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"Understanding a question is half an answer"
(Socrates)



Resumo
O Problema do subespaço invariante é um dos problemas em aberto mais famosos em
teoria dos operadores, ele pergunta se dado qualquer operador linear limitado em um
espaço de Hilbert complexo, separável e de dimensão infinita, tal operador admite um
subspaço invariante fechado não-trivial.

No presente trabalho, iremos introduzir a teoria básica do espaço de Hardy-Hilbert do
polidisco, H2pDnq, e seus operadores de Toeplitz e com isso exploraremos as conexões entre
universalidade e operadores de Toeplitz Tϕ sobre os espaços de Hardy-Hilbert do disco e
do polidisco e relações com o problema do subespaço invariante, isto é, uma abordagem
ao problema pelo estudo subespaços invariantes com relação a um operador de Toeplitz
universal.

Palavras-chave: Operadores universais. Operadores de Toeplitz. Espaços de Hardy.
Espaços de Hilbert. Subespaços invariantes.



Abstract
The invariant subspace problem (ISP) is one of the most famous open problems in operator
theory, it asks if given any bounded linear operator on a infinite dimensional, complex and
separable Hilbert space, does such operator admit a non-trivial closed invariant subspace?

In this present work, we will introduce the basic theory of the Hardy-Hilbert space over the
polydisk, H2pDnq, and its Toeplitz operators and we will explore the connections between
universality and Toeplitz operators Tϕ over the Hardy-Hilbert spaces of the disk and the
polydisk and its relations with the invariant subspace problem, in other words, a approach
to the problem by studying the invariant subspaces of a universal Toeplitz operators.

Keywords: Universal operators. Toeplitz operators. Hardy spaces. Hilbert spaces. Invariant
subspaces.



List of symbols

N The set of natural numbers

N0 The set of positive integers

C The set of complex numbers

Crz1, . . . , zns Ring of polynomials in n variables with coefficients in C

Repzq Real part of the complex number z

Impzq Imaginary part of the complex number z

D The unit disk tz P C : |z| ă 1u

Dn Cartesian product of n copies of D

T The unit circle tz P C : |z| “ 1u

Tn Cartesian product of n copies of T

H Infinite dimensional complex separable Hilbert space

BpXq Bounded linear operators on a vector space X

} ¨ }p p-norm with 1 ď p ă 8

T ˚ Adjoint of an operator T

I Identity operator

ℓ2 Hilbert space of square-summable sequences of complex numbers indexed
by N

V K The orthogonal complement of a subspace V

H2pDq Hardy-Hilbert space over the disk

H2pDnq Hardy-Hilbert space over the polydisk

H8pDq Hardy space of bounded holomorphic functions over D

H8pDnq Hardy space of bounded holomorphic functions over Dn

L2pTq Space of complex-valued square-integrable functions over T

L2pTnq Space of complex-valued square-integrable functions over Tn



H̃2 Subspace of L2pTq whose coefficients are non null if are indexed by
positive integers

H̃2pDnq Subspace of L2pTnq whose coefficients are non null if it multi-indexed
by positive integers

H2pHq H-valued Hardy-Hilbert space

L8pTnq Space of essentially bounded measurable functions over Tn

Mz Operator multiplication by z

Tϕ Toeplitz operator over H2pDnq with symbol ϕ

IdH Identity operator on H

kerpT q Kernel of a linear operator T

RanpT q Range of a linear operator T

σpT q Spectrum of a linear operator T

rϕs Smallest invariant subspace containing ϕ

kz0 Reproducing kernel in H2pDq at z0 P D

Kα Reproducing kernel in H2pDnq at α P Dn

Prpθq Poisson kernel on D

P pz, ζq Poisson kernel on Dn

P rdρspzq Poisson integral with respect to a measure ρ
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Introduction

The Invariant Subspace Problem (ISP) is currently one of the most famous open
problem from operator theory. It was stated in the mid 1900’s after the works of (1) and
a unpublished work by John von Neumann. So far, several different approaches to this
problem have been studied. The recent monograph (2) introduces many modern approaches
to the ISP. The problem may be formulated as follows: given a complex Banach space E
with dimension greater than 1 and any bounded linear operator T : E Ñ E, does T admit
a non-trivial closed invariant subspace?

Solutions for some cases have already been obtained. If E is finite dimensional, the
problem may be solved by using Jordan Canonical form. If E is an infinite dimensional
non-reflexive Banach Space, a counter-example was given by (3, 4, 5, 6). If E is an infinite
dimensional non-separable Banach space, the closure of the orbit of any non-zero element
in E works as a non-trivial closed subspace.

Several other results have been proven concerning Banach spaces, for instance it was
proved by (7), that every compact operator in a Banach space with dimension greater or
equal to 2 has a non-trivial closed invariant subspace, (8) proved that for polynomially
compact operators, we also have a positive answer to the problem. Later, (9) proved that
if an operator T commutes with a non-zero compact operator, then T has a non-trivial
closed subspace.

The currently most important open forms of the problem involve complex reflexive
Banach spaces and complex separable Hilbert spaces. Our focus in this work is on the
separable Hilbert space case this gives us a good advantage in the form of Riesz-Fischer
Theorem, which states that every separable Hilbert space is isometrically isomorphic to ℓ2.

Of course, many techniques used are inspired by the one-dimensional case, where we
have a complete characterization of the invariant subspaces of the shift on ℓ2 due to (1).
He proved that every invariant subspace of the unilateral shift of H2pDq are given by
ϕH2pDq, where ϕ is an bounded holomorphic function on the unit disk with |ϕpeiθq| “ 1
almost everywhere on T and H2pDq is the Hardy-Hilbert space over the disk.

This work focus on the Hardy-Hilbert space over the polydisk, H2pDnq. One of the
advantages of using this space, is the use of Rota’s universal operators. An operator U
is said to be universal if given a non-zero operator T P BpHq, there exists a non-trivial
closed subspace M of H such that the restriction of U to M is similar to T in M . Verifying
that a operator is universal is not a trivial task but the Caradus Criteria give us sufficient
conditions to prove that a operator is universal and so we can present some examples, one
of those are the adjoints of the shifts on H2pDnq which is convenient since we are studying
shift invariant subspaces.

This work will be organized as follows:
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In the first chapter, we will present a short introduction for function theory on H2pDq

since we are going to make some similar arguments and comparisons with H2pDnq and
also a short introduction to several complex variables, later we will present some general
results about function theory in H2pDnq, a short introduction to Toeplitz operators over
H2pDnq and define universality on Hilbert spaces and its connections to the ISP.

In the second chapter, we study shifts in H2pDq and Beurling’s theorem. Also, via
vector-valued Hardy spaces, we present a connection to the polydisk case and some
examples of invariant subspaces.

In the third chapter, we will study some recent advances in ISP via Toeplitz operators,
in the disk and polydisk case and we will see why we prefer the polydisk case and the
current struggles with this approach.

In the appendix, we will state some general results from functional analysis that will
be use through the text.

This work aims to be a concise introduction to the study of ISP via universality of
Toeplitz operators on H2pDnq and we assume that the reader has knowledge in functional
analysis, complex analysis in one variable, rudiments of Fourier analysis and measure
theory.



15

1 Preliminaries

In this chapter, we will introduce the basic concepts for the text, first a short introduc-
tion to the Hardy-Hilbert space over the disk and several complex variables, then we will
discuss the Hardy-Hilbert space over the polydisk, results about Toeplitz operators over
the polydisk and universality. This chapter is based on (10, 11, 12, 13, 14, 15).

1.1 The Hardy space over the disk
In this section, we will briefly introduce the Hardy-Hilbert space of the disk as a starting

point for this work. This space was used to give a complete characterization for the shift
invariant subspaces on ℓ2 space by (1) (this characterization will be stated and proved in
chapter 2) and will provide some intuition when we start to work with Hardy-Hilbert space
of the polydisk since many properties are naturally generalized. First, we will introduce the
most natural example of a Hilbert space, the space of square-summable complex sequences
ℓ2.

Definition 1.1.1. We define ℓ2 as follows

ℓ2
“

#

panqnPN0 P C :
8
ÿ

n“0
|an|

2
ă 8

+

.

Of course, in this space, we have a natural definition of inner product as

xpanqnPN0 , pbnqnPN0y “

8
ÿ

n“0
anbn

and, naturally, a definition of norm

}panqnPN0} “

˜

8
ÿ

n“0
|an|

2

¸1{2

.

Now we present the Hardy-Hilbert space, which is isometrically isomorphic to ℓ2, but
it has a richer theory behind than ℓ2. We define the disk as the set D “ tz P C : |z| ă 1u

and the unit circle T “ tz P C : |z| “ 1u as the boundary of D.

Definition 1.1.2. We define the Hardy-Hilbert space of the disk as holomorphic functions
on the disk such that the coefficients in the power series representation are square-summable,
i.e.,

H2
pDq “

#

fpzq “

8
ÿ

n“0
anz

n :
8
ÿ

n“0
|an|

2
ă 8

+
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where we define the inner product for f “ fpzq “
ř8

n“0 anz
n and g “ gpzq “

ř8

n“0 bnz
n

as
xf, gy “

8
ÿ

n“0
anbn

It is clear now that the mapping

T : ℓ2
Ñ H2

pDq, panqnPN0 ÞÑ

8
ÿ

n“0
anz

n

is a isometric isomorphism between ℓ2 and H2pDq and therefore the Hardy-Hilbert space
is separable. One might ask if every holomorphic function on the disk belongs in H2pDq,
but a clear example is the function

1
1 ´ z

“

8
ÿ

n“0
zn

which is trivially a holomorphic function on D, but the coefficients are not square-summable.
When we said that this space has a richer theory, we mean in the sense that we may
use the usual function theory of complex analysis and, of course, a class of vectors that
are very useful in the development of theory that are not present in the ℓ2 space, the
reproducing kernels.

Definition 1.1.3. Let z0 P D, we define the function kz0 as

kz0pzq “

8
ÿ

n“0
z0
nzn “

1
1 ´ z0z

We say that kz0 is the reproducing kernel at z0. By the power series representation is
clear that kz0 P H2pDq, moreover we have the following

Theorem 1.1.1. (10, Theorem 1.1.8) For z0 P D and f P H2pDq, we have xf, kz0y “ fpz0q

and }kz0} “
1

a

1 ´ |z0|2
.

Now, we want to give another possible characterization for the Hardy-Hilbert space of
the disk, that is, by the use of some simple Fourier analysis.

Definition 1.1.4. We define the Lebesgue space L2pTq as the space of square-integrable
complex functions over T with respect to the normalized Lebesgue measure µ, i.e,

L2
pTq “

"

f :
ż

T
|f |

2dµ ă 8

*

.

In particular we know that the inner product defined in L2pTq is given for any f, g P

L2pTq as

xf, gy “

ż

T
fgdµ
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and naturally, we define the norm as

}f} “

ˆ
ż

T
|f |

2dµ

˙1{2

.

Let n P Z, define the function en in T such that enpeiθq “ einθ we can see that ten : n P Zu

forms an orthonormal basis for L2pTq since by the Fourier transform we have that for a
given f P L2pTq we write the Fourier coefficients of f as

f̂pnq “
1

2π

ż

T
fpeiθqe´inθdθ

and, of course we may write the function f as

fpeiθq “

8
ÿ

n“´8

ane
inθ

where an “ f̂pnq. Now define the space H̃2 as

H̃2
“
␣

f˚
P L2

pTq : xf˚, eny “ 0 for n ă 0
(

.

In other words, we say that this space is written as

H̃2
“

#

f˚
P L2

pTq : f˚
peiθq “

8
ÿ

n“0
ane

inθ and
8
ÿ

n“0
|an|

2
ă 8

+

.

From this previous definition, the reader must already think that we wish to say that
H2pDq is isometrically isomorphic to H̃2. In fact that is true, but since this is a short
introduction, for a complete proof we refer (10, Section 1.1), however in the polydisk case
we will see a similar characterization which we will be proved. A way to relate these two
spaces is via radial functions defined as

frpωq “ fprωq for every ω P T

the idea is that for every function f P H2pDq we can associate a function f˚ P L2pTq with
the following relation

f˚
peiθq “ lim

rÑ1
fpreiθq

for almost every θ, so this presents a connection with the boundary values of a function
f that, from our original definition, we do not have enough information, in fact we
may present examples of functions that belong in H2pDq that are not holomorphic in a
determined point of T, for instance, if we define for a fixed θ0

hpzq “

8
ÿ

n“0

e´inθ0

n
zn.
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We know that h P H2pDq but when we approach the point eiθ0 from inside the disk
we see that |hpzq| tends to infinity and therefore it can not be holomorphic at that point.
Moreover we can produce an example of function that belongs in H2pDq but it is not
holomorphic at any point of the unit circle and to this purpose we need to give more
background. From our previous characterization for H2pDq being seen as a subspace of
L2pTq we get the following:

Theorem 1.1.2. (10, Theorem 1.1.12) Let f P Hol pDq then f P H2pDq if and only if

sup
0ără1

ż

T
|fpreiθq|

2dµ ă 8

Also, we need to define another Hardy space as follows:

Definition 1.1.5. We define the Hardy space of all bounded holomorphic functions on D
as H8pDq and we give the norm of uniform convergence to this space, i.e.,

}f}8 “ sup
zPD

|fpzq|.

From Theorem 1.1.2, we get that H8pDq is a subspace of H2pDq by the fact that for
any function on H8pDq, the supremum relation is satisfied. In particular, this has some
connections to the Lebesgue space of essentially bounded measurable functions.

Definition 1.1.6. We say that a function f over T is essentially bounded function if there
exists some K ą 0 such that

µpteiθ : |fpeiθq| ą Kuq “ 0

and we define L8pTq the Lebesgue space of all essentially bounded measurable functions
with the essential norm

}f}8 “ inftK : µpteiθ : |fpeiθq| ą Kuq “ 0u.

From basic measure theory and functional analysis we know that L8pTq is a Banach
space. It is not hard to see that H8pDq with uniform convergence norm is also a Banach
space and as in the Hardy-Hilbert space of the disk we may also give a connection between
H8pDq and L8pTq.

Theorem 1.1.3. (10, Corollary 1.1.29) If f P H8pDq, then f˚ P L8pTq.

Now, we are ready to define a class of functions called Blaschke products.

Definition 1.1.7. Let pznqnPN0 be a sequence of non zero complex numbers in D and
assume that

ř8

n“0p1 ´ |zn|q ă 8. Let s P N0, then the Blaschke product with zeros pznqnPN0

and multiplicity s zero at z “ 0 is defined by
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Bpzq “ zs
8
ź

n“0

zn
|zn|

zn ´ z

1 ´ znz

It is easy to see that Blaschke products belong in H8pDq. Remember that functions of
the type

ψαpzq “
α ´ z

1 ´ αz

with α P D are involutive automorphisms of the disk, that is

• pψα ˝ ψαqpzq “ z for all z P D.

• ψα is a conformal map from the disk to itself.

From the latter property, we get that |ψαpzq| have 1 as an upper bound in D, thus
bounded. Elements of the form w

w
with w P C is always bounded by 1 and of course, the

function zs with s P N0 is always bounded by 1 in D by the Maximum module principle,
so the Blaschke products are always the product of bounded elements it is a bounded
holomorphic function. Since Blaschke products belong in H8pDq, they belong in H2pDq

and they can be used to construct the example of a function that is not holomorphic at
any point of the unit circle but belongs in H2pDq.

Remark 1.1.1. Take panqnPN0 a dense sequence in T and for each n P N0 we set

zn “

ˆ

1 ´
1
n2

˙

an.

Is easy to see that |zn| ă 1 and that 1 ´ |zn| ď 1
n2 for each n P N0, then pznqnPN0 are

the zeros of a Blaschke product B. By construction of B, every ω P T is a limit point of
pznqnPN0, and then if B is holomorphic in some point in T we obtain that for a neighborhood
of this point, B is necessarily null which is a contradiction.

So, in the Hardy-Hilbert space, the boundary behaviour is important, but it is not
necessary that we extend the domain of holomorphy to the boundary; in fact, we just need
a "good" behaviour for almost every point. Now, we can introduce some special classes of
functions that play a big role when we discuss the Hardy-Hilbert space of the disk, the
inner and outer functions.

Definition 1.1.8. A function ϕ P H8pDq that satisfies |ϕ˚peiθq| “ 1 almost everywhere in
T is said to be a inner function.

A simple example of inner functions are the Blaschke products, and we will show that
the inner functions play a role when we start discussing invariant subspaces, in particular
Beurling’s theorem proves that every shift invariant subspace of H2pDq is of the form
ϕH2pDq where ϕ is an inner function. Now, we define outer functions.
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Definition 1.1.9. A function F P H2pDq is an outer function if F is a cyclic vector
for the operator multiplication by z on H2pDq, i.e, the closed linear span of the elements
pznF qnPN0 is equal to H2pDq.

It is easy to see that the constant function 1 is an example of an outer function. From
this definition, we have some properties for outer functions, for instance:

Theorem 1.1.4. (10, Theorem 2.3.2) If F is an outer function, then F has no zeros in
D.

Also, we may give a full characterization for this class of function as:

Theorem 1.1.5. (10, Theorem 2.7.10) The function F P H2pDq is outer if and only if

log |F p0q| “

ż

T
log |F ˚

|dµ

So we can give a canonical factorization in H2pDq, the inner-outer factorization.

Theorem 1.1.6. (10, Theorem 2.3.4) Let f P H2pDq be a non-null function, then f “ ϕF ,
where ϕ is an inner function and F is an outer function. This factorization is unique up
to constant factors.

1.2 Several complex variables
This section will be dedicated to a short introduction to several complex variables

where we will show some primary results and some differences from the one-variable
function theory. First of all, we will present some background and notations.

Similar to the one variable theory, we define the elements of Cn as the sum of the real
part and imaginary part, but in this case, we have a n-tuple:

pz1, . . . , znq “ px1, . . . , xnq ` ipy1, . . . , ynq

where zj “ xj ` iyj for all j “ 1, . . . , n.
We also need to define some particular sets; here in several variables, we see the idea

of polydisks and balls:

Definition 1.2.1. First take Drpz0q “ tz P C : |z ´ z0| ă ru and Drpz0q “ tz P C : |z ´

z0| ď ru, so we define DRpωq “ tpz1, . . . , znq P Cn : zi P Dri
pωiq where R “ pr1, . . . , rnqu

for ω “ pω1, . . . , ωnq.

Usually, if r1 “ ¨ ¨ ¨ “ rn “ 1 and ω “ p0, . . . , 0q, we denote the polydisk as Dn and the
ball in Cn has the same definition as in usual normed vector space, i.e.,
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Definition 1.2.2. We define Brpωq “ tz P Cn : }ω ´ z} ă ru, where }.} is the usual
euclidean norm in Cn, the ball with radius r centered at ω.

So, in the one variable case, the disk and the ball coincide, but note that the polydisk
and ball are not equivalent. Now we are ready to define the main object of study in this
section, the holomorphic functions, which have three equivalent definitions, for those take
Ω Ď Cn:

Definition 1.2.3. We say that a function f : Ω Ñ C is said to be holomorphic if for every
j “ 1, . . . , n and each fixed z1, . . . , zj´1, zj`1, . . . , zn the function

ω ÞÑ fpz1, . . . , zj´1, ω, zj`1, . . . , znq

is holomorphic in the sense of one variable holomorphic function.

Here, one might think about the Cauchy-Riemann equations, which have a generalized
version for several complex variables. We define the differential operators

B

Bzj
“

1
2

ˆ

B

Bxj
´ i

B

Byj

˙

,
B

Bzj
“

1
2

ˆ

B

Bxj
` i

B

Byj

˙

for j “ 1, . . . , n and note that the Cauchy-Riemann equations over the variable zj is
equivalent to say that

Bf

Bzj
“ 0 on the set D

where D “ tω P C : pz1, . . . , zj´1, ω, zj`1, . . . , znq P Ωu. So this definition says that if the
Cauchy-Riemann equations are valid for each variable separately, then the function is
holomorphic.

Definition 1.2.4. A function f : Ω Ñ C is holomorphic for each ω P Ω if there exist an
R “ pr1, . . . , rnq with each rj ą 0 such that DRpωq Ď Ω and f can be written as absolutely
and uniformly convergent power series

fpzq “

8
ÿ

i1,...,in“0
ai1,...,inpz1 ´ ω1q

i1 . . . pzn ´ ωnq
in

for all z P Drpωq.

Definition 1.2.5. Let f : Ω Ñ C be a continuous function in each variable separately and
locally bounded. The function f is said to be holomorphic if for each ω P Ω there exist an
R “ pr1, . . . , rnq with rj ą 0 for j “ 1, . . . , n such that DRpωq Ď Ω and

fpzq “

ˆ

1
2πi

˙n ż

|ζn´ωn|“rn

. . .

ż

|ζ1´ω1|“r1

fpζ1, . . . , ζnq

pζ1 ´ z1q . . . pζn ´ znq
dζ1 . . . dζn

for all z P DRpωq.
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Now we aim to prove the equivalences between these holomorphicity definitions, so we
may choose a more appropriate definition whenever needed. Here, we take Definition 1.2.3
as a primary definition of a holomorphic function, and in order to progress, we need to
state one of the most famous theorems in complex analysis, the Cauchy’s integral formula,
in this case for polydisks.

Theorem 1.2.1. Let ω P Cn and r1, . . . , rn ą 0. Suppose that f is a continuous function
on Dr1pω1q ˆ ¨ ¨ ¨ ˆ Drnpωnq and f is a holomorphic in Dr1pω1q ˆ ¨ ¨ ¨ ˆ Drnpωnq, then

fpzq “

ˆ

1
2πi

˙n ż

|ζn´ωn|“rn

. . .

ż

|ζ1´ω1|“r1

fpζ1, . . . , ζnq

pζ1 ´ ω1q . . . pζn ´ ωnq
dζ1 . . . dζn

for all z P DRpωq.

Proof. In these conditions, since f is holomorphic, then f is holomorphic in each separate
variable, so we may apply Cauchy’s integral formula for one variable in the variable zn, so
we may write f as

fpz1, . . . , znq “ fpzq “
1

2πi

ż

|ζn´ωn|“rn

fpz1, . . . , zn´1, ζnq

pζn ´ ωnq
dζn

Moreover, we may apply the Cauchy integral formula in the variable zn´1 and, therefore

fpzq “
1

2πi

ż

|ζn´ωn|“rn

ż

|ζn´1´ωn´1|“rn´1

fpz1, . . . , ζn´1, ζnq

pζn ´ ωnq
dζn´1dζn.

Applying for every variable, we get the desired result.

So Theorem 1.2.1 implies Definition 1.2.5 of a holomorphic function, now we will use
the theorem to prove the equivalence between Definition 1.2.4 and Definition 1.2.5.

Corollary 1.2.1.1. If f is holomorphic in Ω Ď Cn, then f is of class C8 on Ω.

Proof. Take a closed polydisk contained in Ω. Remember that in the one variable case, we
had the following consequence for Cauchy’s integral formula.

gpnq
pzq “

n!
2πi

ż

|z´ω|“r

gpωq

pz ´ ωqn`1dω

for a function g holomorphic in Drpωq and continuous on the closure of this disk, meaning
that we may differentiate under the integral sign for one variable. Now, to take any partial
derivative, we take the Cauchy integral formula representation for a function f on Ω, and
with this observation and the use of Fubini’s theorem, we get that every partial derivative
exists and it is continuous, and in particular every derivative is again differentiable on
Ω.

Corollary 1.2.1.2. If f is a holomorphic function on Ω Ď Cn, then f has a convergent
power series representation about each element ω P Ω.



Chapter 1. Preliminaries 23

Proof. Take a closed polysdisk DRpωq, R “ pr1, . . . , rnq, that is contained in Ω and apply
the Cauchy’s integral formula for f in this polydisk. Fix a z “ pz1, . . . , znq P DRpωq so by
the Cauchy integral formula we get

fpzq “

ˆ

1
2πi

˙n ż

|ζn´ωn|“rn

. . .

ż

|ζ1´ω1|“r1

fpζ1, . . . , ζnq

pζ1 ´ z1q . . . pζn ´ znq
dζ1 . . . dζn (1.1)

Our idea now is, as in the one variable case, to rewrite the terms to get to the power
series representation, so we write.

1
pζ1 ´ z1q . . . pζn ´ znq

“
1

pζ1 ´ ω1q . . . pζn ´ ωnq

1

p1 ´
z1 ´ ω1

ζ1 ´ ω1
q . . . p1 ´

zn ´ ωn
ζn ´ ωn

q

.

Note that for each ζj and zj for j “ 1, . . . , n there exist 0 ă ℓ ă 1 such that
ˇ

ˇ

ˇ

ˇ

zj ´ ωj
ζj ´ ωj

ˇ

ˇ

ˇ

ˇ

ă ℓ

and in particular, we also know that

1

1 ´
zj ´ ωj
ζj ´ ωj

“

8
ÿ

ij“0

ˆ

zj ´ ωj
ζj ´ ωj

˙ij

is an absolute convergent power series, hence in general, we may write that

1
pζ1 ´ z1q . . . pζn ´ znq

“

8
ÿ

i1,...,in“0

pz1 ´ ω1qi1 . . . pzn ´ ωnqin

pζ1 ´ ω1qi`1 . . . pζn ´ ωnqin
(1.2)

simply because we can interchange the summation signs of the product of these power
series since they are all absolutely convergent by hypothesis and therefore, the resulting
power series still is an absolute convergent series, by substituting (1.2) in (1.1) and the fact
we may interchange integration and summation signs since we have an absolute convergent
series we get that f can be written as

fpzq “

8
ÿ

i1,...,in“0
bi1,...,inpz1 ´ ω1q

i1 . . . pzn ´ ωnq
in

where

bi1,...,in “

ˆ

1
p2πiqn

ż

|ζn´ωn|“rn

. . .

ż

|ζ1´ω1|“r1

fpζ1, . . . , ζnq

pζ1 ´ ω1qi1`1 . . . pζn ´ ωnqin`1dζ1 . . . dζn

˙

Sometimes Corollary 1.2.1.2 is called Osgood’s Lemma in the literature, and now we
proved that Definition 1.2.5 implies Definition 1.2.4, but note that Definition 1.2.4 already
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implies Definition 1.2.3 so we proved that those three definitions are equivalent as they
are in the one variable case. We will see next some results in several complex variables
that have an analog in one variable.

Theorem 1.2.2. If f and g are holomorphic functions in a connected open subset Ω Ď Cn

and if fpzq “ gpzq for all points in an open neighborhood U Ď Ω, then fpzq “ gpzq for all
z P Ω.

Proof. Let E Ď Ω such that E is the interior of the set tz P Ω : fpzq “ gpzqu, thus E is
an open set, and it is not empty since by hypothesis U Ď E. Since Ω is connected by
hypothesis, it suffices to show that E is closed in the induced topology of Ω as a topological
subspace of Cn because then E will be an open and closed non-empty subset of Ω and
therefore E must be equal to Ω. If ω P Ω X E, where E denotes the closure of E in the
topology of Ω, take r ą 0 sufficiently small such that DRpωq Ď Ω with R “ pr, . . . , rq and
now fix ω0 P Dr{2pωq XE and note that such ω0 exists since ω P E, therefore ω P Dr{2pω0q.
Now, the function f ´ g has a power series representation centered at ω0 converging for
every point in DR{2pω0q but remember that f ´ g is null in this polydisk. Therefore the
coefficients of the power series representation must be all null and hence f ´ g is null in
DR{2pω0q and thus ω P DR{2pω0q Ă E, so E contains its accumulation points therefore
E “ E and this concludes the proof.

The following theorem is the analog of the Maximum module principle for several
variables.

Theorem 1.2.3. If f is holomorphic in a connected open subset Ω Ď Cn and if there exists
ω P Ω such that |fpzq| ď |fpωq| for all z in a open neighbourhood of ω, then fpzq “ fpωq

for every z P Ω.

Proof. The proof of this theorem will not be done in this work since it uses some concepts
of differential forms that were not introduced and will not be used. For a complete proof,
see (14, Theorem 4, Page 6).

Definition 1.2.6. An open set U Ď Cn is called a domain of holomorphy if does not exist
non-empty open subsets U1, U2, with U2 connected, U2 Ć U and U1 Ď U X U2 such that for
every holomorphic function h on U there exists a holomorphic function h2 in U2 such that
h “ h2 on U1.

Note that every in one variable, every open set is a domain of holomorphy or simply a
domain. Now it is time to introduce some of the differences that we talked about regarding
adding new variables for holomorphic functions. In one variable we always knew that zeros
were always isolated, and that is not the case over several variables all due to what is
known in literature as Hartog’s phenomenon, which states the following
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Theorem 1.2.4. Let Ω Ď Cn be a bounded domain and let K be a compact subset of Ω
with the property that ΩzK is connected. If f is holomorphic on ΩzK, then there exists a
holomorphic function F such that F |ΩzK “ f .

Proof. Again, this result relies heavily on differential forms theory, so we will refer (15,
Theorem 1.2.6) as a reference for the proof.

Now, by Hartog’s phenomenon, we are able to show that every zero on several variables
is not isolated, let Ω Ď Cn be a connected domain and f : Ω Ñ C be a holomorphic
function. We suppose that exists only one zero in Ω, i.e., there exists unique z0 P Ω such
that fpz0q “ 0. Since Ω is connected, then Ωztz0u is connected and also the function 1{fpzq

is holomorphic on Ωztz0u, so by Hartog’s theorem there exists a holomorphic extension of
1{fpzq to all of Ω. However, suppose 1{fpzq is defined for all Ω. In that case, we obtain
fpz0q ¨ 1{fpz0q “ 1 by continuity of the product of continuous functions, which implies
fpz0q ‰ 0, a contradiction, therefore f does not have only one zero.

However, we can construct in a more explicit manner by the use of Hurwitz theorem
of one variable complex analysis, which we will state here for completeness

Theorem 1.2.5. (16, Chapter VII, Theorem 2.5) Let pgnqnPN be a sequence of holomorphic
functions on an open connected set D Ď C that converges uniformly on compact subsets
of D to a function g which is not constantly zero on D. If g has a zero of order m at z0,
then for a sufficiently small δ ą 0 and for a sufficiently large k P N, which depends on δ,
gn has precisely m zeros in the disk defined by |z ´ z0| ă δ, including multiplicity.

With the previous result, take f : Ω Ñ C a holomorphic function, where Ω Ď C2 is a
open and connected set then take fpz1, z2q “ 0 and define fnpzq “ pz, z2 ` 1{nq and z2 is
fixed. Since f is holomorphic we get that pfnqnPN converges uniformly on compact subsets
to the function gpzq “ fpz, z2q and by Hurwitz’s theorem there exists a sufficiently large
N P N such that there exists a zN with the property |z1 ´ zN | ă ε{2 and fNpzNq “ 0.
Assuming without loss of generality that N ą 2{ε, we get that fpzN , z2 ` 1{Nq “ 0 and
that }pz1, z2q ´ pzN , z2 ` 1{Nq} ă ε{2 ` ε{2 “ ε, therefore for any zero of a holomorphic
function in several variables we have other arbitrarily close zeros thus no zero is isolated.

So this is one of the significant differences in the function theory of several complex
variables. On a side note we also get that singularities are also never isolated for several
complex variables, and these two facts can turn the behavior of some functions harder to
study and so we finish our short introduction to several complex variables, if the reader
wants to study more about this topic we refer p14, 15q.
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1.3 The Hardy space over the polydisk.
Definition 1.3.1. Let T be the boundary of D we take Tn, the cartesian product of n
copies of T, to be the distinguished boundary of Dn, which is the cartesian product of the
boundaries of each D, and σ to be the normalized Lebesgue measure on Tn. We define the
Hardy space H2pDnq to be the Hilbert space of all holomorphic functions f over Dn such
that:

}f}
2
2 :“ sup

0ără1

ż

Tn

|fprζq|
2dσpζq ă 8

We also define H8pDnq to be the set of all the bounded holomorphic functions over Dn.
Note that through the text, we always suppose that n ě 2, except mentioned otherwise.

We may also have two other possible characterizations of the Hardy space similar to
the ones given for the disk

• Power Series: In this case, we exploit the holomorphic structure of the functions in
H2pDnq to write the space as

H2
pDn

q “ tf “

8
ÿ

i1,...,in“0
ai1,...,inz

i1
1 . . . z

in
n : f P Hol pDn

q,
8
ÿ

i1,...,in“0
|ai1,...,in |

2
ă 8u

This approach is very interesting to use in case one wants to use algebraic structures
since, in this case, one can see H2pDnq as a "Hilbert" sub-module of Crz1, . . . , zns,
in the following manner, given a set tT1, . . . , Tnu of commuting bounded linear
operators, the n-tuple pT1, . . . , Tnq provides the module structure by:

Crz1, ..., zns ˆ H2
pDn

q Ñ H2
pDn

q pp, fq ÞÑ ppT1, . . . , Tnqf

where p P Crz1, ..., zns and f P H2pDnq. Usually when using this approach, the
operators Mz1 , . . . ,Mzn , i.e, the bounded linear operators of multiplication by zi,
i “ 1, . . . , n are used in the place of T1, . . . , Tn. We refer to the survey article (17)
for a more in-depth introduction to this.

• Fourier series: Analogously to the one-variable case where we may define H2pDq as
isometrically isomorphic to

H̃2 “ tf̃ P L2
pTq : f̂pnq “ 0 for n ă 0u

where f̂pnq denotes the nth-Fourier coefficient. In particular, we may see taking
f̂pnq “ an the functions of H̃2 as

f̃peiθq “

8
ÿ

n“0
ane

inθ with
8
ÿ

n“0
|an|

2
ă 8

So the idea for this is the equivalence of f Ø f̃ for f P H2pDq and f̃ P L2pTq. So the
analogous approach to H2pDnq can be given by

H̃2pDn
q “ tf̃ P L2

pTnq : f̂pkq “ 0 for |k| ă 0u
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where k “ pk1, . . . , knq P Zn is a multi-index, |k| “ k1 ` ¨ ¨ ¨ ` kn and f̂pkq is kth-
Fourier coefficient, but note here that every ki ě 0 for all i “ 1, . . . , n. The proof of
this characterization will be given by Theorem 1.3.2. It gives us a similar analytic
characterization of H2pDnq, which will be useful later when discussing compact
Toeplitz operators.

Definition 1.3.2. Let z “ pz1, ..., znq P Dn and ζ “ pζ1, ..., ζnq P Tn such that zj “ rje
iθj

and ζj “ eiφj for j “ 1, . . . , n, we define the Poisson kernel P pz, ζq as the product:

P pz, ζq “

n
ź

k“1
Prk

pθk ´ φkq

where Prpθq denotes the usual Poisson Kernel defined in D.

Note that P pz, ζq ą 0, since the Poisson kernel on the polydisk, is the product of
Poisson kernels on the disk, which are always positive, and in particular, we have the
following result

Lemma 1.3.1. If P pz, ζq is the Poisson kernel on the polydisk, then
ş

Tn P pz, ζqdσpζq “ 1.

Proof. We may rewrite this integral as:
ż

Tn

P pz, ζqdσpζq “

ż

T
Pr1pθ1 ´ φ1qdµ . . .

ż

T
Prnpθn ´ φnqdµ

where µ denotes the usual normalized Lebesgue measure on the circle.
We know that in the one-dimensional case, we have

ş

T Prpθ ´ tqdµ “ 1, where t is any
real number; thus, the result follows.

In particular, since we know that the Poisson Kernel on the polydisk is the product of
Poisson kernels on the disk, we may write the following:

P pz, ζq “

n
ź

j“1
Prj

pθj ´ φjq “

n
ź

j“1

ÿ

kjPZ
r

|kj |

j eikjpθj´φjq

“
ÿ

k1PZ
r

|k1|

1 eik1pθ1´φ1q
¨ ¨ ¨

ÿ

knPZ
r|kn|
n eiknpθn´φnq

Since we know that all the series above converges absolutely, we obtain that

P pz, ζq “
ÿ

r
|k1|

1 ...r|kn|
n eik¨pθ´φq (1.3)

where the summation extends over all lattice points k “ pk1, ..., knq P Zn and k ¨ θ “

k1θ1 ` ... ` knθn and in particular we know that the family teikukPZn is a basis for L2pTnq.

Definition 1.3.3. If ρ is a complex Borel measure in Tn, then we define its Poisson
integral as the following function:

P rdρspzq “

ż

Tn

P pz, ζqdρpζq
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Henceforth, if f P L1pTnq, we will denote by P rf s instead of P rfdσs to simplify the
notation.

Theorem 1.3.1. The following assertions hold:

1. If f P L8pTnq and z P Dn, then |P rf spzq| ď }f}8.

2. If f P CpTnq, then P rf s extends to a continuous function on Dn.

3. If 1 ď p ă 8, f P LppTnq, and u “ P rf s, then }ur}p ď }f}p and }ur ´ f}p Ñ 0 as
r Ñ 1.

where ur is the function urpwq “ uprwq and u is a function in Dn with 0 ď r ă 1.

Proof. Let us prove the assertions.

1. This first item is just a straightforward application of H:older’s inequality

|P rf spzq| “

ˇ

ˇ

ˇ

ˇ

ż

Tn

P pz, ζqfpζqdσpζq

ˇ

ˇ

ˇ

ˇ

ď

ż

Tn

P pz, ζqdσpζq ¨ }f}8 “ }f}8

2. By equation (1.3), item 2 holds trivially if f is a trigonometric polynomial. Now by
Stone-Weierstrass theorem, every f P CpTnq is the uniform limit of a trigonometric
polynomials, hence by applying the previous assertion, we have the result.

3. Now, since u “ P rf s, we have the following:

|urpζq|
p

“

ˇ

ˇ

ˇ

ˇ

ż

Tn

P prζ, ζ 1
qfpζ 1

qdσpζ 1
q

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ż

Tn

P prζ, ζ 1
q

1´ 1
qP prζ, ζ 1

q
1
q fpζ 1

qdσpζ 1
q

ˇ

ˇ

ˇ

ˇ

p

Now by H:older’s inequality follows that:

|urpζq|
p

ď

ˆ
ż

Tn

P prζ, ζ 1
q

1
q
qdσpζ 1

q

˙

p
q
ˆ
ż

Tn

P prζ, ζ 1
q

p1´ 1
q

qp
|fpζ 1

q|
pdσpζ 1

q

˙
1
p
p

Since, p1 ´ 1
q
qp “ 1, follows that |u|p ď P r|f |ps, in particular we obtain |urpζq| ď

ş

Tn P prζ, ζ 1q|fpζ 1q|pdσpζ 1q. Now, by integrating over ζ we get that:

ż

Tn

|uprζq|
pdσpζq ď

ż

Tn

ż

Tn

P prζ, ζ 1
q|fpζ 1

q|
pdσpζ 1

qdσpζq

By, Fubini’s Theorem, we have:

ż

Tn

|uprζq|
pdσpζq ď

ż

Tn

ż

Tn

P prζ, ζ 1
q|fpζ 1

q|
pdσpζqdσpζ 1

q

Since
ş

Tn P prζ, ζ 1qdσpζq “ 1, it follows that }ur}p ď }f}p. Now, }ur ´ f}p Ñ 0 as
r Ñ 1 by item 2, since CpTnq is dense in LppTnq for 1 ď p ă 8.
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Now, we want to show that, in fact, the limit of the radial functions exists almost
everywhere, and therefore, we have the same characterization as in the disk case. In order
to do so, we need some definitions.

Definition 1.3.4. For a multi-index α “ pα1, . . . , αnq P Nn we define the α-shaped box as
the cartesian product I1 ˆ ¨ ¨ ¨ ˆ In of half-open arcs rsj, tjq in T for all j “ 1, . . . , n such
that the arc lengths have the same ratio to each other as are the numbers 2α1 , . . . , 2αn and
of course tj ´ sj ď 2π for every j “ 1, . . . , n.

The ratio here means that if you take the length of two intervals we have the relation.

ti ´ si
tj ´ sj

“
2αi

2αj

for all 1 ď i, j ď n.
Let λ be a fixed positive measure on Tn and we put

gαpwq “
supλpBq

σpBq

for w P Tn, B is α-shaped box and the supremum is taken over all α-shaped boxes with
center at w and we set

Gpwq “
ÿ

αPNn

2´|α|gαpwq

where |α| “ α1 ` ¨ ¨ ¨ `αn. So, we are ready to state the first of the three necessary lemmas
to prove the desired characterization for the Hardy space of the polydisk.

Lemma 1.3.2. Define the set tG ą tu “ tw P Tn : Gpwq ą t , t ą 0u. Then σptG ą

tuq ď 35n}λ} t´1, where }λ} is the total variation of the measure λ.

Proof. Fix α P Nn and let Eαpξq “ tgα ą ξu, so by the definition of gα we get that every
w P Eαpξq is the center of some α-shaped box Bw and again by the definition of gα we
also get that for w P Eαpwq

ξ ă gαpwq ă
λpBwq

σpBwq

which implies that λpBwq ą ξσpBwq. Given ε ą 0, there exists a subset Aε Ď Eαpξq such
that σpAεq ě p1´εqσpEαpξqq which is covered by finitely many boxes, set H “ tB1, . . . , Bru

be the collection of theses boxes. From this finite collection we may extract a disjoint
subcollection B̃1, . . . , B̃j whose union has measure greater or equal to 3´nσp

Ťr
i“1 Biq. The

way to get this subcollection is to pick the largest set, in terms of measure, take out all
sets that intersect it, pick the second largest and repeat the process until we get the
desired subcollection and the relation given in the measure holds since we are taking the
intersections off the subcollection so the factor n is to take account for the dimension and
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3 is to ensure that the measure will be less than the desired; also this choice will provide a
simple factorization later on. Then

3´n
p1 ´ εqσpEαpξqq ď

j
ÿ

i“1
σpB̃iq ď ξ

j
ÿ

i“1
λpB̃iq

which implies that

σpEαpξqq ď 3n}λ}ξ´1

noting that ξ ą 0. Now, put η “
ř8

ℓ“0 2´ℓ{2 “ 2 `
?

2 and then
ř

αPNn 2´|α|{2 “ ηn. So if
Gpwq ą t we obtain

t ă
ÿ

αPNn

2´|α|gαpwq ď ηn sup
αPNn

t2´|α|{2gαpwqu

hence follows that the set tG ą tu belongs in the union of the sets Eαp2|α|{2η´ntq and
therefore we get that the measure has an upper bound given by

σptG ą tuq ď 3n}λ}
ÿ

αPNn

2´|α|{2ηnt´1
“ p3η2

q
n
}λ}t´1.

Our goal now is to provide an upper bound for P rdλsprwq; we saw in Theorem 1.3.1
that a candidate for the radial function is exactly the Poisson integral of f . Fix 0 ă r ă 1,
then there exist a c “ cprq such that 1 ď c ď 2 and π

p1 ´ rqc
is an integer of the form 2t

with t P N. Put x0 “ 0, y0 “ p1 ´ rqc, xi “ 2i´1p1 ´ rqc and yi “ 2xi for 1 ď i ď t. Let Bα

be α-shaped box with center at ω whose sides have length 2yα1 , . . . , 2yαn , and let Qα be
the set of all peis1 , . . . , eisnq P Bα such that xαi

ď |si| ď yαi
for i “ 1, . . . , n. Note that Qα

is a union of 2n boxes and that Tn “
Ť

αPNn Qα. Moreover, this is a finite union since the
αi ď t for all α. Now,

σpBαq “
1

p2πqn

n
ź

i“1
2yαi

“
1
πn

n
ź

i“1
2αi´1

p1 ´ rqc “
2|α|p1 ´ rqncn

πn

and of course, by hypothesis we know that Qα Ă Bα, then

λpQαq ď
2|α|p1 ´ rqncngαpωq

πn
.

By taking the inequality Prpθq ď pπ{θq2p1 ´ rq for |θ| ď π, we get

Prpxiq ď
4π2

4i p1 ´ rq c2 , for 0 ď i ď t.

Now, by simple Poisson kernel properties for the disk, we know that Prpsiq ď Prpxαi
q,
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ż

Qα

Prps1q . . . Prpsnqdλ ď λpQαq

n
ź

i“1
Prpxαi

q

so by the preceding inequalities, we obtain
ż

Qα

Prps1q . . . Prpsnqdλ ď p4πq
n2´|α|gαpωq.

If we take the union of the collection of Qα we may add the integrals over α and by
changing ω to any w P Tn we calculate the following estimate

P rdλsprwq ď p4πq
n
ÿ

αPNn

2´|α|gαpwq “ p4πq
nGpwq

but note that only the left-hand side depends on r, which we can conclude the following
two lemmas

Lemma 1.3.3. σptsup0ără1 P rdλs ą ξuq ď p140πqn}λ}ξ´1.

Proof. If we assume that sup0ără1 P rdλsprwq ą ξ, we get that Gpwq ą
ξ

p4πqn
, then by

Lemma 1.3.2 we obtain that this only happens if the measure of the set is less or equal to
35np4πqn}λ}ξ´1 “ p140πqn}λ}ξ´1.

Lemma 1.3.4. If λ vanishes in some open set V Ă Tn, then

lim
rÑ1

P rdλsprwq “ 0 almost everywhere on V .

Proof. Assume that w P Tn is such that Gpwq ă 8, which is valid for almost every w

by Lemma 1.3.2, then choose δ ą 0 such that a cube C centered at w and edge 2δ is
contained in V . So the integrals over Qα on which yαi

ă δ are null in the preceding
estimates and hence the upper bound for P rdλsprwq is obtained under the summation of
α such that 2|α| ě

δ

1 ´ r
. When we take the limit of r Ñ 1, we start to take fewer terms

of the convergent series, and therefore, in the limit, the upper bound tends to zero, and
since λ is a positive measure, the result follows.

So we are ready to state and prove our identification between the functions on L2pTnq

with the radial functions.

Theorem 1.3.2. If f P L1pTnq, λ is a measure on Tn which is singular with respect to σ
and u “ P rf ` dλs, then u˚pwq “ limrÑ1 uprwq “ fpwq almost everywhere on Tn.

Proof. Take f P L1pTnq and define Bf pwq “ lim suprÑ1 P rf sprwq ´ lim infrÑ1 P rf sprwq.
If f “ g ` h with g P CpTnq we obtain from Theorem 1.3.1 that P rgs is continuous on Dn

therefore Bg “ 0, so we get

Bf pwq “ Bhpwq
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and in particular, we know that

Bhpwq “ lim sup
rÑ1

P rhsprwq ´ lim inf
rÑ1

P rhsprwq ď| lim sup
rÑ1

P rhsprwq| ` | lim inf
rÑ1

P rhsprwq|

ď 2 sup
0ără1

P r|h|sprwq

So by Lemma 1.3.3 we get that the set tBf ą 2ξu has a upper bound for its measure
given by p140πqn}h}1ξ

´1. We can take }h}1 to be arbitrarily small since the set CpTnq is
dense on L1pTnq, so given ε ą 0, there exists g P CpTnq such that

}f ´ g}1 “ }h}1 ă ε

hence we know that Bf ď 2ξ almost everywhere for every ξ ą 0 and thus Bf “ 0 almost
everywhere which implies that limrÑ1 P rf sprwq exists almost everywhere, then by Theorem
1.3.1 we obtain that this limit is equal to fpwq for almost every w P Tn.

Now remember that a measure τ is said to be concentrated on A if for some set
A P Σ, Σ a sigma-algebra, τpBq “ τpA X Bq for every B P Σ. Choose ε ą 0 and
take λ “ τ ` ν by the Lebesgue’s decomposition theorem for measures, where τ is
concentrated on a compact set K with σpKq “ 0, and }ν} ă ε. So by Lemma 1.3.4 we
get that lim suprÑ1 P rdλsprwq “ lim suprÑ1 P rdνsprwq almost everywhere and therefore
by Lemma 1.3.3 we obtain

σptlim sup
rÑ1

P rdλs ą ξuq “ σptlim sup
rÑ1

P rdνs ą ξuq ď p140πq
nεξ´1

hence lim suprÑ1 P rdλs ď ξ almost everywhere for all ξ ą 0, so we get P rdλs Ñ 0 almost
everywhere.

Hence, we may identify a function f P H2pDnq with a function f˚ P L2pTnq as follow:

f˚
pζq :“ lim

rÑ1´
fprζq

for almost every ζ P Tn, thus we can see H2pDnq as a linear subspace of L2pTnq and, in
particular, H8pDnq of L8pTnq and therefore we can use the inner product structure of
L2pTnq on H2pDnq as follows: Given f , g P H2pDnq:

xf, gy “

ż

Tn

f˚
pζqg˚pζqdσpζq

and of course, the norm is given by:

||f ||
2
2 “

ż

Tn

|f˚
pζq|

2dσpζq.

Since we have this identification, from now on, we will denote f˚ by f to simplify the
notation. We will state a few primary results from general H2pDnq function theory.

Theorem 1.3.3. H8pDnq is a linear subspace of H2pDnq.
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Proof. Let f P H8pDnq, then exists a M ą 0 such that ||f ||8 ď M , therefore:

||f ||
2
2 “ sup

0ără1

ż

Tn

|fprζq|
2dσpζq ď M2 sup

0ără1

ż

Tn

dσpζq “ M2
ă 8

Thus, f P H2pDnq.

Definition 1.3.5. Let α P Dn, α “ pα1, . . . , αnq, with αi P D for i “ 1, ..., n. Then we
define the reproducing kernel of H2pDnq to be:

Kαpz1, ..., znq “

n
ź

i“1

1
1 ´ αizi

.

So by this definition, we get that the reproducing kernel of H2pDnq is the product of
n reproducing kernels of H2pDq. Therefore, we see that its norm is given by the product
of the norm of these n reproducing kernels. The reproducing kernel has the property
that xf,Kαy “ fpαq for all f P H2pDnq and it defines a continuous linear functional. For
completeness, take α P Dn and f P H2pDnq, then we have that

|fpαq| “ |xf,Kαy| ď ||f || ||Kα||

Since both ||f || and ||Kα|| are bounded, in particular, the operator that maps f to
fpαq is continuous.

Theorem 1.3.4. Let tfnunPN P H2pDnq be a sequence of functions, if fn Ñ f in H2pDnq,
then fn Ñ f uniformly on compact subsets of Dn.

Proof. For a fixed α P Dn, we have:

|fnpαq ´ fpαq| “ |xfn ´ f,Kαy| ď ||fn ´ f || ||Kα||

If K is a compact subset of Dn, then exists an M such that ||Kα|| ď M for all ω P K

Hence,

|fnpαq ´ fpαq| ď M ||fn ´ f || for all α P K

Which implies the theorem.

We may use the reproducing kernel, the Cauchy Kernel in the literature, to prove
Cauchy’s Integral Formula for the polydisk.

Theorem 1.3.5. If f is a holomorphic function in an open set Ω Ă Cn such that Dn Ă Ω
and ω0 “ pω1, ..., ωnq P Dn, then

fpω0q “
1

p2πiqn
ż

Tn

fpζq

pζ1 ´ ω1q . . . pζn ´ ωnq
dσpζq
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Proof. A proof for this was provided in the first section but can also be proved by
calculating xf,Kω0y and using the L2pTnq inner product structure.

Definition 1.3.6. Let ϕ P H8pDnq such that |ϕpζq| “ 1 for almost every ζ P Tn, we say
that ϕ is a inner function.

Theorem 1.3.6. If ϕ is not a constant inner function, then |ϕpωq| ă 1 for all ω P Dn.

Proof. If ϕ is not constant then we get that |ϕpzq| ă }ϕ}8 by Theorem 1.2.3. Now we
consider the Poisson integral of ϕ

ϕprζq “

ż

Tn

ϕ˚
pηqP prζ, ηqdσpηq

here, we use the radial function notation to avoid any misconception, so by taking the
modulus on both sides, we get that

|ϕprζq| “

ˇ

ˇ

ˇ

ˇ

ż

Tn

ϕ˚
pηqP prζ, ηqdσpηq

ˇ

ˇ

ˇ

ˇ

ď

ż

Tn

|ϕ˚
pηq|P prζ, ηqdσpηq

ă

ż

Tn

P prζ, ηqdσpηq

“ 1

for all 0 ă r ă 1.

Definition 1.3.7. A function f P H8pDnq is called a generalized inner function if
1{f P L8pTnq.

Remark 1.3.1. Note that every inner function is a generalized inner function. Since if f
is inner, we have that |f | “ 1 for almost every ζ P Tn, hence 1{f P L8pTnq.

Example 1.3.1. Let p P Crz1, . . . , zns be a polynomial such that is zero free in Dn, then
p P H8pDnq and also, we get that 1{p P L8pTnq hence p is a generalized inner function.

1.4 Basic properties of Toeplitz operators
In this section, we will define Toeplitz operators over the Hardy space of the polydisk

and present some useful results. In particular, we will show that our interest shifts as
Toeplitz operators. Every result stated here is also valid for Toeplitz operators over H2pDq;
for some, the proofs are the same.
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Definition 1.4.1. Let P be the orthogonal projection of L2pTnq onto H2pDnq. We define
the Toeplitz operator Tϕ with symbol ϕ P L8pTnq by:

Tϕf :“ P pϕfq

for all f P H2pDnq.

Note that in general, we will interchange the use of H2pDnq and H̃2pDnq to be possible
to perform the product of a function in L8pTnq with a function on H2pDnq.

Lemma 1.4.1. Let ϕ P L8pTnq, then the operator Mϕ defined by Mϕf “ ϕf for every
f P L2pTnq is a bounded linear operator.

Proof. Let f ,g P L2pTnq and λ P C. Hence

Mϕpf ` λgq “ ϕpf ` λgq “ ϕf ` λϕg “ Mϕf ` λMϕg

Therefore, Mϕ is linear.
Now, suppose f P L2pTnq such that }f}2 “ 1 then

||Mϕf ||
2

“

ż

Tn

|ϕf |
2dσ ď

ż

Tn

|ϕ|
2dσ “ ||ϕ||

2
8

Thus, Mϕ is a bounded linear operator.

Proposition 1.4.1. Let ϕ P L8pTnq, then Tϕ is a bounded linear operator over H2pDnq.

Proof. First, we prove that Tϕ is a linear operator. Let ϕ P L8pTnq and let f ,g P H2pDnq

and λ P C.

Tϕpf ` λgq “ P pϕpf ` λgqq “ P pϕf ` λϕgq “ P pϕfq ` λP pϕgq “ Tϕf ` λTϕg

We must use the previous lemma to prove that Tϕ is bounded.

}Tϕf} “ }P pMϕfq} ď }P } }Mϕ} }f} “ }Mϕ} }f}

Therefore, Tϕ is a bounded linear operator.

Proposition 1.4.2. Let ϕ P L8pTnq and Tϕ a Toeplitz operator, then }Tϕ} “ }ϕ}8.

Proof. Based on the previous proposition, we already have an upper bound for the norm;
let’s establish a lower bound. One can show that, for reproducing kernels in H2pDnq we
have:

}Kα}2 “

n
ź

i“1

1
a

1 ´ |αi|2
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where α “ pα1, . . . , αnq P Dn. Take K̃α to be the normalized reproducing kernel. Then, we
obtain:

|xTϕK̃α, K̃αy| ď }TϕK̃α}2}K̃α}2 ď }Tϕ}}K̃α}
2
2 “ }Tϕ}

On the other hand, we have the following:

}Tϕ} ě |xTϕK̃α, K̃αy| “ |xP pϕK̃αq, K̃αy| “ |xϕK̃α, K̃αy| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Tn

n
ź

i“1

1 ´ |αi|
2

|ζi ´ αi|
ϕpζqdσpζq

ˇ

ˇ

ˇ

ˇ

ˇ

“ P rϕspαq.

Now, define α “ rζ with ζ P Tn and 0 ă r ă 1, so by the third assertion in Theorem
1.3.2, follows that }Tϕ} ě |ϕpζq| for almost every ζ P Tn and hence }Tϕ} ě }ϕ}8.

Proposition 1.4.3. Let ϕ, ψ P L8pTnq and λ P C. Then,

Tϕ`λψ “ Tϕ ` λTψ.

In other words, a Toeplitz operator is linear in its symbol.

Proof. In fact, let f P H2pDnq be arbitrary then

Tϕ`λψf “ P ppϕ ` λψqfq “ P pϕf ` λψfq “ P pϕfq ` P pλψfq

“ P pϕfq ` λP pψfq “ Tϕf ` λTψf

Proposition 1.4.4. Let ϕ P L8pTnq and let Tϕ be a Toeplitz operator with symbol ϕ, then
T ˚
ϕ “ Tϕ .

Proof. Let f , g P H2pDnq, then

xTϕf, gy “ xP pϕfq, gy “

ż

Tn

fϕgdσ “ xf, ϕgy “ xf, P pϕgqy

“ xf, Tϕgy

“ xT ˚
ϕ f, gy

Hence, Tϕ “ T ˚
ϕ

Proposition 1.4.5. Let ϕ P L8pTnq. The Toeplitz operator Tϕ is self-adjoint if, and only
if, ϕ is a real-valued function.

Proof. By the previous proposition, we have that Tϕ “ T ˚
ϕ . Now, if Tϕ is self-adjoint, then

Tϕ “ Tϕ if, and only if, ϕ “ ϕ
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Definition 1.4.2. If ϕ P H8pDnq, Tϕ is said to be an analytic Toeplitz operator. Analo-
gously, Tϕ is said to be coanalytic if T ˚

ϕ is analytic. If a Toeplitz operator Tϕ is analytic,
then we have:

Tϕf “ ϕf

for all f P H2pDnq. Therefore, if Tϕ is analytic, then this operator acts as a multiplication
operator in H2pDnq.

Proposition 1.4.6. Let ϕ P H8pDnqzt0u, then RanpT ˚
ϕ q is dense.

Proof. Is easy to see that if Tϕ is analytic, then it is injective, thus kerpTϕq “ t0u, and we
by Theorem A.0.4 we get

RanpT ˚
ϕ q “ kerppT ˚

ϕ q
˚
q

K
“ kerpTϕq

K
“ t0u

K
“ H2

pDn
q

Now, similarly as the characterization in (18), where we know that T P BpH2pDqq is a
Toeplitz operator if and only if T ˚

z TTz “ T , here we have a characterization of all Toeplitz
operators over H2pDnq.

Theorem 1.4.1. (19, Proposition 2.1) Let T P BpH2pDnqq, then T is a Toeplitz operator
if and only if T ˚

ϕTTϕ “ T for every inner function ϕ.

Proof. Set
M “ tϕh : ϕ are inner functions;h P H2

pDn
qu

Note that M is a dense subspace of L2pTnq since we may choose monomials of the form
zm1

1 . . . zmn
n for all m1, . . . ,mn P N0 as the inner functions. Define the following map

Φ : M Ñ C Φpϕhq “ xh, Tϕy

First we assume that T ˚
ϕTTϕ “ T for all inner functions ϕ, we want to show that Φ is

well-defined and linear. In fact, if ϕ1h1 “ ϕ2h2, then

Φpϕ1h1q “ xh1, Tϕ1y “ xh1, T
˚
ϕ2TTϕ2ϕ1y “ xϕ2h1, Tϕ2ϕ1y

“ xϕ1h2, Tϕ1ϕ2y

“ xh2, T
˚
ϕ1TTϕ1ϕ2y

“ xh2, Tϕ2y

“ Φpϕ2h2q

We get that Φ is well-defined. Now, by an analogous argument, Φ is linear, so Φ is a linear
functional, but note that from the definition of Φ we get,

|Φpϕqh| ď }ϕ}}Th} ď }T }}h} “ }T }}ϕh}
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Thus, Φ is a bounded linear functional. Since M is dense in L2pTnq, there exists a unique
ψ P L2pTnq such that

Φpϕhq “ xϕh, ψy

and
|xϕh, ψy| “

ˇ

ˇ

ˇ

ˇ

ż

Tn

ϕψhdσ

ˇ

ˇ

ˇ

ˇ

ď }T }}ϕh} “ }T } }h}

hence, ψ P L8pTnq since ψ is a measurable function and ϕh is a L1pTnq and by the
definition of this operator we get that ψ P pL1pTnqq˚ “ L8pTnq and we obtain

xh, Tϕy “ Φpϕhq “ xϕh, ψy “ xh, ϕψy “ xh, Tψϕy

and we know that the set of all finite linear combinations of inner functions is dense in
H2pDnq, therefore T “ Tψ for some ψ.

Generally, we may give a sharper statement as follows

Theorem 1.4.2. (20, Theorem 3.1) Let T P BpH2pDnqq. Then T is a Toeplitz operator if
and only if T ˚

zj
TTzj

“ T for all j “ 1, . . . , n.

The following result shows us a class of eigenvectors for all analytic Toeplitz operators,
the reproducing kernels.

Proposition 1.4.7. Let ϕ P H8pDnq, Tϕ be a Toeplitz operator and Kα be a reproducing
kernel. Then T ˚

ϕKα “ ϕpαqKα.

Proof. Let f P H2pDnq be arbitrary, then

xf, T ˚
ϕKαy “ xTϕf,Kαy “ ϕpαqfpαq “ xf, ϕpαqKαy

Thus, T ˚
ϕKα “ ϕpαqKα.

Theorem 1.4.3. For ϕ P L8pDnq, the following are equivalent:

1. ϕ “ 0 almost everywhere in Tn.

2. Tϕ is compact.

Proof. Suppose 1. holds, then Tϕ is the null operator which is trivially compact. Now,
suppose that 2. holds then we know by Lemma A.0.1 that ZM “ zm1

1 . . . zmn
n , where

Z “ pz1, ..., znq and M “ pm1, ...,mnq, converges weakly to 0 as |M | “ pm1`¨ ¨ ¨`mnq Ñ 8

in H2pDnq. Therefore, by Lemma A.0.3, we get that }TϕZ
N} Ñ 0. On the other hand, we

have:

}TϕZ
M

}
2
2 “

›

›

›

›

›

P

˜

ÿ

kPZn

ϕ̂pkqζk`M

¸
›

›

›

›

›

2

2

“

›

›

›

›

›

8
ÿ

|k|“´|M |

ϕ̂pkqζk`M

›

›

›

›

›

2

2
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Where ζ P Tn and ϕ̂pkq is the k-th Fourier coefficient of ϕ. Now, by Theorem A.0.5, we
obtain:

›

›

›

›

›

8
ÿ

|k|“´|M |

ϕ̂pkqζk`M

›

›

›

›

›

2

2

“

8
ÿ

|k|“´|M |

|ϕ̂pkq|
2

Now, by taking the limit of |M | Ñ 8, we get the norm of ϕ, which by the previous
argument is equal to 0, then ϕ “ 0 almost everywhere in Tn.

Corollary 1.4.3.1. For every ϕ P L8pTnqzt0u, RanpTϕq is infinite dimensional.

Note that since no Toeplitz operator is compact, we do not have a compact operators
theory to characterize the invariant subspaces. Therefore, all the work toward characteriza-
tion must use a different set of tools; in particular, we may not use Lomonosov’s theorem,
which we will state here for completeness.

Theorem 1.4.4. (21, Theorem 10.20) Let B be a complex Banach space and let T P BpBq,
if there exists an operator S P BpBq that satisfies:

• S is a non-scalar operator.

• S commutes with T .

• S commutes with a non-zero compact operator.

Then, T has a non-trivial invariant subspace.

1.5 Universality
We shall introduce the concept of universal operators, introduced by (22), which will

be a fundamental tool for studying the ISP. The idea of using universal operators is
exchanging the need to show that every bounded linear operator has an invariant subspace
for characterization of the invariant subspaces of a universal operator U . More details
about this will be given in this section. First, we must define our object of interest, the
invariant subspaces.

Definition 1.5.1. Let X be a normed space, T P BpXq, and M Ď X be a subspace. We
say that M is a T -invariant subspace if M is closed and T pMq Ď M . We say that M is
non-trivial if M ‰ X and M ‰ t0u.

Definition 1.5.2. Let B be a Banach space, and U be a bounded linear operator on B.
Then U is said to be universal, in the sense of Rota, for B if for any bounded linear operator
T on B there exists a constant α ‰ 0 and an invariant subspace M for U such that the
restriction U

ˇ

ˇ

M is similar to αT .
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In (23), a sufficient condition was given for an operator U to be universal for a complex
separable infinite dimensional Hilbert space H, which we will call the Caradus criteria.
Throughout the text, a Hilbert space H will always denote a complex separable infinite
dimensional Hilbert space.
The Caradus Criteria. Let H be a Hilbert space and U a bounded linear operator on
H. If U satisfies:

1. kerpUq is infinite dimensional.

2. U is surjective.

Then U is universal for H.

Proof. Let K “ kerpUq, define Ũ :“ U |KK : KK Ñ H. Note that Ũ is bijective because its
domain is KK, and by hypothesis, U is surjective. In fact, one can write H “ K ‘ KK,
define also V “ Ũ´1 : H Ñ KK and we take W : H Ñ K a isometric isomorphism by
the Riesz-Fischer Theorem, since U P BpHq and K is closed subspace of H, therefore a
Hilbert space and in particular, K is infinite dimensional by hypothesis. Hence, with these
notations, we have that:

1. U ˝ V “ IdH.

2. U ˝ W “ 0.

3. kerpW q “ t0u.

4. RanpV q “ KK.

Now, let us check the definition of universality. Let T P BpHq and let α P Czt0u such
that |α|}T }}V } ă 1. Take n “ |α|}T }}V }. Assume

ř8

k“0 α
kV kWT k and note that this

series is absolutely convergent because:

8
ÿ

k“0
}αkV kWT k} ď

8
ÿ

k“0
|α|

k
}V }

k
}W }}T }

k
ď }W }

8
ÿ

k“0
nk ă 8

It is clear that BpHq is a Banach space. Therefore, absolute convergence implies
convergence; then it follows that exists a J P BpHq such that J “

ř8

k“0 α
kV kWT k. One

can see that:

W ` αV JT “ J (1.4)

UJ “ UpW ` αV JT q “ 0 ` αIdHJT “ αJT (1.5)
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In (1.4), is easy to see that:

W ` αV JT “ W ` αV

˜

8
ÿ

k“0
αkV kWT k

¸

T “ W `

8
ÿ

k“0
αk`1V k`1WT k`1

“ J

We need to prove that RanpJq is closed and invariant by U and that J : H Ñ RanpJq

is a linear isomorphism, then equation (1.4) give us the universality of U .

• RanpJq is closed:

Let x̃ P RanpJq, choose pxnq Ă H such that Jpxnq Ñ x̃. Take P : H Ñ K the orthogonal
projection of H onto K. Applying P in the equation (1.4), we get:

PJpxnq “ P pW pxnq ` αV JT pxnqq “ W pxnq

Because W pxnq P K and RanpV q “ KK, therefore it follows that W pxnq Ñ P px̃q. Since
W is isometric isomorphism, we get that xn Ñ x for some x P H and this implies that
Jpxnq Ñ Jpxq and hence x̃ “ Jpxq.

• RanpJq is invariant by U .

By equation (1.5), we have that:

UJpxq “ αJT pxq “ JpαT pxqq

for all x P H. Then follows that RanpJq is invariant by U .

• J : H Ñ RanpJq is a isomorphism.

It is clear that J is surjective and continuous. Now, if Jpxq “ 0 then W pxq`αV JT pxq “

0 which implies that W pxq “ 0. Since W is isometric isomorphism, follows that x “ 0. By
inverse application theorem, we get that J is an isomorphism.

In fact, for an operator U in a Hilbert space H to be universal, the hypothesis of
dim kerpUq “ 8 is necessary.

Remark 1.5.1. Let H be a Hilbert space and U be a universal operator for H. Choose
T P BpHqzt0u such that dimKerpT q “ 8, without loss of generality, suppose T peiq “ 0
for every i P I, where I is a infinite family of index contained in N and penqnPN is a Hilbert
basis for H. By the hypothesis of U being universal, we have

S´1αT “ U |MS
´1

Where α P Czt0u, M is a invariant subspace of U and S : M Ñ H is an isomorphism.
Therefore,
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S´1αT peiq “ U |MS
´1

peiq “ 0

for every i P I. But, since S´1 is a isomorphism, then tS´1peiq : i P Iu is linearly
independent and infinite, hence dim kerpUq “ 8.

One might wonder if every Hilbert space admits a universal operator; in fact, let H be
a Hilbert space and define the space

ℓ2
pHq “

#

x “ pxnqnPN : xn P H , @n P N and
8
ÿ

n“1
}xn}

2
ă 8

+

.

Let us show that ℓ2pHq is a separable Hilbert space. First of all, we define the inner
product in H as follows:

xx, yy “

˜

8
ÿ

n“1
xxn, yny

¸
1
2

(1.6)

where x “ pxnqnPN, y “ pynqnPN P ℓ2pHq. Take peiqiPN to be an orthonormal basis of H, now
by Theorem A.0.2, we need to show that the basis for ℓ2pHq is countable and orthonormal.
Is easy to see that the elements pei,kqi,kPN

ei,k “ p0, . . . , 0, ei
loomoon

k-th coordinate

, 0, . . . q

are a basis of ℓ2pHq from our definition; hence we must show that it is orthonormal and
countable. Countable is clear from our indexes because we know that the cardinality of
our basis is the same as N ˆ N, or even the same as N and thus countable and so to take
under account orthogonality is easy to see that given indexes pi, kq and pj, ℓq

xpei,kqi,kPN, pej,ℓqj,ℓPNy “ δk,ℓ δi,j

where δk,ℓ, δi,j are Kronecker’s deltas, simply because if k ‰ ℓ every coordinate in the
inner product described in equation (1.6) is multiplied by a zero, and if k “ ℓ we have the
original orthogonality relation of H. It is orthonormal because

}pei,kqi,kPN}
2

“ xpei,kqi,kPN, pei,kqi,kPNy “ xei, eiy “ }ei}
2

“ 1

for all i, k P N. Define the operator T : ℓ2pHq Ñ ℓ2pHq by T px1, x2, x3, ...q “ px2, x3, x4, ...q,
note that

}T pxq} “ }px2, x3, x4, . . . q} ď }px1, x2, x3, . . . q} “ }x} (1.7)

So, T is a bounded linear operator. We want to show that T has an infinite dimensional
kernel and is surjective.
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• dim kerT “ 8

Note that kerT “ tpz, 0, 0, 0, . . . q : z P Hu, hence kerT » H and therefore it is
infinite dimensional.

• T is surjective:

Let y “ py1, y2, y3, ...q P H, then y “ T pzq, where z “ p0, y1, y2, y3, ...q P H, thus T is
surjective.

Therefore, by the Caradus criteria, T is universal for H. Now, by Riesz-Fischer theorem,
exists a isometric isomorphism W between H and any other complex separable infinite
dimensional Hilbert space H̃, and hence W ˝ T ˝ W´1 is universal for H̃.

Theorem 1.5.1. (24, Proposition 8.1.2) Let B be an infinite-dimensional complex Banach
space and U P BpBq be a universal operator. Then the following are equivalent:

1. Every T P BpBqzt0u has a non-trivial invariant subspace.

2. Every invariant subspace M by U that is isomorphic to B contains a non-trivial
invariant subspace.

Proof. To see that the first condition implies the second, we see that the restriction of
U to M is similar to some operator T P BpBq with restriction to the subspace M by
the universality hypothesis, but note that since M is isomorphic to B we get that the
restriction of U to M is similar to T on B. The first condition implies that there exists a
non-trivial invariant subspace contained in M . Conversely, since U is universal, we get
that every T P BpBq is similar to U on the restriction to some invariant subspace M . Thus,
T has a non-trivial invariant subspace contained in M .

Now, we will get the following corollary for Hilbert spaces: the connection between
universality for Hilbert spaces and the ISP.

Corollary 1.5.1.1. Let H be a Hilbert space and let U P BpHq be a universal operator,
then the following statements are equivalent:

1. Every T P BpHqzt0u has a non-trivial invariant subspace.

2. Every minimal invariant subspace of U is one-dimensional.

Proof. Every infinite dimensional invariant subspace M for U is isomorphic to H; thus,
it’s not minimal. If M is finite-dimensional, by Jordan canonical form, we get that there
exists a one-dimensional invariant subspace contained in M , which is, in fact, minimal, so
unless it is one-dimensional, it is not minimal
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This theorem gives us the connection between the invariant subspace problem and the
universal operators. Note that by this previous result, we can provide a "simple" approach
to the ISP since we may exchange proving that every operator on BpHq has a non-trivial
to prove that all minimal invariant subspaces of the universal operator are one dimensional.
Hence, we only need to study a specific operator’s invariant subspaces. In Chapter 3, we
will present our main results for universality for Toeplitz operators, which will be our
choice of operators to investigate universality.
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2 Shift invariant subspaces

In this chapter, we will briefly introduce shift-invariant subspaces in the one-dimensional
case as a motivation for what comes in the next chapter in the several variables case. This
chapter is based on (10, 11, 25).

2.1 Beurling’s theorem
Initially, it was an open problem characterizing all the non-trivial invariant subspaces

of ℓ2 under the "shift" operator.

S : ℓ2
Ñ ℓ2 , Spa0, a1, a2, . . . q “ p0, a0, a1, a2, . . . q

S does not have an eigenspace, is easy to see since if there exists a v “ panqnPN0 such
that

Sv “ λv (2.1)

for some λ P Czt0u, then we get λa0 “ 0, since we suppose that λ is non-zero, we obtain
a0 “ 0. Now, we also know that a0 “ λa1 but a0 “ 0, applying the same argument again,
we have a1 “ 0, thus recursively, we get that v “ 0.

We say that M Ă ℓ2 is a shift-invariant subspace if SM Ď M , and by the previous
observation, we know that characterizing the non-trivial invariant subspaces is no trivial
task, so the idea was bringing the problem from ℓ2 to another separable Hilbert space with
more structure, that is a space with a well-developed function theory and well-defined
classes of elements. By Theorem A.0.3, every separable Hilbert space is isometrically
isomorphic to ℓ2; in particular, we have that ℓ2 » H2pDq and in the Hardy space, we have
the following Shift:

Mz : H2
pDq Ñ H2

pDq , pMzfqpzq “ zfpzq

In particular, we know:

Theorem 2.1.1. The operator Mz on H2pDq is unitarily equivalent to the operator S over
ℓ2.

Proof. If T : ℓ2 Ñ H2pDq is the unitary operator given by:

T pa0, a1, a2, . . . q “

8
ÿ

n“0
anz

n. (2.2)

So it suffices to check that TS “ MzT . By simple computation we get that pTSqpanqnPN0 “
ř8

n“0 anz
n`1, and in the other hand pMzT qpanqnPN0 “

ř8

n“0 anz
n`1 for any panqnPN0 P ℓ2,

thus the result follows.
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So, we have an equivalence of characterizing the shift-invariant subspaces on ℓ2 with
the shift-invariant subspaces on H2pDq. In (1), we have a complete characterization of the
non-trivial shift-invariant subspaces as follows:

Lemma 2.1.1. (26, Theorem 3.14) Let θ P H8pDq be a inner function and define
H2pDq a θH2pDq “ H2pDq X pθH2pDqqK. Then dimpH2pDq a θH2pDqq “ n if and only if
θ is of the form

θpzq “

n
ź

j“1

λj ´ z

1 ´ λjz

for λ1, . . . , λn P D. In other words, we have finite dimension if and only if θ is a finite
Blaschke product.

Now we present a simple proof for Beurling’s theorem made in (27):

Theorem 2.1.2. (Beurling) Let M be a closed nontrivial subspace of H2pDq. Then M is
Mz-invariant if and only if M “ ϕH2pDq, where ϕ is an inner function in H2pDq.

Proof. Let M Ă H2pDq be a Mz-invariant subspace then we can define a reproducing
kernel to M in the following manner:

kMλ pzq “ PMkλpzq (2.3)

where λ P D and PM is the orthogonal projection from H2pDq onto M . We get that
p1 ´λzqkMλ pzq is the reproducing kernel of M a zM (See (28, Section 3.2)) and by Lemma
2.1.1 we get that dimpM a zMq “ 1, therefore we get that

p1 ´ λzqkMλ pzq “ ϕpλqϕpzq pλ, z P Dq (2.4)

for a function ϕ P M a zM with }ϕ} “ 1 and hence

|ϕpλq|
2

“ p1 ´ |λ|
2
qkMλ pλq “ p1 ´ |λ|

2
q}PMkλ}

2
ď 1

thus ϕ P H8pDq and note that by (2.4) we know that

PMkλpzq “
ϕpλqϕpzq

1 ´ λz
“ TϕT

˚
ϕ kλpzq

where Tϕ is the analytic Toeplitz operator with symbol ϕ over H2pDq. Note that tkλ : λ P Du

is a total set for H2pDq, so PM “ TϕT
˚
ϕ and then

TϕT
˚
ϕTϕT

˚
ϕ “ TϕT|ϕ|2T

˚
ϕ “ TϕT

˚
ϕ

because since Tϕ is analytic we obtain kerpTϕq “ 0 which implies that T ˚
ϕTϕ “ I that is

equivalent to |ϕpeiθq| “ 1 almost everywhere on T, that is, ϕ is a inner function. The result
follows from the fact that TϕT ˚

ϕ is the projection from H2pDq onto ϕH2pDq. The converse



Chapter 2. Shift Invariant Subspaces 47

is straightforward, we know that M “ ϕH2pDq is always closed when ϕ is a inner function
and is easy to see that

zM “ zϕH2
pDq “ ϕpzH2

pDqq Ă ϕH2
pDq “ M

So, we finally got an answer for all the invariant subspaces of the shift, but we do not
have a general characterization for other operators over ℓ2. But note that in the present
work, we are interested in the Hardy space of the polydisk and one might ask if Beurling’s
theorem has a natural extension to the polydisk, that is, every invariant subspace of
H2pDnq is of the form ϕH2pDnq for some inner function ϕ. The answer here is no, and we
have the following example.

Let rz1 ´ z2s = pz1 ´ z2qH2pD2q. It is widely known in the literature, see (29) for
instance, that rz1 ´ z2s is a invariant subspace of H2pD2q not generated by a inner function.
Let zj, j “ 1, 2 be the action of a shift, let us prove that pz1 ´ z2qH2pD2q is invariant.

zj
“

pz1 ´ z2qH2
pD2

q
‰

Ă z1pzjH
2
pD2

qq ´ z2pzjH
2
pD2

qq

It is clear that H2pD2q is trivially invariant by zj, j “ 1, 2 hence

zj
“

pz1 ´ z2qH2
pD2

q
‰

Ă pz1 ´ z2qH2
pD2

q

We have that pz1 ´ z2qH2pD2q is invariant, thus rz1 ´ z2s is also invariant, but note also
that rz1 ´ z2s is not of the form ϕH2pD2q for any inner function ϕ. Note that we needed
the set to be closed because, according to our definition, invariant subspaces are always
closed.

But this does not mean we do not have a Beurling-type theorem for the polydisk.
This comes from the fact that H2pD2q, or even H2pDnq can be seen as vector-valued
Hardy-Hilbert space as follows:

Let H be Hilbert space, we may define H2pHq as the space of all sequences f “

ph0, h1, . . . q of elements in H of which
ř8

n“0 }hn}2 ă 8 or equivalently, we can see as space
of analytic functions given as:

H2
pHq “ tfpzq “

8
ÿ

n“0
hnz

n : f is analytic and phnqnPN0 is square-summableu (2.5)

Now defining, this space as such, we obtain that H2pHq is a space of square-integrable
functions on T valued at H and via Poisson integral, we may extend f to the disk, and
thus we get the following property:

sup
0ără1

ż

T
}fpreiθq}

2dµ ď 8
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where µ is the normalized Lebesgue measure in T, and hence we have a similar identification
in H2pHq as the one in H2pDq, i.e., we may identify a function defined in the disk to
a function defined in the boundary circle of the disk. Moreover, we may identify the
shift operator in H2pHq with the multiplication by z (Mz). We refer to (21, 30) for an
introduction to vector-valued functions.

Naturally, we may define H2pD2q as H2pH2pDqq. In particular, the Hardy space over
any polydisk can be written recursively as H2pH2pDn´1qq. Now, the last few ingredients
before Beurling’s theorem for vector-valued Hardy space and the next results are found on
(25).

Definition 2.1.1. Let H be a Hilbert space and T P BpHq. We say that A Ă H is a
wandering subspace for T if A K T nA for all n P N.

Note that for a fixed operator T and a wandering subspace A, we may associate an
invariant subspace M in the following manner. Define

M “

8
č

n“0
T nA.

Now, is easy to see that TM “
Ş8

n“1 T
nA and therefore TM K A, so A is the orthogonal

complement of TM inside M , in other words A “ M a TM .

Lemma 2.1.2. If T is an isometry on a Hilbert space H and R “ pTHqK, then
`
Ş8

n“0 T
nR

˘K
“
Ş8

n“0 T
nH.

Proof. Suppose that f P pX8
n“0T

nRq
K, we claim that f P T nH for all n P N0. In fact, for

n “ 0 we get that if f P
`
Ş8

n“0 T
nR

˘K, we get that f P H because
`
Ş8

n“0 T
nR

˘K
Ď H.

Now if f P T nH, then there exists g P H such that f “ T ng. Since, f P pT nRq
K, we

get that T ng K T nR and since T is an isometry follows that xT ng, T nhy “ xg, hy for
any h P R ,i.e., g K R and thus g P TH and finally f “ T ng P T n`1H, so we get
`
Ş8

n“0 T
nR

˘K
Ă
Ş8

n“0 T
nH. Conversely, note that if f P MK so Tf P TMK and if g P M ,

then Tg P TM , so Tf K Tg and in particular, f K g and therefore TMK Ă pTMqK. With
that in mind, we get:

T n`1H “ T npTHq “ T nRK
Ă pT nRq

K

and the result follows.

Note that the previous lemma implies that if T is an isometry on a Hilbert space H
and R “ pTHqK, then

Ş8

n“0 T
nR is a reducing subspace for T and of course this implies

that
Ş8

n“0 T
nR and its orthogonal complement are invariant.

Theorem 2.1.3. Let M be a shift invariant subspace of H2pHq, then there exists a
wandering subspace A such that M “

Ş8

n“0 M
n
z A, where Mz is the multiplication by z on

H2pHq.
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Proof. Write A “ M X pMzMqK. We claim M X
`
Ş8

n“0 M
n
z A

˘K is reducing for Mz. By
Lemma 2.1.2, M X

`
Ş8

n“0 M
n
z A

˘K is equal to
Ş8

n“0 M
n
zM and of course this subspace is

invariant by Mz. In particular,
`
Ş8

n“0 M
n
zM

˘K must also be Mz-invariant and one can see
that

MzA “ MzM X MzpMzMq
K

Ă MzM X pM2
zMq

K
Ă M X MK

“ t0u

since M is invariant by Mz, any reducing subspace must be the zero subspace that implies
the theorem.

So, we produced a wandering space with our invariant subspace, which will be used
later in this section, and here we present a technical lemma.

Lemma 2.1.3. If f, g P H2pHq and if xMn
z f, gy “ 0 for all n P N, then xf, gy is constant

almost everywhere.

Proof. The hypothesis is equivalent to
ş

T z
nxfpzq, gpzqydz “ 0 for all n P N, which means

that the inner product on the integrand must have its Fourier coefficients equal to zero
with possible exception the constant term; therefore we get the result.

Lemma 2.1.4. If A is a wandering subspace for Mz, then dimA ď dim H.

Proof. Let tfiuiPJ be orthonormal basis for A, where J is some index family. Since H2pHq

is separable, J is countable. Now, since A is a wandering subspace, xMn
z fi, fjy ‰ 0 for all

n P N. By Lemma 2.1.3, we get that xfi, fjy is constant almost everywhere and we get
that xfi, fjy “ δij, where δij is the Kronecker’s delta, for almost every z because

ż

T
xfipzq, fjpzqydz “ xfi, fjy “ δij

Finally, up to a measure zero set, there exists at least one z such that xfipzq, fjpzqy “ δij.
This implies that H must contain an orthonormal set with at least the same cardinality of
tfiuiPJ , and the proof is complete.

Definition 2.1.2. Let H be a separable Hilbert space and let U P BpHq, we define the
inflation operator Û on H2pHq as follows:

Û : H2
pHq Ñ H2

pHq, Ûp

8
ÿ

n“0
hnz

n
q “ p

8
ÿ

n“0
pUhnqznq

The map U ÞÑ Û preserves linear operations, products, adjoints, and norms. In
particular, this map is an embedding of BpHq on BpH2pHqq.

If we consider an operator-valued function F : D Ñ BpHq, we may define generalized
inflation F̂ similarly to operators as above, which still preserves linear operations, products,
adjoints, and norms. Still, in this case, it is an embedding of the bounded measurable
H-valued operator algebra into BpH2pHqq.
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Lemma 2.1.5. Let F be an operator-valued function on H and let W be the subspace of
constant functions on H2pHq. If F pzq is an isometry on H for almost every z, then F̂W

is a wandering subspace for Mz.

Proof. If we take fpzq “ F pzqu and gpzq “ F pzqv for some u, v P H we are considering
f, g P F̂W since we may consider the inflations F̂ u and F̂ v as F pzqu and F pzqv respectively
by Definition 2.1.2 and u, v are considered constants as on H2pHq, then

xMn
z f, gy “

ż

T
xznF pzqu, F pzqvydz “

ż

T
znxF pzqu, F pzqvydz “ xu, vy

ż

T
zndz “ 0

for all n P N so we proved that F̂W K Mn
z F̂W and thus F̂W is a wandering subspace for

Mz.

We will use this definition of W throughout this section.

Definition 2.1.3. Let H be a separable Hilbert space and F P BpHq. We say that F is
rigid if a subspace V Ă H exists, such that F is almost everywhere an isometry on V

and null on V K. In particular, we say that F is a rigid Taylor function if F is rigid and
F̂W Ă H2pHq.

From this definition and the previous lemma, we get that if F is a rigid Taylor function,
then F̂W is a wandering subspace of Mz and F̂H2pHq is an Mz-invariant subspace.

Lemma 2.1.6. If A is a wandering subspace for Mz, then a rigid Taylor function exists
such as A “ F̂W .

Proof. By Lemma 2.1.4, we have dimA ď dim H, then there exists a subspace V such
that dim V “ dimA, consider T : H Ñ A such that T maps isometrically V to A and
V K Ă kerpT q. Define F pzqv “ pTvqpzq for every v P H, then F is a measurable operator-
valued function. Now, by definition of T , we get that Tv P A, so xMzTv, Tvy “ 0 for
all n P N since A is a wandering subspace by hypothesis. So Lemma 2.1.3 implies that
}F pzqv} is constant almost everywhere. Thus, F is bounded. Let v P V , then

}v}
2

“ }Tv}
2

“

ż

T
}pTvqpzq}

2dz “

ż

T
}F pzqv}

2dz “ }F pzqv}

so }F pzqv} “ }v} almost everywhere, hence F is an isometry on V . Analogously, if v P V K,
Tv “ 0 and therefore F pzq annihilates V K which proves that F is a partial isometry on V
so F is rigid and by construction of F we get that F̂W Ă H2pHq, since if f P W , then
fpzq “ w almost everywhere for some w P H and we obtain

pF̂ fqpzq “ F pzqv “ pTvqpzq

so F̂W Ă A. Conversely, let g P A, such that g “ Tv for some v P V and if fpzq “ v for all
z, then f P W and gpzq “ pTvqpzq “ pF̂ fqpzq and then A Ă F̂W and proof is finished.
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Now, we show Beurling’s theorem for vector-valued Hardy-Hilbert spaces.

Theorem 2.1.4. If M is a shift-invariant subspace of H2pHq, then there exists a rigid
Taylor function F such that M “ F̂H2pHq.

Proof. By Theorem 2.1.3, there exists a wandering subspace A such that M “
Ş8

n“0 M
n
z A,

now by Lemma 2.1.6, A “ F̂W for F a rigid Taylor function. Note that:

M “

8
č

n“0
Mn

z pF̂W q “ F̂
8
č

n“0
Mn

zW “ F̂H2
pHq

and the proof is finished.

We can summarize and restate Beurling’s theorem as:

Theorem 2.1.5. Let H be a Hilbert space, and let M be a closed non-trivial shift invariant
subspace of H2pHq. Then there exists a Hilbert space K and a function Ψ such that:

1. Ψ is an analytic function in the unit disk with values in BpK,Hq.

2. If z P D then }Ψpzq} ď 1 and }Ψpeiθq} “ 1 almost everywhere.

3. M “ ΨH2pKq, in other words, M consists of the functions g such that

gpzq “ Ψpzqfpzq

Where f P H2pKq.

So we have a possible characterization for all invariant subspaces of H2pDnq; the
problem now is to find a concrete characterization of the spaces K and operator valued
function Ψ of which the theorem will be valid and the ISP will be solved. Note that this is
not such a trivial task and is an open problem nowadays.
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3 Some recent results in universality in
Toeplitz operators

In this chapter, we will introduce our main approach to the ISP: investigating the
properties of universal Toeplitz operators in order to fully characterize their invariant
subspaces. However, a full characterization of all invariant subspaces has not been possible
so far. In the first section, we will discuss some results regarding the disk case, including
examples of symbols, such as the induced Toeplitz operator being universal. Many results
can be seen in (12, 31, 32, 33). In the following section, we will present the primary goal
of this work, which is universality among Toeplitz operators over the polydisk with the
most recent results in the area that can be found on (13, 34, 35).

3.1 Universality in Toeplitz operators over the disk
The idea of using universality simplifies the argument towards a possible proof of the

ISP once we only need to study the invariant subspaces of said operator. In this section,
we will study some classes of symbols that induce a universal Toeplitz operator in the disk
case.

Lemma 3.1.1. If ϕ P H8pDq is inner, then kerT ˚
ϕ “ pϕH2pDqqK.

Proof. Note that RanpTϕq “ ϕH2pDq which is a closed subspace of H2pDq, then by
Theorem A.0.4, we get that pkerT ˚

ϕ qK “ RanpTϕq since both sides are closed, we get that
kerT ˚

ϕ “ pRanpTϕqqK “ pϕH2pDqqK.

Lemma 3.1.2. If ϕ P H8pDq is inner, then T ˚n
z ϕ P pϕH2pDqqK for all n P N.

Proof. We will proceed by induction. For n “ 1, we know that f P pϕH2pDqqK if and only
if xϕg, fy “ 0 for every g P H2pDq. So we want to prove that xT ˚

z ϕ, ϕgy “ 0 for every
g P H2pDq. Thus,

xT ˚
z ϕ, ϕgy “ xϕ, Tzϕgy “ xϕ, zϕgy “

ż

T
zgdµ “ x1, zgy

“ x1, Tzgy

“ xT ˚
z 1, gy

“ xT ˚
z k0, gy

“ x0, gy

“ 0
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Now, suppose that T ˚pn´1q
z ϕ P pϕH2pDqqK for n ´ 1, we want to show that T ˚n

z ϕ P

pϕH2pDqqK, in particular,

xT ˚n
z ϕ, ϕgy “ xT ˚

z T
˚pn´1q
z ϕ, ϕgy “ xT ˚pn´1q

z ϕ, Tzϕgy

“ xT ˚pn´1q
z ϕ, ϕzgy

“ 0

Since by hypothesis T ˚pn´1q
z ϕ P pϕH2pDqqK and ϕzg P ϕH2pDq and therefore the proof is

finished.

Theorem 3.1.1. If ϕ P H8 is inner and not a finite Blaschke product, then T ˚
ϕ is universal.

Proof. The idea is to use the Caradus criteria to prove that T ˚
ϕ is universal. Note that

for any g P H2pDq, then we know that T ˚
ϕϕg “ P pϕϕgq “ P p|ϕ|gq “ g, since |ϕ| “ 1

almost everywhere on T, and thus T ˚
ϕ is surjective. We need to prove that kerT ˚

ϕ is infinite-
dimensional. By the previous lemma, we know that T ˚n

z g P pϕH2pDqqK for all n P N, we
claim that the set tT ˚n

z ϕ : n P Nu is linearly independent. In fact, for a fixed n suppose
that exists constants c1, . . . , cn such that

n
ÿ

j“1
cjT

˚j
z ϕ “ 0

Or we may rewrite the previous relation as T ˚
p ϕ “ 0, where ppzq “ c1z ` ¨ ¨ ¨ ` cnz

n, and
therefore ϕ P kerT ˚

p . By straightforward calculation, we get that kerT ˚
p consists only of a

class of rational functions of the form 1
p1 ´ λjzqk

, where λj are the zeros of p and k varies

over the multiplicty of said zero, so by hypothesis ϕ is not a rational function, follows
that cj “ 0 for all 1 ď j ď n and hence tT ˚j

z ϕ : 1 ď j ď nu is linearly independent for
every n P N, thus kerT ˚

z is infinite-dimensional. By the Caradus criteria, T ˚
z is universal

for H2pDq.

Recently, (31, 32, 33), observed some interesting results for the disk case as follows:

Lemma 3.1.3. If ϕ P H8pDq and there exists ℓ ą 0 such that |ϕpeiθq| ě ℓ almost
everywhere on T, then 1{ϕ P L8pTq and the Toeplitz operator T1{ϕ is the left-inverse of Tϕ.

Proof. Naturally, remember that if ψ1 P L8pTq and ψ2 P H8pDq, we have that for any
f P H2pDq

Tψ1Tψ2f “ Tψ1ψ2f “ P pψ1ψ2fq “ Tψ1ψ2f

Since ϕ by hypothesis is bounded away from zero, i.e., there exists a constant ℓ ą 0
such that |ϕpeiθq| ě ℓ ą 0 then follows that 1{ϕ P L8pTq. Now, since 1{ϕ P L8pTq and
ϕ P H8pDq, we get that

T1{ϕTϕ “ T1{ϕϕ “ T1 “ I

Where I is the identity operator in H2pDq.
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Corollary 3.1.1.1. In the hypothesis of the previous lemma, the Toeplitz operator T ˚
ϕ is

surjective.

Proof. We know that T1{ϕTϕ “ I, but note that

I “ I˚
“ pT1{ϕTϕq

˚
“ T ˚

ϕT
˚
1{ϕ

thus, the result follows.

Now, we want to define a "simple" symbol that gives us a universal symbol for the disk
case. Let Ω “ tz P C : Im z2 ą ´1 and Re z ă 0u. Define the following map:

σ : D Ñ Ω z ÞÑ
´1 ` i
?
z ` 1

Note that σ is a conformal map between D and Ω (see (32) for a complete argument of
this). Now, define

ϕpzq “ eσpzq
´ eσp0q

“ eσpzq
´ e´1`i (3.1)

where we choose the branch of the square root to be the half-plane tz P C : Re z ą 0u

satisfying
?

1 “ 1. Also, in (32) was shown that there exists an ℓ ą 0 such that |ϕpeiθq| ě ℓ

almost everywhere on T so we are going to make use of Lemma 3.1.3 and Corollary 3.1.1.1
to prove that Tϕ is universal for H2pDq.

Theorem 3.1.2. Let ϕ be as defined in (3.1), then Tϕ is universal for H2pDq.

Proof. Since 1{ϕ P L8pTq, by Corollary 3.1.1.1, we get that T ˚
ϕ is surjective, we wish to

prove that T ˚
ϕ has an infinite dimensional kernel. Therefore, the result follows from the

Caradus criteria. Now, let ωn “ ´1 ` i ` 2πni and note that pωnqnPN Ă Ω. Since, σ is a
conformal map, let zn “ σ´1pωnq and consider Kzn the reproducing kernel at zn, then

T ˚
ϕKzn “ ϕpznqKzn “ pe´1`i`2πni ´ e´1`iqKzn “ 0

But note that pKznqnPN is linearly independent set contained in kerT ˚
ϕ , hence kerT ˚

ϕ is
infinite-dimensional, and the result follows from the Caradus criteria.

So we have a concrete example of a universal operator over H2pDq, but note that the
universal operators over the disk are somewhat complicated; thus, our interest goes over to
the polydisk, where we can find more easily universal symbols although the space structure
can be a bit more complicated given that the function theory in several complex variables
can be quite different from the one variable.
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3.2 Universality in Toeplitz operators over the polydisk
We have reached our goal in this current presentation; in this section, we will present

the main results for the polydisk. The main reason to use this space is that we have
concrete examples of universality; in particular, we have that Tz1 , . . . , Tzn are shifts (in the
same sense of the disk case) over the polydisk and the prime example of universal operators
are T ˚

z1 , . . . , T
˚
zn

, in fact we will show that these operators are universal. Moreover, the
Hardy space over the polydisk enables the most profound result in this section, the Ahern
and Clark theorem, crucial to several fresh results in this area.

For simplicity, consider the case of the bidisk, H2pD2q. We may write H2pD2q “

H2pH2pDqq, so we may write the elements of H2pD2q as follows:

H2
pD2

q “

#

fpz, wq “

8
ÿ

n“0
hnpzqwn : phnqnPN0 P H2

pDq and
8
ÿ

n“0
}hnpzq}

2
ă 8

+

and we define Twfpz, wq “ wfpz, wq, an analytic Toeplitz operator, and we get that for
some gpz, wq P H2pD2q

T ˚
wwgpz, wq “ P pwwgpz, wqq “ gpz, wq

where P is the orthogonal projection from L2pT2q onto H2pD2q and noting that ww “ 1
almost everywhere on T2, hence wwgpz, wq P H2pDnq, thus T ˚

w is surjective. We claim that
T ˚
w has infinite dimensional kernel. Note that H2pDq Ă kerT ˚

w since if f P H2pDq, in the
variable z:

T ˚
wf “ P pwfq “ 0.

We may also write the adjoint as:

T ˚
wfpz, wq “

fpz, wq ´ fpz, 0q

w ´ 0 .

hence, by the Caradus criteria, T ˚
w is universal for H2pD2q. And analogously, we get that

T ˚
z is also universal for H2pD2q, and we may extend this argument naturally to the polydisk

via vector-valued factorization of the Hardy space.
Remember that in the one variable case, we defined a subspace M as shift invariant if

zM Ă M , which was our object of interest. Now, over the polydisk, we also want to study
shift-invariant subspaces and our definition here generalizes the previous one as follows.

Definition 3.2.1. Let M Ă H2pDnq be subspace, we say M is a shift invariant subspace
if M is invariant under zi, i.e., ziM Ă M for all i “ 1, . . . , n.

Proposition 3.2.1. The spectrum σpT ˚
zj

q “ D for all j “ 1, ..., n.

Proof. We know from basic functional analysis that }T ˚
zj

} “ }Tzj
} and in particular that

the spectral radii rpT ˚
zj

q ď }T ˚
zj

}. Now, we know that }Tzj
} “ }zj}8 “ 1, hence σpT ˚

zj
q Ă D.
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It is easy to see that σppT ˚
zj

q “ D, but note that the spectrum must be a non-empty
closed subset of C and in this case is also contained in D. One can see that the smallest
closed set that contains D is D. Thus, the proposition follows.

Our interest invariant subspaces are the shift-invariant subspaces, and by Corollary
1.5.1.1, the ISP in H2pDnq resumes to show that every minimal invariant subspace of
H2pDnq is one-dimensional or even, that all maximal invariant subspaces have codimension
one, here minimality and maximality are in the sense of a lattice of invariant subspaces,
so we only need to study the invariant subspaces of one universal operator to solve the
ISP. Still, it has not been possible so far. Here, we will present the approach via Toeplitz
operators of the polydisk using universality. At first glance, Toeplitz operators may look
reasonably simple but still do not have a complete characterization of Toeplitz operator
that is universal for H2pDnq, in general, the adjoint of an analytic Toeplitz operator has
dense range by Proposition 1.4.6 and since the Caradus criteria is the tool used to verify
if an operator is universal, we get that our operator must be closed. However, we know
examples of universal operators that do not have closed range; for instance, take H a
Hilbert space and let U P BpHq be a universal operator and take T P BpHq to be an
arbitrary operator without closed range, then U ‘ T on H ‘ H is universal but does not
have closed range. Although the Caradus criterion gives us sufficient conditions for an
operator to be universal, as seen before, only the infinite-dimensional kernel hypothesis
is necessary; therefore, we do not have all the required conditions such that Toeplitz
operators are universal in the sense of Rota, but we will show some results that imply
universality for Toeplitz operators.

Now, our goal is to show the Ahern and Clark theorem, which is one of the most
important results in this section, that gives a connection between finite codimension and
invariant subspaces of H2pDnq. Still, for this, we need the following results:

Lemma 3.2.1. If M is a invariant subspace of H2pDnq with finite codimension, then M

is contained in invariant subspace M1 such that dimpM1{Mq “ 1.

Proof. Note that H2pDnq “ M‘N , for some finite dimensional subspace N of H2pDnq. Now
note that every p P Crz1, ..., zns determines linear maps Hp : N Ñ M and hp : N Ñ N ,
which are just multiplication operators with respect to the polynomial p, such that
pg “ Hpg ` hpg, if g P N . In particular, we may write:

pqg “ ppHqg ` hqgq “ HpHqg ` hpHqg ` hpHqg ` hphqg

“ pHpHqg ` hpHqgq ` pHphqgq ` hphqg

“ ppHqg ` Hphqgq ` hqhqg
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where pHqg ` Hphqg P M since by hypothesis M is invariant, also note that since
pq P Crz1 . . . , zns we get that

pqg “ Hpqg ` hpqg (3.2)

where Hpqg P M and hpqg P N and by comparison with the previous characterization we
obtain that hpq “ hphq since H2pDnq “ M ‘N by hypothesis. In particular, we know that
hpq “ hqp and thus thpu is a collection of commuting linear operators on N . Since thpu

is a commuting collection and N is finite-dimensional, there exists an f P N that is a
common eigenvector for all hp. Let λp be the eigenvalue of f , then pf ´ λpf P M for every
p P Crz1, ..., zns because:

pf ´ λpf “ Hpf ` hpf ´ λpf “ Hpf

Let M1 “ M ‘ rf s, where rf s is the subspace generated by f and thus M1 has the desired
properties, since pf P M1 for every p P Crz1, ..., zns.

Theorem 3.2.1. Suppose M is an invariant subspace of H2pDnq, with codimension k ă 8

and let R “ Crz1, ..., zns be the ring of complex polynomials in n variables. Then RXM is
an ideal in R such that:

1. R X M is dense in M .

2. dimpR{pR X Mqq “ k.

3. The set of common zeros in Cn of the members of R X M is finite and lies in Dn

Conversely, if I is an ideal in R whose common zeros form a finite subset VI of Dn, and if
M is the closure of I in H2pDnq, then M is a finite codimensional invariant subspace of
H2pDnq and I “ R X M .

Proof. It is easy to see that M XR is an ideal since if f P M XR, for every p P R, we get
that f ¨ p P R because f ¨ p is again a polynomial and since M is invariant, f ¨ p belongs to
M , hence f ¨ p P M X R.

Suppose that k “ 0, follows that M “ H2pDnq and therefore R X M “ R. We will
proceed by induction on k. Assume that k ą 0 and that the first part of the theorem
holds for all invariant subspaces with codimension ď k ´ 1; for this we may choose M1 as
in Lemma 3.2.1 so that M Ă M1 and dimpM1{Mq “ 1 and by our induction hypothesis
follows that the conditions 1, 2 and 3 hold for M1 since M1 has codimension k ´ 1.

Now, since M is closed and condition 1 holds for M1, there exists a q P R X M1 such
that q R M and, by Proposition A.0.1 there exists a linear functional φ such that φpqq “ 1
and φ|M “ 0. If p P R X M1, then p ´ φppqq P M since if p P M then φppq “ 0 and if
p R M the preceding expression will be ensured to be in M since we are taking terms that
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have a linear combination with Q that does not belong in M and thus RXM1 is generated
by R X M and q, so the second condition is proved for subspaces with codimension k.

In order to prove the first condition for M , by our induction hypothesis on M1, if f P M

(therefore also in M1), we get that f “ limnPN pn for some sequence ppnqnPN P R XM1 and
therefore pn ´ φppnqq Ñ f , since φppnq Ñ 0 because by hypothesis pn Ñ f P M . We know
that pn ´ φppnqq P M for all n P N; hence, the condition 1 is proved for M .

Let ω P Cn be a common zero of all polynomials in M . Define the evaluation linear
functional γω such that γωppq “ ppωq, so γω annihilates R X M since ω is a common zero
on R X M . Now since R X M has codimension 1 in R X M1, so there exists a constant c
such that ppωq “ cφppq, so we get that γω is continuous in R X M1 in the usual topology
of H2pDnq. Suppose that ω does not lie in Dn, then at least one of the coordinates of
ω, say ωi, has the property that |ωi| ě 1, so by our induction hypothesis there exists a
q0 P R X M1 such that q0pωq “ 1 and if we define

ppzq “
1
2p1 `

ωizi
|ωi|

q (3.3)

For z “ pz1, ..., znq P Cn. It is straightforward that pmQ0 P R X M1 for m P N, and in
particular }pmQ0}2 Ñ 0 as m Ñ 8, but pmQ0pωq does not converge to zero. Therefore, ω
must lie in Dn by continuity.

Now, any set of evaluation maps at distinct points is linearly independent on R; hence,
by condition 2, the cardinality of this set must be at most k. This set annihilates R X M ,
which concludes the proof of condition 3.

Conversely, assume that I is an ideal of R with VI a finite subset of common zeros of I
in Dn and M is the closure of I in H2pDnq. Then dimpH2pDnq{Mq ď dimpR{Iq since R is
dense in H2pDnq, we get that M is a finite codimension invariant subspace. Now, we can
see that I Ă R XM because M “ I by hypothesis and of course R X M “ I in H2pDnq,
so by Lemma A.0.2, is enough to prove that every linear functional that annihilates I is
continuous.

Now, since I is the finite intersection of primary ideals (we say that I is a primary ideal
if xy P I ùñ either x P I or yn P I for some n ą 0) for each point of VI , there exists an
integer such that the ideal I contains an ideal J of R and J is the ideal of all polynomials
with zeros of order greater or equal to m at every point of VI , so the linear functionals on R
that annihilates J are a linear combination of finitely many partial derivatives, evaluated
at points of VI , and these are continuous, since VI Ă Dn, thus the proof is complete.

This result was first proved in (36) using several arguments involving algebraic geome-
try, but this proof follows the version done in (13), which is more related to functional
analysis. Usually, this is known as the Ahern and Clark theorem, but in this work, we
refer to the following corollary as the Ahern and Clark Theorem:
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Ahern and Clark Theorem: If f1, ..., fk P H2pDnq with k ă n, then the invariant
subspace M generated by f1, ..., fk is either all H2pDnq or MK is infinite dimensional.

This is one of the deepest results about invariant subspaces over the polydisk, and it
allows us to state some strong results about universality and invariant subspaces.

Theorem 3.2.2. Let ϕ P H8pDnq, then ϕH2pDnq is a invariant subspace of H2pDnq if
and only if ϕ is generalized inner function.

Proof. Let Tϕ be the Toeplitz operator with the symbol ϕ. Suppose that ϕH2pDnq is
invariant. Since kerTϕ “ t0u and RanTϕ is closed, we get that Tϕ is bounded below and
therefore exists an δ ą 0 such that |ϕ| ě δ almost everywhere on Tn. Suppose that σptζ P

Tn : |ϕpζq| ă δuq ą 0, then there exists a δ0 P p0, δq such that σptζ P Tn : |ϕpζq| ă δ0uq ą 0.
Fixing such δ0 and let E “ tζ P Tn : |ϕpζq| ă δ0u, we will construct a sequence of functions
pfnqnPN Ă CpTnq such that 0 ă fn ď 1 and limnÑ8 fn “ χE almost everywhere on Tn. By
(13, Theorem 3.5.3), for each n P N, there exists gn P H8pDnq such that |gn| “ fn almost
everywhere on Tn. Thus, we get:

δ2
ż

Tn

|gn|
2dσ ď

ż

Tn

|ϕ|
2
|gn|

2dσ

for all n P N. Now, applying Lebesgue-dominated convergence, we obtain:

δ2σpEq ď

ż

E

|ϕ|
2dσ ď δ2

0σpEq ă δ2σpEq

A contradiction. Therefore |ϕ| ě δ almost everywhere on Tn and hence 1{ϕ P L8pTnq

Conversely, suppose ϕ is a generalized inner function. It is straightforward that ϕH2pDnq

is invariant, so we must show that ϕH2pDnq is closed. Here suffices to show that Tϕ is
bounded below by Theorem A.0.7. In particular,

}g}2 “ }1{ϕ ¨ ϕg}2 ď }1{ϕ}8 ¨ }ϕg}2 “ }1{ϕ}8 ¨ }Tϕg}2

Thus, Tϕ is bounded below, and the proof is finished.

This result by (37) in some sense found a similar characterization to Beurling’s in
H2pDnq but note that it is not a complete characterization of the invariant subspaces of
H2pDnq, since we already showed an invariant subspace not generated by a generalized
inner function. For this following result, we say that rϕs is the smallest invariant subspace
that contains ϕ in the sense that rϕs “ tT k1

z1 ¨ ¨ ¨T kn
zn
ϕ : pk1, . . . , knq P N0u, in other words,

the closed orbits via our shifts.

Theorem 3.2.3. (34, Teorema 4.1.19) Let ϕ P H8pDnq be a generalized inner function.
Then Tϕ is invertible or T ˚

ϕ is universal for H2pDnq.
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Proof. Since 1{ϕ P L8pTnq, by the previous theorem we know that RanpTϕq is closed, then
by Theorem A.0.4, we get that RanpT ˚

ϕ q is also closed and by Proposition 1.4.6 we know
that RanpT ˚

ϕ q is dense, therefore T ˚
ϕ is surjective. Now, note that rϕs is smallest subspace

that contains ϕ and that ϕH2pDnq Ď rϕs, thus follows RanpTϕq “ rϕs. So, by the Ahern
and Clark theorem, we get the following dichotomy:

• rϕs “ H2pDnq

• codimprϕsq “ 8

in otherwords, either Tϕ is surjective or RanpTϕq has infinite codimension. The first will
imply invertibility since ϕ P H8pDnq implies injectivity, and the second implies from
Theorem A.0.4 that kerpT ˚

ϕ q is infinite dimensional and thus by the Caradus criteria, T ˚
ϕ

is universal.

Corollary 3.2.3.1. Let ϕ P H8pDnq be a non-constant inner function, then T ˚
ϕ is universal.

Proof. By Proposition 1.4.2, we have that }Tϕ} “ }ϕ}ϕ “ 1, and hence Tϕ is an isometry.
Suppose that Tϕ is invertible, in particular, for any f, g P H2pDnq:

xTϕf, Tϕgy “

ż

Tn

ϕfϕgdσ “

ż

Tn

fgdσ “ xf, gy

So Tϕ is in fact unitary, thus T ˚
ϕTϕ “ TϕT

˚
ϕ “ I, hence ϕ must be a constant, which is a

contradiction. Therefore, by the previous theorem, T ˚
ϕ is universal for H2pDnq.

Note that by the previous result, we get again that the adjoint of our shifts are universal.

Corollary 3.2.3.2. The Toeplitz operators T ˚
z1 , ..., T

˚
zn

are universal for H2pDnq.

Corollary 3.2.3.3. (34, Corolário 4.1.21) Let p P Crz1, . . . , zns such that p has zeros in
Dn and is zero free in Tn, then T ˚

p is universal for H2pDnq.

Proof. By hypothesis, p is a generalized inner function. Since it has zeros belong in the
polydisk, there is ω P Dn such that ppωq “ 0. Now, by Proposition 1.4.7, we know that
T ˚
pKω “ ppωqKω for some ω P Dn, so we get that if ω is a zero of p, then Kω P kerpT ˚

p q

and since the set of zeros of p is infinite we get that kerpT ˚
p q is infinite dimensional and

therefore by Caradus criteria, T ˚
p is universal.

Lemma 3.2.2. Let T be a bounded linear operator in a Hilbert space H. Then are
equivalent:

1. T is left-invertible.

2. T ˚ is surjective.

3. T is injective and has a closed range.
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Proof. If T is left-invertible, there exists S P BpHq such that ST “ IH. By adjoint
properties, we get that T ˚S˚ “ I˚

H “ IH and thus T ˚ is surjective, hence condition 1
implies condition 2. Now, by Theorem A.0.6 condition 2 and condition 3 are equivalent. Now,
if T is injective and has a closed range, then T pHq is a Hilbert space and T : H Ñ T pHq

is bijective, so by the open mapping theorem there exists T´1 : T pHq Ñ H, hence T is
left-invertible and therefore condition 3 implies condition 1, so the proof is complete.

Proposition 3.2.2. Let Tϕ be a analytic Toeplitz operator in H2pDnq. Then Tϕ is left-
invertible if, and only if, ϕ is invertible in L8pTnq.

Proof. If ϕ is invertible in L8pTnq, then T1{ϕ is a Toeplitz operator, hence

T 1
ϕ
Tϕf “ T 1

ϕ
ϕf “ P p

1
ϕ
ϕfq “ P pfq “ f

for all f P H2pDnq, therefore Tϕ is left-invertible. Conversely, by the Lemma 3.2.2, if Tϕ is
left-invertible, its range is closed. Then E “ ϕH2pDnq is closed and satisfies ziE Ă E for
all i “ 1, ..., n and this implies that E is a Shift invariant subspace, thus ϕ is invertible in
L8pTnq by Theorem 3.2.3.

Theorem 3.2.4. Let ϕ P H8pDnq. Then T ˚
ϕ is surjective and dim kerpT ˚

ϕ q “ 8 if, and
only if, ϕ is invertible in L8pTnq but not in H8pDnq.

Proof. Suppose that T ˚
ϕ is surjective and has an infinite-dimensional kernel, then by Lemma

3.2.2, it follows that Tϕ is left-invertible and by the Proposition 3.2.2 it follows that ϕ
is invertible. By Theorem A.0.4, we know that ϕH2pDnqK “ kerpT ˚

ϕ q, thus it has infinite
codimension, moreover we obtain ϕH2pDnq ‰ H2pDnq, so 1{ϕ R H8pDnq. Conversely,
suppose that ϕ is invertible in L8pTnq but not in H8pDnq then again by the Proposition
3.2.2, we get that Tϕ is left-invertible, and then by the previous lemma we have that
T ˚
ϕ is surjective. Now, since 1{ϕ R H8pDnq, we get that H2pDnq ‰ ϕH2pDnq and hence

it is a non-trivial subspace of H2pDnq, so by the Ahern-Clark theorem we obtain that
ϕH2pDnqK is infinite dimensional, since T ˚

ϕ is surjective, by Theorem A.0.4, follows that
kerpT ˚

ϕ q “ ϕH2pDnqK is infinite dimensional as desired.

Corollary 3.2.4.1. Let Tϕ be a left-invertible analytic Toeplitz operator in H2pDnq. Then
either Tϕ is invertible or T ˚

ϕ is universal.
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APPENDIX A – Functional Analysis

Lemma A.0.1. (Riemann-Lebesgue) Given a function f P L1pTnq, we have that |f̂pmq| Ñ

0 as |m| Ñ 8.

Proof. See (38, Proposition 3.3.1)

Proposition A.0.1. Let E be a normed space, M be a closed subspace of E, x0 P EzM

and d “ dpx0,Mq. There exist a φ P E˚ such that }φ} “ 1, φpx0q “ d and φpxq “ 0 for
all x P M .

Proof. See (39, Proposição 3.3.1)

Lemma A.0.2. Let E be a Banach space and let F Ă E be a subspace such that F ‰ E.
Then there exists ψ P E˚, ψ ‰ 0, such that

ψpxq “ 0 @x P F

Proof. See (40, Corollary 1.8).

Theorem A.0.1. Let X be a compact Hausdorff space. If U is a closed self-adjoint
subalgebra of CpXq which separates points of X and contains the constant function 1, then
U “ CpXq.

Proof. See (41, Theorem 2.40).

Lemma A.0.3. Let E, F be normed spaces and T P BpE,F q. If pxnqn P E converges
weakly to x P E and T is compact, then T pxnq Ñ T pxq.

Proof. See (39, Proposição 7.2.8)

Theorem A.0.2. A Hilbert space H is separable if and only if it has a countable orthonor-
mal basis.

Proof. See (39, Teorema 5.4.3)

Theorem A.0.3. Every separable Hilbert space H is isometrically isomorphic to ℓ2.

Proof. See (39, Teorema 5.4.4)

Theorem A.0.4. Let E,F be Banach spaces and T : E Ñ F be a bounded linear operator.
The following are equivalent:

• RanpT q is closed.

• RanpT ˚q is closed.
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• RanpT q “ kerpT ˚qK.

• RanpT ˚q “ kerpT qK.

Proof. See (40, Theorem 2.19)

Theorem A.0.5. Let f P L2pTnq, then

}f}
2
L2 “

ÿ

mPZn

|f̂pmq|
2 (A.1)

Where m “ pm1, . . . ,mnq P Zn a multi-index and f̂ the Fourier transform of f .

Proof. See (38, Proposition 3.2.7).

Theorem A.0.6. Let X, Y be Banach spaces and T P BpX, Y q. Then are equivalent:

• T is surjective

• T ˚ is injective and has closed range.

Proof. See (42, Theorem 4.15)

Theorem A.0.7. Let X, Y be Banach spaces and T P BpX, Y q. T is bounded below if and
only if T is injective and has closed range.

Proof. See (21, Theorem 2.5)
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