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"Understanding a question is half an answer’
(Socrates)



Resumo

O Problema do subespaco invariante é um dos problemas em aberto mais famosos em
teoria dos operadores, ele pergunta se dado qualquer operador linear limitado em um
espaco de Hilbert complexo, separavel e de dimensao infinita, tal operador admite um

subspaco invariante fechado nao-trivial.

No presente trabalho, iremos introduzir a teoria basica do espaco de Hardy-Hilbert do
polidisco, H*(ID"), e seus operadores de Toeplitz e com isso exploraremos as conexdes entre
universalidade e operadores de Toeplitz T} sobre os espagos de Hardy-Hilbert do disco e
do polidisco e relagoes com o problema do subespago invariante, isto ¢, uma abordagem
ao problema pelo estudo subespacos invariantes com relacdo a um operador de Toeplitz

universal.

Palavras-chave: Operadores universais. Operadores de Toeplitz. Espagos de Hardy.

Espagos de Hilbert. Subespacos invariantes.



Abstract

The invariant subspace problem (ISP) is one of the most famous open problems in operator
theory, it asks if given any bounded linear operator on a infinite dimensional, complex and

separable Hilbert space, does such operator admit a non-trivial closed invariant subspace?

In this present work, we will introduce the basic theory of the Hardy-Hilbert space over the
polydisk, H?(D"), and its Toeplitz operators and we will explore the connections between
universality and Toeplitz operators Ty over the Hardy-Hilbert spaces of the disk and the
polydisk and its relations with the invariant subspace problem, in other words, a approach

to the problem by studying the invariant subspaces of a universal Toeplitz operators.

Keywords: Universal operators. Toeplitz operators. Hardy spaces. Hilbert spaces. Invariant

subspaces.
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Introduction

The Invariant Subspace Problem (ISP) is currently one of the most famous open
problem from operator theory. It was stated in the mid 1900’s after the works of (1)) and
a unpublished work by John von Neumann. So far, several different approaches to this
problem have been studied. The recent monograph (2)) introduces many modern approaches
to the ISP. The problem may be formulated as follows: given a complex Banach space E
with dimension greater than 1 and any bounded linear operator 7' : E — E, does T" admit
a non-trivial closed invariant subspace?

Solutions for some cases have already been obtained. If E is finite dimensional, the
problem may be solved by using Jordan Canonical form. If E' is an infinite dimensional
non-reflexive Banach Space, a counter-example was given by (3| [4, [5, [6). If E is an infinite
dimensional non-separable Banach space, the closure of the orbit of any non-zero element
in F works as a non-trivial closed subspace.

Several other results have been proven concerning Banach spaces, for instance it was
proved by (7)), that every compact operator in a Banach space with dimension greater or
equal to 2 has a non-trivial closed invariant subspace, (8)) proved that for polynomially
compact operators, we also have a positive answer to the problem. Later, (9) proved that
if an operator 7' commutes with a non-zero compact operator, then 7" has a non-trivial
closed subspace.

The currently most important open forms of the problem involve complex reflexive
Banach spaces and complex separable Hilbert spaces. Our focus in this work is on the
separable Hilbert space case this gives us a good advantage in the form of
which states that every separable Hilbert space is isometrically isomorphic to ¢2.

Of course, many techniques used are inspired by the one-dimensional case, where we
have a complete characterization of the invariant subspaces of the shift on ¢ due to (T).
He proved that every invariant subspace of the unilateral shift of H?(D) are given by
dH?*(D), where ¢ is an bounded holomorphic function on the unit disk with |¢(e?)| = 1
almost everywhere on T and H?(D) is the Hardy-Hilbert space over the disk.

This work focus on the Hardy-Hilbert space over the polydisk, H?(D"). One of the
advantages of using this space, is the use of Rota’s universal operators. An operator U
is said to be universal if given a non-zero operator T' € B(#H), there exists a non-trivial
closed subspace M of H such that the restriction of U to M is similar to 7" in M. Verifying

that a operator is universal is not a trivial task but the [Caradus Criterial give us sufficient

conditions to prove that a operator is universal and so we can present some examples, one
of those are the adjoints of the shifts on H?(ID") which is convenient since we are studying
shift invariant subspaces.

This work will be organized as follows:
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In the first chapter, we will present a short introduction for function theory on H?(D)
since we are going to make some similar arguments and comparisons with H?(D") and
also a short introduction to several complex variables, later we will present some general
results about function theory in H?(ID"), a short introduction to Toeplitz operators over
H?(D") and define universality on Hilbert spaces and its connections to the ISP.

In the second chapter, we study shifts in H?(D) and Beurling’s theorem. Also, via
vector-valued Hardy spaces, we present a connection to the polydisk case and some
examples of invariant subspaces.

In the third chapter, we will study some recent advances in ISP via Toeplitz operators,
in the disk and polydisk case and we will see why we prefer the polydisk case and the
current struggles with this approach.

In the appendix, we will state some general results from functional analysis that will
be use through the text.

This work aims to be a concise introduction to the study of ISP via universality of
Toeplitz operators on H?(D") and we assume that the reader has knowledge in functional
analysis, complex analysis in one variable, rudiments of Fourier analysis and measure

theory.



15

1 Preliminaries

In this chapter, we will introduce the basic concepts for the text, first a short introduc-
tion to the Hardy-Hilbert space over the disk and several complex variables, then we will
discuss the Hardy-Hilbert space over the polydisk, results about Toeplitz operators over
the polydisk and universality. This chapter is based on (10, 11, 12} 13} 14! [15]).

1.1 The Hardy space over the disk

In this section, we will briefly introduce the Hardy-Hilbert space of the disk as a starting
point for this work. This space was used to give a complete characterization for the shift
invariant subspaces on ¢* space by (1)) (this characterization will be stated and proved in
chapter 2) and will provide some intuition when we start to work with Hardy-Hilbert space
of the polydisk since many properties are naturally generalized. First, we will introduce the

most natural example of a Hilbert space, the space of square-summable complex sequences
2.

Definition 1.1.1. We define £* as follows

? = {(an)neNo eC: Z |an\2 < oo} i

n=0

Of course, in this space, we have a natural definition of inner product as

<(an)n€N07 (bn)neN0> = Z ana

and, naturally, a definition of norm

o 1/2
I(@n)nem, | = (Z |an|2> .

n=0
Now we present the Hardy-Hilbert space, which is isometrically isomorphic to ¢2, but
it has a richer theory behind than ¢?. We define the disk as the set D = {z € C: |2| < 1}
and the unit circle T = {z € C: |z| = 1} as the boundary of D.

Definition 1.1.2. We define the Hardy-Hilbert space of the disk as holomorphic functions
on the disk such that the coefficients in the power series representation are square-summable,

i.e.,

H?*(D) = {f(z) = D an2" Y an)? < oo}
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where we define the inner product for f = f(z) = > jan,2" and g = g(2) = >, b,2"

(frg) =, anbn
n=0

It is clear now that the mapping

o0
T:0* > H*D), (an)nen, — Z a,z"
n=0

is a isometric isomorphism between ¢* and H?*(ID) and therefore the Hardy-Hilbert space
is separable. One might ask if every holomorphic function on the disk belongs in H?(D),

but a clear example is the function

1 - n
1—z RZO -
which is trivially a holomorphic function on D, but the coefficients are not square-summable.
When we said that this space has a richer theory, we mean in the sense that we may
use the usual function theory of complex analysis and, of course, a class of vectors that

are very useful in the development of theory that are not present in the ¢? space, the

reproducing kernels.

Definition 1.1.3. Let zp € D, we define the function k., as

1

1— 252

k. (z) = i Zo 2"
n=0

We say that k., is the reproducing kernel at z,. By the power series representation is

clear that k., € H*(DD), moreover we have the following

Theorem 1.1.1. (10, Theorem 1.1.8) For zo € D and f € H*(D), we have {f, k.,> = f(20)

and |k, | = —/—.
Now, we want to give another possible characterization for the Hardy-Hilbert space of

the disk, that is, by the use of some simple Fourier analysis.

Definition 1.1.4. We define the Lebesgue space L*(T) as the space of square-integrable

complex functions over T with respect to the normalized Lebesque measure p, i.e,

ﬁ@h{fjﬁﬁ@<w}

In particular we know that the inner product defined in L?(T) is given for any f, g €
L?(T) as

@@=me



Chapter 1. Preliminaries 17

and naturally, we define the norm as

1/2
f%(LW%&-

Let n € Z, define the function e, in T such that e,(e?) = ¢ we can see that {e, : n € Z}
forms an orthonormal basis for L?(T) since by the Fourier transform we have that for a

given f € L*(T) we write the Fourier coefficients of f as

7 1 0y ,—inf
n)=— ee " do
flo) = 5= | )
and, of course we may write the function f as
w .
Z anem9
n=—0o0

where a, = f(n). Now define the space H? as

H? = {f*e L*(T) : (f*, e,y = 0 for n < 0}.

In other words, we say that this space is written as

2= {f* e LA(T) : f*(e") i and i la,|? < oo} .
n=0 n=0

From this previous definition, the reader must already think that we wish to say that
H?*(D) is isometrically isomorphic to H?. In fact that is true, but since this is a short
introduction, for a complete proof we refer (10, Section 1.1), however in the polydisk case
we will see a similar characterization which we will be proved. A way to relate these two

spaces is via radial functions defined as

frw) = f(rw) for every we T

the idea is that for every function f € H?*(ID) we can associate a function f* € L*(T) with

the following relation

74(e) = lim f(re?)
r—
for almost every 6, so this presents a connection with the boundary values of a function
f that, from our original definition, we do not have enough information, in fact we
may present examples of functions that belong in H?(D) that are not holomorphic in a
determined point of T, for instance, if we define for a fixed 6,

0

n=0

7zn90
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We know that h € H?(D) but when we approach the point ¢ from inside the disk
we see that |h(z)| tends to infinity and therefore it can not be holomorphic at that point.
Moreover we can produce an example of function that belongs in H?(ID) but it is not
holomorphic at any point of the unit circle and to this purpose we need to give more
background. From our previous characterization for H%(ID) being seen as a subspace of
L?(T) we get the following:

Theorem 1.1.2. ({10, Theorem 1.1.12) Let f € Hol (D) then f € H*(D) if and only if

sup | (") <
T

O<r<1

Also, we need to define another Hardy space as follows:

Definition 1.1.5. We define the Hardy space of all bounded holomorphic functions on D

as H*(D) and we give the norm of uniform convergence to this space, i.e.,

[l = sup [f(2)]
zeD

From Theorem we get that H*(D) is a subspace of H2(D) by the fact that for
any function on H*(D), the supremum relation is satisfied. In particular, this has some

connections to the Lebesgue space of essentially bounded measurable functions.

Definition 1.1.6. We say that a function f over T is essentially bounded function if there

exists some K > 0 such that

plfe” [ f(e”)] > K}) =0

and we define L*(T) the Lebesgue space of all essentially bounded measurable functions

with the essential norm

[fllo = inf{EK : u({e” : [f(”)] > K}) = 0}.

From basic measure theory and functional analysis we know that L*(T) is a Banach
space. It is not hard to see that H*(ID) with uniform convergence norm is also a Banach

space and as in the Hardy-Hilbert space of the disk we may also give a connection between

H*(D) and L*(T).
Theorem 1.1.3. (10, Corollary 1.1.29) If f € H*(D), then f* e L*(T).
Now, we are ready to define a class of functions called Blaschke products.

Definition 1.1.7. Let (2,)nen, be a sequence of non zero complex numbers in D and
assume that Y, (1 —|z,|) < 00. Let s € Ny, then the Blaschke product with zeros (2,)nen,

and multiplicity s zero at z = 0 is defined by
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N

Zn —

o0
s n <
Pl =z ,H) |2n] 1 — Z2

It is easy to see that Blaschke products belong in H* (D). Remember that functions of

the type

a—z

Ya(2)

with « € D are involutive automorphisms of the disk, that is

B 1—az

o (Yo 0ts)(z) =z for all z e D.

e 1, is a conformal map from the disk to itself.

From the latter property, we get that [1),(2)| have 1 as an upper bound in D, thus
bounded. Elements of the form — with w € C is always bounded by 1 and of course, the
function 2° with s € Ny is alwayg) bounded by 1 in D by the Maximum module principle,
so the Blaschke products are always the product of bounded elements it is a bounded
holomorphic function. Since Blaschke products belong in H*(D), they belong in H?*(D)
and they can be used to construct the example of a function that is not holomorphic at

any point of the unit circle but belongs in H?*(D).

Remark 1.1.1. Take (a,)nen, @ dense sequence in T and for each n € Ny we set

1
Zp = 17? Q.

Is easy to see that |z,| <1 and that 1 — |z,| < 25 for each n € Ny, then (z,)pen, are
the zeros of a Blaschke product B. By construction of B, every w € T is a limit point of
(2n)neny, and then if B is holomorphic in some point in T we obtain that for a neighborhood

of this point, B is necessarily null which is a contradiction.

So, in the Hardy-Hilbert space, the boundary behaviour is important, but it is not
necessary that we extend the domain of holomorphy to the boundary; in fact, we just need
a "good" behaviour for almost every point. Now, we can introduce some special classes of
functions that play a big role when we discuss the Hardy-Hilbert space of the disk, the

inner and outer functions.

Definition 1.1.8. A function ¢ € H*(D) that satisfies |¢*(e?)| = 1 almost everywhere in

T is said to be a inner function.

A simple example of inner functions are the Blaschke products, and we will show that

the inner functions play a role when we start discussing invariant subspaces, in particular

[Beurling’s theorem| proves that every shift invariant subspace of H?(D) is of the form

¢H?*(D) where ¢ is an inner function. Now, we define outer functions.
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Definition 1.1.9. A function F € H*(D) is an outer function if F is a cyclic vector

for the operator multiplication by z on H*(D), i.e, the closed linear span of the elements
(2" F)pen, is equal to H?*(D).

It is easy to see that the constant function 1 is an example of an outer function. From

this definition, we have some properties for outer functions, for instance:

Theorem 1.1.4. (10, Theorem 2.3.2) If F' is an outer function, then F' has no zeros in
D.

Also, we may give a full characterization for this class of function as:

Theorem 1.1.5. ({10, Theorem 2.7.10) The function F € H*(D) is outer if and only if

log |P(0)] = | 1og|F*du
T
So we can give a canonical factorization in H?(D), the inner-outer factorization.

Theorem 1.1.6. (10, Theorem 2.5.4) Let f € H*(D) be a non-null function, then f = ¢F,
where ¢ is an inner function and F' is an outer function. This factorization is unique up

to constant factors.

1.2 Several complex variables

This section will be dedicated to a short introduction to several complex variables
where we will show some primary results and some differences from the one-variable
function theory. First of all, we will present some background and notations.

Similar to the one variable theory, we define the elements of C™ as the sum of the real

part and imaginary part, but in this case, we have a n-tuple:

(21, oy 2n) = (T1, .-y xn) +i(Y1y oo Yn)

where z; = x; +1y; forall j =1,...,n.
We also need to define some particular sets; here in several variables, we see the idea

of polydisks and balls:

Definition 1.2.1. First take D,(29) = {2z € C: |z — 2| <7} and D, (z0) = {z€ C: |z —

20| <1}, sowe define Dp(w) = {(z1,...,2,) €C": z; € Dy, (w;) where R = (r1,...,7,)}
for w = (wi,...,wy).
Usually, if ry = -+ =r, =1 and w = (0,...,0), we denote the polydisk as D" and the

ball in C™ has the same definition as in usual normed vector space, i.e.,
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Definition 1.2.2. We define B,(w) = {z € C" : |w — z| < r}, where |.| is the usual

euclidean norm in C", the ball with radius r centered at w.

So, in the one variable case, the disk and the ball coincide, but note that the polydisk
and ball are not equivalent. Now we are ready to define the main object of study in this

section, the holomorphic functions, which have three equivalent definitions, for those take
QcC™

Definition 1.2.3. We say that a function f : ) — C is said to be holomorphic if for every

Jj=1,...,n and each fized z1,...,2j_1, 241, ..., 2, the function

CU’_>f(Zl7...,Zj_l,W,Zj+1,...,Zn)

is holomorphic in the sense of one variable holomorphic function.

Here, one might think about the Cauchy-Riemann equations, which have a generalized

version for several complex variables. We define the differential operators

o 1o e\ o 1fo .o
(723‘ N 2 aSCj (’)’yj ’ (’}Z B 2 (?:cj ayj

for j = 1,...,n and note that the Cauchy-Riemann equations over the variable z; is

equivalent to say that

£=0 on the set D
6,2]-

where D = {we C: (21,...,2j-1,w, Zj1+1,- .., 2,) € }. So this definition says that if the
Cauchy-Riemann equations are valid for each variable separately, then the function is

holomorphic.

Definition 1.2.4. A function f : Q2 — C is holomorphic for each w € ) if there exist an

R = (r1,...,7r,) with each r; > 0 such that Dg(w) < 2 and f can be written as absolutely

and uniformly convergent power series

0

f(z) = Z iy (21 — 1) o (20— wy)™

i1 4eeyin=0

for all z € Dy (w).

Definition 1.2.5. Let f : Q — C be a continuous function in each variable separately and
locally bounded. The function f is said to be holomorphic if for each w € ) there exist an
R=(ri,...,rn) withr; >0 for j =1,...,n such that Dg(w) € Q and

— 1 " f(CbaCn)
f(Z) B <27TZ> anwn|—rn o j{lwl—rl (Cl - Zl) cee (Cn - Zn)dCI o an
for all z € Dgr(w).
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Now we aim to prove the equivalences between these holomorphicity definitions, so we
may choose a more appropriate definition whenever needed. Here, we take Definition [1.2.3
as a primary definition of a holomorphic function, and in order to progress, we need to
state one of the most famous theorems in complex analysis, the Cauchy’s integral formula,

in this case for polydisks.

Theorem 1.2.1. Let we C" and rq,...,r, > 0. Suppose that f is a continuous function

on D, (w) x - x D, (w,) and f is a holomorphic in D,, (wy) x -+ x D,, (w,), then

(1Y £ Go)
f(Z) B <27TZ> J|Cn—um|=rn o JC1—o.)1|=7“1 (Cl - wl) S (Cn - wn) dGy - - dén
for all z € Dgr(w).

Proof. In these conditions, since f is holomorphic, then f is holomorphic in each separate
variable, so we may apply Cauchy’s integral formula for one variable in the variable z,, so

we may write f as

f(zla--wzn):f(z):i (Cn_wn) d¢n

2mi
Moreover, we may apply the Cauchy integral formula in the variable z, ; and, therefore

1 f f(Zl,...VZn,l,Cn)
|Cn—wn|:rn

1 f(zlv"wcn—l)Cn)
O | A1y,
27TZ ‘Cn_wn|:7"n \Cn71—wn71|=rn,1 (CTL - WTL)
Applying for every variable, we get the desired result. [

So Theorem implies Definition of a holomorphic function, now we will use
the theorem to prove the equivalence between Definition and Definition [1.2.5]

Corollary 1.2.1.1. If f is holomorphic in 2 < C", then f is of class C'° on €.

Proof. Take a closed polydisk contained in 2. Remember that in the one variable case, we

had the following consequence for Cauchy’s integral formula.

n! g(w)

- 277” |z—w|=r (’Z - w)n+1

g™ (2) dw

for a function g holomorphic in D, (w) and continuous on the closure of this disk, meaning
that we may differentiate under the integral sign for one variable. Now, to take any partial
derivative, we take the Cauchy integral formula representation for a function f on €2, and
with this observation and the use of Fubini’s theorem, we get that every partial derivative
exists and it is continuous, and in particular every derivative is again differentiable on
Q. O

Corollary 1.2.1.2. If f is a holomorphic function on Q < C", then f has a convergent

power series representation about each element w € €.
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Proof. Take a closed polysdisk Dr(w), R = (71, ..., 7,), that is contained in 2 and apply
the Cauchy’s integral formula for f in this polydisk. Fix a z = (z1,..., z,) € Dr(w) so by

the Cauchy integral formula we get

z) = L ! f(§1a7Cn)
f(2) (27”.) Ln-wn|_rn”'J|<l_wl_h e g e, (1)

Our idea now is, as in the one variable case, to rewrite the terms to get to the power

series representation, so we write.

1 1 1

(G —21) (G — 2n) (Cl_wl)"'<Cn_wn)(1_Zl_wl) (1 Z”_w”)'

Cl_wl Cn_wn

Note that for each (; and z; for j = 1,...,n there exist 0 < £ < 1 such that

zj—wj

</
G —wj

and in particular, we also know that

1 e AN
-5 (222)
G ' i;=0 G~

G —w

is an absolute convergent power series, hence in general, we may write that

1 o (mmw) (e —wy)
(G —21) o (G—2n) Z (G — @) (G — wp)in (1.2)

simply because we can interchange the summation signs of the product of these power

i1,00rin=0

series since they are all absolutely convergent by hypothesis and therefore, the resulting
power series still is an absolute convergent series, by substituting ((1.2)) in (L.1)) and the fact
we may interchange integration and summation signs since we have an absolute convergent

series we get that f can be written as

)= D bz —w1) (2 — wl)

11,8 =0

where

. JR— 1 f(ChaCn) )
bll,m,ln <<27”)n J|Cn—wn|=rn o JCl—wl|=r1 (Cl - w1>i1+1 s (Cn - wn>in+1d<1 o dcn

]

Sometimes Corollary [1.2.1.2]is called Osgood’s Lemma in the literature, and now we
proved that Definition implies Definition [I.2.4] but note that Definition already
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implies Definition so we proved that those three definitions are equivalent as they
are in the one variable case. We will see next some results in several complex variables

that have an analog in one variable.

Theorem 1.2.2. If f and g are holomorphic functions in a connected open subset 2 < C”
and if f(z) = g(z) for all points in an open neighborhood U < Q, then f(z) = g(z) for all
z €.

Proof. Let E < € such that E is the interior of the set {z € Q: f(z) = g(z)}, thus E is
an open set, and it is not empty since by hypothesis U < FE. Since () is connected by
hypothesis, it suffices to show that E is closed in the induced topology of ) as a topological
subspace of C™ because then F will be an open and closed non-empty subset of {2 and
therefore £/ must be equal to Q. If w e Q n E, where E denotes the closure of E in the
topology of €, take r > 0 sufficiently small such that Dg(w) <€ Q with R = (r,...,7) and
now fix wy € Dy2(w) N E and note that such wy exists since w € E, therefore w € Dy (wp).
Now, the function f — g has a power series representation centered at wq converging for
every point in Dgs(wy) but remember that f — g is null in this polydisk. Therefore the
coefficients of the power series representation must be all null and hence f — ¢ is null in
Dgy2(wo) and thus w € Dryp(wo) < E, so E contains its accumulation points therefore
E = F and this concludes the proof. O

The following theorem is the analog of the Maximum module principle for several

variables.

Theorem 1.2.3. If f is holomorphic in a connected open subset 2 < C™ and if there exists
w € Q such that |f(2)| < |f(w)| for all z in a open neighbourhood of w, then f(z) = f(w)

for every z € €.

Proof. The proof of this theorem will not be done in this work since it uses some concepts
of differential forms that were not introduced and will not be used. For a complete proof,
see (14, Theorem 4, Page 6). O

Definition 1.2.6. An open set U < C" is called a domain of holomorphy if does not exist
non-empty open subsets Uy, Us, with Uy connected, Uy & U and Uy < U n Uy such that for
every holomorphic function h on U there exists a holomorphic function hy in Uy such that
h = hy on Uj.

Note that every in one variable, every open set is a domain of holomorphy or simply a
domain. Now it is time to introduce some of the differences that we talked about regarding
adding new variables for holomorphic functions. In one variable we always knew that zeros
were always isolated, and that is not the case over several variables all due to what is

known in literature as Hartog’s phenomenon, which states the following
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Theorem 1.2.4. Let Q < C™ be a bounded domain and let K be a compact subset of €2
with the property that Q\K is connected. If f is holomorphic on Q\K, then there exists a
holomorphic function F such that Flox = f.

Proof. Again, this result relies heavily on differential forms theory, so we will refer (15|

Theorem 1.2.6) as a reference for the proof. O

Now, by Hartog’s phenomenon, we are able to show that every zero on several variables
is not isolated, let {2 € C” be a connected domain and f : 2 — C be a holomorphic
function. We suppose that exists only one zero in (2, i.e., there exists unique zg € 2 such
that f(zo) = 0. Since © is connected, then Q\{z} is connected and also the function 1/f(z)
is holomorphic on Q\{z}, so by Hartog’s theorem there exists a holomorphic extension of
1/f(2) to all of 2. However, suppose 1/f(z) is defined for all 2. In that case, we obtain
f(20) - 1/f(20) = 1 by continuity of the product of continuous functions, which implies
f(20) # 0, a contradiction, therefore f does not have only one zero.

However, we can construct in a more explicit manner by the use of Hurwitz theorem

of one variable complex analysis, which we will state here for completeness

Theorem 1.2.5. (16, Chapter VII, Theorem 2.5) Let (g )nen be a sequence of holomorphic
functions on an open connected set D < C that converges uniformly on compact subsets
of D to a function g which is not constantly zero on D. If g has a zero of order m at z,
then for a sufficiently small 6 > 0 and for a sufficiently large k € N, which depends on 6,

gn has precisely m zeros in the disk defined by |z — zo| < 0, including multiplicity.

With the previous result, take f : © — C a holomorphic function, where Q < C? is a
open and connected set then take f(z1,22) = 0 and define f,,(2) = (2,22 + 1/n) and 2, is
fixed. Since f is holomorphic we get that (f,,)nen converges uniformly on compact subsets
to the function g(z) = f(z, 22) and by Hurwitz’s theorem there exists a sufficiently large
N e N such that there exists a zy with the property |z; — zy| < £/2 and fy(zy) = 0.
Assuming without loss of generality that N > 2/e, we get that f(zy, 22 + 1/N) =0 and
that [|(z1,22) — (2w, 22 + 1/N)| < /2 + ¢/2 = ¢, therefore for any zero of a holomorphic
function in several variables we have other arbitrarily close zeros thus no zero is isolated.

So this is one of the significant differences in the function theory of several complex
variables. On a side note we also get that singularities are also never isolated for several
complex variables, and these two facts can turn the behavior of some functions harder to
study and so we finish our short introduction to several complex variables, if the reader

wants to study more about this topic we refer (14, [15).
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1.3 The Hardy space over the polydisk.

Definition 1.3.1. Let T be the boundary of D we take T", the cartesian product of n
copies of T, to be the distinguished boundary of D™, which is the cartesian product of the
boundaries of each D, and o to be the normalized Lebesgue measure on T". We define the
Hardy space H*(D™) to be the Hilbert space of all holomorphic functions f over D™ such
that:

7= s | 1FQ)Pdo(c) < o

O<r<1

We also define H*(D™) to be the set of all the bounded holomorphic functions over D™.
Note that through the text, we always suppose that n > 2, except mentioned otherwise.
We may also have two other possible characterizations of the Hardy space similar to

the ones given for the disk

o Power Series: In this case, we exploit the holomorphic structure of the functions in
H?(D"™) to write the space as

o0 e8]
HD") ={f= > a0, ...z feHl (D), > lay,. .l <o}
i1y00myin=0 i1yenyin=0

This approach is very interesting to use in case one wants to use algebraic structures
since, in this case, one can see H*(D") as a "Hilbert" sub-module of Cl[zy, ..., z,],
in the following manner, given a set {Ti,...,7T,} of commuting bounded linear

operators, the n-tuple (71, ...,7),) provides the module structure by:
Clz1, ..., 20] x H*(D") — H*D"™) (p, f) — p(Ty,..., Ty)f

where p € C|zy,...,2,] and f € H?*(D"). Usually when using this approach, the
operators M,,,..., M, , i.e, the bounded linear operators of multiplication by z;,
i =1,...,n are used in the place of T1,...,T,. We refer to the survey article (I7)

for a more in-depth introduction to this.

o Fourier series: Analogously to the one-variable case where we may define H?(ID) as

isometrically isomorphic to
H2={feL*T): f(n)=0 for n <0}

where f (n) denotes the n'"-Fourier coefficient. In particular, we may see taking

f(n) = a, the functions of H? as

0 0
f(e?) = Z ane™  with Z an)? < o
n=0

n=0

So the idea for this is the equivalence of f < f for f € H?(D) and f € L?(T). So the
analogous approach to H?(D") can be given by

H2(D") = {f e L*(T") : f(k) =0 for |k| <0}
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where k = (ky,...,kn) € Z" is a multi-index, |k| = ky + --- + k, and f(k) is k-
Fourier coefficient, but note here that every k; = 0 for all © = 1,...,n. The proof of
this characterization will be given by Theorem [I.3.2] It gives us a similar analytic
characterization of H?(D"), which will be useful later when discussing compact

Toeplitz operators.

Definition 1.3.2. Let z = (21, ...,2,) € D" and { = ((y, ..., () € T such that z; = r;e'
and (; = €% for j =1,...,n, we define the Poisson kernel P(z,() as the product:

P(z,¢) =

— 1=

PTk (9k - SOk)

Il
—_

k
where P,(0) denotes the usual Poisson Kernel defined in D.

Note that P(z,{) > 0, since the Poisson kernel on the polydisk, is the product of
Poisson kernels on the disk, which are always positive, and in particular, we have the

following result
Lemma 1.3.1. If P(z,() is the Poisson kernel on the polydisk, then ., P(z,{)do(¢) = 1.

Proof. We may rewrite this integral as:

| Peast© = [ Pator—pnau .| 20, o

where 1 denotes the usual normalized Lebesgue measure on the circle.
We know that in the one-dimensional case, we have ST P.(0 —t)du = 1, where t is any

real number; thus, the result follows. O

In particular, since we know that the Poisson Kernel on the polydisk is the product of

Poisson kernels on the disk, we may write the following:

P(z0) = [ [P0 - i) = ﬁ ) rlfil ik @5—¢i)

j=1 Jj=1k;eZ
— Z T|1k1|€ik1(017§91) ... Z ,rlnk'n'eikn(en*@n)
ki1€Z kn€Z

Since we know that all the series above converges absolutely, we obtain that
P(z,() = Z rllk”...r'nk"‘eik'(e_‘p) (1.3)

where the summation extends over all lattice points k = (ki,...,k,) € Z" and k- 0 =
k101 + ... + k,0, and in particular we know that the family {e?*},czn is a basis for L*(T").

Definition 1.3.3. If p is a complex Borel measure in T", then we define its Poisson

integral as the following function:

Pldp](z) = j P(2,¢)dp(¢)

n
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Henceforth, if f € L'(T"), we will denote by P[f] instead of P[fdo] to simplify the

notation.
Theorem 1.3.1. The following assertions hold:
1. If f € L(T") and z € D", then |P[f](2)] < | f|w-
2. If f € C(T™), then P[f] extends to a continuous function on D".

3. If1<p<oo, fe LP(T"), and u = P[f], then |u.|, < ||fl, and |u, — f], — 0 as

r— 1.
where w, s the function u,(w) = u(rw) and u is a function in D™ with 0 < r < 1.
Proof. Let us prove the assertions.

1. This first item is just a straightforward application of Holder’s inequality

IPLf1(2)] =

[ Pesao] < [ P11 = 111

2. By equation (1.3)), item 2 holds trivially if f is a trigonometric polynomial. Now by

IStone-Weierstrass theorem| every f e C(T") is the uniform limit of a trigonometric

polynomials, hence by applying the previous assertion, we have the result.

3. Now, since u = P[f], we have the following:

p

p

Jur (O =

| Poc.rr@in(¢)

| Pre.cy=ipue. ¢y ¢hao(c)

Now by Holder’s inequality follows that:

u (O < (J P(rg,g')éqcza(@)g < J ) P(r¢, )V £(¢) Pdo (C’));p

Since, (1 — l)p = 1, follows that |u[? < P[|f|F], in particular we obtain |u,(¢)| <
$0n P(r¢, )| f(¢)[Pdo(¢). Now, by integrating over ¢ we get that:

[ tpin@ < [ [ PocOIsEPincdn )

By, Fubini’s Theorem, we have:

[ eopan@ < [ [ Pecolsepin@ant)

Since ., P(r(,(")do(¢) = 1, it follows that |u,[, < | f],. Now, |lu, — f|l, — 0 as
r — 1 by item 2, since C'(T") is dense in LP(T") for 1 < p < co.
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]

Now, we want to show that, in fact, the limit of the radial functions exists almost
everywhere, and therefore, we have the same characterization as in the disk case. In order

to do so, we need some definitions.

Definition 1.3.4. For a multi-index o = (o, . .., o) € N™ we define the a-shaped box as
the cartesian product I x --- x I, of half-open arcs [sj,t;) in'T for allj =1,...,n such
that the arc lengths have the same ratio to each other as are the numbers 2*', ... 2% and

of course t; — s; < 27 for every j =1,...,n.
The ratio here means that if you take the length of two intervals we have the relation.

ti — S; 2%

tj — 8 N 24

forall 1 <i,j5 <n.
Let A be a fixed positive measure on T" and we put
_ sup \(B)
Ja (’U)) - O'(B)
for w e T", B is a-shaped box and the supremum is taken over all a-shaped boxes with

center at w and we set

G(w) = Y} 27"ga(w)

aeN"
where |a| = ay + - - - + a,,. So, we are ready to state the first of the three necessary lemmas

to prove the desired characterization for the Hardy space of the polydisk.

Lemma 1.3.2. Define the set {G >t} = {we T": G(w) >t , t > 0}. Then c({G >
t}) < 35"\t where || is the total variation of the measure \.

Proof. Fix o € N" and let E,(§) = {ga > £}, so by the definition of g, we get that every
w € E, (&) is the center of some a-shaped box B, and again by the definition of g, we

also get that for w e E,(w)

§< ga(w) <

which implies that A\(B,) > {o(B,,). Given ¢ > 0, there exists a subset A. € E, (&) such
that 0(A.) = (1—¢)o(E4(€)) which is covered by finitely many boxes, set H = {By, ..., B,}
be the collection of theses boxes. From this finite collection we may extract a disjoint
subcollection By, . . . ,Bj whose union has measure greater or equal to 3 "o (| J;_, B;). The
way to get this subcollection is to pick the largest set, in terms of measure, take out all
sets that intersect it, pick the second largest and repeat the process until we get the
desired subcollection and the relation given in the measure holds since we are taking the

intersections off the subcollection so the factor n is to take account for the dimension and
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3 is to ensure that the measure will be less than the desired; also this choice will provide a

simple factorization later on. Then

371~ 2)a(Bal€)) < Y 0(B) <€) A(B)

which implies that

0(Ea(§)) <377

noting that ¢ > 0. Now, put n = 3,2 27%? = 2 + v/2 and then Y . 27192 = 9. So if
G(w) > t we obtain

t < Z 2719l go (w) < 0™ sup {27192g,, (w)}

n
aeNn aeN

hence follows that the set {G > t} belongs in the union of the sets E,(2/*//2p7"¢) and

therefore we get that the measure has an upper bound given by

o({G > t}) <3"|A| D, 27t = (3?)" A
aeN™

]

Our goal now is to provide an upper bound for P[d\](rw); we saw in Theorem [1.3.1]
that a candidate for the radial function is exactly the Poisson integral of f. Fix 0 <r < 1,

then there exist a ¢ = ¢(r) such that 1 < ¢ <2 and is an integer of the form 2°

—r)c
with t e N. Put g =0, yo = (1 —7r)c, 2; = 2771 (1 — r)c and y; = 2x; for 1 <i < t. Let B,

be a-shaped box with center at w whose sides have length 2y,,,...,2y,,, and let @), be
the set of all (e*!,... e"") € B, such that z,, < |s;| < ya, for i = 1,...,n. Note that Q,
is a union of 2" boxes and that T" = | J,.» Qa- Moreover, this is a finite union since the
o; <t for all a. Now,

1~ 1 & 2lel(1 — r)ren
B,) = Wa, = — | |22 (1 = 1)e = L —
o(Ba) @n) 11 Yoi = — 11 (1—=r)e —

and of course, by hypothesis we know that @), < B,, then

2191 — )" go (W)
o '
By taking the inequality P.(0) < (7/0)%(1 —r) for || < 7, we get

AMQq) <

472
P(z)<——0——, for 0<i<t.
(x;) RS or i

Now, by simple Poisson kernel properties for the disk, we know that P,(s;) < P.(z,,),
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n

|| s Ptsix < AQu) [ P

a i=1

so by the preceding inequalities, we obtain

J P,(s1)...P.(s,)d)\ < (4m)"27 1% g0 (w).

«

If we take the union of the collection of ), we may add the integrals over o and by

changing w to any w € T™ we calculate the following estimate

PldN](rw) < (4m)" Y 27 1g, (w) = (47)"G(w)

but note that only the left-hand side depends on r, which we can conclude the following

two lemmas

Lemma 1.3.3. o({supg_,_, P[d\] > £}) < (140m)"| A€

Proof. 1f we assume that sup,_,.; P[d\](rw) > &, we get that G(w) > (45), then by
m n
Lemma [1.3.2] we obtain that this only happens if the measure of the set is less or equal to

35" (4m)" [A¢™H = (140m)" A€ O
Lemma 1.3.4. If A vanishes in some open set V < T", then
lirr% Pld\](rw) =0 almost everywhere on V.

Proof. Assume that w € T™ is such that G(w) < oo, which is valid for almost every w
by Lemma [1.3.2] then choose § > 0 such that a cube C centered at w and edge 2¢ is
contained in V. So the integrals over (), on which y,, < ¢ are null in the preceding

estimates and hence the upper bound for P[dA](rw) is obtained under the summation of
a such that 21* > —— When we take the limit of » — 1, we start to take fewer terms

,
of the convergent series, and therefore, in the limit, the upper bound tends to zero, and

since A is a positive measure, the result follows. O

So we are ready to state and prove our identification between the functions on L?*(T™)

with the radial functions.

Theorem 1.3.2. If f € L(T"), X is a measure on T™ which is singular with respect to o
and uw = P[f + d\], then v*(w) = lim,_; u(rw) = f(w) almost everywhere on T".

Proof. Take f € L*(T") and define By(w) = limsup,_,; P[f](rw) — liminf,_,; P[f](rw).
If f=g+ hwith ge C(T™) we obtain from Theorem m that P[g] is continuous on D"

therefore B, = 0, so we get

By(w) = Bu(w)
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and in particular, we know that

By (w) = limsup P[h](rw) — ligi)ilan[h](rw) <|limsup P[h](rw)| + |li£rij{1f P[h](rw)]|

r—1 r—1

< 2 sup P[[h[](rw)

O<r<1

So by Lemma we get that the set {B; > 2£} has a upper bound for its measure
given by (1407)"||h],£~. We can take |hl; to be arbitrarily small since the set C(T™) is
dense on L!(T"), so given € > 0, there exists g € C(T") such that

If =gli =1l <e

hence we know that By < 2§ almost everywhere for every £ > 0 and thus By = 0 almost
everywhere which implies that lim,_,; P[f](rw) exists almost everywhere, then by Theorem
we obtain that this limit is equal to f(w) for almost every w € T™.

Now remember that a measure 7 is said to be concentrated on A if for some set
A e ¥, ¥ a sigma-algebra, 7(B) = 7(A n B) for every B € ¥. Choose ¢ > 0 and
take A\ = 7 + v by the Lebesgue’s decomposition theorem for measures, where 7 is
concentrated on a compact set K with o(K) = 0, and ||v| < . So by Lemma we
get that lim sup,_,; P[d\](rw) = limsup,_,; P[dv](rw) almost everywhere and therefore
by Lemma |1.3.3| we obtain

o({limsup P[d\] > &}) = U({lil’iljilp Pldv] > &}) < (1407) ¢!

r—1
hence limsup,_,; P[d\] < & almost everywhere for all £ > 0, so we get P[d\] — 0 almost

everywhere. n

Hence, we may identify a function f € H?(D") with a function f* € L*(T") as follow:

f7(¢) := Tim f(r¢)

r—1-
for almost every ¢ € T, thus we can see H?(D") as a linear subspace of L*(T") and, in
particular, H*(D") of L*(T") and therefore we can use the inner product structure of

L*(T™) on H*(D") as follows: Given f, g € H*(D"):

Sy = | T o)

and of course, the norm is given by:

171 = [ 17O Pdr(0)

Since we have this identification, from now on, we will denote f* by f to simplify the

notation. We will state a few primary results from general H*(D") function theory.

Theorem 1.3.3. H*(D") is a linear subspace of H?*(D").
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Proof. Let f e H®(D"), then exists a M > 0 such that ||f||, < M, therefore:

1718 = sup | 1f0OPdo(c) < M2 sup | do() = M* <

<r<1 O<r<1

Thus, f € H*(D"). O

Definition 1.3.5. Let a« € D", a = (ay,..., ), with a; € D fori = 1,....n. Then we
define the reproducing kernel of H*(D™) to be:

1

Ko(21, ey 2) = n

i=1

So by this definition, we get that the reproducing kernel of H?(D") is the product of

n reproducing kernels of H?(D). Therefore, we see that its norm is given by the product

of the norm of these n reproducing kernels. The reproducing kernel has the property

that (f, K,) = f(a) for all f € H?*(D") and it defines a continuous linear functional. For
completeness, take o € D" and f € H?(D"), then we have that

[f(@)] = [Kfs Koyl < A Kl

Since both ||f|| and ||K,|| are bounded, in particular, the operator that maps f to

f(a) is continuous.

Theorem 1.3.4. Let {f,}neny € H2(D") be a sequence of functions, if f, — fin H*(D"),

then f, — f uniformly on compact subsets of D™.

Proof. For a fixed a € D", we have:

() = fla)] = [(fa = £, KDl < |fu = fI ] K]
If K is a compact subset of D", then exists an M such that ||K,|| < M for all w € K

Hence,

\fula) = f()| < M||f, — f]| forall a e K

Which implies the theorem. ]

We may use the reproducing kernel, the Cauchy Kernel in the literature, to prove

Cauchy’s Integral Formula for the polydisk.

Theorem 1.3.5. If f is a holomorphic function in an open set Q < C" such that D" < Q)

and wy = (w1, ..., w,) € D", then

ﬂ””‘@mwﬁm@rwm~«@—ww
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Proof. A proof for this was provided in the first section but can also be proved by

calculating (f, K,,,» and using the L*(T") inner product structure. O

Definition 1.3.6. Let ¢ € H*(D") such that |p(¢)| = 1 for almost every ¢ € T™, we say

that ¢ is a inner function.
Theorem 1.3.6. If ¢ is not a constant inner function, then |p(w)| < 1 for all w e D™,
Proof. If ¢ is not constant then we get that |¢(z)| < ||¢]lsc by Theorem [1.2.3, Now we

consider the Poisson integral of ¢

P(r¢) = . ¢*(n)P(r¢,n)do(n)

here, we use the radial function notation to avoid any misconception, so by taking the

modulus on both sides, we get that

o(rQ)| =

O PG myde(n)
< |16 lP mdot
< J P(r¢,n)do(n)

=1

forall 0 <7r < 1.
O]

Definition 1.3.7. A function f € H*(D") is called a generalized inner function if
1/f e L*(T").

Remark 1.3.1. Note that every inner function is a generalized inner function. Since if f
is inner, we have that |f| = 1 for almost every ¢ € T", hence 1/f € L*(T").

Example 1.3.1. Let p € C[zy, ..., z,] be a polynomial such that is zero free in D", then
pe H*(D") and also, we get that 1/p € L*(T™) hence p is a generalized inner function.

1.4 Basic properties of Toeplitz operators

In this section, we will define Toeplitz operators over the Hardy space of the polydisk
and present some useful results. In particular, we will show that our interest shifts as
Toeplitz operators. Every result stated here is also valid for Toeplitz operators over H?(D);

for some, the proofs are the same.
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Definition 1.4.1. Let P be the orthogonal projection of L*(T") onto H*(D"). We define
the Toeplitz operator Ty with symbol ¢ € L*(T") by:

Tyf = P(of)
for all f e H*(D").

Note that in general, we will interchange the use of H?(D") and H?(D") to be possible

to perform the product of a function in L*(T") with a function on H?(D").

Lemma 1.4.1. Let ¢ € L*(T™), then the operator My defined by Myf = ¢f for every

f € L?(T") is a bounded linear operator.

Proof. Let f,g € L*(T") and X € C. Hence

My(f +Xg) = &(f + Ag) = of + Apg = My f + AMyg

Therefore, M, is linear.
Now, suppose f € L?(T") such that | f|» = 1 then

Mol = [ losdr < [ 1oas = ol
Tn Tn
Thus, My is a bounded linear operator. O
Proposition 1.4.1. Let ¢ € L®(T"), then Ty is a bounded linear operator over H*(D").

Proof. First, we prove that Ty is a linear operator. Let ¢ € L®(T") and let f,g € H*(D")
and A\ € C.

To(f +Ag) = P(o(f + Ag)) = P(of + Abg) = P(¢f) + AP(¢g) = Tof + Ay

We must use the previous lemma to prove that T} is bounded.

[T f1 = IP(Mpf)| < P IM| [f] = [ M)l £]

Therefore, T}, is a bounded linear operator.

Proposition 1.4.2. Let ¢ € L*(T") and T, a Toeplitz operator, then |Ty|| = |¢|oo-

Proof. Based on the previous proposition, we already have an upper bound for the norm;
let’s establish a lower bound. One can show that, for reproducing kernels in H*(D") we

have:

= 1
Ko =[] —ou
ke = [T =
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where o = (v, ..., a,,) € D" Take K, to be the normalized reproducing kernel. Then, we

obtain:

(T Ko Kol < [ToKall2| Kallz < | T3l | Kall3 = 1 T5]
On the other hand, we have the following:

[RI=—Gr
- Pls](a).

HT¢H = |<T¢[€aa[€a>| = |<P(¢[€a)7[€a>| = |<¢Ko¢7[€o¢>| =

Now, define a@ = r{ with ( € T" and 0 < r < 1, so by the third assertion in Theorem
1.3.2] follows that ||Ts] > |¢(¢)| for almost every ¢ € T™ and hence |T,| = |- O

Proposition 1.4.3. Let ¢, 1 € L*(T") and A € C. Then,
T¢+)\,¢, = T¢ + )\Tw
In other words, a Toeplitz operator is linear in its symbol.

Proof. In fact, let f € H*(D") be arbitrary then

Toraef = P((0 + M) f) = P(of + M f) = P(of) + P(M)S)
= P(0f) + AP(Uf) = Tof + ATy f

]

Proposition 1.4.4. Let ¢ € L*(T") and let T,, be a Toeplitz operator with symbol ¢, then
TE =Ty .

Proof. Let f, g € H*(D"), then

(T5t.9) = (P(@1).9) = | fgder = (f.69) = <f. Ploa)

= ([ Tsg)
={T;f 9
Hence, T3 = Ty
m

Proposition 1.4.5. Let ¢ € L*(T™). The Toeplitz operator Ty is self-adjoint if, and only

if, ¢ is a real-valued function.

Proof. By the previous proposition, we have that T3 = T%. Now, it T;, is self-adjoint, then
Ty = T3 if, and only if, ¢ = ) O]
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Definition 1.4.2. If p € H*(D"), T}, is said to be an analytic Toeplitz operator. Analo-
gously, Ty is said to be coanalytic if T} is analytic. If a Toeplitz operator Ty, is analytic,

then we have:

Tyf = of
for all f € H*(D™). Therefore, if T, is analytic, then this operator acts as a multiplication
operator in H?*(D").
Proposition 1.4.6. Let $ € H*(D")\{0}, then Ran(T}) is dense.
Proof. Is easy to see that if T} is analytic, then it is injective, thus ker(T}) = {0}, and we
by Theorem we get
Ran(T}) = ker((T})*)*" = ker(Ty)* = {0} = H*(D")
0

Now, similarly as the characterization in (18), where we know that 7' € B(H?*(D)) is a
Toeplitz operator if and only if 77T, = T', here we have a characterization of all Toeplitz

operators over H?(D").

Theorem 1.4.1. (19, Proposition 2.1) Let T € B(H*(D")), then T is a Toeplitz operator
if and only if T;TTy =T for every inner function ¢.

Proof. Set

M = {ph: ¢ are inner functions; h € H*(D")}
Note that M is a dense subspace of L*(T") since we may choose monomials of the form
2" oozt for all my, ..., m, € Ny as the inner functions. Define the following map

O:M—C O(Bh) =<(h,T¢)

First we assume that 7377, = T for all inner functions ¢, we want to show that ® is
well-defined and linear. In fact, if ¢1h1 = @ohs, then

O(prhy) = (ha, Tor) = Cha, T3, T Ty, 1) = {pahn, Thar)
= <¢1h27 T¢1¢2>
= (ho, T;lTT¢1¢2>
= (ha, T'a)
= q)(@hQ)

We get that @ is well-defined. Now, by an analogous argument, ® is linear, so ® is a linear

functional, but note that from the definition of & we get,

[2(@)h] < [QNITA| < |TY|A] = |T]h]
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Thus, ® is a bounded linear functional. Since M is dense in L?(T™), there exists a unique
Y € L*(T") such that

D(ph) = (Ph, 1)
and

(@) = || Gohao < IT1EH] = |1 1

hence, v € L*(T") since 1 is a measurable function and ¢h is a L'(T") and by the
definition of this operator we get that ¢ € (L*(T"))* = L*(T") and we obtain

(h, Ty = ®(¢h) = (P, ¥) = (h, ¢y = (h, Tyd)

and we know that the set of all finite linear combinations of inner functions is dense in
H?*(D"), therefore T' = Ty, for some . O

Generally, we may give a sharper statement as follows

Theorem 1.4.2. (20, Theorem 3.1) Let T € B(H?*(D")). Then T is a Toeplitz operator if
and only iijjTsz =T forallj=1,...,n.

The following result shows us a class of eigenvectors for all analytic Toeplitz operators,

the reproducing kernels.

Proposition 1.4.7. Let ¢ € H*(D"), T, be a Toeplitz operator and K, be a reproducing
kernel. Then Tj K, = ¢(a) K.

Proof. Let f e H*(D") be arbitrary, then

F ToKa) =T f, Koy = ¢() f(o) = (f, d(a) Ka)
Thus, Tj Ko = ¢(0) K. O

Theorem 1.4.3. For ¢ € L*(D"), the following are equivalent:
1. ¢ =0 almost everywhere in T".
2. T, is compact.

Proof. Suppose 1. holds, then T} is the null operator which is trivially compact. Now,
suppose that 2. holds then we know by Lemma that ZM = 2" ... 2™ where

Z = (z1,...,2n) and M = (my, ..., m,), converges weakly to 0 as |M| = (my+---+m,) — ©
in H%(D"). Therefore, by Lemma [A.0.3) we get that |T3Z"| — 0. On the other hand, we

have:

2 2

| T 2|5 =

= > Sk

|k|=—[M]|

P (Z ¢3<k><’“+M>

keZm

2 2
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Where ¢ € T" and ¢(k) is the k-th Fourier coefficient of ¢. Now, by Theorem , we

obtain:

2 0

D, k)P

2 k=M

S Bk

|k|=—|M|

Now, by taking the limit of |M| — oo, we get the norm of ¢, which by the previous

argument is equal to 0, then ¢ = 0 almost everywhere in T". O
Corollary 1.4.3.1. For every ¢ € L*(T™")\{0}, Ran(T},) is infinite dimensionall.

Note that since no Toeplitz operator is compact, we do not have a compact operators
theory to characterize the invariant subspaces. Therefore, all the work toward characteriza-
tion must use a different set of tools; in particular, we may not use Lomonosov’s theorem,

which we will state here for completeness.

Theorem 1.4.4. (21, Theorem 10.20) Let B be a complex Banach space and let T € B(B),
if there exists an operator S € B(B) that satisfies:

e S is a non-scalar operator.
e S commutes with T.
e S commutes with a non-zero compact operator.

Then, T has a non-trivial invariant subspace.

1.5 Universality

We shall introduce the concept of universal operators, introduced by (22]), which will
be a fundamental tool for studying the ISP. The idea of using universal operators is
exchanging the need to show that every bounded linear operator has an invariant subspace
for characterization of the invariant subspaces of a universal operator U. More details
about this will be given in this section. First, we must define our object of interest, the

invariant subspaces.

Definition 1.5.1. Let X be a normed space, T € B(X), and M < X be a subspace. We
say that M is a T-invariant subspace if M is closed and T(M) < M. We say that M is
non-trivial if M # X and M +# {0}.

Definition 1.5.2. Let B be a Banach space, and U be a bounded linear operator on B.
Then U is said to be universal, in the sense of Rota, for B if for any bounded linear operator
T on B there exists a constant o # 0 and an invariant subspace M for U such that the

restriction U‘M 1s stmilar to oT .
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In (23), a sufficient condition was given for an operator U to be universal for a complex
separable infinite dimensional Hilbert space H, which we will call the Caradus criteria.
Throughout the text, a Hilbert space H will always denote a complex separable infinite
dimensional Hilbert space.

The Caradus Criteria. Let ‘H be a Hilbert space and U a bounded linear operator on
H. If U satisfies:

1. ker(U) is infinite dimensional.
2. U is surjective.

Then U is universal for H.

Proof. Let K = ker(U), define U := Ul . : K* — H. Note that U is bijective because its
domain is K+, and by hypothesis, U is surjective. In fact, one can write H = K @ K+,
define also V.= U : H — K+ and we take W : H — K a isometric isomorphism by
the [Riesz-Fischer Theorem| since U € B(H) and K is closed subspace of H, therefore a

Hilbert space and in particular, K is infinite dimensional by hypothesis. Hence, with these

notations, we have that:

1. UoV = Idy.

2. UoW =0.

3. ker(W) = {0}.

4. Ran(V) = K.

Now, let us check the definition of universality. Let T'e B(H) and let o € C\{0} such

that |a||T||V]| < 1. Take n = |a|T||V]. Assume Y~ , &*V*WT* and note that this

series is absolutely convergent because:

o0 [o0] o0
S VEW TR < ol IVIFIW T < W] ) nf < oo
k=0 k=0 k=0

It is clear that B(H) is a Banach space. Therefore, absolute convergence implies
convergence; then it follows that exists a J € B(H) such that J = >)” , o*VEWT*. One

can see that:

W+ aVJT = J (1.4)

UJ =UW +aVJT) =0+ aldyJT = aJT (1.5)
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In ([1.4)), is easy to see that:
© o
W4+aVJI =W +aV (Z akaWT’“> T =W + Z YRR TR — T
k=0 k=0

We need to prove that Ran(J) is closed and invariant by U and that J : H — Ran(J)
is a linear isomorphism, then equation ([1.4)) give us the universality of U.

« Ran(J) is closed:

Let Z € Ran(J), choose (z,) < H such that J(z,) — Z. Take P : H — K the orthogonal
projection of H onto K. Applying P in the equation (|1.4]), we get:

PJ(z,) = P(W(z,) + aVJT(x,)) = W(x,)
Because W (z,,) € K and Ran(V) = K+, therefore it follows that W (z,,) — P(&). Since

W is isometric isomorphism, we get that x, — x for some x € H and this implies that
J(z,) — J(z) and hence Z = J(z).

o Ran(J) is invariant by U.
By equation , we have that:
UJ(z) = aJT(z) = J(aT(x))
for all # € H. Then follows that Ran(J) is invariant by U.
e J:H — Ran(J) is a isomorphism.

It is clear that J is surjective and continuous. Now, if J(z) = 0 then W (z)+aV JT(x) =
0 which implies that W (z) = 0. Since W is isometric isomorphism, follows that x = 0. By

inverse application theorem, we get that J is an isomorphism.
m

In fact, for an operator U in a Hilbert space H to be universal, the hypothesis of

dim ker(U) = 0 is necessary.

Remark 1.5.1. Let H be a Hilbert space and U be a universal operator for H. Choose
T € B(H)\{0} such that dim Ker(T) = oo, without loss of generality, suppose T(e;) = 0
for every i € I, where I is a infinite family of index contained in N and (e, )nen is a Hilbert

basis for H. By the hypothesis of U being universal, we have

SilOéT = []|]\4Si1

Where a € C\{0}, M is a invariant subspace of U and S : M — H is an isomorphism.
Therefore,
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S_IOZT(Gi) = U|MS_1(€Z‘) =0

for every i € I. But, since S~ is a isomorphism, then {S™'(e;) : i € I} is linearly

independent and infinite, hence dimker(U) = co.

One might wonder if every Hilbert space admits a universal operator; in fact, let H be

a Hilbert space and define the space

Q0
*(H) = {1‘ = (Tp)nen : Tn € H ,Vn € N and Z |z, < oo} .
n=1
Let us show that ¢*(#H) is a separable Hilbert space. First of all, we define the inner

product in H as follows:

(x,y) = (Z<xn yn>> (1.6)

where & = () nen, ¥ = (Yn)nen € £2(H). Take (e;)sen to be an orthonormal basis of H, now
by Theorem we need to show that the basis for £2(H) is countable and orthonormal.

Is easy to see that the elements (€; )i ken

61‘7]6:(0,...,0, €; ,0,...)
~—
k-th coordinate
are a basis of £2(H) from our definition; hence we must show that it is orthonormal and
countable. Countable is clear from our indexes because we know that the cardinality of
our basis is the same as N x N, or even the same as N and thus countable and so to take

under account orthogonality is easy to see that given indexes (i, k) and (7, )

((€ik)iens (€,0)j.0en) = Ok 6ij

where 6y 0, 0; ; are Kronecker’s deltas, simply because if £ # ¢ every coordinate in the
inner product described in equation (|1.6]) is multiplied by a zero, and if k = ¢ we have the

original orthogonality relation of H. It is orthonormal because

H(ei,k>z’,keNH2 = <<6i,k)i,keN7 (ei,k)i,keN> = <6i7 €i> = HeiH2 =1
for all 4, k € N. Define the operator T : (>(H) — (*(H) by T'(z1, 2, T3, ...) = (T2, T3, T4, ...),

note that

T @) = [(z2, 25,24, .. )| < (21, 22, 25, ) =[] (1.7)

So, T is a bounded linear operator. We want to show that 7" has an infinite dimensional

kernel and is surjective.
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e dimkerT = oo
Note that kerT' = {(2,0,0,0,...) : z € H}, hence kerT' ~ H and therefore it is
infinite dimensional.

o T is surjective:

Let y = (y1,Y2, Y3, ...) € H, then y = T'(2), where z = (0, y1, Y2, Y3, ...) € H, thus T is

surjective.

Therefore, by the Caradus criteria, T" is universal for H. Now, by |Riesz-Fischer theoreml,

exists a isometric isomorphism W between H and any other complex separable infinite

dimensional Hilbert space H, and hence W o T'o W~ is universal for .

Theorem 1.5.1. (2], Proposition 8.1.2) Let B be an infinite-dimensional complex Banach

space and U € B(B) be a universal operator. Then the following are equivalent:
1. Every T € B(B)\{0} has a non-trivial invariant subspace.

2. Every invariant subspace M by U that is isomorphic to B contains a non-trivial

invariant subspace.

Proof. To see that the first condition implies the second, we see that the restriction of
U to M is similar to some operator T' € B(B) with restriction to the subspace M by
the universality hypothesis, but note that since M is isomorphic to B we get that the
restriction of U to M is similar to 7" on B. The first condition implies that there exists a
non-trivial invariant subspace contained in M. Conversely, since U is universal, we get
that every T' e B(B) is similar to U on the restriction to some invariant subspace M. Thus,

T has a non-trivial invariant subspace contained in M. O

Now, we will get the following corollary for Hilbert spaces: the connection between

universality for Hilbert spaces and the ISP.

Corollary 1.5.1.1. Let H be a Hilbert space and let U € B(H) be a universal operator,

then the following statements are equivalent:

1. EBvery T € B(H)\{0} has a non-trivial invariant subspace.

2. Every minimal invariant subspace of U is one-dimensional.

Proof. Every infinite dimensional invariant subspace M for U is isomorphic to H; thus,
it’s not minimal. If M is finite-dimensional, by Jordan canonical form, we get that there
exists a one-dimensional invariant subspace contained in M, which is, in fact, minimal, so

unless it is one-dimensional, it is not minimal O
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This theorem gives us the connection between the invariant subspace problem and the
universal operators. Note that by this previous result, we can provide a "simple" approach
to the ISP since we may exchange proving that every operator on B(H) has a non-trivial
to prove that all minimal invariant subspaces of the universal operator are one dimensional.
Hence, we only need to study a specific operator’s invariant subspaces. In Chapter 3, we
will present our main results for universality for Toeplitz operators, which will be our

choice of operators to investigate universality.
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2 Shift invariant subspaces

In this chapter, we will briefly introduce shift-invariant subspaces in the one-dimensional
case as a motivation for what comes in the next chapter in the several variables case. This
chapter is based on (10} [T, 25]).

2.1 Beurling's theorem

Initially, it was an open problem characterizing all the non-trivial invariant subspaces

of 2 under the "shift" operator.

S: 02— *, Slag,ai,as,...)=(0,a0,a1,as,...)

S does not have an eigenspace, is easy to see since if there exists a v = (ap)nen, such
that
Sv = v (2.1)

for some A € C\{0}, then we get \ag = 0, since we suppose that \ is non-zero, we obtain
ap = 0. Now, we also know that ag = Aa; but ag = 0, applying the same argument again,
we have a; = 0, thus recursively, we get that v = 0.

We say that M < ¢? is a shift-invariant subspace if SM < M, and by the previous
observation, we know that characterizing the non-trivial invariant subspaces is no trivial
task, so the idea was bringing the problem from ¢? to another separable Hilbert space with
more structure, that is a space with a well-developed function theory and well-defined
classes of elements. By Theorem [A.0.3] every separable Hilbert space is isometrically
isomorphic to £%; in particular, we have that ¢> ~ H?*(D) and in the Hardy space, we have
the following Shift:

M. : H*D) - H*(D), (M.f)(2) = zf(2)
In particular, we know:

Theorem 2.1.1. The operator M, on H?(D) is unitarily equivalent to the operator S over
2.

Proof. If T : (* — H?*(D) is the unitary operator given by:
0
T(ag,a1,as,...) = Z anz". (2.2)
n=0

So it suffices to check that T'S = M,T. By simple computation we get that (T'S)(an)nen, =
> o an2"t ! and in the other hand (M, T)(an)neny = Do @nz" " for any (an)nen, € €2,

thus the result follows. O
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So, we have an equivalence of characterizing the shift-invariant subspaces on ¢? with
the shift-invariant subspaces on H?(ID). In (1)), we have a complete characterization of the

non-trivial shift-invariant subspaces as follows:
Lemma 2.1.1. (26, Theorem 3.14) Let § € H*(D) be a inner function and define
H?(D)© 0H?*(D) = H*(D) n (§H?*(D))*. Then dim(H?*(D) © 0H?*(D)) = n if and only if

0 is of the form
A — 2
0(z) = -
<Z) 1_[ 1_)\]'2

n
7j=1

for A\, ..., A\, € D. In other words, we have finite dimension if and only if 6 is a finite

Blaschke product.
Now we present a simple proof for Beurling’s theorem made in (27):

Theorem 2.1.2. (Beurling) Let M be a closed nontrivial subspace of H*(D). Then M is
M. -invariant if and only if M = ¢H?*(D), where ¢ is an inner function in H*(D).

Proof. Let M = H*(D) be a M,-invariant subspace then we can define a reproducing

kernel to M in the following manner:

kN (2) = Paka(2) (2.3)

where A € D and Py, is the orthogonal projection from H?(D) onto M. We get that
(1 —X2)k3!(2) is the reproducing kernel of M © zM (See (28, Section 3.2)) and by Lemma
2.1.1) we get that dim(M © zM) = 1, therefore we get that

(1= X)k3"(2) = 6(N)o(2) (A, 2 € D) (2.4)
for a function ¢ € M © zM with ||¢| = 1 and hence

B2 = (1= APEI(N) = (1 — AP Puks|? < 1

thus ¢ € H*(D) and note that by (2.4) we know that

P(N)o(2) *
PMICA(Z) = ﬁ = T¢T¢ k/\(Z)
where T}, is the analytic Toeplitz operator with symbol ¢ over H%(D). Note that {k, : A € D}

is a total set for H%(D), so Py = T,T; and then

TyTET,TE = TyTsp Ty = T,T)

because since Ty is analytic we obtain ker(7y) = 0 which implies that T;T, = I that is
equivalent to |¢(e)| = 1 almost everywhere on T, that is, ¢ is a inner function. The result
follows from the fact that 7,7} is the projection from H?(ID) onto ¢H?*(ID). The converse
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is straightforward, we know that M = ¢H?*(D) is always closed when ¢ is a inner function

and is easy to see that
M = 20H?*(D) = ¢(zH*(D)) < ¢H*(D) = M
O

So, we finally got an answer for all the invariant subspaces of the shift, but we do not
have a general characterization for other operators over ¢2. But note that in the present
work, we are interested in the Hardy space of the polydisk and one might ask if Beurling’s
theorem has a natural extension to the polydisk, that is, every invariant subspace of
H?(D") is of the form ¢H?(D") for some inner function ¢. The answer here is no, and we
have the following example.

Let [21 — 22] = (21 — 22) H?(D?). It is widely known in the literature, see (29) for

instance, that [2; — 23] is a invariant subspace of H?(ID?) not generated by a inner function.

Let z;, j = 1,2 be the action of a shift, let us prove that (z; — zo) H*(D?) is invariant.

2z [(z1 = 22) H*(D?)] © 21(2;H*(D?)) — 22(2;H*(D?))

It is clear that H?*(D?) is trivially invariant by z;, j = 1,2 hence

2 [(z1 — 22) H*(D?)] < (21 — 20) H*(D?)

We have that (27 — 29) H*(D?) is invariant, thus [z; — 23] is also invariant, but note also
that [21 — 20| is not of the form ¢H?(D?) for any inner function ¢. Note that we needed
the set to be closed because, according to our definition, invariant subspaces are always
closed.

But this does not mean we do not have a Beurling-type theorem for the polydisk.
This comes from the fact that H?*(D?), or even H?*(D") can be seen as vector-valued
Hardy-Hilbert space as follows:

Let H be Hilbert space, we may define H?(H) as the space of all sequences f =
(ho, h1,...) of elements in H of which Y, |h,||* < o or equivalently, we can see as space

of analytic functions given as:

0
H*(H) = {f(z2) = Z hpz" : fis analytic and (hy,)nen, 1S square-summable } (2.5)
n=0

Now defining, this space as such, we obtain that H?(H) is a space of square-integrable
functions on T valued at H and via Poisson integral, we may extend f to the disk, and

thus we get the following property:

sup f £ (re®)Pdp < oo
T

O<r<1
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where p is the normalized Lebesgue measure in T, and hence we have a similar identification
in H?(H) as the one in H?*(D), i.e., we may identify a function defined in the disk to
a function defined in the boundary circle of the disk. Moreover, we may identify the
shift operator in H?(H) with the multiplication by z (M,). We refer to (21}, 30) for an
introduction to vector-valued functions.

Naturally, we may define H?(D?) as H?(H?*(D)). In particular, the Hardy space over
any polydisk can be written recursively as H*(H?(D"!)). Now, the last few ingredients
before Beurling’s theorem for vector-valued Hardy space and the next results are found on
(7).

Definition 2.1.1. Let H be a Hilbert space and T € B(H). We say that A < H is a
wandering subspace for T if A L T™A for all n € N.

Note that for a fixed operator 7" and a wandering subspace A, we may associate an

invariant subspace M in the following manner. Define

oe}
M= ()1T"A.
n=0
Now, is easy to see that TM = (_, T"A and therefore TM L A, so A is the orthogonal
complement of T'M inside M, in other words A = M ©TM.

Lemma 2.1.2. If T is an isometry on a Hilbert space H and R = (TH)*, then
(ﬂ?zo:o TTLR)L - ﬂf:o T"H.

Proof. Suppose that f € (mj‘IO:OT"R)L, we claim that f e T™H for all n € Ny. In fact, for
n = 0 we get that if f e (ﬂf:o T”R)L, we get that f € H because (ﬂf:o T”R)L cH.
Now if f € T"H, then there exists g € H such that f = T"g. Since, f € (T"R)", we
get that T"g L T"R and since T is an isometry follows that {1T"g,T"h) = {g,h) for
any h € R jie., g L R and thus g € TH and finally f = T"g € T""'H, so we get
(R T"R)L < (N, T"H. Conversely, note that if f € M+ so Tf e TM* and if g€ M,
then Tge TM, so Tf 1 Tg and in particular, f 1 g and therefore TM* <= (TM)*. With

that in mind, we get:
T"H = T(TH) = T"R* < (T"R)*
and the result follows. O

Note that the previous lemma implies that if 7" is an isometry on a Hilbert space H
and R = (TH)*, then ﬂfzo T"R is a reducing subspace for T" and of course this implies

that ()_, 7" R and its orthogonal complement are invariant.

Theorem 2.1.3. Let M be a shift invariant subspace of H*(H), then there exists a
wandering subspace A such that M = ﬂ;ozo M?TA, where M, is the multiplication by z on
H?(H).
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Proof. Write A = M ~ (M, M)*. We claim M n (., ]\/[;LA)L is reducing for M,. By
Lemma 2.1.2) M n (ﬂfzo MZ"A)L is equal to ()_, MM and of course this subspace is
invariant by M,. In particular, (ﬂ;ozo MM )l must also be M, -invariant and one can see
that

M,A = M.M n M,(M.M)*" < MM ~ (M2M)" < M n M+ = {0}

since M is invariant by M., any reducing subspace must be the zero subspace that implies
the theorem. O

So, we produced a wandering space with our invariant subspace, which will be used

later in this section, and here we present a technical lemma.

Lemma 2.1.3. If f,g€ H*(H) and if (M"f,g)> = 0 for all n € N, then {f, g) is constant

almost everywhere.

Proof. The hypothesis is equivalent to {. 2"(f(2), g(z))dz = 0 for all n € N, which means
that the inner product on the integrand must have its Fourier coefficients equal to zero

with possible exception the constant term; therefore we get the result. O
Lemma 2.1.4. If A is a wandering subspace for M., then dim A < dimH.

Proof. Let {f;}ics be orthonormal basis for A, where J is some index family. Since H?(H)
is separable, J is countable. Now, since A is a wandering subspace, (M7 f;, f;) # 0 for all
n € N. By Lemma we get that (f;, f;) is constant almost everywhere and we get

that (f;, f;) = d;j, where ¢;; is the Kronecker’s delta, for almost every z because

L Gil), f(2)dz = (fi £ = 6

Finally, up to a measure zero set, there exists at least one z such that {f;(2), f;j(2)) = ;.
This implies that H must contain an orthonormal set with at least the same cardinality of

{fi}ies, and the proof is complete. ]

Definition 2.1.2. Let H be a separable Hilbert space and let U € B(H), we define the
inflation operator U on H?(H) as follows:

A

U:HH)— HXH), U haz") = () (Uhy)2")

The map U — U preserves linear operations, products, adjoints, and norms. In
particular, this map is an embedding of B(H) on B(H?*(H)).

If we consider an operator-valued function F': D — B(H), we may define generalized
inflation F similarly to operators as above, which still preserves linear operations, products,
adjoints, and norms. Still, in this case, it is an embedding of the bounded measurable
H-valued operator algebra into B(H?*(H)).
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Lemma 2.1.5. Let F' be an operator-valued function on H and let W be the subspace of
constant functions on H*(H). If F(z) is an isometry on H for almost every z, then FW

is a wandering subspace for M,.

Proof. 1f we take f(z) = F(2)u and ¢g(z) = F(2)v for some u,v € H we are considering
f,g € FW since we may consider the inflations F'u and F'v as F(2)u and F(z)v respectively
by Definition and u,v are considered constants as on H?(H), then

(MZf, gy = L@"F(z)u, F(z)vydz = Lz”<F(z)u, F(z)vydz = (u,v) L 2"dz =0

for all n € N so we proved that FW 1L M ;‘F W and thus FW is a wandering subspace for
M.. m

We will use this definition of W throughout this section.

Definition 2.1.3. Let H be a separable Hilbert space and F € B(H). We say that F is
rigid if a subspace V. < H exists, such that F is almost everywhere an isometry on V

and null on V*. In particular, we say that F is a rigid Taylor function if F is rigid and
FW < H*(H).

From this definition and the previous lemma, we get that if F' is a rigid Taylor function,

then FW is a wandering subspace of M, and FH 2(H) is an M. -invariant subspace.

Lemma 2.1.6. If A is a wandering subspace for M., then a rigid Taylor function exists
such as A = FW.

Proof. By Lemma [2.1.4] we have dim A < dim #H, then there exists a subspace V' such
that dimV' = dim A, consider T : H — A such that T maps isometrically V' to A and
V4 < ker(T). Define F(z)v = (Tv)(z) for every v € H, then F is a measurable operator-
valued function. Now, by definition of T, we get that Tv € A, so (M, Tv,Tv) = 0 for
all n € N since A is a wandering subspace by hypothesis. So Lemma implies that

|F(2)v] is constant almost everywhere. Thus, F is bounded. Let v € V| then

ol = |To|? = f (Tv)(2)|Pdz = f |F(2)eldz = |F(2)o]

so |F(2)v| = ||v|| almost everywhere, hence F is an isometry on V. Analogously, if v € V1,
Tv = 0 and therefore F(z) annihilates V* which proves that F is a partial isometry on V
so F' is rigid and by construction of F we get that FW < H2(H), since if f € W, then

f(2) = w almost everywhere for some w € H and we obtain

(Ff)(z) = F(z)v = (Tv)(2)

so FIW < A. Conversely, let g € A, such that g = T for some v € V and if f(z) = v for all
z, then f e W and g(z) = (Tw)(2) = (Ff)(z) and then A ¢ FW and proof is finished. [
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Now, we show Beurling’s theorem for vector-valued Hardy-Hilbert spaces.

Theorem 2.1.4. If M is a shift-invariant subspace of H*(H), then there exists a rigid
Taylor function F such that M = FH2(H).

Proof. By Theorem [2.1.3] there exists a wandering subspace A such that M = (7_, MI"A,
now by Lemma , A=FW for F a rigid Taylor function. Note that:

ee} ee}
M = (_]OM;(FW) —F OOMQW = FH*(H)

and the proof is finished. O
We can summarize and restate Beurling’s theorem as:

Theorem 2.1.5. Let H be a Hilbert space, and let M be a closed non-trivial shift invariant
subspace of H*(H). Then there exists a Hilbert space K and a function U such that:

1. W is an analytic function in the unit disk with values in B(K,H).
2. If ze D then |¥(2)| <1 and |¥(e?)| =1 almost everywhere.

3. M = VH?(K), in other words, M consists of the functions g such that

Where f € H*(K).

So we have a possible characterization for all invariant subspaces of H?(D"); the
problem now is to find a concrete characterization of the spaces K and operator valued
function ¥ of which the theorem will be valid and the ISP will be solved. Note that this is

not such a trivial task and is an open problem nowadays.
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3 Some recent results in universality in

Toeplitz operators

In this chapter, we will introduce our main approach to the ISP: investigating the
properties of universal Toeplitz operators in order to fully characterize their invariant
subspaces. However, a full characterization of all invariant subspaces has not been possible
so far. In the first section, we will discuss some results regarding the disk case, including
examples of symbols, such as the induced Toeplitz operator being universal. Many results
can be seen in (12, 31, 32, 33)). In the following section, we will present the primary goal
of this work, which is universality among Toeplitz operators over the polydisk with the

most recent results in the area that can be found on (13} 34 35)).

3.1 Universality in Toeplitz operators over the disk

The idea of using universality simplifies the argument towards a possible proof of the
ISP once we only need to study the invariant subspaces of said operator. In this section,
we will study some classes of symbols that induce a universal Toeplitz operator in the disk

case.
Lemma 3.1.1. If ¢ € H*(D) is inner, then ker T = (¢H*(D))".

Proof. Note that Ran(T,) = ¢H*(D) which is a closed subspace of H?*(D), then by
Theorem [A.0.4] we get that (ker T})* = Ran(T}) since both sides are closed, we get that
ker T} = (Ran(Ty))" = (¢H*(D))*.

0

Lemma 3.1.2. If $ € H*(D) is inner, then T*"¢ € (¢pH?*(D))* for alln e N.

Proof. We will proceed by induction. For n = 1, we know that f € (¢H?(D))* if and only
if (¢pg, f> = 0 for every g € H*(D). So we want to prove that (T*¢, ¢g) = 0 for every
g € H*(D). Thus,

(T2, dg) = (&, Tubg) = (¢, 2g) = j 29du = (1, 2)

={1,T.g)
=T71,9)
= <T:/€0,g>
=<0,9)
=0
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Now, suppose that T*™ V¢ e (¢H?*(D))* for n — 1, we want to show that T"¢ e
(¢H?*(D))*, in particular,

(TF"p, ¢g) = (TFTF" Vo, ¢g) = (T Vg, T.g)
= (T Vg, p2g)
=0

Since by hypothesis 7" V¢ € (¢ H*(D))* and ¢zg € H?(D) and therefore the proof is
finished. O

Theorem 3.1.1. If ¢ € H* is inner and not a finite Blaschke product, then T} is universal.

Proof. The idea is to use the Caradus criteria to prove that T is universal. Note that
for any g € H*(D), then we know that T}¢g = P(¢pg) = P(|¢lg) = g, since |¢] = 1
almost everywhere on T, and thus T} is surjective. We need to prove that ker 77 is infinite-
dimensional. By the previous lemma, we know that T*"g € (¢ H?*(D))* for all n € N, we
claim that the set {T*"¢ : n € N} is linearly independent. In fact, for a fixed n suppose

that exists constants c¢q, ..., ¢, such that
n .
D eTH¢ =0
j=1

Or we may rewrite the previous relation as Ty¢ = 0, where p(z) =Cz + -+ 4+ ¢,2", and

therefore ¢ € ker 7. By straightforward calculation, we get that ker T'f consists only of a

class of rational functions of the form (1—1)\3'2)]“7 where \; are the zeros of p and k varies
over the multiplicty of said zero, so by hypothesis ¢ is not a rational function, follows
that ¢; = 0 for all 1 < j < n and hence {T#¢ : 1 < j < n} is linearly independent for
every n € N, thus ker 77 is infinite-dimensional. By the Caradus criteria, 77} is universal

for H*(D). O
Recently, (31}, B2, [33]), observed some interesting results for the disk case as follows:

Lemma 3.1.3. If ¢ € H*(D) and there exists { > 0 such that |¢(e®)| = £ almost
everywhere on T, then 1/¢ € L*(T) and the Toeplitz operator Ty, is the left-inverse of Ty.

Proof. Naturally, remember that if ¢); € L*(T) and ¢9 € H*(D), we have that for any
fe HD)
T¢1T¢2f = T¢lw2f = P(%%f) = Td)lwzf

Since ¢ by hypothesis is bounded away from zero, i.e., there exists a constant ¢ > 0
such that |¢(e?)| = ¢ > 0 then follows that 1/¢ € L*(T). Now, since 1/¢ € L*(T) and
¢ € H*(D), we get that

Ty =Tijgp =T1 =1

Where [ is the identity operator in H?(D). O
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Corollary 3.1.1.1. In the hypothesis of the previous lemma, the Toeplitz operator T} is

surjective.

Proof. We know that T',,Ty = I, but note that
I =1 = (TyTy)" = T3y,
thus, the result follows. O

Now, we want to define a "simple" symbol that gives us a universal symbol for the disk

case. Let @ = {2€ C:Imz?> > -1 and Rez < 0}. Define the following map:

14

vz+1

Note that o is a conformal map between D and Q2 (see (32)) for a complete argument of
this). Now, define

c:D—-Q 2z~

o(z) = e0(2) _ 0(0) — pol2) _ o—1+4i (3.1)

where we choose the branch of the square root to be the half-plane {z € C : Rez > 0}
satisfying /1 = 1. Also, in (32) was shown that there exists an £ > 0 such that |¢(e?)| > ¢
almost everywhere on T so we are going to make use of Lemma and Corollary
to prove that Ty is universal for H*(D).

Theorem 3.1.2. Let ¢ be as defined in [3.1)), then T, is universal for H*(D).

Proof. Since 1/¢ € L*(T), by Corollary |3.1.1.1, we get that T} is surjective, we wish to
prove that T} has an infinite dimensional kernel. Therefore, the result follows from the
Caradus criteria. Now, let w,, = —1 + ¢ + 27ni and note that (w,)n.eny < Q. Since, o is a

conformal map, let z, = 0_1(wn) and consider K, the reproducing kernel at z,, then

T;Kzn = (20K, = (e Hi+2mi _ -+, = ()

But note that (K, ),ey is linearly independent set contained in ker T;, hence ker Tq’f is

infinite-dimensional, and the result follows from the Caradus criteria. n

So we have a concrete example of a universal operator over H%(ID), but note that the
universal operators over the disk are somewhat complicated; thus, our interest goes over to
the polydisk, where we can find more easily universal symbols although the space structure
can be a bit more complicated given that the function theory in several complex variables

can be quite different from the one variable.
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3.2 Universality in Toeplitz operators over the polydisk

We have reached our goal in this current presentation; in this section, we will present
the main results for the polydisk. The main reason to use this space is that we have
concrete examples of universality; in particular, we have that 7., ..., T, are shifts (in the
same sense of the disk case) over the polydisk and the prime example of universal operators
are T7,...,T7 , in fact we will show that these operators are universal. Moreover, the
Hardy space over the polydisk enables the most profound result in this section, the Ahern
and Clark theorem, crucial to several fresh results in this area.

For simplicity, consider the case of the bidisk, H?*(D?). We may write H?*(D?) =

H?(H?*(D)), so we may write the elements of H?(ID?) as follows:

H?*(D?) = { Flzow) = > hn(2)w" : (h)neryy € H*(D) and > [|ha(2)]* < oo}

and we define T, f(z,w) = wf(z,w), an analytic Toeplitz operator, and we get that for
some ¢(z,w) € H*(D?)

Tiwg(z,w) = Plwwg(z,w)) = g(zw)

where P is the orthogonal projection from L?(T?) onto H?*(D?) and noting that ww = 1
almost everywhere on T?, hence wwg(z, w) € H*(D"), thus T} is surjective. We claim that
T* has infinite dimensional kernel. Note that H?*(ID) < ker T'* since if f € H?(D), in the
variable z:

T:f = P(wf) = 0.

We may also write the adjoint as:

T[;f(z,w) _ f(z,w) B f(Z,O)

w—20

hence, by the Caradus criteria, T is universal for H%(D?). And analogously, we get that
T is also universal for H%(ID?), and we may extend this argument naturally to the polydisk
via vector-valued factorization of the Hardy space.

Remember that in the one variable case, we defined a subspace M as shift invariant if
zM < M, which was our object of interest. Now, over the polydisk, we also want to study

shift-invariant subspaces and our definition here generalizes the previous one as follows.

Definition 3.2.1. Let M < H*(D") be subspace, we say M is a shift invariant subspace

if M is invariant under z;, i.e., zzM < M for alli=1,... n.
Proposition 3.2.1. The spectrum O'(T;;) =D forallj=1,..,n.

Proof. We know from basic functional analysis that |77 | = |T};] and in particular that
the spectral radii r(77) < |77 ||. Now, we know that [T, | = [z;[s = 1, hence o(17)) = D.
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It is easy to see that Jp(T;j ) = D, but note that the spectrum must be a non-empty
closed subset of C and in this case is also contained in D. One can see that the smallest
closed set that contains D is D. Thus, the proposition follows.

m

Our interest invariant subspaces are the shift-invariant subspaces, and by Corollary
[1.5.1.1] the ISP in H?*(D") resumes to show that every minimal invariant subspace of
H?(D") is one-dimensional or even, that all maximal invariant subspaces have codimension
one, here minimality and maximality are in the sense of a lattice of invariant subspaces,
so we only need to study the invariant subspaces of one universal operator to solve the
ISP. Still, it has not been possible so far. Here, we will present the approach via Toeplitz
operators of the polydisk using universality. At first glance, Toeplitz operators may look
reasonably simple but still do not have a complete characterization of Toeplitz operator
that is universal for H*(D"), in general, the adjoint of an analytic Toeplitz operator has
dense range by Proposition [1.4.6| and since the Caradus criteria is the tool used to verify
if an operator is universal, we get that our operator must be closed. However, we know
examples of universal operators that do not have closed range; for instance, take H a
Hilbert space and let U € B(H) be a universal operator and take T' € B(#H) to be an
arbitrary operator without closed range, then U @ T on H @ H is universal but does not
have closed range. Although the Caradus criterion gives us sufficient conditions for an
operator to be universal, as seen before, only the infinite-dimensional kernel hypothesis
is necessary; therefore, we do not have all the required conditions such that Toeplitz
operators are universal in the sense of Rota, but we will show some results that imply
universality for Toeplitz operators.

Now, our goal is to show the Ahern and Clark theorem, which is one of the most
important results in this section, that gives a connection between finite codimension and

invariant subspaces of H?(D"). Still, for this, we need the following results:

Lemma 3.2.1. If M is a invariant subspace of H*(D"™) with finite codimension, then M

is contained in invariant subspace My such that dim(M,/M) = 1.

Proof. Note that H*(D") = M@N, for some finite dimensional subspace N of H*(ID"). Now
note that every p € C|z, ..., 2,,] determines linear maps H, : N - M and h, : N — N,
which are just multiplication operators with respect to the polynomial p, such that

pg = H,g + h,g, it g € N. In particular, we may write:

pqg = p(H,g + hyg) = H,Hy,9 + hyHyg + hpyH,g + hyhgg
= (Hqug + thqg) + (thqg> + hpheg
= (pHqug + Hphyg) + hoheg



Chapter 3. Some recent results in universality in Toeplitz operators 57

where pH,g + Hp,heg € M since by hypothesis M is invariant, also note that since
pq € Clz1 ..., 2,] we get that
P9 = Hpqg + hpqg (3.2)

where H,,g € M and h,,g € N and by comparison with the previous characterization we
obtain that h,, = h,h, since H*(D") = M @ N by hypothesis. In particular, we know that
hyq = hgp and thus {h,} is a collection of commuting linear operators on N. Since {h,}
is a commuting collection and N is finite-dimensional, there exists an f € N that is a
common eigenvector for all h,. Let A\, be the eigenvalue of f, then pf — A\, f € M for every

p € C|z, ..., z,] because:
pf - )\pf = pr + hpf - )\pf = pr

Let My = M @ [f], where [f] is the subspace generated by f and thus M; has the desired
properties, since pf € M for every p € C|zy, ..., z,,].
]

Theorem 3.2.1. Suppose M is an invariant subspace of H*(D"), with codimension k < oo
and let R = C[z1, ..., z,] be the ring of complex polynomials in n variables. Then R~ M is

an ideal in R such that:
1. Rn M is dense in M.
2. dim(R/(Rn M)) = k.
3. The set of common zeros in C" of the members of R n M is finite and lies in D"

Conversely, if I is an ideal in R whose common zeros form a finite subset Vi of D", and if
M s the closure of I in H*(D"), then M is a finite codimensional invariant subspace of
H?*(D") and [ = Rn M.

Proof. 1t is easy to see that M n R is an ideal since if f € M n R, for every p € R, we get
that f-pe R because f -p is again a polynomial and since M is invariant, f - p belongs to
M, hence f-pe M n R.

Suppose that k = 0, follows that M = H?(D") and therefore R n M = R. We will
proceed by induction on k. Assume that k£ > 0 and that the first part of the theorem
holds for all invariant subspaces with codimension < k — 1; for this we may choose M; as
in Lemma so that M < M; and dim(M;/M) = 1 and by our induction hypothesis
follows that the conditions 1, 2 and 3 hold for M; since M; has codimension k — 1.

Now, since M is closed and condition 1 holds for M, there exists a ¢ € R n M; such
that ¢ ¢ M and, by Proposition there exists a linear functional ¢ such that ¢(q) = 1
and |y = 0. If p e R n My, then p — ¢(p)qg € M since if p € M then p(p) = 0 and if

p ¢ M the preceding expression will be ensured to be in M since we are taking terms that
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have a linear combination with () that does not belong in M and thus R n M; is generated
by R n M and g, so the second condition is proved for subspaces with codimension k.

In order to prove the first condition for M, by our induction hypothesis on My, if f € M
(therefore also in M), we get that f = lim,ey p, for some sequence (py,)neny € R N My and
therefore p, — ¢(p,)q — f, since p(p,) — 0 because by hypothesis p, — f € M. We know
that p, — ¢(pn)g € M for all n € N; hence, the condition 1 is proved for M.

Let w € C™ be a common zero of all polynomials in M. Define the evaluation linear
functional ~, such that ~,(p) = p(w), so 7, annihilates R n M since w is a common zero
on R n M. Now since R n M has codimension 1 in R n M, so there exists a constant ¢
such that p(w) = cp(p), so we get that v, is continuous in R n M in the usual topology
of H?(D"). Suppose that w does not lie in D", then at least one of the coordinates of
w, say w;, has the property that |w;| = 1, so by our induction hypothesis there exists a
¢o € R n M, such that go(w) = 1 and if we define

P =50+ o) (33)

For z = (z1,...,z,) € C". It is straightforward that p™Qy € R n M; for m € N, and in

particular [p™ Qg2 — 0 as m — oo, but p"Qo(w) does not converge to zero. Therefore, w

must lie in D™ by continuity.

Now, any set of evaluation maps at distinct points is linearly independent on R; hence,
by condition 2, the cardinality of this set must be at most k. This set annihilates & n M,
which concludes the proof of condition 3.

Conversely, assume that [ is an ideal of R with V; a finite subset of common zeros of
in D™ and M is the closure of I in H?(D"). Then dim(H?*(D")/M) < dim(R/I) since R is
dense in H*(D"), we get that M is a finite codimension invariant subspace. Now, we can
see that I « R n M because M = I by hypothesis and of course R n M = I in H*(D"),
so by Lemma [A.0.2] is enough to prove that every linear functional that annihilates I is
continuous.

Now, since I is the finite intersection of primary ideals (we say that [ is a primary ideal
if vty e I = either x € [ or y" € I for some n > 0) for each point of V;, there exists an
integer such that the ideal I contains an ideal J of R and J is the ideal of all polynomials
with zeros of order greater or equal to m at every point of V7, so the linear functionals on R
that annihilates J are a linear combination of finitely many partial derivatives, evaluated

at points of V7, and these are continuous, since V; < D", thus the proof is complete. [J

This result was first proved in (36) using several arguments involving algebraic geome-
try, but this proof follows the version done in (I3]), which is more related to functional
analysis. Usually, this is known as the Ahern and Clark theorem, but in this work, we

refer to the following corollary as the Ahern and Clark Theorem:
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Ahern and Clark Theorem: If fi, ..., f, € H*(D") with k& < n, then the invariant
subspace M generated by fi, ..., fx is either all H2(D") or M* is infinite dimensional.

This is one of the deepest results about invariant subspaces over the polydisk, and it

allows us to state some strong results about universality and invariant subspaces.

Theorem 3.2.2. Let ¢ € H®(D"), then ¢H*(D") is a invariant subspace of H*(D") if

and only if ¢ is generalized inner function.

Proof. Let Ty be the Toeplitz operator with the symbol ¢. Suppose that ¢H*(D") is
invariant. Since ker 7, = {0} and Ran 7T} is closed, we get that T, is bounded below and
therefore exists an ¢ > 0 such that |¢| = J almost everywhere on T". Suppose that o({ €
T™ : |6(C)| < 0}) > 0, then there exists a dy € (0,0) such that o({C € T™ : |p(¢)| < do}) > 0.
Fixing such dg and let E = {{ € T" : |¢({)| < do}, we will construct a sequence of functions
(fn)neny < C(T™) such that 0 < f, < 1 and lim,, . f, = xg almost everywhere on T". By
(I3, Theorem 3.5.3), for each n € N, there exists g, € H*(D") such that |g,| = f, almost

everywhere on T". Thus, we get:

% J gudo < f 16 gal?do
T T

for all n € N. Now, applying Lebesgue-dominated convergence, we obtain:
60 (E) < J |9|?do < 650(F) < 6%0(E)
E

A contradiction. Therefore |¢| = ¢ almost everywhere on T™ and hence 1/¢ € L*(T")
Conversely, suppose ¢ is a generalized inner function. It is straightforward that ¢ H?(D")

is invariant, so we must show that ¢H*(D") is closed. Here suffices to show that T is
bounded below by Theorem [A.0.7} In particular,

lglz =[1/¢ - ¢gla < [1/]e - |Pgl2 = 1/l - [Tl
Thus, Ty is bounded below, and the proof is finished. O

This result by (37) in some sense found a similar characterization to Beurling’s in
H?(D") but note that it is not a complete characterization of the invariant subspaces of
H?(D"), since we already showed an invariant subspace not generated by a generalized
inner function. For this following result, we say that [¢] is the smallest invariant subspace
that contains ¢ in the sense that [¢p] = {TF1---Tke¢ : (Ky, ..., k) € Ny}, in other words,

the closed orbits via our shifts.

Theorem 3.2.3. (34, Teorema 4.1.19) Let ¢ € H*(D") be a generalized inner function.
Then Ty is invertible or T} is universal for H*(D").
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Proof. Since 1/¢ € L*(T™), by the previous theorem we know that Ran(7T}) is closed, then
by Theorem [A.0.4) we get that Ran(7T}) is also closed and by Proposition we know

that Ran(7T7) is dense, therefore T is surjective. Now, note that [¢] is smallest subspace
that contains ¢ and that ¢ H?*(D") < [¢], thus follows Ran(T},) = [¢]. So, by the Ahern
and Clark theorem, we get the following dichotomy:

« [¢] = H*(D")

o codim([¢]) = 0
in otherwords, either T} is surjective or Ran(7,) has infinite codimension. The first will
imply invertibility since ¢ € H*(D") implies injectivity, and the second implies from

Theorem that ker(77) is infinite dimensional and thus by the Caradus criteria, T

is universal. O]
Corollary 3.2.3.1. Let ¢ € H*(D™) be a non-constant inner function, then T is universal.

Proof. By Proposition [1.4.2] we have that |T,| = |¢|, = 1, and hence T} is an isometry.
Suppose that Ty is invertible, in particular, for any f, g € H*(D"):

(Tyf, Tyg) = N o fdgdo = . fgdo ={f,g9)

So Ty is in fact unitary, thus T;7T, = T,T; = I, hence ¢ must be a constant, which is a

contradiction. Therefore, by the previous theorem, T} is universal for H 2(Dn). ]
Note that by the previous result, we get again that the adjoint of our shifts are universal.

Corollary 3.2.3.2. The Toeplitz operators T, ..., T are universal for H?*(D").

AR zZ.
Corollary 3.2.3.3. (34, Coroldrio 4.1.21) Let p € C[z1, ..., z,] such that p has zeros in

D" and is zero free in T, then T is universal for H*(D").

Proof. By hypothesis, p is a generalized inner function. Since it has zeros belong in the
polydisk, there is w € D™ such that p(w) = 0. Now, by Proposition [1.4.7, we know that
TrK, = p(w)K, for some w € D", so we get that if w is a zero of p, then K, € ker(T)
and since the set of zeros of p is infinite we get that ker(7};) is infinite dimensional and

therefore by Caradus criteria, 7)) is universal. n

Lemma 3.2.2. Let T' be a bounded linear operator in a Hilbert space H. Then are

equivalent:
1. T s left-invertible.
2. T* is surjective.

3. T 1is injective and has a closed range.
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Proof. If T is left-invertible, there exists S € B(H) such that ST = Iy. By adjoint
properties, we get that T*S* = I}, = Iy and thus T is surjective, hence condition 1
implies condition 2. Now, by Theorem [A.0.6|condition 2 and condition 3 are equivalent. Now,
if T' is injective and has a closed range, then T'(H) is a Hilbert space and T': H — T'(H)
is bijective, so by the open mapping theorem there exists 7! : T(H) — H, hence T is

left-invertible and therefore condition 3 implies condition 1, so the proof is complete. [J

Proposition 3.2.2. Let Ty be a analytic Toeplitz operator in H*(D"). Then Ty is left-
invertible if, and only if, ¢ is invertible in L*(T").

Proof. If ¢ is invertible in L*(T"), then T} 4 is a Toeplitz operator, hence

T.T,f = T36f = P50f) = P() = f

for all f € H*(D"), therefore Ty is left-invertible. Conversely, by the Lemma , if T, is
left-invertible, its range is closed. Then E = ¢H?*(D") is closed and satisfies z;FE = E for
all 7 = 1,...,n and this implies that E is a Shift invariant subspace, thus ¢ is invertible in
L*(T") by Theorem [3.2.3] O

Theorem 3.2.4. Let ¢ € H*(D"). Then T} is surjective and dimker(T}) = oo if, and
only if, ¢ is invertible in L*(T") but not in H*(D").

Proof. Suppose that T} is surjective and has an infinite-dimensional kernel, then by Lemma
it follows that Ty is left-invertible and by the Proposition it follows that ¢
is invertible. By Theorem , we know that ¢ H*(D")* = ker(T;), thus it has infinite
codimension, moreover we obtain ¢H?(D") # H?(D"), so 1/¢ ¢ H*(D"). Conversely,
suppose that ¢ is invertible in L*(T") but not in H*(D") then again by the Proposition
m we get that T} is left-invertible, and then by the previous lemma we have that
T} is surjective. Now, since 1/¢ ¢ H*(D"), we get that H*(D") # ¢H?*(D") and hence
it is a non-trivial subspace of H*(D"), so by the Ahern-Clark theorem we obtain that
¢H?(D™)* is infinite dimensional, since T is surjective, by Theorem , follows that
ker(T}) = ¢H?(D")* is infinite dimensional as desired. O

Corollary 3.2.4.1. Let Ty be a left-invertible analytic Toeplitz operator in H*(D™). Then

either Ty is invertible or T} is universal.
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APPENDIX A - Functional Analysis

Lemma A.0.1. (Riemann-Lebesque) Given a function f € LY(T™), we have that | f(m)| —

0 as |m| — oo.
Proof. See (38, Proposition 3.3.1) ]

Proposition A.0.1. Let E be a normed space, M be a closed subspace of E, vo € E\M
and d = d(xg, M). There exist a ¢ € E* such that ||¢| = 1, p(zo) = d and ¢(x) = 0 for
all x € M.

Proof. See (39, Proposicao 3.3.1) O]
Lemma A.0.2. Let E be a Banach space and let F < E be a subspace such that F # E.
Then there exists 1 € E*, 1 # 0, such that

Y(x) =0 VYreF
Proof. See (40, Corollary 1.8). O

Theorem A.0.1. Let X be a compact Hausdorff space. If U is a closed self-adjoint
subalgebra of C'(X) which separates points of X and contains the constant function 1, then
U=0CcX).

Proof. See (41, Theorem 2.40). O

Lemma A.0.3. Let E, F be normed spaces and T' € B(E, F). If (z,), € E converges
weakly to x € E and T is compact, then T (x,) — T(x).

Proof. See (39, Proposigao 7.2.8) ]

Theorem A.0.2. A Hilbert space H is separable if and only if it has a countable orthonor-

mal basis.

Proof. See (39, Teorema 5.4.3) O
Theorem A.0.3. Every separable Hilbert space H is isometrically isomorphic to (2.
Proof. See (39, Teorema 5.4.4) O

Theorem A.0.4. Let E, F' be Banach spaces and T : E— F be a bounded linear operator.

The following are equivalent:
e Ran(T) is closed.

e Ran(T™*) is closed.
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o Ran(T) = ker(T*)*.
o Ran(T*) = ker(T)*.
Proof. See (40, Theorem 2.19) O

Theorem A.0.5. Let f € L*(T"), then

1flz2 = > [fm)? (A.1)
mezZ™
Where m = (my,...,my) € Z" a multi-index and f the Fourier transform of f.
Proof. See (38, Proposition 3.2.7). O

Theorem A.0.6. Let X,Y be Banach spaces and T € B(X,Y'). Then are equivalent:
e T is surjective
o T™ is injective and has closed range.
Proof. See (42, Theorem 4.15) O

Theorem A.0.7. Let X,Y be Banach spaces and T € B(X,Y). T is bounded below if and

only if T' is injective and has closed range.

Proof. See (21, Theorem 2.5) O
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