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Abstract: 
 
This thesis investigates the role of teachers' specialized knowledge in probability education, 
focusing on a professional development program aimed at enhancing teachers' proficiency in 
probabilistic concepts and their application in real-world contexts. Drawing on the subjectivist 
approach to probability, the study explores the decision-making processes of primary and lower 
secondary teachers engaged in a betting game designed to quantify the degree of confidence 
associated with each possible event. Using the framework of Mathematical Teachers’ 
Specialized Knowledge (MTSK), the research examines the interplay between teachers' 
mathematical knowledge, pedagogical content knowledge, and their ability to navigate 
uncertainty within the context of probability education. 
The thesis begins with an overview of classical, frequentist, and subjectivist approaches to 
probability, highlighting the increasing importance of probability education in national and 
international curricula. It then delves into the theoretical underpinnings of MTSK and its 
relevance to probability instruction. Through an analysis of prior research and teacher education 
programs, the study identifies gaps in teachers' specialized knowledge and the challenges they 
face in effectively teaching probability concepts. 
The research methodology employs a Design Research approach, structured into two action 
phases: deepening teachers' Knowledge of Topic (KoT) on probability and designing a didactic 
path for students. 
Through an analysis of teachers' behaviours and decision-making processes during the betting 
game, the study uncovers the complexities of probability assessment and the factors influencing 
teachers' confidence in assigning quotas. Insights from the analysis reveal the nuances of 
teachers' specialized knowledge, including their understanding of foundational concepts, 
procedural considerations, and the application of probabilistic reasoning in real-world 
scenarios. 
The findings underscore the importance of intra-conceptual connections in guiding teachers' 
decisions and fostering a coherent understanding of probability. The subjectivist approach 
emerges as a significant theoretical perspective that enriches teachers' awareness of probability 
and informs their instructional practices. The study also highlights the potential of the betting 
game as educational tool for promoting probabilistic reasoning and facilitating the construction 
of probability measures. In conclusion, the thesis identifies key open questions in probability 
education and calls for further research to bridge the gap between theoretical understanding and 
practical application. By refining understanding of teachers' specialized knowledge and 
exploring effective educational strategies, we can empower students with the skills and 
understanding necessary to effectively explore uncertainty. 
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Introduction 
Our daily life is full of events that we can’t foresee for certain. Every human activity is 

dominated by uncertainty, resulting that a specific event can happen or not. It doesn’t mean that 

the choice of an event should be left to the destiny, especially in specific situations (such as the 

launching of a new product on the market), but it is necessary to elaborate a rational evaluation, 

using the information that we have in that particular moment. This evaluation is largely 

influenced by the type of approach that the event requires. Nowadays, from the mathematical 

point of view, it is possible to recognize three main approaches which can be used and 

intertwined to model the uncertainty: classical approach, the frequentist one and the subjectivist 

one. Each of them is useful to mathematically face and handle, as far as possible, the 

unpredictability that rules our daily life. 

Children are usually involved in situations where they need to act making decisions based on 

uncertainty, and the Probability Literacy is one of the competences that needs to be developed 

in order to be able to perform an active citizenship (e.g., OCSE, 2016). For this reason, for 

almost twenty years now, even if with the due differences and specificities according with the 

cultural context, most primary school curriculum includes an introduction to probability (e.g., 

OCSE, 2016; MIUR, 2012; MIUR, 2018; BRASIL, 2018).  

In the last years the topic of Probability has become an increasingly central topic in the national 

and international curriculum around the world (e.g., Batanero et al., 2016). And, aligned with 

such an increase in curricular reforms, also in the field of mathematics education research is 

giving much more attention to this topic, focusing both on the pupils and the teachers (e.g., 

Ireland and Watson, 2009; Chernoff and Sriraman, 2014).  

The Italian curriculum (MIUR, 2012; MIUR, 2018), for example, pose a real challenge to 

teachers: it is required to pass from a mathematics’ teaching linked to memorization of  rules 

and techniques to an idea of teaching mathematics where the techniques continue to have an 

important value, but as far as they allow to solve new problems (and not repetitive exercises). 

In short, it asks to move from a mathematical education focused on reproductive thought, to 

one that enhances and brings into play productive thought (Carotenuto, Di Bernardo & Di 

Martino, 2019). Saying that in a diverse way, it is necessary to develop students’ procedural 

and conceptual knowledge (Hiebert & Lefevre, 1986), focusing both on “hows” and “whys”, 

respectively, when dealing with mathematics. Indeed, such procedural knowledge is related to 

both object and mathematical symbols and is linked to symbolic operations skills. The 
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conceptual knowledge, in turn, is sustained by establishing relationships between what one 

already knows and the new knowledge being developed.  

A work focusing on developing students’ procedural and conceptual mathematical knowledge 

requires a specific teacher’s knowledge and involves, among others aspects, the type of tasks 

(Charalambous, 2010) and mathematical discussions (Ponte & Quaresma, 2016; Schoenfeld & 

Kilpatrick, 2008) teachers’ implement on classes. This request involves the teacher 

mathematical knowledge, his experiences and especially his emotions towards mathematics and 

his teaching (Di Martino & Pezzia, 2018). 

To overcome this challenge, focusing on teacher education, means not only to work with the 

aim to give opportunities to strengthen disciplinary’s knowledge and teaching skills, but also 

to critically rethink about the personal experience with mathematics and, if necessary, to rebuild 

a relationship with mathematics: not to be afraid of mathematics and to teach it (Carotenuto, Di 

Bernardo, & Di Martino, 2019).  In this vision, it is necessary to build examples of activities 

and for doing so one can consider a laboratory teaching and to have time to critically analyse 

it.  

In recent years, probability has acquired an important role in mathematics curricula around the 

world with an increasing interest in research in the field of mathematical education: probability 

plays a crucial role in the Mathematical Literacy of individuals (e.g., OCSE, 2016; MIUR, 

2012; MIUR, 2018) and probabilistic reasoning underlie many daily decision problems and 

interesting scientific issues. 

Although the development of awareness of the assessment of a probability is something 

culturally and socially relevant, the research reveals difficulties on the part of the students but, 

given even more alarming, also on the part of the teachers (e.g., Batanero, Godino & Roa, 

2004).  

Some studies (e.g., Franklin & Mewborn, 2006; Chick & Pierce, 2008) point out that teachers’ 

training in the field of probability is not enough to enable them to deal with challenges posed 

by the work with pupils. Several teachers present difficulties similar to their students' ones in 

managing basic concepts (Prodromou, 2012). Moreover, their pedagogical content knowledge 

in probability appears to be not appropriate (Batanero et al. 2004) and leads them to have scarce 

experience in conducting experimental activities with students (Stohl, 2005). 

The different settings for the probability approaches (classical, frequentist and subjectivist) 

provide different systems of concepts and procedures that serve to analyze situations in the field 
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of uncertainty. Teachers should be aware of the diversity of these approaches because they 

influence the reasoning of students in confronting problems inherent in probability topic. In this 

sense, it is essential to think of new ways/approaches to develop teacher’s knowledge and 

awareness on probability, both during their educational path as prospective teachers as well as 

concerning continuous education. 

In this view, Batanero et al. (2016) have highlighted the necessity of leading research on the 

components of teachers’ knowledge and of designing materials for teachers’ professional 

development concerning probability. 

One of the approaches to the probability developed in mathematics education is the “classical” 

one, which looks at the probability as a ratio between the number of favourable cases and the 

number of possible cases (Laplace, 1995/1814). This approach offers many didactic benefits, 

however, if it is the only one studied, it can reduce understanding probability associated to a 

simple mathematical calculation, and it limits teacher’s work to handling with prototypical 

problems, as those ones involving dices, coins and cards, not giving the opportunity to students 

activate their rational ability of making an evaluation or taking a decision. 

On the contrary, it’s important to explore contexts where we can apply different approaches to 

develop the probabilistic understanding.  

Following Fischbein's (1982) approach, a central activity for learning probability entails 

predicting the outcomes of chance experiments by placing bets. To enhance the learning 

environment's engagement, this activity can be integrated into a gaming scenario, as illustrated 

in Aspinwall and Tarr's (2001) study. In our own research, we also recognize the significance 

of the betting game as a pivotal element of the learning process. Our study is grounded in the 

betting game. 

The bet is one of these contexts, because it represents one of the main ways which lead to the 

discovery and to the understanding of the subjectivist approach of probability, as well as to the 

classical and frequentist ones. 

In this thesis, exploring the way in which we face this crucial theme, I present a study in the 

context of a professional development course for primary and lower secondary teachers, 

designed in the frame of Mathematical Teachers’ Specialised Knowledge – MTSK (Carrillo et 

al., 2018). In particular, taking inspiration from the subjectivist approach to probability (de 

Finetti, 1931), the teachers are involved in a context of betting games facing the problem of 

quantifying the degree of confidence of an event.  
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Teachers’ knowledge plays a crucial role in students’ learning process (e. g. Ball, Hill & Bass, 

2005; Boyd et al., 2009; Nye, Konstantopoulos e Hedges, 2004). For this reason, the interest in 

teachers’ knowledge has been an emerging focus of attention in the last years and, in this 

scenario, different approaches have been designed and conceptualized in order to help 

understanding the specificities of such knowledge. Teachers’ knowledge can be perceived in a 

variety of manners and following a diversity of perspectives (e.g., the Mathematical Knowledge 

for Teaching – MKT (Ball, Thames, & Phelps, 2008); the Mathematics Teachers Specialized 

Knowledge – MTSK (Carrillo et al., 2018)). In the scope of the work, we develop we perceive 

such knowledge as specialized and we consider the MTSK conceptualization.  

The MTSK conceptualization was proposed to better catch the complexity and the specialised 

nature of mathematics teachers’ particular knowledge. It comprises two main domains: 

Mathematical Knowledge (MK) and the Pedagogical Content Knowledge (PCK), perceived in 

an intertwined manner, in which three subdomains compose each one of these domains.  

In the particular case of probability, as in all the others, it is important to understand the content 

of specialised knowledge a teacher needs to have, and the content of the different dimensions 

of such specialized knowledge, in order to better understand the teachers practices and be able 

to devise ways to improve such practice and teacher education. 

The construction of the probability theory from a subjectivist point of view has emerged from 

the intention to give the probability’s meaning a psychological basis (Chernoff & Sriraman, 

2014). In particular, the probability of an event is a quantitative measure of the degree of 

confidence based on the judgment that events occur. In this perspective, what really matters is 

not the concept "what I foresee, will happen, because I foresaw it” but, instead we should focus 

on the question “why do I foresee that this event will happen?" (de Finetti, 1931). 

Teachers’ preparation requires a task design that allows teachers to confront their inner ideas 

and to discuss and perform activities to increase their probabilistic knowledge and their didactic 

knowledge in this topic (Batanero, Biehler, Engel, Maxara, & Vogel, 2005; Batanero, et al., 

2014). In this vision, a Design Research (Bakker, 2018) approach has been developed structured 

mainly into two action’s phases: the first phase, in which the participant teachers have been 

able to deepen the Knowledge of Topic (Carrillo et al., 2018) on probability, and the second 

phase, in which they designed a didactic path for their students.  

We consider then that, if teachers are involved in a teacher education program focusing on 

developing their specialized knowledge on the elements of the subjective probability, then they 
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will be in better position (knowledgeable) to develop specific processes of thinking 

improving their specialized knowledge on probability and thus, improving the tasks they 

propose and how they implement them (mathematical goals pursued). 

Regarding to prove as valid or false such hypothesis, the following research question is 

considered: 

Which specialized mathematical knowledge in probability, demonstrated by 

teachers, impact their decision-making in a context of betting games and lead them 

to adopt a subjective probability view, to quantify the degree of confidence of an 

event? 

In order to deepening on specific aspects involved in such question, we proposed two foci to 

develop this investigation. Such a foci are formulated in terms of (sub)research questions: 

(i) Which elements of teacher’s Knowledge of Topics (KoT) on probability are possible 

to trace on a context of a teacher’s education program focused on establishing 

relationships amongst subjective, classic and frequentist perspectives? 

(ii) To what extent do the theoretical elements of the subjectivist approach to 

probability contribute to the attribution of meaning to the degree of confidence that 

a teacher assigns to an event? 

In order to do so we follow a set of steps which guide the research being developed. 

§ Examine the Influence of Specialized Mathematical Knowledge: To investigate 

how teachers' specialized mathematical knowledge on probability affects their 

decision-making when engaging in betting games.  

§ Analyze Decision-Making Processes: To understand the decision-making processes 

employed by teachers, particularly focusing on the steps and factors involved in 

their choices during betting games. 

§ Use the Adoption of Subjective Probability: To assess the extent to which teachers 

adopt a subjective probability perspective when evaluating the confidence level in 

an event within the context of betting games.  

§ Identify Factors Influencing Confidence Assessment: To identify and explore the 

factors that influence teachers' confidence assessment in betting games, considering 

their specialized knowledge in probability.  
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In the first chapter, I provide an overview of three probabilistic approaches (classical, 

frequentist, and subjective probability), also exploring some key historical moments. 

In the second chapter focus mainly on the MTSK conceptualization (Carrillo et al., 2018), 

which oriented this research is presented. Before introducing this conceptualization a discussion 

on Shulman (1986) categories and also the Mathematical Knowledge for Teaching – MKT (Ball 

et al., 2008) are discussed.  

In the third chapter, we delve into educational considerations. This section aims to investigate 

the interplay between the mathematical perspective on probability and educational dimensions. 

The focus is on providing an overview of prior research in mathematical education, specifically 

addressing probability. The chapter revisit pivotal concepts and principles delineated in the 

literature, shedding light on the challenges and obstacles commonly faced by students in this 

domain. Furthermore, it will scrutinize the current landscape of teacher education programs 

with respect to probability instruction. Despite the increasing volume of research in 

mathematics education, there is a noticeable scarcity of studies dedicated explicitly to the 

teaching of probability.  

In the fourth chapter, I discuss the educators and participant teachers who played a crucial role 

in the context of this study. The subsequent part will delve into the methodology, encompassing 

both Design Experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) and Design 

Research (Bakker, 2018). This discussion sets the stage to present and justify, in the following 

section, the distinct phases that have shaped the course of this research. Lastly, the fourth 

section will detail the analysis methodology, elucidating the frameworks and approaches 

employed for a comprehensive understanding. 

The fifth chapter is dedicated to the analysis’ discussion, followed by subsequent conclusions. 

In summary, this thesis delves into the realm of probability theory and its implications for 

teaching. We will explore various approaches to probability and discuss the impact of teachers' 

specialized knowledge on their decision-making during betting games. By examining factors 

that influence confidence assessment and the adoption of subjective probability, our aim is to 

provide insights to enhance mathematics education practices. Throughout the subsequent 

chapters, we will delve into the intricacies of probability education, offering practical 

recommendations to assist educators in their teaching efforts. 
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1.  Probability: Historical and mathematical aspect 

1.1 Historical background and different approaches to probability 

For several centuries, in the course of history, several attempts have been developed in order to 

give a mathematical form to the uncertainty that rules our daily life. Nowadays, we accept the 

fact that there isn’t a unique mathematical construct that can master all the issues regarding the 

uncertainty and prediction of events. The exploration of uncertainty and of logical reasoning 

exists as a primordial experience (Dehaene, 2019), but at certain time of history of science, the 

human kind started to look as something measurable linked to a numerical value. Today, this 

numerical value, thanks to Kolmogorov’s axiomatization, is described by the following axioms: 

1) The probability of event it’s a number p included between 0 and 1; 

2) The probability of an impossible event is 0 and the probability of a certain event is 1; 

3) If two events A and B are incompatible, then the probability that one of them will 

happen it’s the sum of their probabilities.  

The different approaches to probability are linked to different ways of interpreting it and they 

are developed in different historical periods, by embodying and expressing different cultural 

and historical sensitiveness and needs (Radford, 1997).  

The problems connecting the uncertainty, in particular to the gambling, are presented in 

different historical periods . Gambling and the counting problems connecting to its modelling 

were in fact the engine of the birth of this branch of mathematics and not by chance from these 

origins derives the word “aleatory” from the Latin word “alea”, that means a game with dice, 

one of the most common adjectives used to define the type of events studied by the calculation 

of probabilities.  

It’s in the Latin poem of the XIII century, De Vetula, attributed Richard de Fournival, that we 

find the first and most ancient way to count and to put into series the number of possible 

arrangements of the faces of three dices (Bellhouse, 2000). In the three dices game, also known 

as zara game (the word “zara” may come from the Arabic word “zahr”, which means dice, and 

from the same word may have derived the Italian saying “gioco d’azzardo”), the players must 

throw, taking turns, three equal six faces dices, and before that each dice reveals a number 

(included between 1 and 6), the player must pronounce loudly the number that in his opinion 

would have been the sum of the three numbers revealed by the dices (so a number included 

between 3 and 18).  
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This poem is the oldest known text establishing the link between observed frequencies and the 

enumeration of possible configurations (Bellhouse, 2000). Indeed, the author of the poem not 

only is able to correctly count the 56 possible not-order configurations of the faces of the three 

dices (see Figure 1) and the 216 order arrangements of the faces of the three dices (see Figure 

2), but also to start to understand that each sum has its “weight”, meaning a different “number 

of combinations related to its.”:  

“Sixteen compound numbers are produced. They are not, however, of equal value, 

since the larger and the smaller of them come rarely and the middle ones 

frequently” (Bellhouse, 2000, p. 134).  

 

Figure 1: A possible modern visualization to arrange of all the 56 non-ordered terns by 
pulling three dice (in abscissas there are the 16 different sums and in ordinates there are the 

number of combinations related to its) 

 

Indeed, by counting, the author connects each of the 16 different sums (Figure 2) to its 

corresponding generative terns, achieving thus an implicit determination of their probabilities. 

He then advises the players to organize their bets according to their expected profit. 
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Figure 2: A possible modern visualization, made by author, to arrange of all the ordered 
terns by pulling three dices (in abscissas there are the 16 different sums and in ordinates 

there are the number of combinations related to its) 

 

But it was only in the XVII century that Galileo Galilei will shed light to this discovery. The 

XVII century was rich of advances and insights into the solution of problems related to 

gambling, found in the various epistolary exchanges between mathematicians of the time 
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including Fermat and Pascal, which, although not yet systematized, represent the roots of the 

modern theory of probability, interpreted as a branch of mathematics which studies and 

analyzes situations ruled by uncertainty. 

 

1.2  Classical approach 

1.2.1 Towards the classical probability: configurations, permutations and 

combinations 

Around 1620, the Grand duke of Tuscany presented to Galileo Galilei the first known problem 

of probability that was later solved and which was linked to the three dices game. In his work 

“About the discovery of the dices”, the famous scientist analyses, from a mathematical point of 

view, the zara game. Galilei (1613-1623) deals with the problem in a very meticulous and 

precise way. In that time the problem was that considering the possible sums obtainable from 

the throw of three dices, that is the natural numbers between from 3 and 18 (extremes included), 

people wrongly believed that the sums 9, 10, 11 and 12 would display with the same frequency, 

considering the fact that they all are obtained with the same number of configurations (six 

different non-ordered terns). But by playing, people noticed that the numbers 10 and 11 

manifested more frequently than the numbers 9 and 12, so the players would consider them as 

sums more likely to display compared to the other sums and preferred to bet on the sums 10 

and 11.  

Galilei faced the study of this problem starting to list all the possible cases. He affirms that the 

six sorties of a dice are “equiprobable”, meaning that, when a dice is thrown, the dice can 

indifferently stop on one of his six faces: he translates, in this way, a symmetry of the dice.  

It’s possible to deduce that the sorties of each dice, and so the possible cases, are naturally 

independent and that for two or three dices there are respectively 6´6=36 and 6´36=216 

possible combinations. The mistake that was made is the following: since the sums 9, 10, 11 

and 12 can be obtained with three different triplets, people thought they had to manifest with 

the same frequency. But in this way the permutations weren’t considered.  

On 216 possible combinations, the sums 9 and 12 were obtained with 25 ordered configurations, 

while the sums 10 and 11 were obtained with 27 ordered configurations, that is with two 

additional ordered terns.  
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To prove this fact, Galilei (1613-1623) produced the following table (Figure 3) in which the 

bold numbers above each column represent the first eight possible sums of the three dice (sums 

ranging from 10 to 3). In parentheses, there are the sorties that can combine to achieve that sum, 

along with the number of possible permutations with those specific numbers (for example, 

under the sum 10, it reads (6; 3; 1) 6). Below each column, in bold, is the total number of the 

ordered terns to obtain that sum. 

 

Figure 3:Galileo’s arrangement of the terns obtainable by the throw of three dices  

 

Galilei pointed out the existence of a certain symmetry for the sums following 10, in other 

words, observing that the sum 11 appears with the same numbers of configurations of the 

number 10, the number 12 appears with the same number of configurations of the number 9 

and so on, he decided to visualize and calculate only the numbers of configuration for the sums 

minor of ten and obtaining the others using this symmetry recognition. In this way he can 

rationally explain the phenomenology of the game observed but that people previously couldn’t 

explain: playing many times, it seems clear that the sums 10 and 11 result to be more frequent, 

and so more convenient, compared to the sums 9 and 12, exactly because 10 and 11 are associate 

to a bigger number of configurations, in other words they have more terns from which they can 

be originated. 

 

1.2.2 The origins of the calculation of the classical probability 



 19 

The mathematical formalization of the calculation of probability dates to 1654, when Antoine 

Gombaud Chevalier de Méré, writer and obstinate player of gambling, sent a letter to the French 

philosopher and mathematician Blaise Pascal with the following problem: 

“Is it easier to obtain at least a 6 throwing a dice four times or to obtain at least 

two 6, that is 12, throwing two dices twenty-four times?” 

Gombaud tried to calculate the probability of both events, a calculation that made him obtain 

two estimates of probability that were identical.  

Regarding the first event, Gombaud concluded that throwing one time a not altered dice, the 

probability of obtaining 6 was 1/6. Then he decided to sum up four times this probability, 

obtaining: 

4 ×
1
6 =

2
3 

Equation 1 

He makes the same steps also to calculate the probability of the second event: by throwing two 

not altered dice, he would obtain double 6, as well as sum 12, with probability 1/36. He decides 

to multiply 24 times this probability in order to obtain the same probability of the previous case 

with one dice: 

24 ×
1
36 =

2
3 

Equation 2 

Gombaud’s conclusion was it’s perfectly equal to bet on one of the two events: at least a 6 

throwing a dice four times or at least two 6, that is 12, throwing two dices twenty-four times. 

Gombaud focused his work only on the manifesting of the favourable events: 6 in the case of 

one dice and a double 6 in the case of two dices.  

Pascal, together with the French mathematician Pierre de Fermat, managed to clarify 

Gombaud’s doubts calculating how many the favourable cases were compared to the 

“unfavourable” cases, concluding that the double 6 out of 24 throws is a harder event to happen, 

so it’s less likely to occur compared to a single 6 out of 4 throws. 

A modern solution to this problem is linked to the concept of complementary events: two events 

called E and E’ (with the probability P(E) and P(E’), respectively) are defined complementary 

if E or E’ occur for sure, and it’s excluded that both will happen simultaneously. 
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In this case we have:  

𝑃(𝐸) + 𝑃(𝐸!) = 1 

Equation 3 

So, to calculate the probability of the event E knowing the one of E’:  

𝑃(𝐸) = 1 − 𝑃(𝐸!) 

Equation 4 

Let’s examinate now the first part of the problem. 

The probability of the event “out of 4 throws of a dice will come out a 6 at least once” is 

equivalent to 1 minus the probability of the complementary event: “out of 4 throws will come 

out a 6 not even once”. The event A consist in obtaining at least a 6 out of 4 throws of a dice 

alone, while the complementary event A’ consist in obtaining 1 or 2 or 3 or 4 or 5 (that is not 

even one 6) out of 4 throws. In terms of the calculation of probability we have:  

𝑃(𝐴!) = "
#
´"
#
´ "
#
´ "
#
= /"

#
0
$
= #%"

&'(#
≅ 0,4822 

Equation 5 

So, based on the definition of complementary events:  

𝑃(𝐴) = 1 − 𝑃(𝐴!) = 1 −
625
1296 	≅ 0,5177 ≅ 𝟓𝟐% 

Equation 6 

In the same way, the probability of the event: “out of 24 throws of two dices comes out at least 

a double 6” is equivalent to the opposite probability of the event: “out of 24 throws of two dices 

comes out a double 6 not even once”. 

In this case, the event B consist in obtaining at least a 12 out of 24 throws of two dices, the 

complementary event B’ consist in obtaining numbers between 2 and 11 (so obtaining not even 

a 12) out of 24 throws, that is:  

𝑃(𝐵!) =
35
36	×	

35
36	× …	×	

35
36 = 	>

35
36?

'$

	≅ 0,5085 

Equation 7 

For the relation that links the complementary events:  
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𝑃(𝐵) = 1 − 𝑃(𝐵!) = 1 − 0,5085 ≅ 0,4914 ≅ 𝟒𝟗% 

Equation 8 

It turns out, obviously, that’s more probable to obtain at least a 6 out of 4 throws of a dice than 

two six out of 24 throws of two dices.  

A change of perspective was necessary to solve the problem and in particular the emergence of 

the idea of the complementary event and the calculation of its probability that, in this case, it’s 

simpler in comparison to the direct calculation of the probability of the event the original 

interest.   

Another problem which challenged the mathematician’s minds of that time, and which was 

linked with a matter of probability, was the one regarding the partition of the prize of a started 

game, but interrupted, knows as “the problem of points”. The problem of the interrupted game, 

already introduced by the Italian mathematician and economist Luca Pacioli (1494) is the 

following:  

“The players will play a game that will end when one of them will reach a prefixed 

number of victories (for example 6); the winner will earn a certain prize. If they 

decide to interrupt the game before arriving to 6, in our case with a score of 5 – 3, 

how would the prize be divided equally and honestly between the two players?” 

Pacioli suggested to divide the prize for the number of played games and to assign the parts 

based on how many games were been won by each player. A not totally equal solution. Niccolò 

Fontana noticed the mistake made by Pacioli; he was a Brescian mathematician also known as 

Tartaglia and in his work “General Trattato”, published in 1556, he pointed out that, according 

to Pacioli’s rule, if a player would have won a game and the other player would have won none, 

he should have acquired the whole prize, which is totally unfair. So, he tried to formulate a new 

solution, that also turned out to be unsatisfactory. His reasoning was the following: the 

difference of victories between the two players A and B was of two games, (5 – 3) which 

corresponded to 1/3 of the total prize, so the prize shall be divided in 3 parts, and just one would 

have been collected by B, while the other two would have been collected by A.  

Once again, it was necessary a change of perception led by the mathematicians Pascal and 

Format, who, thanks to their illuminating contribution, managed to find a solution to the riddle 

“interrupted game”. Starting from this exchange of ideas the two will keep in touch and will 

initiate a correspondence that will be famous in the field of the origins of the calculation of 

probability. They both understood that the key of the solution laid not in the number of games 
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played and won by the two players, but in the number of games that were lacking to reach the 

victory, so the end of the match. In other words, Pascal and Format focused their attention not 

on what already happened, but on what haven’t happened yet, that is the other cases that could 

manifest. Pascal formulated the right solution through the nowadays known “Tartaglia’s 

triangle” (from this notion derive some basic mathematical concepts like the binomial 

coefficient), while Format solved the problem of the prize determining the maximum number 

of necessary games to complete the challenge, and also the calculation of the favourable cases 

for each player (creating the premises for the combinatorial calculation). They both came to the 

same conclusion, so that on July 29 of the year 1654 Pascal wrote to Fermat “I see that the truth 

it’s the same in Toulouse as much as in Paris”. 

Even if Pascal and Format never used the term “calculation of probability” their correspondence 

it’s the beginning of the calculation of probability, a mathematical field that from the second 

half of the XVII century will attract the attention of many enthusiasts of the probabilistic 

problems, like Christiaan Huygens (1657). Huygens, inspired by Pascal, was the author of the 

first treatise of probability: “De Ratiociniis in Ludo Alae”, which was published in Latin in 

1657. In this essay, Huygens introduces some aspects of the probability in an axiomatic way, 

like the concept of winning expectation with the term “geometrica expectatio”, nowadays 

called “mathematical hope”. More in particular, Huygens claims that if p is the probability of 

winning a certain amount a, and q is the probability of winning an amount b, then we can expect 

to win the amount pa+qb. 

Starting from Huygens’ contrail, the eclectic Gottfried Wilhelm von Leibniz wrote: 

«If a situation can lead to different advantageous results ruling out each other, the 

estimation of the expectation will be the sum of the possible advantages for the set 

of all these results, divided into the total number of results. » 

So, Leibniz suggests that, when a situation of uncertainty can lead to different convenient 

results, that exclude one another, the estimate of the winning expectation is the sum of the 

possible advantages for the totality of the all the results, divided for the total number of results. 

With Leibniz, and even before, with Fermat, it’s possible to witness the progressively 

development of what it’s know as the first mathematical approach to the probability, which is 

the classical approach, whose first definition is contained in “The Doctrine of Chances”, the 

first book about the theory of probability, written by the French mathematician of the XVIII 
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century Abraham de Moivre (1738/1967) and published for the first time in 1718. The definition 

is the following:  

«Wherefore, if we constitute a Fraction whereof the Numerator is the number of 

Chances whereby an Event might happen, and the Denominator the number of all 

the chances whereby it may either happen or fail, that Fraction will be a proper 

definition of the Probability of happening. »  

In these lines emerges one of the first mathematical constructions of the concept of probability 

seen from the point of view of the classical approach.  

These words, if transformed in mathematical symbols, create a fraction whose numerator 

represents the number of possibilities according to which an event can happen and the 

denominator expresses, instead, the number of all the possibilities through which that event can 

happen or not.  

Of course, De Moivre’s concept is one of the first definitions of the classical probability, but 

the one who created the classical method of the calculation of probability (in terms of ratio), 

universally known, is the French mathematician and noble Pierre Simon Laplace. Laplace 

(1812/1951), in his essay “Essai philosophique sur les probabilités”, published in 1814, points 

out the centrality of the subjective sight in the evaluation of the equiprobability, essential for 

the classical definition of probability, in concrete situations. In this regard, Laplace wrote: 

«the theory of chance consists in reducing all events of the same kind to a certain 

number of equally possible cases, i.e. such that we can be equally undecided as to 

their existence» (Laplace, 1812/1951) 

So, we have the following definition, that is also the first principle of the classical conception 

of probability:  

«the probability of an event is the ratio of the number of cases which are favourable 

to it to the number of all possible cases when there is no reason to believe that one 

of these cases should happen rather than the others» (Laplace, 1812/1951) 

The probability, in Laplace’s opinion, is a fraction, associated to the meaning of a ratio, whose 

numerator represents the number of favourable cases, and the denominator is, instead, the 

number of possible cases. This is valid only when nothing makes us think that a case will happen 

more likely than the other one so the core idea of equiprobability. In other words, it’s necessary 
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that the events in question have the same probability of manifesting, so they all must be equally 

possible. Below the definition of classical probability: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒	𝑐𝑎𝑠𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒	𝑐𝑎𝑠𝑒𝑠  

Equation 9 

The classical approach represents a fundamental goal for the history of the calculation of 

probability. It can be applied in situations where it’s possible to identify equiprobable 

configurations in which is possible to calculate in advance the number of combinations 

corresponding to a certain event. However, in many human or natural circumstances, where the 

characteristic of equiprobability decreases, this approach appears to be powerless. The one who 

shed light on this aspect was the Swiss mathematician and scientist Jacques Bernoulli 

(1713/1987), who, in his essay “Ars conjectandi”, wrote that what is not given in advance is at 

least possible in retrospect, so it can be possible to obtain it observing the result of many similar 

examples. This intuition will inspire Bernoulli himself to elaborate “The law of large numbers”, 

paving the way to what will be a new way of approaching to the probability: the frequentist 

approach, an approach that will conquer mathematical legitimacy only centuries later, in 1900, 

thanks to the work of the Austrian mathematician and engineer Richard von Mises (1957). 

1.3  Frequentist approach 

Jacques Bernoulli launched some studies that will lead to the discovery of an alternative and 

totally new way of estimating a probability evaluation, based on an objective and frequentist 

estimation of the probability of a concrete event and on experience, which only appeared three 

centuries ago.  

A reasonable valuation of the probability of an event can be obtained starting from the repeated 

observation, in the same conditions, of tests where an event can happen or not with a certain 

frequency. In other words, when repeating an experiment for a considerable number of times 

in the same conditions, the relative frequency of an event that actually happens represents a 

reasonable valuation of the probability of the event itself. By saying relative frequency, we 

mean the ratio between the absolute frequency (meaning the number of times that an event 

happens) and the number of accomplished proves.  

The frequentist approach is needed when it isn’t possible to know from the start the number of 

favourable cases without accomplishing some experiments for several times. It is based on a 

theorem which was elaborated by Bernoulli and which is known as “Law of large numbers”; 
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It affirms that in a sequence of proves accomplished in the same conditions and whose events 

are independent, the frequency of an event moves closer to its probability and the approximation 

tends to improve with the increasing of the proves, tending to infinity. In modern words, this 

law can be formulated as follows: by the increasing of the number of experiments or proves 

accomplished, the value of the frequency tends to the theoretical value of probability, that is 

the value given to the classical probability. 

If an experiment could accomplish for an infinite number of times, for example with the 

throwing of a coin, based on what said by the law of large numbers, the expectation would be 

that the value of the relative frequency of each event, heads or tails, tend to his value given by 

the classical probability. To be clearer, thanks to the classical probability we know that, 

throwing a not altered coin, the two faces of the coin, heads and tails, have the same probability 

of verifying, that is ½ = 0,5. Based on what said previously, throwing the coin for an always 

increasing number of times, we expect that the two relative frequencies of each event will 

stabilize, before or after, towards the value that we outlined earlier with the classical probability, 

indeed. So, by the increasing of the number of proves (which tends to infinity), the relative 

frequency will move always closer to the probability of each event. It’s clear that such an 

experiment can’t be actually repeated for an infinite number of times. 

Some centuries later the Austrian mathematician R. von Mises (1957) will be the one to 

formalize the frequentist approach, employing a mathematical concept that conquered a place 

in the math’s dictionary only in the XIX century: the limit. 

Following, frequentist approach will be reported from the point of view of the frequentist 

conception:  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = lim
)→+

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
	𝑛𝑢𝑚𝑏𝑒𝑟	(𝑛)	𝑜𝑓	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 

Equation 10 

The stabilization of the frequencies of an event by a random experiment, after a significant 

number of identical proves in the same conditions, has been for centuries a matter of interest.  

But when is it convenient to resort to the classical probability, and when is it better to resort to 

the frequentist one? 

First of all, the classical probability is established in advance, before consulting the facts.  
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In the frequentist conception the probability is obtained retrospectively; it’s an estimate that is 

calculated after a series of independent proves whose results permit to study the frequency of a 

certain event, but also the relative frequency through which the event verified. In other words, 

we use the experience (relative frequency deduced through statistics) to form some opinions on 

the future (probability of future events). 

So, it’s the nature of the event itself to point out the best approach. The field of application of 

the frequentist approach is really ample, because it can be applied in all the situations where 

the events aren’t equiprobable, but also in situations in which phenomena happen in similar 

conditions of which we have, or can produce, statistics data.  

Also, the relative frequency, just like the probability, is a number contained between 0 and 1, 

with some differences of meaning. The frequency 0 doesn’t imply that the event must be 

impossible, just like the frequency 1 doesn’t imply necessarily that the event must be certainly 

(as intended in the field of classical probability). Indeed, when the relative frequency is 1, that 

means that for a certain number of proves N, the event has always verified. This fact doesn’t 

implicate, in the following sequence of proves, that the same event will verify certainly with 

the same frequency, meaning with the frequency 1.  

The same goes for the complementary event.  

In conclusion, the frequentist approach defines the probability as relative frequency, it supposes 

that an aleatory experiment can be accomplished, in the same conditions, a large number of 

times that we call N. By the increasing of N, the ratio between “the number of times where the 

event has been successful” and “N” should converge to a number that we call probability.  

Despite the differences between an approach and the other, both respond consistently to the 

axioms introduced by A. Kolmogorov (1933), which formalize mathematically the two 

approaches.  

Indeed, in both approaches we can verify: 

• The probability is a number contained between 0 and 1; 

• The probability of the impossible event is 0, while the probability of the certain 

event is 1; 

• In the classical vision:  

o 0 = impossible event; 

o 1 = certain event; 
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• In the frequentist conception:  

o 0 = possible event that hasn’t verified yet; 

o 1 = possible event that has always verified on a number of proves N; 

• Being A and B two incompatible events, then the probability that one of them 

will verify is given by the sum of their probabilities.  

 

1.4  Subjectivist approach 

1.4.1 Probability: the science of uncertainty  

The probability, until now, has been treated like an intrinsic characteristic of events, that is 

revealed in the moment when a man tries to get to know it measuring it, in other words assigning 

a number to it, a parameter to those that are the cases through which it can actually manifest. 

In the two approaches that we discussed earlier, the calculation of probability is independent 

from man and leads to objective conclusions that aren’t, in no way, conditioned from the 

opinions of who evaluates numerically the possibility that an event must verify. The history of 

probability that has been told until now has allowed to outline a type of logic subtended from 

the case, from uncertainty, from a not absolute truth, as well as the logic of uncertainty.  

The concept of probability, before the XVII century, age when it became concretely object of 

investigation and scientific research, has always been used by men in its intuitive and vague 

form and been associated to events of everyday life marked by uncertain and unpredictable 

forms of knowledge. This uncertainty leads man, more or less consciously, to attribute a level 

of faith towards the happening of the event. The origins of this new mathematical science lay 

in the gambling.  

Even in the title of the first real treaty of probability intended as mathematical calculation, that 

is the Ars conjectandi by J. Bernoulli, we can see the main characteristic of the probability, an 

element that makes it stick out compared to the other sciences: the uncertainty. This new 

science, indeed, is described as “the art of conjecturing”, a definition that contrasts with the 

absolutism of the mathematical truth which ruled since the ancient times. 

“Even the name alone of Calculation of Probabilities is a paradox: the probability, 

opposed to the certainty, is what we don’t know, and how can we calculate 

something we don’t know?” (Poincaré, 1936).  

And the only certainty this science is based on is the consciousness of the uncertainty.  



 28 

Concerning the definitions that we introduced, the frequentist one and the classic one, De Finetti 

(1931) writes: 

“They define nothing; even worse, they hide, with ramblings and arcane definitions, 

full of smoke and emptiness, the real sense with which the word is used by the last 

man of the street. The so-called definition based on partitions in equally probable 

cases requests that is already acquired, in a subjective sense, the concept of 

identical probability. And the one based on frequencies requires the same vicious 

cycle and also an intuition (necessarily approximated) of a connection between the 

observation of frequencies and the evaluation of probability (subjective), a 

connection of which only an adequate elaboration of the theory of probability can 

establish the meaning based on a real analysis of the circumstances at stake.”  

These words said by Bruno De Finetti have started a deep and drastic change of perspective in 

the field of the calculation of probability. In the already described approaches, obviously 

different, but both marked by a scientific nature in the background, the probability is established 

numerically, entrusting exclusively a mathematical reasoning from which derives a calculation, 

more or less, correct.  

As a matter of fact, both the definitions of probability are expressed in mathematical terms. We 

speak of “ratio” or “fraction” in the case of the classical probability and of “frequency” or “limit 

of frequency” in the case of the frequentist probability. Ramsey (1926) and Savage (1967), 

together with De Finetti, go against these conceptions outlining a new one, which includes the 

previous ones and that will mark an important turning point. 

This change of perspective allows to evaluate the events not from the inside anymore, but from 

the outside: in this way, the point of view of the observer, who in that moment has some 

opinions and judgements regarding the events at stake, influences what will be the assignment 

of the probability of the event itself.  

In other words, the probability corresponds to the  

“grade of faith regarding the verifying of a certain event E, where the subjectivity 

is intended not as arbitrariness, but as “coherent” opinion of an expert deriving 

from the complex of information in possession of the subject who evaluates” (De 

Finetti, 1931). 

The above-mentioned definition constitutes the act of birth of a conception, not only new, but 

also revolutionary of the calculation of probability of events to which each man approaches in 
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a totally unique and subjective way, with his own beliefs and judgments, a probability called, 

indeed, “subjective”. 

1.4.2 Level of uncertainty and of dependability  

In 1974, Bruno de Finetti, author of a true and real revolution in the field of probability, debuted 

with a pretty bizarre statement: 

“The probability: who’s it? Before answering this question is surely opportune 

asking: does the probability really “exist”? and what should it be? I would answer 

no, it doesn’t exist” (De Finetti, 1980, p. 1146). 

In theoretical terms, we could support this statement. Theoretically speaking, the probability 

doesn’t exist. It doesn’t exist as absolute mathematical truth, as universal acknowledged and 

accepted definition. It subsists in the exact moment when man analyzes the reality which he 

knows to try to understand and to evaluate events that belong to it, through a quantitative 

measurement of the possibilities that an event will verify compared to other events. Basically, 

in the moment when a subject is called to decide between the verifying of an event or of another 

one, he puts into play a series of strategies to best ponder his decision. 

To the answer given about the definition of probability, De Finetti (1931) adds: 

“I could also say, vice versa and without contradiction, that the probability rules 

everywhere, that is, or at least should be, our “mentor in the thinking and acting”, 

and for this reason it interests me. Simply, it seems to me improper, and so it 

disappoints me, watching it being actualized in a substantive «probability», while 

I would believe more acceptable and more appropriate if we employed just the 

adjective “probable”, or even better, just the adverb «probably».”  

A paradoxical statement, but at the same time severely logic: the probability doesn’t exist or 

exists everywhere. 

De Finetti considers and defines the probability as a “mentor in the thinking and acting”.  

Probability intended as science of thought, a thought reasonably coherent. De Finetti has the 

urge, as he says, to establish psychologically the concept of probability. 

Here’s what the probability is: not an intrinsic property of reality (as it was considered by 

objective positions), but a property that belongs inseparably to man, who will manage, thanks 

to the consciousness of the unpredictability of the events and thanks to his own critic and logical 
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thought, to find the way in the labyrinth of uncertainty where he finds himself walking since 

his first steps.  

In 1974, the professor Henry Kyburg wrote: 

«Randomness is no longer a physical “objective” property but has a subjective 

character and probability does not measure a magnitude, such as length or weight, 

but only a degree of uncertainty, specific for each person. » (Kyburg, 1974) 

In this sense, the randomness, unlike the length and the weight, isn’t a physics property 

objectively acknowledged and accepted. The randomness has a purely subjective character, of 

which the probability expresses not a magnitude, but a level of uncertainty, that is specific for 

each person.  

In this sense, the probability doesn’t appear as a “physics phenomenon” that we study and 

analyze, but as a typical characteristic of each man, which manifests every time that he finds 

himself faced with an unpredictable situation and it helps him to weight the consequences that 

could derive from a choice. For this reason, de Finetti ended saying “the probability doesn’t 

exist”: it doesn’t exist beyond the observer.  

These ideas represent the manifesto of the subjective conception of probability.  

For centuries, the scenario of the calculation of probability has been characterized by ideas and 

thoughts that led to the same goal, that is a number, a number that limits itself to quantify and 

measure the events of reality, but it doesn’t suggest us “how” to read and interpret these data. 

This because the interpretation of data and of information is a task that concerns exclusively 

the subject, who has to make a choice, pondering potential risks and victories. Many of these 

information can be certainly obtained through the classical and frequentist approaches, but from 

this perspective, they can only provide operative modalities, tools of calculation through which 

obtain information that will be examined and evaluated directly by the subject. None approach 

could ever unveil the best choice we can make. 

“So no science will make us say: this event will happen, things will go this way, 

because it’s a consequence of a certain law, and this law is an absolute truth, but it 

won’t either lead us to skeptically conclude: the absolute truth doesn’t exist, and so 

this event can happen and cannot happen, it can go this way and it can also go in a 

totally different way, I know nothing about it.” (de Finetti, 1931) 
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The field in which the subjective conception of probability expresses in a satisfying way its 

own reason of being is the one of the bet, the same field in which the calculation of probability 

has its origins. It’s in the bet, intended as equal and correct game, that man expresses his own 

level of trust (faith or fear) that he entrusts to the verifying of an event instead of others. This 

level of trust is translated into the field of betting.  

1.4.3 Scheme of bets and following generalization  

Based on the subjectivist approach, the definition of probability P of an event E can be given 

supposing that a bookmaker is obliged to accepts bets on a certain number of events, including 

the event E. The bookmaker (A) has the authority to decide the price p that a player (G) has to 

pay to bet on some events at stake and to collect the amount 1 in the case where the event E 

verifies. G has, so, the authority of deciding if he has to pay the price related to the chosen event 

to collect 1 or to pay S times that price (𝑝 × 	𝑆) to collect, in case of victory, S times that amount 

1 ( 𝑆 × 1). 

If G decides to bet on the verifying of the event E, A collects the price pxS from G who, in the 

case where the event E verifies, collects S. Let’s indicate this situation as pro E bet. 

In the Figure 4 are represented the transitions of money between G and A (the direction of the 

transfers is suggested by the arrows) both in the case where the event E, on which the bet took 

place, verifies (yellow full square) and also in the case where it doesn’t verify (empty yellow 

square) and the connected variations of money at G’s disposal.  

 

Figure 4: Money transactions between G and A in a pro E bet 
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In de Finetti’s frame another possibility is provided: if G decides to bet against the verifying of 

E, B will be obliged to pay 𝑝 × 𝑆 to G if the event E doesn’t verify (G-wins), or to collect (1 −

p)S	if the event E verifies (G loses). In this way, G is forcing B to play money on an event using 

the prices set by B. Let’s indicate this situation as cons E bet. 

In de Finetti’s scheme of bets (1931) the price p quantifies the degree of confidence of an event, 

attributing a measure that results to be the one of the probability.  

This implies that is acquired the ability of comparing and order events according to the “degree 

of confidence” based on the effects caused by those same events.  

In other terms, in this scheme the price p coincides with the probability of the event E. 

In this way, the probability of the event is given by the relative price p in the case where A is 

coherent, meaning with this word the fact that A establishes prices pi for each event Ei (where 

I = 1…n), so that G can’t achieve a system of bets that will guarantee him a certain victory. 

This implies that those who have the possibility to establish the prices have to avoid to put 

themselves in the situation where they can certainly lose and have to assure to not be certainly 

exposed to negative credit transactions.  

According to the scheme of bets, by virtue of the condition of coherence, de Finetti (1931) 

demonstrates that the probability p of an event E is bound to the condition: 

0 ≤ 𝑝 ≤ 1 

Equation 11 

Especially, he also demonstrates that p = 0 if and only if E is an impossible event and that p =1 

if and only if E is a certain event. 

In addition, he demonstrates (de Finetti, 1931) also that given a complete class of incompatible 

events {E1, …, En}, indicated with pi the probability of the event Ei is obtained: 

\𝑝, = 1
)

,-&

 

Equation 12 

Two events are incompatible when the verifying of one of them implies that the other won’t 

verify. A class of (incompatible) events is called complete if it is certain the verifying of one of 

them (that is if their logic sum is a certain event).  
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The validity of the relations reported above (which correspond to conditions that have to be 

satisfied by p in order to be a real probability) is demonstrable employing the fact that a player 

can play both pro E that cons E and that the bookmaker is coherent.  

In some consecutive steps to the insertion of the scheme of bets, de Finetti (1931) generalizes 

the ideas that he introduced, to justify the insertion of a measure of probability in the form: 

𝑃(𝐸) =
𝑚
𝑛  

where P(E) represents the probability of an event E for which there should be m favourable 

cases out of n possible cases. 

It is, so, the way through which is usually defined the classical probability of E, where a 

definition of this type makes sense. In this regard, de Finetti (1937) writes: 

There are two procedures that have been thought to provide an objective meaning 

for probability: the scheme of equally probable cases, and the consideration of 

frequencies. (…) In the case of games of chance, in which the calculus of probability 

originated, there is no difficulty in understanding or finding very natural the fact 

that people are generally agreed in assigning equal probabilities to the various 

possible cases, through more or less precise, but without doubt very spontaneous, 

considerations of symmetry. Thus the classical definition of probability, based on 

the relation of the number of favorable cases to the number of possible cases, can 

be justified immediately: indeed, if there is a complete class of n incompatible 

events, and if they are judged equally probable, then by virtue of the theorem of 

total probability each of them will necessarily have the probability p = 1/n and the 

sum of m of them the probability m/n. (…) However this criterion is only applicable 

on the hypothesis that the individual who evaluates the probabilities judges the 

cases considered equally probable; this is again due to a subjective judgment for 

which the habitual considerations of symmetry which we have recalled can furnish 

psychological reasons, but which cannot be transformed by them into anything 

objective.  

The possibility of playing both pro E and cons E, together with the conditions of coherence, 

allows de Finetti (1931) to impose and acknowledge bonds about the conferment of the prices 

pi and so, about the subjective choice of the level of reliability to attribute to the given events.  
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The bonds regarding the degree of confidence (that are listed as properties i, ii, iii, iv) 

correspond to characteristics considered generally as plausible in the employing of the ordering 

relation. 

To explore these bonds, it’s necessary to consider acquired the meaning of the relation “it’s not 

less probable than”. 

The preposition “it’s not less probable than E’ ”, represented with E ≥ E’, is a relation that 

benefits of the following proprieties: 

i. Given the events E and E’ 

- is always valid E ≥ E’ or E’ ≥ E, 

- if the two previous relations are valid together, the two events are said to be 

identically probable (E ≡ E’) 

- if is valid E ≥ E but isn’t valid E ≡ E, it’s possible to say that «E is more 

probable than E’» (E > E’); 

ii. if A is a certain event and B is an impossible event, for each event E that is 

possible (not certain, either impossible) we have A > E > B; 

iii. E’ ≥ E and E ≥ E’’ implies E’ ≥ E’’ (transitive property, that is valid also for 

the relations of equiprobability); 

iv. If E’ and E’’ are incompatible events with E and also E’ ≥ E’’, we have that E 

+ E’ ≥ E + E’’ and inversely. 

In the above listed properties, we refer to incompatible events, meaning with this word events 

for which the verifying of one of them implies the not verifying of the other (for example, in 

the single throw of a dice, the result “six” is incompatible with the result “two”). 

The writing of the type E + E’ refers to the logic sum of the events E and E’ (for example, in 

the case of a single throw of a dice, the event “superior to four” corresponds to the logic sum 

of the event “five” and of the event “six”). 

The property iv, among those above listed, implicates a generalization of four events, of 

incompatible couples, that is not reported in this text. 

The demonstration of the validity of the measure of probability in the form P(E) = m/n is lead 

by de Finetti (1931) comparing events that belong to different spaces (for example comparing 

the event “result 2 throwing one dice” and the event “sum 12 throwing two dices”).  
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Independently from the detail of the demonstration not reported in this text, the validity of the 

measure of probability in the form P(E) = 𝑚/𝑛 emerges 

• from the introduction of the idea of probability as a measure to compare (and organize) 

levels of reliability of distinct events, 

• from the imposition of the bonds i-iv to the way through which this comparison (and 

organization) is achieved  

• from the reference to the comparison of probability of events belonging to different 

spaces 

• from the employment of the relation of order in N, so from the ability to organize natural 

numbers.  

While establishing this result, de Finetti (1931) generalizes the construct of subjective 

probability, doing without the scheme of bets and referring to the comparison between levels 

of reliability of events (without quantifying them as prices). 

Moreover, he introduces a new definition of coherence, corresponding to the assumption of 

properties i-iv: an individual is defined coherent if he compares the level of probability of given 

events without contradicting the properties i-iv. 

It’s important to highlight that in this scheme we refer primarily to the organization between 

levels of probability, from which descends the conferring of a measure of probability to an 

event: this measure isn’t defined minus of (and independently from) that ordering relation. 

1.5  Kolmogorov’s Axiomatic probability 

In 1933 the mathematician A. Kolmogorov elaborates a system of axioms which provides the 

general characteristics of a probability that must always be valid, independently from how we 

chose to define the probability. In other words, all of the three approaches already presented, 

despite their discrepancies, respond consistently to the three axioms outlined by Kolmogorov. 

In this paragraph the axiomatic probability is presented employing the language of the sets.  

Before proceeding to the explanation of these concepts, we introduce some rudiments 

concerning the set theory, useful for the understanding of what will be presented. 

1.5.1 Language of sets and language of events  

Definition 1: We call elementary events all the possible results of an aleatory experiment, 

whose results aren’t foreseeable with certainty, and sampler space the set of all the elementary 
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events. The sampler space can be discrete, if its elements (meaning the elementary events) are 

an infinite number, continuous if it is more numerous. 

Definition 2. Is Ω a discreet sampler space. We call event each subset of Ω. So the totality of 

the possible events is represented by the set of parts of Ω, P(Ω), that is the set that has as 

elements all the subsets of Ω. 

The representation of the set theory of the events proves to be really efficient for the description 

of logic operations on the events. 

Let’s look at the following conformity between logic operations or relations on events and 

operations or logic relations of the set theory: 

 

Language of sets Language of events 

Ω, whole sampler space “certain event” 

∅, empty set “impossible event” 

Set A “A verifies” 

Set Ā (A’s complementary) “A doesn’t verify” 

𝐴 ∪ 𝐵 B (A union B) “A or B verifies (or both)” 

A ∩ B (A intersection B) “A and B verify simultaneously” 

A \ B (A minus B) “A verifies B doesn’t verify” 

A ∩ B = ∅ (A and B are disjunct) “the events A and B are incompatible” 

B ⊆ A (B included in A) “B implies A” 
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1.5.2 The axiomatic definition and the properties of probability 

Like the expression suggests, this definition is based on axioms, always valid, whichever 

approach is chosen for the calculation of probability: 

Positivity: Ω is a discrete sampler space, we call probability on Ω any function that to each 

subset of Ω links a real number included between 0 and 1: 

P: P(Ω) à [0,1] 

Certainty: the probability of the certain event, so of the sampler space Ω, is always 1: 

P(Ω) = 1 

s-additivity: if {𝐴)})-&+ ) is a sequence of events disjointed two by two (so 𝐴,	 	∩ 	𝐴/ = ∅ if i≠

𝑗), then: 	

𝑃	f𝐴)

+

)-&

	= 	\𝑃(𝐴)

+

)-&

) 

From these axioms derive the fundamental theorems of the probability defined by A. 

Kolmogorov. 

1.5.3 Properties of probability 

P (∅) = 0; 

P (Ā) = 1 – P(A) 

P (𝐴& 	∪ 	𝐴' 	∪ …	∪	𝐴)) 	= 	𝑃(𝐴&) 	+ 	𝑃(𝐴') 	+	…	+ 	𝑃(𝐴)), 

as long as the events A are disjointed two by two; 

P (A ∪ 	𝐵) 	= 	𝑃(𝐴) + 	𝑃(𝐵) 	− 	𝑃(𝐴 ∩ 𝐵), 

for each couple of events A and B (even not disjointed). 
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2. Mathematics Teacher education and the specialized nature 

of mathematics teachers’ knowledge 

Starting from the seminal work of Shulman (1986) in the last three decades, the need for 

expanding research on Mathematics Teacher Education has been widely recognized, since 

preparing effective mathematics teachers (considering this preparation also as long life one) 

strongly affects the mathematics teaching itself and, therefore, the mathematical knowledge and 

skills of students. Starting from the 15th ICMI Study (Even & Ball, 2009), a cross-cultural 

exchange of knowledge and information about the systems of teacher education have been 

developed at the international level, addressing fundamental themes that frame both the 

programs for mathematics teacher education and other professional development initiatives 

(e.g., Robutti et al., 2016; Borko & Potari, 2020). 

It is possible to recognize two main lines of research within the ongoing international debate 

on teacher education. 

The first line is related to the different conceptualizations of Teacher knowledge and to the 

studies on the specialized nature of mathematics teachers’ knowledge (e.g. Ball, et al., 2008; 

Carrillo, et al., 2018). The second line is the complex interplay between theory and practice 

within teacher education programs. With the aim of promoting teachers’ shifts of attention 

towards constructs, theories, and practices that can inform and guide their teaching (Mason, 

2008), in the last decades different research studies have focused on an active involvement of 

teachers in the analysis of practice through the lenses provided by theory. This has led to the 

setting up of teacher education processes that acquire the typical characteristics of a path of 

introduction to research, where teachers play the role of teacher-researchers within 

communities of inquiry (e.g. Jaworski, 2006; Mellone, 2011). 

The study presented in this thesis is placed in the first line of studies, but always leaving the 

gaze open on the second line of research described above. In fact, as will be evident from the 

methodological system built, the intention was to work within the theoretical framework of the 

Mathematics Teacher Specialized Knowledge (Carrillo et al., 2018), but at the same time to 

allow the emergence of a working group made by researchers and teachers as community of 

inquiry (Jaworski, 2006). 
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2.1 Specialized Content Knowledge: a large construct still in exploration 

Before the seminal work of Shulman and his colleagues in 1986, where they focused on 

“Knowledge Growth in Teaching”, the study and the categorization of the specific knowledge 

of teachers concerned essentially issues related to how to manage classrooms, the organization 

of activities, pupils’ assessment and lessons planning (Shulman, 1986).  

Shulman’s (1986) critique about the literature built up until their study, was that several 

research papers on “what to teach” were conducted only in the field of cognitive psychology 

and the focus was from the point of view of the students. Therefore, a specifical baseline idea 

on different conceptualizations of teacher knowledge started with Shulman’s research. 

According to this research approach, teacher knowledge branches into different fields (called 

dimensions) like knowledge of students and their characteristics, knowledge of educational 

contexts and educational purposes, knowledge of educational goals and values, general 

pedagogical knowledge, with particular reference to those principles and strategies of class 

management and organization that seem to transcend from the topic taught. However, according 

to Shulman (1986), they are not enough and “mere content knowledge is likely to be as useless 

pedagogically as content-free skill”.  

According with Shulman (1986) the analysis of these issues makes clear the problematic nature 

of the previous perspectives, indeed, the questions about teacher education that he considered 

“unanswered” were many:  

“Where do teacher explanations come from? How do teachers decide what to teach, 

how to represent it, how to question students about it and how to deal with problems 

of misunderstanding?” (Shulman, 1986, p. 8) “What are the domains and 

categories of content knowledge in the minds of teachers? How, for example, are 

content knowledge and general pedagogical knowledge related? In which forms 

are the domains and categories of knowledge represented in the minds of teachers? 

What are promising ways of enhancing acquisition and development of such 

knowledge?” (Shulman, 1986, p. 9). 

Based on these questions, Shulman (1986) proposed to “distinguish content knowledge (p. 9)” 

into three different categories: Subject Matter Content Knowledge, Curricular Knowledge and 

Pedagogical Content Knowledge. 

Content Knowledge is understood as the deep knowledge of the subject to be taught (both 

quantitatively and qualitatively). This implies that the teacher should not only know “that 
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something is so”, but also “why it is so”. Therefore, in the teacher’s mind there must be an 

organization of knowledge that allows the teacher to know also how to distinguish the central 

topics of a certain discipline from the peripheral ones.  

Curricular Knowledge refers to the knowledge of the programs designed for the teaching of 

certain disciplines and to the knowledge of teaching materials to teach them. Shulman (1986) 

divides curricular knowledge into lateral and vertical curriculum knowledge: this means that 

the teacher must not only be master of this knowledge closely related to the discipline to teach 

and that specific curriculum, but he/she must also knows how to create connection with the 

topic that their pupils will learn over the next few years and within other disciplines. For this 

reasoning a mere knowledge of curriculum is not enough and the teacher “must be familiar with 

the topics and issues that have been and will be taught in the same subject during the previous 

and subsequent years in the school, and with the materials that embody them” (vertical 

curricular knowledge) and must also know the curriculum and teaching materials of other 

disciplines and classes (lateral curriculum knowledge). 

Pedagogical Content Knowledge is the “new” (for those years) and crucial concept of 

pedagogical knowledge of the content linking Pedagogical Knowledge to Teaching Practice. 

Teachers need to learn the “psychologies” the topics they teach, making them accessible to 

everyone. Moreover, they need to know the suitable support to give to students in order to 

understand the topics specificity. This is a knowledge closely connected with subject matter 

content knowledge, because it includes the knowledge of different representations of the ideas 

that the teacher wants to teach and therefore of different illustrations, different examples, 

explanations, demonstrations and different interventions in response to the misconceptions that 

pupils can have. Indeed, teachers need to be aware of the concepts and preconceptions students 

have in relation to a particular topic. These elements are the result of the “wisdom of practice”, 

but above all of the “research on teaching and on learning” that, in this circumstance, work 

together. This knowledge, according to Shulman (1986), should be at the heart of pedagogical 

understanding of subject matter. 

These specific knowledge dimensions should be used for characterizing the research on 

teaching, especially because they can have a strong impact on state-level programs of teacher 

evaluation and teacher certification (Shulman, 1986). 

Despite the great breakthrough in research by Shulman (1986) and his colleagues, at this first 

stage of its conceiving, pedagogical content knowledge appeared of limited utility and not 

adequately described to make it operative, especially because this research was theoretical and 
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not empirical founded. As many researchers who contributed to the development of Shulman’s 

idea observed: without empirical testing, ideas cannot improve teaching and learning. They in 

particular complain about the fact that the term pedagogical content knowledge appears not 

well defined and poorly developed, but with Shulman a new paradigm of research had opened 

up: teachers' knowledge needed to be more specialized. It was going to affirm the idea more 

and more clearly, clarified a few years later that: “competence of a teacher in a particular area 

of ability (for example, throwing a ball) has been differentiated from the explicit knowledge of 

the ability necessary to teach it to students” (Chen, 2002; Rovegno, Chen & Todorovich, 2003). 

But unlike Shulman a few years earlier, to consider the knowledge that teaching entails, Ball 

and her colleagues (2008) have examined what teaching requires, working «from below 

upwards» starting with practice and focusing on the mathematical issue, instead of focusing on 

the curriculum or on standards for students learning. Their research is conducted through 

extensive qualitative analyses of teaching practice, with which hypothesis are made to design 

measures of mathematical knowledge.  

“By Mathematical Knowledge For Teaching (MKT) it is emphasized the importance 

of focusing on the teaching process, and not on the teachers: MKT are the 

mathematical knowledge needed to carry out the work of teaching mathematics” 

(Ball et al., 2008).   

With the term teaching, Ball and her colleagues (2008) mean everything that teachers must do 

to support the learning of their students: making interactive lessons, planning them and 

designing all the related tasks and so on. So, their research is based on what teachers need to 

know to make their teaching effective and on what are the recurrent tasks and problems in the 

mathematical teaching:  

“What do teachers do when they teach math? What are the mathematical 

knowledge, skills and sensibilities needed to manage these tasks?” (Ball et al., 

2008). 

To answer these questions, they propose a diagram, refining Shulman’s categories, in which 

“Pedagogical Content Knowledge” and “Subject Matter Knowledge” were the two principal 

domains of this model (Figure 5).  
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Figure 5: Domains of Mathematical Knowledge for Teaching (Ball et al., 2008) 

Ball (2008) and her colleagues renamed the Curricular knowledge of Shulman (1986) into 

“Knowledge of Content and Curriculum (KCC)” to identify more clearly a type of mathematical 

knowledge, which has been incorporated in “Pedagogical Content Knowledge”. KCC is 

understood as the knowledge of the programs designed for the teaching of certain disciplines, 

to allow the teacher to conduct linear mathematical paths through time, but that can also be 

interdisciplinary.  

Teachers need to have awareness of how mathematical topics are related over the span of 

mathematics included in the curriculum, to allow them to make decisions on how to talk about 

a specific mathematical topic in order to simplify it and to be able to prepare the pupils to tackle 

future mathematical ideas. This type of skill is a mathematical knowledge identified by Ball 

(1993) as “Horizon Content Knowledge (HCK)”, and which has been provisionally included 

like a third category within “Subject Matter Knowledge” (Ball et al., 2008).  

Pedagogical Content Knowledge also includes two other subdomains: “Knowledge of Content 

and Students (KCS)” and “Knowledge of Content and Teaching (KCT)”.  

KCS is a knowledge that allows teachers to create specific tasks to support students in 

overcoming their difficulties about what they could find confusing. When assigning these tasks, 

teachers who have this knowledge, will be able to anticipate and interpret students’ answers, in 

order to provide them a more adequate feedback and support. With the experience, they can 

expand their familiarity with most common and potential students’ mistakes, but also increase 

the set of more motivating and interesting ways to present more difficult topics. This 

knowledge, that for this reason is incorporated into the Pedagogical Content Knowledge, allows 

teachers to recognize the optimal moment during the growth of the students in which to propose 

new topics supported by their accurate learning skills.  
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KCT is a knowledge that combines the knowledge about teaching and the knowledge about 

mathematics, linked with related pedagogical problems: it concerns the knowledge that allows 

the teacher to design and evaluate a sequence of tasks (or interactive lessons) to deal with a 

topic, but also to take into consideration the comments of their students and use them to start a 

new mathematical discussion. Therefore, the teacher with this knowledge will know when to 

pause a task to make it clearer and to give time to students to ask questions about their doubts, 

but will also be able to be flexible on the scheduled lesson and to transform it if necessary. 

The “Subject Matter Knowledge” domain, like Shulman’s Content Knowledge, satisfies 

mathematical demands of teaching and it’s composed by “Common Content Knowledge 

(CCK)” and “Specialized Content Knowledge (SCK)”, along with HCK. 

CCK is a mathematical knowledge that allows anyone, and therefore also teachers, to give 

correct answers to mathematical problems, to be able to make correct calculations, to recognize 

the accuracy of an answer or a definition on a textbook. This kind of knowledge, however, is 

not unique for teaching, but of course it is absolutely necessary for a mathematics teacher. 

The mathematical knowledge and skill, identified by Ball et al., (2008) as “Specialized Content 

Knowledge (SCK)”, require a kind of mathematical work that other do not. The decompression 

of the mathematical knowledge entails the use of a mathematical language according to the 

pupil’s level, as well as appropriate mathematical representations and effective mathematical 

ideas, thus being coherent with the mathematic CCK. 

To explain the difference between CCK and SCK, the authors propose an example based on a 

simple subtraction computation in which there is a common error like in Figure 6.  

 

Figure 6: Example based on a simple subtraction computation (Ball et al., 2008) 

Knowing how to perform this procedure (correct computation of subtraction) is a necessary but 

not sufficient condition to teach it (CCK). Knowing how to recognize the presence of an error 

in this procedure is something that anyone can see (CCK), but the diagnose of the error does 
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not provide to the teacher a detailed mathematical understanding necessary for an effective 

treatment of the problems encountered by the students or for a development of a specific 

didactic action to prevent such error: the teaching requires more than the identification of a 

wrong answer (SCK). 

The activity of interpreting is a daily task for teachers, who are faced every day with incorrect 

answers (both written and oral) but also with unpredicted solutions and non-standard strategies. 

According to the SCK, it is necessary to spend time in order to decompress them. 

The management of errors in teaching mathematics is the central point of another 

conceptualization of teachers’ knowledge, the Interpretative Knowledge – IK (e.g., Di Martino, 

Mellone and Ribeiro, 2020: Mellone et al., 2020), identified by a group of researchers who have 

worked in the MKT framework and which will be taken up later in the thesis. 
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2.2 Mathematics Teacher Specialized Knowledge (MTSK)  

After an in-depth analysis of the MKT model, Carrillo and his colleagues (2018) questioned 

the positioning of SCK as a sub-domain of SMK, believing that SCK is also strictly connected 

to the PCK sub-domain.  

These researchers pointed out that the specificities of teachers' knowledge, with respect to the 

model of the group of Michigan (Ball et al. 2008), must concern both mathematical content and 

teaching practice. Therefore, they proposed a new model, named Mathematics Teacher’s 

Specialised Knowledge (MTSK), which considers all the knowledge that a teacher needs to 

have for teaching mathematics as specialised. A compact representation of the MTSK model is 

sketched in Figure 7.  

According to them, the specificities required for mathematical teaching concerns “meanings, 

the properties and definitions of particular topics, the means of building understanding of the 

subject, connections between content items and characteristics associated with learning 

mathematics, amongst others” (Carrillo et al., 2018, p. 239). 

Therefore, the model is mainly divided in two domains: the “Mathematical Knowledge” (MK) 

domain, that is a systemic combination of structured knowledge with its own rules and the 

“Pedagogical Content Knowledge” (PCK) domain that is strictly linked with classroom 

mathematic practice. These areas must be complementary to allow teachers to take decisions 

and to be reflective and critical about their actions in order to improve mathematics education. 

It is important to emphasise that the PCK sub-domains are also closely related to the 

mathematical contents (as already suggested by the names of the three sub-domains), because 

the knowledge that belongs to them derives chiefly from mathematics: “knowledge in which 

the mathematical content determines the teaching and learning which takes place” (Carrillo et 

al., 2018). 

Each domain is divided into three sub-domains. MK is divided into Knowledge of Topic (KoT), 

Knowledge of the Structure of Mathematics (KSM) and Knowledge of Practices in 

Mathematics (KPM). PCK, in turn, is divided into Knowledge of Mathematics Teaching 

(KMT), Knowledge of Features of Learning Mathematics (KFLM) and Knowledge of 

Mathematics Learning Standards (KMLS). 
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The centre of the model is composed by “Beliefs on mathematics” and “Beliefs on mathematics 

teaching and learning” which represent “conceptions and beliefs (Thompson, 1992) about 

mathematics, how it is learned and how it should be taught” (Carrillo, et al., 2018, p. 240): a 

philosophy of mathematics that influences (and is influenced by) the knowledge domains. 

 

 

 

Figure 7: The Mathematics Teacher’s Specialised Knowledge model (Carrillo, et al., 2018) 

 

The MTSK model arises from the need to identify the specific knowledge (organized in 

domains and sub-domains) required to the teacher to carry out his/her work of teaching: 

“We consider the knowledge possessed by a mathematics teacher in terms of a 

scientific discipline within an educational context – the domain of Mathematical 

Knowledge (MK). We broaden the idea of Subject Matter Knowledge (Shulman, 

1986), in that we consider characteristics of mathematics as a scientific discipline, 

and at the same time recognise a differentiation between Mathematics per se and 

School Mathematics. The other domain – Pedagogical Content Knowledge (PCK) 

– is comprised of the knowledge relating to mathematical content in terms of 

teaching- learning” (Carrillo et al., 2018, p. 240). 
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To describe each sub-domain, Carrillo and colleagues (2018) refers strictly to what teachers 

need and use in their classroom practice, using categories. Therefore, they emphasize that 

teachers need knowledge about a particular sub-domain. However, this does not mean to have 

a predetermined list of contents, but that the teacher must have knowledge that can be located 

in those sub-domains.  

For a better understanding of the meaning of each category, Carrillo and his colleagues (2018) 

proposed specific examples related to different mathematical topics. Referring to a single 

mathematical topic allows to distinguish more specifically the different categories. To this 

regard, Zakaryan and Ribeiro (2019) explored the KoT via a case study in the context of rational 

numbers, to characterize the teachers’ specialized knowledge in a more refined manner and to 

investigate in depth the content of teachers' knowledge.  

Hereafter, each sub-domain of MTSK will be presented in terms of its theoretical 

conceptualization. Given the research focus, examples of content related to teachers' knowledge 

on the topic of probability will be exclusively presented for the Knowledge of Topics sub-

domain.   

2.2.1 Knowledge of Topics (KoT) 

KoT’s sub-domain (Figure 8) concerns mathematics content itself and describes the “what” 

teachers know about the topic they teach, and so the definitions and notions about a specific 

mathematical topic, its own set of properties, the intra-conceptual connection present between 

single content items of the topic and the understanding of its foundation and history.  

What makes the KoT a mathematical specialized knowledge is the way in which the teachers 

know the topic they teach, since KoT is defined as a deeper and broader perspective of content 

knowledge which is only required for math teachers. This sub-domain includes different 

representations system about it and different meanings connected with each operation related 

to that specific topic: these categories allow teachers to manage mathematical procedures in a 

more performing way exploring the characteristics of the resulting object linked to how, when 

and why it is obtained. 

Mathematical epistemological aspects, and so all the forms of examples explorable in a real 

context or in connection with other disciplines, characterize the category of phenomenology 

and application, useful to contextualize a problem and a situation. 
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Figure 8: KoT's categories 

 
In the field of probability, it is important to understand which kind of specialised knowledge is 

that a teacher needs to have, and which the sub-domains such a knowledge can be located.  

It is desirable that a teacher has a broad and deep KoT, which involves, among other things, the 

fact that probability needs to be considered not only in the classic probability’s vision, but also 

with the frequentist and subjectivist approach.  

It is also relevant that teacher has a knowledge of the definition and the meaning of probability, 

which allows knowing the potential of each approach. 

Let’s take the example of the "dice game", that it is also the context of the discussion that we 

will analyse later, and consider the problem of the quantification of the degree of confidence of 

events “sum of faces of two six-sided dice” (KoT - phenomenology and application). This issue 

can be faced using all the three approaches of probability (KoT - definition, properties and 

foundation).  

The classical approach to probability sees the probability’s measure like a fraction between the 

number of favourable cases of a given event E and the number of all possible cases of a given 

event space (KoT - definition). Thus, according to the classical approach, in Figure 9 are 

reported, with the black colour, the probability’s measures associated with each sum (listed in 

green and unpacked in orange and blue) of the problem (KoT - procedures) presented. 
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Figure 9: probability’s measures associated with sum from 2 to 12 

 

In the frequentist approach, if an experiment is repeated in the same conditions for a 

considerable number of times (KoT - phenomenology and application), the relative frequency 

of an event is considering a first reasonable valuation of the degree of reliability of the 

occurrence of the event itself (KoT - definition, properties and foundation). With “relative 

frequency” is meant the ratio between the number of occurrences of an event (meaning the 

number of times that an event happens, that can be "how many times the sum 6 came out of the 

dice") and the number	of accomplished proves (that can be “the number of times we roll the 

dice”). By the increasing of the number of experiments or accomplished proves (potentially for 

an infinite number of times), the value of the frequency tends to the theoretical value of 

probability, that is the value given to the classical probability (law of large numbers - KoT - 

definition, properties and foundation). 

The construction of the probability theory from a subjectivist point of view has emerged from 

the intention to give to the probability’s meaning a psychological basis. In particular, 

considering teacher’s knowledge of the probability of an event is a quantitative measure of the 

degree of confidence based on the judgment that events occur, is a knowledge associated to a 

foundation on probability theory (KoT - definition, properties and foundation). In this 

perspective, what really matters is not the concept "what I foresee, will happen, because I 

foresaw it” but, instead we should focus on the question “why do I foresee that this event will 

happen?" (de Finetti, 1931).  

Indeed, the answers to the query “why different degrees of confidence can be attributed to 

different events” are various: reasoning based on sensations, on statistical analysis or on 

assessments that rely on the combinatorial calculation. Based on the subjectivist approach, the 

definition of probability P of an event E can be given supposing that a bookmaker is obliged to 
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accept bets on a certain number of events, including the event E (KoT - phenomenology and 

application).  

It is still important to highlight that, the teacher’s awareness that the three approaches to 

probability are interconnected constitutes part of his/her specialized knowledge identified as 

intra-conceptual connection, within the subdomain KoT.  

Indeed, mathematical connections are approached from three distinct perspectives. Firstly, they 

are considered intrinsic characteristics of the mathematical discipline, both in academic and 

school contexts. Secondly, they are seen as a mental construction or elaboration by mathematics 

students. Lastly, they are understood as a process of establishing associations through 

observation and seeking relationships among mathematical elements (Businskas, 2008). 

The main difference between second and third perspectives lies in the nature of the activity 

involved in forming connections. In the second perspective, this activity is a mental function 

that occurs at a higher cognitive level, characterized by a process of "abstraction" (Skemp, 

1989). On the other hand, in the third perspective, the activity is viewed more mechanically, 

where connections are identified through a deliberate process of search and observation of 

relationships. 

In this way, while on one hand a mathematical connection can arise from intrinsic relationships 

among elements, that is, relationships that exist independently of being perceptible to an 

individual, on the other hand, it is possible to perceive that a mathematical connection is the 

result of the relationship that an individual establishes consciously and intentionally (or not) 

among these elements, based on their mathematical knowledge (Policastro, 2021). 

In this context, to explore the teacher's knowledge regarding mathematical connections, it is 

essential to understand and consider them as "products", that is, "mental objetcts" (Businskas, 

2008, p. 17), which can be identified, developed, recalled, and discussed. 

Understanding, therefore, that mathematical connections are products of relationships 

established by individuals, whether consciously and deliberately or not, in the context of this 

research, we come to view connections as "products of the relationships that are established 

between different constructs, concepts, properties, or foundations within the same topic and/or 

between different topics" (Policastro, 2021, p. 79). This will be useful for assuming the intra-

conceptual connections (Carrillo et al., 2018) in the context of probability as relationships 

established between different constructs, concepts, properties or foundations within the 

classical, frequentist or subjectivist approaches.  

2.2.2 Knowledge of the Structure of Mathematics (KSM) 
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KSM’s sub-domain (Figure 10) includes the interlinking system which bind the contents of the 

topic with themselves in a temporal vision and the connections with other mathematical items. 

It follows that the knowledge of a mathematical topic must be broad in order to be able to 

approach a mathematical topic with different levels of depth, suited to the pupils’ level of 

comprehension.  

A simple level of deepening must not, however, exclude any important element of that 

argument not to create crack when, successively over time, will renew that argument with a 

higher degree of complexity.  This type of knowledge allows the teacher to simplify or 

complicate the same topic and to connect with the pupils the different levels of complexity 

developed over time. 

KSM refers to the teachers knowledge grounding making connections between different 

mathematical topics and involves four categories: connections based on simplification, 

connections based on complexification, auxiliary connections, transverse connections. 

Connections based on simplification and complexification are related to the teacher's 

knowledge that more advanced concepts build upon elementary ones in the case of 

simplification. Conversely, in the case of complexification, the teacher's knowledge is 

associated with elementary concepts, properties, and/or foundations related to a specific topic, 

viewed from an advanced standpoint (Klein, 1908), aiming to facilitate students' mathematical 

comprehension. Auxiliary connections, in turn, “concerns the necessary participation of an 

item in larger processes” (Carrillo et al., 2018, p.244), while transverse connections “results 

when different content items have features in common such as is the case with the concepts of 

limit, derivative, local and global continuity” (Carrillo et al., 2018, p. 244). 
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Figure 10: KSM's categories 

 

2.2.3 Knowledge of Practices in Mathematics (KPM) 

In the KPM sub-domain, “practices” refers to the functioning of mathematics and the syntactic 

knowledge (Schwab, 1978) of mathematics rather than to actions that are activated in the 

learning - teaching process. This sub-domain (Figure 11) includes “knowing about 

demonstrating, justifying, defining, making deductions and inductions, giving examples and 

understanding the role of counterexamples. It also includes an understanding of the logic 

underpinning each of these practices (Carrillo et al., 2018, p. 244).   

In the MTSK model, Knowledge of Practices in Mathematics focuses specifically 

on means of production and mathematical functioning” (Carrillo et al., 2018, p. 

245).  

Knowledge of the Practices of Mathematics (KPM), falls under the umbrella of foundational 

mathematical activities. Its categories were recently delineated by Delgado-Rebolledo (2020).  

These categories are: knowledge of the practice of demonstrating, knowledge of the practice of 

defining, knowledge of the practice of problem-solving, knowledge of the role of mathematical 

language. 
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These components form essential elements within the realm of mathematical creation, 

contributing to a deeper understanding of mathematical concepts and their practical 

applications. 

 

Figure 11: KPM's descriptors 

 

2.2.4 Knowledge of Mathematics Teaching (KMT) 

KMT’s sub-domain (Figure 12), does not concern purely pedagogical knowledge, but 

“knowledge intrinsically bound up with content” (Carrillo et al., 2018, p. 247). This knowledge 

is what enables teachers’ to be aware of more effective activities, strategies and techniques to 

deal with a specific mathematical content. Teachers need to have critical awareness, and not 

only a mere knowledge and information, of resources and teaching materials like textbooks, 

manipulatives, technological resources or interactive whiteboards, in order to design efficient 

learning opportunities. 
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Figure 12: KMT's categories 

2.2.5 Knowledge of Features of Learning Mathematics (KFLM) 

KFLM (Figure 13) includes the knowledge of “how” the pupil learns (or can learn) 

mathematics. The mathematical topic, in this sub-domain, is intended as the object of pupils’ 

learning and, as such, the KFLM’s knowledge concerns the way in which students interact with 

that topic. To face that specific topic, the teacher will have to wonder how he/she can ease the 

student understanding, what will be the pupils’ reasoning and thoughts about the proposed task, 

what will be the possible answers, strategies, and errors adopted for the resolution of a problem, 

what are the strengths to start from.  

This knowledge can be developed with the help of the mathematical education research and, 

especially, with a meticulous analysis of their teaching experience. Carrillo et al., (2018, p. 247) 

consider that “the final element of KFLM concerns the emotional aspects of learning 

mathematics (Hannula, 2006). At one extreme, this involves awareness of, for example, 

mathematics anxiety (Maloney, Schaeffer, & Beilock, 2013), but it includes, too, such everyday 

things as what motivates the students, their interests and expectations of mathematics (both in 

general and in terms of specific areas)”.  
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Figure 13: KFLM's categories 

 

2.2.6 Knowledge of Mathematics Learning Standards (KMLS) 

KMLS (Figure 14), in addition to what Ball and colleagues (2008) suggested, does not include 

only a mere knowledge of the curriculum, but a “knowledge which enables the teacher to be 

critical and reflective in considering what the student should learn, and what focus should be 

taken, at any particular level, or period of development” (Carrillo et al., 2018, p. 246). 

For this reasoning and to achieve this, the teacher needs to know how to search for information 

in unofficial documents (e.g., curriculum specifications from other countries or research 

literature) and in what way teach mathematical content at any particular level.  

This sub-domain also includes knowledge about the sequencing topics, considering the content 

to be taught “both retrospectively, in terms of knowledge previously acquired, both 

prospectively, based on the knowledge that will have to be acquired to address subsequent 

topics” (Carrillo et al. 2018, p. 247).  
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Figure 14: KMLS's categories 
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2.3 The dynamic way of perceiving teachers’ knowledge as a process of 

knowing 

In literature concerning mathematics teachers’ knowledge, the researchers very often refer to a 

crucial action needed to move from the academic mathematics to the mathematics for teaching:  

the “unpacking” of a mathematics content, that involves a decompressions process in the form 

of examples, explanations and simplifications for making more extensive and richer the 

mathematics content and suitable to be worked in the teaching and learning process (Adler & 

Davis, 2006; Ball & Bass, 2000; Ma, 1999). This reference to the “unpacking process” 

emphasizes how the mathematical knowledge for teaching involves many processes, and 

perhaps it can be useful to look at itself as a process. Indeed, the authors of the MTSK model, 

alongside other authors, shifts the focus of attention to specialized “knowledge” of mathematic 

teachers introducing an alternative point of view that involves and highlights the process of 

“knowing" (Scheiner, Montes, Godino, Carrillo, & Pino-Fan, 2019). 

“In our view, whether knowledge is specialized or not is a question of whether the 

knowledge is contextually adaptive (Hashweh, 2005), that is, functional on a 

moment- by-moment basis, and highly sensitive to the changing details of the 

situation as teachers interact with the environment and with the students around 

them” (Scheiner et al., 2019, p. 162).  

Therefore, Scheiner and colleagues (2019) propose to focus on the process that teachers cross 

- or need to cross - to shape, and ensure specialized, the knowledge that they need: not only 

“what” teachers know, but “how” teachers’ knowing comes into being.  

“As such, a mathematics teacher’s action is not a simple display of a static system 

of some certain knowledge types, but rather a highly contingent and continually 

adaptive and proactive response that shapes, and is shaped by, the environment in 

which the teacher interacts” (Scheiner et al., 2019, p. 163). 

This change of perspective (Scheiner et al., 2019), regarding mathematics teachers’ styles of 

knowing, puts in constant interaction the various facets of the knowledge’s organic whole that 

becomes specialized when teachers adapt it to the complex dynamics in which knowledges are 

useful. 

Indeed, the authors emphasize viewing mathematics teacher knowledge more as a mindset 

rather than static traits or dispositions. The distinction proposed revolves around considering 

"knowledge about/of/for/in" a discipline versus "disciplinary knowing." While the former 



 58 

prompts inquiry into various types of knowledge, the latter focuses on a style of knowing 

shaped by specific activities, orientations, and recognizable disciplinary dynamics. There is a 

recognition of mathematics educational knowing as a specialization within mathematics teacher 

knowledge, illuminating a pathway for better integration of knowledge and action in teaching 

practice (Scheiner et al., 2019). 

The proposed dynamic point of view tries to overcome the static and additive vision of 

supplementary “item” knowledge needed to teach, but is rooted in the epistemology of 

knowledge and in the interactions that connect them (Scheiner et al., 2019). In this perspective, 

the same teacher education cannot be static and detached from teaching practice, but it must 

necessarily take into account what happens in the classroom: the words of the pupils, the 

productions, the drawings, the answers to tasks, their gestures and their actions should be taken 

as learning opportunities for teachers. 

In order to specialise the mathematical knowledge of teachers in a dynamic way, researchers 

involved in teacher education can use in a suitable way and according their goals the analysis 

of all the productions of the students. The process of understanding what is strange or wrong, 

the observation and investigation of the task answers different from what a teacher is 

accustomed to receive, are an integral part of the evolutionary and transformative process of 

knowledge. 

In this perspective, for example, mathematical errors, but also non-standards reasoning and 

mathematical ambiguities should not be seen as “something that make you lost” (Borasi, 1996), 

but they can be used as opportunities in teacher educations contexts as in the real mathematics 

classes environments as firstly addressed in Ribeiro et al. (2013). Indeed, referring to the new 

approach to the errors in the field of mathematics education presented by Borasi (1996), a 

contribution to expand the construction of SCK in the sense of Ball’s model (2008), was 

provided by Ribeiro et al. (2013) with the notion of “Interpretative Knowledge (IK)”.  It is 

focused on the vision of errors as learning opportunities and as a starting point for building 

students' mathematical knowledge and ways of mathematical thinking. In this trend of research, 

teacher education specific activities have been developed to broaden IK in preservice and in-

service teachers: 

“These activities are mainly based on open questions and structured into two 

phases. In the first phase, teachers have to solve a problem: in this way, they face 

with the difficulties of the problem, and their favourite strategy can emerge. In the 
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second phase, teachers are asked to evaluate several and different strategies 

developed by real students and to propose specific feedbacks for each strategy” (Di 

Martino, Mellone and Ribeiro, 2020) 

To activate the process of interpretation, teachers have the opportunity to study the proposed 

problem and solve it and later they receive pupils’ strategies that have to be interpreted. As in 

a professional simulation, teachers become part of that dynamic experience in which the non-

standard solution of pupils are evaluated; but in a checked situation, that is by having the time 

for interpreting and analyzing them, first individually or in small group and then collectively, 

and having the chance to come back to their initial interpretations and, in the case, to change 

these initial interpretations considering also that “specialization is not a state of being but a 

process of becoming: mathematics teacher knowledge becomes specialized in its adaptive 

function in response to the dynamics and complexities in which it comes into being” (Scheiner 

et al., 2019, p. 155). 

In order to size the source of an error, a mathematical knowledge tailored for teaching is 

required. Indeed, it features a decompression of mathematics unnecessary in other contexts and 

that goes beyond what is taught to students. Students have the task of exercising fluently with 

compressed mathematical knowledge, but the teacher must keep an unpackaged mathematical 

knowledge to teach it. For example, as we saw in the example shown in Figure 6, the teacher 

must know how to explore the mathematical error committed and must know how to recognize 

that the pupil has made the error in the part relating to ones and tens, inverting the minuend 

with subtrahend to perform the subtraction in a more comfortable way. In this way, the teacher 

will quickly recognize the motivations that led the pupil to make that mistake and will build a 

new path in the subtraction topic that satisfies that specific gap and, finally, propose new tasks 

to check whether that difficulty has been overcome.  

“We hypothesise that (prospective and in- service) teachers’ IK can be developed 

through training that focuses on what students actually know and how they know it, 

thus assisting teachers in understanding students’ mathematical reasoning” 

(Mellone et al., 2020). 

The interpretive process should, therefore, be at the core of teacher practice, so that what is 

wrong (or seems wrong) can become an opportunity to explore new strategies to solve a 

problem or mathematical exercise (Mellone et al., 2020). Having a high level of this knowledge 
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permits teachers to use the students reasoning to develop specific feedback in order to increase 

their learning. 

“Interpretative Knowledge refers to a deep and wide mathematical knowledge that 

enables teachers to support students in building their mathematical knowledge 

starting from their own reasoning and productions, no matter how not standard or 

incorrect they might be” (Di Martino, Mellone, & Ribeiro 2020).  

This knowledge allows to give meaning to the students' productions, to understand their 

unexpected strategies or approaches and to make an unpacking of the typical or atypical error 

they have made, in the Borasi’s sense.  

With the studies carried out by Jakobsen et al. (2016), it was emphasized that having a strong 

CCK is not enough to develop a good level of IK, while having a solid SCK allows teachers to 

think ahead, and more quickly, alternative ways of solving a problem and proposing more 

constructive feedback when students make less common errors or productions. 
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3. Mathematic education in probability 

This chapter aims to explore the relationship between the mathematical perspective on 

probability and educational aspects. 

In particular, this chapter will provide a brief overview of previous research on mathematical 

education in term of probability. It will review the key concepts and principles that have been 

identified and discussed in the literature, as well as the main challenges and difficulties that 

students tend to encounter in this area. Additionally, it will examine the status of teacher 

education programs regarding the instruction of probability. While there is a growing body of 

research on mathematics education, studies specifically focused on the teaching of probability 

are relatively scarce (Alonso-Castaño, 2021). This is noteworthy given that the ability to 

understand random phenomena and make sound decisions under conditions of uncertainty is 

recognized as an important skill by many educational authorities (Batanero et al., 2016).  

The amount of research on teacher education on probability is significantly lower than that 

focused on students. Moreover, much of the research on teacher education has been 

concentrated on preparing secondary school teachers (Alonso-Castaño, 2021). While 

probability is included in the curricula of many countries for primary and secondary education, 

(Batanero et al., 2016), there is still controversy around the interpretation of fundamental 

concepts such as the definition of probability (Batanero & Serrano, 1995). Besides, the 

complexity and lack of clarity of numerical and verbal expressions used to convey probability 

must be addressed (Blanco-Fernández et al., 2016; Rodríguez-Muñiz et al., 2021).  

As probability has only recently been introduced into lower levels of education (e.g., BRASIL, 

2018; MIUR, 2012), further research on teacher education is needed to improve training 

programs and ensure that teachers can offer comprehensive and effective instruction in 

probability from an early stage.  

As usually, research in this field can be broadly categorized into two areas: one of them focusing 

on student learning processes and related activities in the context of probability; and the other, 

focusing on teaching processes and teacher knowledge of probability.  

In the following paragraphs, it will briefly describe some of the research conducted in these two 

areas. In the final part of this chapter, specific research in the topic of subjective probability 

will be discussed: some researchers have the common aim of proposing some educational paths 

for the introduction of the concept of probability employing the subjectivist approach. During 

the analysis of the papers, it can be observed that each author will create different paths based 
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on their “interpretation” of the subjectivist probability’s approach. It is important to observe 

that an univocal didactical “ideal” path useful to keep together the contrasting opinions hasn’t 

been proposed yet. 

One of the main reasons that researchers have focused on this mathematical aspect is due to the 

centrality of concepts such as "uncertainty" and "risk" in daily life. In order to manage situations 

based on these concepts, it is essential for every citizen to develop strategies that enable them 

to make informed decisions in this field. While various didactical strategies with different 

approaches are employed in each paper, all the authors agree that probability is a useful tool for 

decision-making under conditions of uncertainty in everyday life. As such, the subjectivist 

approach could be an effective way to introduce probability in primary and secondary schools 

(Castilla et al., 2022; Homier & Martin, 2021; Rodríguez-Muñiz et al., 2022). 

3.1 Research on Learning and Teaching probability 

In the late 1980s and early 1990s, the Research Group on Statistical Education at the University 

of Granada began studying the teaching of probability. Godino et al. (1987) published their first 

work on the subject, proposing didactic principles and curricular proposals. In the 90s, the group 

investigated various aspects of probability, such as randomness (Batanero & Serrano, 1995), 

probabilistic reasoning among primary and secondary school students (Batanero et al., 1994; 

Cañizares & Batanero, 1997; Serrano et al., 1998), frequentist probability in Bachiller (Ortiz et 

al., 1996; Serrano et al., 1996), students' beliefs and conceptions of probability (Cañizares and 

Batanero, 1997; Serrano et al., 1999), and the idea of fair play in primary school (Cañizares et 

al., 1999). The group's research has covered a broad range of topics, including the teaching and 

learning of conditional probability (Contreras, 2011) and probabilistic content in textbooks 

(Gómez-Torres et al., 2014), and has made valuable contributions to the field of probability 

education. 

Some curricula include probability since primary school, as it is the case of Australian 

Curriculum, Assessment and Reporting Authority; in contrast, other curricula delay to 

introduce the probability, only consider it on secondary education (Batanero et al., 2016). 

Primary school students typically approach probability by distinguishing "between the possible, 

the impossible, the certain, and what is possible but not certain" (Batanero, 2013) using 

everyday language that includes expressions related to probability. 

However, some statistics education researchers recommend teaching statistical inference with 

an informal approach, which has led to a diminished emphasis on probability education. This 
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change overlooks the importance of educating young children in probabilistic reasoning 

(Fischbein, 1975), and the multiple connections between probability and other areas of 

mathematics, as stated in the Guidelines for Assessment and Instruction in Statistics Education 

(GAISE) for pre-K-12 levels (Franklin et al. 2007). Therefore, Probability is a vital component 

of any mathematical education, as it enriches the subject as a whole through its interactions 

with other uses of mathematics (Batanero, 2013). 

Classical and frequentist are the most common definitions of probability, and they appear most 

frequently in textbooks. These definitions are useful for laying the foundations for learning 

more complex topics in probability (Gómez-Torres et al., 2015).  

Even if a low presence of subjective meanings even in secondary school textbooks are identified 

(Ortiz, 2002; Azcárate & Serradó, 2006), this is practically non-existent in primary education 

(Gómez-Torres et al., 2015).  

Contrary, previous studies have specified that the different meanings of probability should 

appear since primary school, including the intuitive, frequency, subjective, and classical, and 

finally the axiomatic meaning in secondary school (Batanero, 2005; Batanero & Sánchez, 

2005). 

Many educational resources have been used to support probability education, and game-like 

scenarios that involve chance are a common method. Physical devices such as dice, coins, 

spinners, and marbles in a bag are often used to create these scenarios (Nilsson, 2014).  

These resources are typically used to support a classical approach to probability, computing the 

probability of an event occurring a priori by examining the object and making assumptions 

about symmetry that often lead to equiprobable outcomes for a single trial (Batanero et al., 

2016). These devices are often used together (e.g., two coins, a die, and a four-section spinner) 

to explore compound events and conditional probabilities (Martignon and Krauss, 2009). 

Organizational tools such as two-by-two tables and tree diagrams are also used to assist in 

enumerating sample spaces (Nunes et al., 2014) and computing probabilities.  

Teachers have been increasingly using digital devices since the physical ones can be 

manipulated to induce chance events. For instance, experiments such as rolling, spinning, 

choosing, or dropping a marble can create relatively small samples and allow the recording of 

the frequencies of events.  

These frequencies and relative frequencies are then used as estimates of probability in the 

frequentist perspective, and they are often compared to a priori computed probability based on 
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the examination of the object (Batanero, 2016). Besides, when students are engaged in 

experiments with physical device, they tend to reveal specific and powerful mathematical 

thinking (Nilsson, 2009). The experiments that use physical devices to induce chance events 

may result in different probability estimates, depending on the perspectives of the teachers or 

the students involved. As a result, issues related to the sample size and the law of large numbers, 

as well as the distinction between frequency and probability, may or may not be discussed 

(Batanero et al., 2016). It is important for educators to be aware of these potential variations in 

perspectives and to address these issues as they arise in order to facilitate deeper understanding 

of probability concepts (Stohl, 2005). 

Biehler (1991) suggested that technology could be utilized to enhance the learning and teaching 

of probability through various methods, such as the organization and analysis of data generated 

by a probabilistic model or through sampling, as well as the storage of data.  

Indeed, understanding probability models and the data they produce is essential for a solid 

foundation in how probability is utilized in statistics, particularly when making inferences about 

populations and testing hypotheses. In certain cases, the models used in simulations are created 

by students or teachers, but they are open for inspection by students. 

However, technology tools also offer the option to hide the model from the user, making the 

underlying probability distributions that control the simulation unknowable. While these 

"black-box" simulations may help students think about probability from a subjective or 

frequentist perspective, they are limited to only using the data generated from the simulation to 

make probability estimates for use in inference or decision-making scenarios (Batanero, 2013) 

For example, Lee et al. (2010) presented a scenario in which 11- and 12-year-olds students 

investigated whether a die company produces fair dice, to decide whether to buy dice from the 

company for a board game. This demonstrates how probability concepts and inference can be 

applied to real-life situations. 

Research studies have shown that the prospective teachers’ education on probability is 

inadequate and ineffective (Batanero et al., 2011; 2012) point out that teachers have poor 

training and misconceptions about probability, which can be attributed to the recent 

incorporation of probability in the compulsory school curricula. In order to improve the quality 

of probability education in schools, teacher training programs need to focus on developing 

teachers' probabilistic literacy and didactic skills. 
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Several studies have proposed training activities to help teachers overcome their difficulties in 

teaching probability. For example, some studies have proposed training programs that 

emphasize the development of skills in modelling probability and teaching it in an efficient and 

meaningful way. These programs have shown that pre-service teachers often have 

misconceptions about randomness and equiprobability, and they struggle to interpret the results 

of casual experiences (Arteaga et al., 2010; Batanero et al., 2012; Batanero & Arteaga, 2014; 

Batanero, Gómez-Torres, et al., 2014).  

To improve the quality of probability education, it is crucial that teacher education programs 

provide prospective and practice teachers with adequate support in terms of stochastic and 

didactic education. This is especially important given that the teaching of probability in schools 

is often poor and ineffective, largely due to the lack of teacher education and knowledge of 

probability concepts (Alsina & Vásquez, 2016; Vásquez and Alsina, 2017a, 2017b). Thus, it is 

essential that teacher education programs focus on enhancing the professional development of 

teachers and promoting their probabilistic literacy. 

The importance of teachers’ knowledge in the scope of probability has been a focus of research 

from several perspectives. Contreras, Batanero et al. (2011), Ortiz et al. (2006), Fernándes et 

al. (2016), Mohamed and Ortiz (2012), and other researchers have shown that prospective 

teachers have a common content knowledge in probability but a poor specialized content 

knowledge in the subject. For example, Mohamed and Ortiz (2012) found that prospective 

teachers have difficulties in determining conditional probabilities and in perceiving the fairness 

of a game, while Ortiz et al. (2006) observed common prejudices in the interpretation of 

frequentist probability and in the use of heuristics. 

The need to reform and improve the teachers education on probability is highlighted by these 

researchers and, in particular, they focus on the categories of the MKT conceptualization of 

“Common Content Knowledge”, “Specialized Content Knowledge”, and “Knowledge of 

Content and Students” in teaching probability, as well as the “Knowledge of Content and 

Students.” However, the studies reveal poor knowledge of all these categories. 

In a related study, Párraguez et al. (2017) observed that pre-service teachers struggle with the 

law of large numbers and the calculation of the sample space and its representation. They also 

found equiprobability biases among the pre-service teachers, as well as a poor understanding 

of the connection between classical and frequentist approaches, which is common in textbooks. 
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These studies highlight the need to improve teacher education in probability and the importance 

of addressing common misconceptions and biases in the subject. For example, teacher 

education programs could focus on providing specialized knowledge and training on topics 

such as conditional probability, the law of large numbers, and sample space calculation, as well 

as addressing equiprobability biases and common prejudices in the subject. 

The importance of strengthening the (prospective) teachers education to improve the teaching 

of probability is emphasized in various studies (Afeltra et al., 2017; Cordani, 2014; Huerta, 

2018; Perelli-D'Argenzio and Rigatti-Luchini, 2014). In one of these studies (Afeltra et al., 

2017) proposes a task for teachers to interpret their students' reasoning when solving probability 

problems. This approach aims to develop the Interpretive Knowledge of teachers so they can 

help their students build their knowledge of probability from their reasoning. Another approach 

(Huerta, 2018) suggests that teachers should solve probability problems with a didactic 

approach. Positive effects on teachers' education related to content knowledge and didactical 

knowledge were found in experimental works conducted in a virtual class (Perelli-D'Argenzio 

and Rigatti-Luchini, 2014). Thus, working in labs and workgroups improves the teacher's vision 

of probability as an investigative approach to reality and can lead to remarkable changes in the 

students' learning. 

Other studies focus on improving the knowledge of prospective teachers to teach probability, 

such as creating textbooks (Muñoz et al., 2014) or curricula (Naresh, 2014). Martin et al. (2018) 

investigate the way teachers deal with probability and their beliefs related to this topic. Gómez-

Torres (2014) highlights the lack of dedicated hours to probability and its didactics in teacher 

education programs, making it essential to increase the number of hours of lessons to improve 

the skills of pre-service teachers in probability. 

Contreras, Díaz et al. (2011) developed a research aligned with the perspective we assume in 

the research, having observed prejudices in the probabilistic reasoning of teachers, which 

improved after participating in training tasks in context intertwining the discussions on the 

mathematical topic as well as the pedagogical dimensions. This emphasizes the importance of 

proposing effective tasks for teacher education. Batanero, Contreras, and Díaz (2012) also 

emphasize the importance of working on experimental and didactic situations to develop the 

teaching skills of prospective teachers. For instance, Batanero, Gómez-Torres et al. (2012) and 

Díaz et al. (2012) have found prejudices in prospective secondary school teachers' 

understanding of conditional probability, suggesting that a high level of mathematical 

preparation alone is insufficient to overcome these prejudices. Therefore, they advocate for 
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more attention to be given to the teaching of heuristics in problem-solving, which is particularly 

important. 

Alonso-Castaño, Muñiz-Rodríguez, and Rodríguez-Muñiz (2019) propose training on 

heuristics for problem-solving for prospective teachers. As part of the proposal, prospective 

teachers were given the task of designing a probability problem adapted to a certain level of 

education, and the use of heuristics was found to be of support not only for solving the 

mathematical problems, but also for the design of appropriate problem statements. Prospective 

teachers who used heuristics in creating and solving their problems were able to propose more 

appropriate problems than those who did not use heuristics. 

Overall, the studies discussed highlight the need for more research in the area of probability 

teaching and the implementation of teacher education programs to address shortcomings in this 

area. There is still a large span of space for development in the teaching and learning of 

probability, both at the national and international level. 

3.2 Recognizing the importance of specialized teacher knowledge:  

moving from Intuitive to Subjective Probability 

Much research takes a cross-cutting approach to definitions of probability, including classical, 

frequentist, and subjective perspectives. However, it is worth noting that there is a significant 

imbalance in the literature on probability education, with much fewer studies focusing on 

subjective probability compared to classical and frequentist approaches (Sharma, 2014). In 

elementary schools, the classical and frequentist (or experimental) approaches are the most 

commonly used definitions for teaching probability, while the subjective approach is often 

overlooked or barely mentioned in some contexts (Carranza & Kuzniak, 2009; Gómez-Torres 

et al., 2014). This highlights the need for more attention to be given to subjective probability in 

educational settings to provide a more balanced understanding of probability concepts. 

However, it is important to note that subjective probability is highly relevant in daily life, as 

many events cannot be simplified into counting possible outcomes of a random experiment or 

repeating it under the same conditions. For example, subjective probability is commonly used 

when predicting sports results or assessing the risk of being infected by a virus, as these 

situations often involve a range of complex and uncertain factors that cannot be easily 

quantified using classical or frequentist probability approaches (Muñiz-Rodríguez et al., 2020). 

The subjective approach can be a valuable tool as it enables individuals to make estimations 

based on giving own opinion (Castilla et al., 2022, Albert, 2006; Thibault & Martin, 2018). 
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This may involve formulating a hypothesis about the outcome that seems most likely in a 

random experiment. Additionally, the subjective approach can be used to formulating a 

prediction, according to Eichler and Vogel (2014) who suggested making a statement about 

the next outcome, or Homier and Martin (2021) who explored how it can be used to assess risk 

in a given situation. 

For this reason, at early school ages, children's understanding of the subjective meaning of 

probability is closely linked to the use of verbal reasoning and chance language (Kazak & 

Leavy, 2018). This type of understanding is often referred to as the intuitive meaning of 

probability (Batanero, 2005), where the use of linguistic quantifiers and terms related to chance 

aids children in making qualitative probabilistic judgments (Rodríguez-Muñiz et al., 2022). The 

intuitive approach can provide a foundation for later learning of more formal approaches to 

probability, such as the classical and frequentist approaches. Moreover, research has shown that 

the development of probabilistic language and thinking skills during the early years can 

contribute to improved problem-solving abilities and decision-making skills later in life. 

Research consistent with this assumption is presented by Castilla et al. (2022), who argue that 

the subjectivist approach views probability as a model for the partial information or uncertainty 

of the decision-maker. In terms of the example above “this means that two different physicians 

could assign different probabilities (in fact, for possibly different diagnoses) and consider 

treatments and consequences in different ways according to their personal judgment” (Castilla 

et al, 2022, p.)  

Castilla and colleagues argue about two approaches in probability theory for modelling random 

contexts: the classical approach, which relies on equiprobability and counting methods, and the 

decision-theoretical approach, which takes into account personal information and coherence 

axioms. It is important to note that the acceptance of conditions that guarantee the limit 

frequency as a suitable assignment of probability for a given event is subjective and depends 

on the individual who is mathematically modelling the problem (mathematizing). In other 

words, the subjectivity of the assignment of probability implies that it can vary when updating 

our knowledge. Thus, both prior and posterior assignments must follow coherent consequential 

rules, which is equivalent to the relation between conditional probabilities and the Bayes rule 

(Castilla et al., 2022). 

Probability is a complex branch of mathematics that presents several challenges to both students 

and teachers. Castilla et al. (2022) highlight that one of the primary reasons for this difficulty 

is the fact that probability deals with events for which there is no complete certainty. Unlike 
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logical reasoning, which involves determining the truth or falsehood of a statement, 

probabilistic reasoning requires intricate mathematical calculations based on elaborate counting 

methods. This complexity can make it challenging for students to understand and apply 

probability concepts. 

To address this challenge, Batanero et al. (2004) emphasize the importance of teacher education 

to focus on a deeper understanding of the inherent nature of probability and epistemological 

reflection on the concepts to be taught. Such an approach can help teachers convey the key 

concepts of probability more effectively to their students, enabling them to develop more robust 

mental models of probabilistic events. By understanding these concepts, students can improve 

their ability to reason about uncertain events and make better decisions. Furthermore, Castilla 

et al. (2022) argue that it is essential to examine how knowledge of subjectivist probability can 

influence people's decision-making and how personal modelling of events can impact the 

judgments of the subjects. This research emphasizes the need for a more nuanced understanding 

of how individuals use probabilistic reasoning in decision-making contexts, which can 

ultimately inform the development of more effective teaching strategies. Overall, improving 

the teaching of probability concepts can have a significant impact on students' ability to reason 

effectively and make informed decisions in their personal and professional lives. 

In this sense, therefore, subjective probability estimation begins with giving an opinion from 

the information possessed. The idea underscores the importance of incorporating a subjective 

approach in the early stages of learning mathematics (Gouvernement du Québec, 2009). This 

approach can be applied through various concepts and processes, such as predicting results and 

discerning the difference between predicted outcomes and actual results derived from 

calculations or experiments (Homier & Martin, 2021).  

In particular, Castilla and colleagues (2022) investigate the MTSK in relation to pre-service 

primary and secondary school teachers' understanding of probability. Their research aims to 

explore the teachers' concepts of randomness and about how – coherently or otherwise – they 

quantify (un)certainty, exploring to what extent preservice teachers consider probability as a 

measure of uncertainty or of partial information.  

Castilla and colleagues (2022) investigate the pre-service teachers' understanding of the basic 

notion of probability, as well as their ability to model different contexts and quantify probability 

through various procedures. To assess the knowledge of the definition, properties, and 

foundation of probability (KoT), the authors examine the concept of randomness and explore 

how pre-service teachers associate it with uncertainty or partial information. They also question 
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the contexts in which it is possible to calculate the exact probability, according to the analyzed 

subjects. 

To analyze the knowledge connected to the ability of modelling the different presented contexts 

(KoT - phenomenology and application) the authors focus on the concept of randomness trying 

to understand if, according to the group of pre-service teachers examined, it is possible to link 

it to past and/or future events. 

The pre-service teachers generally agree on what constitutes randomness and identify past 

events as "not random" because the results are already known, except for events related to 

draws. 

Regarding the assignment of probabilities (KoT - method), the authors note that a significant 

number of teachers used combinatorial calculation and classic probability laws. While some 

pre-service teachers attempted to use Laplace's law for specific events, the corresponding 

values were chosen based on subjective considerations. Although the pre-service teachers 

received some notions of subjective probability, it did not seem to impact their understanding 

significantly. Their knowledge was comparable to that of secondary school students. To analyze 

the knowledge based on procedures of calculating probability (KoT - procedures) refer to the 

concept of coherence. This concept is introduced from a different point of view than that used 

by de Finetti (1931). According to the authors, a judging subject is defined as coherent if they 

assign the probability of a random event in the range of (0,1) or if they define the probability 

of a non-random event as equal to 0 or 1. A judging subject is defined as incoherent if they 

assign the probability of a non-random event in the range of (0,1). The authors define a non-

random event as an event that is certain or impossible. Therefore, the judging subject is deemed 

incoherent if they estimate the probability of a certain or impossible event with a number 

between (0,1) and not equal to 0 if impossible, and equal to 1 if certain. According to this 

perspective, the authors analyze the emerged data from the experiment and observe that 

incoherence is common among the chosen teachers. 

Castilla and her colleagues (2022) advocates for the inclusion of situations that directly 

challenge the conceptions of probability held by preservice teachers. They emphasize the 

importance of an approach that incorporate subjective probability, particularly for preservice 

primary and secondary school teachers who often rely on subjective reasoning to justify their 

probability assignments. By introducing such challenging situations, educators can encourage 

preservice teachers to critically examine and refine their understanding of probability, including 

its models and the assignment of probabilities. 
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Homier and Martin (2021) appear to be in agreement with Castilla and colleagues (2022) in 

emphasising that a subject assesses an uncertain situation based on available information or 

personal experience. Homier and Martin (2021) write, in fact, that from such an analysis 

emerges the possible estimation of probability in both quantitative and qualitative terms (an 

example is a possible prediction of the next outcome of the event considered). 

A particularly significant aspect of the subjective approach, according to these authors, is the 

ability to revise probability estimation. These estimations can evolve as new relevant 

information about a probabilistic situation and its context is revealed (Eichler & Vogel, 2014; 

Kazak and Leavy, 2018). This type of estimatives, which can change in the light of new 

information, are referred to by them as dynamic (in contrast, estimates that are not subject to 

revision are referred to as static). 

Rodríguez-Muñiz and colleagues (2022) shares de Finetti's view (1931) according to which 

probability is the degree of confidence of the judging subject in the occurrence of the event: 

probability represent, therefore, an estimate dependent on the decision-maker’s judgement 

influenced by the owned information about the event under consideration. Coherently with 

Homier and Martin (2021), also Rodríguez-Muñiz et al., (2022) wish to highlight the dynamic 

aspect intrinsic in the subject view of probability: the estimate, defined by the judging subject, 

change according to the owned information about the experiment and acquired as they went 

along. 

Rodríguez-Muñiz and colleagues (2022) note and emphasize that although the subjective 

approach to probability depends on the decision-maker, the subjective probability 

assignment of a minimally informed person should converge with that obtained using the 

classical approach, in cases where it is applicable. Finally, Rodríguez-Muñiz and colleagues 

(2022) and Albert (2003) emphasize the importance of taking into account relevant information 

for the situation being evaluated when making a probabilistic estimate. In particular, when 

estimating probability, certain conditions of coherence based on mathematical laws (de Finetti, 

1937) must be considered. Beyond mathematical coherence, some authors (Albert, 2003; 

Rodríguez-Muñiz et al., 2022) highlight the importance of justifying one's probabilistic 

estimate by explicitly naming the information and motivations that have been considered. 

The study of probability is a vital subject in mathematics education that has significant 

implications for students' future success in various fields of study. The term "subjective 

probability" is a highly contested concept within mathematics education (Chernoff, 2009). 

There is a need to make a distinction between the general classifier and the specific theory of 
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subjective probability to avoid confusion. Chernoff (2008) argued that subjective probability in 

mathematics education tends to be interpreted as personal or subjective, rather than logical. 

Therefore, he suggested that "personal probability" or other terms be used to describe the 

specific theory.  

Despite the inclusion of probability topics in the school curriculum, there is little literature on 

the specialized knowledge domain of subjective probability. However, there are efforts to 

develop knowledge in this area, like Paparistodemou (2014) which used a specially designed 

computer game to help children develop and express probabilistic ideas. The importance of 

probability education in the elementary curriculum is also highlighted by Williams and Nisbet 

(2014). They investigated the use of probability games and activities to improve primary 

students' attitudes and understanding of probability concepts, while also helping teachers gain 

confidence and preparedness to teach probability using the activity approach. It is worth noting 

that the lack of emphasis on probability in the early grades is concerning, given that 

misconceptions about probability start forming in students as young as seven years of age, 

according to Fischbein (1975). 

Mooney et al. (2014) developed probabilistic thinking models and frameworks, which they 

tested in small-group instructional settings. These frameworks provide a bridge between 

learning theory and instructional practices, highlighting the importance of teachers' knowledge 

and expertise in teaching probability effectively. The psychological and practical perspectives 

provide two lenses through which to observe and intervene in probabilistic thinking models and 

frameworks.  

Gal (2005) suggests that teaching probability in real-life social contexts can enhance students' 

interest and motivation in the subject. Following Fischbein's (1975) approach, a central activity 

for learning probability involves predicting the outcomes of chance experiments through 

placing bets. To make the learning environment more engaging, this activity can be 

incorporated into a game scenario, as demonstrated in Aspinwall and Tarr's (2001) study. 

In conclusion, the study of probability is a critical subject in mathematics education, with 

implications for students' success in various fields of study. The concept of subjective 

probability remains contested, and efforts to develop specialized knowledge in this area are 

ongoing. The lack of emphasis on probability in the early grades is concerning, and more 

research is needed to determine the feasibility of using probabilistic thinking models and 

frameworks in classroom settings. The importance of teachers' specialised knowledge in 

probability teaching cannot be underestimated. 
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4. Context and Method 

The first part of the chapter presents the teacher educators and participants involved in the 

context of this research. In the second part, the methodology of Design Experiment (Cobb, 

Confrey, diSessa, Lehrer, & Schauble, 2003) and Design Research (Bakker, 2018) is described. 

In the third part the phases in which the research has been structured are presented. In the fourth 

part, we will introduce the analysis methodology and outline the approaches through which the 

analysis is structured. 

Let’s remember our hypothesis and the research question that have led this thesis’s work. 

Hypothesis: if teachers are involved in an education program which focus on developing their 

knowledge on the elements of the subjective probability, then they are capable to develop 

specific processes of thinking improving their specialized knowledge on probability. 

Which specialized mathematical knowledge in probability, demonstrated by 

teachers, impact their decision-making in a context of betting games and lead them 

to adopt a subjective probability view, to quantify the degree of confidence of an 

event? 

(i) Which elements of teacher’s Knowledge of Topics (KoT) on probability are 

possible to trace on a context of a teacher’s education program focused on 

establishing relationships amongst subjective, classic and frequentist 

perspectives? 

(ii) To what extent do the theoretical elements of the subjectivist approach to 

probability contribute to the attribution of meaning to the degree of 

confidence that a teacher assigns to an event? 

 

4.1 The participants of research  

In this research, participated eight teachers (chosen on a voluntary basis): four of them teaching 

in primary school (Nando, Giorgio, Dayana and Luisa) and the other four, teaching in lower 

secondary school (Alba, Mirco, Paola and Maria) – names are pseudonymous. 

The primary school teachers background in stochastics is the following: Nando and Giorgio 

teach based on their high school diplomas, as obtaining a university degree wasn't required for 

teaching in primary schools at the time of their graduation. However, Giorgio pursued further 
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education, earning a master's degree in Law. Dayana and Luisa, on the other hand, possess 

master's degrees in Primary Teacher Education. 

 

On the contrary, the academic backgrounds of secondary school teachers are as follows: Alba 

holds a PhD in Physics; Paola accomplished a master's degree in Mathematics, while Mirco 

obtained a master's degree in Geology. 

Besides, the teacher educators, Rosa and Ciro, were the responsible of designing the tasks, and 

conducting the discussions with the teachers (I was one of the teacher educators). When 

referring to the context of data collection, the “we” form will be used to refer to Ciro and Rosa. 

4.2 Methodology of the work management 

The increasing of the cognitive skills of a human being and of his knowledge is a long and 

complex process, in which impact many factors, that may be individual or environmental; it 

isn’t a linear process, but it is made of progresses and regressions, victories and defeats. It’s 

often unpredictable in its specific configurations, but is often controllable in its general traits. 

This consciousness has highlighted how each evaluation or reasonable proposal can derive only 

from a hard work of observation focused on the evolutionary.  

There is the need of specific methodological systems to perform observations and 

experimentations of this kind. For this research the “Design Experiment” (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003) has been choose as methodology of research to design and 

improve the professional development course in which data has been collected. 

As Bakker (2018) affirms, Design Experiment is part of a family of approaches including in 

educational design research (design based research, design experiments, formative 

experiments, design experimentation, design studies, development research, or developmental 

research). 

There are 5 main characteristics of a design research (Bakker, 2018): 

1. the purpose of developing theories regarding the learning and the tools which are 

designed to support that learning; 

2. the interventionist nature. In a lot of researches, modifying and understanding a certain 

situation need; 

3. design research is characterized by prospective and reflective components that have to 

be considered together, they can’t be parted by a teaching experiment (Steffe & 
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Thompson, 2000). When implementing the prospective learning the researchers 

counterpose speculations with the actual understanding that they observe (reflective 

part). Reflection can be actualised after each lesson, also when the teaching experiment 

is no longer happening. This reflective analysis can lead to modifications of the primary 

plan for the following lesson; 

4. the design research’s cyclic nature: invention and revision create an interactive process. 

Many speculations on learning are often refused and alternative speculations can be 

created and tried. The cycle, which is generally made of preparation and design phase, 

teaching experiment, and retrospective analysis, can be repeated many times; 

5. the developing theory needs to have an impact in the real work.    

Bakker (2018) writes that “a key characteristic of design research is that educational ideas for 

student or teacher learning are formulated in the design, but can be adjusted during the 

empirical testing of these ideas – for example if a design idea does not quite work as 

anticipated.” (p. 5) 

For Cobb and colleagues (2003) “one of the distinctive characteristics of the design experiment 

methodology is that the research team deepens its understanding of the phenomenon under 

investigation while the experiment is in progress.” (p. 12) 

The context of learning, in this kind of research’s methodology, is continuously adapted and 

readapted answering the demands of the ongoing researches and it is conceptualised like an 

interactive system in which the canovaccio (plot outline) of the design project is continually 

changing and it canonizes during its evolution.  

The conducting a design experiment involves, on the planning and implantation, the 

combination of the theoretical and practical needs of the educational challenge: this is possible 

through the prefiguration of interventions that embody the assumptions of a theoretical 

disposition which derives from previous studies and the punctual check of their validity in the 

concrete context of the educational practice.  

The Design Experiments are conducted to develop theories that don’t have the presumption of 

working in every context, but that are useful to the aims of the learners’ learning process.  

This kind of methodological work allows the learners to create some schemes of reasoning, 

usable where educational necessities emerge in that specifical area.  

In this perspective, the research team can improve the starting design and inspect the previous 

conjectures taken into account from the single meetings, from the observed difficulties or from 
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the reached achievements. 

To do so is necessary a continuous analysis both of the reasoning of the learners, than of the 

environment of learning.  

There are four important operations that continually require the constant dedication both in the 

field of research and on the interpretative activity of what happened and on the planning of 

what will happen.  

- In the first place, a clear vision of the planned paths of learning: the potential canovaccio 

has to be kept and communicated into the research team, also when the researchers react 

to the contingency. 

- In the second place, the care of the most part of the designed experiments requires the 

nurturing of continuous relationships with the learners. 

- In the third place, because of the reciprocal emphasis on the learning, the researchers of 

the design should try to develop a deep understanding of the ecology of learning, not only 

to simplify the logistics, but also because this understanding is a theoretical goal for the 

research. “As part of the process of refining conjectures, subtle and often unanticipated 

cues need to be recognized and drawn into a larger perspective.” (Cobb et al., 2003, p. 

12) 

- In the fourth and last place, regular debriefing sessions are the fundamental moments in 

which past events can be interpreted and future events can be foreseen. “These sessions 

are the sites where the intelligence of the study is generated and communicated.” (Cobb 

et al., 2003, p. 12) 

According to Cobb and colleagues (2003), “An educational accomplishment is characterized 

by contingency in which earlier events open up, enable, and also constrain the events that 

follow.” (p. 12).  It is for this reason that the control of this process requires its theoretical or 

retrospective explanation, that can happen thanks to the comparison with the members of the 

team and thanks to the analysis of the recording of the meetings.  

Besides,  

“The purpose of design experimentation is to develop a class of theories about 

both the process of learning and the means that are designed to support that 

learning, be it the learning of individual students, of a classroom community, of a 

professional teaching community, or of a school or school district viewed as an 
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organization” (Cobb et al., 2003, p. 10). 

 

 

For this research in the field of teachers’ knowledge on probability, a professional development 

course (PD) was designed and implemented and it involves primary school teachers and lower 

secondary school teachers together with their pupils. According to the presented framework, 

we have conceptualized the PD outlining the possible reachable goals in every meeting, but the 

structure of each one of them has been detailed under development, coherently with what 

emerged during the path itself. The meeting were audio recorded and all the teachers’ 

productions have been collected – both for research as well as for the course design.  

After every meeting with the teachers, we planned some debriefing sessions to analyze the 

recordings and the collected productions, with the aim of verifying the reaching of the planned 

goals and to outline precisely the changeable structure of the next meeting.     

4.3 Exploring the research phases and procedures: a comprehensive 

overview of data gathering 

The work associated to the data collection (PD) aimed at developing teacher’s specialized 

knowledge, in the scope of the construct of probability, taking the steps of the subjectivist 

approach. Data gathering was made according to five phases were planned: 

● Pilot phase (P): Reinterpretation of two experimental educational paths implemented with 

pupils of fourth and fifth grade (8, 9, 10 years old) in the field of probability (the first 

scenario implemented in the years of 2016 and 2017 and the second scenario in the years 

2017 and 2018), from which raised the design of the PD object of this thesis;  

● Phase A: make explicit the specialized mathematical Knowledge of Topic (KoT) in the 

field of probability together with the involved teachers; 

● Phase B: improvement of PCK through the co-design and autonomous design of exemplary 

educational paths; 

● Phase C: implementation of these educational paths with the pupils of the involved 

teachers;  

● Phase D: Teachers’ interpretation of the pupils’ production. 
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In the following, each phase will be explained, either by the tasks used or by the objectives of 

the discussions carried out and all the phases above will be detailed in terms of the procedures 

data gathering. 

Data collection refers to audio recordings and teachers’ productions to tasks. To collect the 

data, all the teachers’ registers for the tasks in each phase were collected at the end of each 

meeting and all the discussions were recorded in audio.  

The audio recordings were subsequently transcribed. For privacy reasons we will use 

pseudonymous for the teachers’ names. 

The following Table 1 summarizes all the information about the meetings carried out in each 

phase, the data collected and the hours used for each meeting. 
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Table 1: Overview of the research 

Phase’s 
name Phases' aim Meeting  

and codes 

Amount 
of hours (year of 

research) 

Data gathering 
and Data analysed1  

P 
Ph

as
e  Reinterpret the 

implemented 
pupils’ research 

1s
t  

sc
en

ar
io

 

P1 entire school year 
(2016-2017)  

2n
d 

 
sc

en
ar

io
 

P2 entire school year 
(2017-2018)  

Ph
as

e 
A

 Make explicit 
KoT in the field 
of probability 

with the teachers 

1s
t  

m
ee

tin
g 

A1 Three hours 
(June 2019) 

audio recordings* and  
teacher productions to task 1*  

and task 2  

2n
d 

 
m

ee
tin

g 

A2 Three hours 
(June 2019) 

audio recordings and  
teachers’ productions 

3r
d 

m
ee

tin
g 

A3 Three hours 
(June 2019) 

audio recordings* and  
teachers’ quotas* and notas* 

4t
h 

m
ee

tin
g 

A4 Three hours 
(July 2019) audio recordings 

5t
h 

m
ee

tin
g 

A5 Three hours 
(July 2019) audio recordings 

Ph
as

e 
B

 

improve of PCK 
through the co-

design and 
autonomous 

design of 
exemplary 

educational paths 

1s
t  

m
ee

tin
g 

B1 Three hours 
(October 2019) 

audio recordings and  
teacher productions to tasks 

2n
d 

m
ee

tin
g  

B2 Three hours 
(October 2019) audio recordings 

3r
d 

m
ee

tin
g  

B3 Three hours 
(December 2019) audio recordings 

Ph
as

e 
C

 implementation of 
these educational 

paths 

 C - 
(2020) 

interrupted due to the  
COVID-19 pandemic 

Ph
as

e 
D

 interpretation of 
the pupils’ 
production 

 D - 
(2020) 

interrupted due to the  
COVID-19 pandemic 

 
1 Only the underlined data gathering (indicated with an asterisk) has been analyzed. 
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4.3.1 P phase 

This was the "pilot phase". It’s included because it helps to better understand the activities and 

tasks carried out with the teachers in the I and II phases. For this reason, the data for this phase 

will not be analysed. 

We created and explored a didactic path for fourth grade pupils with the aim of building some 

telling points in the field of probability theory. This didactic path consists of two scenarios 

presented below, which correspond to the two activities carried out with pupils. The topic of 

probability has been obviously cared coherently with the level of knowledge of the involved 

pupils. 

P phase: First scenario (P1) 

Since the beginning, pupils were put in a situation of game immersion. Before starting, we 

explained the game to the pupils: it consisted in betting on the sum of the two faces outcoming 

in the six-sided dice’s roll (both white) and in establishing the quotas to be allocated to each 

possible sortie (sums from 2 to 12, including).  

The quota is commonly understood as the multiplication factor that is applied to the player’s 

bet to determine the amount that the same player will be entitled to collect if the bet event E 

occurs. The game’s challenge with the pupils was to establish quotas so as to be coherent to de 

Finetti’s vision (1931) in order to "not enable competitors to win with certainty" (de Finetti, 

1931).  

The setting of the classroom has been arranged in order to have three gaming stations using the 

game board depicted in Figure 15 that was designed and built for the pilot phase. Some children 

were given the role of bookmaker, those who set quotas on the game board (one for each gaming 

station), while the other pupils were given the role of bettor. Taking turns, each child played 

both roles in the game. 
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Figure 15: P phase's game board 

To play the game the pupils (bookmakers and bettors) had fake coins. The challenge, both 

between the bookmakers’ game stations and between the bettors, was to make choices that 

would allow them to earn as much money as possible. The bookmakers of each gaming station, 

before starting the game, transcribed the quotas on the game board. After that, the game started. 

The bookmakers asked the players on which sum they wanted to bet and how many coins they 

wanted to use. The bettors chose the amount of coins to pay and decided on which sum they 

wanted to bet, with the possibility of betting on more sums simultaneously. Each bettor could 

decide to play in the gaming station that he considered more appropriate and he could also 

decide to play in both gaming stations at the same time. The players put their coins in the 

specific square of the game board.  

We remind that, to calculate the potential winning of the player, the paid amount is multiplied 

by the quota established by the bookmakers. 

After the bets were collected, the bookmakers rolled the dice at the end of each round designated 

for betting. Rolled the dices, the winner(s) is (are) established and the bookmakers pay the 

eventual winnings and/or collect the losing bets on the game board.  

During the betting sessions, the children had the opportunity to identify elements in the 

dynamics of the game to rethink the criteria with which they chose the quotas and to modify 

them in the second part of the game, if they wanted to. 

After that all the players played as bookmakers, the game ended.  
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P phase: Second scenario (P2) 

This second research scenario has been thought with the goal of not being tied to the betting 

scheme, but to refer to a general measure of probability.  

The pupils are divided in little groups and each group is given some instruments to fulfil the 

following task:  

Create a game where something happens by chance. Ensure that in the game things can 

happen that have a different probability. Ensure that the rules of the game are right.  

Every group had to test the game and hand in a paper in which the rules are explained in detail.  

In this thesis work we don’t report all the created games, but we focus on a task in which we 

wanted to establish which one was the most probable (“easier” for children) among the 

following events:  

- obtaining a “greater than four” from the rolling of a dice;  

- obtaining “sum five” from the values of two cards drawn randomly, from a group of 

only one suit of cards with a value of between one and seven.  

This game did not provide the replacement of the drawn card. 

 

P phase: Our choices and reflections on the games 

In this first scenario, we recreated a situation similar to de Finetti’s scheme of bet presented in 

the 1st chapter. 

We used the betting game to reason on the opportunity of conferring a measure to a given event 

(the sums from 2 to 12), depending on its degree of confidence. This measure has been initially 

expressed in terms of quotas, useful, in a practical way, to pay for the verifying of an event.  

This was a first variation, compared to de Finetti’s scheme of bet, because we chose to use the 

quotas (as measure of the degree of confidence) associated to each event E, rather than the price 

to pay by the verifying of an event.   

This choice doesn’t correspond with the one of defining the measure of probability like the 

price p, in de Finetti’s vision (1931).   

The second variation was choosing of not to bet on cons E.  
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But the problem of “establishing quotas” has brought us, anyway, to compare different events 

according to their degree of confidence, to realise an order. The choice of using two dices, in 

the first scenario’s game, is oriented by our need of exploring events for which it could be easy 

to locate configurations corresponding to them and for which it was possible to calculate a 

classical probability.  

This fact has led us to introduce a measure of probability Q(E) as “function that to the event E 

associates the number of configurations corresponding to it”. 

To compensate for the lack of the betting cons E, we expected the presence of more 

bookmakers. Each one of them had the possibility to establish the quotas related to every event 

“sum” and had also the faculty of modifying these values. To make these changes, the 

bookmakers should follow the evaluations of the trend of the game: on one hand there were 

many bettors who had the chance of choosing a bookmaker to play with, moving freely among 

them during the duration of the game session and on the other one the bookmakers could know 

the values of the quotas established by every other bookmaker. 

So, in a context of a game of this type, the quotas are subject to a mechanism of variation and  

selection.  

We observe, however, that it isn’t possible to establish in a deterministic way that such a 

variational dynamic should implicate the observance of de Finetti’s proprieties (1931), 

nevertheless exploring its characteristics appears interesting.   

 

Together with the pupils, we have come to justify the opportunity of replacing the measure of 

probability, in the first scenario defined as “number of configurations corresponding to an event 

E”, with a measure of probability defined as the fraction “favorable cases on possible cases”. 

We asked to compare the probability (always intended as degree of confidence) of events 

belonging to “different spaces”.In both cases, indeed, the number of combinations 

corresponding to the considered event is equal to two (in the rolling of a dice there are 2 

favorable configurations out of 6 possible configurations, while in the case of the cards there 

are 2 favorable configurations out of 21 possible configurations). 

Using the measure of probability defined as “number of configurations corresponding to an 

event”, the two considered events would result as equiprobable.  
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Along the development of the work, this assumption has been considered not plausible, basing 

this reasoning on the comparison between the favorable configurations and the possible ones.  

The pupils built some techniques for the combinatory calculation, through the construction of 

representations like the ones reproduced in Figure 16 and a geometrical representation of 

fraction (that the pupils were used to using).  

 

Figure 16: Representation used for combinatory calculation 

It was established that an appropriate measure of probability to compare those events was given 

by the ratio between favourable cases and possible cases.  

What reproduced in Figure 17 is referring to the comparison between the sortie “three” of the 

rolling of a dice and “sum thirteen” of the values of two cards of the group described above.   

 

Figure 17: spatial representation of a fraction to compare events in distinct spaces 

Starting from our analysis of the P phase, we expanded our research, focusing not only on the 

children’s knowledge, but also on the specialized mathematical knowledge of the teachers.   
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4.3.2 Phase A 

In this phase we met the eight teachers to highlight and develop the theoretical elements of the 

construct of probability. This phase consists of five meetings (A1, A2, A3, A4, A5), each one 

of them during around three hours.  

The goal was to study the interactions created in the group of teachers to analyze their idea of 

probability and how they manage it. At the same time the topic of analysis of this phase was to 

understand how the specialized mathematical knowledge of the adults’ group evolved.   

 

Phase A: first meeting (A1) 

Data gathering: audio recordings and teacher productions to task 1 and 2 

In the first meeting the teachers faced the background idea of the work in which they were 

involved.  

Since the beginning, teachers were also put in a situation of game immersion and they were 

made to undergo similar interactions to the ones developed in the phase P.  

Before starting, we explained the game to the players: 

The game that we proposed was the first scenario’s game of the P phase.  

The setting of the classroom has been arranged in order to have two gaming stations using the 

game board depicted in Figure 18 that was designed and built for this professional development 

course.  

 

Figure 18: teachers’ game board 

Two teachers were given the role of bookmaker, those who set quotas (one for each gaming 

station), while the other six teachers were given the role of bettor. Taking turns, each teacher 

played both roles in the game. 
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Before getting into the thick of the game, the researchers presented task 1. In the first part of 

the task the researchers asked the teachers to decide the quotas that they are supposed to assign 

to each sum when they would play as bookmakers. The second part of the task would be used 

by the players during the game to report the eventual modifications of their established quotas. 

TASK 1: 

1.1 Write down the quotas that you are supposed to assign to each sum when you 

will play the role of bookmaker. 

1.2 Write down the quotas that you chose to set as bookmaker, in case they are 

different from the ones you supposed previously.  

To complete the first part of the task the teachers worked individually for 30 minutes.  

After first question (Task 1.1) the role of each teacher was established. 

The researchers explained the rules of the game and gave them the instruments to play. For 

each gaming station there was a game board. A certain amount of fake coins was given to the 

bettors and to the bookmakers to realize bets and to pay the potential winning, respectively.  

The bookmakers of each gaming station, before starting the game, transcribed the quotas on the 

game board, coherently with the quotas established in Task 1. After that, the game started.  

Also, the teachers had the possibility of rethinking the criteria with which they chose the quotas 

and to modify them. 

The teachers could write down the modifications apported to their quotas in the second part of 

the task (Task 1.2).  

The game ended when all the teachers played the role of bookmakers.  

The last part of the meeting consisted of individual work in which the teachers had to answer, 

in writing, to Task 2: 

TASK 2:  

1) Which are the criterias through which you chose, and eventually changed, the 

quotas when you played the role of bookmaker? 

2) Which are the criterias with which you took your decisions when you were 

playing as bettor? 
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3) Retracing your experience as a player, do you consider yourself a player who 

risks a lot or a little? Which behaviors or choices do you deduce this from? 

4) In this game is it easy or difficult to win? Why do you think so? 

 

This process of writing the first quotas and the following registration of the modification made 

to them, together with the answers given in task 2, have been analysed to study the adjustment 

process of quotas influenced by the competitive dynamics between the two bookmakers.   

 

Phase A: second meeting (A2) 

Data gathering: audio recordings and teachers’ autonomous productions  

Considering our first approach on the data collected in the first meeting (A1), the second 

meeting was designed as presented following. 

The teachers were divided into two groups that worked in two different rooms. To each group 

were given photocopies of all teachers’ answers collected in task 1 and task 2. Each group had 

to identify elements useful to highlight similarities and differences among the answers of the 

players. The teachers were asked to not focus on the personal productions, but to realize an 

objective analysis of such a productions. To do this work the teachers had 20 minutes. The 

discussions in the two groups did not involve the researcher’s participation and have been 

recorded. At the end of the teachers’ reflection of productions, the two groups were reunited to 

make a report (15 minutes for each group) on what they discussed in the small groups. Then, 

starting from what was obtained in the report and from our previous analysis – related to the 

first meeting (A1) –, some challenging questions2 were posed to each teacher. All teachers 

actively participated of the discussion.  

 

Phase A: third meeting (A3) 

Data gathering: audio recordings and teachers’ quotas  

 
2 Considering the focus of the research, these questions will not be presented here, since the teachers’ answers 
will not be used as data of analyses.  
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In this meeting, teachers were involved in a simulated game session, that provided the 

possibility, for the first time, to do pro E bet but also cons E bet. 

After remembering the pro E bet modes and explaining the dynamics of the cons E bet, each 

teacher took 10 minutes to set the quotas for each event “sum”, taking into account the variation 

inserted in the game. Each teacher wrote down his/her quotas and spontaneous notes in a paper. 

Besides, teachers could share their choices with the group and write down their quotas on the 

game board.   

The collected quotas could be commented with other teachers. The researchers’ role was to 

orchestrate a discussion with the aim of not letting competitors win or lose with certainty, in 

order to be coherent, in de Finetti’s vision (1931). 

All the discussion was audio-recorded and the quotas written by the teachers on the game board 

were photographed to be gathered. 

 

Phase A: fourth meeting (A4) 

Data gathering: audio recordings 

In this meeting we described the theoretical aspects of the main theoretical framework, linking 

them with what collected in the previous meetings.   

We narrated the experimentations made in the first and second scenario (P1 and P2 

respectively), comparing the words and the actions of the children (P phase) with those 

collected in the meetings done with the teachers (PA1, A2 and A3).  

The aim was to render explicit that we built the measure of the degree of confidence as an 

instrument that is necessary to “direct and guide the actions” and that, on a cognitive level, we 

don’t vehiculate the idea that probability is an intrinsic property of the material systems. 

His construction is based on considerations of “common sense”. 

 

Phase A: fifth meeting (A5) 

Data gathering: audio recordings 
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This fifth meeting is the conclusive one of the phase A, and is also the one that has introduced 

the teachers to the phase B of improvement of PCK through the co-design and autonomous 

design of exemplary educational paths. 

The goal was to utilize the characteristics of the subjectivist probability to start building an 

educational path with the pupils of the involved teachers.  

We reflected about the teaching approach (e.g., games, problem-solving) teachers were 

interested to work with; the mathematical goals that they considered they could reach and the 

essential traits the work environment ought to embody. 

The specialized teacher’s knowledge developed during the phase A is required for designing 

the educational path to develop in the classroom with the children. In the next section, we 

present the task proposed to teachers on the phase B, which was the motivation for the design 

of the educational path.  

 

4.3.3 Phase B 

This phase was based on three meetings and had the goal of outlining the key-steps for the 

designing of the work that would be developed in the teachers’ classrooms (phase C). 

The three mentioned meetings took place after two months since the ending of the phase A.  

Each meeting lasted three hours and, also in this phase, all the discussions were audio recorded 

and all the teacher productions to tasks were gathered.  

 

Phase B: first meeting (B1) 

Data gathering: audio recordings and teacher productions to tasks 

Considering the lack of time between the last meeting on phase A to the first meeting on phase 

B, we decided to remember the teachers about, not only the main elements focused on each 

meeting of the phase A, but also the theoretical elements of subjective probability. 

To begin collecting detailed ideas about the educational path, we gave the Table 2 to the 

teachers, which was composed of four columns.  

In the first column we inserted the theoretical generalized elements of the subjective probability 

according to de Finetti’s vision; in the second one we created some connections with de Finetti’s 
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bets’ scheme; in the third column we inserted our choices about the setting used in the P Phase 

and/or in the Phase A; the fourth one was empty, to allow the teachers to write their ideas about 

the new game setting that we will implement in the Phase C.  

The presence of more lines allowed to create some connections among the elements of the four 

columns. 

On the same line of the table, so, it is possible to read the choice related to our setting linked to 

the theoretical motivation which brought us to make that choice and also the elements of the 

construction of the new game setting. 
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Table 2: task to build the new game setting 

Generalised De Finetti bets’ scheme Our setting New setting 

Necessity of ordering events 
depending on the degree of 
confidence based on the effects 
caused by those events 

Game of bets 
(Establishing prices) 
with transitions of credit 

Game of bets on the sortie of the 
sum of two dices (establishing 
quotas) with transition of credit  

 

Introduction of a measure (of 
probability) to quantify the level 
of the degree of confidence that 
should be attributed to an event 

Price Number of combinations  

Necessity of imposing properties 
on a measure of probability 
 

The bookmaker 
should/must avoid to 
establish prices that may 
put him in the condition of 
losing with certainty 

Implicit (the bookmaker 
shouldn’t enable competitors to 
win / lose with certainty 

 

Pro E bet or cons E bet Variational Dynamic 
- competition among the 
bookmakers 
- possibility of modifying the 
quotas 

 

Set of incompatible equiprobable 
events  

General reference  Pair of dices’ faces; 
combinations of cards 

 

Additional law on probability or 
on the measure of probability  

Recognised as properties 
on prices 

Implicit in the use of the 
probability combinatorial 
calculation 

 

Comparison among sets of 
different events 

 Comparison among the “sorties 
of a dice” and the “combinations 
of cards” 

 

 

After explaining the functioning of the table, the teachers had 30 minutes to think about the 

new setting and another 30 minutes to share individually their ideas with the group.   

 

Phase B: second and third meetings (B2 and B3) 

Data gathering: audio recordings  

In these two meetings we debated with the teachers about the details and the aspects of didactic 

mediation of the Phase C, starting from what emerged in the filled tables. 

We asked the teachers to imagine a didactic path for their pupils. This didactic path had to be 

the same for all the involved classes, but using the framework of the design experiment, the 
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canovaccio could change during the evolving of the work. Taking into account the emerging 

needs, the teachers worked together discussing with the resarchers. 

 

4.3.4 Phase C and phase D 

The C and D phases were planned respectively to implement the educational paths with the 

pupils of the involved teachers and the teachers’ interpretation of the collected pupils’ 

productions.  

These phases of the PD were interrupted due to the COVID-19 pandemic. The description of 

theses phases will not be included in this thesis work.  

 

4.4 Methodological analysis 

Here we outline the methodological approach employed to scrutinize the impact of teachers' 

specialized mathematical knowledge in probability on their decision-making within the 

dynamic context of betting games. The analysis unfolded through three distinct phases, each 

offering unique perspectives on the complex relationship between mathematical expertise and 

educators' decision-making processes. It will be presented consistently with this assumption in 

three following sections. 

4.4.1 First step of the processes of analysis: examining quotas and teachers’ 

notes 

The first step of the process of the analysis involves a comprehensive examination of data 

gathered during the A1 and A3 meetings of the phase A. In the first meeting (A1), teachers 

engaged in a "pro E bet" session, generating quotas for potential sums (Task 1.1). Following a 

dynamic gaming session, teachers had the opportunity to refine their quotas (Task 1.2), vividly 

captured in yellow-framed boxes (Figure 19).  

The subsequent introduction of a simulated game session in the third meeting of the phase A 

(A3), encompassing both "pro E bet" and "cons E bet," further enriched the analysis. Orange-

framed box (Figure 19) showcase quotas assigned during such meeting (A3), along with 

spontaneous notes, providing insights into the decision-making processes of the teachers. Since 

the teachers’ notes were written in the Italian language, the translation of the texts were included 

in a green box, on the right of the image.  
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Below is an example (Figure 19) illustrating how the evidences will be presented on the 

discussion section (Chapter 5). 

 

Figure 19: An example ilustrating the boxes containing teachers' quotas and notes organized 
during the analysis process. 

 

During the process of analysis, all the quotas assigned for the teachers during A1 and A3 

meetings have been reworked and plotted on linear graphs (Figure 20). The graphs were built 

considering the yellow and orange colours referred, respectively, to the A1 (Task 1.1 and 1.2) 

and A3 quotas boxes (Figure 20).  
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Figure 20: An example of reworked quotas represented in linear graphics, as featured in the 
analysis. 

 

Graphical representations played a pivotal role in visually narrating the evolution and 

distribution of teachers' quotas. This aided in a clearer understanding of the trends within the 

data, facilitating a nuanced exploration of teachers' specialized knowledge in probability.  

Consistently with De Finetti's perspective, which asserts, "not because what I predict will 

happen, but because I predict that it will happen" (1931), the creation of graphs served the 

purpose of not dwelling excessively on the numerical value assigned by teachers in this initial 

phase. Instead, the focus was on the qualitative trends of these values. Delving into why a 

teacher assigns the same quote to two events or why they assign different quotas to two events 

provided an opportunity not just to refine their measurements but also to cultivate the skill of 

contextual exploration. This exploration aimed to gather all necessary information for making 

informed decisions about the confidence level in a specific event. 

It is important to highlight that, when a statement made by a teacher was considered as evidence 

of revealed specialized knowledge, it was presented in “italic format”. Additionally, in the 

content of the analysis discussion, the identification of subdomains and their respective 

categories associated with MTSK and pertinent to the evidence of revealed specialized 

knowledge, will follow the format (Subdomain – Category – Particularity of the Knowledge) 

or [Intra-conceptual connection], as illustrated in the example below: 

Giorgio characterizes the low quotations on the "sides" as "defensive" suggesting a 

cautious stance towards events associated with extreme sums (KoT – Procedures – when 

to do something). This choice aligns with the idea of considering the non-occurrence of 
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2 and 12 more probable events than the non-occurrence of the sum 8 [Intra-conceptual 

connection]. 

4.4.2 Second step of the process of analysis: exploring the transcriptions of 

the discussion about the teachers’ presentation of the quotas 

Moving to the second phase, the analysis integrates transcriptions of discussions from the third 

meeting (A3). This exploration delves into how autonomous creation, modification, and 

deliberation around quotas initiated qualitative and quantitative processes within the teachers. 

These processes refined the measurement of confidence levels associated with potential events. 

In transcribing, the process entails listening to the entirety of the audio files and then 

transcribing them in full, which means that all the discussion was transcribed ipsis litteris.  

We chose to transcribe line by line (Schoenfeld, 2000) and numbered in a subsequent 

numeration, understanding that this method of organization contributed to identifying 

evidences of teachers’ revealed specialized knowledge at different moments in their interactions 

during the discussion. Additionally, this method of organization was also crucial both in 

analysing the degree of confidence that teachers established and exploring a profound insight 

into teachers' decision-making beyond the quotas.  

The transcriptions (Figure 21) were then organized and reported in the exploring and 

interpreting data chapter (Chapter 5), with each teacher referred to using pseudonyms to ensure 

anonymity and confidentiality. 

 

Figure 21: A screenshot depicting the transcription and line numbering as presented in the 

analysis. 

To enhance clarity and categorization, a color-coding system (Figure 22) was adopted in a 

separate document, associating different colours with distinct categories of knowledge 

identified during the interpretation of the transcriptions. 
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Figure 22: A screenshot depicting the color-coding system to identify KoT's category in the 

transcription during the analysis’process 

The presentation of the exploration and interpretation of the content of the discussions 

conducted in meeting A3 follows a similar structure to that used for the data related to quotas 

and teachers' notes, as we mentioned in the previous section. Thus, when evidence of revealed 

specialized knowledge is identified in any excerpt of the transcription, it is presented as follows: 

"teacher's comment" or a discussion of comment (initial line - final line). Subsequently, as a 

result of the discussion conducted, the subdomain and category associated with the MTSK are 

identified, following the same approach as in the discussion of the data from the previous stage 

of analysis: (subdomain - category - particularity of knowledge), See the following examples: 

Alba adopts a qualitative reasoning (2 - 3) by examining the aspect of the ordinal 

sorting of quotas and the correlation between such ordinal sorting (KoT – Registers 

of representation). 

In navigating the contextual nuances, Mirco tells “like the ratio between victory and 

defeat” (114-115), he adeptly employs a logic (114-116) deeply rooted in a 

phenomenological method of extracting information (KoT - Phenomenology and 

Application). 

 

4.4.3 Third step of analysis: the process of construction a coherent 

probability measurement 

The final step of analysis extends the inquiry to the continuous discussion transcripts. Reading, 

re-reading, and re-interpreting, the analysis focuses on the part of the meeting where collective 

discussions revolved around measuring the degree of confidence for each event. In this phase, 

the exploration delves into intra-conceptual connections, guided by the notion that conscious 
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mathematical knowledge may stem not only from phenomenological, procedural, or 

definitional knowledge but predominantly from these intra-conceptual connections. 

This structured and detailed methodology, enriched by graphical representations and 

transcriptions, establishes a solid foundation for comprehending the intricate interplay between 

specialized mathematical knowledge and teachers' decision-making in the realm of probability.  
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5. Exploring and Interpreting the Data 

This chapter focuses on the analysis and discussion of teachers' knowledge content mobilized 

and revealed during interactions with the game, among peers, and with the trainers. 

In order to address the research question “Which specialized mathematical knowledge in 

probability, demonstrated by teachers, impact their decision-making in a context of betting 

games and lead them to adopt a subjective probability view, to quantify the degree of confidence 

of an event?” the analysis focused on identifying the content of teachers' knowledge associated 

to probability, specifically with respect to one of the Mathematical Knowledge subdomains of 

the Mathematics Teachers Specialized Knowledge – MTSK (Carrillo, et al., 2018), namely, 

Knowledge of Topics (KoT). 

The purpose of phase A’s meetings was to study the dynamics, created in the group of teachers, 

to analyse the idea of probability that an adult has and how this idea of probability is managed 

and used. 

Let’s remember that the simulation of betting games has been the background for this phase 

and that the game explored was the one related to betting on the sum of the two faces outcoming 

when rolling two six-sided dice.  

We start by an in-depth analysis of the data gathered (quotas and notes) during the first and 

third meetings of the phase A (A1 and A3).  

Notably, in the first meeting (A1), teachers engaged in a betting session featuring only the "pro 

E bet" mode. Each teacher initially had the opportunity to devise quotas for each possible sum. 

Subsequently, teachers were immersed in a gaming session, and after participating, they had 

the chance to reconsider and modify their quotas for refinement.  

The initial quotas, along with the revised ones, are presented for each teacher within yellow-

framed boxes.  

During the third meeting (A3), teachers were involved in a simulated game session, that 

provided the possibility, for the first time, to engage in both pro E bet but also cons E bet.  

After remembering the pro E bet modes and explaining the dynamics of the cons E bet, each 

teacher took some time to set the quotas for each event and to share them with the group. 
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Let’s remember that the quotas from the first meeting (A1) are showcased within yellow-framed 

boxes, the quotas from the third meeting (A3) are showcased within orange-framed boxes. 

Alongside these quotas, we've included snapshots of spontaneous notes written by the teachers, 

providing insights into their rationales and considerations, showcased within orange-framed 

boxes. To facilitate a comprehensive understanding, English translations of these reflections 

are presented within green-framed boxes. 

To maintain analytical consistency, we've exclusively reported and analyzed the quotas and 

contributions of the five teachers who participated in both of these meetings. 

Quotas assigned by the teachers, along with the collected notes, should ideally mirror their 

perception of the probabilities associated with each event and will be analyzed to paint a picture 

of the starting point of their specialized knowledge. 

We then follow to the analysis of teachers' written contributions (transcriptions of quotations 

and notes), excerpts from the transcriptions of the discussion that took place during the third 

meeting will also be analysed. It is essential to note that during this specific meeting, we delved 

into how the autonomous creation and modification of quotas, along with the ensuing 

deliberations about associated decisions and the stabilization of quotas, initiated qualitative and 

quantitative processes within the teachers. These processes have led to the refinement of the 

measurement of confidence levels associated with each potential event. 

Building upon this analysis, we will explore the implications concerning the application of such 

settings to enhance teachers' knowledge in the field of probability. 

Issues identifiable in the initial data presented may appear untreated or only partially discussed 

in the first paragraph of the analysis, but they have been addressed in subsequent paragraphs 

using transcript analysis, which has permitted a more comprehensive understanding of teachers' 

ideas and insights. 

Analysing the trends of quotas, along with their written reflections and contributions during the 

discussions, allowed us to identify the specialized mathematical knowledge on this topic that 

needs to be connected to strengthen understanding of the probability topic.  
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5.1 Setting the Stage: initial measurements of degree of confidence 

In the vast panorama of scientific research, the issue of forecasting and understanding future 

phenomena is a crucial knot. As individuals immersed in the flow of time, we constantly find 

ourselves trying to anticipate what will happen, whether it be weather forecasts, market trends, 

or the results of scientific experiments. However, this process is not as simple as it may seem 

at first glance. In its essence, we are called not only to predict future events but also to 

understand why we predict them. 

As noted by Bruno de Finetti (1931), the fundamental difference lies in the attribution of "why". 

It is not simply a matter of predicting the fact itself, but of understanding why we are inclined 

to predict that it will occur. In this context, an intriguing perspective emerges: it is not so much 

the facts that require a cause to manifest themselves, but rather our thought that seeks to 

attribute causality to them in order to explain, coordinate, and make prediction possible. 

This concept carries profound philosophical and scientific implications. Science itself is faced 

with the challenge of confronting the obvious objection that everything we mentally elaborate 

is intrinsically connected to our thought and our conception of the world: "We cannot reason 

about anything that is not our reasoning, we cannot contain anything that is external to us" (de 

Finetti, 1931). 

In the context of the present analysis, we aim to explore how this perspective influences the 

measurement of the initial degree of confidence. In particular, we will focus on how the initial 

measurements of confidence can be influenced not only by the nature of the observed facts but 

also by our interpretation and perception of them. This will lead us to examine the crucial role 

that human thought plays in the process of forecasting and understanding.  
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1.1.2 Alba’s first data 

Below are reported the analysis of quotas and notes provided by Alba. 

 

Figure 23: Alba’s quotas and notes. 

Alba’s assigned quotas exhibit a distinctive pattern that lacks complete symmetry (KoT – 

registers of representation – symmetry of quotas’ distribution) in both the first and third 

meetings (Figure 23).  

Notably, she frequently makes one-unit jumps when providing quotas in each assignment (A1 

– quotas for tasks 1.1 and 1.2; A3 – quotas), resulting in increments or decrements of one. This 

phenomenon can be attributed to her consideration of the combinations for each event (KoT – 

procedures – how to do something). It is important to note that when rolling two dice and 

summing their outcomes, there’s a clear pattern regarding the number of possible combinations. 

Initially, this number increases by one with each consecutive sum, until reaching a peak. After 

hitting the sum of 7, it then decreases by one for each subsequent sum. 

As we delve deeper into Alba’s approach, it becomes evident that her quota adjustments, in all 

three assignments, align with the changing combinations as we approach the “sum 7” event. As 
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combinations’ number increase, she tends to reduce the quotas, while she raises them as we 

approach the “sum 12” event (KoT – procedures – when to do something).  

Also in the third meeting, Alba’s assigned quotas to the different dice roll sums follow a 

sufficiently symmetrical trend (like in both A1 quota) with respect to the “sum 6” and “sum 7” 

events. Alba employs the quota “5” for events with different probability measures, such as the 

“sum 6” and “sum 7,” but notably for the “sum 9” event as well. In line with the decision to 

utilize identical quotas for events with differing combinations, Alba allocates two distinct 

quotas to events that entail only one method of combination, occurring in the rolls of two dice. 

Specifically, Alba assigns the quotas 10 and 9 to the “sum 2” and “sum 12” events, respectively. 

These quotas are nonetheless the highest among those assigned, suggesting her perception of 

considering them the least probable events of all (along with the “sum 3” event, to which she 

assigns the same quota of 9). This discrepancy in the quotas suggests an unorthodox view and 

an intriguing aspect of Alba’s perception of probabilities. 

The graphs (Figure 24) show as Alba’s quotas remain more or less the same.  

 

Figure 24: Line chart depicting Alba’s betting quotas. 

The shape of the graph is more or less the same merely shifted upwards because the quotas 

themselves are higher. Alba writes that she “thinks” that the possibility for players to bet on 

both the outcome of one or more numbers (pro E bet) and on the NOT-OUTCOME (cons E 

bet) increases the player’s chances of winning. Consequently, she decides that the bookmaker 

must assign higher quotas.  
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The observation regarding Alba’s behavior suggests a lack of coherence, albeit in a context 

where the term “coherent” is used in a less stringent manner than that introduced by de Finetti, 

who seeks to quantitatively formalize a way of integrating diverse opinions on the degree of 

confidence concerning each event. Alba’s behavior appears inconsistent even in relation to how 

she sets the quotas. On one hand, she tends to keep the quotas low for easily achievable events, 

implying they offer a higher likelihood of winning. On the other hand, she argues that since 

cons E bet allows the player to win more easily, she must raise the quotas. This perhaps 

indicates that coherence – in the sense of de Finetti (1931) and, even before that, in a weaker 

sense – should be explicitly addressed as an element in educational contexts. 

Alba’s use of the term “think”: this suggests that Alba’s quotas, rather than being an effective 

measure of her degree of confidence, serve as a means to communicate qualitatively (KoT – 

Registers of representation – trend of the quotas) which events she has more or less confidence 

in. When people discuss an event’s probability, they are talking about the level of surprise or 

trust they’d feel when it occurs. It’s the degree of doubt or conviction we have when thinking 

about an uncertain event or outcome (de Finetti, 1931). 

In that sense, Alba’s approach appears to be more an ordinal sorting than a strategic 

quantification of the degree of confidence of these events, which is associated with Alba’s 

knowledge of the category “how and when to do something” within the context of probability 

(KoT – Procedures – how and when to do something). 

It’s essential to highlight that Alba does not seem to use the relationships between events, nor 

does she differentiate how much she trusts certain events relative to others, such as her 

preference for “sum 9” over “sum 12.” Her method appears to focus on the ordering of quotas, 

rather than establishing connections between different outcomes. 

Alba’s approach misses a systematic exploration of the interplay between different events, 

which could potentially limit the development of a more sophisticated strategy for quantifying 

her level of confidence in each event and that would entail (or at least concern) a coherent 

behaviour.  
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1.1.3 Paola’s first data 

Paola assigned non-uniform quotas (Figure 25) to the probable events of the sums obtained 

from the roll of two dice. This suggests that the teacher recognizes that some sums are more 

probable than others (KoT – Procedures – how to do something).  

 

Figure 25: Paola’s quotas and notes 

 

In the first meeting, Paola formulated quotas – in both instances – with a tendency toward a 

specific but not fully defined structure (quotas on the tail sums are consistently higher than the 

quotas on the central sums). 
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Figure 26: Line chart depicting Paola’s betting quotas. 

 

This precision in form (Figure 26) became more pronounced in the quotas established in the 

third meeting (KoT – registers of representation – symmetry of quotas’ distribution). It appears 

that the experience of playing with the introduction of the “cons E bet” disrupted the initial 

quote structure. This adjustment in Paola’s quote formation suggests a refinement and 

consolidation of her conceptualization, maybe influenced by the challenges posed by the cons 

E bet scenario. Notably, the quotas in the third meeting exhibit a lower magnitude compared to 

those in the first encounter. 

The assignment of quotas, in the third meeting, reflects a perception of extremely low and high 

sums as less probable events (to which she assigns her highest quotas), while central sums are 

considered more probable (receiving lower quotas). The assigned quotas might also suggest 

that the teacher is influenced by the idea of a symmetric distribution, given the similarity of 

quotas to sums that are specular to 7 (e.g., sums 4 and 10 or sums 2 and 12). Assigning the 

lower quota to sum 7 could reflect the idea that it can be obtained from different ways (1+6, 

2+5, 3+4, 4+3, 5+2, 6+1), making the probability of getting 7 relatively higher than other sums. 

These assigned quotas, thus show a certain degree of coherence with the probability distribution 

of the sums of two dice. For instance, lower quotas are assigned to central sums compared to 

less probable sums like 2 or 12. The teacher assigned higher quotas (quote 5 and quote 4, 

respectively) to extremely low sums (2 and 3) and assigned the same higher quotas (quote 4 

and quote 5, respectively) to extremely low sums (11 and 12), indicating that she perceives 

these sums as relatively rare events and thus assigns them a lower probability. Paola assigned, 

for central sums, quotas ranging between 2 and 3, suggesting that these sums are perceived as 
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more probable than lower sums. The lowest quote assigned to sum 7 might indicate that Paola 

sees this sum as one of the most probable (KoT – definition, proprieties and foundations – 

degree of confidence). The allocation of very similar quotas to sums with different probabilities 

might indicate that the teacher considers these sums equally probable. 

Paola’s assigned quotas (A3) reveal an intriguing pattern: they increase and decrease by one, 

following the variations in the number of combinations associated with different dice sums 

(KoT – procedure – how to do something). Taking a closer look at sums 2 and 12, which boast 

the lowest probability and only one possible outcome (1+1 and 6+6), Paola designates quotas 

of 5 to both. For sums like 3 and 11, featuring slightly higher probabilities (calculated 

classically as 2/36), Paola assigns quotas of 4 each. This trend persists for almost all events, 

with quotas seemingly adapting consistently to changes in the number of combinations. 

However, it's essential to note that the increment of one in quotas corresponds to an increase of 

one in combinations, not necessarily reflecting the actual probabilities associated with them. 

Moreover, Paola seems to be implementing a method for assessing measure to assess 

probabilities, trying to introduce quantitative elements into setting the quotas, which appear to 

be attributable to quantitative elements characterizing the combinations related to a sum (and 

thus the respective classical probabilities).but it's essential to note that this measure doesn't 

adhere to the relationships between events, nor does it apply constraints or the additive property.  

Paola, in her notes, analyzes the role of the bookmaker in the proposed game, stating that if the 

bettor bets against the occurrence of a specific number, the loss is guaranteed. However, it is 

crucial to emphasize that this loss is confined to the initial bet and does not affect the 

bookmaker's quotas. This indicates that the bookmaker only loses what the player initially 

wagered. 

In the context of a cons E bet, when the player bets n coins, Paola explains that the bookmaker 

is compelled to put n coins at stake and, consequently, might lose that amount if the event does 

not occur, and the bettor wins. This is in contrast to the pro E bet, in which the bookmaker only 

pays out the winnings when the event occurs.  

Paola specifies that the "non-occurrence" of a particular event is always more probable than its 

occurrence (KoT – definition, properties and foundation – degree of confidence). Regardless of 

the assigned quotas, and in light of the aforementioned observation, Paola considers betting 
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against a number a sensible choice for the bettor (KoT – phenomenology and application – 

process of betting). 

The non-occurrence of an event is consistently more probable than its occurrence due to the 

distribution of combinations when rolling two dice. In most cases, there are more ways to obtain 

a combination that does not result in the desired outcome compared to the ways that lead to the 

desired outcome. For instance, considering the sum of 8, there are five possible ways to achieve 

this result (2+6, 3+5, 4+4, 5+3, 6+2). In contrast, there are thirty-one possible ways to not obtain 

the sum of 8. Even greater in number are the ways to not obtain the sums of 2 or 12, as they can 

only be achieved by combining 1+1 and 6+6. 

This asymmetric distribution of combinations contributes to making the non-occurrence of 

certain sums more likely. Therefore, when betting against the occurrence of a specific sum in 

the roll of two dice, one is leveraging this asymmetry in the distribution of combinations and 

the higher probability of not obtaining the desired sum. 

Paola seems to reinforce and expand on this concept when expressing a preference in her notes 

by comparing different events and their respective cons E bet.  

She associates the event "sum 2" with the event "sum 12," strengthening her idea of considering 

them equally reliable (KoT – definition, proprieties and foundations – degree of confidence). 

She compares these two events with the "sum 8," stating that if the quotas were high on both 

events and she had to choose to bet against them, she would choose to bet on the cons 2 and the 

cons 12 and not on the cons 8 (KoT – phenomenology and application – process of betting). 

This choice aligns with the idea of considering the non-occurrence of 2 and 12 more probable 

events than the non-occurrence of the sum 8 [Intra-conceptual connection]. These observations 

highlight the subjective nature of probabilities in gambling, emphasizing the concept of " 

ordinal sorting”. 

Lastly, Paola raises a question regarding “quotas based on probability”. She asserts that, under 

certain conditions, both the bookmaker and the player could break even. However, Paola 

emphasizes that there is a way for the bookmaker to win despite the player's strategy, thus 

highlighting the role of the bookmaker in gambling. These two statements appear to be in 

contrast. 
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5.1.3 Giorgio’s first data 

In the exploration of quotas, Giorgio's evaluations (Figure 27) exhibit entirely different patterns 

from those examined thus far, unveiling a process of change that sheds light on his evolving 

perspectives.  

 

Figure 27: Giorgio’s quotas and notes 

 

Giorgio's first quotas reveal a distinctive alternation between higher and lower values (Figure 

28), reflecting a rhythmic pattern linked to the nature of dice sums, whether even or odd. This 

alternation might suggest a belief system where events “odd sums” are perceived as more 

probable than those “even sums”.  
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Figure 28:  Line chart depicting Giorgio's betting quotas 

The second set of quotations (Figure 28) maintains this alternating trend but undergoes an 

overall upward. 

In the third meeting, a significant transformation unfolds as Giorgio's probability quotas adopt 

a bell-shaped distribution (KoT – Registers of representation - Trend of the quotas). This 

departure from the prior alternating model signals a revaluation of his perspectives on the 

likelihood of different dice sums. Giorgio characterizes the low quotations on the "sides" as 

"defensive" suggesting a cautious stance towards events associated with extreme sums (Kot – 

Procedures – when to do something). 

Giorgio references to the events "sum 2" and "sum 12," assigning them the lowest quota and, 

expanding on this theme, he extends the defensive strategy to "sum 3 and sum 11" as well as 

"sum 4 and sum 10". Assigning the same quotas to these pairs of events, he’s seeking a 

symmetry that didn't exist before (KoT - Registers of representation - symmetry of quotas’ 

distribution). 

Giorgio's strategy seems to involve an "ordinal sorting of the degree of confidence of events," 

linked to a knowledge "how to do something" in the probability topic (KoT – Procedures - how 

to do something). 

It's as if Giorgio has grasped the notion that the initial approach (assigning high and low quotas 

to even and odd sums) might not be effective, but he still struggles to determine when to raise 

or lower the quotas. Giorgio expresses and encompasses in his action the fact that the pro E bet 

and the cons E bet have opposite effects on establishing the quotas. 
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5.1.4 Luisa’s first data 

Luisa's pattern of assigning quotas stands out as markedly different from the other allocations. 

 

Figure 29: Luisa’s quotas and notes 

In her notes (Figure 29), Luisa expresses numerous reservations and raises a series of questions, 

highlighting her difficulty in understanding the unfolding dynamics.  

In the first meeting, Luisa maintains a consistent descending trend in quotas. However, there is 

an alteration: she substitutes the quotas “1”, previously assigned to the events “sums 4” and 

“sum 11”, with quota “2”. In the third encounter, she reintroduces quotas “1”, assigning it to 

the event “sum 12”. 
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Figure 30: Line chart depicting Luisa's betting quotas 

In the third meeting, the quotas exhibit a distinctly descending form (Figure 30). This 

descending trend could suggest Luisa's belief that achieving lower sums, such as 2 and 3, is 

more difficult and thus merits higher quotas. Conversely, higher sums like 10, 11, and 12 are 

deemed easier to attain, resulting in lower quotas. 

Moreover, the gradual decrease in quotas (from the "sum 2" event to the "sum 7" event) might 

indicate a perception of probability based on the number of possible dice combinations for each 

sum. For instance, there are more ways to obtain a sum of 7 than a sum of 2, potentially 

influencing quotas allocation. However, Luisa's choice to attribute lower quotas to events with 

a decreasing number of combinations as the sum increases (from the "sum 8" event to the "sum 

12" event) appears somewhat inconsistent with this assumption. 

It appears that Luisa is indifferent to the number of combinations. In fact, she questions the 

reference to the bell curve distribution, as if she had not considered at all how the number of 

combinations is distributed. 

Luisa's decision to assign quotas of 1 to the "sum 12" event (or any other probable and not 

certain event) wouldn't guarantee the bettor any winnings if the event occurred, as the bettor 

would only have the right to collect their initial bet. 
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5.1.5 Mirco’s first data 

In the first meeting, Mirco adopted a strategy of assigning low quotas (Figure 31 – yellow box).  

 

Figure 31: Mirco’s quotas and notes 

Notably, he chose to group together the central events, ranging from the sum of 5 to the sum of 

9, all receiving an identical quote of 2. This grouping reflected his perception of these central 

sums as highly probable. 



 115 

 

Figure 32: Line chart depicting Mirco's betting first quotas 

In his quest for symmetry, Mirco assigned higher quotas, incremented by one for each 

successive event, as he moved towards the tails of the distribution (Figure 32). This deliberate 

progression in quotas along the tails suggested an effort to maintain an ordered representation 

of probabilities across different outcomes. 

By keeping the central events uniform with a quote of 2, Mirco conveyed a sense of comparable 

likelihood for each of these events. However, his incremental adjustments towards the 

extremities underscored his nuanced awareness of the changing probabilities associated with 

different dice roll sums. 
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Figure 33: Line chart depicting Mirco's betting second quotas 

Mirco's approach to quote assignment in the third meeting (Figure 33) indicates a nuanced 

perspective on the inverse probabilities (KoT – Procedures – how to do somethings) tied to dice 

sum outcomes. His method suggests a differentiated understanding of probabilities compared 

to his colleagues. 

What is evident in the notes is Mirco's detailed grasp of the probabilities associated with various 

dice sum outcomes (A). It becomes apparent, although not explicitly mentioned, that Mirco is 

relying on the classical probability definition to compute the probabilities associated with each 

event (KoT – definition, proprieties and foundations - classical probability). The intentional 

assignment of non-uniform values to quotas (G) suggests a distinction in his varying degrees 

of confidence for each event. These seem to stem directly from the probability assignments just 

mentioned (KoT – Procedures – Why something is done in this way). 

The quotas he assigns highlight a perception of extreme low and high sums as less probable, 

while central sums are seen as relatively more likely. This aligns with a probability distribution 

that peaks at the centre, indicative of a symmetrical probability perception (KoT – definition, 

properties and foundations - classical probability). Mirco assigns the highest quote, 36, to both 
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sums 2 and 12, underscoring their rarity. This aligns with the low probabilities of these sums in 

the context of two dice rolls (1/36 each). Similarly, the relatively high quotas assigned to sums 

3 and 11 (18) and sums 4 and 10 (12) suggest that Mirco perceives these sums as less probable 

compared to central sums. 

In his notes, Mirco employs fractions (Figure 31 A – C – D) to represent probabilities (KoT – 

Registers of representation - fractions), calculates combinations (Figure 31 B) for the "sum 7" 

event (KoT – definition, proprieties and foundations - combinations), performs sum 

probabilities calculations for the "Non7" event and calculates the difference with the certain 

event (Figure 31 D) to verify the accuracy of his calculations (KoT – procedures - 

characteristics of the results), employs percentages (Figure 31 - KoT – Registers of 

representation - percentages) to verify the complementarity of the 'not-outcome 7' and 'sum 7' 

events (KoT – definition, proprieties and foundations – classical probability). The inclusion of 

Gaussian curves (Figure 31 F) and the depiction of the shape of assigned quotas (Figure 31 G) 

in the third meeting underscore a deep understanding of definition, proprieties and foundations 

in this context of probability topic. 

Worth highlighting is Mirco's substantial modification of quotas between the first and third 

meetings. 
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5.2 The narrative of quotas: exploring a profound insight into 

teachers' decision-making beyond numbers 

This second part of the discussion aims to examine the role and importance of the narrative 

surrounding teachers' quota-based decision-making. What do those quotas tell us? What do 

teachers convey when they discuss those numbers? This discussion transcends mere numerical 

quantification, offering an opportunity to delve deeper into the decision-making processes and 

the dynamics that influence them. What will be analyzed are segments of discussion from 

meeting A3, where each teacher provides a narrative of the quotas chosen and the motivations 

behind their choices. 

As emphasized by Bruno de Finetti (1931), the fundamental question arises spontaneously: 

Does this instinct obey any laws? And why should it obey them? This question not only raises 

inquiries into the nature of instincts and human tendencies but also invites exploration into the 

reasons and motivations guiding teachers' decisions when assessing the level of reliability they 

attribute to an event. 

The introduction of quotas and the narrative provided by teachers offer a unique opportunity to 

investigate the complexities of human decision-making and its interaction with cultural, social, 

and personal factors. 

Through this discussion, our aim is to explore this insight, seeking to move beyond the numbers 

and grasp the richness of teachers' decision-making narratives within the realm of a betting 

game. 

5.2.1 Ordinal Sorting: sequencing events based on degree of confidence 

The issue of quotas cannot be reduced to a simple numerical question; rather, it represents an 

opportunity to explore the complex interactions between qualitative reasoning and quantitative 

measures. In this paragraph, we consider how the quality of teachers' decision-making narrative 

(particularly the narrative of Alba and Paola’s quotas), their specialized mathematical 

knowledge, and their assessment of future events dynamically intertwine with numerical 

considerations. According to Bruno de Finetti (1931), the laws governing and regulating the 

probabilities of events represent the relationships that must be respected to avoid internal 

contradiction among the different values attributed to these probabilities, regardless of their 
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degree of demonstrability or acceptance. Furthermore, de Finetti (1931) distinguishes between 

instinct and caprice, suggesting that the determination of event probabilities should be guided 

by rational instinct rather than arbitrary preferences. 

 

In the discussed context, the probability of obtaining a particular sum is lower than the 

probability of not obtaining it. It is noteworthy that the approach to the probabilities of events 

and their not outcoming does not follow a symmetric treatment.  

Alba adopts a qualitative reasoning (2 - 3) by examining the aspect of the ordinal sorting of 

quotas and the correlation between such ordinal sorting (KoT – Registers of representation - 

Trend of the quotas). She considers that an increase in the quota promotes the tendency to bet 

pro E but simultaneously inhibits the tendency to bet cons E. Alba addresses the idea that, in a 

context of quota arrangement, it is necessary to consider the possibility of bet pro E and bet 

cons E (KoT – phenomenology and application – process of betting).  
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A variation in quotas influences both directions of the betting tendency, both increase and 

decrease, as bets can be placed in both directions. Consequently, seek an equilibrium between 

these two directions becomes a crucial aspect [Intra conceptual connections]. Two ordering 

issues with contrasting directions are outlined. Alba's analysis focuses on qualitative 

assessments that mainly concern orderings. 

On the contrary, Paola aims to introduce a quantitative metric to measure these concepts (15). 

She exposes the asymmetry linked to probabilities (7): the probability of an event occurring is 

inherently different from the probability of it not occurring. Consequently, the two probabilities 

cannot be treated symmetrically. Paola considers the need to develop quotas that take into 

account this asymmetry in the context of betting (KoT – Definition, proprieties and foundations 

– classical probability). 
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5.2.2 Introduction of a measure: Pressure, Compression, and Equilibrium 

In exploring decision-making dynamics within the context of betting scenarios (particularly the 

narrative of Alba and Giorgio's quotas), teachers introduce an adjustment to the measure of the 

degree of confidence, which takes shape from the interaction of various "forces" influencing 

their actions. The concepts of pressure, compression, and equilibrium (to which the teachers 

will make explicit or implicit reference, explaining that the pro E bet and the cons E bet have 

opposite effects on establishing the quotas) will be used, to provide a key reference for 

analyzing the intricate dynamics observed during the deliberations of the individuals in 

question. Delving into n the detail of the transcripts, we will observe how these "forces" 

manifest and interact, shaping the decisions made and the strategies employed. This 

introductory measure will lay the groundwork for an examination of the factors driving 

decision-making processes within the gaming system in which the teachers are immersed. 

Below is the discussion between Alba, Giorgio, and Ciro. 
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Alba's statement (19-22) provides insight into the rationale behind the higher quotas observed 

in the third meeting. She refers to "this time" (19), alluding to the introduction of the cons E 

bet. In Alba's initial statement (19-22), her focus lies in the applied realm, specifically 

discussing the bookmaker's strategic decision to raise quotas in response to an increased chance 

of the bettor winning. This expression reflects a preliminary phenomenological and applied 

approach, as Alba feels compelled to raise the quotas. This reveals an understanding of how 

practical considerations influence the bookmaker's actions within the dynamics of the betting 

scenario (KoT - Phenomenology and Application – process of betting). Her use of the term 

"forced" (20) suggests that the quotas are subject to an upward pressure that is external to her 

choices, dependent by the context of the betting game in which the teachers are immersed. This 

"forced" is closely connected to the equilibrium tackled in the previous paragraph.  

Upon analyzing Alba's verbal expressions in conjunction with her corresponding quotas, it 

becomes evident that this pressure has an impact on all the quotas she assigns. 

To clarify the concept of pressure referred to by Alba, the graphs in Figure 34 have been 

overlaid on a single chart. The blue arrows indicate the concept of pressure mentioned by Alba. 

 

Figure 34: Visual representation of pressure concept. 
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It is important to emphasize, once again, that Alba prefaces the statement with "I think" (20), 

suggesting a degree of uncertainty (KoT- phenomenology and application – process of betting) 

in navigating this particular context she's attempting to explore. 

When Giorgio poses a question (23), he ventures into the procedural domain by seeking to 

comprehend the reasoning behind Alba's approach. His inquiry delves into the principles or 

reasons guiding the application of a specific strategy to all numbers (KoT - Procedures - Why 

something is done this way). 

Alba's subsequent response demonstrates a shift to the procedural aspect. She confirms the 

universal application of her reasoning and explicitly mentions raising the quotas. This 

showcases her practical knowledge in implementing a strategy, providing insights into the 

procedural aspects of decision-making within this context (KoT - Procedures - How to do 

something). 

In Alba's expanded explanation (25-33), the focus deepens into the theoretical realm. She 

explores the law of large numbers, the classical probability, Gaussian distribution and the 

symmetry around the sum of 7. This intricate discussion reflects a understanding of the 

foundational principles of mathematics and their intricate connections to the dynamics of the 

betting scenario (KoT - Definition, Properties, and Foundations – law of large numbers). 

Moving to Ciro's question (34), the discussion reiterates the foundational aspects. Alba’s 

response (35) emphasizes that this law doesn't apply in this particular case, showcasing a 

nuanced discussion grounded in foundational principles (KoT - Definition, Properties, and 

Foundations - law of large numbers). 

This analysis unveils a dynamic interplay of knowledge about phenomenology and application, 

procedural understanding, and a robust grasp of foundational mathematical principles 

throughout the conversation. It underscores the pivotal role of intra conceptual connection in 

specialized mathematical knowledge, shaping and motivating decisions related to a first 

refinement of the degree of confidence in events. 
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In the discussion, Giorgio's approach to setting quotas reflects a procedural decision-making 

process guided by evolving specialized mathematical knowledge in probability in a direction 

that seems to have roots in KoT - phenomenology and application – process of betting, and 

wants to grow towards KoT - Definition, proprieties and foundations – classical probability 

[Intra-conceptual connection].  

Distinct from Alba's strategy (A3 quotas), he adopts an inverse approach, allocating lower 

quotas on sums in tails (36-40) and focusing on the overall distribution (40-43) rather than 

focusing on specific values (KoT - Procedures - How to do something). This procedural choice 

(40-43) indicates an evolving understanding of how to formulate strategies in this context of 

betting games. Giorgio's new decision to raise or lower quotas based on his evolving 

understanding of the probabilities associated with different sums indicates a procedural shift. 

Let’s remember that in the previous meeting (A1 - Figure 27), he placed high quotas on even 
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sums and low quotas on odd sums, suggesting a procedural modification influenced by a 

changing perception of the degree of confidence of the different sums (KoT - Procedures - 

Characteristics of the result). 

Giorgio's adjustment of quotas, raising some and lowering others, reflects a dynamic decision-

making process influenced by the changed dynamics (46-55) of the game that he defines (48) 

(53) compression (KoT - Procedures - Why something is done this way). This concept, which 

we previously referred to as equilibrium with Alba and later renamed as pressure, is clear in 

his detailed explanation. 

The acknowledgment of taking a particular assumption (59) (61-63) from mathematicians and 

stating that it is "yet to be proven" suggests an engagement with foundational principles in 

probability theory (KoT - Definition, proprieties and foundations – Classical probability). This 

uncertainty underscores a developing awareness of the need for a deeper understanding to 

develop his decision-making process. 

The concept of "defence" emerges again in Giorgio's words - it had already emerged in his 

notes (Figure 27) and reappears in his discussion (64-66) and introduces a register of 

representation that combines qualitative and strategic elements in his decision-making (KoT - 

Registers of representation – Symmetry of quotas’ distribution). 

Giorgio delves into the considerations surrounding the adjustment of quotas in the context of 

betting games (74-82). His assertion that the effect of raising or lowering quotas is radically 

different depending on the type of bet underscores a deep understanding of the dynamics at 

play within the betting scenario. This reveals a specialized awareness of how stay in the 

probability scenario interfaces with decision-making processes (KoT - Phenomenology and 

Application – Process of betting). 

The pivotal question of whether to raise or lower quotas serves as a linchpin in Giorgio's 

analysis. This decision-making point highlights his awareness of the complex interplay between 

mathematical principles and the practical application of these principles in betting scenario 

(KoT - Phenomenology and Application – Process of betting). The ability to discern the 

differential impact of raising or lowering quotas on "pro E" and "cons E" bets demonstrates an 

understanding of how mathematical knowledge guides decision-making in a dynamic 

environment. 

The term "compression", previously introduced by Giorgio (48) (53) continues to be a focal 

point (KoT - Phenomenology and Application – Process of betting), especially when 
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deliberating on whether to raise or lower quotas (81-82). This term represents the intricate 

pressure or constraints faced by the bookmaker in managing the game effectively (KoT - 

Phenomenology and Application – Process of betting). This compression is crucial in the 

context of the "pro E" and "cons E" dynamics, in which its application must be tailored to each 

outcome event. Giorgio does not recognize that this pressure must be differentiated for each 

event, and he does not acknowledge that this pressure is inherently tied to the degree of 

confidence in each sum. However, he implicitly suggests a critical observation in this context. 

Despite not openly stating the need for diversification of pressure, a hint of uncertainty emerges 

when he poses the crucial question: "Raise or lower? Do you understand?" This inquiry suggests 

that Giorgio is trying to grasp an aspect that might not be entirely clear in his analysis; his 

reflective question implies an awareness of a potential unresolved complexity. (KoT - 

Phenomenology and Application – Process of betting). 

In essence, Giorgio's discussion embodies a phenomenological approach intertwined with 

practical considerations, showcasing how his specialized mathematical knowledge in 

probability informs the complexities of decision-making within the context of betting games. 

Giorgio's discourse reflects a dynamic interplay of applied knowledge, evolving procedural 

understanding, and an emerging grasp of foundational mathematical principles.  
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5.2.3 Probability Experience: Does Exploration Enable Formalization of 

Thought? 

In examining the dynamics of decision-making within the context of a betting scenario, we 

delve into the question of whether experiential exploration fosters the formalization of thought 

regarding probability. This inquiry is rooted in the foundational principles articulated by de 

Finetti (1931), who posits that probability serves as a fundamental tool of human cognition. His 

assertion underscores the notion that regardless of how individuals assess the probability of a 

given event, no experience can definitively prove or disprove their judgment. Instead, 

probability represents, for de Finetti (1931), the primary tool of our thought.  

And perhaps here lies the crux of the matter: the concept of probability is inherently non-

deterministic. The individual outcome of an event, whether positive or negative, cannot be used 

as a yardstick to assess the accuracy of its degree of confidence. 

The subsequent analysis will explore how Luisa and Mirco navigate the realms of probability 

experience and formalized thinking. Specifically, we will examine their engagement with key 

concepts related to probability, such as symmetry in quotas and considerations of probability 

distributions. Through this exploration, we aim to uncover the extent to which experiential 

exploration informs the participants' understanding and application of probability concepts, 

shedding light on the intricate interplay and intra-conceptual connection between practical 

experience and formal knowledge in decision-making processes involving probability. 

 

The fact that Luisa (83-84) continues, in the A3 meeting, to refrain from adopting symmetry in 

her quotas (Figure 29) and consistently opts for lower quotas suggests a lack of awareness of 

basic principles and mathematical foundations that other teachers consider in their answers 

(KoT - Definition, Properties, and Foundations – Degree of confidence). The absence of 

considerations regarding probability and the question of whether a number can come out with 

greater or lesser probability highlights a lack of engagement with key concepts related to 

probability. 

Luisa emerges as a participant contributing with a limited number of interventions in the 

discussion, and following this meeting, she will no longer attend the course regularly. Her 

statement, expressing agreement with the raised quota on 2 but followed by choosing to assign 
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a quota of 1 for the sum 12, appears to lack thoughtful reflection on the dynamics of the game 

(KoT - Phenomenology and Application – Process of betting). Her input indicates our failure 

to construct phenomenological, theoretical, or procedural foundations to create connections and 

deepen her specialized knowledge [Intra - conceptual connection]. 

 

In the discussion, Mirco outlines a procedural approach (KoT - Procedures - How to do 

something) he employed in a classroom setting to explore the outcomes of rolling two dice. By 

observing combinations and considering the probabilities on each die (87-93), he noted that, 

out of 36 possibilities, there are 6 combinations resulting in a sum of 7, consistently with what 

he had written in his notes (Figure 31). Extending this approach to all numbers and sums, Mirco 

highlights the general patterns when rolling two dice. He introduces (94) the idea of 

representing these combinations on a graph and transforming them into percentages and 

decimals (95). This procedural strategy provides a hands-on exploration of probability concepts 

(KoT - Procedures - Characteristics of the result). 
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Alba introduces (102) a consideration related to the number of rolls (KoT - Procedures - When 

to do something). She emphasizes that as the number of rolls increases, the distribution 

approaches a more accurate representation (102-104). Alba hints at the importance of a 

sufficient sample size in statistical analysis, addressing the potential issue of a skewed curve if 

this condition is not met. This insight demonstrates a procedural understanding of when to apply 

certain methods in a probabilistic context (KoT - Procedures - When to do something). 

The discussion touches upon foundational aspects (KoT - Definition, Properties, and 

Foundations – Degree of confidence), as Mirco (96-101) and Alba (102-104) delve into the 

fundamental principles of probability. Mirco's approach involves a systematic exploration of 

all possible combinations (95-97), showcasing a foundational understanding of the concept. 

Alba's contribution (102-104) adds depth by emphasizing the importance of the number of trials 

in achieving a reliable distribution, aligning with foundational principles of probability. 

The engagement with registers of representation (KoT - Registers of Representation - Graphical 

representation) is evident in Mirco's use of graphical representation (94-95) to depict 

probability outcomes. This visual representation aids in translating abstract concepts into 

tangible, visual forms, enhancing the understanding of probability. 

The phenomenological application (KoT - Phenomenology and Application – Process of 

betting) is apparent as the teachers discuss the practical aspects of their approaches. Mirco's 

classroom activity involves physically rolling dice and observing outcomes, providing a 

tangible experience to comprehend abstract concepts. Alba contributes by linking the 

theoretical idea of probability distribution to practical considerations, emphasizing the 

significance of the number of rolls. 

The participants haven't explicitly explored the intra-conceptual connections [Intra - conceptual 

Connection] between the different elements of probability theory and the context in which they 

are involved. There is a focus on individual aspects, such as combinations and sample size, but 

a deeper exploration of the interconnections between these elements is not explicitly addressed 

in this part of the discussion. 
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5.2.4 A Fair Bookmaker 

"The narrative of quotas: exploring a profound insight into teachers' decision-making beyond 

numbers" chapter concludes with Mirco's discussion. He approaches the task of setting quotas 

as if it were a purely mathematical problem to be solved, distancing himself from the 

phenomenological context. He employs his formal mathematical knowledge of probability 

theory to tackle the issue. His narrative brings to mind de Finetti (1931), who posited that 

probability calculation is essentially the mathematical theory that teaches us to be coherent in 

our assessments. After calculating his quotas, he returns to the phenomenological context, 

acknowledging the unpredictable nature of individual events, as Poincaré (1950) suggests. 

Despite the formal mathematical nature of probability calculations, Mirco's emphasis on the 

unpredictability of events in betting games resonates with Poincaré's scepticism about 

calculating probabilities when faced with uncertainty and the unknown. This paragraph sets the 

stage for exploring Mirco's approach and the nuanced interconnection between formal 

mathematical reasoning and practical decision-making in the context of betting games. 
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In this discussion among teachers, Mirco's approach (aligns with his notes Figure 31) reflects a 

deep understanding of probability theory (KoT - Definition, proprieties and foundations – 

Degree of confidence), aligning with De Finetti's notion of probability as a “coherent opinion 

of an expert deriving from the complex of information in possession of the subject who 
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evaluates” (de Finetti, 1931). Mirco strives to be the "fair" bookmaker (111-112) (114-116), 

embodying fairness, legality, and transparency in establishing quotas (KoT - Procedures - Why 

something is done this way). 

His attempt to set quotas (111-112, 114-116) based on the combinations of possible outcomes 

(Figure 31) indicates a coherent and systematic methodology (KoT - Procedures - How to do 

something). By considering all possible combinations and relating favourable outcomes to the 

total, Mirco exhibits a nuanced understanding of how to determine quotas coherently (KoT - 

Procedures - Characteristics of the result). The word "nuanced" is used because, although Mirko 

employs the inverse of classical probability (KoT - Procedures - How to do somethings) to 

calculate the odds, we cannot deem it "coherent" from de Finetti's standpoint. He should have 

explicitly stated that these odds are determined in such a way that the player does not have a 

guaranteed win, which Mirko neither mentions nor does. In the subsequent paragraph, we will 

indeed see that Mirko loses his footing when confronted with the actual context of the game. 

Alba's endorsement of Mirco's approach as "fair" aligns (124) with the ethical considerations 

of a bookmaker respecting rules of probability, emphasizing clarity and justification for 

outcomes (KoT - Phenomenology and Application – Process of betting). This resonates with 

De Finetti's emphasis on probability as a property belonging to man and managed through 

consciousness and logical thought. 

Giorgio's agreement further reinforces the shared understanding of fairness in Mirco's method 

(119), hinting at a collective appreciation for a systematic and scientific approach [Intra-

conceptual connection]. 

Mirco exhibits a unique approach in tackling the practical challenge of setting quotas, 

essentially treating it as a mathematical puzzle that demands a solution (106-108) (118-120).  

In navigating the contextual nuances, Mirco tells “like the ratio between victory and defeat” 

(114-115), he adeptly employs a logic (114-116) deeply rooted in a phenomenological method 

of extracting information (KoT - Phenomenology and Application – Process of betting). 

As the conversation shifts to the actual determination of quotas (111-112) (139-144), Mirco 

seemingly deviates from the nuanced details of phenomenology and, instead, approaches the 

task by treating the acquired information as data for a mathematical problem (123). It seems 

that Mirco, in this instance, moves away from the intricate details of phenomenology. Instead, 

he treats the gathered information as if they were components of a mathematical problem, (115 
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- 116) applying his expertise and his knowledge (KoT - Definition, Properties, and Foundations 

– Degree of confidence). 

Mirco reflects on the dynamics of betting games (139-144) and emphasizes the existence of 

underlying rules and strategies. He acknowledges the role of bookmakers, highlighting that 

despite players' efforts, the bookmaker ultimately prevails. Mirco suggests that effective betting 

involves agreement on how to bet money and strategic distribution across the board. However, 

he expresses uncertainty about predicting individual outcomes, using the example of rolling a 

die. Even after a significant number of rolls, Mirco contends that the outcome of each roll 

remains unpredictable, emphasizing the balanced nature of the die. He articulates a sense that 

individual outcomes are not easily forecasted based on past occurrences, underscoring the 

inherent unpredictability in such scenarios. No experience can definitively prove or disprove 

their judgment (de Finetti, 1931). 

In considering Poincaré's perspective (1950), Mirco's discussion is aligned with the paradox 

inherent in the concept of calculating probabilities. Poincaré questions the feasibility of 

calculating something (probability) that is, by definition, associated with uncertainty and the 

unknown. Mirco's emphasis on the unpredictable nature of individual events in betting games 

resonates with Poincaré's scepticism about calculating probabilities when faced with the 

inherent uncertainty that defines them. 
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5.3 Intra-Conceptual Connections to Construct a Coherent Probability 

Measure 

De Finetti's assertion (1931) regarding the pervasive role of probability as a guiding principle 

in human cognition emphasizes its fundamental importance. He contends that probability 

should serve as our mentor in thinking and acting. Instead, he highlights probability's role in 

structuring and formalizing our thoughts. 

Furthermore, De Finetti (1931) argues for the coherence of probability evaluations, 

emphasizing the importance of measuring the degree of confidence in order not to enable 

competitors to win with certainty.  

This underscores the necessity of establishing continual connections to assess the degree of 

confidence, maintaining immersion in phenomenological knowledge and the information 

derived from it. 

While mathematical connections may originate from intrinsic relationships among elements or 

be consciously established based on individuals' mathematical knowledge, it's crucial to 

perceive them as “shared knowledge rather than personal ones” that can be identified, 

developed, and discussed together.  

These connections represent relationships between various constructs, concepts, properties, or 

foundations within the same topic or across different topics.  

Understanding these connections is vital for assuming intra-conceptual connections within the 

context of probability, especially within classical, frequentist, or subjectivist approaches.  

Recognizing these connections enables the construction of a coherent probability measure 

aligning with De Finetti's vision of probability as a guiding principle in human cognition. 

The following paragraph will elaborate on building shared intra-conceptual connections 

between emerging and future knowledge to raise awareness regarding the degree of confidence, 

ensuring that players are not put in a position to win with certainty.  
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In the discussion, teachers connect into the intricacies of this betting games (considering the 

pro E bets) and the application of mathematical knowledge in probability.  

Alba focuses on the procedural aspects of achieving predictability and mentions the law of large 

numbers (145-146) as a key principle (KoT - Procedures - Why something is done this way). 

She emphasizes (147-150) the need for a substantial number of plays (KoT – Procedure – When 

to do somethings) to assert the law of large numbers, using the example of playing a million 

times to demonstrate predictability. Her analysis (147-150) involves extrapolating data from a 

smaller subset of rolls (36 in this case) to draw conclusions about larger sets, showcasing a 

procedural method in probability analysis (KoT - Procedures - How to do something). 

Alba introduces the concept of betting strategies within this framework. Her discussion involves 

making decisions based on the imagined frequencies of specific outcomes. In her example, she 

considers (147-150) the frequencies of different sums in 36 rolls and proposes a strategy of 

betting all 36 times on a single sum (KoT – Phenomenology and application – Process of 
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betting), guided (152) by Mirco's quotas (KoT – Definition, proprieties and foundations – 

Degree of confidence).  

Paola challenges in a critical evaluation (153-154) of Alba's strategy, questioning the 

effectiveness of consistently betting on a single number. This prompts a discussion about the 

potential losses and gains associated with such a strategy (KoT – Procedures - Characteristics 

of the result). The dialogue highlights the importance of understanding the underlying 

probabilities and the impact of betting decisions on outcomes. 

Overall, the discussion showcases a blend of procedural considerations, strategic decision-

making, and the application of foundational concepts in probability, laying the groundwork for 

further exploration of how specialized mathematical knowledge impacts decision-making in 

the context of betting games (KoT - Phenomenology and application – Process of betting). 

The interplay between the phenomenological context and a solid understanding of foundational 

principles delineates the strength of Alba's analysis within this specific scenario. In fact, a 

correlation surfaces between the phenomenological context of the gambling situation, 

empowering Alba to steer this exploration, and her knowledge of definitions, properties, and 

foundations, that proficiency enables her to validate Mirco's quotas as reliable components of 

her analytical framework [Intra-conceptual connections]. 
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Paola raises a procedural consideration (163-165) regarding the Bookmaker's ability to 

consistently win, both when playing in pro  E bets mode and when playing in cons  E bets 
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mode. The discussion revolves around the determination of quotas that would enable the 

Bookmaker to secure an advantage, even in the scenario where all players consistently bet on 

the same number. Paola proposes that the Bookmaker should strategically set quotas lower than 

the respective probability measures, facilitating parity in the game dynamics.  

Alba suggests (174) a specific quota (quota 35) that, according to Paola, ensures the 

bookmaker's victory. This brings attention to the procedural characteristics of determining 

quotas and their impact on the overall result (KoT - Procedures - Characteristics of the result). 

The subsequent discussion involves specific examples of quota settings for various sums, 

emphasizing the importance of understanding and manipulating quotas. This represents a 

procedural analysis of how to determine a measure of the reliability of an event (KoT - 

Procedures - How to do something). 

The discourse takes an intriguing turn when Giorgio introduces a unique perspective based on 

phenomenological and conceptual connections [Intra-conceptual connection]. Giorgio 

challenges Paola's idea of lowering the quotas and introduces the concept of consistently betting 

against an event, highlighting a fundamental shift in strategy. His approach involves exploiting 

the potential oversight of the Bookmaker regarding the new rule, playing against the non-

outcome to gain an advantage. Giorgio has discerned that, contrary to what Alba and Paola 

stated, those lowered quotas are not favourable for the bookmaker but for the bettors. This 

introduces a nuanced understanding of the game dynamics, emphasizing the importance of 

situational awareness and adapting strategies based on evolving rules (KoT - Phenomenology 

and application – Process of betting). 

Giorgio, with quotas lower than the probability measure, is suggesting betting against event E, 

meaning betting that a certain outcome will not occur. 

Let's take an example using the quota for the sum 12, set at 35 provocatively by Ciro. 

In the ideal scenario of 36 rolls, where sum 12 should occur only once, Giorgio could bet against 

the event 12 for 36 times with an amount of one coin each time: this means that the Bookmaker 

is obliged to bet one coin for each of the 36 rolls on the outcome of 12. 

Let’s remember that the sum 12 should occur only once in 36 rolls. 

If sum 12 does not occur in the first 35 rolls, the bookmaker would have bet and lost a total of 

35 coins. 
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On the 36th roll, the bookmaker would be forced to bet another coin on sum 12 (for a total of 

36 coins). When sum 12 finally occurs, the bookmaker would win 35 coins (because the set 

quota is 35). So, he would have paid 36 coins to earn 35. Consequently, Giorgio would have 

received 36 coins, paying only 35. Giorgio would earn one coin in total. 

Therefore, Giorgio's strategy is to seize the opportunity to bet against events and consistently 

gain a profit. 

Giorgio's contribution to the discussion underscores the depth of his specialized mathematical 

knowledge, particularly concerning the phenomenological aspects of the game (KoT – 

Phenomenology and applications – Process of betting). His ability to recognize and exploit the 

implications of the new rule, coupled with his reliance on "axioms" provided by 

mathematicians, reflects a heightened understanding in in the awareness of constructing a 

measure of a degree of reliability (KoT - Definition, properties, and foundations – Classical 

probability). 

With this intervention, Giorgio is not yet introducing an alternative measure to the one proposed 

by Alba and Paola; instead, he questions and emphasizes the notion of complete control over 

the game. 
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In the ongoing discussion, there is a noticeable tension between theoretical knowledge and its 

application in the phenomenological context. Paola suggests adjusting the quotas in response 

to the dynamics of the game. However, this proposal is met with scepticism, as Paola herself 

acknowledges potential flaws. 

Mirco, who had previously demonstrated a solid understanding of definitions, procedures, 

foundations, representations, and characteristics of the result, seems to deviate from this wealth 

of theoretical knowledge. His assertion that "this situation is impossible to be solved" suggests 

a disconnection between his “profound” mathematical knowledge and the phenomenological 

nuances of the betting scenario he is immersed in [Intra-conceptual connection]. This allows us 

to emphasize that theoretical mathematical understanding may not necessarily translate into a 

keen awareness of the challenges posed by the dynamic and uncertain nature of probability 

contexts. In this case, Mirco appears to struggle with integrating his mathematical insights with 

the complexities of this scenario, underscoring the importance of a more robust intra-conceptual 

connection between theoretical knowledge and application in the phenomenological realm. 

The discussion highlights the limitations of treating a phenomenological problem as a 

mathematical puzzle to be solved with rules derived from classical probability definitions, 

frequentist probability, or the law of large numbers. This tension between theory and 

application suggests that specialized mathematical knowledge in probability strongly needs to 

be rooted in the intra-conceptual connections of this topic. 
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In this dialogue, all the participant teachers (except Luisa) engage in a discussion centred 

around the strategic determination of quotas.  

Ciro's prompt about using lower quotas (200) triggers a consideration of potential outcomes in 

terms of wins and losses. This leads Alba to argue (201) that using lower quotas results in a 

loss. A similar response from Mirco (203) regarding the use of higher quotas concludes that 

this move also leads to a loss.  

The subsequent recommendation to use equal quotas, as proposed by Paola (205), highlights a 

procedural strategy: choosing quotas that balance risks and benefits in the betting scenario (KoT 

- Procedures - Why something is done this way).  

This strategic decision-making process indicates a nuanced understanding of the interaction 

between quotas and potential outcomes, reflecting the teachers' experience in navigating the 

complexities of probability in the explored context. 

Ciro's further clarification (206), referencing Paola's intervention (equal to 36), introduces a 

connection to theoretical elements of probability (KoT - Definition, properties, and foundations 

– Classical probability). The idea that quotas are equal to the reciprocal of the probability value 

demonstrates an awareness of the mathematical relationship between quotas and probability, 

underscoring the teachers' proficiency in applying fundamental principles to decision-making 

in a betting context. 

Giorgio's contribution (207 -208) introduces an element of adaptability and consideration of 

different betting strategies, demonstrating a sensitivity to the nuances of the gaming scenario 

(KoT - Phenomenology and application – Process of betting). His statement that staying on 36 
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for the event of sum 12 is strategically advantageous indicates an understanding of broader 

gaming dynamics. 

In this discussion we could appreciate the collective knowledge development in constructing a 

criterion for establishing quotas (KoT - Phenomenology and application – Process of betting) 

in order to ensure that none of the competitors would win with certainty (de Finetti, 1931). 

In summary, the discussion illuminates how teachers, through their involvement in quotas-

related decisions, draw on their knowledge of definitions, procedural understanding, 

fundamental comprehension, and awareness of phenomenological knowledge in probability 

contexts. They develop the ability to navigate these aspects, impacting specialized 

mathematical knowledge in probability. 
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6. Conclusions 

Historically, mathematics has accustomed us to a world of certainties, where every calculation 

and solution were inherently linked to direct experience. However, when we delve into the 

realm of probabilities, we face a different paradigm. And this is a problem that we still grapple 

with today. In classical mathematics, experimenting and solving meant obtaining a concrete 

answer, an absolute truth. But with probability, what we get is an anticipation, of what might 

happen. It's as if, in attempting to determine the probability of an event, we load that event with 

expectations and hopes, only to discover that reality may be different. We forget that we are 

navigating uncertainty, and this contradictory aspect makes probability a unique, challenging, 

and fascinating field. The experience associated with probability sharply contrasts with the 

repetition of other mathematical experiences. We cannot simply apply a formula and expect a 

consistent answer as in other branches of mathematics. Probability is intrinsically linked to our 

ability to anticipate uncertainty, making its study a constant balance between rigorous 

calculations and the awareness that what might happen is not always predictable. 

This is a problem we still face today. Mathematics historically dictates that you undergo an 

experience and find a solution; you perform a calculation on that experience and arrive at the 

same solution. In probability, no! You make a calculation, expect something to happen, and the 

result that comes out is something different. Because we forget that we are calculating the 

probability of something happening, we load that something with expectations, and perhaps 

that something doesn't happen. The experience associated with probability is something 

different from the repetition of any other mathematical experience.This is an aspect still open, 

not thoroughly addressed in this research work. 

This study explored the role of elements of Knowledge of Topics (KoT) in teachers' probability, 

focusing on a education program context aimed at establishing relationships between 

subjective, classical, and frequentist perspectives, trying to address two research questions: 

(i) Which elements of teacher’s Knowledge of Topics (KoT) on probability are possible 

to trace on a context of a teacher’s education program focused on establishing 

relationships amongst subjective, classic and frequentist perspectives? 

(ii) To what extent do the theoretical elements of the subjectivist approach to 

probability contribute to the attribution of meaning to the degree of confidence that 

a teacher assigns to an event? 
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Drawing inspiration from the subjectivist approach to probability proposed by de Finetti in 

1931, we crafted a specific Professional Development (PD) program for primary and lower 

secondary teachers. This program engaged teachers in a betting game context where they were 

required to quantify the degree of confidence associated with each possible event in the game. 

Through the analysis of quotas, notes, and transcriptions using the MTSK lens, several aspects 

emerge that can enrich future teacher education programs. 

The analysis of teacher discussions on quotas in gambling highlights how the ability to 

strategically determine quotas needs a deeper awareness of knowledge related to the 

foundations of probability. Awareness of theoretical foundations emerges as an essential pillar 

built throughout the entire discussion on constructing quotas as degree of confidence. 

In the first discussion’s phase, we analyzed the behaviors and decision-making processes of 

five teachers engaged in a simulated betting game involving the rolling of two six-sided dice. 

Through an examination of their assigned quotas and accompanying notes across two meetings, 

we gained insights into their specialized knowledge of probability and its application in 

decision-making. However, the aspect that enriched us the most as researchers and granted us 

deeper access to their specialized knowledge was the narrative presentation of their notes and 

quotas. 

What emerged from this part of the analysis allowed us to gain a clear picture of each teacher, 

summarized as follows: 

§ Alba's approach to setting quotas displayed a lack of coherence, characterized by 

inconsistent adjustments and a qualitative rather than quantitative consideration of 

confidence levels. Her perception of probabilities appeared to prioritize ordinal sorting 

over strategic quantification, neglecting to establish meaningful connections between 

different events. 

§ Paola demonstrated a nuanced understanding of probabilities, evidenced by her non-

uniform quota assignments and thoughtful reflections on the asymmetrical distribution 

of dice sums. Her recognition of the relative likelihood of different outcomes and the 

impact of betting dynamics on player strategies showcased her depth of knowledge in 

probability theory. 

§ Giorgio's quota assignments evolved significantly over the course of the study, 

reflecting a transition from an initial alternating pattern to a bell-shaped distribution. 

While his approach initially lacked coherence, his later adjustments suggested a 
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growing appreciation for the complexities of probability assessment and the influence 

of betting dynamics. 

§ Luisa's quota assignments demonstrated a descending trend, reflecting her perception 

of the difficulty associated with achieving certain dice sums. Despite some 

inconsistencies, her considerations of the number of combinations and asymmetrical 

distribution of probabilities indicated a developing understanding of probability theory. 

§ Mirco exhibited a sophisticated understanding of probability concepts, as evidenced by 

his deliberate quota assignments, utilization of classical probability calculations, and 

detailed analyses of dice sum outcomes. His adept use of mathematical representations 

and rigorous approach to probability assessment highlighted his advanced knowledge 

in the field. 

The elements of teacher’s Knowledge of Topics (KoT) on probability that are possible to trace 

in this context of teacher’s education program include: 

§ Definition, properties and foundation in Probability: both Paola and Mirco demonstrate 

an understanding of classical probability by assigning quotas based on perceived 

probabilities of different events, considering the likelihood of each outcome in a 

classical sense. 

§ Procedures: Alba, Paola, Giorgio, Luisa, and Mirco all exhibit various procedures for 

adjusting quotas, whether it's based on combinations of dice rolls, perceived 

probabilities, or other factors. This reflects their understanding of how to adjust betting 

quotas strategically. 

§ Phenomenology and Application: teachers like Alba, Paola, Giorgio, and Luisa engage 

in qualitative assessments of probabilities, considering factors such as symmetry of 

quotas' distribution and trends in their assigned quotas. They also demonstrate an 

understanding of the application of betting strategies such as pro E and cons E bets. 

§ Registers of Representation: Alba, Paola, Giorgio, and Luisa utilize different registers 

of representation in their quota assignments, including symmetry of quotas' distribution, 

descending trends, and ordinal sorting of confidence levels in events. Mirco also uses 

fractions, percentages, and graphical representations to depict probabilities and trends 

in quota assignments. 

The analysis of teachers' behaviors and decision-making processes provided valuable insights 

into the complexities of probability assessment and its application in betting scenarios. While 

some participants demonstrated a nuanced understanding of probability theory and its practical 
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implications, others exhibited inconsistencies and a need for further development in their 

specialized knowledge. These findings underscore the importance of targeted teacher education 

programs aimed at enhancing educators' proficiency in probability concepts and their 

application in real-world contexts. By addressing gaps in understanding and promoting 

coherent decision-making strategies, such initiatives can empower teachers to effectively 

support student learning in mathematics. 

The analysis of the excerpt of the discussion showed how the refinement process of the degree 

of confidence associated to each possible event by the teachers involved both qualitative and 

quantitative aspects: qualitative, because teachers gave meaning to their knowledge; 

quantitative, because they used, especially at the end of the process, their knowledge of the 

probability definition as a tool to make conscious choices. 

The intra-conceptual connection between fundamental concepts, their representation (KoT - 

Registers of representation), and the phenomenological aspects of the explored context (KoT - 

Phenomenology and applications) emerges as fundamental knowledge to create awareness of 

what one knows (as in the case of Mirco) or what one wants to expand (as in the case of 

Giorgio). Integrating this aspect into education programs can promote a more flexible approach 

to understanding and teaching probability. 

Alba's emphasis on procedural aspects and betting strategies, coupled with Paola's critical 

evaluation, highlights the importance of understanding underlying probabilities and the 

consequences of betting decisions. Giorgio's unique perspective introduces a nuanced 

understanding of game dynamics, emphasizing the adaptability of strategies based on evolving 

rules and situational awareness. This demonstrates the depth of specialized mathematical 

knowledge, particularly in relation to phenomenological aspects of the game. 

However, the discussion also exposes the limitations of solely relying on theoretical 

mathematical understanding without considering the complexities of the phenomenological 

context. Mirco's struggle to integrate his mathematical insights with the dynamic nature of the 

scenario underscores the necessity of fostering stronger intra-conceptual connections between 

theoretical knowledge and its application. 

Overall, the collective knowledge development observed in the discussion reflects the teachers' 

proficiency in navigating various aspects of probability, from fundamental principles to 

strategic decision-making, ultimately contributing to the construction of a criterion for 

establishing quotas that ensures fairness and prevents certain players from gaining an unfair 



 148 

advantage. This highlights the importance of intra-conceptual connections in strengthening 

specialized mathematical knowledge and its practical application in real-world scenarios. 

It emerges that intra-conceptual connections play a crucial role in guiding teachers' decisions 

in the context of gambling. In particular, the connection between phenomenology and 

applications acts as the linchpin that enables a conscious use of theoretical knowledge. This 

connection facilitates a practical and contextualized application of probability in real-life and 

problem-solving, emphasizing the importance of an integrated approach to probabilistic 

knowledge. 

The analysis uncovers that de Finetti's subjective approach to probability, emphasizing the 

psychological rationale behind an individual's beliefs about the likelihood of events rather than 

solely numerical computations, fundamentally underpins the concept of probability. This 

perspective transcends mere numerical constraints and fosters a collective construction of 

knowledge within the learning group, thereby enriching teachers' specialized understanding. 

In constructing a coherent (de Finetti, 1931) probability measure, intra-conceptual connections 

prove pivotal.  

The discussion among the teachers reveals a multifaceted approach to understanding and 

applying specialized mathematical knowledge within the context of betting games. Through the 

exploration of procedural considerations, strategic decision-making, and the application of 

foundational concepts in probability, the participants demonstrate the intricacies involved in 

assessing the degree of confidence and mitigating the risk of competitors winning with 

certainty. 

This study provides an in-depth overview of the dynamics of specialized knowledge in 

probability among teachers and underscores the importance of designing teacher education 

programs that integrate procedural, foundational, and phenomenological aspects. The 

subjective approach emerges as a significant theoretical perspective that contributes to 

developing a richer awareness of probability among teachers, preparing them to guide students 

in understanding this complex and dynamic concept. 

With this study we are not proposing that the subjectivist definition of probability should be 

explicitly taught during PDs or students at school, but we are exploring its potentiality as 

educational innovative paths for teachers and students – to avoid proposing not trivial 

probability activities. It emerges that a betting game like the one we have used in the data 
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collection context (which follows an idea by de Finetti’s) actually generates a dynamic that 

leads to the coherent construction of a probability measure based on the choices of the players.  

This provides a strategy for teachers to design educational paths where a (classical or 

frequentist) definition of probability is not given a priori, but it is established starting from the 

degree of confidence expressed by learners.  

In conclusion, while significant strides have been made in the mathematical systematization of 

the subjectivist approach to probability, particularly in demonstrating its consistency with other 

probabilistic frameworks, there remains a critical gap in translating this theoretical 

understanding into effective pedagogical practices.  

The dynamic and uncertain nature of probability contexts presents unique challenges that 

necessitate a nuanced approach to subjective probability. 

Moving forward, future research in the field of probability education must address how to 

bridge this divide between theoretical understanding and practical application.  

Key open questions include identifying effective educational strategies for fostering coherence 

in probabilistic reasoning among students, as well as exploring teachers’ interpretations of 

student work to inform instructional practices: a refined and specific categorization of teachers' 

specialized knowledge in the field of probability education can further illuminate key open 

questions.  

One avenue of inquiry involves identifying how teachers’ specialized knowledge interact to 

shape instructional practices. 

 A more refined and specific categorization of teachers' specialized knowledge in this topic is 

crucial for addressing key open questions in probability education. One aspect to consider is 

how teachers' content knowledge in probability theory intersects with their pedagogical content 

knowledge (PCK), which encompasses their understanding of how to teach probabilistic 

concepts effectively. 

Lastly, considering teachers' knowledge of instructional technologies and how they can be 

leveraged to enhance probabilistic reasoning instruction is also pertinent in exploring effective 

educational strategies. By delving into these nuanced dimensions of teachers' specialized 

knowledge, researchers can better understand how to support educators in fostering coherence 

in probabilistic reasoning among students and refining instructional practices to meet the 

diverse needs of learners. 
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Additionally, there is a need for further investigation into how to scaffold learning experiences 

that align with the complexities of real-world probabilistic scenarios. 

 Only by addressing these challenges can we fully realize the potential of probability education 

to empower students with the skills and understanding necessary to navigate uncertain 

environments effectively. 
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