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Abstract—The auditory brain circuits are biologically con-
structed to recand localize sounds by encoding a combination of
cues that help individuals interpret sounds. The development of
computational methods inspired by human capacities has estab-
lished opportunities for improving machine hearing. Recent studies
based on deep learning show that using convolutional recurrent
neural networks (CRNNs) is a promising approach for sound event
detection and localization in spatial sound. Nevertheless, depending
on the sound environment, the performance of these systems is still
far from reaching perfect metrics. Therefore, this work intends
to boost the performance of state-of-the-art (SOTA) systems by
using bio-inspired gammatone auditory filters and intensity vec-
tors (IVs) for the acoustic feature extraction stage, along with the
implementation of a temporal convolutional network (TCN) block
into a CRNN model, to capture long term dependencies. Three data
augmentation techniques are applied to increase the small number
of samples in spatial audio datasets. The mentioned stages consti-
tute our proposed Gammatone-based Sound Events Localization
and Detection (G-SELD) system, which exceeded the SOTA results
on four spatial audio datasets with different levels of acoustical
complexity and with up to three sound sources overlapping in time.

Index Terms—Acoustical signal processing, acoustic scene
analysis, sound event localization and detection, reverberation,
spatial sound, deep learning, dilated convolutions.

I. INTRODUCTION

T
HE faculty of detecting and localizing sounds in an

environment imparts survival advantages and sensitive

communication skills for natural human interaction with the
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surroundings [1]. The human auditory system processes sound

arriving in our ears from sources distributed all over space. If

we were to rely solely on our ears to recognize an unfamiliar

environment, our auditory system would first recognize familiar

sounds and then compare them with how those sounds were per-

ceived in other familiar environments. This activity that seems

so natural to us can be challenging for computers. Furthermore,

considering that our natural listening is three-dimensional, why

is it that most of the audio signals we usually listen to do not

maintain the spatial information of the sound field? Based on

this premise, the goal of spatial audio is to recreate the listener’s

perception in the real world, maintaining all the characteris-

tics that allow our auditory system to process the content and

direction of sound sources. In that sense, this area of machine

hearing considers the use of spatial audio recordings, along with

systems inspired by human hearing, to enhance the detection and

localization of sounds. Several applications relate to machine

hearing, such as intelligent meeting rooms [2], helping deaf

people to know the sounds of their environment [3], [4], and

acoustic monitoring of urban environments or wildlife [5], [6].

The sound events localization and detection (SELD) task im-

plies multi-class sound events detection (SED) and sound source

localization (SSL) of multiple directions of arrival (DOAs)

with respect to the microphone. Regarding DOA estimation

techniques, we found systems based on the time difference of

arrival (TDOA) [7], the steered-response power (SRP) [8], the

generalized side lobe canceller [9], and beamforming techniques

such as compressive beamforming [10], and the minimum vari-

ance distortionless response (MVDR) beamforming [11]. These

methods vary in algorithmic complexity, compatibility with mi-

crophone arrangements, and assumptions regarding the acoustic

scenario. To overcome these complications and estimate the

number of active sources directly from the input features, authors

in [12] studied the use of deep neural networks (DNNs) for

direction of arrival (DOA) estimation.

Recent studies have accomplished SELD with a multi-task

perspective. In [13], the spectrogram is used as an intermediate

representation of audio, which is processed by four convolu-

tional layers and three fully-connected (FC) layers. The SELD-

net system [14] also uses the spectrogram as input, but it extracts

the phase and magnitude components as separate features. The

SELDnet architecture comprises a convolutional neural network

(CNN) with three convolutional blocks for feature extraction
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and dimensionality reduction. It also established the use of a

recurrent neural network (RNN) based on gated recurrent units

(GRUs) to learn temporal context information from the output

of the convolutional blocks. Then, separate branches contain-

ing FC layers perform the classification and localization tasks.

Based on SELDnet, an improved framework was presented as

a baseline for the Task 3 of the DCASE2021 Challenge [15],

which objective was the localization and detection of sound

events in multichannel audio. This SELDnet-DCASE2021 ver-

sion receives log-Mel spectrograms and intensity vectors (IVs)

as intermediate audio representations. Instead of using sepa-

rate branches for each task, it adopted the Activity-Coupled

Cartesian Direction of Arrival (ACCDOA) representation [16]

to unify both classification and localization losses.

In contrast, concerned about an efficient implementation of

these types of systems on embedded hardware, the SELD-TCN

system [17] proposed to substitute the recurrent blocks of SELD-

net with temporal convolutional network (TCN) blocks contain-

ing dilated convolutions that capture long-term dependencies of

data. TCNs also avoid the sequential computing of the input

by processing the whole sequence in parallel via convolutions.

The SELD-TCN framework maintains the original SELDnet

characteristics regarding the intermediate audio representations

and the separate output branches.

A modified version of SELDnet was implemented in PyTorch

as a baseline for Task 2 of the L3DAS21 Challenge [18],

which also aims to achieve the SELD problem. The phase

and magnitude components of the spectrogram were used as

features. As in the SELDnet system, the phase is expected to

contain information on location and the magnitude of detection

and classification. Regarding the architecture, one additional

convolutional block and one more recurrent block were added to

augment the network’s capacity, while the two branches’ output

structure of SELDnet was maintained. The ability to detect

multiple sound sources of the same class that overlap in time

was also implemented through an augmented output matrix.

Regarding intermediate representations of audio, the Mel

auditory model has been used in Automatic Speech Recognition

(ASR) [19] and SELD [15] tasks. However, it still presents limi-

tations in the attempt to model the human ear. By contrast, gam-

matone filter impulse responses were obtained from measures

on the basilar membrane of small mammals. Moreover, applying

a gammatone filter bank to the spectrogram has shown to be

more robust against ambient noise in acoustic event monitoring

compared with Mel-scale filter bank representations [20], [21].

The gammatone filter bank has also shown good performance

in automatic audio captioning systems [22] and active noise

control systems [23]. For this reason, a gammatone filter bank

is explored in this work to obtain a log-gammatone spectrogram

that will be used as the intermediate audio representation, along

with the IVs.

We also propose a novel deep learning architecture for the

SELD task, which joins the independent improvements proposed

by the state-of-the-art (SOTA) systems. First, we question the

plain inclusion of new convolutional and recurrent blocks aiming

to improve the performance of the SELD system. Instead, we

propose to include in the middle of the CNN and RNN blocks

Fig. 1. Flowchart of the G-SELD system. In the preprocessing stage, the four
channels spectrogram is processed into four log-gammatone spectrograms and
three IVs. Regarding the neural network architecture, the number of blocks are
depicted.

a TCN block that captures long-term dependencies and, at the

same time, continues with the identification of core features by

using dilated convolutions. Additionally, we adopt the single

branch ACCDOA representation and modify it to detect mul-

tiple sound sources of the same class overlapping in time. The

mentioned stages constitute our proposed Gammatone based -

Sound Events Localization and Detection system, which will be

referred to as the G-SELD system.

Since creating labeled datasets of spatial audio for the SELD

task is a demanding and maybe imprecise process, the datasets

usually contain less than a thousand samples. That restriction

hinders the generalized learning of supervised deep learning

approaches that require as many data samples as possible to be

trained. Therefore, three suitable methods of data augmentation

for spatial audio are also explored in this work: frequency

masking, channel swapping, and random magnitude.

This article is organized as follows: Section II explains each

stage of the proposed methodology. In Section III, we present

the results of our G-SELD system by evaluating it on different

polyphony levels and under different sound scene conditions.

We also present an ablation study for each stage of the G-SELD

system. Finally, Section IV presents the conclusions of this

work.

II. METHODOLOGY

A methodology overview of the proposed G-SELD system is

shown in Fig. 1. First, each audio input channel is processed into

a spectrogram, from which the log-gammatone spectrogram and

the IVs are obtained. The metadata is preprocessed to support

the detection of up to three simultaneous sound events of the

same class. Later, in the data augmentation stage, two new

feature samples are generated using three techniques: frequency

masking, random magnitude, and channel swapping. Subse-

quently, the original and the synthetically augmented samples

input the deep learning G-SELD architecture, formed by a

single branch containing CNN, TCN, RNN and FC blocks. The

predicted classes and locations are obtained by processing the

network output vector. Finally, we adopt four metrics used in

analogous works to evaluate the system’s performance. Fur-

ther details of each stage will be explained in the following

sections.
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A. Datasets

The spatial audio datasets used in this work are provided in the

Ambisonics format, which relies on the spatial decomposition

of the sound field in the orthogonal basis of spherical harmonic

functions [24]. The First Order Ambisonics (FOA) B-format

consists of four signals that encode the overall sound in terms of

pressure and particle velocity components. This format contains

a signal W that represents an omnidirectional pattern and three

orthogonal signals X, Y, Z aligned with the Cartesian coordinate

axes.

The FOA spatial audio datasets used to evaluate the G-SELD

system were selected due to their inherent diverse acoustic char-

acteristics. These include anechoic and reverberant audio scenes,

synthetic and measured impulse responses (IRs), background

noise, and interference sound. Our objective is to evaluate the

performance of the G-SELD system across various levels of

difficulty that correspond to the level of effort required by

humans to detect and localize sounds. For instance, we expect

that the performance of G-SELD will be better in an environment

without background noise than in a noisy scenario. All datasets

contain FOA B-format audio files in which the sound events are

spatially positioned, accompanied by a set of accurate metadata

that includes time-boundaries, DOA, and sound type. Moreover,

all datasets contain at least one subset in which up to three

sound events may overlap in time. In order to provide a better

understanding of why each dataset plays a significant role in the

robust evaluation of the G-SELD system, we will briefly describe

the acoustical and technical characteristics of each dataset.

1) ANSYN: The TUT Sound Events 2018-Ambisonic, Ane-

choic and Synthetic Impulse Response (ANSYN) dataset con-

tains static point sources associated with a spatial coordinate

described in terms of azimuth, elevation, and distance. The

anechoic environment was synthesized using artificial IRs, and

the individual sounds were extracted from Task 2 of the DCASE

2016 Challenge [25], which objective was the detection of

sound events in synthetic audio. The sounds were recorded in

residential areas and home scenes, from which these 11 classes

of sounds were selected: speech, laughter, cough, clear throat,

door slam, page-turning, phone ringing, keyboard sounds, keys

dropping, door knock, and drawing sound. This dataset is divided

into three subsets: OV1, which consists of audio samples with

no sound events overlapping in time, and the OV2 and OV3

subsets, in which up to two and three sound events overlap

in time can be found, respectively. Each subset contains three

cross-validation splits, all with 240 development samples and 60

evaluation samples, summing a total of 900 audio files sampled

at 44.1 kHz for 30 s. The whole dataset containing OV1, OV2,

and OV3 subsets consists of 2700 audio samples with their

corresponding metadata files.

2) REAL: The TUT Sound Events 2018-Ambisonic, Rever-

berant and Real-life Impulse Response (REAL) dataset con-

tains static points sources positioned in a reverberant three-

dimensional scene. The IRs were collected from a university

corridor with classrooms. The isolated real-life sound events

were extracted from the Urban-Sound8k dataset [26], from

which eight classes of urban environment sounds are used: car

horn, dog barking, drilling, engine idling, gunshot, jackhammer,

siren, and street music. Air conditioner and children playing

sounds are used as background noises. The subsets’ distribution

is the same as ANSYN dataset, as well as the sampling frequency

of 44.1 kHz and the duration of 30 s.

3) L3DAS21: We use data related to the 3D SELD task of

the L3DAS21 dataset [18], which IRs were recorded with two

FOA microphones positioned in a small reverberant office envi-

ronment equipped with typical office furniture. In this project,

only the samples related to the microphone placed exactly

in the center of the room are used. Fourteen clean types of

sounds typical of an office environment were extracted from Lib-

rispeech [27] and FSD50K [28] datasets (computer keyboard,

drawer open/close, cupboard open/close, finger-snapping, keys

jangling, knock, laughter, scissors, telephone, writing, chink

and clink, printer, female speech, and male speech). Four back-

ground noises (alarm, crackle, mechanical fan, and microwave

oven) were selected from FSD50 K. The dataset contains four

training splits, summing 600 audio samples and one evaluation

split with 150 audio samples. The duration of each audio is 60 s,

and the sampling frequency is 32 kHz. Each subset contains the

same amount of files associated with one, two, and three sound

events overlapping in time.

4) DCASE2021: The DCASE2021 dataset [15] was pro-

vided for the Task 3 of the DCASE2021 Challenge. Besides

containing time-overlapping sound events, this dataset includes

directional interference events, moving sound sources, and an

additional layer of background noise in all samples. The IRs

were collected in 13 rooms with different reverberant conditions,

in which circular and linear trajectories were recorded, changing

the fonts’ heights, distances, and elevations. The ambient noise

of each room was recorded during 30 min, and later, 1 min-

duration segments were added to every spatial audio file with

varying signal-to-noise ratios (SNR) ranging from 30 dB to

6 dB. Twelve classes of isolated sound events (alarm, crying

baby, crash, barking dog, female scream, female speech, foot-

steps, knocking on the door, male scream, male speech, phone,

piano) were extracted from the NIGENS general sound events’

database [29], from which two additional classes (running en-

gine and burning fire) were used as interference events, out of

the target classes. The available development dataset consists

of six folds, four for training, one for validation, and one for

testing. Each split contains 100 one-minute-long audio samples

with a sampling rate of 24 kHz.

B. Preprocessing

Each channel of the audio wave files is scaled from a 16-bit

pulse-code modulation (PCM) to a float vector with values

ranging from -1.0 to 1.0. Then, a spectrogram is computed for

each Ambisonic B-format channel with a 40 ms Hanning win-

dow, 20 ms hop length, and a 1024-point fast-Fourier transform

(FFT) with 512 frequency bins. Two intermediate representa-

tions are extracted from the multichannel spectrogram: four

log-gammatone spectrograms that yield frequency information

at different time instances, and three acoustic IVs that express

net acoustic energy flux (Fig. 2).
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Fig. 2. Intermediate representations of multichannel audio. The log-
gammatone spectrograms of the FOA channels (left) and the three IVs (right)
are shown. The vertical concatenation of the channels is employed just for
illustration.

The frequency axis of both intermediate representations or

features are wrapped into the 64 bands of the gammatone filter

bank. The lowest and highest frequencies of the filter bank were

set to 0 Hz and half of the Nyquist frequency, respectively.

Finally, the feature map has a dimension of 7× T × 64, where

7 is the number of input channels, T represents the number of

time frames for each dataset, and 64 is the number of frequency

bins.

The metadata files contain information about every sound

source in the recording, such as onset and offset times in seconds,

class, and localization, which can be expressed in spherical or

Cartesian coordinates. The preprocessing stage of SOTA sys-

tems such as SELDnet and SELD-TCN is restricted when more

than one sound event of the same class is overlapping in time. In

contrast, inspired by the L3DAS21 framework, in the proposed

G-SELD system, we overcome the location overwriting for the

second or third sound event of the same class, bringing the

possibility of, for example, localizing up to three people simul-

taneously speaking. We process one annotation every 100 ms,

which also allows us to track moving sound sources.

C. Data Augmentation

Considering the reduced number of samples in spatial audio

datasets, we use three data augmentation techniques in the

spectral domain features: frequency masking, FOA channels

swapping, and random magnitude.

Frequency masking was proposed in [30] to be applied in

one-channel Mel spectrograms for ASR. In this project, we

adapt it to mask a maximum of F consecutive frequency bins

of the log-gammatone spectrograms and the IVs every 100 ms,

maintaining the same instantaneous mask for the seven channels

of the feature map. We compute two augmented outputs: one

with F = 16 and just one mask per time frame, and a second

with two masks per time frame andF = 8 aiming to position two

mask blocks in different frequency bins of the same time frame.

The initial frequency bin, as well as the number of masked bins,

are randomly selected. Fig. 3 shows an example of frequency

masking with one mask per time frame. Note the different

sizes of masks in different time frames. In this technique, the

annotations did not need to be modified.

The FOA channels swapping strategy was initially proposed

in [31] for increasing the number of DOAs of the sound events

Fig. 3. Example of frequency masking applied on one channel of a log-
gammatone spectrogram. One mask is allowed per time frame, and F = 16.

Fig. 4. G-SELD neural network architecture. T represents the time frames,
and N is the number of classes for each dataset.

contained in the dataset. As proposed in [32], the input feature

channels that correspond to the X, Y, Z FOA signals can be

randomly swapped, and their signs randomly reversed in order

to change the direction of the sound events. Due to its omnidi-

rectional nature, the W channel is not modified with this tech-

nique. Considering the correlation between the log-gammatone

spectrograms and the IVs, we equally transformed both. Two

modified feature samples are computed for each original sample,

and the original annotations were transformed.

The third data augmentation technique is inspired by the

random magnitude technique proposed in [32], which modifies

the overall volume of an audio sample by adding a random scalar

value to the log-Mel spectrograms. We modify the magnitude

of the log-gammatone spectrogram by adding random variables

sampled from a normal distribution with a mean equal to 0 and

a standard deviation of 0.02. For this technique, the intensity

vectors and the annotations are not modified.

D. G-SELD Model

As depicted in Fig. 4, the G-SELD model receives a feature

map with dimension 7× T × 64, which passes by three CNN

blocks responsible for identifying translation invariant patterns

and reducing the dimension of the input data by maintaining

the most important features. The CNNs are expected to learn

inter-channel features from the four gammatone spectrogram

channels and the three channels of IVs. Each convolutional block

contains 2D convolutions with 64 filters, which kernel size is

3× 3 and their stride size is 1× 1. The 2D max-pooling values
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Fig. 5. Residual block used in the TCN. Modified from [17].

for the three convolutional blocks are 5× 4, 1× 4, and 1× 2,

respectively, and the dropout is 0.05. The first and second axis

of the CNN blocks’ output are permuted, aiming to let the time

dimension T in the first position since the TCN block processes

a sequence.

Originally proposed in [33] and later adapted for audio signals

in [17], the use of dilated convolutions embedded in a residual

block flexibly expands the feature map. As shown in Fig. 5, the

output of the stacked layers is added to the input mapping using a

shortcut connection, which then passes to the next residual block.

By using this residual learning framework, the layers stacked in

the residual block are optimized to learn the residual mapping

instead of an individual mapping after each layer [34], [35]. Each

residual block has a dilated convolutional layer with 256 filters of

kernel equal to 3, followed by a batch normalization layer and the

sigmoid and tanh activation functions. Regarding the purpose of

the activation functions, the sigmoid function controls the flow

of information through the input mapping, behaving like a gate,

with its output ranging between 0 and 1. In contrast, the tanh
function regulates the network values, preventing excessively

large or small values that could hamper the network’s learning

process. Therefore, the tanh function ensures that the values

range between −1 to 1. The activation function outputs pass

by an element-wise multiplication, and later, the dropout rate is

set to 0.5. Lastly, aiming to ensure the same dimension before

adding the residual connection, a 1D convolutional layer is used

to guarantee the exact shape of the input vector and the skip

connection vector.

As shown in the TCN block of Fig. 4, we use four resid-

ual blocks with dilation factors that change in the range of

[20, 21, 22, 23]. Then, the TCN output passes by two recurrent

blocks with 128 GRUs, as used in SELDnet. Finally, a fully-

connected layer reduces the dimension to a suitable prediction

vector.

E. Prediction

The ACCDOA algorithm unifies the SED and SSL losses into

a single weighted regression loss, avoiding the use of separate

branches of dense layers for each subtask [16]. We adapted

this algorithm to deal with three time-coincident sound events

of the same class with different DOAs. The prediction vector

contains up to three estimated locations in Cartesian coordinates

for each possible class. However, it does not directly contain

the probability of occurrence for each class. Therefore, class

prediction is obtained from the vector norm or magnitude of

each location estimator as
√

x2 + y2 + z2, from which every

magnitude greater than 0.5 is considered an active sound event

of each class. Summing up, the predictor direction indicates the

DOA, and its length constitutes the probability of occurrence

of the corresponding sound class. Finally, the estimated DOAs

are transformed from Cartesian into spherical coordinates to be

consistent with the metrics computation.

F. Experimental Setup

We assessed three aspects of the G-SELD system, which

include: 1) its ability to perform at varying levels of polyphony,

2) its ability to perform in different sound environments with

varying levels of complexity, and 3) an ablation study to evaluate

the individual contribution of each proposed improvement.

The evaluation of our G-SELD system followed the same

experimental setup in all tested cases. The Adam optimizer [36]

was used with an initial learning rate of 0.001, the batch size

was set to 64, and the maximum number of training epochs was

100. The G-SELD system was developed using the TensorFlow

framework and a computer with a 9th generation Intel Core i7
processor equipped with an NVIDIA Titan V GPU.

G. Evaluation Metrics

We adopted the metrics proposed in [37], which were used

in the DCASE2021 Challenge [15]. It formulates location-

sensitive detection metrics that evaluate sound event detection

with specific spatial error allowance, and class-sensitive local-

ization metrics that measure the spatial error between sound

events with the same classification. The spatial error is calculated

as the angular distance between reference and predicted DOAs,

for which a threshold of 20◦ is allowed. The Error Rate (ER) and

theFscore (F1) are location-sensitive detection metrics, whereas

the Localization Recall (LR) and the Localization Error (LE)

are class-sensitive localization metrics. A combination of the

metrics (SELDscore) is used as the early stopping parameter and

is defined as:

SELDscore =
ER +

(

1− Fscore

100

)

+ LE
180

+
(

1− LR
100

)

4
(1)

The ideal metrics are: ER= 0, Fscore = 100%, LR= 100%,

LE= 0·, and SELDscore = 0. Finally, the early stopping process

monitors the SELDscore with a patience of 30 epochs. The values

presented in Tables I to V represent each metric average obtained

from the cross-validation scheme.

III. RESULTS AND DISCUSSION

In this section, we provide a detailed account of the results

obtained from the polyphony evaluation and the assessment of

the G-SELD system’s performance in sound environments with

increasing complexity. Additionally, we present the findings of

an ablation study conducted on the proposed improvements of

the G-SELD system.
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TABLE I
G-SELD AND SELDNET PERFORMANCES UNDER DIFFERENT POLYPHONY

LEVELS IN A FREE FIELD CONDITION
∗

A. Polyphony Evaluation

The performance of the G-SELD system was evaluated under

different polyphonic levels in audio scenes, starting with a scene

containing sources that do not overlap in time (OV1), followed

by scenes with higher polyphonic levels (OV2, OV3). This

experiment was performed on two datasets that simulate a free

field condition and a reverberant environment.

1) Free Field Condition: For this evaluation, we used the

ANSYN dataset that represents an ideal free field condition

with no reflections. We compare our results with SELDnet [14],

which was trained for a maximum of 1000 epochs, against our

G-SELD system trained for 100 epochs, saving the last best

model. Table I shows the results of this experiment, in which,

as expected, the best performance of the G-SELD system was

achieved with no overlapping sound events, followed by the

performances related to two and three overlapping sounds of

the same dataset. The SELDscore gives us a general idea of

all metrics, simplifying the overall performance comparison.

Note that the arrows show if the metric improves by increasing

or decreasing its value. We show that the G-SELD polyphony

evaluation metrics for a free field condition dataset surpass the

equivalent SELDnet metrics.

This experiment can be partially compared with [38], in which

the human listening ability to identify and localize the total

number of simultaneous sound sources spatially distributed was

studied. The estimation depends on the audio signal type (speech

or tone stimuli) and the overlapped sounds. The percentages

achieved by the listeners were in the range of 68− 93% for

a single sound source, 42− 84% for two sounds overlapping

in time, and 34− 70% for three sounds overlapping in time.

The metric that could be considered analogous is the LR, as it

evaluates the number of sound events that were correctly located.

Comparing the results obtained with human listeners with the

performance of the G-SELD system, we noted that our machine

hearing system surpasses by 6.6%, 11.7%, and 20.5% the best

localization performances of the human auditory system in the

aforementioned scenarios.

2) Reverberant Environment: The G-SELD system was also

evaluated in the REAL dataset, which emulates a reverberant

environment. Table II shows the results for the evaluation split

using SELDnet and G-SELD systems. We identified the exact

behavior of the G-SELD system on the ANSYN dataset, where

the metrics worsen as the number of overlapping sound events

increases. We also evinced that the SELDscore and all metrics of

TABLE II
G-SELD AND SELDNET PERFORMANCES UNDER DIFFERENT POLYPHONY

LEVELS IN A REVERBERANT ENVIRONMENT
∗

each subset OV1, OV2, and OV3 were improved with the G-

SELD system, compared with SELDnet results. Also, G-SELD

metrics improvement exceeds the boost obtained on the ANSYN

dataset.

B. Sound Environment Evaluation

In this section, we present the results for the G-SELD system

evaluated on four spatial audio datasets which represent differ-

ent sound scene conditions. The selected datasets, previously

presented in Section II-A, include ANSYN, REAL, L3DAS21,

and DCASE2021 datasets. The system does not need to know

beforehand the number of sound events in each sample, and

we are not focusing on the polyphony level anymore but rather

on the sound environmental conditions. However, polyphony is

limited to three sound sources, which is the maximum number

of target sound sources present in all the considered datasets.

We applied the k-fold cross-validation technique to the training

samples of each dataset, whereas the testing splits were always

maintained. Note that training, testing, and validation are always

made within the same dataset.

The results obtained on each test set are summarized in

Table III. We compute the mean of the metrics obtained from the

cross-validation models of each dataset (G-SELD mean values).

The metrics of the best model over the cross-validation process

are also included in Table III to exhibit the best performance of

G-SELD for each dataset (G-SELD best model). In the following

sections we analyze our results, compare them with the reported

SOTA approaches used as a baseline for each dataset, and

analyze the learning curves.

1) Free Field Condition: We compare the metrics of the

G-SELD system with the reported in [17] for the SELDnet

and SELD-TCN approaches and evaluate them on the same

dataset. As shown in Table III, the SELDscore, which takes into

account the joint performance of all four metrics, was surpassed

by the G-SELD system. Considering the G-SELD mean values

for each metric, the LR and LE metrics associated with the

class-sensitive localization were exceeded by 13.67% and 9.22

points, respectively, compared with SELDnet. They surpassed

the performance of the SELD-TCN system by 8.07% and 7.72%,

respectively. The LR and LE metrics of our best model sur-

passed in 13.70% and 9.30 points the SELDnet approach and

in 8.10% and 7.80 points the SELD-TCN approach. However,

the location-sensitive detection metrics (Fscore and ER) did

not surpass the values achieved by SELD-TCN, in 2% for the

Fscore and 0.03% for the ER. Nevertheless, the percentage of
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Fig. 6. Learning curves of the G-SELD system evaluated on a free field condition. ANSYN dataset.

TABLE III
PERFORMANCE EVALUATION OF THE G-SELD SYSTEM ON FOUR DATASETS

THAT REPRESENT DIFFERENT ACOUSTIC SCENE CONDITIONS. EACH

CONDITION IS COMPARED TO ITS BASELINE SOLUTION
∗ †

improvement obtained for the SSL task allows our system to

maintain the best performance according to the joint SELDscore

metric.

The learning curves, shown in Fig. 6, present the metrics’

evolution on the ANSYN dataset’s validation split. The solid

lines represent the average value calculated from the metrics

of each cross-validation model for each epoch. The colored

shadow that wraps around each curve represents two standard

deviations below and above the mean, giving us an idea of

the values’ variability across the cross-validation combinations.

These learning curves show that the model fitted the data since

the validation metrics reached almost optimal values. The stan-

dard deviation reaffirms that the performance of our models

is consistent over the cross-validation splits. Additionally, it is

possible to evince that in the validation subset, the model reached

a better performance on the localization task, as exhibited for

the test set results in Table III.

2) Reverberant Environment: According to the evaluation

results of the REAL dataset, presented in Table III, we can

corroborate that modeling this dataset became more complicated

than the ANSYN dataset due to the nature of the acoustic scene

in which there are reflections produced by the use of real IRs

captured in a reverberant space. However, our results surpassed

all the metrics obtained with SELDnet and SELD-TCN systems.

The LR was the metric with the most significant improvement,

exceeding the SELDnet LR by 30.58% for the G-SELD mean

value and by 31.60% for the G-SELD best model. The SELDscore

also corroborates the general best performance of our model

compared with SOTA systems.

The learning curves are shown in Fig. 7, in which the valida-

tion curves suggest that the characteristics learned from training

data were not enough to perfectly generalize our model to unseen

data. The learning curves’ evolution does not show overfitting,

and the reached values are comparable with the metrics of the

testing split. Additionally, the colored shadows that represent

two standard deviations show that the cross-validation models

result on validation metrics close to the mean, showing a reduced

variability across models.

A plausible explanation for the drop in performance of the

G-SELD system on REAL dataset, compared with ANSYN

dataset, is that a substantial multi-path interference caused by

room reverberation can significantly impact localization [39].

As concluded by [40], reverberation tends to smear the periodic

components across time, and thus some time-frequency (T-F)

samples in the reverberation tail are incorrectly assigned to

the detected sources. However, our results are still competitive,

considering the complexity of the scenario.

3) Reverberant Environment With Background Noise: Next

in line, we use the L3DAS21 dataset, which IRs contain re-

flections from room boundary surfaces and office furniture.

Moreover, this dataset includes constant background noise. The

L3DAS21 Challenge baseline system [18] computed two met-

rics:Fscore and LR, which can be compared with ours (Table III).

As the baseline also computed precision ofP = 52.00%, we cal-

culate and compare our average precision P = 62.26%, demon-

strating that all the comparable metrics were surpassed by more

than 10% using the G-SELD system. As expected, the obtained

metrics are lower than those achieved on ANSYN and REAL

datasets since L3DAS21 is a more challenging scenario that

combines reverberation with background noises. Authors in [41]
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Fig. 7. Learning curves of the G-SELD system evaluated on a reverberant environment - REAL dataset.

Fig. 8. Learning curves of the G-SELD system evaluated on a reverberant environment with background noise - L3DAS21 dataset.

demonstrated that early reflections produce phase misalignment

that greatly decreases the ability to separate signals from noise.

These facts help us understand the reasons for the decrease in

the performance of our system in this environment. The mixed

presence of reflections, background noise, and a 44% increment

of sound classes to be identified reduced the performance of our

system on the SELD task.

The learning curves of the G-SELD system applied to the

L3DAS21 dataset are presented in Fig. 8. All curves reached

almost flat slopes before completing 100 epochs, which means

that the models could extract and learn features from original and

slightly modified data during the number of training epochs.

We also note the presence of some peaks on the learning

curves, which could be caused by the mini-batch gradient

descent method used in Adam optimization. In other words,

as training data is shuffled, the mini-batches may contain a

more significant amount of unusual samples, causing a slight

decrease in the metrics in a specific epoch. The colored shadows

representing two standard deviations below and above the mean

show that the cross-validation models produce slightly more

variable validation metrics than the obtained for ANSYN and

REAL datasets. This can be explained by the increased number

of sound classes contained in a smaller set of audio samples of

the L3DAS21 dataset.

4) Reverberant Environment With Moving Sound Sources

and Directional Interferences: DCASE2021 is the most chal-

lenging dataset in which our G-SELD system was evaluated, as

it includes all the complexities presented in ANSYN, REAL, and

L3DAS21 datasets. Moreover, different challenging conditions

were included to simulate difficult real-life situations. Moving

sources were incorporated from about 500 sound event samples

of 12 types, and an additional layer of directional interferences

was selected from 400 sound events. The network is expected

to learn to ignore interferences; if not, they will be considered

false positives.

We compare our results with the metrics published by the

baseline system of DCASE2021 Challenge [15]. As shown in

Table III, all metrics were surpassed. The Fscore and LR were

exceeded in 12.42% and 15.32% respectively by the G-SELD

mean values, and in 13.20% and 15.40% by the G-SELD best

model. The ER was improved by 7% by the mean value and the

best model, and the LE was surpassed by 1.27 and 2 points by the

mean value and the best model, respectively. Our system reached

an overall improvement of 10% according to the SELDscore.

The LE exhibits that the inclusion of moving sources turns the

DOA estimation more complex, such that the localization of

several detected samples of sound events does not satisfy the

threshold to be considered as a correct localization prediction.

However, the improvements are promising, considering that the

G-SELD network architecture is dealing with the SELD problem

without dividing it into specific branches for the localization

and detection subtasks, maintaining conceptual simplicity on

the implemented modifications.

The cross-validation models’ variability, represented by the

standard deviation shown in the learning curves of Fig. 9 in-

creased compared with previous datasets. However, we consider

it tolerable since this dataset includes a wider variety of sounds

and DOAs in a few audio samples.
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Fig. 9. Learning curves of the G-SELD system evaluated on a reverberant environment with moving sound sources and directional interferences - DCASE2021
dataset.

We identified that the LR was the less aggravated metric

compared to the increasing difficulty of the databases. This

demonstrates that the G-SELD model can extract a significant

amount of information from the feature vectors, which leads to

the detection of a significant quantity of samples that contain

sound events, even in challenging scenarios.

The difficulty related to directional interference increases

when the target sound is similar to the sound that should be con-

sidered as an interference (inter-class similarity problem). We

identified the mentioned problem in the DCASE2021 database,

in which engines and fire sounds are used as interferences. Then,

considering that a characteristic sound related to fire is a fire

alarm, the system learned from many samples that an alarm-like

sound should be considered interference. Therefore, in case the

system detects a sound with comparable characteristics, it will

wrongly disregard this sound as an interference.

C. Ablation Study

We conducted an ablation study to analyze the individual con-

tributions of the Gammatone based SELD (G-SELD) system.

However, we highlight that the G-SELD system as a whole

encompasses all the proposed improvements, whose results

were presented in Sections III-A and III-B. The k-fold cross-

validation technique was also used to train different split com-

binations of each dataset. The results in this section represent

the mean value of the metrics obtained from the test split of the

cross-validation scheme.

1) Gammatone Vs. Mel Filter Banks: The SELD-

DCASE2021 architecture proposed in [15] was used to

evaluate our hypothesis of using a gammatone filter bank

instead of a Mel filter bank for obtaining a better performance

on the SELD task. For this experiment, we changed the filter

bank while maintaining fixed all other parameters related to the

preprocessing stage. The results presented in Table IV were

obtained for the test fold of the ANSYN dataset. This dataset

was selected due to the high metrics achieved by baseline

systems such as SELDnet and SELD-TCN. We noted that as

metrics reach near-perfect values, it becomes more difficult to

get improvements. Then, we sought to prove that just changing

the filter bank applied to the spectrogram in the preprocessing

stage results in a performance improvement in a dataset that has

TABLE IV
COMPARISON BETWEEN THE USE OF GAMMATONE AND MEL FILTER BANKS

USING THE SELD-DCASE2021 ARCHITECTURE
†

already reached nearly perfect values. Note that although small,

all metrics show an improvement. We did not use the G-SELD

model architecture, since we wanted to guarantee that the filter

bank change alone leads to better performance.

2) Inclusion of a TCN Block: As previously explained, the

G-SELD architecture contains four types of blocks: CNN, TCN,

RNN, and FC. In order to visualize each group of blocks’

contribution to the SED task, we apply the t-SNE visualization

technique that reduces a high-dimensional feature vector into

a two or three-dimensional map [42]. In this experiment, we

restricted our data to samples that contain just one sound event

at the same time to simplify the clusters’ visualization. The

ANSYN or REAL datasets could be used for this experiment

since they provide a split of data containing audio with sound

events happening one at a time. As in the previous experiment,

we selected ANSYN dataset because it is more challenging to

get improvements in a database that has reached near-perfect

metrics.

Fig. 10 shows the t-SNE representations of the output vectors

taken after each group of blocks in the G-SELD architecture,

with a perplexity value of 50. It is possible to recognize a clus-

tering process that begins with the CNN blocks and finishes with

the FC layers. However, despite being close to each other, the

class-coincident samples of the CNN output are better clustered

after passing through the TCN block. The clustering evidences

how valuable the use of the TCN block is in the G-SELD

architecture. Then, the RNN and FC layers, as final stages of

the network, are used for learning temporal dependencies of

data and reducing its dimensionality, respectively, which also

contributes to the clustering evolution through the model.

3) Data Augmentation: We also experimented with the stage

of data augmentation, aiming to demonstrate that our G-SELD
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Fig. 10. t-SNE representation of the CNN, TCN, RNN, and FC outputs for a
sample of the ANSYN dataset. The colors represent the sound classes.

TABLE V
COMPARISON OF THE METRICS IMPROVEMENT WITH AND WITHOUT DATA

AUGMENTATION
†

system can improve the metrics even without this technique.

The best-ranked results in Task 3 of the DCASE2021 chal-

lenge [15] showed that using data augmentation techniques

applied to spectrograms results in a performance improvement

on the DCASE2021 dataset [43], [44]. Therefore, we decided

to conduct our experiment in a dataset that has not yet been

used for this comparison. Concretely, we use the L3DAS21

dataset to explore the impact of data augmentation in the overall

improvement of our model.

For this trial, we used the L3DAS21 dataset and the G-SELD

architecture. The neural network was first trained without data

augmentation and then using the three data augmentation tech-

niques detailed in Section II-C. The results for the test fold are

shown in Table V. It is possible to compare two metrics of our

results with the published for the L3DAS21 Challenge baseline

system: the Fscore = 45.0 and the LR = 40.0 were improved

by the G-SELD system without data augmentation at 7.7% and

16.5% respectively and by 13.75% and 19.60% with the use of

data augmentation. In conclusion, the G-SELD system improves

the metrics of the SELD task even without the data augmentation

stage.

Based on the experiments presented in the last sections, we

show that each proposed improvement in the G-SELD system

is a valuable addition to the whole performance of the system.

IV. CONCLUSION

In this work, we used a deep learning approach to develop

a system for sound event detection and localization in spatial

audio.

A combination of acoustic features inspired by the human

auditory system and IVs containing phase information were

implemented to provide appropriate cues for estimating the

location in time and the direction of arrival of a sound event. It

was demonstrated that gammatone filters are a viable alternative

to modify the frequency linear resolution of the spectrogram

since they model the tonotopic frequency distribution produced

in the cochlea.

Based on a deep learning model that includes CNN and

RNN layers, the architecture of our model is improved by

incorporating a TCN block that is capable of learning core

features in the structure of sequential data, due to its ability to

capture long-term dependencies. This modification generates a

deeper feature extraction, producing a more significant number

of trainable parameters.

In summary, the G-SELD system was evaluated on four

databases that provide different ambient conditions, from a con-

trolled environment without reflections to various reverberant

scenes. The G-SELD system maintains a good performance for

polyphony up to level three in anechoic and reverberant envi-

ronments. The performance decays when background noises

and directional interferences are included in addition to the

target classes because the system must learn to overlook those

specific types of sounds. However, our results surpassed the

ones obtained using the baseline systems proposed along with

each dataset, maintaining a conceptual simplicity of the network

architecture.
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[3] M. Yağanoğlu and C. Köse, “Real-time detection of important sounds

with a wearable vibration based device for hearing-impaired people,”
Electronics, vol. 7, no. 4, Apr. 2018, Art. no. 50.

[4] I.-C. Yoo and D. Yook, “Automatic sound recognition for the hearing
impaired,” IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 2029–2036,
Nov. 2008.

[5] M. Kushwaha, X. Koutsoukos, P. Volgyesi, and A. Ledeczi, “Acoustic
source localization and discrimination in urban environments,” in Proc.

IEEE 12th Int. Conf. Inf. Fusion, 2009, pp. 1859–1866.
[6] E. Browning, R. Gibb, P. Glover-Kapfer, and K. Jones, “Passive acoustic

monitoring in ecology and conservation,” WWF Conservation Technol-
ogy Series 1(2), WWF, Woking, U.K., Tech. Rep., Oct. 2017. [Online].
Available: http://dx.doi.org/10.25607/OBP-876

[7] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereati, “Real-time
passive source localization: A practical linear-correction least-squares
approach,” IEEE Trans. Speech Audio Process., vol. 9, no. 8, pp. 943–956,
Nov. 2001.

[8] A. Marti, M. Cobos, J. J. Lopez, and J. Escolano, “A steered response
power iterative method for high-accuracy acoustic source localization,” J.

Acoust. Soc. Amer., vol. 134, no. 4, pp. 2627–2630, 2013.
[9] P. Townsend, “Enhancements to the generalized sidelobe canceller for

audio beamforming in an immersive environment,” Ph.D. dissertation,
Univ. of Kentucky, Lexington, KY, USA, 2009.

[10] A. Xenaki and P. Gerstoft, “Compressive beamforming,” J. Acoustical Soc.

Amer., vol. 136, no. 1, pp. 260–271, 2014.
[11] Q.-H. Huang, Q. Zhong, and Q.-l. Zhuang, “Source localization with

minimum variance distortionless response for spherical microphone ar-
rays,” J. Shanghai Univ. (English Edition), vol. 15, no. 1, pp. 21–25,
2011.

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on October 20,2023 at 17:47:00 UTC from IEEE Xplore.  Restrictions apply. 



2324 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

[12] S. Adavanne, A. Politis, and T. Virtanen, “Direction of arrival estimation
for multiple sound sources using convolutional recurrent neural network,”
in Proc. IEEE 26th Eur. Signal Process. Conf., 2018, pp. 1462–1466.

[13] T. Hirvonen, “Classification of spatial audio location and content using
convolutional neural networks,” in Proc. Audio Eng. Soc. 138th Conv.,
2015, p. 6.

[14] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound event local-
ization and detection of overlapping sources using convolutional recurrent
neural networks,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 1,
pp. 34–48, Mar. 2019.

[15] A. Politis, S. Adavanne, D. Krause, A. Deleforge, P. Srivastava, and T.
Virtanen, “A dataset of dynamic reverberant sound scenes with directional
interferers for sound event localization and detection,” in Proc. Detection

Classication Acoustic Scenes Events, 2021, pp. 125–129.
[16] K. Shimada, Y. Koyama, N. Takahashi, S. Takahashi, and Y. Mitsufuji,

“ACCDOA: Activity-coupled cartesian direction of arrival representation
for sound event localization and detection,” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process., 2021, pp. 915–919.
[17] K. Guirguis, C. Schorn, A. Guntoro, S. Abdulatif, and B. Yang, “SELD-

TCN: Sound event localization & detection via temporal convolutional
networks,” in Proc. IEEE 28th Eur. Signal Process. Conf., 2021, pp. 16–20.

[18] E. Guizzo et al., “L3DAS21 challenge: Machine learning for 3D audio
signal processing,” in Proc. IEEE 31st Int. Workshop Mach. Learn. Signal

Process., 2021, pp. 1–6.
[19] Z.-Q. Wang and D. Wang, “Joint training of speech separation, filterbank

and acoustic model for robust automatic speech recognition,” in Proc. 16th

Annu. Conf. Int. Speech Commun. Assoc., 2015, pp. 1–5.
[20] S. Mondal and A. D. Barman, “Human auditory model based real-time

smart home acoustic event monitoring,” Multimedia Tools Appl., vol. 81,
no. 1, pp. 887–906, 2022.

[21] Y. R. Leng, H. D. Tran, N. Kitaoka, and H. Li, “Selective Gammatone
filterbank feature for robust sound event recognition,” in Proc. 11th Annu.

Conf. Int. Speech Commun. Assoc., 2010, pp. 2246–2249.
[22] S. Perez-Castanos, J. Naranjo-Alcazar, P. Zuccarello, and M. Cobos,

“Listen carefully and tell: An audio captioning system based on resid-
ual learning and Gammatone audio representation,” in Proc. Workshop

Detection Classification Acoust. Scenes Events, 2020, pp. 150–154.
[23] Y. Jin, H. Su, C. Xu, and Q. Guo, “Application of Gammatone filter bank to

active noise control algorithm,” in Proc. IEEE Int. Conf. Signal Process.,

Commun. Comput., 2017, pp. 1–5.
[24] A. Roginska and P. Geluso, Eds., Immersive Sound: The Art and Science of

Binaural and Multi-Channel Audio, 1st ed. Evanston, IL, USA: Routledge,
2018, pp. 53–54.

[25] A. Mesaros et al., “Detection and classification of acoustic scenes and
events: Outcome of the DCASE 2016 challenge,” IEEE/ACM Trans.

Audio, Speech, Lang. Process., vol. 26, no. 2, pp. 379–393, Feb. 2018,
doi: 10.1109/TASLP.2017.2778423.

[26] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for
urban sound research,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 1041–1044.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. IEEE Int.

Conf. Acoust., Speech Signal Process., 2015, pp. 5206–5210.
[28] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K: An open

dataset of human-labeled sound events,” IEEE/ACM Trans. Audio, Speech,

Lang. Process., vol. 30, pp. 829–852, 2022.
[29] I. Trowitzsch, J. Taghia, Y. Kashef, and K. Obermayer, “The nigens general

sound events database,” 2019, arXiv:1902.08314.
[30] D. Park et al., “SpecAugment: A simple data augmentation method for

automatic speech recognition,” in Proc. Int. Speech Commun. Assoc., 2019,
pp. 2613–2617.

[31] L. Mazzon, M. Yasuda, Y. Koizumi, and N. Harada, “Sound event localiza-
tion and detection using FOA domain spatial augmentation,” DCASE2019
Challenge, Tech. Rep., Jun. 2019.

[32] D. Rho, S. Lee, J. Park, T. Kim, J. Chang, and J. Ko, “A combination
of various neural networks for sound event localization and detection,”
DCASE2021 Challenge, Tech. Rep., Nov. 2021.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” 2018,
arXiv:1803.01271.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[35] K. Tyagi, S. Nguyen, R. Rawat, and M. Manry, “Second order training
and sizing for the multilayer perceptron,” Neural Process. Lett., vol. 51,
pp. 963–991, 2020.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[37] A. Mesaros, S. Adavanne, A. Politis, T. Heittola, and T. Virtanen, “Joint
measurement of localization and detection of sound events,” in Proc. IEEE

Workshop Appl. Signal Process. Audio Acoust., 2019, pp. 333–337.
[38] X. Zhong and W. A. Yost, “How many images are in an auditory scene?,”

J. Acoust. Soc. America, vol. 141, no. 4, Apr. 2017, Art. no. 2882.
[39] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localization

in reverberant rooms,” in Microphone Arrays (ser. Digital Signal Process-
ing), M. Brandstein, D. Ward, A. Lacroix, and A. Venetsanopoulos, Eds.
Berlin, Germany: Springer, 2001, pp. 157–180.

[40] J. Woodruff and D. Wang, “Binaural detection, localization, and segrega-
tion in reverberant environments based on joint pitch and azimuth cues,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 4, pp. 806–815,
Apr. 2013.

[41] D. Griesinger, “What is “proximity,” how do early reflections and rever-
beration affect it, and can it be studied with LOC and existing binaural
data?,” in Proc. 22nd Int. Congr. Acoust., 2016, pp. 1–5.

[42] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.

Learn. Res., vol. 9, pp. 2579–2605, 2008.
[43] K. Shimada et al., “Ensemble of ACCDOA-and EINV2-based systems

with D3Nets and impulse response simulation for sound event localization
and detection,” 2021, arXiv:2106.10806.

[44] T. N. T. Nguyen, K. Watcharasupat, N. K. Nguyen, D. L. Jones, and W. S.
Gan, “DCASE 2021 task 3: Spectrotemporally-aligned features for poly-
phonic sound event localization and detection,” 2021, arXiv:2106.15190.

Karen Rosero (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering and
telecommunications from Army Polytechnic School,
Sangolquí, Ecuador, in 2020 and the M.Sc. degree
in electrical engineering from the School of Electri-
cal and Computer Engineering, University of Camp-
inas (UNICAMP), Campinas, Brazil, in 2022. She
is currently a Ph.D. Student with The University
of Texas at Dallas, Richardson, USA. Her research
interests include spatial audio, deep learning, mu-
sic information retrieval, affective computing, and
multimodal signal processing.

Felipe Grijalva (Senior Member, IEEE) received the
B.S. degree in electrical engineering and telecommu-
nications from the Army Polytechnic School, San-
golquí, Ecuador, in 2010 and the M.Sc. and Ph.D.
degrees in electrical engineering from the University
of Campinas, Campinas, Brazil, in 2014 and 2018,
respectively. He is currently a Professor with the
Universidad San Francisco de Quito, Quito, Ecuador.
He was with signal processing, machine learning, and
computer vision applications.

Bruno Masiero (Member, IEEE) received the B.S.
and M.Sc. degrees in electrical engineering from the
University of São Paulo, São Paulo, Brazil, in 2005
and 2007. He is an Assistant Professor with the School
of Electrical and Computer Engineering (FEEC),
University of Campinas, Campinas, Brazil. His re-
search interests include application of modern digital
signal processing techniques in audio and acoustic
applications, such as spatial sound acquisition and
reproduction, acoustic imaging, characterization of
acoustic materials, and development of audiological

assessment tools. In 2012, he was the recipient of the Ph.D. in engineering by
the RWTH Aachen University, Aachen, Germany. During 2019–2022, he was a
Member of the Board of the International Commission for Acoustics.

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on October 20,2023 at 17:47:00 UTC from IEEE Xplore.  Restrictions apply. 


