

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 223 (2023) 400–402

1877-0509 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Op-
timization Symposium
10.1016/j.procs.2023.08.260

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization
Symposium

Keywords: Approximation Algorithms; NP-Hardness; FPTAS

1. Introduction

Packing problems are recurrent in the advertising layout of sites, such as Google and Mercado Livre (a large

Latin American marketplace), where ads are displayed on a banner. The probability of receiving clicks and, thus, the

expected revenue for displaying an ad varies with its proximity to the top. This leads to the problem of arranging these

advertisements in the banner in a way similar to Binary Knapsack Problem (KP), with the difference that an ad’s value

is higher if placed near the top. To model this task, we introduce the Positional Knapsack Problem (PKP), a variant

of the classical KP in which the value of an item varies with the position in which it is placed.

E-mail addresses: lehilton@ic.unicamp.br (Lehilton L. C. Pedrosa)., mauro.silva@ic.unicamp.br (Mauro R. C. da Silva)., rafael@ic.unicamp.br

(Rafael C. S. Schouery).

1 Supported by São Paulo Research Foundation (FAPESP) grants #2015/11937-9, #2016/23552-7, and #2020/13162-2 and National Council for

Scientific and Technological Development (CNPq) grants #425340/2016-3, #312186/2020-7, and #311039/2020-0.

E-mail address: mauro.silva@ic.unicamp.br

XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023)

Positional Knapsack Problem: NP-hardness and approximation

scheme
(Brief Announcement)

Lehilton L. C. Pedrosaa,1, Mauro R. C. da Silvaa,1, Rafael C. S. Schouerya,1

aInstitute of Computing, University of Campinas Av. Albert Einstein, 1251 – Cidade Universitária, Campinas – SP, Brazil, 13083-852

Abstract

We present the Positional Knapsack Problem (PKP), show that it is NP-hard and admits a Fully Polynomial-Time Approximation

Scheme (FPTAS). This problem is a variant of the classical Binary Knapsack Problem (KP) in which the contribution of an item to

the objective function varies according to the position in which it is added. The change in the valuation adds new properties to the

problem that do not hold for KP as PKP is not a generalization of KP. Our FPTAS is based on a dynamic programming algorithm

and uses a recursive rounding approach, which is necessary since the objective function depends on each item’s value and position.

 Lehilton L. C. Pedrosa et al. / Procedia Computer Science 223 (2023) 400–402 401

iGi = vi(L − hi) L

hi

Fig. 1: Gain Gi of an item i with value vi when packed at

position hi of a knapsack with capacity L.

i 1 2 3 4 5 6

si = vi 5 4 3 3 3 2

Table 1: Instance for the example of Figure 2.

I1

I3

I6

I2

I4

I5

I1

I2

10

KP∗1 KP∗2 PKP∗

Fig. 2: Examples of optimal solutions for KP and PKP considering the

items in Table 1.

Formally, an instance of PKP is composed of a knapsack of capacity L and a set of items I = {1, 2, . . . , n}, where

each item i has value vi > 0 and size si > 0. The objective is to find a subset S ⊆ I and the positions to pack S that

maximizes the gain and does not exceed the capacity of the knapsack. The gain Gi of an item i is given by vi(L − hi),

where hi is the position where the top of item i was added, and it corresponds to the total size of items preceding i in

the knapsack. See an example in Figure 1, and notice that the packing starts at L and not at 0.

Several approaches for KP have been considered. We refer the reader to the two-part survey recently presented by

Cacchiani et al. [1, 2] on KP and its variants, where exact and approximations algorithms are discussed. Gawiejnowicz

et al. [3] consider knapsack problems with variable weights or profits of items. In these problems, an item’s weight or

profit depends on the item’s index in the sequence of items packed in the knapsack. Note that these problems differ

from PKP since, in PKP, the items vary according to the position in the knapsack, not with the index in the sequence

of items. Gawiejnowicz et al. [3] presented FPTASes for the proposed problems considering monotonic functions.

Both KP and PKP have the same sets of inputs and feasible solutions. Despite this similarity, the items of an op-

timal KP solution do not necessarily form an optimal PKP solution for the same input even with si = vi for every

item i. Consider an instance with the items described in Table 1 and a knapsack of capacity L = 10. Optimal solu-

tions for KP with these items are KP∗1 = {I1, I3, I6} and KP∗2 = {I2, I4, I5}. When we consider the objective function

of PKP, the values of these solutions are 69 and 67, respectively. However, an optimal solution for PKP with these

items is PKP∗ = {I1, I2} and has value 70. Note that PKP∗ is not an optimal solution for KP since
∑

i∈PKP∗ vi = 9

and
∑

i∈KP∗1
vi =
∑

i∈KP∗2
vi = 10. Moreover, note that KP∗1 and KP∗2 are solutions for Partition Problem with this in-

stance, and PKP∗ is not. These solutions are shown in Figure 2.

We can show PKP is NP-hard even when every item has a value equal to its size by a reduction of the Equal-

Cardinality Partition Problem, a variant of the Partition Problem. The idea behind this reduction is to have very

large items such that an integer in the original instance is much smaller than the size of the generated item. This

makes all items very similar in size, leading to some useful properties.

We present a pseudo-polynomial algorithm and an FPTAS for this problem. Since a solution of PKP includes the

position in which items are packed, the objective function depends on the sizes and values of packed items. This is

distinct from KP, whose objective function depends only on the values of packed items. To handle this difficulty, our

FPTAS uses a recursive rounding approach.

2. Preliminaries

We define the fullness of a solution S ⊆ I as the sum
∑

i∈S si, the efficiency of an item i as ei = vi/si and denote

the largest value of an item by Vmax = maxn
i=1

vi. In Lemma 1, we note that a solution of PKP can be represented only

by the set of packed items, as we show that sorting the items in non-increasing order of efficiency maximizes the total

gain. Note that when the efficiency of every item is equal to 1, that is, when vi = si for every item i, the value of a

solution is the same for any order. However, as shown in Figure 2, the problem is still different from KP.

402 Lehilton L. C. Pedrosa et al. / Procedia Computer Science 223 (2023) 400–402

Lemma 1. Let S be a solution that packs items I′ ⊆ I in an optimal order. Then, the packing order is non-increasing

with regard to efficiency.

3. Pseudo-polynomial time algorithm

We present a pseudo-polynomial algorithm for PKP similar to the dynamic programming algorithm presented

by Ibarra and Kim [4] for KP. By Lemma 1, we assume that the items are sorted in non-increasing order of efficiency.
The algorithm creates a matrix A with dimensions n× nLVmax where each entry A(i, j) of the matrix corresponds to

the minimum fullness of a solution considering only the first i items and with total gain exactly j. If there is no such
solution, then A(i, j) = ∞. The following recurrence computes each entry of the matrix:

A(i, j) =



























∞, if i = 1 and Lv1 � j,

s1, if i = 1 and Lv1 = j,

min(A(i − 1, j), mink A(i − 1, k) + si), otherwise,

where the second minimum in the third case ranges over every integer k such that 0 ≤ k < j and

k + (L − A(i − 1, k))vi = j. We can show that this recurrence is optimal for PKP. This algorithm’s running time is

O(L2V2
maxn2), which is pseudo-polynomial in the instance size.

4. FPTAS

Based on the pseudo-polynomial algorithm, we present an FPTAS by rounding down the solution value. We assume
that the indices of items are sorted in non-increasing order of efficiency accordingly to Lemma 1. Consider a constant ε
such that 0 < ε < 1, and define δ = ε/n. Also, for each number x ≥ 0, define Rδ(x) as the largest integer power of

(1 + δ) that is not greater than x. Therefore, if Rδ(x) = (1 + δ) j for some j, then (1 + δ) j ≤ x < (1 + δ) j+1. We say that
a value x is rounded down to Rδ(x). Our algorithm creates a matrix Aδ with dimensions n ×



log1+δ nLVmax



such that
each entry is computed using the following recurrence:

Aδ(i, j) =



























∞, if i = 1 and Rδ(Lv1) < (1 + δ) j,

s1, if i = 1 and Rδ(Lv1) ≥ (1 + δ) j,

min(Aδ(i − 1, j), mink Aδ(i − 1, k) + si), otherwise,

where the second minimum in the third case ranges over every integer k such that 0 ≤ k < j and also

Rδ((L − Aδ(i − 1, k))vi + (1 + δ)k) ≥ (1 + δ) j. The idea behind this recurrence is to use a dynamic programming al-

gorithm similar to the one presented in Section 3, but approximating the value of a solution rounded down to a power

of 1 + δ. Each entry Aδ(i, j) of the matrix corresponds to the fullness of a solution considering only the first i items

and with a total gain of at least (1 + δ) j. If the algorithm cannot find a solution, it sets Aδ(i, j) = ∞.
Let S be a solution with m items. We denote by S i the i-th item of S in non-increasing order of efficiency. The total

gain of S is defined as f (S) =


i∈S Gi. The rounded total gain of S is defined recursively by letting

fδ(S) =















0, if m = 0,

Rδ(GS m + fδ(S \ {S m})), if m ≥ 1.

To show this algorithm is an FPTAS, we prove that this recurrence finds a solution S that maximizes fδ(S) and

prove that fδ(S) ≥ exp(−2ε) f (OPT). For every 0 < ε′ < 1/2, we can set ε = 1
2

ln (1/(1 − ε′)), such that f (S) ≥

exp(−2ε) f (OPT) = (1 − ε′) f (OPT). This algorithm’s running time is O



n3 log2 (nLVmax)

ε2



, which is polynomial in 1/ε

and in 1/ε′ since 1/ε = 1/


1
2

ln


1
1−ε′



= −2/(ln(1 − ε′)) ≤ 2/ε′ = O(1/ε′).

References

[1] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. Knapsack problems — An overview of recent advances. Part I: Single knapsack problems.

Computers & Operations Research, 143:105692, 2022. doi: 10.1016/j.cor.2021.105692.

[2] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. Knapsack problems — An overview of recent advances. Part II: Multiple, multidimensional,

and quadratic knapsack problems. Computers & Operations Research, 143:105693, 2022. doi: 10.1016/j.cor.2021.105693.

[3] S. Gawiejnowicz, N. Halman, and H. Kellerer. Knapsack problems with position-dependent item weights or profits. Annals of Operations

Research, pages 1–20, 2023.

[4] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems. Journal of the ACM, 22(4):463–468,

1975.

