

production-engineering standpoint. 

In essence, finding the ideal balance between developing a well-designed G2L strategy 

and ensuring manageable computational effort remains a compelling topic. 
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 Objectives 

 The primary goal of this work is to propose procedures that expedite the optimization 

process of wells' life cycle control variables (G2L) in studying cases involving water 

alternating gas injection and water flooding recovery methods. These procedures have been 

meticulously designed to address two key challenges that hinder the practical application of 

methodologies in real-world scenarios. Firstly, they aim to significantly reduce computational 

time, thereby increasing the likelihood of successful project implementation within the 

specified timeline. Secondly, the procedures aim to generate well-behaved and practical-to-

implement G2L strategies, overcoming the complex strategies derived from traditional 

approaches in the literature. 

The reduction of computational effort while providing practical solutions is achieved 

through two approaches: 

1. Reducing the number of variables to be optimized and consequently narrowing down 

the search space by utilizing parametric equations designed to produce solutions that 

closely align with the practical operational behavior of the wells. 

2. Replacing a portion of time-consuming full physical simulations by incorporating low-

cost machine learning models into the optimization process. 

Most of the proposed procedures are validated under geological uncertainties, 

acknowledging the inherent uncertainty in real-world scenarios. Validating the procedures 

under geological uncertainties ensures their applicability and robustness, enabling more 

accurate and trustworthy results. 

 Description of thesis 

 The thesis comprises four scientific articles, each one contributing to the overall 

objectives of this thesis. In this subsection, we provide a summary of these studies and their 

relevance. The subsequent chapters delve into the detailed presentation of them. 

 Investigation of Well Control Parameterization with Reduced Number of 

Variables Under Reservoir Uncertainties (published work) 

Santos, D. R., Fioravanti, A. R., Santos, A. A. S., Schiozer, D. J. Investigation of Well 

Control Parameterization with Reduced Number of Variables Under Reservoir Uncertainties. 



29 

 

Presented at the SPE Europec featured at 82nd EAGE Conference and Exhibition held in 

Amsterdam, The Netherlands, October. 2021. https://doi.org/10.2118/205207-MS.  

This study aims to overcome the limitations of traditional approaches in optimizing 

well control life-cycle variables (G2L) in oil reservoirs under waterflooding recovery. The 

conventional approach, which entails determining optimal values of bottom-hole pressure 

(BHP) or flow rates at each time step, encounters challenges in real-world scenarios. These 

challenges include impractical changes in pressure and production curves that can lead to 

equipment and formation damage. Additionally, the high number of variables in non-convex 

optimization problems can cause algorithms convergence issues. 

We explored four G2L parameterizations with a reduced number of decision variables 

to maximize the net present value (NPV) of the field. The first parameterization specifically 

focuses on determining the optimal well rates and shut-in time. The remaining three 

parameterizations involve defining the bottom-hole pressure (BHP) curve over time using first-

order and second-order polynomials, as well as a logistic equation. We then optimize the 

coefficients of these equations, resulting in a significant reduction in the number of decision 

variables from thousands to fewer than a hundred. Next, we compared each parameterization 

with a well control short-term strategy that prioritizes production in wells with a higher oil-

water ratio and aims to replicate the general industry practice. The subsequent analysis 

involved applying the best parameterization to select the G2L strategy under reservoir 

uncertainties and on a reference model. 

The results revealed that the logistic equation surpassed other parameterizations in 

generating higher NPV and ensuring a smooth well production curve. Furthermore, this 

parameterization significantly outperformed the well control short-term strategy when 

subjected to uncertainties and applied to the reference model. 

The results are consistent with the objective of the thesis of proposing methods that 

reduce computational effort and are applicable in practical scenarios. The proposed solution, 

which reduces the number of variables and computational burden, generates smooth BHP 

curves and achieves promising results under uncertainties and in the reference case.  

Moreover, this study serves as the foundation for the subsequent articles of this thesis, 

which either utilize the proposed G2L parameterization or incorporate modified parametric 

equations. 

https://doi.org/10.2118/205207-MS
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 A Machine Learning Approach to Reduce the Number of Simulations for Long-

term Well Control Optimization (published work) 

Santos, D. R., Fioravanti, A. R., Santos, A. A. S., Schiozer, D. J. A Machine Learning 

Approach to Reduce the Number of Simulations for Long-Term Well Control Optimization. 

Presented at the SPE Annual Technical Conference and Exhibition, Virtual, October. 2020. 

https://doi.org/10.2118/201379-MS. 

This article aims to improve upon the work presented in the previous paper by 

incorporating machine learning algorithms to reduce the number of simulations needed to 

achieve optimal solutions. The proposed methodology, known as IDLHC-ML, combines 

several machine learning techniques with iterative discrete Latin hypercube (IDLHC) to 

optimize the coefficients of the logistic equation that governs the well's bottom-hole pressure 

over time in a deterministic study case. 

The IDLHC is an iterative process that involves discretizing the optimization variables 

into levels, each associated with a corresponding probability mass function (PMF). The 

Discrete Latin Hypercube (Maschio and Schiozer, 2016) sample technique is then utilized to 

generate a set of strategies by combining the discretized variables based on the prior PMF. 

These strategies are subsequently simulated, and the best strategies are selected based on the 

objective function to update the PMFs of each variable. This iterative process continues until 

convergence is attained. 

The IDLHC-ML utilizes the strategies generated in each iteration of IDLHC to train 

machine learning models, which are then employed to predict the best strategies for the next 

iteration. As a result, instead of simulating all the strategies generated by the DLHC, only a 

fraction that is predicted by the ML model to have the highest economic return is simulated. 

This approach efficiently reduces the total number of expensive full-physics reservoir 

simulations, owing to the utilization of fast and cost-effective ML models. In addition to 

reducing computational effort, this paper also assesses the performance of different machine 

learning algorithms, explores various input variables for training these algorithms, and 

investigates different configurations of IDLHC parameters. 

https://doi.org/10.2118/201379-MS
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 Optimizing Well Control Strategies with IDLHC-MLR: A Machine Learning 

Approach to Address Geological Uncertainties and Reduce Simulations 

(published work) 

Santos, D. R., Fioravanti, A. R., Botechia, V. E., Schiozer, D. J. Optimizing Well 

Control Strategies with IDLHC-MLR: A Machine Learning Approach to Address Geological 

Uncertainties and Reduce Simulations. Presented at the Offshore Technology Conference 

Brasil, October. 2023. 

The IDLHC-ML was originally developed and tested without considering uncertainties. 

However, it remains essential to evaluate its effectiveness when uncertainties are considered. 

In the third article, we present the IDLHC-MLR as an enhanced version of IDLHC-ML 

that addresses this limitation by integrating uncertainties through the utilization of RMs. To 

accomplish this, we modified the objective function and target variables used in training the 

machine learning models. The IDLHC-MLR robustly optimizes the coefficients of the logistic 

equation to accurately determine the BHP over the field's lifespan. 

The results demonstrate that the IDLHC-MLR exhibits efficiency in handling 

uncertainties, yielding a reduction of 4050 simulations (equivalent to a 45% less) compared to 

the traditional IDLHC model, while maintaining a similar expected monetary value. 

 In conclusion, recognizing and accounting for uncertainties in real-world problems play 

a critical role in mitigating costly errors and accurately evaluating project economic returns. In 

this regard, the IDLHC-MLR assumes significant importance for this thesis as it enhances the 

practicality of the IDLHC-ML algorithm by incorporating uncertainties. 

 Accelerated optimization of CO2-miscible water-alternating-gas injection in 

carbonate reservoirs using production data-based parameterization (published 

work) 

Santos, D. R., Fioravanti, A. R., Botechia, V. E., Schiozer, D. J. Accelerated 

optimization of CO2-miscible water-alternating-gas injection in carbonate reservoirs using 

production data-based parameterization. Journal of Petroleum Exploration and Production 

Technology, 13, 1833–1846. 2023. https://doi.org/10.1007/s13202-023-01643-0. 

The last study expands on the concept of parametric equations introduced in the first 

paper, with a specific focus on optimizing miscible water alternating gas (WAG) injection in 

https://doi.org/10.1007/s13202-023-01643-0
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reservoirs containing light oil and high gas content. Traditionally, this type of recovery method 

requires computationally intensive compositional simulation. 

The main objective of this work is to enhance the convergence speed of the optimization 

algorithm by introducing a novel parametric equation for WAG injection. The equation defines 

a dynamic priority rank for each well over time, determining the gas or water injection schedule 

throughout the entire life cycle of the field. The calculation of the priority rank incorporates 

reservoir production data, including water cut (WCUT), gas-oil ratio (GOR), and cumulative gas 

production from the wells. The equation terms have been meticulously designed to induce 

desirable effects on production and WAG profiles, ensuring the creation of well-behaved WAG 

strategies suitable for real-world applications. Additionally, the approach emphasizes 

flexibility by accommodating individual WAG profiles for each injector, regardless of cyclic 

patterns. This flexibility enables the exploration of diverse solutions that can yield improved 

NPV. 

To assess the effectiveness of the proposed procedure, two alternative approaches were 

employed for comparison: a benchmark solution that optimizes the injected fluid for each well 

over time, and a traditional baseline strategy with fixed six-month WAG cycles. The proposed 

method effectively reduces computational requirements while ensuring consistent patterns 

across injectors. This feature is crucial when designing practical WAG strategies. 
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2 Investigation of Well Control Parameterization with 

Reduced Number of Variables Under Reservoir 

Uncertainties 

Authors: Santos D. R., Fioravanti, A. R., Santos, A. A. S., Schiozer, D. J.  

Presented at the SPE Europec featured at 82nd EAGE Conference and Exhibition held in 

Amsterdam, The Netherlands, October, 2023. 

(https://doi.org/10.2118/205207-MS) 

Abstract 

Although several studies have shown that life-cycle well control strategies can 

significantly improve a field’s economic return, the industry often relies on short-term 

strategies. One drawback of traditional parameterization, adopted for well control life-cycle 

numerical optimization, is that it often generates control strategies that yield impractical abrupt 

changes in production curves. Another issue, especially in cases with a large number of 

decision variables, is the local optima convergence related to the non-convex optimization 

problems. In this context, we proposed and compared four life-cycle well control 

parameterizations to maximize the net present value (NPV) of the field under uncertainties, 

which are able to mitigate both the above-mentioned problems. 

The first parameterization is applied to optimize the apportionment of well rates at the 

beginning of the field management and well shut-in time. The other three are based on 

optimizing the coefficients of parametric equations (first-and second-order polynomials, and 

logistic equation) to guide the bottom-hole pressure (BHP) over time. We executed each 

parameterization five times in a deterministic reservoir scenario and compared them with well 

control short-term strategy that prioritizes production in wells with higher oil-water ratio and 

that aimed to replicate the general industry practice. In this strategy, the wells’ priority rank 

was updated at every 30-simulation days. Subsequently, the best parameterization was used to 

select the well control life-cycle strategy under reservoir uncertainties and this strategy was 

applied to the reference model representing a real reservoir.  

The results showed that all the proposed parametrizations significantly improved the 

NPV in comparison to the well control short-term strategy, while simultaneously ensuring a 

https://doi.org/10.2118/205207-MS
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smooth well production curve. The logistic equation presented the best result among all 

parameterizations, as it delivered both the highest average of NPV and the smallest dispersion 

over the five experiment repetitions. This parameterization also produced similar results when 

applied under uncertainties and for the reference model. These results endorse the importance 

of not only relying on a short-term strategy, but also planning it for the life-cycle. 

 Introduction 

A broad study is necessary to mitigate the risks in high investment oil projects. This 

type of study involves reservoir characterization, production data assimilation, and selecting 

the production strategy under uncertainty (Schiozer et. al, 2015). In this context, a high-quality 

production strategy plays a key role as it directly affects the oil recovery factor and economic 

return of the project. Such a strategy is considerably influenced by uncertainties (e.g.: reservoir, 

economical and operational), which should be considered when selecting a production strategy.  

Specifically, there are several reservoir uncertainties to represent a real field; thus, a 

large number of reservoir scenarios should be analyzed to define a suitable production strategy. 

Since this analysis demands high computational effort, many authors (e.g.: Meira et al., 2017; 

Meira et al., 2020; Sarma et al., 2013; Shirangi and Durlofsky, 2016) suggest developing the 

production strategy considering representative models (RM), which aims to typify the reservoir 

scenarios that honored the field’s observed data. Each step of this process – representing the 

real field through production data assimilated reservoir models and then, characterizing these 

models with RM – may carry over bias. Hence, it is particularly important to evaluate the 

strategy in the set of history-matched reservoir models and, for the purpose of this study, test 

within the reservoir model, which represents the real reservoir. 

Apart from the reservoir uncertainties, the complexity of defining the appropriate 

production strategy also incorporates the high number of optimization variables. To facilitate 

this process, we can divide these variables into three groups – according to their investments 

and the period of the field when they are implemented – and optimize them separately. These 

groups are denoted here as design variables (G1), control variables (G2), and revitalization 

variables (G3) – see Gaspar et al., 2016b for further details. The study of G1 and G3 are out of 

the scope of this work and we only focus on the G2 strategy selection.  

The G2 represent the equipment operations (e.g.: control valves choke in platform, well 

or region level) over time using field’s life-cycle control rules (G2L) and short-term controls 
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(G2S) where the operations can be changed any time during production at no significant costs. 

A suitable G2L strategy may have a significant influence in the life-cycle economic return of 

the project. However, according to van Essen et al. (2011), the industry often relies only on 

G2S strategies. These strategies usually prioritize production in wells according to a short-term 

control rule (e.g.: wells with higher oil production or with higher oil-water ratio). One possible 

explanation for industries to prioritize G2S strategies application in real field could be the 

difficulty in performing G2L strategies generated by the traditional approach of controlling the 

opening fraction of well valve chokes indirectly by BHP or rates – also called stepwise method 

– at each time interval (see examples in Bellout et al., 2012; Forouzanfar et al., 2015; 

Humphries et al., 2014; Wang et al., 2019). The difficulty arises from the fact that this approach 

often provides G2L strategies with repeated large changes in BHP or rates and, in general, it is 

unfavorable from a production-engineering perspective as this might cause damage to the 

equipment and formation (Sorek et al., 2017).  

Generally, adopting gradient-free algorithms to optimize G2L (broadly applied in 

literature – see Echeverría et al., 2011; Han et al., 2021; Isebor et al., 2014) using the stepwise 

approach provides good results for the OF in projects with few variables (as shown in 

Awotunde, 2014). Conversely, controlling the BHP along time using the stepwise method in 

real projects often leads to more than a thousand decision variables. Thus, another drawback 

from the traditional approaches evaluated in reservoir simulators is related to the high-

dimensional search space – given by the number of wells multiplied by the number of time 

intervals – in non-convex optimization problems, which may produce premature convergence 

of gradient-free optimization algorithms towards local minima (as verified in Pinto et al., 

2019a, and Sorek et al., 2017; for some related problems). 

The aim of this work is to propose and compare different G2L parameterizations able 

to overcome the problems just mentioned – high variation in well rates and BHP along time, 

and gradient-free algorithm optimization convergence to a poor solution – while generating a 

strategy that is considerably superior to the industry regular G2S strategy when performed in 

the reference model. 

In this work, we investigated four G2L parameterizations with a reduced number of 

decision variables to maximize the economic return in a field waterflooding project. The first 

parameterization aimed to find the best well rates apportionment at the start of the field 

management timeline and well shut-in time, simultaneously. This approach is very similar to 
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the one applied by Santos and Schiozer (2017), but with two main differences: (1) the authors 

first optimized the well rates and then the well shut-in time in a sequential process and (2) a 

different reservoir benchmark case was adopted in that work. We chose to replicate this 

parameterization because it provided good results in their experiment. Therefore, we can 

compare this parameterization to the others proposed in this work. The three remaining 

parameterizations consisted in representing the BHP trajectories over time using: (1) first-and 

(2) second-order polynomials, and (3) logistic equation. To define these trajectories, the goal 

was to optimize the coefficients of those three equations instead of directly optimizing the BHP 

at each time interval, as is done in the traditional methods. Through the mathematical models, 

we substantially reduced the number of decision variables of our case from thousands to less 

than a hundred. It is particularly noteworthy that in these three parameterizations, the wells 

were controlled in two stages, which prioritize G2L and adopted the G2S control whenever the 

problems constraints were reached (e.g.: wells BHP limits, maximum rates for wells and 

platform). 

Finally, we applied the best parameterization investigated to perform a nominal 

optimization for each RM of the field, i.e., we optimize each RM individually yielding one 

optimum strategy (or specialized strategy) per RM. The specialized strategies were then 

evaluated in a large set of scenarios that honored the field production data history and the one 

that provided the highest economic return was applied and compared to the G2S industry 

strategy applied in the reference model. It is noteworthy that evaluating the proposed method 

in the reference and production data assimilated models provides more reliability that the G2L 

parameterization proposed would be suitable when applied to a real field. 

We have organized the rest of this paper in the following manner. In the next 

subsections, we review the literature of the G2L optimization based on parametric equations, 

define the G2S employed in this work to replicate industry practices, briefly describe the first 

parameterization, which was applied in a similar way to Santos and Schiozer (2017), and 

summarize how the gradient-free algorithm and the method to select the RMs selected here 

works. The subsequent section of this paper describes the methodology of this work, explaining 

in detail the three remaining parameterizations proposed for G2L. After, we briefly introduce 

the case study of this work and present the economical parameters, operational constraints, and 

important dates to represent the field timeline and cash flow update. Next, we compare the 

results of the G2L parameterization and the G2S strategies and present the efficiency of our 

best method under uncertainties and for the reference model. In the succeeding section, we 
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discuss our findings and compare them with existing literature. Finally, we conclude the paper 

and discuss future research directions. 

 Life-cycle well control rule (G2L) optimization based on parametric equations 

Few researchers (e.g.: Awotunde, 2014; Pinto et al., 2019a; Sorek et al., 2017) have 

addressed the G2L optimization issue by using parametric equations to define the well BHP or 

rate trajectories over time. Sorek et al. (2017) investigated the BHP control over time using 

first, second, third and quartic polynomial trajectories and compared them to the stepwise 

approach that optimizes the BHP at each time interval. They observed that the higher the 

polynomial order, the higher the value of the objective function, but also with an increment of 

the number of simulations up to convergence. In addition, as the problem becomes more 

complex, the stepwise formulation containing 1500 decision variables did not converge within 

their stop criteria. Awotunde (2014) controlled the well rate trajectories using first, cubic and 

fifth order polynomial equation, apart from the cosine function, and compared these to the 

stepwise method. For smaller problems, the stepwise turned out to be the best approach; 

however, as the problem increased, the first and cosine formulation outperformed the stepwise 

method. The author verified that, contrary to Sorek et al. (2017), higher objective function 

values were obtained using lower polynomial degrees. Both aforementioned studies do not 

consider reservoir uncertainties in their analysis, despite the importance of including it to 

generate high-quality production strategies for oil projects (Meira et al., 2020, and Rahim and 

Li, 2015). Thus, there is no assurance that the parametric equations proposed by Sorek et al. 

(2017) and Awotunde (2014) would provide good solutions when considering distinct 

scenarios of the same field. In this regard, it is imperative to test the G2L parameterization in 

such a situation. 

Pinto et al. (2019a) performed the robust optimization of G2L based on polynomial 

equation to guide BHP trajectories over time considering uncertainties. They first optimized 

the G2L into a group of five RM selected among 50 scenarios and, then, evaluated the best 

strategy among the larger group. The G2L strategy applied to the 50 scenarios reasonably 

improved the expected monetary value (EMV) compared to a reactive strategy (roughly 4%), 

which shut producers when water cut (WCUT) for that well becomes uneconomic. The authors 

did not implement the final G2L strategy in any reference model.  
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 Well control in the short-term (G2S) 

The well short-term control (G2S) adopted in this work, which aims to represent 

industry practices, consists of a reactive control rule to define the wells rate apportionment to 

meet the target group rate accordingly to a general priority rank described by Equation 2.1. 

This rule is set using the INGUIDE keyword (see Pinto et al., 2019b for more details) from the 

commercial simulator software IMEX 2016.10. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒) =
𝐴0(𝑖𝑔) + ∑ 𝐴𝑖(𝑖𝑔) × 𝑞𝑖(𝑤𝑒)

𝑛𝑝ℎ
𝑖=1

𝐵0(𝑖𝑔) + ∑ 𝐵𝑖(𝑖𝑔) × 𝑞𝑖(𝑤𝑒)
𝑛𝑝ℎ
𝑖=1

 Equation 2.1 

where 𝑤𝑒 is the index for each well contributing to a target group 𝑖𝑔, 𝑖 is the index of a specific 

stream, 𝑛𝑝ℎ is the number of fluids to be included in the formula, 𝑞𝑖 is the stream rate under 

the most restrictive reservoir and operational constraint or in the user predefined bottom-hole 

pressure (BHP), 𝐴0 and 𝐵0 are, respectively, the numerator and denominator constants for 

group 𝑖𝑔, and 𝐴𝑖 and 𝐵𝑖 are the numerator and denominator of the stream 𝑖 in the order given.  

In this equation the higher the 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒), the proportionally higher the rate of a 

specific well will be in relation to other wells from the same group. The coefficients 𝐴0, 𝐴𝑖, 

𝐵0, and 𝐵𝑖 are set by the simulator default or can be defined by the user.  

It is important to mention that, if any constraint is violated, the well or group will be 

left out of the apportionment with the rate being reduce to the maximum rate under the violated 

constraint. Moreover, INGUIDE is activated only when a group of wells or platform operates 

under its maximum rate capacity. 

 PGUIDE parameterization 

PGUIDE G2L parameterization combines the proactive control rule to determine the 

producers’ and injectors’ apportionment liquid rates in the beginning of the field management 

with the reactive rule to define well optimum shut-in time (check Santos and Schiozer, 2017 

for further information). These rules were optimized simultaneously in this work. The rate 

distribution among wells is done through the GUIDE keyword from IMEX 2016.10 

commercial software. This key word specifies user-supplied weights for each well (𝑝𝑖__𝑤𝑒) that 

is included to stipulate the fraction of liquid in relation to a target group 𝑖𝑔 according to 

Equation 2.2. Thus, changing the weights associated to each well also changes their rates for 

the stream 𝑖 (𝑞𝑖__𝑤𝑒). 
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𝑞𝑖_𝑤𝑒 =
p𝑖_𝑤𝑒

∑ 𝑝𝑖_𝑤𝑒
𝑛𝑤𝑒
𝑤𝑒=1

× 𝑞𝑖_𝑖𝑔_𝑡𝑎𝑟𝑔𝑒𝑡 Equation 2.2 

where 𝑛𝑤𝑒 denotes the total number of wells in the group 𝑖𝑔, and 𝑞𝑖_𝑖𝑔_𝑡𝑎𝑟𝑔𝑒𝑡  is the rate 

restriction for the target group (𝑖𝑔) considering the stream 𝑖. In this work the stream considered 

for the producers and injectors were the produced liquid rate (𝑞𝑜 +  𝑞𝑤) and the water injection 

rate (𝑞𝑤𝑖𝑛𝑗). 

Similar to INGUIDE, GUIDE obeys the reservoir, wells and platform constraints and 

it is activated when a group of wells or platform operates under its maximum rates capacity. 

To define optimum shut-in time for wells, we applied a “IF ... ELSE” condition. 

Producers are shut whenever the 𝑊𝐶𝑈𝑇_𝑊𝐸 is greater than 𝑊𝐶𝑈𝑇_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸, where 𝑊𝐶𝑈𝑇_𝑊𝐸 is 

the water cut for the producer 𝑤𝑒 at a given moment, and 𝑊𝐶𝑈𝑇_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸 is the limit value to 

shut the producer 𝑤𝑒. Injectors are shut whenever the cumulative water production of the field 

(𝑊𝑝) is greater than 𝑊𝑝_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸, which represents the cumulative water produced by the field 

to shut the injector 𝑤𝑒. Note that each producer and injector have its own value of 

𝑊𝐶𝑈𝑇_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸 and 𝑊𝑝_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸 limit to be shut.  

 Designed Exploration and Controlled Evolution (DECE) algorithm 

In this paper, we optimized the decision control variables of each G2L parameterization 

with the Designed Exploration and Controlled Evolution (DECE) gradient-free algorithm. This 

algorithm iteratively performs two stages in series: Designed Exploration and Controlled 

Evolution. The Designed Exploration is first applied to random explore the search space in 

order to achieved as much information about the solution space. To this end, it is employed a 

Tabu search (Glover, 1990) and experimental design (Yang et al., 2007) techniques. 

Subsequently, the Controlled Evolution stage is applied, which consists of statistically 

analyzing the data from the simulations performed in the previous stage in order to verify 

whether, by rejecting a candidate value of a given parameter is there a better chance of 

improving the solution. To reduce the chance of being trapped in local minima, the rejected 

candidate values are check from time to time to make sure if their rejection remains valid or if 

they should be reused during optimization. 

It is important to mention that DECE is a commercial optimization algorithm and its 

mathematical formulation is not publicly available. Apart from that, we choose this algorithm 

as it has provide good results in similar optimization problems (check: Gaspar et al., 2016b; 
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Pinto et al., 2018; Santos and Schiozer, 2017; Schiozer et al., 2019; Sidahmed et al., 2019; 

Yang et al., 2007). 

 Representative model selection general overview 

To select the representative models (RMs) of the data assimilated scenarios, we applied 

the RMFinder 2.0 method proposed by Meira et al. (2017). The RMFinder 2.0 consists of 

defining and describing mathematically the representativeness concept of a given subset of 

scenarios. Subsequently, this mathematical function is optimized in order to find the RMs. The 

representativeness concept is based on three criteria. The first and the second consist of keeping 

the main input variables well distributed in their cross plots and in the associated risk curves, 

respectively. These main input variables (such as NPV, cumulative oil and water production) 

are defined and weighted by the user. The third criterion tries to preserve the proportion of the 

levels of uncertain attributes in the RMs as closest as possible to the proportion observed in the 

data assimilation models. Additionally, the mathematical formulation of RMFinder 2.0 

penalizes sets of RMs that lack at least one instance for each level of every attribute. Finally, 

the method considers a different probability for each RMs delivering more accurate risk curve 

for the RMs. 

We chose this approach because it yielded appropriate set of RMs for different cases of 

studies (including a high fractures pre-salt carbonate reservoir and a highly heterogeneous 

heavy oil offshore field). Note that the RMFinder 2.0 mathematical equation description is 

beyond the purpose of this work, thus the keen reader can check it directly at Meira et al. 

(2017). 

 Methodology 

This section of the paper describes the methodology of this work, which can be divided 

in two parts: validation and application. In validation, we compared four proposed 

parameterizations for life-cycle well control rule (G2L) optimization and a regular short-term 

well control (G2S) that is normally applied in the industry for the nominal reservoir case. In 

application, we selected the parametrization that yielded the highest outcome in the validation 

part and investigated its capability to be applied under reservoir uncertainties. Moreover, we 

evaluated its performance in a benchmark for the real reservoir. 
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 Validation part 

As PGUIDE was presented before, we focus here on explaining the three remaining 

parameterizations proposed in this work, which consist of a proactive control rule for the field’s 

life-cycle formulated through an equation that determines the well BHP limit along the field 

management. The goal was to define the coefficients of each equation that maximizes the net 

present value (NPV). The equations allow us to reduce significantly the number of parameters, 

while generating a smooth and executable BHP control for real cases.  

In this paper, each parameterization was executed five times to obtain statistically 

meaningful interpretations regarding their robustness because different results for the objective 

function may be achieved every time DECE gradient-free algorithm is performed. 

2.2.1.1 PLOG parameterization 

PLOG parameterization resides in optimizing the coefficients 𝑎𝑤𝑒, 𝑏𝑤𝑒 and 𝑐𝑤𝑒 of 

logistic equation (Equation 2.3). 

𝐵𝐻𝑃𝑤𝑒,𝑡 = 𝐵𝐻𝑃𝑀𝑖𝑛  +  
(𝐵𝐻𝑃𝑀𝑎𝑥 − 𝐵𝐻𝑃𝑀𝑖𝑛)

1+𝑒
(𝑎𝑤𝑒 +  𝑏𝑤𝑒 × (

𝑡
𝑡𝑓𝑖𝑛𝑎𝑙

) + 𝑐𝑤𝑒 × (
𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)

2

)

 Equation 2.3 

where 𝐵𝐻𝑃𝑤𝑒,𝑡 describes the BHP in the well 𝑤𝑒 for time 𝑡, 𝐵𝐻𝑃𝑀𝑎𝑥 and 𝐵𝐻𝑃𝑀𝑖𝑛 represent 

the maximum and minimum BHP that each well can operate, respectively, and 𝑡𝑓𝑖𝑛𝑎𝑙 denotes 

the whole management period. 

The limits of the coefficients of the equations (𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠, 𝑏𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠, 𝑐𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠) were 

chosen first by setting the 𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠 to guarantee by itself that the 𝐵𝐻𝑃𝑤𝑒,𝑡 can vary within the 

well BHP constraints over time. The 𝑏𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠  and 𝑐𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠 were defined to have a similar 

influence in the BHP curve than 𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠. The approach to do this was to ensure that all 

coefficients in their limits have the same integral along the normalized time (𝑡𝑛𝑜𝑟𝑚 = 𝑡/𝑡𝑓𝑖𝑛𝑎𝑙), 

which varies between [0, 1], as following: 𝑏𝑤𝑒_𝑙𝑖𝑚𝑖𝑡 =
𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡

∫ 𝑡𝑛𝑜𝑟𝑚 𝑑𝑡𝑛𝑜𝑟𝑚
1

0

, and 𝑐𝑤𝑒_𝑙𝑖𝑚𝑖𝑡 =

𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡

∫ 𝑡𝑛𝑜𝑟𝑚 2 𝑑𝑡𝑛𝑜𝑟𝑚
1

0

. 

An interesting propriety of logistic equation is that there is no need to define hard 

bounds for the well BHP limit as – due to its formulation – the BHP is automatically kept in 

between the maximum and minimum reservoir pressure. In this sense, the logistic equation 
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avoids subtle changes when BHP reaches reservoir pressure constraint. Additional reasons for 

applying the logistic equation in this work are presented in Appendix A.1. 

2.2.1.2 PLIN parameterization 

PLIN has two coefficients to be defined, 𝑎𝑤𝑒  and 𝑏𝑤𝑒. Equation 2.4 describes BHP over 

time for producers and injectors, respectively. Differently from PLOG, it is necessary to set hard 

bounds defined by 𝑀𝑖𝑛 and 𝑀𝑎𝑥 terms in the linear equation to avoid the violation of reservoir 

pressure constraints.  

𝐵𝐻𝑃𝑤𝑒,𝑡 = 𝑀𝑖𝑛 (𝐵𝐻𝑃𝑀𝑎𝑥, 𝑀𝑎𝑥 (𝐵𝐻𝑃𝑀𝑖𝑛, 𝑎𝑤𝑒 +  𝑏𝑤𝑒  ×  
𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)) Equation 2.4 

2.2.1.3 PSEC parameterization 

PSEC is also a polynomial equation parameterization. However, PSEC correspond to the 

second order equation and encompass the linear equation while add the non-linear term 

represented by the 𝑐𝑤𝑒 coefficient. Similar to PLIN, it is required to set hard bounds for the 

Equation 2.5.  

BHP𝑤𝑒,𝑡 =  Min (BHPMax, Max (BHPMin, awe + bwe  ×  
t

tfinal
+ cwe × (

t

tfinal
)

2

)) 

 Equation 2.5 

One may inquire about the rationale behind not testing polynomials of higher orders. 

This matter is elucidated in the thesis Appendix A.2. 

 Application part 

The parameterization, which provided the best NPV in the previous section, was 

addressed under uncertainties in the application. A large computational effort would be 

required to create one strategy for each scenario that honored the dynamic data from the field’s 

historical period (filtered scenarios). Therefore, we used representative models (RM) to typify 

the group of filtered scenarios and performed a nominal optimization for each RM. After each 

strategy was applied to all filtered scenarios and the more robust specialized strategy in terms 

of expected monetary value (EMV) was selected, we investigated its performance in the 

reference model. 
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 Reservoir simulation case 

In this section, we briefly describe the UNISIM-I-R model and UNISIM-I-M 

benchmark case (see Avansi and Schiozer, 2015, and Gaspar et al., 2016a, respectively) 

employed to evaluate our methodology. Also, we present important dates, economical 

parameters, operational constraints, and the parameters of the control rules.  

The UNISIM-I-R is a high-resolution simulation model – approximately 3.5 million 

active cells in a grid of 326 × 234 × 157 blocks – built considering petrophysical, facies and 

structural public data from the Namorado Field located in the Campos Basin, Brazil. The 

UNISIM-I-R serves as a benchmark to test the applicability of different methodologies before 

applying it to a real reservoir. 

The UNISIM-I-M is a simulation model based on information from UNISIM-I-R and 

consists in a synthetic, three-dimensional, Black-oil reservoir, including 36,739 active cells 

designed to optimize control (G2) and revitalization (G3) variables. The case has a history 

period of 7 years from 14 producer and 11 injector wells, and a management period of almost 

23 years. Moreover, the case considers an exploitation strategy (G1), already implanted by 

Avansi and Schiozer (2015) during the development phase, which must not be altered. Figure 

2.1 presents the wells placement for this strategy. 

 

Figure 2.1–Map porosity at 05-31-2017 with the well placement strategy defined in the development phase 

for UNISIM-I-M. 
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To account for the reservoir uncertainties of the reference model (UNISIM-I-R), we 

evaluated our methodology in 48 scenarios selected by Gaspar et al. (2016a) obtained through 

the data assimilation process. From these scenarios, nine representative models (RM) were 

chosen using the RMFinder 2.0 previously presented. 

These models were used for the purpose of production strategy selection, as the whole 

set of scenarios (48) may be computationally expensive. To more accurately estimate the risk 

curves, each RM has the individual probability of occurrence shown in Table 2.1. 

Table 2.1–Probabilities of each representative model (RM) selected using RMFinder 2.0 to represent the 

48 scenarios that typify the field uncertainties. 

Representative model Probability 

RM1 0.167 

RM2 0.104 

RM3 0.146 

RM4 0.125 

RM5 0.042 

RM6 0.063 

RM7 0.063 

RM8 0.167 

RM9 0.125 

In the validation section of the methodology, each parameterization was conducted 

nominally in RM4, chosen for its proximity to the P50 percentile in NPV. 

To calculate the objective functions, the economic parameters from Table 2.2 were 

applied to the same equations of the NPV and EMV presented by Gaspar et al. (2015). We 

reinforce that costs related to design variables (G1) – e.g.: platform, well drilling and 

completion – are not considered because the G1 strategy was already implemented when we 

started updating the cash flow. Table 2.3 and Table 2.4 summarize important dates and the 

operational constraints used in this paper, respectively. 

Table 2.2–Economic parameters to calculate the NPV. 

Parameter Description value 

Market Values 

Oil price (USD/m3) 314.5 

Discount rate (%) 9 

Royalties (%) 10 

Taxes 
Special taxes on gross revenue (%) 9.25 

Corporate taxes (%) 34 

Costs 

Oil production (USD/m3) 62.9 

Water production (USD/m3) 6.29 

Water injection (USD/m3) 6.29 
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Table 2.3–Dates to represent simulation field timeline and cash flow update. 

Time (year - days) Description 

05/31/2013 - 0 Simulation and production starting time 

06/30/2020 - 2587 Opening the last well from the development phase 

07/31/2020 - 2618 

End of history production 

Start of management period 

Time for updating cash flow 

05/31/2043 - 10957 
Maximum simulation period 

Field abandonment 

Table 2.4–Wells and platform operational constraints. 

Type Producer Injector 
Platform 

production 

Platform 

injection 

1Max water rate (m3/d) - 5,000 13,950 21,700 

2Min oil rate (m3/d) 20 - 13,950 - 

1Max liquid rate (m3/d) 2,000 5,000 15,500 - 

BHP (kgf/cm²) 2Min 190 1Max 350 - - 

1Max gas oil ratio 200 - - - 

Shut-in WCUT 0.9 - - - 
1 Maximum. 2 Minimum. 

In this paper, the strategy originated from INGUIDE control rule is denominated S0. 

This control rule was defined differently for the group of producers and for the group of injector 

wells. The 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒) for each producer is calculating using Equation 2.6. This equation 

came from Equation 2.1 by adjusting its parameters in order to prioritize the production in 

wells with higher oil-water ratio. Note that the constant value in the denominator was set to a 

relatively small value (equals 10) in order to avoid division by zero.  

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑤𝑒) =
𝑞𝑜_𝑤𝑒 

10 + 𝑞𝑤_𝑤𝑒
 Equation 2.6 

where 𝑞𝑜_𝑤𝑒 and 𝑞𝑤_𝑤𝑒 are the oil and water rate of the producer 𝑤𝑒. Regarding injectors, the 

higher the injection potential of the well at the maximum BHP constraint (350 kgf/cm2), the 

higher the injector 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒). The injection potential consists in the capacity of each well 

to inject water if there were no restriction for rates. The priority rank of both injection and 

production wells was updated every 30-simulation days.  

To optimize PGUIDE, the GUIDE weights (𝑝𝑖_𝑤𝑒) can vary between 0 and 5 units in 0.5 

intervals and the GUIDE function is declared when production starts. These are the same 

weights applied by Santos and Schiozer (2017). Apart from that, the 𝑊𝐶𝑈𝑇_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸 values 

range from 0.68 to 0.98 every 0.03 units and the 𝑊p_LIMIT_WE  values were selected aiming to 
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test if a particular injector should be shut every year from the half-life until the field 

abandonment. In this parameterization, we have two variables to be optimized per well and a 

total of 50 variables for the 25 wells from UNISIM-I-M. 

Concerning the parametric equations to control BHP over time, we used nine interval 

values between the ranges presented in Table 2.5 for each coefficient. The limit values for the 

coefficients in the logistic equation were determined based on the explanation in Section 

2.2.1.1, while the details for the linear and second-order equations are available in Appendix 

A.3. In the BHP parametric equations, the number of decision variables are given by the 

product of the number of wells times the number of the equation coefficients. Hence, PLOG, 

PLIN and PSEC have 75, 50 and 75 decision variables each. 

Table 2.5–Range of values to optimize the BHP parametric equations. 

Parametric equation Coefficients Range [Minimum, Maximum] 

PLOG 

𝑎𝑤𝑒  [-5, 5] 

𝑏𝑤𝑒  [-10, 10] 

𝑐𝑤𝑒  [-15, 15] 

PLIN 

𝑎𝑤𝑒  for producers [190, 300] 

𝑎𝑤𝑒  for injectors [190, 350] 

𝑏𝑤𝑒  [-40, 40] 

PSEC 

𝑎𝑤𝑒  for producers [190, 300] 

𝑎𝑤𝑒  for injectors [190, 350] 

𝑏𝑤𝑒  [-40, 40] 

𝑐𝑤𝑒  [-60, 60] 

In this work, we assume that the well BHP limit can be changed in a minimal interval 

of 3 months (92 control intervals) and that one thousand simulations are performed in each 

optimization process. It is interesting to note that, for this number of intervals, the traditional 

BHP control approach (stepwise method) would require 2,300 decision variables for the 25 

wells of UNISIM-I-M. 

 RESULTS 

The results are first discussed by comparing the NPV of each parameterization for life-

cycle well control strategy with the well control short-term strategy (S0) in a nominal approach 

(validation part). After, the parameterization that provided the best outcome was applied under 

uncertainties and for the reference model (application part). 

It is worth to remind that the life-cycle parametric equations are applied on the top of 

the G2S control using INGUIDE where the 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒) of each producer is calculated with 
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Equation 2.6 and the 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒) of each injector is defined using the injection potential of 

the well at the maximum well BHP constraint. 

 Comparison of well control parameterizations for the nominal approach 

(validation part)  

First, we applied the four parameterizations to the representative model RM4 of 

UNISIM-I-M. To obtain statistically meaningful interpretations, we executed the optimization 

of each parameterization five times and compared the NPV statistic samples to the S0 strategy. 

The S0 provided a NPV of 2.55 billion USD when applied to the RM4 and it is clear that all 

proposed parameterizations outperformed this strategy (Figure 2.2).  

  

Figure 2.2–Boxplot of the percentage variation of Net Present Value (ΔNPV) of the best strategies of each 

parameterization compared to the well control short-term strategy (S0) applied to the representative 

model RM4 of UNISIM-I-M. 

It is possible to notice that the parameterizations that define the BHP along time 

provided better results than PGUIDE. PLOG yields a slightly better NPV̅̅ ̅̅ ̅̅  (roughly 1%) than PLIN 

and PSEC (Table 2.6). Therefore, we decided to carry on the PLOG to be applied under 

uncertainties because it not only yielded the higher NPV̅̅ ̅̅ ̅̅ , but also turned out to be the most 

robust approach (smaller standard deviation). 

Table 2.6–Comparison between the best strategies yielded for each parametrization performed five times 

in the representative model RM4 of UNISIM-I-M with well control short-term strategy (S0).  

Parameterization 𝐍𝐏𝐕̅̅ ̅̅ ̅̅  (109 USD) σ (106 USD) Δ𝐍𝐏𝐕̅̅ ̅̅ ̅̅  (%) 

S0 2.55 - - 

PLOG 3.13 20 22.6% 

PLIN 3.09 56 21.4% 

PSEC 3.09 48 21.2% 

PGUIDE 3.03 42 18.8% 



48 

 

It is interesting to observe that the proposed parameterization to control the BHP over 

time produced a smooth BHP profile for all wells. Figure 2.3 includes examples of BHP curves 

imposed by the parametric equations and the actual BHP that the well is operating while it is 

open. Those curves are not necessarily equal, as seen for PSEC (Injector INJ017) until about 

6,000 days, because there are other constraints in the problem (e.g.: wells BHP restrictions and 

rate limits for wells and platform). Note that we did not show necessarily the same wells for 

all parameterization because depending on the best strategy for each parameterization, a 

specific well may not have been following the G2L rule. For those situations, the BHP imposed 

is different from the actual BHP.  

 

Figure 2.3–Examples of actual and imposed BHP curves over time for each parametric equation applied 

to the representative model RM4 of UNISIM-I-M. 

The NPV improvement for the best parameterization proposed here (PLOG) is mainly 

related to rising oil production while reducing water production relative to the S0 strategy 

(Figure 2.4). 

In Figure 2.5, it is possible to observe that, for most of the PLOG execution, the DECE 

algorithm converge to the 1% best solution with roughly 500 simulations (except for execution 

1 and 4), therefore, one could perform PLOG with half of the simulations if the project has a 

short time constraint. We also verify that, for the initial simulations, there was a great variation 

between the curve of execution 5 and the other curves. This is explained by the intrinsic 

characteristic of the optimization algorithm that starts by generating random strategies in order 
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to obtain the maximum information about the solution space. The quantity of random strategies 

created depends on the number of optimization variables and for PLOG – which contains 75 

variables – a total of 201 arbitrary simulation strategies were generated. 

 

Figure 2.4–Comparison of the field’s cumulative oil (Np), cumulative water produced (Wp) and 

cumulative water injected (Winj) between the best PLOG strategies for each five executions applied in the 

representative model RM4 of UNISIM-I-M and the well control short-term strategy (S0). 

 

Figure 2.5–Maximum NPV over the DECE algorithm simulation runs for each execution using PLOG 

parameterization applied to the representative model RM4 from UNISIM-I-M. In this graph, the NPV 

found in the next simulation is plotted only if it is larger than the previous one, otherwise the previous 

value is repeated. 
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 Evaluation of the best parameterization under uncertainties (application) 

After finding the PLOG as the best parameterization nominally, we applied it under 

uncertainties. To do so, first we performed the G2L nominal optimization using PLOG to select 

one strategy for each RM, leading us to nine different strategies. After the G2L optimization, 

the specialized strategy from each RM is denoted as 𝑆𝑥, where 𝑥 corresponds to the RM that 

the strategy was designed for (e.g.: after optimizing RM1, the specialized strategy is named 

S1). We then applied each of those strategies to the 48 filtered scenarios and selected the one 

that provided the best EMV to be employed in the UNISIM-I-R. The goal was to evaluate the 

PLOG robustness in relation to EMV and its applicability for real reservoirs. 

All strategies significantly increased the EMV (over 16%) compared with the S0 

strategy (Table 2.7). In addition, the specialized strategies considerably increased the Np for 

each of the 48 scenarios and most of the strategies decreased the Wp for the majority of the 

scenarios (Figure 2.6). Besides, depending on the strategies, there was an increment (e.g.: S1, 

S3 and S9) or a reduction (e.g.: S6, S7, and S8) in relation to Winj for most of the scenarios. 

These results show that, due the high nonlinearity of the reservoir model, different strategies 

could provide a similar economic return. 

Table 2.7–Comparison of expected monetary value (EMV) and production data between each specialized 

strategy and the well control short-term strategy (S0) applied to the 48 filtered scenarios of UNISIM-I-M. 

The strategies are shown in the EMV descending order. 

G2 Strategy S5 S2 S8 S9 S3 S4 S7 S1 S6 S0 

EMV (109 USD) 3.14 3.14 3.13 3.13 3.12 3.12 3.12 3.12 3.02 2.59 

ΔEMV (%) 21.4 21.3 21.0 20.9 20.6 20.6 20.5 20.4 16.7 0 

EMV σ (108 USD) 1.1 1.0 1.0 1.1 1.1 0.9 0.9 1.0 0.9 1.1 

𝑁𝑝̅̅ ̅̅  (107 m3) 5.6 5.6 5.5 5.6 5.5 5.6 5.5 5.6 5.4 4.8 

𝛥𝑁𝑝̅̅ ̅̅ ̅̅  (%) 17.3 17.1 15.5 17.4 16.7 16.9 16.3 17.0 14.5 0 

NP σ (106 m3) 1.5 1.4 1.3 1.5 1.6 1.2 1.3 1.5 1.3 1.6 

𝑊𝑝̅̅ ̅̅ ̅ (107 m3) 6.5 6.3 5.4 6.7 6.5 5.9 5.5 6.5 5.9 7 

𝛥𝑊𝑝̅̅ ̅̅ ̅̅ ̅ (%) -7.4 -10.3 -22.6 -4.4 -6.2 -15.2 -20.8 -6.4 -15.6 0 

Wp σ (106 m3) 4.0 3.9 4.0 4.2 3.9 5.0 3.9 3.6 4.8 3.9 

𝑊𝑖𝑛𝑗̅̅ ̅̅ ̅̅ ̅ (108 m3) 1.4 1.4 1.3 1.4 1.4 1.3 1.3 1.4 1.3 1.4 

𝛥𝑊𝑖𝑛𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ (%) 2.8 1.1 -6.6 4.3 3.7 -1.6 -4.1 4.1 -3.3 0 

Winj σ (106 m3) 4.6 4.4 4.4 4.9 4.8 5.6 4.2 4.6 5 4.7 
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Figure 2.6–Boxplot of the percentage variation of Net Present Value (ΔNPV) and production data (ΔNp, 

ΔWp and ΔWinj) of each specialized strategy and the well control short-term strategy (S0) applied to the 

48 filtered scenarios from UNISIM-I-M. 

It should be noted that in terms of economic return, many strategies provided equivalent 

results (e.g.: S2, S5 and S8) but, as the S5 specialized strategy delivered the highest EMV 

considering the 48 filtered scenarios – 21.4% or over 600 million USD higher than S0 – we 

chose this strategy to perform in UNISIM-I-R. 

Figure 2.7 and Figure 2.8 present, respectively, the cross plots and risk curves of 

economic and production data for the 9 RMs and the 48 scenarios under S5 and S0 strategies. 

We can observe that the 9 RMs are still representative of the 48 scenarios even after the 

optimization of the production strategy. This is a good indicator that the RMs were well 

selected by RMFinder 2.0 method. 
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Figure 2.7–Cross plots of economic and production data for the 9 RMs and the 48 filtered scenarios 

under S5 and S0 strategies. 

 

Figure 2.8–Risk curves of economic and production data for the 9 RMs and the 48 filtered scenarios 

under S5 and S0 strategies. 

Also note from Figure 2.9 that the S5 strategy is fairly robust as the NPV of applying 

S5 for each RMs were very close to the NPV of the specialized strategies applied to their 

respective RM (e.g.: S1 employed to RM1, S2 employed to RM2 etc.). Kindly navigate to the 

zoomed-in version of Figure 2.9 in Appendix A.4 for a closer view that highlights the disparity 

in NPV between strategy S5 and the RM-specialized strategies. 

The S5 satisfactorily improved the NPV of UNISIM-I-R compared to the S0 strategy 

(roughly 260 million USD), as seen in Figure 2.10. It is interesting to note that the NPV for 

the reference model were well represented by the 48 filtered scenarios under the S0 strategy as 

the NPV risk curve includes the NPV for UNISIM-I-R. In contrast, the 48 scenarios were 

unable to represent the NPV uncertainties from the reference model when S5 was applied. This 
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fact indicates that the production strategy directly affects the models that honor the field’s 

observed data. One possible solution to solve the lack of representativeness of the data 

assimilated scenarios would be to perform the closed-loop reservoir management method 

(Schiozer et. al, 2015). However, it is beyond the scope of this work. 

 

Figure 2.9–Comparison between the most robust specialized strategy (S5) with each specialized strategy 

applied in the RM that they were optimized for. 

 

Figure 2.10–Comparison of NPV risk curves between the specific strategies and the well control short-

term strategy (S0) applied to the 48 filtered scenarios of UNISIM-I-M. The blue curve is the best 

specialized strategy (S5) and the grey curves are the other specialized strategies of each RM. The red and 

yellow vertical dashed lines represent, respectively, the NPV of S0 and S5 when applied to the reference 

model (UNISIM-I-R). 

Apart from the meaningful NPV addition (10%) in relation to the S0 strategy (Table 

2.8), S5 apparently swept the reservoir more efficiently as the Np satisfactorily increased (11%) 

and Wp and Winj reasonably decreased (11% and 4%, respectively). 

 



54 

 

Table 2.8–Comparison of net present value (NPV) and production data between the best specialized 

strategy (S5) and the well control short-term strategy (S0) applied to the reference model (UNISIM-I-R). 

Parameters 
G2 strategy 

Difference Percentage Difference (%) 
S5 S0 

NPV (109 USD) 2.82 2.56 0.26 +10 

Np (106 m3) 52.8 47.4 5.4 +11 

Wp (106 m3) 65.9 74.2 -8.3 -11 

Winj (106 m3) 134.4 139.6 -5.2 -4 

 

Particularly, we observed that four injection wells that were open using S0 strategy, 

ended up being shut when the S5 strategy was applied (Figure 2.11). This fact indicates that, 

with the information available, the costs of drilling and perforating those wells could have 

possibly been avoided. In Appendix A.5, we demonstrate that the wells also shut-in for the 48 

filtered scenarios and provide explanations for the reasons behind these shut-ins. 

 

Figure 2.11–Injections water rate for well control short-term strategy (S0) and the best specialized 

strategy (S5) performed in UNISIM-I-R. It is verified that those wells ended up being shut when S5 was 

applied. 

In addition, S5 also produced a smooth solution for the BHP over time (Figure 2.12). 

In Figure 2.12a) and Figure 2.12b), it is possible to observe two peaks and valleys for the 

actual BHP, respectively. This happened first because the wells detected with low flow rate 

were shut for a period and then because the platform stopped for maintenance. 
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Figure 2.12–Example of actual and imposed BHP curves over time for the best specialized strategy (S5) 

applied to the reference model (UNISIM-I-R). The peaks (a) and valleys (b) in the actual BHP represent 

wells shut-in due to low flow rate detection and platform downtime, respectively. 

 Discussion 

This paper aimed to propose and compare different practical parameterizations to 

manage well control operations that are able to overcome the issue of premature convergence 

in economic maximization studies for petroleum reservoir. Also, we investigated the ability, in 

economic terms, of the best parameterization of this work to be applied under reservoir 

uncertainties and in the reference model. The latter approach aimed to confirm the reliability 

of the best parameterization when performed in an existing field. 

All proposed parameterizations, solved by DECE, successfully avoided convergence to 

a poor solution in a high dimensional problem (relative to literature studies) while it 

considerably increased NPV compared to a G2S strategy representing industry applications 

(S0). This finding agrees with those obtained by Sorek et al. (2017), who compared polynomial 

equations with the traditional approach of controlling BHP at each time interval. 

Contrary to Sorek et al. (2017), our results support those of Awotunde (2014), who 

obtained better NPV using lower polynomial degrees than higher ones. Although this result 

may seem counterintuitive, it can be explained by the reduction in the solution search space 

that enables the optimization algorithm to find good solutions. Thus, different polynomial order 

may perform better depending on the case study and the gradient-free algorithm chosen.  

The parameterization, based on logistic equation (PLOG), proved to slightly outperform 

all parameterizations in terms of NPV and robustness, including the polynomial equations, 
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which have already been explored by other authors, as mentioned in this work. These results 

were valid for a nominal case and have to be extrapolated with caution when considering 

uncertainties. Another advantage of the logistic over polynomial equations is that there is no 

need to set hard bounds in its formulation, which enables smooth solutions even on BHP 

boundaries. For the other equations, this may not always be true. 

PLOG also expressively increased the expected monetary value (EMV) compared to the 

S0 strategy when performed under uncertainties. By controlling BHP over time, it was possible 

to produce more oil (Np) and reduce water production (Wp) in average for the scenarios 

honoring field history data, thus, improving the sweep efficiency, which is one of the main 

purposes of waterflooding. 

With respect to the reference model, PLOG also provided a superior NPV and Np while 

substantially reducing Wp in relation to the S0 strategy. It can therefore serve as a justification 

for companies to ally the operator experience with a planned G2L strategy. This analysis in the 

field, which represents the real reservoir, is particularly important because it ensures that PLOG 

parameterization would work effectively in realistic cases. This statement could not be true by 

just analyzing the results in a coarse model, which generally oversimplifies the reservoir’s 

geology and carries a bias from the real reservoir. 

It should be noted that this study has only examined well control parameterizations 

considering waterflooding recovery method and for constrained platform. Specifically, the 

latter situation is usually favorable for G2 optimization because we can redistribute rates 

among producer and injector wells without delaying or reducing oil production while reducing 

water production (Santos and Schiozer, 2017). Further studies would be necessary to evaluate 

the applicability of the proposed parameterizations in a non-restricted platform and under other 

recovery methods (e.g.: polymer and CO2 injection). 

 Conclusion 

The well control life-cycle rule (G2L) parameterization, based on logistic equation 

(PLOG), yielded an achievable strategy for a benchmark case emulating the real reservoir as it 

provided amenable well production trajectories over time, which may be required from an 

engineering perspective, while leading to a relevant gain in the economic return. PLOG also 

generated robust strategies when applied under uncertainties. Also, by proposing G2L 

parameterizations with a reduced number of variables in relation to traditional approach, we 
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were able to circumvent the problem of premature convergence towards a poor solution of 

gradient-free optimization in the oil field with a relatively large number of decision variables. 

The PLOG outperformed parameterizations based on polynomial equations in terms of 

economic return for a nominal experiment of this paper. As opposed to polynomial equation, 

positive features regarding PLOG do not require setting hard bounds for this function, which 

prevents abrupt changes in BHP values, even within the reservoir’s operational constraints. 

Additionally, one of the objectives of this study was to confirm an end-to-end application for 

life-cycle well control management (nominal, probabilistic, and reference reservoir analysis) 

and, since the G2L optimization provided good results for the model representing the real 

reservoir, it may be interesting for companies not only to rely on operator experience, but also 

plan the G2L strategy. 

Finally, since consistent well control parameterizations were compared and applied to 

a field subject to waterflooding and to constrained platform, the next steps should focus on well 

control optimization for a platform operating below its production and injection rate limits, and 

other types of recovery methods (e.g.: polymer, carbon dioxide or water alternating gas 

injection). Another direction for future work would be to try to decrease the number of 

simulations in the G2L optimization process as this could hinder its applicability depending on 

the complexity of the case (compositional simulator and fine scale models) and the project 

deadline. 

 Nomenclature 

𝐴0, 𝐵0 Numerator and denominator constants for a target group 𝑖𝑔 

𝐴𝑖 , 𝐵𝑖 Numerator and denominator of the stream 𝑖 

𝑎𝑤𝑒 , 𝑏𝑤𝑒 , 𝑐𝑤𝑒 Coefficients of parametric equations 

𝑎𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠, 𝑏𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠, 𝑐𝑤𝑒_𝑙𝑖𝑚𝑖𝑡𝑠 Range limits for the coefficients of parametric equations 

BHP Bottom-hole pressure 

𝐵𝐻𝑃𝑀𝑎𝑥 Maximum BHP limit of the reservoir 

𝐵𝐻𝑃𝑀𝑖𝑛 Minimum BHP limit of the reservoir 

𝐵𝐻𝑃𝑤𝑒,𝑡 BHP in well 𝑤𝑒 for time 𝑡 

DECE Designed Exploration and Controlled Evolution 

EMV Expected monetary value 

G1 Design variables 
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G2 Well control variables 

G2L Life-cycle control rules 

G2S Short-term control 

G3 Revitalization variables 

INGUIDE Internally generated guide rates 

𝑀𝑎𝑥 Maximum value of determined indicator 

𝑀𝑖𝑛 Minimum value of determined indicator 

Np Field’s cumulative oil production 

𝑛𝑝ℎ Number of fluids to be included in the INGUIDE formula 

NPV Net present value 

P50 Percentile 50 

𝑝𝑖_𝑤𝑒 GUIDE weight for the stream 𝑖 and for the well 𝑤𝑒 

𝑞𝑖 
Stream rate 𝑖 under the most restrictive constraint or a 

predefined BHP 

𝑞𝑖_𝑖𝑔_𝑡𝑎𝑟𝑔𝑒𝑡 Stream rate 𝑖 for the target group 𝑖𝑔 

𝑞𝑖_𝑤𝑒  Stream rate 𝑖 for the well 𝑤𝑒 

𝑞𝑜 , 𝑞𝑤, 𝑞𝑤𝑖𝑛𝑗 Oil rate, production water rate and injection water rate 

𝑞𝑜_𝑤𝑒 , 𝑞𝑤_𝑤𝑒 Oil and water rate for well 𝑤𝑒 

RM Representative model 

S0 Base well control short-term strategy 

σ Standard deviation 

𝑆𝑥 Best strategy optimized for the representative model 

𝑡𝑓𝑖𝑛𝑎𝑙 Management period interval 

USD United States Dollar 

𝑤𝑒 Wells index 

WCUT Water cut 

𝑊𝐶𝑈𝑇_𝐿𝐼𝑀𝐼𝑇_𝑊𝐸 Water cut limit for well 𝑤𝑒 

𝑊CUT_WE  Monitor water cut for well 𝑤𝑒 

𝑊p_LIMIT_WE Field’s cumulative water production limit to shut well 𝑤𝑒 

Winj Field’s cumulative water injection  

Wp Field’s cumulative water production 
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Abstract 

A long-term well control strategy is frequently selected using optimization methods 

applied to reservoir simulations. However, this approach usually requires a large number of 

simulations that can be computationally demanding. In this paper, we evaluated several 

machine learning (ML) techniques to reduce the number of simulations for optimizing long-

term well control strategy while preserving the quality of the solution. 

We proposed a methodology, denoted as IDLHC–ML, which combines many ML 

techniques with iterative discrete Latin hypercube (IDLHC) – a gradient-free optimization 

algorithm that was successfully applied in previous work – to optimize the coefficients of the 

logistic equation that guides the well’s bottom-hole pressure along the time horizon. In IDLHC-

ML, we used a set of simulation runs from the first iteration to train the initial ML models. 

From the second iteration onwards, we employed the trained ML models to predict the net 

present value (NPV) and only a percentage of the scenarios, which were expected to have the 

best NPV, were then simulated. As we simulated new scenarios, we updated our ML models 

to further improve predictions. For a fair comparison, we set the same values for the 

optimization parameters of IDLHC to the IDLHC–ML and, then, we compared the NPV and 

the number of simulation runs considering different configurations of IDLHC parameters. In 

this paper, we evaluated a total of twelve ML regression techniques, such as Bayesian Ridge, 

Random Forest, and stacked ensemble learning, which consists in using the predictions from 

multiple ML algorithms as input to a second-level learning model. 

To minimize random effects, we repeatedly applied IDLHC and IDLHC–ML five times 

in a single reservoir model (nominal optimization). The results showed that, depending on the 

IDLHC optimization parameters, IDLHC-ML reduced at least 27% of simulations while 

https://doi.org/10.2118/201379-MS
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keeping the equivalent NPV statistical metrics calculated in all five repetitions, when compared 

to IDLHC. Moreover, the best ML technique for IDLHC–ML varied with the IDLHC set of 

optimization parameters. To conclude, the method proposed here was able to reduce a 

significant amount of computational time by curtailing the total number of full-physics 

expensive reservoir simulations, with the help of fast and low-cost ML models. 

There are many published studies in well control optimization, but these generally 

involve high computational demand. In this sense, ML methods revealed to be an adequate and 

inexpensive alternative in reducing the number of simulation runs in well control optimization. 

The methodology is generic and it can be applied under uncertainties, and for more complex 

cases. 

Keywords: machine learning, simulation reduction, long-term well control optimization, 

waterflooding, field management, UNISIM-I-M benchmark case. 

 Introduction 

Before implementing a production strategy in the oil field, a comprehensive study has 

to be performed in order to lessen risks associated with high project investments. Roughly, this 

kind of study comprehends reservoir characterization, production data assimilation, and 

selecting a production strategy under uncertainties (Schiozer et. al, 2015). 

Ideally, to adequately define the final strategy of the field, a large number of scenarios 

honoring the field’s observed data should be analyzed and a high number of variables 

optimized. This large number of variables can be divided into three groups: design variables 

(G1) representing the infrastructure to be implemented during field development (e.g.: well 

types and placements, platform capacity, well opening schedule, etc.); well control variables 

(G2) related to operational specifications to guide production along the management period 

(e.g.: control valves choke on the platform, the well or level region) in long (G2L) and short-

term (G2S); and revitalization variables (G3) that consist of the field’s infrastructure 

modifications employed during the management phase (e.g.: re-perforation, infill drilling, well 

conversion) – see Gaspar et al., 2016b for further details. 

Particularly, the use of large number of scenarios and variables mentioned can render 

the production strategy selection very time consuming. Thus, it is important to employ 

techniques to accelerate this process in order to respect the oil project schedule. One technique 

to this end is to represent the larger group of scenarios that honored the field’s observed data 
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thorough a smaller set of reservoir models, denominated representative model (RM), which 

serves to generate production strategies under uncertainties (Meira et al., 2017; Meira et al., 

2020; Sarma et al., 2013; Shirangi and Durlofsky, 2015). Another method consists of variable 

reduction in numerical optimization, such as well long-term control rule (G2L), based on 

parametric equations to guide bottom-hole pressure (Pinto et al., 2019a; Sorek et al., 2017) or 

well rates (Awotunde, 2014) over time. In this approach, the coefficients of the equations are 

optimized, and these substantially reduce the number of decision variables (from thousands to 

less than a hundred, for some related problems) compared with the traditional method (also 

called step-wise) of optimizing the BHP or well rates at each time interval. 

Despite the mentioned techniques, the production strategy selection process may still 

demand a high number of simulations runs depending on the type and number of variables to 

be optimized, the optimizer, the number of RM adopted to generate the strategies and the 

amount of history-matched reservoir scenarios where the strategies are evaluated before they 

are implemented to the real field. For example, Silva (2018) needed a total of 36.000 

simulations runs to execute a robust optimization for G1 variables using nine RMs. In relation 

to G2L parameters optimization, Silva et al. (2019) performed between 7.000 and 28.000 

simulations runs, depending on the number of models to describe the geological uncertainty 

(5, 10, 15, 20, 25, 50). Thus, the optimization process may take several months to be completed 

depending on the amount of computational resource available, the capability of parallelism 

from the optimization algorithm, and the complexity of the case studied (e.g.: Black-oil or 

compositional reservoir simulation and the scale of the simulation model). In this context, some 

of the optimization steps can be simplified or even skipped if the evaluation time of the 

production strategy does not fit in the project schedule. In Appendix B.1, we elucidate the 

concept of a computationally expensive simulation model. 

Therefore, methods to speed-up the variable optimization process, without 

compromising the quality of the results, may help the production strategy to be implemented 

on time in the real field. Based on that, the objective of this work is to reduce the number of 

simulation runs to optimize the parameters of a long-term well control rule (G2L) by combining 

a gradient-free algorithm with ML techniques, without affecting the economic return. 

The results are evaluated by comparing the net present value (NPV) and the number of 

simulation runs required to optimize the coefficients of the logistic equation to guide the BHP 

curve over time, both using Iterative discrete Latin hypercube (IDLHC) optimization algorithm 
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and the method proposed in this paper, which combines the IDLHC with ML techniques 

(IDLHC–ML). It is important to mention that these methods were applied to a single 

representative model of a reservoir benchmark case and the work considering uncertainties is 

currently under way. 

This paper is structured as follows: in the next subsections, we review the literature that 

employed ML techniques to optimize production strategies, we briefly describe the IDLHC 

algorithm (von Hohendorff et al., 2016), explain the well control simulator default, which 

serves as a reference to check if the IDLHC and the G2L parametrization proposed here were 

working correctly, and we then explain the G2L parameterization adopted in this work. We 

also present some basic ML concepts. The second section introduces the general methodology 

of this work and provides details on how IDLHC–ML was designed. Section 3 concisely 

presents the case study of this work and shows the parameters adopted for IDLHC and IDLHC–

ML. In Section 4, we compare the results of IDLHC and IDLHC–ML. Section 5 concludes and 

discusses future research ventures. 

 Optimization based on machine learning approaches 

Some researchers applied machine learning in order to speed up the process of 

optimizing the production strategy variables (Bruyelle and Guérillot, 2019; Busby et al., 2017; 

Doraisamy et al., 1998; Jang et al., 2018; Min et al., 2011; Nwachukwu, 2018; Sarma et al., 

2018; Teixeira and Secchi, 2019). For example, Teixeira and Secchi (2019) applied multilayer 

perceptron (MLP) neural network to represent the nonlinear dynamic behavior of the UNISIM-

I-M benchmark reservoir, which is a synthetic model containing roughly 37,000 active grid 

cells and 11 injector and 14 producer wells. The dataset of their analysis was the injector water 

rates (𝑞𝑤), producer oil rates (𝑞𝑜), and BHP acquired monthly during the field’s lifetime and 

the data was split into training, validation, and test sets in the respective proportions of 70%, 

15%, and 15%. Next, the MLP model was built considering the 𝑞𝑤, 𝑞𝑜 and BHP of 15-time 

delays as input and the 𝑞𝑜  of the next time step as output. Although the 𝑞𝑜  predicted by the 

MLP presented some high amplitude spikes, the neural network was able to follow the behavior 

of the 𝑞𝑜 curves for all wells along the UNISIM-I-M lifetime compared to a commercial 

reservoir simulator. The authors state that their methodology is suitable to determine the 

optimum control in reservoir management; nevertheless, they did not perform the optimization 

process. 
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Jang et al. (2018) employed MLP to optimize the position of a single horizontal infill 

well to maximize the cumulative gas production in a coalbed methane reservoir containing 

6,771 grid cells and six vertical producers already operating for three years. The authors 

alternate reservoir simulations and MLP model application to reduce, iteratively, the search 

space, initially composed of 3,550 combinations, of the infill well position in order to find the 

global optimal solution. The MLP model built in each iteration was applied to predict all 

possible solutions and the best ones, which were above a predefined cutoff value, were select 

to create the search space of the next iteration. The MLP approach required a maximum of 70 

simulation runs to find the global optimal solution compared to at least 124 simulations of a 

regular particle swarm optimization algorithm. 

Although some works employed machine learning for production strategy, it is still 

necessary to perform it for different study cases and adopt other approaches for a better 

understanding of the ML potential in the production strategy optimization area. 

 Iterative discrete Latin hypercube (IDLHC) optimization algorithm 

In this work, we used an iterative sampling method denoted as IDLHC (von Hohendorff 

et al., 2016) to optimize the coefficients of the logistic equation that guides the well’s BHP 

over time. In each IDLHC iteration (𝐼), the optimization variables are discretized into values 

(or levels) and the variable values are combined using discrete Latin hypercube sampling 

method (DLHC, see Maschio and Schiozer, 2016), which considers a prior probability density 

function (PDF), to randomly generate a set of 𝑁 samples. Then, the objective function (OF) of 

the samples are evaluated and a threshold cut percentage (𝐹) is used to select the best samples 

(of size 𝐹 ×  𝑁) to update each variable frequency level that will be employed to then create 

the next iteration samples. The optimization search space is gradually reduced along the 

iterations and the process ends when a convergence criterion is reached (e.g.: maximum 

number of iterations – 𝐼𝐹𝐼𝑁𝐴𝐿). Generally, in the first iteration, the levels of each optimization 

variable have equal probability of occurrence. The IDLHC framework is presented in Figure 

3.1. 
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Figure 3.1–Iterative discrete Latin hypercube (IDLHC) optimization algorithm flowchart. 

According to von Hohendorff et al. (2016), the choice of 𝑁 and 𝐹 parameters depends 

on the case studied and has a great influence in the optimization performance. The authors 

tested different parameters for three different cases ( Table 3.1) and all of them satisfactorily 

converged towards the maximum value. Thus, these values can be a guide for choosing IDLHC 

parameters in a production strategy optimization problem. 

 Table 3.1–Iterative discrete Latin hypercube parameters tested in Von Hohendorff et al. (2016). 

Case tested 
Parameters 

𝑵 𝑭 (%) 𝑰𝑭𝑰𝑵𝑨𝑳  

I 20 20 5 

II 2500 20 20 

III 100 10 9 

It is important to note that we selected the IDLHC optimization algorithm due its code 

availability, which facilitates our methodology implementation and because it provided a good 

convergence rate to maximize the OF in von Hohendorff et al. (2016) for the production 

optimization problem, compared to a well-established optimization algorithm (designed 

exploration stage and controlled evolution). 
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 Well control reference strategy (S0) 

In this work, we adopted a reference strategy (named here as S0) to check if the G2L 

parametrization proposed and the IDLHC algorithm were performing well, that is, if the 

IDLHC optimization is delivering a considerably superior NPV than the reference strategy.  

The S0 strategy is based in a well short-term rule (G2S) defined internally by the 

commercial simulator software IMEX 2016.10 (see Pinto et al., 2019b for more details). This 

control rule, named INGUIDE, determines the rate apportionment among wells to meet the 

target group (e.g.: platform production or injection capacity), according to a priority rank. In 

this paper, the producer wells’ priority rank was defined in order to prioritize production in 

wells with higher oil-water ratio (Equation 3.1). 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑤𝑒) =
𝑞𝑜 

10 + 𝑞𝑤
 Equation 3.1 

where 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒), 𝑞𝑜 and 𝑞𝑤 are the priority rank, the oil rate, and the water rate of the 

producer 𝑤𝑒, respectively. In this equation, each producer well receives a fraction of the 

platform production capacity in proportion to its value of 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑤𝑒). Note that, the constant 

value in the denominator was set to a relatively low value (equals 10) in order to avoid division 

by zero whenever 𝑞𝑤 = 0. 

Regarding injectors, the priority rank was built considering each well injection potential 

at the maximum well BHP constraint, that is, the capacity of each well to inject water if there 

were no restriction for rates. Therefore, the contribution of each well is proportional to its well 

injection potential value. The priority rank for both producer and injector wells was set to be 

reevaluated at every 30 simulation days. 

It is important to mention that, if the rate assigned by the command INGUIDE to 

specific well violates the most restrictive constraint, the well will be left out of the 

apportionment with the rate being reduced to its maximum rate and the remainder of the 

platform capacity rate is still split to the remaining wells proportionally to their priority rank 

value. 
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 Parametrization for well long-term control rule (G2L) 

The well long-term control rule (G2L) applied in this work consists of optimizing the 

logistic equation coefficients (𝑎𝑤𝑒, 𝑏𝑤𝑒, and 𝑐𝑤𝑒) to guide the BHP limit of each well over time 

(Equation 3.2). 

𝐵𝐻𝑃𝑤𝑒,𝑡 = 𝐵𝐻𝑃𝑀𝐼𝑁 +  
(𝐵𝐻𝑃𝑀𝐴𝑋 − 𝐵𝐻𝑃𝑀𝐼𝑁)

1 + 𝑒
(𝑎𝑤𝑒 + 𝑏𝑤𝑒 × (

𝑡
𝑡𝐹𝐼𝑁𝐴𝐿

) + 𝑐𝑤𝑒 × (
𝑡

𝑡𝐹𝐼𝑁𝐴𝐿
)

2
)

 Equation 3.2 

where 𝐵𝐻𝑃𝑤𝑒,𝑡 is the BHP for the well 𝑤𝑒 at time 𝑡, 𝐵𝐻𝑃𝑀𝐴𝑋  and 𝐵𝐻𝑃𝑀𝐼𝑁 are the maximum 

and minimum well BHP constraints, in the order given, and 𝑡𝐹𝐼𝑁𝐴𝐿 represents the entire 

management period. 

The range values for each coefficient are defined as follows: The limit values of 𝑎𝑤𝑒 

(𝑎𝑤𝑒_𝑙𝑖𝑚) are defined in order to guarantee singly that the 𝐵𝐻𝑃𝑤𝑒,𝑡 can be carried out through 

the well BHP constraints over time. Note that 𝑡/𝑡𝐹𝐼𝑁𝐴𝐿 varies from [0, 1], thus, the 𝑏𝑤𝑒 and 

𝑐𝑤𝑒 limits (𝑏𝑤𝑒_𝑙𝑖𝑚 and 𝑐𝑤𝑒_𝑙𝑖𝑚, respectively) must be higher than the 𝑎𝑤𝑒_𝑙𝑖𝑚 to have a similar 

influence in the BHP curve. One way to do this is to set their limits in order to ensure that all 

coefficients have the same integral in the interval of [0, 1] as follows: 𝑏𝑤𝑒_𝑙𝑖𝑚 =
𝑎𝑤𝑒_𝑙𝑖𝑚

∫ 𝑡∗𝑑𝑡
1

0

, and 

𝑐𝑤𝑒_𝑙𝑖𝑚 =
𝑎𝑤𝑒_𝑙𝑖𝑚

∫ 𝑡2∗𝑑𝑡
1

0

. 

It is important to mention that whenever the G2L cannot be applied to a specific well 

in a certain period of the simulation due to any constraints of the problem (e.g.: wells BHP 

limits, maximum rate for wells and platform), the INGUIDE rule described in the previous 

section is applied in that period for that well. 

 Machine learning general framework and basic concepts 

In this work, we applied a supervised machine learning task (Goodfellow et al., 2016) 

meaning that, from input data (denominated features, e.g. 𝑥1, 𝑥2, … , 𝑥𝑛), there is a 

corresponding output (named label, e.g.: 𝑦). In this task, the objective is to create a function 

ℎ(𝑥), also called ML model, capable of mapping all 𝑛 features to their labels based on each 

training example 𝑖. For this purpose, a set of examples consisting of a pair of features and labels 

(𝑥𝑖 and 𝑦𝑖) is gathered to create the ML model, which will be used to predict or classify labels 

from a new set of examples (Figure 3.2). 
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Figure 3.2–Supervised machine learning intuition. 

Figure 3.3 shows the general steps of the supervised machine learning framework 

adopted in this work. We first defined the set of features and labels related with the task to be 

studied (problem definition). These features and labels must be available for collection (data 

collection). Next, the data was pre-processed, a step which comprises any transformations 

applied to the data before feeding it to the algorithm. The dataset chosen in this work was 

reasonably clean as it did not have missing values, the data was balanced, and there was no 

categorical data. Thus, data normalization was the only transformation implemented in this 

work since it helps speed up the convergence of some ML algorithms (Lecun et al., 2012). 

Subsequently, the ML algorithm was selected and trained. Ideally, a good ML model 

should have low bias (small error on training data) and low variance (generalize well to new 

unseen data). A common problem when training a ML algorithm is the overfitting phenomenon 

(Duda et al., 2001), which happens when a ML model perfectly fits the training data (low bias), 

but its performance considerably decreases into new data (high variance). There are several 

techniques to avoid overfitting (Ying, 2019), for example, increasing the number of training 

examples, reducing the number of features, adjusting hyperparameters, which are parameters 

that refer to the model selection task and are not learning in a regular training process, and 

separating the available data into training, validation, and testing sets (cross-validation).  

In relation to cross-validation techniques, there are several approaches (e.g.: hold-out, 

k-fold and leave-one-out, see Bishop, 2006). The k-fold cross-validation, for instance, consists 

of dividing the available data in train and test set and, then, split the training data into 𝑘 groups. 

For each group, the data is trained in 𝑘 − 1 folds and the accuracy is measured in the data left 

(validation set). This process is performed 𝑘 times and an average of the performance measure 

(e.g. mean absolute error) reported in each validation set is used to select the set of 

hyperparameters or the ML algorithm. After tuning the hyperparameters or choosing the ML 

algorithm, all the training and validation data can be used to create the new ML model. This 

model is then applied in the test set in order to evaluate how it would perform when new data 
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is collected. Although, k-fold cross-validation can be computationally expensive because the 

ML algorithm is trained 𝑘 times, this technique is indicated when there is little data (Hastie et 

al., 2009). 

Specifically, in this work, we applied the k-fold cross-validation slightly modified as 

we did not split the data into train and test, but directly fed it to perform the cross-validation 

process and, then, the samples from succeed iteration of IDLHC were used as test set. We 

decided to apply the k-fold cross-validation in this manner to mitigate adverse effects due to 

the small number of training examples. 

After cross-validating, the next step consisted of monitoring the ML model 

performance and, as new data is collected, the entire process should be repeated. 

 

Figure 3.3–General machine learning framework based. 
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 Ensemble learning for regression 

Instead of using a single individual machine learning model, it is possible to associate 

multiple models to reduce bias and variance. In this process, the final algorithm (meta-learner) 

uses the prediction of multiple ML base models to make the final prediction. This technique is 

denominated ensemble learning and may be executed in three main ways: boosting, bagging, 

and stacking (Hastie et al., 2009). 

Bagging (Breiman, 1996) consists of randomly splitting the training data into several 

groups of the same size using sampling with or without replacement, training the same ML 

base algorithm for each subgroup, and creating a meta-model that averages the outputs of each 

ML model to produce the final prediction. Bagging is designated to reduce variance; thus, it is 

often applied using base learner algorithms that yield high variance and low bias (such as tree-

based algorithms). 

In contrast, the boosting method aims to build different base models in series so that 

the bias of the meta-model is minimized (Freund and Schapire, 1997). Specifically, the same 

base learner is applied to the whole training set and then another model is built considering a 

higher weight to the data that was poorly predicted by the prior model. Finally, the meta-model 

weight-averages the output of each model previously created. Higher weights are given to the 

models with better performance in the training data. In general, this method is applied to 

algorithms that generate results with low variance and relatively high bias. 

In the stacking learning (Wolpert, 1992), several ML base algorithms are applied in the 

training data and the prediction of each model is used as input to train the final meta-learner. 

Like boosting, the stacking technique is designed to reduce the bias of the base learners. 

 Methodology 

This section outlines the specific method used within this research to achieve our main 

objective of reducing the number of simulations for a derivative-free optimization algorithm 

by combining it with ML techniques. The general methodology is described below (Figure 

3.4). 

a) First, the IDLHC parameters (𝑁, 𝐹 and 𝐼𝐹𝐼𝑁𝐴𝐿) were defined. 

b) Next, we performed the IDLHC optimization for a single reservoir model (nominal 

optimization) five times. The goal of repeating it many times is to lessen random effects 

associated with stochastic derivative-free algorithms. The results of this item served as 
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reference to be compared with the optimization algorithm associated with the ML 

techniques (IDLHC–ML) proposed in this work. 

c) After, we checked if the IDLHC algorithm, using the parameters 𝑁, 𝐹 and 𝐼𝐹𝐼𝑁𝐴𝐿 defined 

in a), was suitable to optimize the G2L parameters of our problem by comparing its 

NPV with the one delivered by the G2S simulator default (S0 strategy) described in 

introduction. If the parameters selected did not deliver good results, we either changed 

them or ended the process.  

d) Subsequently, we performed a sensitivity analysis to pre-evaluate several ML 

techniques using the strategies simulated in the Item b). Concisely, the ML technique 

predicted the economic return among the 𝑁 samples (or strategies) randomly generated 

by IDLHC at a current iteration, and the subset 𝑚 of 𝑁 strategies expected to have the 

best outcome was picked. Subsequently, we measured the percentage (or accuracy) of 

the 𝐹 × 𝑁 best samples of IDLHC that were actually among the best 𝑚 samples 

predicted by the ML. It is important to mention that, if the pre-defined value of 𝑚 leads 

to a poor accuracy, one could redefine this value. The full explanation of this process is 

in the next subsection.  

e) Next, the ML technique that delivered the highest accuracy on average in the sensitivity 

analysis was selected to perform the IDLHC–ML method. Here, the process was very 

similar to item d) and the details of this process are also elucidated in the following 

subsection. As in Item b), we performed the IDLHC–ML nominal optimization five 

times for the same reservoir model adopted before. 

f) In each iteration, the strategies left out in Item e) by IDLHC–ML were simulated in 

order to assess its performance, that is, how many correct scenarios to update the PDF 

were in fact simulated in step e). This step would not be performed in a real project and 

it was conducted only to evaluate the reliability of IDLHC–ML. 

g) If the NPV statistical samples (mean, median, dispersion, maximum, and minimum) for 

IDLHC and IDLHC–ML were similar, we repeated item a) with alternative values for 

the 𝑁, 𝐹, and 𝐼𝐹𝐼𝑁𝐴𝐿 parameters of IDLHC. This was done to evaluate if IDLHC, with 

different configurations, yields comparable results to IDLHC–ML using the same 

number of simulations, as this would not justify the application of the proposed method. 

Otherwise, the methodology ends. 

 



72 

 

 

Figure 3.4–Global methodology to perform and evaluate the IDLHC–ML method proposed that consists 

of combining the Iterative discrete Latin hypercube (IDLHC) optimization algorithm with machine 

learning (ML). 

 Machine learning sensitivity analysis and IDLHC–ML evaluation details 

Figure 3.5 presents the diagram used in the ML technique sensitivity analysis and 

IDLHC–ML evaluation steps, which is described as follows: first, we defined the features and 

labels to be used as dataset. We then chose the ML technique to be tested. After, the features 

and labels of all the strategies simulated (𝑁) in the first iteration (𝐼 = 1) of IDLHC were scaled 

and used to train the ML technique through k-fold cross validation process. In this part, we 

selected the hyperparameters that minimize the root mean squared error of the ML algorithm. 

We subsequently tested the ML trained model (ℎ) in the 𝑁 strategies created in the next 

iteration of IDLHC in order to predict and select the 𝑚 strategies with higher OF values. Then, 

we measured the accuracy from iteration 𝐼 + 1, which is the percentage of 𝐹 × 𝑁 real best 

strategies that are within 𝑚 strategies predicted by the ML model. Finally, the data from the 𝑚 

strategies become part of the dataset to be used to retrain the ML technique. This process was 

repeated until 𝐼𝐹𝐼𝑁𝐴𝐿 − 1 iterations for each ML techniques and feature tested. 
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Figure 3.5–Procedure to evaluate the ability of the IDLHC–ML of predicting the correct strategies used 

by the Iterative discrete Latin hypercube (IDLHC) to update the probability density function (PDF) of 

the optimization parameters. 

The sensitivity analysis was carried out for every five IDLHC executions. Then, the 

ML technique, which provided the highest mean for the OF, was selected to perform the 

IDLHC–ML evaluation step. 

The single difference in the evaluation step from the sensitivity analysis is that the 

simulations were actually executed and, thus, from the second iteration onwards, the best 

strategies were not necessarily selected to update the PDF of the next iteration. It is important 

to mention that the approach set for IDLHC–ML evaluation requires 𝑁 + 𝑚 × (𝐼𝐹𝐼𝑁𝐴𝐿 − 1) 

simulations instead of 𝑁 × 𝐼𝐹𝐼𝑁𝐴𝐿  simulations required for IDLHC.  

Also, we emphasize that the discarded part of the strategies from each iteration (𝑁 −

𝑚) were simulated in the evaluation step only for the purpose of measuring the accuracy of the 

IDLHC–ML method, and it would otherwise not be performed.  
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 Application 

In this topic, we briefly describe the characteristics of the UNISIM-I-M benchmark case 

in which our methodology was tested (see Gaspar et al., 2016a for full model description). In 

addition, we present the information to calculate the objective function (NPV), such as dates 

and economical parameters, G2L parameters values, operational constraints, and the 

configuration for the optimization algorithm (IDLHC) and for the ML techniques. 

 UNISIM-I-M benchmark case 

The UNISIM-I-M is a 3D Black-oil reservoir simulation model, which comprises a 100 

× 100 × 8 grid cell resolution, 20 layers, and 36,739 active grid blocks. The model contains 

14 producer and 11 injector wells and a history production data of 7 years. This case was 

designed to study well control (G2) and revitalization (G3) variables strategy selection during 

the field management phase. In this work, we focused on the long-term well control rule (G2L) 

optimization. It should be mentioned that the G1 exploitation strategy – well type and 

placement, platform limit, etc. – was already defined by Avansi and Schiozer (2015) in the 

development stage of the field and this must not be modified.  

The original optimization algorithm (IDLHC) and the proposed method (IDLHC–ML) 

were performed nominally in a representative model of UNISIM-I-M, denoted as RM4. The 

RM4 was chosen because it is the closet model to the percentile P50 in NPV. 

 Information to calculate the objective function and operational data  

The NPV was calculated using the same equation, economic parameters (Table 3.2), 

and dates (Table 3.3) presented in Gaspar et al. (2015). We stress that there is no cost 

associated with design variables (G1) because the development strategy was implemented 

before the date that the cash flow was updated. 

Table 3.2–Economic data to calculate the net present value. 

Parameter Description value 

Market Values 

Oil price (USD/m3) 314.5 

Discount rate (%) 9 

Royalties (%) 10 

Taxes 
Special taxes on gross revenue (%) 9.25 

Corporate taxes (%) 34 

Costs 

Oil production (USD/ m3) 62.9 

Water production (USD/ m3) 6.29 

Water injection (USD/ m3) 6.29 
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Table 3.3–Simulation timeline and date to update the cash flow. 

Time (year - days) Description 

05/31/2013 - 0 Simulation and production starting time 

06/30/2020 - 2587 Opening the last well from development phase 

07/31/2020 - 2618 

End of production history 

Start of management period 

Time for updating cash flow 

05/31/2043 - 10957 
Maximum simulation period 

Field abandonment 

 

The coefficients (𝑎𝑤𝑒, 𝑏𝑤𝑒, 𝑐𝑤𝑒) of the logistic equation to optimize the BHP limits 

over time were linearly discretized into 15 values between the ranges exposed in Table 3.4. 

Table 3.4–Range and number of interval values to optimize the coefficients of the logistic equation. 

Parametric equation Coefficients Range [Minimum, Maximum] 

PLOG 

𝑎𝑤𝑒 [-5, 5] 

𝑏𝑤𝑒 [-10, 10] 

𝑐𝑤𝑒 [-15, 15] 

We emphasize that the logistic equation BHP limit must respect all constraints 

presented in Table 3.5. Therefore, the limit of BHP set by the logistic equation will always be 

in between the range of 190 and 350 (kgf/cm²). 

Table 3.5–Operational constraints for wells and platform. 

Type Producer Injector 
Platform 

production 

Platform 

injection 

1Max water rate (m3/d) - 5,000 13,950 21,700 

2Min oil rate (m3/d) 20 - 13,950 - 

1Max liquid rate (m3/d) 2,000 5,000 15,500 - 

 BHP (kgf/cm²) 2Min 190 1Max 350 - - 

1Max gas oil ratio 200 - - - 

Shut-in WCUT 0.9 - - - 
 1 Maximum. 2 Minimum. 

 Configuration for IDLHC and for IDLHC–ML 

Initially, we set 𝑁 = 100, 𝐹 = 20% and, 𝐼 𝐹𝐼𝑁𝐴𝐿 = 10 for IDLHC and IDLHC–ML, 

and the IDLHC–ML extra parameter 𝑚 was first defined as equal to 50. We highlight that if 

the results were not satisfactory in relation to G2S simulator default, the parameter values of 

the optimizer can be modified. 
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Whenever the NPV statistical samples of IDLHC and IDLHC–ML were comparable to 

a specific 𝑁, 𝐹, and 𝐼𝐹𝐼𝑁𝐴𝐿, we performed a new IDLHC test maintaining the premise that F x N 

should be constant and the new 𝑁 value should be equal to the IDLHC–ML 𝑚 value. The 

𝐼𝐹𝐼𝑁𝐴𝐿  was then chosen as the minimal number that would guarantee that the number of 

simulations performed by IDLHC was at least equal to the ones performed by IDLHC–ML. 

 ML techniques and features 

The sensitivity analysis was performed considering two groups of features: 1) the 

coefficients of the logistic equation for each well, and 2) the BHP over the time for each well 

originated from the logistic equation calculations. These features were normalized before the 

training process using min-max scaling method, presented in Equation 3.3. 

𝑥𝑛𝑜𝑟𝑚
𝑖 =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 Equation 3.3 

where 𝑥𝑛𝑜𝑟𝑚
𝑖  and 𝑥𝑖 are the scaled and non-scaled values for a single feature and for 

the training example 𝑖, and 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum values of a specific 

feature. This equation is applied to all 𝑛 features. Table 3.6 shows the ML techniques tested 

in this work. Specifically, the multilayer perceptron stacking learner (MLP-S) was trained on 

all predictions of the ML techniques from Table 3.6, excluding the support vector machine-

stacking learner (SVM-S). Similarly, the SVM-S used all but the output of MLP-S. The 

hyperparameters and the number of folds used in k-fold cross-validation for each ML technique 

are presented in Table 3.8 from Appendix A. The approach chosen for determining the 

combination of hyperparameter values tested was the randomized search (refer to Bergstra and 

Bengio, 2012). 

Table 3.6–Machine learning techniques applied in this work. 

Machine Learning technique Abbreviation 

Elastic-Net regression ENET 

Lasso regression LSR 

Bayesian ridge regression BRR 

Gradient boosting regression GBR 

Random forest regression RF 

Bagging regression with gradient boosting as base learner BGR-GBR 

Bagging regression with Bayesian ridge as base learner BGR-BRR 

Bagging regression with random forest as base learner BGR-RF 

Adaboost regression with gradient boosting as base learner ABR-GBR 
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Adaboost regression with random forest as base learner ABR-RF 

Support vector machine stacking SVM-S 

Multilayer perceptron stacking MLP-S 

We emphasize that all ML algorithms of this work were applied using scikit-learn 

version 0.22 (Pedregosa et al., 2011), which is a Python open-source library incorporating 

several state-of-the-art ML algorithms. Therefore, this work had no objective to improve the 

existing ML techniques or scrutinize their best configuration or architecture. The intention was 

to try some well-known ML techniques and evaluate their performance on the case studied. 

For the explanation of how each ML algorithm works, please refer to Pedregosa et al. (2011). 

 Results 

Henceforth, the term IDLHC𝑋 will be used here to refer to the IDLHC method, where 

𝑋 is the 𝑁 parameter of IDLHC. Apart from this, the term IDLHC𝑋–ML𝑌𝑧 represents the 

IDLHC–ML method where 𝑋, 𝑌, and 𝑧 represent 𝑁, 𝑚, and the machine learning technique 

used for the IDLHC–ML, respectively. 

In order to evaluate the quality of the solutions yielded by the IDLHC algorithm for the 

first configuration tested (𝑁 = 100, 𝐹 = 20%, and 𝐼 𝐹𝐼𝑁𝐴𝐿 = 10), we compared the NPV of 

the best strategies for every five executions with the one provided by the well control short-

term strategy (S0). As presented in Figure 3.6, the IDLHC100 significantly outperformed 

(22.3% in average) the NPV of 2.55 USD billion from S0 strategy. 

 

Figure 3.6–Boxplot of the net present value (NPV) from the best strategy of each IDLHC100 execution 

considering (a) the absolute values of NPV and (b) the NPV percentage variation (∆NPV) in relation to 
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the one yielded by the well control short-term strategy (S0). 

Subsequently, we reused the strategies generated during IDLHC100 nominal 

optimization process for the five executions to perform a sensitivity analysis of the ability of 

each ML technique to include the best 𝐹 𝑥 𝑁 strategies among the top fifty (𝑚 = 50) strategies 

predicted by the ML model from the second iteration onwards. Also, we assessed which 

features would be more suitable for the method proposed in this paper.  

It is possible to observe that the ML techniques that employed the BHP features clearly 

yielded a better accuracy, calculated by equally averaging their value in all iterations and for 

each execution, than the features formed by the logistic equation coefficients (Figure 3.7). In 

addition, MLP-S presented the highest minimum, maximum, median and average accuracy. 

Thus, this ML technique was chosen to perform the IDLHC–ML method considering 𝑁 =

100, 𝐹 = 20%, and 𝐼 𝐹𝐼𝑁𝐴𝐿 = 10. We can note, however, that a few ML techniques provided 

very close accuracy (especially SVM-S) and they may provide similar results if applied to the 

IDLHC–ML method. 

 

Figure 3.7–Boxplot of machine learning (ML) technique accuracy averaged over all iterations and for 

each of five IDLHC100 executions. The analysis was carried out considering two sets of features: the BHP 

and the logistic equation coefficients. 
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After the sensitivity analysis step, we executed the IDLHC100–ML50MLP-S five times. 

Figure 3.8 demonstrates that the IDLHC100–ML50MLP-S provided a comparable NPV̅̅ ̅̅ ̅̅  (-0.01%) 

and statistic samples in the five executions, in relation to the original IDLHC100, requiring 

45% less simulations. 

 

Figure 3.8–Boxplot of net present value (NPV) IDLHC100 and IDLHC100–ML50MLP-S. 

As the IDLHC100 and IDLHC100–ML50MLP-S had an equivalent performance, we 

carried out a second test for IDLHC, considering 𝑁, 𝐹, and 𝐼𝐹𝐼𝑁𝐴𝐿 equals 50, 40%, and 11, 

respectively. As seen in Figure 3.9, this new configuration delivered similar results in terms 

of NPV, requiring the same 550 simulations of IDLHC100–ML50MLP–S.  

 

Figure 3.9–Boxplot of the net present value (NPV) for IDLHC100, IDLHC100–ML50MLP-S and IDLHC50. 

Therefore, we executed the IDLHC–ML also using 𝑁, 𝐹, and 𝐼𝐹𝐼𝑁𝐴𝐿 equals 50, 40% 

and 11, respectively. For choosing the 𝑚 value and the ML algorithm for IDLHC–ML, we 

once again executed the sensitivity analysis using the BHP as features and the simulations 

already performed by IDLHC50. This was done because the new optimizer parameters can 

influence the ML algorithm accuracies and, thus, the 𝑚 value of the first test may not be 

suitable for the second one. 
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The values analyzed for 𝑚 was 25 and 30. It can be seen from Figure 3.10 that the 

SVM-S provided the highest average accuracy among all ML techniques for both 𝑚 equals 25 

and 30. Also, the SVM-S average accuracy using 𝑚 = 25 (75.6%) was considerably lower 

compared to the first sensitivity analysis test (82.6%), but SVM-S guaranteed a similar average 

accuracy with 𝑚 = 30 (84.3%). Therefore, we opted to perform the IDLHC–ML using the 

SVM-S and 𝑚 = 30. 

 

Figure 3.10–Boxplot of machine learning (ML) technique accuracy averaged over all iterations and for 

each of the five IDLHC50 executions considering m = 25 and m = 30. The analysis only considered the 

BHP as features. 

It is possible to note from Figure 3.11 that the IDLHC50–ML30SVM-S delivered a worse 

result compared to IDLHC100 for all metrics analyzed (mean, median, minimum, maximum 

and dispersion). Therefore, we carried out the IDLHC50–ML35SVM-S followed by the 

IDLHC35. The mean in the five IDLHC50–ML35SVM-S executions was slightly higher than 

IDLHC50 (+0.2%) and required roughly 27% less simulations runs. On the other hand, the 

IDLHC35 delivered the worst result among all other IDLHC and IDLHC–ML configurations, 

thus, the methodology process was finished. 
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Figure 3.11–Boxplot of net present value (NPV) for all IDLHC and IDLHC–ML configurations tested in 

this work. 

Table 3.7 summarizes the results for all IDLHC and IDLHC–ML configurations tested 

in this work and compares them with the values achieved by the IDLHC100. We observe that 

the NPV results worsened as the number of simulations for the IDLHC decreased. However, 

regardless of the IDLHC configuration, the IDLHC–ML proposed in this work reduced the 

number of simulations and kept the NPV statistical samples results very close. 

Table 3.7–Summary of the IDLHC and IDLHC–ML parameter configurations and of the net present 

value (NPV) percentage variation in relation to IDLHC100. 

Configuration and 

method 

NPV percentage variation (%) Configuration 

1Max 
2Min 3Avg Median N 

F 

(%) 
IFINAL m 

No 

simulations 

IDLHC100 – – – – 100 20 10 – 1000 

IDLHC100–ML50MLP-S 0.30 -0.07 -0.01 -0.07 100 20 10 50 550 

IDLHC50 -0.13 -0.42 -0.42 -0.65 50 40 11 – 550 

IDLHC50–ML35SVM-S -0.23 -0.63 -0.21 -0.12 50 40 11 35 400 

IDLHC50–ML30SVM-S -0.24 -3.59 -2.05 -2.41 50 40 11 30 350 

IDLHC35 -1.29 -4.47 -3.11 -3.58 35 57 12 – 420 
1 Maximum. 2 Minimum. 3Average. 

Figure 3.12 demonstrates that the IDLHC100–ML50MLP–S and the IDLHC50–

ML35SVM–S had a better convergence rate than all IDLHC configurations while maximized the 

NPV to a close-to-optimum value obtained by IDLHC100. 

Considering the results obtained, the IDLHC–ML techniques are a good alternative to 

the original IDLHC, mainly when there is limited time to define G2L strategies, or even to 

previously assess which G2L control rule would perform better in the field studied. 
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We simulated the IDLHC and IDLHC–ML optimization method considering 16 

simulations in parallel and six processors for each simulation. For such configuration, the 

average time to simulate and calculate the NPV of a single strategy was roughly 127 seconds. 

In contrast, the time to perform MLP-S and SVM-S flowchart per simulation was significantly 

lower (roughly 10 seconds). Therefore, IDLHC100–ML50MLP-S saved roughly 40% in 

computational time compared to IDLHC100 and the IDLHC50–ML35SVM-S reduced the time 

in approximately 22% compared to IDLHC50. In Appendix B.1, we provide the time for 

training the models, along with IDLHC elapsed time. 

Additionally, it is important to mention that the reservoir simulation computational cost 

should be higher as the complexity of the reservoir model increases. Therefore, as it does not 

affect the ML efficiency, the percentage of time saved using IDLHC–ML would get closer to 

the percentage reduction of simulation runs (45% and 27% for the two IDLHC parameter 

configurations tested). 

 

Figure 3.12–Comparison of the average of the maximum net present value (NPV) per iteration calculated 

over the five executions performed by each IDLHC and IDLHC–ML parameter configurations. 

 Conclusions 

By combining the IDLHC optimization algorithm with machine learning techniques 

(IDLHC–ML) to perform a nominal optimization of long-term well control rules, it was 
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possible to decrease the number of reservoir model simulation runs while maintaining an 

equivalent net present value (NPV) compared to the original IDLHC method.  

We tested three IDLHC sets of parameter configurations, which are denoted here as 

IDLHC100, IDLHC50, and IDLHC35 and these required 1000, 550, and 420 simulation runs, 

respectively. The IDLHC configurations with a larger number of simulations provided better 

quality solutions in terms of NPV. However, the results from IDLHC100 and IDLHC50 were 

very close (within 0.4%). The IDLHC–ML versions for the former and for the latter (namely 

here as IDLHC100–ML50MLP-S and IDLHC50–ML35SVM-S, respectively) were able to reduce 

the number of simulations in 45% and 27 %, respectively, while maintaining an equivalent 

NPV. Considering the time to perform the ML technique, the computational time saved for 

IDLHC100–ML50MLP-S and IDLHC50–ML35SVM-S was roughly 40% and 22% in the order 

given. For a more complex simulation model, the reduction in time tends to get closer to the 

percentage reduction of simulation runs as the time to train the ML model is not influenced by 

the model’s complexity. 

We also showed that a different configuration of the IDLHC optimizer parameters 

affects the selection of the ML technique and the minimum number of best strategies predicted 

by the ML technique to be simulated (𝑚) to render the IDLHC–ML method effective.  

Finally, once we have tested the ML for well control optimization in a nominal case, 

the next step should focus on decision-making strategy selection, which includes uncertainties 

and fine-scale reservoir analysis. Another line for future work would be trying to perform 

IDLHC–ML considering other types of variables (e.g.: well type and placement) and another 

configuration for IDLHC parameters (𝑁 and 𝐹). These investigations would confirm the ability 

of the method to be generalized or to define in which cases the IDLHC–ML is more suitable 

to be applied. 

For future study cases, there is no need to test other machine learning algorithms again. 

We recommend directly applying the Multi-Layer Perceptron Stacking (MLP-S), which 

yielded the best results in this paper. The rationale for this choice is thoroughly explained in 

Appendix B.2. 

 Nomenclature 

ABR-GBR Adaboost regression using gradient boosting as base-learner 

ABR-RF Adaboost regression using random forest as base-learner 
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𝑎𝑤𝑒, 𝑏𝑤𝑒, 𝑐𝑤𝑒 Coefficients of parametric equations 

𝑎𝑤𝑒_𝑙𝑖𝑚, 𝑏𝑤𝑒_𝑙𝑖𝑚, 𝑐𝑤𝑒_𝑙𝑖𝑚  Parametric equation coefficient limits 

BGR-BRR Bagging regression using Bayesian ridge as base-learner 

BGR-GBR Bagging regression using gradient boosting as base-learner  

BGR-RF Bagging regression using random forest as base-learner 

BHP  Bottom-hole pressure 

𝐵𝐻𝑃𝑀𝑎𝑥 Maximum BHP limit of the reservoir 

𝐵𝐻𝑃𝑀𝑖𝑛 Minimum BHP limit of the reservoir 

𝐵𝐻𝑃𝑤𝑒,𝑡 BHP in well 𝑤𝑒 for time 𝑡 

BRR Bayesian ridge regression 

DLHC Discrete Latin hypercube sampling 

ENET  Elastic-Net regression 

𝐹 Threshold cut percentage to select the best samples 

G1  Design variables 

G2  Well control variables 

G2L Long-term control rules 

G2S  Short-term effective control 

G3  Revitalization variables 

GBR Gradient boosting regression 

ℎ Generic representation for base-learner 

𝐼 Iteration index from IDLHC 

𝑖  Index representing a single training example 

IDLHC Iterative discrete Latin hypercube 

IDLHC–ML 
Iterative discrete Latin hypercube combined with Machine 

Learning 

𝐼𝐹𝐼𝑁𝐴𝐿 Last iteration from IDLHC 

LSR Lasso regression 

𝑀𝑎𝑥  Maximum value of determined indicator 

𝑚 Number of best strategies predicted by ML model 

𝑀𝑖𝑛  Minimum value of determined indicator 

ML Machine Learning 

MLP Multilayer perceptron 
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MLP-S Stacking using multilayer perceptron as the final meta-learner 

𝑁 Sample size generated in each IDLHC iteration 

NPV  Net present value 

OF Objective Function 

P50  Percentile 50  

PDF Probability density function 

RF Random forest regression 

RM  Representative models 

S0 Reference well control short-term strategy 

SVM-S Stacking using support vector machine as the final meta-learner 

𝑡  Time passed from initial management date  

𝑡𝐹𝐼𝑁𝐴𝐿 Management period interval 

USD United States Dollar 

𝑥 Generic representation of a feature 

𝑥𝑛𝑜𝑟𝑚
𝑖  Generic representation of a normalized feature for example 𝑖 

𝑥𝑚𝑎𝑥 Maximum value for a specific feature 

𝑥𝑚𝑖𝑛 Minimum value for a specific feature 

𝑦  Generic representation of a label 
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 Appendix A 

Table 3.8 presents the hyperparameters and the k-fold cross-validation specifications 

to train each ML technique employed in this work. A randomized search (Bergstra and Bengio, 

2012) was applied to define the combination of hyperparameter values to be tested. The 

hyperparameters from the ML algorithms that are not displayed in the in Table 3.8 were set 

with their default value, and these can be confirmed in Pedregosa et al. (2011). 
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Table 3.8–Machine learning (ML) algorithms, hyperparameters, and k-fold cross-validation 

specifications for training the data in the sensitivity analysis and evaluation steps. 

ML algorithm 1No of folds 
No of combinations of the 

hyperparameters per fold 
Hyperparameters 

Individual 

learner 

Elastic-Net 10 10 

'alpha': (10-4, 10-3, 10-2, 10-1, 1, 10, 100); 

'l1_ratio': [0.0, 1.0] equally spaced in 10 

values 

 

Lasso 10 10 

‘alpha’: [-6, -1] logarithmic spaced in 40 

values 

 

Bayesian ridge 10 10 

'alpha_1': (10-6, 10-3, 10-2, 10-1, 1, 3); 

'alpha_2': (10-6, 10-3, 10-2, 10-1, 1, 3); 

'lambda_1': (10-6, 10-3, 10-2, 10-1, 1, 5, 

10); 

'lambda_2': (10-6, 10-3, 10-2, 10-1) 

 

Ensemble 

learner 

Gradient 

boosting 
5 10 

'learning rate': (0.1, 0.5, 0.7); 

'subsample': (0.5, 0.7, 1.0); 

'2max depth': (2, 10, 20, 50); 

'3min samples leaf': (5, 20, 45, 75);  

'No estimators': (250, 500, 750); 

'min samples split': (5, 20, 45, 75), 

'loss': (4'ls', 5'lad', 'huber', 'quantile'); 

'max features': (0.4, 0.5, 0.8, 1.0); 

'max leaf nodes': (10, 50, 100) 

 

Random  

forest  
5 10 

'bootstrap': (True, False); 

'max depth': (5, 10, 50, 100); 

'max features': (0.3, 0.7, 5, 20); 

'min samples leaf': (5, 20, 45, 75); 

'min samples split': (5, 20, 45, 75); 

'No estimators': (75, 100, 125); 

'max leaf nodes': (10, 50, 100) 

 

Bagging 

regression with 

gradient 

boosting as 

base learner 

- - 
'No estimators': (10). 

Hyperparameter tuning not performed 

Bagging 

regression with 

bayesian ridge 

as base 

learner 

- - 
'No estimators': (10). 

Hyperparameter tuning not performed 

Bagging 

regression with 

random forest 

as base 

learner 

- - 

 

'No estimators': (10). Hyperparameter 

tuning not performed 

Adaboost 

regression with 

gradient 

boosting as 

base learner 

- - 

 

'No estimators': (10). 

Hyperparameter tuning not performed 
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Adaboost 

regression with 

random forest 

as base 

learner 

- - 

 

'No estimators': (10). 

Hyperparameter tuning not performed 

Support vector 

machine 

stacking 

10 20 

'gamma': (1e-6, 1e-5, 1e-4, 1e-3, 0.005); 

'6C': (1e-3, 0.05, 0.01, 5, 10, 50, 100, 

250);  

'kernel': ('linear','7rbf','sigmoid'); 

'shrinking': (True, False) 

 

Multilayer 

perceptron 

stacking 

10 20 

‘Initial learning rate’: [-4, 0] logarithmic 

spaced in 8 intervals 

‘'hidden layer sizes': ((10, 10, 10, 10), 

(10, 10, 10, 10, 10, 10), (100, 100, 100, 

100)); 

'activation': ('relu'),  

'solver':('adam'), 

'alpha': ( 10-5, 10-4, 10-3, 5*10-3, 10-2, 10-1, 

1); 

'learning rate':('adaptive'), 

'max iter':(1000); 

‘early stopping’: (True) 
1Number. 2Maximum. 3Minimum. 4Least squares regression. 5Least absolute deviation. 6Regularization parameter. 7Radius basis function. 

 

  



88 

 

4 Optimizing Well Control Strategies with IDLHC-MLR: 

A Machine Learning Approach to Address Geological 

Uncertainties and Reduce Simulations 

Authors: Santos, D. R., Fioravanti, A. R., Botechia, V. E., Schiozer, D. J.  

Presented at the Offshore Technology Conference Brasil held in Rio de Janeiro, Brazil, 

October, 2023. 

Abstract 

This paper presents an advanced version of the previous IDLHC-ML approach, 

designed to enhance life-cycle well control optimization by reducing simulations. Unlike its 

predecessor, this updated method, called IDLHC-MLR, uses representative models (RMs) to 

address the effect of geological uncertainties on production strategies. Despite presenting 

additional computational challenges, considering uncertainties in determining effective 

strategies is crucial, making the new IDLHC-MLR approach a valuable solution. 

 The IDLHC-MLR combines the iterative discrete Latin hypercube optimization 

algorithm (IDLHC) with machine learning (ML) to robustly optimize the well's bottom-hole 

pressure (BHP) throughout the field management period. The method is applied to the 

UNISIM-I-M benchmark of Namorado Field, located in the Campos Basin, Brazil. The 

IDLHC-MLR method trains the initial ML model with well BHP strategies robustly applied to 

all RMs in the first iteration of IDLHC. In subsequent iterations, the trained ML model is used 

to predict the expected monetary value of the RMs, and only a subset of new strategies with 

the highest expected outcome is selected for simulation. In addition, the ML algorithms are 

retrained with newly generated strategies over the iterations to improve the model's accuracy. 

 The IDLHC-MLR incorporates stacked ensemble learning, which leverages predictions 

from various base machine learning models to train a secondary algorithm. In this approach, 

the IDLHC-MLR employs multiple base learners such as Lasso, Gradient Boosting, and 

Random Forest to make predictions, which are then inputted into a multi-layer perceptron for 

training purposes. This integration of multiple base models results in a more robust and 

accurate prediction and provides a 45% reduction in the number of simulations required 

compared to the traditional IDLHC method while maintaining similar expected monetary 
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value. To conclude, utilizing inexpensive ML models effectively reduces computational time 

by substituting costly full-physics reservoir simulations. 

 The significant computational time required for full-physics simulations, particularly 

when considering multiple scenarios to account for uncertainties, can pose a challenge to 

meeting project deadlines. The IDLHC-MLR methodology, incorporating low-cost ML 

models, offers a practical solution to reduce computational time, increasing the likelihood of 

successful project implementation within the given timeline. 

 Introduction 

Defining a suitable production strategy in a petroleum field is a complex task due to the 

many uncertain factors involved (e.g., reservoir characteristics, market conditions, and 

technical constraints) and the numerous variables that must be considered. 

 Failing to properly account for significant uncertainties when making decisions can 

lead to biased simulation models. This can result in a production strategy that may seem 

optimal in the simulation models but is far from being the most effective solution when 

implemented in the actual field. Botechia et al. (2018), for example, conducted a study that 

identified petrophysical uncertainties as the cause of discrepancies observed in a case where 

reservoir simulation models were used. Although the simulation models showed an increase of 

29% in the expected monetary value (EMV), the actual net present value (NPV) decreased by 

2% in the reference case. Therefore, accurately quantifying and reducing uncertainties is 

critical to mitigate the risk of making costly errors and to optimize the economic outcome of 

oil projects (Schiozer et al., 2004; Santos et al., 2017a).  

 In general, many uncertainties (e.g., geological, fluid properties) are identified and 

mapped during reservoir characterization. These uncertainties may be combined using 

sampling techniques (Schiozer et al., 2017) to generate a feasible number of scenarios that can 

be used for numerical reservoir simulation. Data assimilation methods (Naevdal et al., 2005; 

Gu and Oliver, 2007; Maschio and Schiozer, 2016) are then applied to reduce uncertainties, 

resulting in a set of simulation models for optimizing production strategies. As new data, such 

as dynamic and seismic data, becomes available over time, the reservoir characterization, data 

assimilation, and production strategy optimization process can be revisited through a closed-

loop approach (Lorentzen et al., 2009; Schiozer et al., 2019; Hidalgo et al., 2017; Shirangi, 

2019).  
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 Two approaches, ensemble nominal optimization and robust optimization, can be used 

to develop optimal production strategies that account for uncertainties (Paiaman et al., 2021). 

Nominal ensemble optimization involves optimizing a deterministic objective function(s) for 

each individual model resulting from the data assimilation process, leading to one production 

strategy per model. Robust optimization (Hanea et al., 2019; Jahandideh and Jafarpour, 2020), 

on the other hand, involves optimizing a probabilistic objective function(s) over the set of data 

assimilated models, creating a single production strategy with the best average performance 

for the entire ensemble of models.  

 Optimizing the production strategy through ensemble nominal optimization or robust 

optimization approaches can be costly when multiple scenarios need to be considered to 

accurately represent the real field and when numerous variables need to be optimized. This 

computational burden can slow down the decision-making process, leading to delays in 

production optimization and reducing economic performance. To mitigate these issues, various 

methods have been studied to reduce the computational effort required while maintaining the 

accuracy of the results. These methods include simplifying the model by using low-fidelity-

models (Kou et al., 2022; Ramos et al., 2012), or proxy models (Bahrami and James, 2023; He 

et al., 2018; Chen et al., 2017) to represent high-fidelity models, dividing the reservoir model 

into sectors and using them as isolated models (Pires et al., 2020; Dzyuba et al., 2012), 

simulating only a partial lifetime of the field (Loomba et al., 2022), grouping and optimizing 

variables hierarchically (Gaspar et al., 2016b; Humphries et al., 2014), reducing dimensionality 

by parametrizing optimization variables (Pinto et al., 2019; Santos et al., 2021; Santos et al., 

2023; Sorek et al., 2017), representing the entire ensemble of models with a subgroup called 

representative models (Meira et al., 2017; Meira et al., 2020; Sarma et al., 2013), and applying 

machine learning to reduce the number of simulations (Jang et al., 2018; Santos et al., 2020). 

 For instance, Meira et al. (2017) proposed the RMFinder 2.0 tool, which employs a 

mathematical function to identify representative models (RMs) by considering both the 

probability distribution of input variables (e.g., reservoir and operational uncertainties) and the 

variability of important output variables (e.g., production and injection forecasts). The 

utilization of RMs enables the implementation of RM robust optimization (Silva et al., 2016; 

Loomba and Schiozer, 2022; Peters et al., 2010), as well as RM nominal optimization 

(Morosov and Schiozer, 2017; Perrone et al., 2015; Santos et al., 2021; Santos and Schiozer, 

2017; Silva et al., 2019). These approaches involve performing optimization in the RMs, rather 

than in the ensemble of models selected during the data assimilation process. To obtain a more 
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precise evaluation of the risk curve, the RM optimal strategies are generally assessed in the 

models’ ensemble before their implementation in the actual field.  

 Santos et al. (2020) addressed the issue of computational time by reducing the number 

of simulations in the iterative discrete Latin hypercube (IDLHC) optimization algorithm. They 

accomplished this by combining the algorithm with machine learning techniques, which 

enabled them to optimize the well bottom-hole pressure (BHP) over time with fewer 

simulations. They tested different machine learning algorithms and IDLHC parameters to 

determine the most efficient configuration. They were able to achieve significant 

computational savings without sacrificing performance. However, it is important to note that 

the optimization was performed nominally, which means that the method may not be suitable 

when uncertainties are considered. 

 In this context, our study introduces the IDLHC-MLR method, designed to enhance the 

IDLHC-ML algorithm by incorporating uncertainties through the use of RMs. To achieve this, 

we modified the IDLHC-ML to perform RM robust optimization and assessed whether the 

results were still effective. These modifications required adjusting the objective function and 

target variables used to train the models. It is essential to validate this method under 

uncertainties since ignoring uncertainties can result in solutions that may appear optimal but 

are considerably suboptimal when implemented in the actual field. 

 Once the IDLHC-MLR approach for optimizing the best strategy for RMs has been 

performed, we evaluate the gains obtained with this strategy in a large set of data assimilated 

models and for the reference case, which aims to represent the real field. This validation is 

crucial to ensure that the selected RMs are appropriate and that the provided production 

strategy is robust enough to yield positive results in the real case, where information is limited. 

It is important to note that when dealing with uncertainties, more models are considered, 

leading to an increase in the number of simulations required.  

 Methodology 

In the methodology section, we introduce the two optimization methods to be 

compared: the IDLHC-MLR and the IDLHC. Both methods are employed to optimize the 

coefficients of the logistic equation, which defines the BHP profile over time for each 

individual well. These methods are compared with a base strategy (S0) that serves as the 

benchmark for EMV. This allows us to evaluate whether the solutions obtained by the 
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optimization algorithms are satisfactory. The S0 strategy is a default control rule internally 

defined by the commercial simulator IMEX 2016. It determines the allocation of production 

rates among wells based on a priority ranking system (for further details, refer to Santos et al., 

2021). 

 To account for uncertainties, we perform a RM robust optimization, and apply the 

optimal robust strategies to a large set of scenarios adhering to the field's production history 

data and to the reference model, which represents the actual field (more details about the 

reference model can be consulted in the Study Case Section). Evaluating the proposed method 

in both the reference and production data assimilated models enhances the reliability of the 

IDLHC-MLR framework for real-world field applications. 

 The following subsections provide a comprehensive description of the logistic 

equation, the machine learning framework utilized for training, and the functioning of both the 

IDLHC and IDLHC-MLR methods. 

 Logistic equation parameterization 

The IDLHC-MLR and IDLHC methods are employed to optimize the coefficients 𝑎𝑤𝑒, 

 𝑏𝑤𝑒 , 𝑐𝑤𝑒 of the logistic equation, Equation 4.1, which defines the BHP of the wells over time 

(Santos et al., 2021). 

𝐵𝐻𝑃𝑤𝑒,𝑡 = 𝐵𝐻𝑃𝑀𝑖𝑛 +
(𝐵𝐻𝑃𝑀𝑎𝑥 − 𝐵𝐻𝑃𝑀𝑖𝑛)

1+𝑒
(𝑎𝑤𝑒 + 𝑏𝑤𝑒 ∗ (

𝑡
𝑡𝑓𝑖𝑛𝑎𝑙

) + 𝑐𝑤𝑒 ∗ (
𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)

2

)

 Equation 4.1 

where 𝐵𝐻𝑃𝑤𝑒,𝑡 refers to the BHP in well 𝑤𝑒 at time 𝑡. 𝐵𝐻𝑃𝑀𝑎𝑥 and 𝐵𝐻𝑃𝑀𝑖𝑛 represent the 

maximum and minimum constraints of BHP for the reservoir, respectively. Finally, 𝑡𝑓𝑖𝑛𝑎𝑙 

denotes the entire management period under consideration. 

 We have opted to employ this parameterization method because its demonstrated 

superiority over other parametric equations and established techniques, such as shutting down 

producers based on specific criteria. Additionally, the logistic equation is advantageous as it 

avoids subtle changes in BHP over time, making it a practical approach. 

 To optimize the BHP limits over time, we discretized the coefficients 𝑎𝑤𝑒,  𝑏𝑤𝑒 , 𝑐𝑤𝑒 

of the logistic equation into 15 linearly spaced values within the ranges specified in Table 4.1. 

The selection of these specific values is well explained in Santos et al. (2021). 
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Table 4.1–Range of values to optimize the coefficients of the logistic equation. 

Coefficients Range [Minimum, Maximum] 

𝒂𝒘𝒆 [-5, 5] 

𝒃𝒘𝒆 [-10, 10] 

𝒄𝒘𝒆 [-15, 15] 

 Machine learning training framework 

In Figure 4.1 we described the machine learning framework to train the algorithms 

used in this paper. 

1. The first step involves defining the input features and target variable to be used in the 

machine learning algorithm. 

2. Next, we normalize the input features and target variable to ensure they are on the same 

scale. Scaling helps to improve the performance and stability of machine learning 

algorithms by preventing features with larger values or different ranges from 

dominating the training process. In this study, we used the min-max normalization 

method. 

3. The third step is to select the machine learning algorithm to be trained using the input 

features and target variable. 

4. Afterwards, we specify and discretize the hyperparameters to be tested during the 

training of each machine learning algorithm. 

5. We then perform k-fold cross-validation to evaluate the algorithm's performance and 

ensure it can generalize well to new data. In k-fold cross-validation the dataset is split 

into k equal-sized subsets, and the model is trained on 𝑘 − 1 subsets and evaluated on 

the remaining subset in each iteration. This process is repeated 𝑘 times, with each subset 

used for validation exactly once. The results obtained from k-fold cross-validation 

enable us to estimate the model's performance on independent validation data and help 

us determine the optimal hyperparameters for the model. 

6. Once the machine learning algorithm has been trained using cross-validation, we 

evaluate its performance by calculating the average root mean squared error (RMSE) 

across all folds. 

7. If additional hyperparameters need to be tested, the process returns to step 5 to train 

and evaluate the algorithm with the new set of hyperparameters. If the performance is 
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satisfactory, and no additional hyperparameters need to be tested, we move on to testing 

other algorithms as needed. 

8. To enhance the model's performance, we adopt a stacking ensemble learning approach. 

This involves training multiple base-learners on the same dataset to predict the target 

variable. Their predictions are then used as input features to train a meta-learner, which 

makes the final prediction. In this work, we use the base-learners shown in Figure 4.2a 

and the multilayer perceptron (MLP) algorithm as meta-learner (Figure 4.2b). The 

base-learners use the injectors' and producers' BHP over time as input features, and the 

EMV as the target variable. Finally, the MLP is trained using the predicted EMV values 

obtained from each base-learner as input features, with the true EMV values serving as 

the target variable. 

 

Figure 4.1–Machine learning framework for training the algorithms in this work. 
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 The stacking ensemble learning approach, utilizing the specified base learners and 

meta-learner algorithms, was chosen due to its ability to deliver superior results, as 

demonstrated in Santos et al. (2020). We employed Scikit-learn, an open source data analysis 

library for Python, to implement machine learning algorithms. For a detailed description of the 

Scikit-learn tool and of the functioning of these algorithms, please refer to Pedregosa et al. 

(2011). 

 

Figure 4.2–Diagram of the stacking learning approach, depicting the utilized base learners, the chosen 

meta learner, and the pair of features and target variables at each stage of the stacking learning training 

process. 

 Iterative Discrete Latin Hypercube (IDLHC)  

In Figure 4.3, the regular IDLHC is depicted by the black arrows, which includes the 

following steps:  
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• Discretize each optimization variable into levels and define the initial probability mass 

function (PMF). Typically, in the initial iteration of the optimization process, the 

probability of occurrence for each level of an optimization variable is assumed to be 

equal (uniform distribution).  

• Generate 𝑁 samples (or strategies) using the Discrete Latin Hypercube (DLHC) sampling 

method, as described by Maschio and Schiozer (2016), based on the prior PMF of each 

variable. Each strategy is then combined with each RM. As a result, the number of models 

to be evaluated is the product of the number of RMs (𝑁𝑅𝑀) and 𝑁 strategies. 

• Simulate the 𝑁𝑅𝑀 × 𝑁 models and calculate the expected monetary value (EMV) for 

each strategy. The EMV is determined by taking a weighted average of the net present 

value (NPV) in each RM, with weights derived from the probability of each RM 

occurring. 

• Update the variables' PMF using the 𝐹 percent best strategies based on the EMV. The 

updated PMF is then used as the input for the next iteration (𝐼) of the IDLHC method. 

 This process is repeated until a stopping criterion is met. In this study, we used the 

number of iterations as the stopping criterion. 

 Robust Iterative Discrete Latin Hypercube combined with machine learning 

(IDLHC-MLR) 

The IDLHC-MLR method integrates the steps indicated by the green arrows in Figure 

4.3 (consult Appendix C for the revised figure) into the IDLHC. The initial iteration of this 

process mirrors the traditional IDLHC approach, but with the addition of utilizing a set of 

simulation runs from the first iteration to train the initial machine learning (ML) models. These 

steps happen in parallel with the PMF update and sample generation steps. From the second 

iteration onwards, the following iterative steps are performed: 

• Generate 𝑁 strategies using the DLHC method based on the prior PMF of each variable. 

• Predict the EMV for the 𝑁 strategies using the ML model trained in the previous iteration. 

• Rank the top 𝑚 strategies among 𝑁 strategies. 

• Simulate the 𝑁𝑅𝑀  × 𝑚 strategies and calculate their EMV. 
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• Train the base learners using BHP strategies-EMV pairs. The number of samples used in 

the training process is given by 𝑁 + 𝑚 × (𝐼 − 1). Each base learner delivers an EMV 

vector that serves as input to train the multi-layer perceptron, which is the meta-learning 

algorithm adopted in this work. 

• Update the variables' PMF using the 𝐹 percent best strategies based on the EMV. 

 These steps are repeated until the same number of iterations as in the traditional IDLHC 

framework is reached. At each iteration, the ML algorithms are retrained with the newly 

simulated strategies to further improve prediction. 

 

Figure 4.3–Flowchart of IDLHC and IDLHC-MLR methods of optimization. 

 Study Case 

This section provides a technical overview of the UNISIM-I-R (Avansi and Schiozer, 

2015) and the UNISIM-I-M benchmark case (Gaspar et al., 2016a), which were used to 
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evaluate the efficacy of our methodology. The UNISIM-I-R is a high-fidelity simulation model 

with roughly 3.5 million active cells organized in a grid of 326 × 234 × 157 blocks. It was 

constructed utilizing public petrophysical, facies, and structural data extracted from the 

Namorado Field situated in the Campos Basin, Brazil. This serves as a standard for assessing 

the feasibility of various methodologies before they are practically implemented in real 

reservoirs. The UNISIM-I-R, which emulates a real reservoir, is employed as the reference 

model for this study. 

 The UNISIM-I-M benchmark is based on information obtained from the UNISIM-I-R. 

The case presents a challenging scenario for reservoir simulation, as it involves a synthetic 

three-dimensional Black-oil reservoir with multiple sources of uncertainty. These uncertainties 

include PVT properties, net-to-gross ratio, porosity, horizontal and vertical permeability, oil-

water contact, water relative permeability, rock compressibility, structural models, vertical 

permeability multiplier, and 500 images with characteristics related to facies and systems 

availability.  

 The UNISIM-I-M is designed to optimize control and revitalization variables. It has a 

history period of 7 years, during which 14 producer and 11 injector wells were utilized, and a 

management period of nearly 23 years. The exploitation strategy for this case was established 

by Avansi and Schiozer (2015) during the development phase and must remain the same. 

 To account for uncertainties, we consider the 48 simulation models selected by Gaspar 

et al. (2016a) through a data assimilation process. From this set of 48 scenarios, 9 representative 

models were selected using the RMFinder 2.0 developed by Meira et al. (2017) to optimize the 

production strategy. To calculate the NPV, we utilize the parameters listed in Table 4.2 and 

Equation 4.2, retrieved and slightly modified from Gaspar et al. (2015). Since this study 

specifically focuses on the management period, the costs associated with investments in 

equipment facilities are not considered and therefore can be excluded from the calculations. 

𝑁𝑃𝑉 =  ∑
[(𝑅−𝑅𝑜𝑦−𝑆𝑇−𝑂𝐶)×(1−𝑇)]𝑗

(1+𝑖)
𝑡𝑗

𝑁𝑡
𝑗=1   Equation 4.2 

where 𝑅 represents the gross revenues obtained from selling oil, 𝑅𝑜𝑦 refers to the 

royalties expressed as a percentage of gross revenue, 𝑆𝑇 denotes the amount paid in social 

taxes also measured as a percentage of gross revenue, and 𝑂𝐶 is the operational production 

costs associated with oil and water production as well as water injection. Additionally, 𝑁𝑡 
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represents the total number of periods and 𝑗 the specific time period, 𝑖 is the discount rate, 

while 𝑡𝑗 the average time of period 𝑗 relative to the date of analysis. 

Table 4.2–Parameters to calculate the NPV. 

Parameter Description value 

Market Values 

Oil price (USD/m3) 314.5 

Discount rate (%) 9 

Royalties (%) 10 

Taxes 
Special taxes on gross revenue (%) 9.25 

Corporate taxes (%) 34 

Costs 

Oil production (USD/m3) 62.9 

Water production (USD/m3) 6.29 

Water injection (USD/m3) 6.29 

Dates 
Start of management period and time for update the cash flow 07/31/2020 

Maximum simulation period and field abandonment 05/31/2043 

 The EMV, shown in Equation 4.3, is calculated using the weighted average of NPV 

by the probabilities of occurrence of each RM shown in Table 4.3. 

𝐸𝑀𝑉 =  ∑ 𝑝𝑖 × 𝑁𝑃𝑉𝑖
𝑛
𝑖=1   Equation 4.3 

where 𝑝𝑖 is the probability of occurrence of scenario 𝑖. 

Table 4.3–Probabilities for representative models (RMs) selected using RMFinder 2.0 (adapted from 

Santos et al., 2021). 

Representative model Probability 

RM1 0.167 

RM2 0.104 

RM3 0.146 

RM4 0.125 

RM5 0.042 

RM6 0.063 

RM7 0.063 

RM8 0.167 

RM9 0.125 

 In this study, we adopted the configuration that yielded the highest economic return in 

Santos et al. (2020). Specifically, for both the IDLHC and IDLHC-MLR methods, the 

parameters 𝐹 and 𝑁 were set to 100 and 20%, respectively. Additionally, the extra parameter 

𝑚 from IDLHC-MLR was set to 50. 
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 Results  

The optimization process was conducted across the 9 RMs, and the best strategy derived 

from these optimizations was subsequently replicated in the 48 data assimilated models. Each 

run from Figure 4.4 represents the simulation of the 9 RMs with the same strategy. Comparing 

the evolution of the EMV throughout the runs, it becomes evident that the IDLHC-MLR 

approach exhibited a superior convergence rate compared to IDLHC. Furthermore, it 

effectively maximized the EMV, achieving a value close to the optimum obtained by IDLHC. 

Specifically, the IDLHC-MLR yielded an EMV of 3.14 billion USD after 4,950 simulations, 

whereas the IDLHC approach yielded a slightly higher EMV of 3.15 billion USD, but required 

9,000 simulations. Consequently, the IDLHC-MLR approach necessitated 45% fewer 

simulations while delivering a marginally lower EMV of only 0.3%. Furthermore, both the 

IDLHC and IDLHC-MLR strategies exhibited significant improvements in EMV compared to 

the base strategy (S0), with an increase of over 21% or 550 million USD. This observation 

underscores the effectiveness of the selected parameterization for controlling the BHP over 

time. 

 

Figure 4.4–Evolution of EMV per iteration and per run for the IDLHC and IDLHC-MLR methods, along 

with a comparison to the base strategy (S0). Each run represents the simulation of the 9 representative 

models with the same strategy.  

Table 4.4 depicts the accuracy of the IDLHC-MLR method from the second iteration 

onwards, which represents its capability to incorporate the 𝐹 strategy among the 𝑚 predicted 

strategies by the multi-layer perceptron algorithm. On average, the IDLHC-MLR approach 

demonstrated a good accuracy of approximately 88%. It is worth noting that although the 

accuracy dipped to around 80% during certain iterations, these deviations did not adversely 

impact the overall results. 
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Table 4.4–IDLHC-MLR accuracy over the iterations. 

Iteration Accuracy (%) 

2 95 

3 95 

4 80 

5 85 

6 85 

7 100 

8 85 

9 80 

10 85 

Average 87.8 

The findings presented in Figure 4.5 reveal that both the IDLHC and IDLHC-MLR 

strategies demonstrate notable improvements in NPV throughout all RMs when compared to 

the base strategy. Furthermore, it is noteworthy that the EMV obtained by both strategies 

remains stable across the 48 scenarios. This is also reflected in the distribution of Net Present 

Value (NPV), oil production (Np), water production (Wp), and water injection (Winj) as 

depicted in Figure 4.6. We observe a slight average increase of 0.8% in water production and 

0.6% in water injection, along with a 0.7% decrease in average oil production for the IDLHC-

MLR strategy compared to IDLHC. 

 

Figure 4.5–NPV for each RMs and EMV for both the RMs and the 48 data assimilated scenarios. The 

NPV and EMV are compared among the base strategy (S0), the best strategy of IDLHC, and the best 

strategy of IDLHC-MLR. 
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Figure 4.6–NPV, Np, Wp and Winj boxplots for the 48 data assimilated scenarios. The boxplots are 

presented for the base strategy (S0) and for the best strategies from IDLHC and IDLHC-MLR. 

 Figure 4.7 provides a visualization of the risk curves for economic and production data 

in both the 9 RMs and the 48 scenarios, comparing the S0 and IDLHC-MLR strategies. 

Remarkably, the 9 RMs continue to accurately represent the overall behavior observed in the 

48 scenarios even after implementing the optimized production strategy. This outcome serves 

as a positive indication that the RMs were effectively selected using the RMFinder 2.0 method, 

ensuring their representativeness and suitability for the analysis.  

 Additionally, the implementation of the IDLHC-MLR strategy yielded an average 

increase in oil production (17%) and water injection (approximately 2%), while simultaneously 

achieving a reduction in water production (11%) when compared to the base strategy. These 

outcomes collectively indicate a highly effective reservoir sweep, leading to improved oil 

recovery and decreased water production.  
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Figure 4.7–Risk curves for NPV, Np, Wp, and Winj in the 48 data assimilated scenarios and the RMs. 

The risk curves are presented for both the base strategy (S0) and the best strategy of IDLHC-MLR. 

 Afterwards, we executed the three strategies in the reference case, which emulates the 

actual field. The objective was to ascertain the suitability of the IDLHC-MLR strategy in such 

a situation. The IDLHC and IDLHC-MLR strategies demonstrated significant improvements 

in the NPV of UNISIM-I-R when compared to the S0 strategy, with an increase of 216 (8.4%) 

and 228 (8.9%) million USD, respectively. The IDLHC-MLR strategy slightly outperformed 

the IDLHC strategy, highlighting that the modeling error in accurately representing the field is 

greater than the marginal 0.3% EMV advantage achieved by IDLHC during the optimization 

of the 9 RMs. 

Interestingly, it is worth noting from Figure 4.8 that the uncertainties in the NPV for 

the reference model were well captured by the 48 filtered scenarios under the S0 strategy, as 

the NPV risk curve encompasses the NPV values for UNISIM-I-R. On the other hand, when 

the IDLHC and IDLHC-MLR strategies were applied, the 48 scenarios failed to adequately 

represent the NPV observed in the reference model. This indicates that the production strategy 

directly influences the behavior of the models that incorporate the field's observed data. To 

address the problem of insufficient representation in the assimilated scenarios, it would be 

necessary to revisit and refine these scenarios using a closed-loop approach. However, 

conducting such an analysis is outside the scope of the current study. 
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Figure 4.8–Comparison of NPV risk curves in 48 scenarios for the base strategy (S0) and the best 

strategies from IDLHC and IDLHC-MLR. The vertical dashed lines represent NPV values obtained by 

each strategy on the reference model (UNISIM-I-R). 

 Based on Figure 4.9, the main drivers behind the higher NPV achieved by the IDLHC-

MLR strategy compared to the base strategy for the UNISIM-I-R are the increase in oil 

production (11.4%) and the decrease in water production (-8.7%). The volume of injection 

remained relatively stable with a slight decrease of -0.7%.  

 

Figure 4.9–Comparison of Np, Wp and Winj between the base strategy (S0) and the best IDLHC-MLR 

strategy applied to the reference model (UNISIM-I-R). 

 Conclusions 

In this study, our primary objective was to modify the Iterative Discrete Latin 

Hypercube combined with Machine Learning (IDLHC-ML) by incorporating uncertainties 

through robust optimization (IDLHC-MLR) and validating its performance under 

uncertainties. We successfully accomplished this objective, as the IDLHC-MLR method 

significantly reduced the required number of simulations by 45% (from 9,000 to 4,950 

simulations) without compromising the expected monetary value for long-term well control 

optimization compared to the traditional IDLHC approach. 
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Furthermore, our findings demonstrate the robustness of the production strategy 

provided by the IDLHC-MLR method. It yielded positive outcomes in scenarios representing 

uncertainties, resulting in a considerable improvement of 21.5% (equivalent to 555 million 

USD) compared to the base strategy. Additionally, in the real field, the IDLHC-MLR method 

exhibited an improvement of 8.9% (228 million USD). 

 Lastly, the successful application of machine learning (ML) for well control 

optimization opens avenues for future research. Further investigations involving the utilization 

of the IDLHC-MLR method in different study cases would contribute to validating its 

generalizability and determining the specific scenarios where the IDLHC-MLR approach is 

most effective. Additionally, the machine learning approach has demonstrated its benefits and 

could be applied considering other variables, such as well type and locations. 
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Abstract 

Enhancing oil recovery in reservoirs with light oil and high gas content relies on 

optimizing the miscible water alternating gas (WAG) injection profile. However, this can be 

costly and time-consuming due to computationally demanding compositional simulation 

models and numerous other well control variables. This study introduces WAGeq, a novel 

approach that expedites the convergence of the optimization algorithm for miscible water 

alternating gas (WAG) injection in carbonate reservoirs. The WAGeq leverages production data 

to create flexible solutions that maximize the net present value (NPV) of the field, while 

providing practical implementation of individual WAG profiles for each injector. 

The WAGeq utilizes an injection priority index to rank the wells and determine which 

should inject water or gas at each time interval. The index is built using a parametric equation 

that considers factors such as producer and injector relationship, water cut (WCUT), gas-oil ratio 

(GOR), and wells cumulative gas production, to induce desirable effects on production and 

WAG profile. 

To evaluate WAGeq's effectiveness, two other approaches were compared: a benchmark 

solution named WAGbm, in which the injected fluid is optimized for each well over time, and 

a traditional baseline strategy with fixed six-month WAG cycles. The procedures were applied 

to a synthetic simulation case (SEC1_2022) with characteristics of a Brazilian pre-salt 

carbonate field with karstic formations and high CO2 content. The WAGeq outperformed the 

baseline procedure, improving the NPV by 6.7% or 511 USD million. Moreover, WAGeq 

required fewer simulations (less than 350) than WAGbm (up to 2,000), while delivering a 

https://doi.org/10.1007/s13202-023-01643-0


107 

 

slightly higher NPV. The terms of the equation were also found to be essential for producing a 

WAG profile with regular patterns on each injector, resulting in a more practical solution. 

In conclusion, WAGeq significantly reduces computational requirements while creating 

consistent patterns across injectors, which are crucial factors to consider when planning a 

practical WAG strategy. 

Keywords: simulation reduction, practical solution, flexible solution, water alternating gas, 

production data, parameterized equation, field management. 

 Introduction 

The Brazilian pre-salt is one of the world’s largest polygons of oil and gas discovered 

in recent decades (Godoi and dos Santos, 2021). The oil from many pre-salt fields has high 

levels of gas-oil ratio (GOR) and CO2 component (Pasqualette et al., 2017). This high amount 

of gas offers the opportunity to supply the gas market but also poses challenges related to gas 

handling, storage, and transportation (Ligero and Schiozer, 2014). Some of the pre-salt 

reservoirs also present gas contaminant contents that make their commercialization difficult. 

To avoid greenhouse gas emissions in the cases where the gas is not profitable, there is a special 

interest in reinjecting the gas produced. Wang et al. (2023) proposed a solution for CO2 storage 

safety by investigating the feasibility of water alternating gas (WAG) injection and brine 

extraction in a deep saline aquifer. Their study found that WAG injection and brine extraction 

can enhance CO2 injectivity and storage safety, with WAG injection reducing structural 

trapping contribution and brine extraction decreasing the maximum averaged reservoir 

pressure.  

The WAG injection method involves alternating the gas with water, which has a 

synergistic effect that arises from the properties of both fluids. The water’s primary role are 

pressure maintenance, macroscopic displacement, and improving gas sweep efficiency by 

controlling gas mobility and stabilizing the gas front, while gas decreases oil viscosity and 

residual oil saturation, thereby increasing the efficiency of microscopic displacement 

(Christensen et al., 2001; Kulkarni and Rao et al., 2005; Arogundade et al., 2013; 

Ramachandran et al., 2010; Afzali et al., 2018; Janssen et al., 2020). 

Several studies in the literature have reported the effectiveness of the WAG method in 

increasing oil recovery and the economic return of oil fields (Chen et al., 2010; Duchenne et 

al., 2014; Hu et al., 2020; Kong et al., 2021; Mousavi et al., 2011; Sampaio et al., 2020; 
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Schaefer et al., 2017; Teklu et al., 2016). Schaefer et al. (2017) and Hu et al. (2020) conducted 

a comparison between CO2-WAG and continuous CO2 injection using reservoir simulation. In 

both studies, the WAG method resulted in increased oil production in comparison to continuous 

CO2 injection, with approximately 30% and 14% higher oil production reported, respectively. 

Duchenne et al. (2014) performed a laboratory study to investigate the microscopy efficiency 

of CO2-WAG injection on horizontal carbonate cores with light oil under reservoir conditions, 

and they showed that CO2-WAG injections provide a faster and better oil recovery than pure 

CO2 injection. 

To improve production management strategies, it is crucial to optimize the WAG 

profile, which involves the alternating injection of water and gas into wells. A range of methods 

have been identified in the literature to optimize the WAG profile, with the most prevalent 

being the optimization of WAG cycles (Bahagio, 2013; Esmaiel et al., 2005; Nait et al., 2018; 

Pal et al., 2018; Pereira et al., 2022), i.e., determining the optimal duration of water injection 

and gas injection before switching back to gas from water, as well as the WAG ratio, which is 

the ratio between the volume of water and gas injected (Chen et al., 2010; Chen and Reynolds, 

2016; Kazakov and Bravichev, 2015; Panjalizadeh et al., 2015). 

Chen and Reynolds (2016) implicitly optimized the WAG ratio for each cycle by 

optimizing both the target for gas and water injection rates and the target for the producers’ 

bottom-hole pressure (BHP) over time. They considered different numbers of WAG cycles (4, 

8, 16, and 32 cycles) and aimed to maximize the net present value (NPV) of the field. The 

authors obtained better results by increasing the number of cycles, and they suggested that 

fixing a WAG ratio for the entire field life cycle is inappropriate. Pereira et al. (2022) tested 

five approaches to optimize the WAG cycle’s duration to maximize the NPV of a synthetic 

reservoir simulation model with pre-salt characteristics. The two approaches that delivered 

better results were: 1) the simultaneous optimization of WAG cycles (same cycle size for all 

injectors) and the gas-oil ratio (GOR) limit to shut producers; 2) using the best solution from 

the previous approach, the authors optimized the cycle individually for each injector, followed 

by a re-optimization of the GOR limit to shut-in producer wells. An important conclusion from 

their work was that the optimum cycle size could be changed meaningfully according to the 

operation of other control variables (such as the shut-in of producers). 

Supporting the findings of Pereira et al. (2022), Chen et al. (2010) stated that 

inappropriate selection of the control of injectors and producers may result in unstable pressure 
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distribution, early gas breakthrough and, consequently, a lower oil recovery factor. Bahagio 

(2013) showed the importance of controlling the WAG parameters (e.g., WAG cycle duration) 

in a synthetic reservoir of 7 × 7 × 3 grid blocks with a 5-spot pattern containing four injectors 

and one producer in the middle. The author observed a significant increase in the NPV by 

optimizing both the duration of WAG cycles and the BHP injection, compared to optimizing 

only the BHP and maintaining a fixed WAG half-cycle duration of six months for both water 

and gas. The number of water cycles alternated with gas was kept fixed at 30, while allowing 

the duration of gas and water cycles to vary during each fluid exchange. The author used an 

equal WAG profile for all injectors, which is appropriate for the homogeneous case studied, 

but may lead to suboptimal solutions when accounting for reservoir heterogeneities. 

Kazakov and Bravichev (2015) argue that describing WAG injection solely by time-

dependent periods of gas and water injection is not informative, as injectivity may not remain 

constant due to varying saturation and reservoir pressure during field production. Similarly, 

when accounting for geological uncertainties, a time-dependent WAG injection alone may be 

less practical as the injection and production capacities may vary due to reservoir uncertainties. 

To address these limitations, a WAG injection control that takes into account production 

monitoring variables like water cut, GOR, and fluid rates could provide a more flexible and 

adaptable solution for the real reservoir's changing behavior over time. 

Compositional simulation is generally considered a more reliable approach for miscible 

enhanced oil recovery (e.g., miscible WAG injection) in reservoirs with light oil and high gas 

content, such as those found in Brazilian pre-salts. However, the reliability comes at the cost 

of augmented computational effort as the number of pseudo components required to accurately 

describe the field's fluids increases (Schlijper, 1986). The computational cost is amplified by 

the optimization of several well control variables, including WAG control, as well as the 

presence of uncertainties and high heterogeneity of the fields, which demand a large number 

of blocks for accurate modeling. 

Therefore, efforts to reduce computational costs while maintaining high oil production 

and economic return are crucial for the optimization of miscible enhanced oil recovery. This 

can be achieved using various techniques, such as representing a larger group of models that 

honor observed data through a small set of scenarios that still accurately capturing field 

uncertainties (Meira et al., 2017; Meira et al., 2020; Sarma et al., 2013; Shirangi and Durlofsky, 

2015), numerically tuning high-complexity reservoir models (Mello et al., 2022), and using 
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coarse models to represent high fidelity ones. For example, Kou et al. (2022) proposed 

upscaling methods for CO2 migration in 3D heterogeneous geological systems that reduce 

computational costs while preserving fine-scale flow mechanisms. The authors tested two 

percolation-based methods demonstrating the robustness of the upscaling methods with less 

than 10% computational errors between fine- and coarse-scale models. 

A supplementary strategy to alleviate the computational load involves minimizing the 

number of simulations required for optimization by constraining the search space. By doing 

so, the optimization algorithm can converge more rapidly towards satisfactory solutions. 

Expanding on these considerations, the present study introduces a novel WAG 

parameterization rule that utilizes reservoir production data to expedite the optimization 

process, while simultaneously maximizing the economic return over the life cycle of the WAG 

strategy. The proposed rule offers a high degree of flexibility by accommodating individual 

WAG profiles for each injector, regardless of whether they follow a cyclic pattern or not, while 

still being easy to implement in practical cases. 

As previously mentioned, optimizing the WAG injection profile also requires 

consideration of the producer wells' operation. Thus, we simultaneously optimize the GOR 

limit (GORlimit) to shut each producer and the WAG injection under the total gas reinjection 

constraint to maximize the field’s life cycle NPV for two different procedures. The first 

consists of a WAG parameterization that defines the set of possible solution space for the fluid 

to be injected by each well at each time step. The solution achieved by this procedure is only 

time-dependent, and serves as a benchmark in terms of number of simulations and NPV. Our 

second and primary procedure involves utilizing a parametric equation to determine the WAG 

injection profile. This equation considers the gas injection volume during each cycle and the 

most influential producers for each injector. Each term in the equation has been carefully 

designed to produce a specific effect on the WAG profile, which will be explained in detail in 

the methodology section of this paper. 

The optimization process involves tuning the coefficients of the parametric equation, 

which significantly reduces the number of optimization variables compared to the first 

procedure. The results obtained from both procedures are then compared to the baseline 

strategy, where WAG cycles are set to six months and only the GOR limit for shut-in producers 

is optimized. This comparison allows the evaluation of the NPV gain achieved by optimizing 

the WAG profile. 
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The paper's organization is as follows: first, a brief explanation of the optimization 

algorithm used in this study is provided. Next, the methodology section presents 

comprehensive details on the adopted procedures. The case study, including production 

constraints and underlying assumptions, is then presented succinctly. We then compare the 

results obtained from the simulations and the net present value (NPV) achieved for both the 

procedures and the baseline approach. The following section investigates and discusses 

whether the terms included in the proposed equation are generating the expected effect on the 

WAG profile. The paper concludes by summarizing the advantages of the proposed method. It 

also highlights the limitations of the study and potential directions for future research. 

 IDLHC optimization algorithm 

The optimization algorithm applied in this work is based on the discrete Latin 

hypercube sampling method (DLHC, see Maschio and Schiozer, 2016), a technique that 

recreates the entire space distribution by randomly sampling the discrete candidate values of 

each optimization variable. The probability mass function (PMF) of each optimization variable 

determines the frequency with which each discrete value appears in the sample. For instance, 

if variable 𝑌 has a sample size of 10, and its PMF is given by 𝑃𝑌(𝑥) = {0.6, 0.2, 0.2}, where 

the discrete values of 𝑌 are represented by 𝑥 = {0, 2, 4}, then the number of samples with the 

values 0, 2, and 4 would be 3, 1, and 1, respectively (as depicted in Figure 5.1). 

 

Figure 5.1–Discrete Latin hypercube sampling method example for the variable 𝒀. The samples of the 

variable 𝒀 generated with the value 𝒙 depend on the probability 𝑷𝒀(𝒙). 

The Iterative discrete Latin hypercube (IDLHC, see von Hohendorff et al., 2016), 

depicted in Figure 5.2, is a widely-used optimization technique that performs the following 

steps: (1) defining the optimization variables and discretizing them into values, (2) generating 

𝑁 samples using the discrete Latin hypercube method based on a prior probability mass 
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function (PMF) defined by the user for each variable, (3) evaluating the samples using an 

objective function, and (4) selecting the 𝐹 percent best samples to update the PMF of each 

variable independently. The updated PMF is then used to generate the samples in the next 

iteration. The loop continues until a specific condition is reached, such as a maximum number 

of iterations or a threshold of minimum difference between the maximum and minimum values 

obtained in the iteration. It is important to note that in the first iteration, the probability mass 

function of all variables is generally set as equiprobable, and the value of N must be greater 

than the number of candidate values for each variable. 

 

Figure 5.2–IDLHC algorithm workflow, which iteratively generates samples using discrete Latin 

hypercube (DLHC) method, evaluates them using an objective function, and updates the probability mass 

function (PMF) of each variable based on the 𝑭 percent best samples. The loop continues until specific 

criteria are reached. 

We selected the IDLHC algorithm for optimization because it has been demonstrated 

to generate high-quality solutions in numerous published works (Botechia et al., 2021; Loomba 

et al., 2022; Pereira et al., 2022; Santos et al., 2020; von Hohendorff et al., 2016; von 

Hohendorff and Schiozer, 2018). Some of these works have compared the IDLHC algorithm 

with other well-established optimization techniques, and the IDLHC has been shown to 
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generate better results. For instance, von Hohendorff et al. (2016) reported that the IDLHC 

algorithm outperformed a well-established optimization technique in a production optimization 

problem, demonstrating a faster convergence rate and resulting in a slightly better objective 

function. Another study by von Hohendorff and Schiozer (2018) showed that the IDLHC 

algorithm has several advantages, including its simplicity and rapid convergence near the 

global optimum, compared to a genetic algorithm method, when applied to optimize the well 

placement production strategy.  

 Methodology 

The method presented herein aims to maximize the net present value (NPV) of a 

reservoir through an optimization problem, as formulated in Equation 5.1. This involves the 

optimization of parameters related to the baseline procedure (Wellgor_limit), the benchmark 

strategy (WAGbm), and the main procedure which uses a parametric equation to define the 

WAG injection profile (WAGeq). The WAGbm and WAGeq parameters are jointly optimized 

with the well limit of gas-oil ratio (𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡), which is used to shut-in each producer 

individually. Furthermore, all wells from WAGbm and WAGeq are capable of injecting 

alternating water and gas. 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑁𝑃𝑉(𝑥) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑢𝑏 ,  Equation 5.1 

 𝐶(𝑥) ≤ 0, 

 𝐸𝑞(𝑥) = 0. 

where 𝑥 is the decision variable vector subject to lower (𝑥𝑙𝑏) and upper bounds (𝑥𝑢𝑏). The 

objective function is 𝑁𝑃𝑉(𝑥), and the inequality and equality constraints are represented by 

𝐶(𝑥) and 𝐸𝑞(𝑥), respectively. In the reservoir simulation problem, there are multiple 

constraints to consider, including well bottom-hole pressures, well and platform rates 

(inequality constraint), full gas re-injection, and reservoir pressure maintenance (equality 

constraints). 

The methodology's results are first discussed by comparing the best NPV, the 

optimization algorithm convergence rate, WAG profile, and field production for the 

Wellgor_limit, WAGbm and WAGeq. Subsequently, an analysis of the parametric equation's terms 

is conducted to determine if each of them are generating the anticipated effect on the WAG 
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profile and whether they should be retained or eliminated. The aim of this examination is to 

offer significant insights into the effectiveness of the WAGeq and the validity of the modeled 

behavior. 

 Baseline procedure (Wellgor_limit) 

This procedure utilizes the measured gas-oil ratio of each producer 𝑝 (𝐺𝑂𝑅𝑝) as a 

monitoring variable. The control rule, 𝑓𝑝(𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡
𝑝 ), operates by shutting down producer 𝑝 

once it reaches the 𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡, as shown by Equation 5.2. As a result, the number of 

optimization variables for this procedure is equal to the number of producer wells, and the 

value of 𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡 can be different for each producer. Additionally, the WAG cycles are fixed 

in this procedure, providing a baseline NPV that enables the evaluation of the economic 

increment capacity of optimizing the WAG profile.  

𝑓𝑝(𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡
𝑝 ) = {

𝑠ℎ𝑢𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟,  𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡
𝑝  ≥ 𝐺𝑂𝑅𝑝

𝑘𝑒𝑒𝑝 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑜𝑝𝑒𝑛,  𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡
𝑝  < 𝐺𝑂𝑅𝑝

  Equation 5.2 

This procedure was conducted by Botechia et al. (2021), and the candidate values for 

the GORlimit and the NPV obtained from the optimized strategy are presented in the application 

section. 

 WAG benchmark procedure (WAGbm) 

Here, we present a parameterization that aims to find the best combination of water 

injectors and gas injectors over time, while adhering to the constraint that all produced gas 

must be reinjected. Additionally, each injector well can switch between water and gas injection, 

with a minimum interval of 𝑡𝑚𝑖𝑛 between switching. The solution space in this approach 

consists of the combination 𝐶𝑚
𝑛  of all injectors (𝑛) where at least a pre-defined number of gas 

injectors (𝑚) are operating to ensure complete reinjection (Equation 5.3).  

𝐶𝑚
𝑛 = (

𝑛!

𝑚!×(𝑛−𝑚)!
)

𝑛𝑡

 Equation 5.3 

where 𝑛𝑡 represents the number of minimal time intervals. This procedure is solely dependent 

on time and is performed to establish a benchmark value for the number of simulations and 

NPV that can be expected by optimizing the WAG injection profile. Our primary approach, 
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WAGeq, is expected to deliver an NPV performance that is at least equivalent to this 

benchmark, while requiring fewer simulations. 

 WAG parametric equation rule (WAGeq) 

This procedure aims to optimize the WAG profile over time in a more efficient way 

while maintaining or even increasing the NPV compared to the previous procedure (WAGbm). 

It involves the development of a parametric equation rule using the injection priority index 

(Equation 5.4), which determines the order of gas and water injection at each time interval. 

The index value is used to rank the injectors, with those above a predefined threshold rank 

injecting gas and the others injecting water. The index of each injector (𝐼𝑖) is determined by 

several variables, including the field's lifetime (𝑡), the volume of gas injected (𝑉𝑔
𝑖) since the 

well last water injection, the WCUT of the 𝑛𝑝
𝑖  producers influenced by the water injector 𝑖, and 

GOR of the 𝑚𝑝
𝑖  producers influenced by the gas injector 𝑖. The influence is determined by 

analyzing the streamlines from the injectors to the producers, without utilizing any data beyond 

that which was available during the WAGeq procedure. The fluid of each injector can be altered 

within the 𝑡𝑚𝑖𝑛 interval, similar to the WAGbm. Alternative methods, such as trace or 

Euclidean distance, could be used instead of streamlines to determine the influence of each 

injector. 

𝐼𝑖 =
1

𝑛𝑝
𝑖 × ∑ (𝛼𝑝

𝑖 × 𝑊𝐶𝑈𝑇
𝑝 )

𝑛𝑝
𝑖

𝑝=1 −
1

𝑚𝑝
𝑖 × ∑ (

𝛽𝑝
𝑖 ×𝐺𝑂𝑅𝑝

𝐺𝑂𝑅𝑚𝑎𝑥
)

𝑚𝑝
𝑖

𝑝=1 + 𝛾𝑖 × (
𝑡−𝑡𝑖𝑛𝑖𝑡

𝑖

𝑡𝑒𝑛𝑑−𝑡𝑖𝑛𝑖𝑡
𝑖 ) −  𝛿𝑖 ×  (

𝑉𝑔
𝑖

𝑉𝑛𝑜𝑟𝑚
𝑖 ) 

 Equation 5.4 

The optimization variables are the coefficients of the producer 𝑝 that are influenced by 

the injector 𝑖 (𝛼𝑝
𝑖 , 𝛽𝑝

𝑖 ), the coefficients 𝛾𝑖 and 𝛿𝑖, and the gas volume normalizer for the injector 

𝑖 (𝑉𝑛𝑜𝑟𝑚
𝑖 ). 

To ensure consistent influence on the priority index calculation, all terms in the equation 

are normalized. The time term is normalized by the difference between the whole simulation 

period (𝑡𝑒𝑛𝑑) and the moment that the injector 𝑖 starts to operate (𝑡𝑖𝑛𝑖𝑡
𝑖 ). The maximum gas-oil 

ratio (𝐺𝑂𝑅𝑚𝑎𝑥) is used as the normalizer for 𝐺𝑂𝑅𝑝. The value for 𝐺𝑂𝑅𝑚𝑎𝑥 should be set equal 

to the maximum candidate value of 𝐺𝑂𝑅𝑙𝑖𝑚𝑖𝑡 because it represents the highest value a producer 

can attain before being shut-in. Finally, the WCUT is already a normalized term between 0 and 

1. 
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Each term in the equation used for calculating the injection priority index has a specific 

role in shaping the WAG profile, as explained below: 

• The 
−𝛿𝑖 × 𝑉𝑔

𝑖

𝑉𝑛𝑜𝑟𝑚
𝑖  represents the fraction of gas injected by the well in relation to the gas volume 

normalizer. The gas volume normalizer (𝑉𝑛𝑜𝑟𝑚
𝑖 ) is chosen such that the ratio of gas 

volume injected by the well 
𝑉𝑔

𝑖

𝑉𝑛𝑜𝑟𝑚
𝑖  falls within the range of approximately 0.1 to 1. The 

negative sign (-) incorporated in the term decreases the value of 𝐼𝑖 for wells that have 

injected gas since their last water injection (Figure 5.3a). Conversely, water-injecting 

wells are exempt from this term, resulting in a higher value of 𝐼𝑖 and thereby promoting 

their gas injection during the next fluid exchange period. Therefore, this term is 

conducive to promoting water alternating with gas injection in the well.  

• The expression 𝛾𝑖 × (
𝑡 − 𝑡𝑖𝑛𝑖𝑡

𝑖

𝑡𝑒𝑛𝑑 − 𝑡𝑖𝑛𝑖𝑡
𝑖 ) exhibits a constant value of (

𝑡 − 𝑡𝑖𝑛𝑖𝑡
𝑖

𝑡𝑒𝑛𝑑  − 𝑡𝑖𝑛𝑖𝑡
𝑖 ) among all 

wells with the same 𝑡𝑖𝑛𝑖𝑡
𝑖 . Therefore, the contribution of this term to 𝐼𝑖 increases with 

positive values of 𝛾𝑖, which correspond to a greater tendency towards gas injection 

throughout the well's lifetime, on the other hand, negative values of 𝛾𝑖 lead to a 

preference for water injection over the entire life cycle (Figure 5.3b). The objective of 

this term is to establish a consistent injection pattern for each well, so that if a well 

initiates a water-gas cycle, this term fosters its continuation until the end of the field's 

lifetime or the opening of new wells. 

• The 𝛼𝑝
𝑖 × 𝑊𝐶𝑈𝑇

𝑝
 is always positive and contributes to an increase in the value of 𝐼𝑖. As 

such, the higher the WCUT of the producers influenced by injector 𝑖 the higher the value 

of 𝐼𝑖 for that injector (Figure 5.3c). As a result the injector tends to transition from water 

to gas injection during the next 𝑡𝑚𝑖𝑛 interval. This term promotes the uniform growth of 

WCUT among the field's producers over time, potentially improving reservoir sweep 

efficiency. In contrast, the 
−𝛽𝑝 

𝑖 × 𝐺𝑂𝑅𝑝

𝐺𝑂𝑅𝑚𝑎𝑥
 works in a similar manner, but the negative sign 

results in a decrease of 𝐼𝑖 value (Figure 5.3d), and the injectors tend to shift from gas to 

water injection leading to homogeneous GOR growth among producers. 
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Figure 5.3–Impact of each term in the WAGeq procedure. (a) Well 1 (w1) gas injection lowers 𝑰𝒊 and 

promotes water injection in the next cycle. Well 2 (w2) with zero gas injection does not affect 𝑰𝒊. (b) 𝑰𝒊 

linearly varies over time and its slope depends on gamma. (c) A higher WCUT increases 𝑰𝒊 and gas 

injection tendency. (d) A higher GOR reduces 𝑰𝒊, favoring water injection. 

 Application 

We begin by describing the benchmark and the premises adopted for the study. 

Subsequently, we present important dates that are necessary to compute the NPV and also show 

the production operational constraints. Furthermore, we provide information about the 

distribution and range of values for the optimization variables, as well as the IDLHC 

configuration parameters adopted in the procedures. 

 Study case 

Our methodology was applied to the SEC1_2022 benchmark, which is a reservoir 

simulation model that has been designed to replicate the geological and fluid characteristics of 

Brazilian pre-salt fields (Chaves, 2018; Correia et al., 2020). This model represents a carbonate 

reservoir with light oil containing high levels of CO2, and comprises 63 × 120 × 309 grid cells 

and 77,071 active blocks. Each block corresponds to an average volume of 200 × 200 × 5 

cubic meters. Due to the complex characteristics of the fluid, the GEM compositional simulator 

(version 2020.10) developed by the Computer Modelling Group (CMG) was used to simulate 

the SEC1_2022 model. 
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Figure 5.4 displays the opening of 17 wells in two phases. During the first phase, six 

producers and seven injectors were opened between May and December/2021. In the second 

phase, which began in February 2027, the remaining two producers (P17 and P18) and two 

injectors (I18 and I19) were put into operation.  

 

Figure 5.4–Reservoir wells placement. 

The case includes historical data from October/2018 to February/2022, and the 

simulation continues until December/2048. The reference date for updating the NPV is 

February/2022. The costs associated with the wells and platform installed in first phase are not 

considered in the NPV calculation because they were installed before the reference date. 

However, costs associated with the wells drilled and perforated in the second period are 

considered. The operational constraints for both wells and the platform are provided in Table 

5.1 and Table 5.2. 

Table 5.1–Wells’ operational constraint. 

Type of well Constraint Value 

Producers 
Minimum bottom-hole pressure (kPa) 50,000 

Maximum liquid production (m3/day) 8,000 

Injectors 

Maximum bottom-hole pressure (kPa) 75,000 

Maximum water injection (m3/day) 10,000 

Maximum gas injection (m3/day) 4,000,000 

Table 5.2–Platform’s operational constraints. 

Constraint Value (m3/day) 

Maximum oil rate 28,617 

Maximum liquid rate 28,617 

Maximum water production rate 23,848 

Maximum water injection rate 35,771 

Maximum gas production rate 12,000,000 

 



119 

 

 Assumptions and optimization parameters 

The assumptions and optimization parameters for the baseline strategy and the two 

procedures are outlined below: 

• The average reservoir pressure of 61,000 kPa is maintained through water injection rate 

control. 

• All produced gas must be re-injected into the reservoir. 

• Exactly four wells must inject gas at the same time throughout the entire field 

management. 

• All injectors can inject both water and gas. 

• The minimum period (𝑡𝑚𝑖𝑛) to switch from one fluid to another is six months. 

The baseline strategy includes a fixed six-month period to switch the injected fluid from 

each injector. One well (I16) is designated to inject only gas during the entire period to ensure 

full gas re-injection. In WAGbm and WAGeq, all injectors can switch between water and gas, 

meaning that I16 does not have to inject only gas like in the baseline strategy. The Wellgor_limit 

strategy was optimized by Botechia et al. (2021), who used candidate values for GORlimit 

ranging from 600 to 2400 sm3/sm3 at 200 sm3/sm3 intervals. The optimized strategy delivered 

an NPV of 7.68 USD billion requiring 150 simulations. 

For both the WAGbm and WAGeq procedures, the optimization is conducted 

simultaneously with WAG parameters and GORlimit, utilizing the same candidate values for 

GORlimit as Botechia et al. (2021). In the case of WAGbm, the parameters cover all possible 

combinations of open injectors, with four gas injectors operating throughout the entire 

management period. When considering GORlimit variables, the search space includes 

approximately 5.71 ×  10113 potential solutions for this procedure. 

In the WAGeq procedure, the coefficients and 𝑉𝑛𝑜𝑟𝑚
𝑖  are linearly spaced with 11 values 

between the ranges displayed in Table 5.3. Furthermore, 𝐺𝑂𝑅𝑚𝑎𝑥 is defined as the maximum 

candidate value for GORlimit (2400 sm3/sm3). 
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Table 5.3–Range of the optimization variables for WAGeq procedure. 

Variable Range [min, max] 

αi
p [0, 1] 

βi
p [0, 1] 

γi [-1, 1] 

δi [0, 1] 

Vi
norm (m3) [5 × 108, 5 × 109] 

The minimum 𝑉𝑛𝑜𝑟𝑚
𝑖  value was set slightly below the maximum volume of gas that can 

be injected by one well in the 𝑡𝑚𝑖𝑛 interval (approximately 7.2 × 108 m3). The maximum value 

was defined as ten times greater than the minimum value to ensure that the gas volume term 

can assume magnitudes similar to the other terms of the equation (between 0 and 1). 

We have set the number of samples generated for each iteration based on the IDLHC 

requirement that 𝑁 be greater than or equal to the number of candidate values for each variable. 

For WAGbm, given that the combination of 𝐶4
9 is 126, we set the number of samples to 150. 

For the WAGeq simulation, we set 𝑁 to 50. Both simulations had an 𝐹 value of 30% and were 

run for 15 iterations. 

 Results 

First, we identified the producers affected by each injector and the respective fluids 

(water or gas) in the non-optimized study case, which enabled us to determine the WAGeq 

terms related to 𝐺𝑂𝑅𝑝 and 𝑊𝐶𝑈𝑇
𝑝

 monitoring variables (Table 5.4). By influence, we mean any 

fluid streamline from the injector arriving to the producer at any time during the management 

period. It is important to note that we assumed that the same producers affected by gas injection 

from I16 would also be affected by the water injected from this well. This is due to the fact that 

I16 solely injects gas in the non-optimized scenario, and therefore, it would not have any water 

streamlines originating from it to impact any of the producers. 

Table 5.4–Producer wells influenced by gas and water streamlines from each injector. 

Injectors Producers (gas) Producers (water) 

I11 P14, P18 P18 

I12 P11, P17 P13, P15, P17 

I13 P13, P15, P17, P18 P15 

I14 P16 P16 

I15 P14, P18 P14 

I16 P11, P13 --- 

I17 P12 P12 

I18 P13, P18 P13, P14, P18 

I19 P14 P14 
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The WAGbm and WAGeq approaches significantly enhanced the NPV, resulting in 

approximately 8.11 and 8.18 USD billion, respectively. In comparison to the NPV of 

Wellgor_limit procedure (7.68 USD billion), the WAGeq yielded a similar value with 50 

simulations completed, while the WAGbm approach required 150 simulations to achieve a 

slightly higher NPV relative to the baseline strategy. The WAGbm and WAGeq improved the 

NPV by 436 USD million (5.7%) and 511 USD million (6.7%) compared to Wellgor_limit, 

respectively. This finding highlights the importance of optimizing the WAG profile alongside 

well producer control variables. Although the maximum NPV achieved by WAGeq (after 720 

simulations) was only slightly higher than that of WAGbm (0.9% or 75 USD million), WAGeq 

required significantly fewer simulations and iterations to converge. At iteration 7 and with 

fewer than 350 simulations, the NPV was comparable, with the maximum NPV of WAGbm 

achieved after 14 iterations and with 2051 simulations, as depicted in Figure 5.5. 

 

Figure 5.5–Comparison of NPV between the proposed WAG procedures (WAGbm and WAGeq) and the 

baseline strategy (Wellgor_limit). The figure shows a) the maximum NPV achieved by each approach 

throughout the iterations of IDLHC and b) the NPV over the simulations. 

The optimal WAG solutions did not exhibit a cyclical pattern, as shown in Figure 5.6. 

This result underscores the potential limitations of defining the search space based solely on 

regular cycles, as it may result in suboptimal outcomes. Notably, most of the wells in WAGeq 

predominantly injected one fluid all over the management period (for considerations on WAG 

injection well preparation in cases where it operates as a single-fluid injection, please consult 

Appendix D). In particular, the I16 and I15 wells had the highest rank of injector priority index 

(𝐼𝑖) for the majority of the period, while I11, I12, and I13 exhibited the lower values. The 𝐼𝑖 

was observed to alternate between I12, I13, I14, and I17 before the second wave and between 

I17 and I19 after it. 
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Figure 5.6–Comparison of WAG profile between the baseline strategy (Wellgor_limit) and the best strategy 

obtained using WAGbm and WAGeq procedures. 

The WAGeq and WAGbm approaches significantly increased oil and water production 

compared to the baseline strategy. Precisely, WAGeq increased oil production by 11.4% and 

water production by 172%, while WAGbm resulted in a 9.4% increase in oil production and a 

160% increase in water production. Moreover, both approaches injected considerably more 

water than the Wellgor_limit strategy, with WAGeq and WAGbm injecting 43% and 38% additional 

water, respectively. This maintained average reservoir pressure and rise water and oil 

production (Figure 5.7) indicating the successful enhancement of the reservoir's sweep 

efficiency. 
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Figure 5.7–Volume and rates of production and injection for the baseline strategy (Wellgor_limit) and for 

the best strategy of WAGbm and WAGeq procedures. 

The production of gas for all three strategies was limited by platform capacity and the 

gas full re-injection constraint was also observed, as shown in Figure 5.8. This demonstrates 

that the optimal strategies prioritize maximizing gas injection, even if it results in higher gas 

production costs. 

 

Figure 5.8–Cumulative gas production and injection for the baseline strategy (Wellgor_limit) and for the 

best strategy of WAGbm and WAGeq procedures. 
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 Investigation of the terms of the equation for WAGeq procedure 

We conducted further analysis to examine the impact of each term in the parametric 

equation on the WAG profile and NPV. This was done to determine the necessity of all terms 

in the equation. To accomplish this, we optimized the parametric equation with all terms except 

one to observe if the resulting WAG profile lost the specific behavior associated with that term. 

The optimization parameters and assumptions used were the same as those employed in the 

WAGeq procedure. 

First, we removed 
−𝛿𝑖 × 𝑉𝑔

𝑖

𝑉𝑛𝑜𝑟𝑚
𝑖  from the equation, which promotes water and gas exchange 

between injectors as described in the methodology. Figure 5.9b shows that when this term is 

removed, the wells indeed tend to inject the same fluid over time. Wells that alternated between 

water and gas injection in WAGeq (such as I19, I17, and I14) injected almost exclusively one 

fluid when the gas volume term was removed. The I11, I13, I15, I16, and I18 wells also injected 

almost solely one fluid over the field management in both WAG solutions. 

The WAG profile solution obtained after removing the term 𝛾𝑖 × (
𝑡 − 𝑡𝑖𝑛𝑖𝑡

𝑖

𝑡𝑒𝑛𝑑 − 𝑡𝑖𝑛𝑖𝑡
𝑖 ) appears 

less regular for injectors like I12, I14, and I17, which do not primarily inject a single type of 

fluid for most of the time (Figure 5.9c). This indicates that the temporal term is necessary to 

maintain a regular injection pattern from each injector throughout the field life cycle or until a 

significant event occurs, such as the opening of new wells in the second wave. The temporal 

term generates more stable strategies that are easier to implement in practical scenarios. 
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Figure 5.9–Comparison between WAG profile for the best strategy of a) WAGeq and the WAGeq without 

one of the following terms: b) gas volume, c) temporal term, d) GOR, and e) WCUT. 

We found that removing the term 
−𝛽𝑝

𝑖  × 𝐺𝑂𝑅𝑝

𝐺𝑂𝑅𝑚𝑎𝑥
 from the equation leads to more dispersed 

GOR curves over time compared to the original WAGeq strategy, as shown in Figure 5.10. 

This indicates that the GOR term does indeed induce the desired behavior of making GOR 

more even among the producers, which could improve sweep efficiency. 
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Figure 5.10–Gas oil ratio (GOR) evolution over time for producers P11 to P18 analyzed in two scenarios: 

a) WAGeq and of b) WAGeq without GOR term. 

After removing the WCUT term from the equation, we did not observe significant 

changes in the injection profiles of the wells (Figure 5.9e). This indicates that the WCUT term 

had a minor effect on the WAGeq strategy, and the top four injectors' rank, which determines 

the gas injection wells, remained largely unchanged. The optimal WAGeq strategy may have 

prioritized gas production control over water production control, as the former was deemed 

more pressing. According to Figure 5.11a and Figure 5.11b, most wells exhibited WCUT 

values below 0.6 for both the WAGeq original strategy and the strategy without the WCUT term, 

indicating that water production was not a significant concern in this study case. Nonetheless, 

the inclusion of the WCUT term may prove beneficial in other cases where water production is 

a more critical issue.  

 

Figure 5.11–Water cut evolution over time for producers P11 to P18 analyzed in two scenarios: a) using 

the WAGeq method, and b) using the WAGeq method without the WCUT term. 
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The results indicate that removing one term of the equation had a minimal impact on 

both the optimization convergence of the algorithm and the NPV of the best solution, as seen 

in Figure 5.12. The maximum decrease in NPV was 1.2% (95 million dollars) for the WAGeq 

solution without the gas volume term. Despite the slightly higher NPV of the original WAGeq, 

it is advisable to retain all the equation terms as it offers a more practical solution from an 

engineering perspective. It also widens the search space without affecting the convergence rate 

of the algorithm, which can be important for other study cases. 

 

Figure 5.12–Comparison of maximum NPV until each iteration from the best strategy of WAGeq and each 

of the WAGeq best strategies with one term excluded. 

 Conclusions 

Our proposed method, WAGeq, aims to optimize the miscible water alternating gas 

(WAG) process by using a tailored parametric equation based on reservoir production data. 

This method offers significant advantages over other methods, and the major conclusions 

drawn from this study are: 

• The WAGeq method successfully achieved its main goal of accelerating the optimization 

process compared to the benchmark WAGbm procedure, which determines the optimal 

type of fluid injection (gas or water) for each well over time. The WAGeq reduced the 
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simulations by almost sixfold, while also delivered a slightly higher net present value 

(NPV) compared to WAGbm. 

• The WAGeq substantially increased the NPV by 511 USD million (6.7%) compared with 

the baseline strategy (Wellgor_limit), which has fixed WAG cycles of six months. This 

result highlights the significance of optimizing the WAG profile over time for improved 

economic return. 

• The WAGeq enables well-behaved WAG profiles for each injector, facilitating practical 

implementation. 

• The non-cyclical pattern observed in the optimal WAG solution for most injectors 

underscores the importance of WAGeq being able to include flexible solutions in the 

optimization search space.  

• The WAGeq equation terms, designed to favor alternating water and gas injection, regular 

injection patterns, and uniform gas-oil ratio production, were successful in generating 

these desired behaviors in the optimal WAG solution profile. Although the inclusion of 

a term aiming for homogeneous water cut (WCUT) growth did not demonstrate any 

significant impact on the optimal WAG solution in this study, it may be relevant in cases 

where water production is a concern. 

Overall, this paper presents a significant contribution in the development of a practical 

procedure that addresses crucial factors in real-world scenarios. Specifically, it minimizes 

computational effort, ensures well-behaved WAG profiles across all injectors and delivers a 

high NPV, which is helped by the procedure's ability to produce flexible solutions. Future 

research opportunities include testing its validity for studies cases considering uncertainties 

and where water production is a more significant issue, as well as combining this approach 

with machine learning techniques to further reduce computational effort. 
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 List of symbols 

𝐶𝑚
𝑛  Combination of 𝑛 elements taken 𝑚 at a time 

𝐹 Threshold cut percentage to select the best samples 

fp(GORlimit
p

) Control rule function to shut the producer p 

GORlimit
p

 Gas-oil ratio limit value to shut the producer 𝑝 

GORmax Gas-oil ratio maximum value normalizer 

GORp Gas-oil ratio of producer 𝑝 

𝑖 Index representing the injector 

𝐼𝑖 Priority index of injector 𝑖 

𝑁 Sample size generated in each Iterative discrete Latin hypercube iteration 

𝑁𝑃𝑉(𝑥) 
Net present value objective function depending on the decision variable 

vector 𝑥 

𝐶(𝑥) Inequality constraint of the maximization problem 

𝐸𝑞(𝑥) Equality constraint of the maximization problem 

𝑚 Number of gas injectors 

𝑚𝑝
𝑖  Number of producers influenced by the gas injector 𝑖 
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𝑛 Number of injectors 

𝑛𝑝
𝑖  Number of producers influenced by the water injector 𝑖 

𝑛𝑡 Number of minimal time intervals 

𝑝 Index representing the producer 

𝑡 Time passed from initial management date  

𝑡𝑒𝑛𝑑 Total simulation period 

𝑡𝑖𝑛𝑖𝑡
𝑖  Initial time the injector 𝑖 starts to operate 

𝑡𝑚𝑖𝑛 Minimal time interval  

𝑉𝑔
𝑖 Volume of gas injected by injector 𝑖 since it has injected water 

𝑉𝑛𝑜𝑟𝑚
𝑖  Gas volume normalizer for injector 𝑖 

Wellgor_limit Baseline strategy 

𝑊𝐶𝑈𝑇
𝑝

 Water cut of producer 𝑝 

𝑥 Generic decision variables 

𝑥𝑙𝑏 Lower bound of the generic decision variable 𝑥 

𝑥𝑚𝑖𝑛 Minimum value for a specific feature 

𝑥𝑢𝑝 Upper bound of the generic decision variable 𝑥 

 Greek letters 

𝛼𝑝
𝑖  Coefficient of the producer p that are influenced by the water injector i 

𝛽𝑝
𝑖

 Coefficient of the producer p that are influenced by the gas injector i 

𝛾𝑖 Coefficient associate with time term of the parametric equation 

𝛿𝑖  
Coefficient associate with the volume of gas produced term of the 

parametric equation 

 Abbreviations 

DLHC Discrete Latin hypercube sampling 

GOR  Gas-oil ratio 

GORlimit Gas-oil ratio limit 

IDLHC Iterative discrete Latin hypercube 

NPV  Net present value 

PMF Probability mass function 

USD United states dollar 



131 

 

WAG Water alternating gas 

WAGbm Water alternating gas benchmark procedure 

WAGeq Water alternating gas parametric equation procedure 

WCUT Water cut 
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6 Conclusions 

This work addressed the challenges encountered in the literature concerning the 

optimization methods for life-cycle control (G2L) that hinder their real-world applicability. It 

effectively tackled two key issues: high computational efforts and methods that produce 

excessively complex or non-applicable strategies from an engineering standpoint.  

To achieve our objectives, we employed innovative approaches to parameterize the 

G2L variables for reducing the search space. This reduction led to the algorithm requiring fewer 

simulations to converge to good solutions, while effectively mitigating the risk of being trapped 

in local minimum solutions. Moreover, we ensured that the resulting solutions remained 

practical and applicable in real-world scenarios. The parameterizations were designed to 

explore a wide range of solutions, ultimately contributing to the attainment of favorable 

economic outcomes.  

To enhance efficiency, we integrated machine learning (ML) techniques into the 

optimization algorithm for some parameterizations. This integration enabled us to replace 

computationally expensive physics-based simulations with more efficient machine learning-

driven approaches. This hybrid approach not only reduced computational efforts but also 

enhanced the optimization process outcome compared to traditional approaches and with well 

short-term control strategy (G2S) broadly applied in industry. 

The first study case for G2L involved a Black-oil model under uncertainties, where 

water injection was considered as the recovery method. We began by investigating four 

parameterizations for G2L and compared them with a G2S strategy that prioritizes production 

in wells with higher oil-water ratio and aims to replicate industry practice. The first 

parameterization aimed to determine both the producers' and injectors' apportionment of liquid 

rates at the beginning of field management, as well as to define the optimal shut-in time for the 

wells. In contrast, the other three parameterizations focused on optimizing the coefficients 

within first and second-order polynomial equations, as well as the logistic equation. The 

purpose of these parametric equations was to govern the bottom-hole pressure (BHP) over time. 

We summarize the key contributions of this part below: 

• All the proposed parameterizations not only effectively facilitate convergence to good 

solutions in a high-dimensional problem (compared to existing literature studies) but also 
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demonstrated a significant increase in net present value (NPV) when compared to the 

G2S strategy representing industry applications. 

• By employing equations for G2L control, a considerable reduction in the number of 

variables was achieved, decreasing from 2300 to fewer than 100, as compared to the 

commonly studied stepwise method in the literature, which involves defining the well's 

BHP at each time step. 

• The logistic parametric equation (PLOG) demonstrated superior economic performance 

compared to all other parameterizations in a nominal experiment of this studied case. 

• The PLOG parameterization exhibited a significant enhancement in economic returns 

when implemented under uncertainties and in the reference case, exceeding the 

performance of the G2S strategy by 21% and 10%, respectively. 

• The stepwise approach in literature results may result in strategies with frequently abrupt 

BHP changes between time steps, which may poses risks to equipment and formation 

integrity. Conversely, the intrinsic nature of the logistic equation effectively addressed 

this issue by prioritizing smoother BHP curves across all cases (nominal, probabilistic, 

and reference case). 

• The successful outcomes obtained through G2L optimization, which demonstrated 

favorable results in representing the real reservoir model, suggest that companies can 

benefit from not solely relying on operator experience but also strategically planning the 

G2L approach for enhanced well control management. 

• Furthermore, the implementation of the optimal PLOG strategy led to certain injectors 

remaining inactive during management. This underscores the importance of G2L strategy 

planning even during field development phase, as it can help avoid unnecessary costs 

associated with drilling and perforating of these wells. 

• We demonstrated the advantages of adopting equation-based parameterization, which not 

only significantly reduces the number of variables to optimize but also allows us to obtain 

solutions that closely align with specific operational requirements by accurately defining 

the right parameters. 

Having established the optimal parameterization for G2L, we integrated the iterative 

discrete Latin Hypercube optimization algorithm (IDLHC) with machine learning techniques 

(IDLHC-ML) to streamline the PLOG optimization process for nominal and probabilistic cases. 
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The approach involved simulating a subset of the best solutions predicted by the machine 

learning model in each IDLHC iteration. The key findings from applying machine learning to 

expedite the optimization process are as follows: 

• The nominal case was used to validate the machine learning algorithms, their training 

features, and IDLHC optimization parameters. 

• The coefficients of the logistic equation and the BHP over time, derived from the 

equation, were evaluated as features. Incorporating BHP as features yielded enhanced 

accuracy in correctly classifying optimal strategies for simulation in each IDLHC 

iteration, surpassing the utilization of coefficients alone. This improvement held true 

regardless of the IDLHC configuration or the specific machine learning algorithm 

employed. 

• A total of twelve machine learning regression techniques were tested. Among them, the 

stacked learning algorithms, which leverage predictions from multiple ML algorithms as 

input to a meta-learning model, demonstrated superior performance. Specifically, the 

multi-layer perceptron meta-learner (MLP-S) achieved the best NPV outcome, while the 

Support Vector Machine meta-learner (SVM-S) provided a similar NPV with fewer 

simulations. The choice between the two models depends on the project's time constraints 

and the desired level of precision. 

• Both MLP-S and SVM-S versions achieved significant simulation reductions of 45% and 

27%, respectively, compared to the standard IDLHC algorithm, without compromising 

NPV. 

• We enhanced the IDLHC-ML algorithm by integrating uncertainties through 

representative models (RMs) for robust optimization, creating the IDLHC-MLR method. 

The IDLHC-MLR achieved a remarkable 45% reduction in required simulations (from 

9,000 to 4,950 simulations), while preserving the expected monetary value for logistic 

equation optimization, compared to the traditional IDLHC approach. 

• Our findings confirm the robustness of the IDLHC-MLR method, showing a 

improvement in the Expected Monetary Value (EMV) for both data assimilation models 

and the reference case, compared to the traditional IDLHC approach. 
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• The machine learning techniques offer a compelling alternative to the original IDLHC 

method, especially when time constraints are present in defining G2L strategies or to 

make a prior assessment of the G2L control rule for the case studied. 

Given the importance of Water-Alternating-Gas (WAG) injection, particularly in fields 

with light oil and high CO2 content requiring full reinjection, we developed a technique for 

controlling WAG injection with reduced computational effort. The technique was applied in a 

second study case using a reservoir simulation model designed to replicate the geological and 

fluid characteristics of Brazilian pre-salt fields. Our approach involved formulating a WAG-

based equation to calculate an injection priority index for each well. This index dictates the 

priority of each well for injecting water or gas at each time interval. The WAG equation 

approach (WAGeq) resulted in the major following findings: 

• We presented the benchmark method (WAGbm) for comparison in terms of the number 

of simulations and NPV. The WAGbm method involves determining the optimal type of 

fluid injection (gas or water) for each well over time. 

• The WAGeq method remarkably reduced the number of required simulations by nearly 

sixfold, and yielded a slightly higher NPV compared to WAGbm. 

• The equation is built upon four terms, each parametrically designed to induce anticipated 

behaviors in the WAG profile from an engineering perspective. The expected effects of 

inducing alternating water and gas injection, promoting regular injection patterns, and 

achieving a uniform gas-oil ratio production among the wells were successfully achieved. 

While the incorporation of a term aiming for homogeneous water-cut (WCUT) growth in 

the producers did not exhibit any significant impact on the optimal WAG profile, it may 

hold relevance in scenarios where water production is a concern. 

• The WAGeq significantly improved the NPV compared to a traditional method that 

utilizes fixed WAG cycles of six months. While fixed cycle patterns for all wells are 

commonly applied in literature, adopting more flexible profiles can potentially lead to 

better economic returns. 

• The optimal strategy derived from WAGeq is found to be straightforward to implement 

in practical cases. 
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• Most injectors exhibited a non-cyclical behavior in both the optimal solutions of WAGeq 

and WAGbm, underscoring the significance of WAGeq’s flexibility in exploring non-

cyclical and individual patterns for each well during the optimization process. 

Overall, this work provided valuable procedures for optimizing well life cycle control 

variables that allow a reduction in computational effort while enabling the exploration of a 

wide range of solutions. The inherent ability of these procedures to generate flexible solutions 

enhanced the potential for achieving high economic returns. Furthermore, the approaches have 

proven to be particularly advantageous in producing practical and well-behaved strategies. 
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7 Suggestions for Future Studies 

This research has addressed crucial questions by developing and presenting 

computationally efficient techniques for optimizing well life-cycle control (G2L). These 

techniques guarantee the generation of practical solutions while also yielding a favorable 

economic return. However, there is still untapped potential to further expand in the following 

areas: 

• To validate and strengthen the parameterization of the logistic equation for wells bottom-

hole pressure proposed in Chapter 2, it would be beneficial to test it in other study cases. 

Additionally, since the assimilated models did not fully capture the uncertainties from 

the reference model (UNISIM-I-R), an opportunity arises to implement well control in 

closed-loop cycles. 

• The method that combines the iterative discrete Latin-hypercube optimization algorithm 

with machine learning has exhibited favorable performance for the nominal and 

probabilistic approaches. Nevertheless, it is crucial to extend and explore its effectiveness 

in other studied scenarios, particularly those with higher computational demands. These 

explorations would contribute significantly to validating the method's generalizability 

and identifying specific scenarios where it excels. Moreover, given the successful 

application of the machine learning approach, it would be advantageous to adapt and 

employ it for analyzing other types of variables, such as for the water alternating gas 

injection discussed in Chapter 5. 

• An alternative approach involves optimizing the variables in the management phase, 

leveraging and adapting the machine learning and parameterization techniques 

developed in this work. In this case, the variables extend beyond G2L to include 

revitalization variables (G3) such as wells conversion, infill drilling, and recompletion. 

• Another avenue for future research involves the application of machine learning to 

reduce simulation time. This can be accomplished by partially running the simulations 

and employing a machine learning for time series forecasting to identify strategies that 

yield the best economic return. By doing so, we can harness the benefits of the method 

proposed in this work, which effectively reduces the number of simulations, along with 

methods that cut down simulation time. 
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• In Chapter 5, we implemented the WAG parameterization using an equation to determine 

the priority of each well for gas or water injection in a nominal case. To ensure the 

method's reliability, it is imperative to test its validity in scenarios under uncertainties. 

Additionally, it is essential to investigate cases where water production becomes a more 

significant concern, as the term in the priority equation specifically intended for water 

control did not demonstrate any effect. 
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Appendix A: Explanation and corrections for the paper 

titled “Investigation of Well Control Parameterization 

with Reduced Number of Variables Under Reservoir 

Uncertainties” 

Appendix A.1: Criteria for choosing the logistic parametric equation 

The logistic equation was chosen for our study based on three key factors: 

1. Its intrinsic ability to confine the solution within the BHP limits of the problem. 

2. Its capability to produce smooth curves, which is desirable in practical cases. 

3. Its ability to fit with the BHP curves of the base case (Figure A. 1). 

In Figure A. 1 and Figure A. 2, we illustrate the fits for the logistic equation and 

second-order polynomial equation only for a subset of injection wells (INJ007, INJ010, 

INJ022, INJ023) and production wells (NA3D, PROD010, PROD023A, PROD025A, RJS19) 

from the base case. Nevertheless, a similar fit is observed for the remaining wells in the case. 

From the figures, it is clear that the logistic equation provides a better fit to the BHP 

curves than the second-order polynomial, as evidenced by lower mean absolute error (MAE) 

and higher R-squared values for almost all wells. The NA3D well is the only exception, but 

the fit is still close compared to the second-order equation. The linear equation fit is not 

depicted as the second-order equation already encompasses its potential solutions. 
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Figure A. 1–Logistic equation fit applied to the BHP curves of the wells in the UNISIM-I-M base case. 
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Figure A. 2–Second-order polynomial equation fit applied to the BHP curves of the wells in the UNISIM-

I-M base case. 
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Appendix A.2: Definitions of parametric equation orders to be tested 

 In Section 2 of our study, we explored first and second-order polynomial equations, 

alongside the logistic equation with the exponential term raised to a second-order polynomial. 

We refrained from testing higher-order polynomial equations for two primary reasons: 1) our 

aim was to reduce the number of optimization variables, mitigating the need for an extensive 

amount of simulations, and 2) the main contribution of our research centered on evaluating the 

logistic equation — that was not yet explored in the literature concerning the optimization of 

well control variables. As we conducted tests where the logistic equation's exponential term 

was of the second order, we also chose parametric polynomial equations up to the second order 

to ensure a comparable number of optimization variables. 

 It is important to mention that we would test higher polynomial orders if the second-

order yields a greater Net Present Value (NPV) compared to the first-order. However, the 

second-order equation resulted in a slightly lower average NPV than its first-order counterpart. 

While this result may appear counterintuitive, it can be explained by a reduction in the solution 

search space enabling the optimization algorithm to find better results and avoid local maxima 

(Awotunde, 2014). This result highlights the optimization algorithm's challenge in converging 

to optimal solutions in the well control optimization problem, with higher polynomials 

potentially worsening convergence towards suboptimal solutions. 

Appendix A.3: Boundaries for polynomial equations coefficients 

In this segment of this Appendix, we provide clarity on how we defined the limits for 

the coefficients (Table 2.5) for both first (Equation 2.4) and second-order (Equation 2.5) 

polynomial equations. We set the limits for the 𝑎𝑤𝑒 coefficient in injectors to match the pre-

established operating pressure range for the study case (190 and 350kgf/cm2). 

We define the upper limit of 𝑎𝑤𝑒 for producers at 300 kgf/cm2 because some producers 

shut down at this value in the base case (Figure A. 3). Therefore, our goal was to narrow the 

search space, avoiding large value increments within the specified limits that may make it 

difficult to evaluate the intermediate values. Although we opted for this approach, we analyzed 

whether the majority of well coefficients concentrated at the upper bound after the optimization 

process. We would reassess the values in case this trend was observed. However, this did not 

occur, as evidenced in the Figure A. 4a and Figure A. 5a.  
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Figure A. 3–Example of producer wells that shut in with BHP below 300 kgf/cm2 in the base case. 

We set the limits of -40 and 40 kgf/cm2 for the 𝑏𝑤𝑒 coefficient in both linear and 

quadratic equation to reduce significant variations over time in a specific well. The choice of 

limits for the 𝑐𝑤𝑒 in the second-order equation follows the same rationale as in the logistic 

equation. The aim is to ensure comparability between the terms within the equation. To achieve 

this, we match the area under the BHP curve over time for both terms associated with 𝑏𝑤𝑒 and 

𝑐𝑤𝑒 coefficients. Therefore, cwe is calculated as shown in Equation A. 1. 

 𝑐𝑤𝑒_𝑙𝑖𝑚𝑖𝑡 =  
∫ (𝑏𝑤𝑒_𝑙𝑖𝑚𝑖𝑡 × 𝑡𝑛𝑜𝑟𝑚)𝑑𝑡𝑛𝑜𝑟𝑚  

1
0

∫ 𝑡𝑛𝑜𝑟𝑚
2 𝑑𝑡𝑛𝑜𝑟𝑚

1
0

 Equation A.1 

where 𝑡𝑛𝑜𝑟𝑚 is the time normalized (𝑡𝑛𝑜𝑟𝑚 = 𝑡/𝑡𝑓𝑖𝑛𝑎𝑙). Similar to the 𝑎𝑤𝑒 coefficient 

for producers, the limits for 𝑏𝑤𝑒 and 𝑐𝑤𝑒 would be reconsidered if their values reached lower 

or upper bounds across most of wells. However, this was not observed, as shown in Figure A. 

4b and Figure A. 5b for 𝑏𝑤𝑒, and in Figure A. 5c for 𝑐𝑤𝑒. 
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Figure A. 4–Coefficient values for the optimal strategy of the linear equation in the first execution out of 

the five performed. In (a), optimal awe coefficients for producers are highlighted, while b) shows the 

optimal bwe coefficients for both producer and injector wells. 
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Figure A. 5–Coefficient values for the optimal strategy of the second-order polynomial equation for the 

first execution out of the five performed. In (a), optimal awe coefficients for producers are highlighted, 

while the optimal bwe and cwe coefficients for both producer and injector wells are shown in (b) and (c), 

respectively. 

Appendix A.4: Adjustment in Figure 2.9 to enhance visibility 

In Figure A. 6, we present a zoomed-in image of Figure 2.9 to clearly highlight the 

difference between strategy S5 and the other specialized strategies. The intention is to 

demonstrate that strategy S5 is relatively robust since it generates similar NPV results across 
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each RM compared to strategies developed specifically for each of them (e.g., S1 employed in 

RM1, S2 employed in RM2, etc.). Exceptions occurred in the cases of RM2 and RM4, where 

S5 yielded NPV values 2.9% and 3.6% lower than those of S2 and S4, respectively. 

 

Figure A. 6–Zoomed-in image from Figure 2.9 that allows for a comparison between the most 

robust specialized strategy (S5) and the specialized strategies applied in the RM for which they were 

optimized. 

Appendix A.5: Correction in cost savings statement for well drilling and 

perforation in UNISIM-I-R 

We previously pointed out that four injectors from Figure 2.11 did not open in the 

UNISIM-I-R when we employed the best nominal strategy (S5). Initially, we stated that is 

unnecessary to consider drilling these wells based on this observation. However, the decision 

regarding these wells should be based on the results from the 48 filtered scenarios rather than 

on UNISIM-I-R. This is because UNISIM-I-R represents the actual field, and we are 

considering that we are planning the strategy at the beginning of the management phase. 

Therefore, we lack information about whether these wells will be shut in the real case since the 

strategy has not been applied to it yet. 

When employing S5 to the filtered scenarios, it was indeed verified that none of these 

wells became operational across all 48 models. This outcome can be attributed to the 

consistently low maximum BHP values imposed by the logistic equation over time, as 

demonstrated in Figure A. 7. These values significantly fall below the maximum BHP 

constraints set for the case study, which are at 350 kgf/cm2. As a result, this emphasizes the 

importance of optimizing the G2L even during the development phase to mitigate unnecessary 

costs associated with drilling and well completion. It is crucial to note that, operating under the 

assumption that we are in the management phase, these costs are irreversible. 
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Figure A. 7–Maximum BHP imposed by the logistic equation on injector wells (INJ003, INJ017, 

INJ021, INJ023). These wells must operate within this BHP limit. 
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Appendix B: Extra details for the paper titled “A Machine 

Learning Approach to Reduce the Number of Simulations 

for Long-term Well Control Optimization” 

Appendix B.1: Time for training the multi-layer perceptron stacking 

technique and example of an expensive study case 

In this segment of the Appendix, we offer supplementary information concerning the 

training duration needed for each of the models adopted in multi-layer perceptron stacking 

(MLP-S) technique, which yielded the best results among all. We also provide clarification on 

what constitutes a computationally expensive simulation in production strategy selection 

problem 

 The MLP-S is trained using the output of all algorithms from Table B. 1, excluding 

itself. Table B. 1 shows the average training time across the five executions for IDLHC100–

ML50MLP-S. In the final row are both the training time per iteration and the total cumulative 

time for all iterations. 

Table B. 1–Average training time across five executions for IDLHC100–ML50MLP-S. 

Algorithms 
Time per iteration (minutes) 

Total 
1 2 3 4 5 6 7 8 9 

ABC-GBR 1.40 2.19 2.79 3.31 3.99 4.60 5.14 5.75 5.84 35.00 

ABC-RF 0.41 0.67 0.90 1.19 1.51 1.84 2.03 2.20 2.40 13.14 

BGR-BRR 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.06 0.32 

BGR-GBR 0.14 0.15 0.14 0.16 0.34 0.36 0.21 0.30 0.22 2.02 

BGR-RF 0.23 0.34 0.49 0.67 0.81 0.99 1.25 1.29 1.77 7.85 

BRR 0.20 0.24 0.31 0.34 1.75 0.91 0.50 0.60 0.65 5.51 

ENET 1.05 1.15 1.20 1.57 2.12 1.81 1.58 2.06 2.02 14.56 

GBR 0.38 0.58 0.70 1.51 2.13 2.45 2.55 3.62 3.31 17.23 

LSR 0.81 0.92 0.87 1.02 1.18 1.27 1.12 1.38 1.35 9.93 

RF 0.36 0.57 1.04 1.29 1.90 1.43 2.89 2.40 2.21 14.10 

MLP-S 0.08 0.10 0.12 0.12 0.19 0.24 0.22 0.19 0.22 1.47 

Total 5.09 6.93 8.59 11.19 15.94 15.95 17.54 19.84 20.04 121.12 

 

Table B. 2 illustrates both the total time and the time required for each iteration in the 

five executions of IDLHC. Additionally, the average time across the five runs is presented. As 

clarified in the article, we implemented the IDLHC optimization method with 16 simulations 

running concurrently, each utilizing six processors. 
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Table B. 2–Total time, time per iteration, and average time for five executions of IDLHC. 

IDLHC-100  

iteration 

Time of each executions (minutes) 
Average 

1 2 3 4 5 

1 189 258 243 192 207 218 

2 209 266 267 222 182 229 

3 206 273 255 168 182 217 

4 190 300 199 164 209 212 

5 190 330 164 168 297 230 

6 215 263 182 167 188 203 

7 195 267 177 179 181 200 

8 191 232 185 179 187 195 

9 200 220 197 212 187 203 

10 217 249 196 218 200 216 

Total time 2,001 2,659 2,064 1,869 2,019 2,123 

As observed, the total training time for the entire MLP-S process is less than 6% when 

compared to the total simulation time. The simulation time for the UNSIM-I-M model is 

relatively fast, averaging around 2 minutes. Consequently, the impact on time savings for 

UNISIM-I-M may not be particularly significant. However, the implementation of Machine 

Learning would bring substantial benefits in complex reservoirs, reminiscent of pre-salt fields 

with WAG-CO2 injection, where a considerable computational effort is required. 

As illustrated by Schiozer (2022), an example of complex reservoirs requires a runtime 

of 3 hours. If we consider the same 1000 simulations conducted in Section 3 and utilize 9 

representative models to address uncertainties, concurrently running 16 simulations, the well 

control life cycle (G2L) optimization alone would demand approximately 190 days (slightly 

over 6 months). In this context, the implementation of machine learning would notably 

streamline the process, saving approximately 3 months in simulation time. Moreover, the 

training of ML models, which is independent of the study case, would remain at 2 hours. 

Furthermore, Schiozer et al. (2019) recommend incorporating both nominal and robust 

optimization processes into their 12-step closed-loop field development and management 

(CLFDM) methodology when sufficient time is available. The nominally and robustly 

optimized strategies play a crucial role in the step of identifying potential changes in the 

production strategy to manage uncertainty and improve the chance of success, based on 

analyses of the value of information and the value of flexibility. 

In cases where both robust and nominal optimization are required, the simulation time 

practically doubles, further emphasizing the significance of our IDLHC-ML methodology. 
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Appendix B.2: Criteria for choosing the machine learning algorithms in 

future study cases 

This appendix aims to clarify whether retesting all machine learning algorithms from 

Section 3 is necessary when applying the IDLHC-ML methodology to other case studies. Our 

recommendation is to directly apply IDLHC-ML using the best-found algorithm, which is the 

multi-layer perceptron stacking (MLP-S). Machine learning algorithms are primarily 

influenced by features and targets, showing less dependence on the specific case study. 

Consequently, implementing the IDLHC-ML methodology with MLP-S in the well control 

optimization problem using the logistic equation should yield similar results in other scenarios, 

as long as the same features (bottom-hole pressure over time) and target (economic return) are 

employed. 

Moreover, the IDLHC-ML does not aim to pinpoint the exact economic return value 

but rather focuses on eliminating suboptimal solutions generated from the logistic equation. 

Consequently, the machine learning algorithm does not require an exceptionally high level of 

precision, enhancing the likelihood of MLP-S effectively generalizing to different case studies. 
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Appendix C: Explanation and corrections for the paper 

titled “Optimizing Well Control Strategies with IDLHC-

MLR: A Machine Learning Approach to Address 

Geological Uncertainties and Reduce Simulations” 

This note serves to rectify an error in Figure 4.3. In the initially published version, there 

was a loop without a decision, making it impossible to exit the loop. We have now addressed 

this issue by adjusting the position of the arrows within the red box and introducing the parallel 

process in green (Figure C. 1). It's important to note that the parallel process exclusively 

applies to the IDLHCR-MLR method; the IDLHC method follows the black arrows.  

 

Figure C. 1–Flowchart of IDLHC and IDLHC-MLR methods of optimization (figure adjustment). 
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Appendix D: Explanation for the paper titled 

“Accelerated optimization of CO2-miscible water-

alternating-gas injection in carbonate reservoirs using 

production data-based parameterization” 

In this appendix, we provide an additional note to the WAGeq profile showed in Figure 

5.6 of Section 5.4. In the aforementioned section, we noted that some wells in the WAGeq 

strategy injected a single type of fluid throughout the entire management period. With this 

context in mind, we can make the following observation: during the development phase, it may 

not be economically advantageous to retrofit these wells for dual-fluid injection. However, it's 

essential to emphasize that throughout this thesis, we have been operating under the assumption 

that we are in the management phase. As a result, the costs associated with equipment 

installation during the development phase cannot be recovered or reversed. 

We also noticed wells consistently injecting a specific fluid for most of the field's 

lifespan, with sporadic fluid switches occurring within a single time period. Changing the 

injected fluid type for these wells in a single instance may be operationally inefficient. Within 

the context of a reservoir management decision analysis framework, the automated WAG 

strategy is further analyzed to address the sporadic fluid changes issue mentioned and 

anticipate other problems that may arise with the strategy. For instance, in Step 11 of the oil 

field development and management framework proposed by Schiozer et al. (2019), the 

objective is to explore potential adaptations to the production strategy to enhance the chances 

of success. It's important to note, however, that this level of refinement falls outside the scope 

of this thesis. 
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Appendix E: Comparison between the WAGeq and 

Wellgor_limit strategies in the reference case (SEC1-R) 

In this appendix, we show the results obtained by applying the optimal strategy derived 

from WAGeq to the reference case and compare it with the baseline strategy (Wellgor_limit). The 

aim is to assess the real-world implications of implementing the WAGeq control rules.  

The reference case (SEC1-R) serves as our "true-to-life representation" to simulate real-

field challenges and difficulties in a controlled environment, allowing us to mimic real-world 

scenarios. As described by Botechia and Schiozer (2022), this benchmark was developed using 

a high-resolution geocellular model, leveraging publicly accessible data from a pre-salt 

carbonate field.  

SEC1-R utilizes a corner-point grid comprising 250 × 478 × 640 blocks, totaling 

2,728,823 active blocks, each with dimensions measuring 50 × 50 × 2 m. The entire simulation 

process takes approximately four days on a 16-processor cluster (Botechia and Schiozer, 2022). 

In Figure E. 1a it is possible to observe that the SEC1-R employs a significantly finer grid 

compared to the SEC1_2022 simulation model (Figure E. 1b). 

 

Figure E. 1–Permeability map in 3D view and well distribution. (a) Depicts the configuration for 

the reference case, and (b) illustrates the coarser simulation model (Botechia and Schiozer 2022). 

Table E. 1 provides an overview of the differences in performance indicators for the 

Wellgor_limit and WAGeq strategies. These evaluations encompass both the reference case and 

the simulation model. Notably, it becomes evident that the disparities in outcomes between 

these two strategies vary depending on the model being considered. The percentage increase 
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in the WAGeq strategy in relation to the Wellgor_limit strategy is lower when both are applied in 

the reference case than when both are applied in the simulation model for all indicators except 

for the cumulative gas production (Gp). In terms of Gp, the WAGeq strategy generates the 

maximum allowable gas quantity for the platform in the simulation model, while it operates 

with some margin in the reference case.  

The smaller increase in NPV in the reference case was somewhat expected for two 

reasons: first, we conducted optimization in a nominal scenario, which may not adequately 

capture the uncertainties of the field. Utilizing a wide range of uncertain scenarios would help 

identify a more robust strategy with a higher likelihood of outperforming in the reference case. 

The second reason is that when we optimize for the coarse model, we tend to develop a strategy 

that is optimistically biased towards it. Consequently, this strategy does not perform as well in 

the reference case, which significantly differs from the simulation model and features a much 

finer grid. However, it's important to highlight that the direction of the gain is consistent in 

both scenarios, meaning that an improvement in the simulation model also leads to an 

improvement in the field's NPV, albeit to a lesser degree. These results emphasize that we can 

achieve better field management using an optimal WAG strategy than the traditional approach 

of a fixed six-month WAG cycle, as commonly observed in the industry. 

Table E. 1– Comparative analysis of performance indicators between Wellgor_limit and WAGeq strategies. 

Case  Strategy 
NPV  

(109 USD) 

Np  

(106 m3) 

Gp  

(109 m3) 

Wp 

 (106 m3) 

Winj  

(106 m3) 

Reference case 

(SEC1-R) 

WAGeq 8.06 164 113 63 210 

Wellgor_limit 7.77 156 120 43 182 

Relative 

difference (%) 
3.7 5.2 -6.2 47 15 

Simulation 

model 

(SEC1_2022) 

WAGeq 8.18 166 120 83 232 

Wellgor_limit 7.68 149 120 30 162 

Relative 

difference (%) 
6.7 11.4 0 172 43 

 


