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Resumo

O câncer de mama é o tipo de câncer de maior incidência e o maior responsável pela mortali-
dade entre as mulheres em todo o mundo, sendo a detecção precoce importante na redução do
índice de mortalidade desta doença. As modalidades de diagnóstico por imagem empregadas
no rastreamento do câncer de mama utilizam radiação ionizante, logo estudos de dosimetria são
essenciais para estimativa de risco e controle de qualidade, devido a elevada radiossensibilidade
do tecido glandular presente na mama. Este trabalho tem como objetivo principal a análise
detalhada da influência de parâmetros físicos e geométricos na dosimetria em imageamento da
mama por raios X por simulação Monte Carlo (MC), desde a escala macroscópica com a dose
glandular média até a escala microscópica, com a distribuição da energia específica em células.
O impacto da escolha de seções de choque para o efeito fotoelétrico e seu efeito em dosimetria
em mamografia nas simulações MC foi analisado e os resultados indicaram que pode haver, em
alguns casos, uma diferença significativa nos valores das grandezas dosimétricas calculadas,
especialmente para baixas energias, da ordem de aproximadamente 2%. A aplicação de técni-
cas de aprendizado de máquina, mais especificamente redes neurais, foi proposta para o cálculo
da dose glandular normalizada em mamografia, com um erro da ordem da incerteza estatística
dos resultados da simulação, podendo ser uma técnica complementar a métodos tradicional-
mente utilizados, como tabelas e equações paramétricas, especificamente quando uma ampla
quantidade de parâmetros é considerada. Outra aplicação de aprendizado de máquina, neste
caso aprendizado profundo, foi analisada para a estimativa da densidade mamária em imagens
de mamografia simuladas para phantoms gerados computacionalmente, e uma possível apli-
cação para dosimetria foi analisada. O código MC-GPU, desenvolvido para simulações MC
em unidades de processamento gráfico, foi validado em comparação com outros códigos MC
para diversas técnicas de imageamento da mama. Adicionalmente, o código foi adaptado para
gerar arquivos de espaço de fase, possibilitando simulações em nível multiescala. Com essa
adaptação, foi realizado um estudo de dosimetria em multiescala para as diversas técnicas de
imageamento e comparou-se a distribuição da dose em tecido glandular no interior da mama,
assim como a distribuição da energia específica depositada no núcleo e citoplasma celulares.
Em conclusão, este trabalho abordou diferentes tópicos em dosimetria da mama, incluindo um
estudo da influência de diversos parâmetros na estimativa da dose em escala macroscópica, e
a incerteza sistemática resultante da simulação MC. Adicionalmente, mostrou-se que o uso de
técnicas de aprendizado de máquina para dosimetria da mama é promissor para a estimativa da
dose glandular média e densidade mamária. Finalmente, foi mostrado que simulações em nível
multiescala são capazes de realizar estudos mais completos da deposição de energia na mama.
Palavras-chave: Mamas - Radiografia; Método de Monte Carlo; Aprendizado de máquina;
Aprendizado profundo; Radiação - Dosimetria.



Abstract

Breast cancer is the type of cancer with the highest incidence and responsible for the highest
mortality among women around the world, being the early detection important for reducing the
mortality rate of this disease. The diagnostic imaging modalities employed in breast cancer
screening use ionizing radiation, thus dosimetry studies are essential for risk assessment and
quality control, due to the high radiosensitivity of glandular tissue present in the breast. The
main objective of this work is a detailed analysis of the influence of physical and geometri-
cal parameters in x-ray breast imaging dosimetry by Monte Carlo (MC) simulations, from the
macroscopic scales, with the mean glandular dose, to the microscopic scale with the specific
energy distribution in cells. The impact of the photoelectric cross-sections on mammography
dosimetry in MC simulation was analyzed and the results indicate that it could have, in some
cases, a significant difference in the calculated dosimetric quantities values, especially for low
energies, being in the order of approximately 2% for a mammography spectrum. The applica-
tion of machine learning techniques, more specifically neural networks, was proposed for nor-
malized glandular dose calculation in mammography, with errors in the order of the statistical
uncertainties from the simulation results, which could be a complementary technique to tradi-
tional used methods, such as tables and parametric equations, specifically when a large number
of parameters is considered. Another machine learning application, in this case deep learning,
was analyzed for breast density estimation in simulated mammography images for computer
generated phantoms, and a possible dosimetry application was analyzed. The MC-GPU code,
developed for MC simulations in graphics processing units, was validated in comparison with
other MC codes for different breast imaging techniques. In addition, the code was adapted to
generate phase space files, allowing multiscale simulations. With this adaptation, a multiscale
dosimetry study was performed for different breast imaging modalities and the dose distribu-
tion in glandular tissue inside the breast was compared, along with the specific energy behav-
ior inside the cell nucleus and cytoplasm. In conclusion, this work addressed distinct breast
dosimetry topics, including a study about the influence of a plethora of parameters in the dose
estimation at macroscopic scales, and the systematic uncertainty obtained from MC simulation.
Additionally, it was shown that the use of machine learning techniques for breast dosimetry is
promising for mean glandular dose and breast density estimation. Finally, it was shown that
multiscale simulations are capable of producing more complete studies about energy deposition
in the breast.
Keywords: Breast - Radiography; Monte Carlo method; Machine learning; Deep learning;
Radiation dosimetry
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Chapter 1

Introduction

1.1 Breast cancer and breast imaging

Breast cancer is the most common type of cancer among women around the world,
and it is also responsible for the highest mortality rate in the female population [1, 2]. In Brazil,
it was estimated that 59700 new female breast cancer cases occurred in 2019 [3].

Evidences have shown that early diagnosis, combined with effective treatment [4]
and screening programs [5], are responsible for the decline in breast cancer mortality observed
in the past decades. However, while the early diagnosis is focused on symptomatic patients,
screening programs target an entire population to detect asymptomatic, very early-stage can-
cers [4, 6]. Mammography is currently the main, and depending on the country the only, imag-
ing modality employed in breast cancer screening programs. As an example, in Brazil, the Min-
istry of Health recommends that women from 50 to 69 years undergo mammography screening
every two years [7]. Therefore, a large population is submitted periodically to mammography
examinations. Over 4.6 million mammography examinations were performed in Brazil through
public health care in 2018 [3].

Digital mammography is an imaging modality that uses low-energy x-rays (typ-
ically with an average energy ranging from approximately 16 to 20 keV) and high spatial-
resolution digital detectors (with pixel size in the order of 50 to 100 µm) [8]. Photons, produced
by an x-ray tube, exit from an aperture which is collimated towards the detector. The breast
is located a few centimeters above the detector, and is compressed limiting unwanted patient
movement during the image acquisition. Moreover, the compression reduces tissue superpo-
sition and scattering, providing a better image quality [9]. As the photon travels through the
breast tissues, it can be absorbed, scattered or transmitted without interactions. In mammogra-
phy, the scattered photons carry no usable information and are often removed using an antiscat-
ter grid [10]. Since the breast tissues present distinct attenuation coefficients, dictated by their
respective elemental compositions and densities, the probability of photon transmission is de-
pendent on the distance traveled in each tissue. The photons, transmitted through the breast and
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reaching the detector, have a high probability of interacting and transferring most (or totally)
of their energy to secondary particles (i.e. electrons) due to the detector material composition
(usually elements of high atomic number are employed). Additional processes are responsi-
ble for converting this transferred energy directly or indirectly, considering digital radiography
(DR) and computed radiology (CR) detectors, to a digital signal for subsequent processing, and
forming a digital image [8].

Despite its excellent spatial resolution, digital mammography is known to present
lower sensitivity for dense breasts [11] due to low contrast between malignant and healthy
tissues. In addition, the generated images are two-dimensional (2D) projections of a three-
dimensional (3D) breast, and tissue superposition could be a limitation to accurately detect
lesions [12]. Digital breast tomosynthesis (DBT) is an x-ray breast imaging modality with a
geometry similar to mammography, but in this case, the tube rotates in a limited angular range
(from an interval varying from 15 to 50 degrees) and a series of 2D projections are acquired.
Afterwards, the projections are combined to reconstruct a pseudo 3D image of the breast [12].
Due to its advantages, there is an ongoing interest in using DBT as a breast cancer screening
tool [13, 14]. Another x-ray imaging technique of the breast is the contrast enhanced digital
mammography (CEDM). This technique uses a contrast agent (a medium that contains iodine)
that is injected in the patient to enhance image contrast [15]. The images are acquired using
the dual-energy mode or the temporal subtraction mode [15]. CEDM was tested as a screening
modality for women with high risk of developing breast cancer being superior compared to
conventional digital mammography [16].

The previously cited imaging modalities provide 2D or pseudo-3D images of the
breast, and consequently, lack a true 3D spatial information. Dedicated breast CT (DBCT) on
the other hand, is an imaging technique capable of producing real 3D image reconstructions of
breast tissues, offering a superior contrast compared to digital mammography and DBT [17]. In
addition, in DBCT the breast is pendant and uncompressed. The images generated with DBCT
have allowed studies of the breast anatomy, such as the breast adipose and glandular fraction
composition [18], breast volume [19] and skin thickness [20, 21]. Additionally, there is the
possibility to employ a contrast agent in DBCT to generate 4D breast CT images [22].

1.2 Breast dosimetry and Monte Carlo simulation

The Monte Carlo (MC) method is a well-established application to simulate stochas-
tic processes using random sampling [23]. MC simulations have being employed to model the
process of radiation transport through matter, including photons, electrons, and positrons from
a few eV up to GeV [24, 25]. X-ray breast imaging simulations with MC is a common topic
in the literature, covering dosimetry [26–30] and image quality [31–33], considering one or
both aspects simultaneously. In particular, breast dosimetry is an important topic since ionizing
radiation (x-rays) is used in all imaging techniques mentioned in section 1.1, and the breast
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is a radiosensitive organ, having one of the highest tissue weighting factor values defined by
the International Commission on Radiological Protection (ICRP) among other human body tis-
sues [34]. Additionally, since mammography is employed in screening programs, women are
exposed to ionizing radiation several times during their lifetime, contributing to the importance
of dosimetry studies of x-ray breast imaging and risk assessment [35, 36].

The evolution of breast dosimetry spans decades and is explained with details in the
literature [36]. The current paradigm is focused on the glandular tissue, because it corresponds
to the most radiosensitive tissue in the breast. A common quantity employed in breast dosimetry
is the mean glandular dose (MGD), which is defined as the ratio between energy absorbed in
glandular tissue and its mass. However, it is not possible to obtain the MGD directly, and
to circumvent this limitation, conversion factors are employed. These conversion factors, often
named Normalized Glandular Dose (DgN), are in most cases obtained with MC simulations [26,
27, 29, 30, 36–38]. Briefly explaining, the MGD is calculated by multiplying the measured air
kerma by the adequate DgN, since this conversion factor is dependent on a series of parameters
including the breast thickness and composition, x-ray beam quality and geometry of acquisition.

Since the DgN values are obtained from MC simulations, they are directly affected
by the computational modeling of this problem (e.g. geometry and physics descriptions). In
addition, some parameters are unknown and assumptions must be made, or some approxima-
tions and simplifications are necessary due to the computational restraints. For example, the
tissue layer that surrounds the breast was previously modeled as a 5 mm thick adipose tissue
layer [30] or a 4 mm thick skin [26]. However, with the development of DBCT, more recent
studies indicated that, in reality, the shielding layer was thinner, being approximately 1.45 mm
skin [20]. Another topic is breast composition and the fraction of glandular tissue. In the past,
a standard breast model of a homogeneous mixture of 50% glandular tissue and 50% adipose
tissue, by mass, was considered in dosimetry studies. Nowadays, recent findings indicate that
the proportion of glandular tissue is considerably lower than the previous standard model [18],
being on average, closer to 20%. Although the homogeneous tissue approximation is acceptable
in some scenarios [36], it does not reflect the heterogeneous distribution found in real breasts.
Heterogeneous breast models, some built from real breasts using DBCT data, presented sys-
tematically lower MGD values compared to homogeneous models in the order of 30% [39, 40].
Thus, currently there is a general interest in studying more realistic breast models for breast
dosimetry, but the generation of these models is not trivial. To facilitate the implementation
of heterogeneous models, a possibility is to sample the glandular distribution inside the breast
from fitted equations obtained from a large sample of real breasts [41, 42]. Another approach is
to generate anthropomorphic breast phantoms with computer algorithms [43].

Despite the importance of the MGD in breast dosimetry, this quantity does not take
into account the dose distribution inside the breast. The glandular dose distribution profile can
vary significantly across modalities [44], mainly due to geometry differences and x-ray beam
energy. Sechopoulos et al. [45] have shown that the glandular dose in mammography could
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vary from approximately 0.15 to 4 times the MGD, while for DBCT it varied from 0.65 to 1.4
times the MGD. Multiscale Monte Carlo simulations could bring new findings in breast dosime-
try, since it provides information about the energy deposition at distinct length scales, from the
breast as a whole (MGD), the glandular dose distribution and the specific energy distribution
in cells. Oliver and Thomson have shown that, besides the variation found in the glandular
dose distribution in mammography, there is also the specific energy distribution for the nuclei
in cells, whose mean value tends to be higher than the respective scored glandular dose [46].
In addition, the effects of the damage in cells due to exposure of ionizing radiation in mam-
mography examination was explored in the literature [47]. Considering the variations observed
in the energy deposition inside the breast, multiscale dosimetry studies could bring additional
information to better understand the relation between the energy deposition at different scales,
and establish microscopic dose levels and the respective correlations with risk.

1.3 Machine learning and breast imaging

Certain problems are difficult, or extremely time consuming, to solve using a specif-
ically tailored algorithm for that purpose, for example, image classification and segmentation
tasks, and text translation. Instead, it is advantageous to actually use machine learning (ML) al-
gorithms that are capable of learning how to solve the desired task by providing examples [48].
However, some machine learning models usually require manually feature preparation and ex-
traction. Deep learning (DL), on the other hand, is a paradigm of machine learning algorithms,
composed of many layers of artificial neural networks, capable of extracting and processing
abstract features, which substitutes the feature engineering steps present in some ML models,
allowing to solve complex problems [49]. Both ML and DL models have their advantages and
disadvantages, consequently the choice is based on the characteristics of the problem to solve,
and the data availability (ML algorithms usually require smaller samples to train) [50]. ML
and DL can be used at different tasks regarding health care [51], including medical imaging
classification and segmentation [52], image quality control [53], and cancer research [54].

In the last years, the applications of ML and DL in x-ray breast imaging were also
deeply explored under different scenarios. Deep learning models were trained for breast lesion
detection in mammography, surpassing the performance of more traditional methods such as
Computer Aided Detection (CADe) and Computer Aided Diagnosis (CADx), and being at the
same level of an average radiologist [55]. Deep convolutional generative adversarial networks
(DCGANs), a type of architecture of DL, was successfully implemented to generate lesions
for mammography images to correct imbalanced datasets [56]. The spatial resolution of breast
phantom images can be increased using convolutional neural networks (CNN) [57], another
type of DL model. DL was also applied for mammography image quality control [58], and
digital breast tomosynthesis image reconstruction [59].

A particular application of ML and DL related to breast imaging is the breast density
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estimation. Dense breasts have a higher risk of breast cancer, and a lower sensitivity of mam-
mography exams [60]. Breast density is related to the fraction of glandular tissue that composes
the breast, and it can be estimated using area-based or volumetric-based algorithms [61]. ML
techniques were successfully employed to estimate breast density for mammography images
based on area [62]. Meanwhile, DL was used for volumetric breast density (VBD) estimation
using mammography [63] and digital breast tomosynthesis images [64]. An advantage of VBD
is that the glandularity can be estimated and employed in dosimetric models for a more accurate
dose calculation [61].

Besides the glandularity, other parameters are considered to obtain the DgN values,
e.g. breast size (thickness), x-ray beam energy, system geometry, among others. Taking into
account the possible parameter space, traditional methods of distributing the conversion factors
such as tables or parametric equations could be impractical. An alternative format is to employ
ML techniques to estimate the DgN values, with the data obtained using Monte Carlo simula-
tions. Regarding breast dosimetry, ML and DL models could contribute for the prediction of
more accurate dose values, and are promising techniques in the medical imaging field.

1.4 Developments in breast dosimetry

This section discusses the possible developments that could be achieved in breast
dosimetry, based on Sections 1.1, 1.2 and 1.3.

Breast dosimetry is an essential field for risk assessment and quality control, as
highlighted in the previous sections. However, since it is a complex topic and in constant evolu-
tion, there is still availability for more developments. In this context, the joint Task Group (282)
of the American Association of Physicists in Medicine (AAPM) and the European Federation of
Organizations for Medical Physics (EFOMP) are developing a new universal breast model for
breast dosimetry [65]. Monte Carlo simulations are the current state-of-the art method to obtain
the DgN values, that in turn, are employed for DGM calculations. The results obtained in the
simulations are derived from the physics and geometric parameters employed in the MC sim-
ulations, thus it is important to study the relation of the selected parameters in the simulations
and their impact in the final results. For example, the thickness of the skin layer that surrounds
the breast, or the choice of the cross-sections used in the calculations of the photon interactions
in the simulations. Another important topic in breast dosimetry is the implementation of more
realistic breast models, that mimic a glandular tissue distribution similar to what is found in real
breasts, in contrast to the simplified homogeneous breast models.

ML and DL algorithms were successfully employed in medical imaging, including
lesion detection in breast imaging. Considering this, an interesting topic for breast dosimetry is
the application of ML and DL for dose estimation in the breast. For example, DL could be used
to determine the volumetric breast density and glandularity, which in turn is a parameter for
DgN and MGD calculations. Afterwards, ML algorithms could be employed for DgN calcu-



CHAPTER 1. INTRODUCTION 16

lations, considering several parameters that can be varied in Monte Carlo simulations to cover
distinct breast characteristics, geometry factors and x-ray spectra.

Although MGD is the main quantity employed in breast dosimetry for risk esti-
mation, the effects of the ionizing radiation in biological tissues occur at microscopic scales.
Different breast imaging modalities employ distinct x-ray spectra, and consequently, this could
also affect the dose distribution inside the breast, even for the same MGD. Therefore, mulstis-
cale Monte Carlo simulations could contribute for a better understanding of breast dosimetry,
because it is possible to study the energy deposition in the breast at different scale lengths, i.e.
from the whole breast (MGD), to cells (specific energy distributions).

1.5 Main and specific objectives

In light of the topics presented in the previous sections, and given the importance
and complexity of breast dosimetry, one of the main objective of this work was to perform a
comprehensive study of breast dosimetry employing Monte Carlo simulations. More specifi-
cally, to study the breast dosimetry at different length scales, from the traditional MGD values,
to the glandular dose distribution and, finally, the specific energy distribution in cells. However,
to perform this type of study, intermediate specific objectives were established, described as
follow:

• To study the systematic uncertainty derived from different photoelectric cross sections
present in Monte Carlo codes for breast dosimetry.

• To use a ML approach to calculate MGD and DgN values obtained from Monte Carlo
simulations, and to compare its feasibility in contrast to more traditional methods found
in the literature.

• To develop a DL framework for volumetric breast density estimation for antropomorphic
virtual phantoms, and to assess the impact of the glandularity prediction in dosimetry.

• To implement and validate a pipeline for multiscale Monte Carlo simulations in breast
dosimetry, capable of performing a full dose simulation in a reasonable time for limited
hardware resources.

1.6 Main contributions

This section summarizes the main contributions derived from this thesis, divided
per chapter.

As described in Chapter 2, it was found that the photoelectric cross sections be-
tween older (pre 2014, without the renormalization) and new (after 2014, with renormalization)
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PENELOPE versions provide distinct results for mammography dosimetry under different sim-
ulation conditions. Thus, it is important to account for this systematic uncertainty related to
the dosimetric quantities obtained using MC simulations due to the photoelectric cross section
databases.

Since the variety of parameters that can be altered when calculating DgN values for
homogeneous breast in a MC simulation is practically inexhaustible, there must be a compro-
mise to select only a few of them when publishing the results in the traditional formats (tables
or fitted equations). In Chapter 3 it was shown that ANN could be an alternative format, and is
capable of dealing a significant number of parameters at the same time when predicting DgN
values for mammography.

The impossibility of extracting the ground truth breast density directly from mam-
mography images poses a significant challenge of designing algorithms for this purpose, re-
quiring, in most cases, a second imaging modality to extract the ground truth values in order to
validate the algorithms. In Chapter 4, it was developed a deep learning framework to predict
volumetric breast density from simulated mammography images using virtual anthropomorphic
phantoms. The advantage of this case is that the the training and validation process are facili-
tated because the ground truth is directly obtained from the virtual anthropomorphic phantoms.

The MC-GPU code was adapted to generate phase space files, as described in Chap-
ter 5, optimizing the process of multiscale MC simulations. In addition, the code was validated
against other MC codes for dosimetry in x-ray breast imaging. Using phase space files, multi-
scale MC simulations were performed as described in Chapters 6 and 7. It was found that the
behavior of the energy deposition within the breast varies significantly at different length scales.
In addition, for the same MGD value, distinct imaging modalities yields different glandular dose
distribution profiles and specific energy distribution at cell scales.

1.7 Thesis organization

This work is divided into the following chapters, structured as published or to be
submitted articles, that contain specific topics of study and they are briefly explained in this
section.

• Chapter 2 consists of the impact of the photoelectric cross section databases in MC sim-
ulations for breast dosimetry, and to quantify the differences in mammography.

• Chapter 3 shows an implementation of artificial neural networks for breast dosimetry for
homogeneous phantoms.

• Chapter 4 is an implementation of a deep learning framework for breast density estimation
in virtual phantoms and a possible use in breast dosimetry.
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• Chapter 5 shows an application of phase space files implemented in MC-GPU, and com-
pares breast dosimetry results with other MC codes based on CPU. In addition, the po-
tential optimization in performance is assessed when combining two MC codes for mul-
tiscale simulations.

• Chapters 6 and 7 are dedicated to multiscale MC simulations in breast dosimetry at dif-
ferent length scales: from the breast as a whole, sub-millimetric voxels and cells.

• Chapters 8 and 9 synthesize the overall discussions and conclusions, respectively.

The references for Chapters 1 and 8 are at the end of this thesis. Meanwhile, for
Chapters 3, 4, 5, 6 and 7, the references are at the end of each respective article.
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Abstract

Monte Carlo (MC) simulations are employed extensively in breast dosimetry studies. In the 
energy interval of interest in mammography energy deposition is predominantly caused by 
the photoelectric effect, and the corresponding cross sections used by the MC codes to 
model this interaction process have a direct influence on the simulation results. The present 
work compares two photoelectric cross section databases in order to estimate the 
systematic uncertainty, related to breast dosimetry, introduced by the choice of cross 
sections for photoabsorption. The databases with and without the so-called normalization 
screening correction are denoted as “renormalized” or “unnormalized”, respectively. The 
simulations were performed with the PENELOPE/penEasy code system, for a geometry 
resembling a mammography examination. The Mean Glandular Dose (MGD), incident air 
kerma (Kair), Normalized Glandular Dose (DgN) and Glandular Depth Dose (GDD(z)) were 
scored, for homogeneous breast phantoms, using both databases. The AAPM Report TG-195 
case 3 was replicated, and the results were included. Moreover, cases with heterogeneous 
and anthropomorphic breast phantoms were also addressed. The results simulated with the 
unnormalized cross sections are in better overall agreement with the TG-195 data than those 
from the renormalized cross sections; for MGD the largest discrepancies are 0.13(6)% and 
0.74(5)%, respectively. The MGD, Kair and DgN values simulated with the two databases show 
differences that diminish as the photon energy increase from approximately 10%/3%/6.8% 
at 8.25 keV down to 1.5%/1.7%/0.4% at 48.75 keV, respectively. For polyenergetic spectra, 
deviations up to 2.5% were observed. The disagreement between the GDDs simulated with 
the analyzed databases increases with depth, ranging from -1% near the breast entrance to 
4% near the bottom. Thus, the choice of photoelectric cross section database affects the MC 
simulation results of breast dosimetry and adds a non-negligible systematic uncertainty to 
the dosimetric quantities used in mammography.

Key-words: Mammography; dosimetry; Monte Carlo simulation; photoelectric absorption; 
normalization screening correction; systematic uncertainty
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1. Introduction
Monte Carlo (MC) simulation plays an important role in breast dosimetry (Dance and 

Sechopoulos 2016). During the last three decades, this computational technique has been used 
extensively to estimate the energy imparted to the breast in mammographic examinations (Dance 
1990, Wu et al 1991, Dance et al 1999, Boone 1999, 2002, Sechopoulos et al 2006, Cunha et al 2010, 
Nosratieh et al 2015, Sarno et al 2016, 2018). Besides other reasons, the possibility to calculate with 
MC simulations the Mean Glandular Dose (MGD), which is the main quantity in the dosimetry of the 
breast, has certainly contributed to the growing importance of MC methods. As an example, the 
current protocols of breast dosimetry in Europe and the USA rely on conversion factors based on 
MC data (Wu et al 1991, 1994, Dance 1990, Dance et al 2000, 2009, Boone 1999, 2002, Nosratieh 
et al 2015). However, the MC results depend on how the modelling of the problem is made.

A few publications have investigated the effect of various parameters employed in the MC 
simulations and how they affect the calculated MGD (Zoetelief and Jansen 1995, Fedon et al 2015, 
Arce et al 2021). These include, among others, the composition of breast tissues, the breast shape, 
the distribution of tissues inside the breast, and the input x-ray spectra and the photon interaction 
cross sections. Furthermore, the implementation of realistic breast models derived from real 
patients has increased the complexity of MC simulations  for breast dosimetry (Sechopoulos et al 
2012, Hernandez et al 2015). Several MC codes are nowadays available to conduct breast dosimetry 
studies, e.g. MCNP or MCNPX (Werner et al 2018), Geant4 (Allison et al 2016), EGSnrc (Kawrakow 
et al 2017), PENELOPE (Salvat 2019) and some bespoke codes like SIERRA (Boone 2002) among 
others (Dance 1990, Cunha et al 2010), and it is of great interest to compare the results provided by 
them. Indeed, this was the main purpose of the Report of the AAPM Task Group 195 (Sechopoulos 
et al 2015), hereafter denoted as TG-195.

The dosimetric quantities like MGD estimated by means of MC simulation are usually reported 
with the corresponding type A statistical uncertainties because this technique is used to simulate 
stochastic phenomena (Aguirre et al 2016). However, a complete uncertainty budget associated to 
the MC simulations for the determination of MGD should also include the contribution of type B 
uncertainties due to the presence of systematic errors. As discussed in a recent review by Dance 
and Sechopoulos (2016), there are systematic uncertainties in the MGD estimation that originate 
from the computational models used in the simulations, which can be related to: composition and 
mass density of the breast tissues, simplified breast models, and different protocols based on 
distinct breast models.

A key ingredient of the MC simulations, especially relevant when mammography is concerned, 
is the database of photon-atom interaction cross sections that is incorporated in the chosen MC 
code. The probability density functions derived from the database are used by the MC code routines 
to simulate photon transport in matter. Hence, the MC results are directly correlated with the 
selected integrated and differential cross sections (Hubbell 2006). In the energy range of interest in 
mammography, between 5 and 50 keV, there is a high probability of photoelectric absorption, which 
is the predominant interaction mechanism below around 25 keV and is responsible for the largest 
contribution to energy deposition in the complete energy interval. Thus, special attention should be 
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paid to the cross sections picked for this interaction process. However, the cross section libraries 
incorporated in the existing MC codes are not standardized, and some codes have different cross 
section libraries available (Fedon et al 2015, Kawrakow et al 2017). For example, in the latest 
versions of PENELOPE (2014, 2018), the earlier database of photoelectric cross sections was 
replaced with a new one (Salvat 2019). Since previous validation regarding dosimetry in 
mammography tasks were made with an older PENELOPE version (Sechopoulos et al 2015), it is 
desirable to estimate the impact that this change could have on the calculated MGD.

The aim of the present article is to investigate the systematic (type B) uncertainties arising from 
the choice of photoelectric cross-section data for dosimetry in the energy interval of concern in 
mammography. At this low energy range, type B uncertainties due to the choice of photoelectric 
cross-sections could be significant regarding absorbed dose values (Valdes-Cortez et al 2021). The 
current cross sections for the photoelectric effect are based on the values tabulated in the LLNL 
Evaluated Photon Data Library EPDL97 (Cullen et al 1997). On the other hand, the photoelectric 
cross sections in PENELOPE versions 2014 and 2018 apply Pratt’s normalization screening correction 
(Pratt 1960, Scofield 1973, Sabbatucci and Salvat 2016 and references therein). The dosimetric 
quantities relevant to mammography calculated with these two databases were compared for many 
photon energies and breast characteristics. Finally, both sets of results were compared to those 
published in TG-195 (Sechopoulos et al 2015).

2. Materials and methods
2.1. Photoelectric cross sections

In the photoelectric effect, the target atom absorbs the incident photon and one of the bound 
electrons is ejected to a free state. This process is only possible for atomic (sub)shells whose binding 
energy is smaller than the energy of the impinging photon. Various databases of photoelectric cross 
sections have been published over the past decades, and some of them have been adopted in 
general-purpose MC codes. The interested reader may consult the review by Hubbell (Hubbell 2006) 
for a thorough account of this topic.

Regarding comprehensive tabulations of photoelectric cross sections, arguably the most 
important step forward was made by Scofield in 1973 (Scofield 1973). He treated the relativistic 
photon-atom interaction Hamiltonian as a 1st-order perturbation, carrying out a full multipole 
expansion of the quantum-mechanical operator responsible for one-photon absorption. The target 
atom was described using self-consistent Dirac-Hartree-Fock-Slater wave functions. Scofield’s cross 
sections, which encompass all occupied (sub)shells of atoms with Z = 1-101 and energies between 
1 keV and 1.5 MeV, were subsequently introduced in the XCOM program (Berger et al 2010) and 
the EPDL97 database (Cullen et al 1997). Moreover, these data are currently implemented in 
essentially all modern general-purpose MC codes and they are accessible at the website of the 
National Institute of Standards and Technology (NIST) (Seltzer 1993).

It would be desirable to calculate the photoabsorption cross sections starting from multi-
configuration Dirac-Fock wave functions, which are more accurate than Dirac-Hartree-Fock-Slater 
wave functions. Unfortunately, the required self-consistent scheme involves a non-local potential 
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that is different for each atomic (sub)shell, rendering the numerical work much more difficult. To 
circumvent this problem, Scofield (1973) explored the so-called normalization screening 
approximation proposed by Pratt (1960), a simpler method that compensates for the use of the 
Dirac-Hartree-Fock-Slater wave functions by means of a multiplicative correction factor that only 
depends on the radial wave functions near the origin (Sabbatucci and Salvat 2016). However, this 
approach was not pursued further.

Recently, Sabbatucci and Salvat (2016) revisited the calculation of the atomic photoeffect, 
reviewing the theoretical formalisms and the associated numerical aspects. Besides, they wrote the 
computer code PHOTACS that they employed to produce a database using the same conventional 
1st-order perturbation theory adopted by Scofield, but on a much denser photon energy grid, which 
is essentially equivalent to the data in the EPDL97 (Cullen et al 1997). PHOTACS was also utilized to 
prepare another tabulation based on the normalization screening approximation. We will refer to 
these databases as “renormalized” or “unnormalized” depending on whether they incorporate or 
not the normalization screening correction, respectively.

The International Commission on Radiation Units and Measurements has so far (ICRU 2016) not 
issued a recommendation on which photoelectric cross sections should be preferred. But, based on 
all the information available, the Report to the Consultative Committee for Ionizing Radiation CCRI(I) 
(McEwen et al 2017) endorsed the renormalized cross sections.

2.2. Monte Carlo simulations

The present simulations were done using the PENELOPE general-purpose MC code (v. 2018) 
(Salvat 2019) with the steering main program penEasy (v. 2019) (Sempau et al 2011). A Python script 
was written to automate the management of the very large number of files and simulations. More 
details about the MC code for the simulation of photon transport in the mammographic energy 
range are given in our earlier articles (Massera and Tomal 2018, 2020). The cutoff photon energy 
was set to 1 keV. Photoelectrons and Compton recoil electrons, as well as Auger electrons emitted 
in the subsequent atomic relaxation, were assumed to be locally absorbed (Sechopoulos et al 2015) 
because the range of electrons in breast tissues (< 50 m) is much smaller than the dimensions of 
the simulated bodies ( 0.5 mm) described in the following.

The geometric model mimics a mammographic examination in cranio-caudal view, and it was 
based on case 3 in TG-195 (Sechopoulos et al 2015), being described in more detail in previous works 
(Massera and Tomal 2018, Trevisan Massera and Tomal 2020) and illustrated in Figure 1. The x-ray 
source has a punctual focal spot, which is located 66 cm above the detector. A block (rectangular 
cuboid) of water (30 × 30 × 17 cm³) represents the patient’s chest. The compression and support 
paddles are made of PMMA with dimensions 26 × 14 × 0.2 cm³. The scoring plane is located 1.5 cm 
under the breast, the detector and antiscatter grid were not simulated. The x-ray beam is collimated 
by the four detector edges. The world is composed by air.

The breast was modeled as a semi-circular cylinder with 10 cm radius and a thickness of 2 cm, 
5 cm or 8 cm. The breast was composed by a 20:80 homogeneous mixture by mass of glandular and 
adipose tissues, respectively, which represents a glandularity of 20%. An external 1.45-mm-thick 
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skin layer (Huang et al 2008) enclosed the breast tissues. The skin thickness was increased to 2 mm 
when the simulation results had to be compared with TG-195.

Figure 1. Simulated geometry (not to scale) employed for the comparisons with TG-195. The other simulations 
presented in this work adapted slightly this geometry as described in the text.

Monoenergetic and polyenergetic x-ray beams were addressed. The monoenergetic beams 
varied from 8.25 to 48.75 keV in 0.5 keV steps. Besides the reference Mo/(300 µm Mo) 30 kV 
spectrum adopted in TG-195, we also used polyenergetic spectra W/(0.05 mm Rh) 22-28 kV; 
W/(0.05 mm Rh) 26-32 kV, W/(0.05 mm Ag) 28-34 kV for the 2 cm, 5 cm and 8 cm breast 
thicknesses, respectively. Furthermore, the combination of W/(0.3 mm Cu) 45-49 kV was considered 
for the 5 cm breast to encompass contrast-enhanced digital mammography spectra. These 
combinations were motivated by the common exposure parameter conditions encountered in 
clinical practice (Nosratieh et al 2015).

The present study is divided in three parts. The first one replicates most of the case 3 conditions 
described in TG-195 (Sechopoulos et al 2015), which is devoted to mammography. Here, the 
simulations were ran comparing the aforementioned cross section databases, for the 0° and 15° 
projections. The second part compares the influence of the photoelectric cross section databases 
over a plethora of x-ray beams and the three breast thicknesses, but only for the 0° projection. 
Finally, the third part investigates the MGD variation for heterogeneous and anthropomorphic 
breast phantoms.

2.3. Input data

The polyenergetic x-ray spectra were generated from the model developed by Hernandez et al 
(Hernandez et al 2017), using the MASMICS and TASMICS programs for molybdenum and tungsten 
anodes, respectively. The adipose, glandular and skin tissue compositions and mass densities were 
taken from Hammerstein et al (Hammerstein et al 1979). The composition and mass density of the 
other materials was retrieved from the NIST website (Berger et al 2010).

The mass attenuation coefficients of all materials were extracted directly from PENELOPE’s 
database (Salvat 2019). Regarding the physics models for photon transport, the PENELOPE code 
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employs Rayleigh scattering cross sections from the EPDL97 (Cullen et al 1997), which are based on 
the form-factor approximation with anomalous form factors. For the simulation of Compton 
scattering, PENELOPE uses cross sections obtained from the relativistic impulse approximation 
(Ribberfors 1975, 1976), which accounts for binding effects and Doppler energy broadening (Wang 
et al 2020 and references therein). On the other hand, PENELOPE versions 2014 and 2018 
incorporate Sabbatucci and Salvat’s renormalized photoelectric cross sections, but PENELOPE 
version 2018 (Salvat 2019) offers as an option to replace them with the unnormalized photoelectric 
cross sections. The simulations reported below were done with both the unnormalized and the 
renormalized databases.

2.4. Dosimetric quantities and validation

The dosimetric quantities of interest in mammography, namely incident air kerma (Kair), MGD 
and normalized glandular dose (DgN) were calculated as described next.

For the Kair calculations, an air cylinder (2 cm radius, 0.2 mm height, 4 cm away from the chest 
wall) was added, mimicking an ionization chamber. The compression plate was defined in the 
geometry, being located 40 cm above the air cylinder, but without the breast. Since the simulations 
exclude electron transport (Andreo 2019), the electrons created in the volume of interest deposit 
their kinetic energy within it. The interaction forcing variance-reduction technique was activated 
(forcing factor of 103) to shorten the simulation time needed to reach the desired statistical (type 
A) relative uncertainty (≈0.15%, 1 standard deviation). The tally TallyKermaCalc in penEasy (Massera 
and Tomal 2018) delivered the mean energy per photon transferred to the air volume.

In turn, the MGD was obtained following the geometry proposed in TG-195 (Sechopoulos et al 
2015). In this case, the breast was modeled as described in section 2.1. The energy deposited in the 
glandular tissue was determined weighting the energy deposited in the homogeneous breast 
mixture (interaction-by-interaction) by the relative contribution of the mass energy-absorption 
coefficients (Seltzer 1993, Berger et al 2010) of the glandular tissue to the adipose/glandular mixture 
(G-factor), as proposed by Boone (1999). The energy deposited in the glandular tissue was 
evaluated, interaction-by-interaction (Wilkinson and Heggie 2000, Sechopoulos et al 2015), which 
is a well-established simulation method to account for the variation of local photon energy in breast 
dosimetry (Boone 1999, Wilkinson and Heggie 2000, Sechopoulos et al 2015, Sarno et al 2017). This 
quantity was estimated resorting to the tally TallyEnergyDepositionGland in penEasy (Massera and 
Tomal 2018). The MGD was computed from the energy deposited in the glandular tissue dividided 
by the corresponding mass of glandular tissue within the breast. Finally, the DgN is defined as the 
ratio

DgN =  
MGD
𝐾air

                                        (1)

where the MGD and Kair values were obtained with the same incident x-ray beam, following the 
geometry explained above, in two independent simulations (Massera and Tomal 2018, 2020).
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The glandular depth-dose distribution, GDD(z), in the breast was simulated by slicing the 
homogeneous mixture within the breast in 10 equally-thick layers. The glandular dose was 
calculated for each layer as a function of the depth z, starting from the breast upper entrance.

The simulation results were validated following the TG-195 case 3 (Sechopoulos et al 2015), 
which consisted of various test types, as briefly outlined here (we encourage the reader to consult 
the original publication for more details). (Ia) Energy deposited in the breast (not included in this 
study) and (Ib) MGD calculation for monoenergetic and polyenergetic x-ray beams. (Ic) Energy 
deposited in 7 cubic volumes of interest (VOIs, 2 × 2 × 1 cm³) inside the breast. Energy from (IIa) 
primary and (IIb) scattered x-rays incident on a 2 × 2 cm² scoring plane 1.5 cm below the support 
plate. (IIIa) and (IIIb), similar to (IIa) and (IIb), respectively, but with a pencil beam. To simplify the 
visualization of the trends, the mean results from the MC codes presented in TG-195 were 
considered. For the TG-195 related comparisons, 4 simulations with independent random-number 
sequences (Badal and Sempau 2006) consisting of 4×108 primary photons were performed in order 
to estimate the statistical (type A) uncertainty (batch method, for practical reasons). The final results 
were calculated from the mean and standard deviation of the simulation outputs (Sechopoulos et 
al 2018). Typical simulation times were around 30 min (processor Intel Core™ i7 7700 CPU @ 
3.6 GHz). For the MGD and Kair simulations, the statistical uncertainties were kept below 0.2% (1 
standard deviation, history-by-history method). Figure 2 summarizes the breast models employed 
in this work and the respective section.

Figure 2. Breast models used in this work with the respective section.

2.5. Simplified heterogeneous models
To address the relation between the glandular tissue distribution inside the breast and the 

photoelectric cross section databases, simplified heterogeneous models were developed with 
voxels of 0.5 mm side length. The geometry is similar from section 2.2, except the block of water 
which is absent. The phantoms have a semi-cylindrical cross section (10 cm radius) including a 
1.5 mm skin thickness layer. The central volume consists of a random distribution of glandular and 
adipose tissues. The random sampling started with the nominal glandular volume percentage, then 
the central breast region was divided into semi-cylindrical slices (Z direction), one for each voxel 
layer in depth. Afterwards, the number of glandular voxels for each slice was determined, based on 
the nominal glandular content, by random sampling from a normal distribution with mean C and 
standard deviation SD (Tucciariello et al 2021). With the number of glandular voxels in a specific 
layer, their location was sampled from a uniform distribution (X and Y coordinates). The remaining 

Page 7 of 22 AUTHOR SUBMITTED MANUSCRIPT - PMB-111132.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

CHAPTER 2. PHOTOELECTRIC CROSS SECTION AND SYSTEMATIC
UNCERTAINTY IN MAMMOGRAPHY 27



8

voxels were regarded as adipose tissue. In this study, three values of C were included: ⅓, ½ and ⅔ 
the breast thickness, representing “lower”, “middle” and “upper” glandular tissue distributions, 
where the SD was fixed at ⅙ of the breast thickness for all cases. This is a simplified model that 
enables the comparison between distinct glandular tissue distributions over depth, a more realistic 
case is covered in the upcoming section  (Hernandez et al 2015, Fedon et al 2021). Three breast 
thickness (and x-ray spectra) were dealt with: 2 cm (W/Rh 25 kV), 5 cm (W/Rh 28 kV) and 8 cm 
(W/Ag 32 kV), with three glandular volume percentages: 1%, 20% and 40%, totaling 27 
combinations. The number of simulated primary photon histories was 109. Unlike in the case of the 
homogeneous models, the glandular dose for heterogeneous models was determined only for the 
voxels composed by glandular tissue and obtained without the G factor.

For the 5 cm breast, 20% glandular volume percentage and lower/upper distributions, we also 
scored the photon energy spectra in glandular voxels at three depths: 1 cm, 2.5 cm and 4 cm.

2.6. Anthropomorphic models
The case of anthropomorphic breast phantoms was considered to quantify the impact of the 

tissue distribution inside the breast. The heterogeneous breast models were generated with the 
BreastPhantom software (Graff 2016) from a modified pipeline included in the VICTRE clinical virtual 
trial (Badano et al 2018, Sharma et al 2019). One of the modifications was a script to transform the 
phantom data to the penEasy voxel format. A total of five breast models were studied with a 
glandular weight percentage (breast glandularity) varying from approximately 22.9% to 23.5%. 
These small variations are attributed to the random tissue sampling by the algorithm when a 
computational breast with glandular volume percentage of 20% is generated. The skin thickness was 
set to 1.5 mm, and a voxel resolution of 0.5 mm was selected. Moreover, generated tissues that 
were neither glandular, skin nor adipose were classified as adipose. The five models were 
compressed until they reached a thickness of 5 cm using the BreastCompress program (Sharma et 
al 2019) and cropped to remove uncompressed tissues, mainly muscle (BreastCrop program) 
(Sharma et al 2019). The average (standard deviation) for the compressed breast models volumes 
were 628(5) cm³, and presented an averaged area (volume divided by height) of 126(1) cm². 
8 simulations were done for each model (batch method uncertainty, while maintaining the same 
voxel distribution for each model), using the unnormalized and renormalized photoelectric cross 
sections. Each simulation involved 2×1010 photon histories with their initial energies sampled from 
a Mo/Mo 30 kV spectrum. Like section 2.5, the glandular dose was determined directly (without the 
G factor).

3. Results and discussion
3.1. Comparison of mass attenuation and mass energy-absorption coefficients

The mass attenuation (µ/ρ) and mass energy-absorption (µen/ρ) coefficients of the analyzed 
photon-atom cross-section databases are compared in Figure 3 for the energy range of interest in 
mammography. The μen/ρ coefficients were calculated with the mutren routine from PENELOPE 
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(Salvat 2019). The relative differences between the results obtained with the renormalized and 
unnormalized photoelectric cross sections are plotted following the convention

Rel. diff.  =  
renormalized ―  unnormalized

unnormalized   ×  100%                 (2)

Figure 3. (a) Mass attenuation and (c) mass energy-absorption coefficients for the indicated tissues, taken from the 
unnormalized cross section database. (b)/(d) Corresponding relative differences, equation (2), between the simulation 

results of the renormalized and unnormalized databases for the same materials.

In both cases (Figures 3a and 3c), the values decrease monotonously with energy, which is 
expected given the low equivalent atomic number of the considered materials. The relative 
difference for µ/ρ between the databases (Figure 3b) decreases with energy because the probability 
of Compton interactions increases and becomes dominant above several tens of keV. However, in 
the case of µen/ρ (Figure 3d) the relative differences stay rather constant because the photoelectric 
effect is the main interaction mechanism that contributes to energy deposition, despite being less 
likely to occur for higher energies (Andreo et al 2017). It is interesting to note that the 
adipose/PMMA and skin/glandular curves are clearly distinguishable. This pattern can be 
understood recalling the elemental compositions of these materials: adipose tissue and PMMA have 
Carbon as the main constituent element (fraction by weight), while Oxygen is the main constituent 
of glandular tissue and skin. In addition, the fluctuations observed in Figure 3d can be traced to the 
uncertainty of the µen/ρ values (default values of 0.1%) which is comparable to the difference 
between the µen/ρ for the unnormalized and renormalized cross section databases.
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3.2. Validation and AAPM TG-195
When comparing the results of this work, for both unnormalized and renormalized photoelectric 

cross sections, and those reported in TG-195, the relative differences were computed as

Rel. diff.  =  
𝑇ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 ―  𝑇𝐺195

𝑇𝐺195   ×  100%                                       (3)

Figure 4 shows the relative differences of MGD obtained with the renormalized and 
unnormalized photoelectric cross sections with respect to the TG-195 results in test Ib (Sechopoulos 
et al 2015) for 0° and 15° projections. In order to keep a clear view, test Ia was not included in the 
figure because it follows a similar trend as test Ib. The results for the unnormalized cross sections 
are closer to TG-195 than the renormalized ones, with maximum deviations of 0.13(6)% and 
0.74(5)%, respectively. This was expected because, to our knowledge, all MC codes utilized in TG-
195 implement Scofield’s unnormalized photoelectric cross sections. The small deviations between 
the relative differences in MGD for the 0° and 15° projections can be explained by the higher 
variation of the MGD values provided by the MC codes of TG-195 for the large-angle projections.

Figure 4. Relative difference between the MGD values computed with the renormalized and unnormalized cross sections 
for the photoelectric effect compared with the mean results from TG-195 (Sechopoulos et al 2015). Values computed for 
monoenergetic and polyenergetic beams, for both 0° and 15° projections. Breast: 5 cm thick, 20% glandular fraction.

The boxplots in Figure 5 summarize the relative differences between the mean results from TG-
195 and the simulated results of the tests Ic, II and III for the energy incident in a scoring plane, as 
described in TG-195 case 3, considering the two photoelectric cross section databases. For each test, 
it comprises the monoenergetic and polyenergetic spectra for the 0° and 15° projections. The results 
for each test (Ic, II a and b, and III a and b) were condensed and expressed in a boxplot graph format 
to facilitate the visualization. As can be observed in Figure 5, the data distributions ensuing from the 
simulations carried out with the analyzed databases clearly differ, being the differences smaller 
when the unnormalized photoelectric cross-section are used. Again, this tendency can be ascribed 
to the cross sections in the MC codes employed in TG-195. For instance, PENELOPE version 2006 
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was used in TG-195, while the renormalized cross sections were implemented starting with version 
2014. The results obtained with the renormalized cross sections were in general higher than the TG-
195 due to the lower mass attenuation coefficients (see Figure 3). The unnormalized results tend to 
be lower than the TG-195 for the tests II and III (Figures 5(b) and (c), respectively), with differences 
up to 5% (test III). Although the higher deviations compared to the other tests, the unnormalized 
values are still in better agreement with TG-195 than the normalized ones.

Figure 5. Relative differences between -TG-195 mean results for each test (explained further) across the different Monte 
Carlo codes and renormalized (hatched, red) and unnormalized (open, blue) photoelectric cross sections. (a) Test Ic: 
energy deposited in the VOIs inside the breast. (b) Test II: energy fluence for regions of interest under the support plate. 
(c) Test III: similar to (b) but with a pencil beam. Center line: median, lower and upper box edges: first and third quartile, 
whiskers: 1.5 times the interquartile range, and circles are outliers.

3.3. Mean glandular dose and incident air kerma
Figure 6a shows the MGD values for breasts with a 20% glandular fraction and thicknesses of 

2 cm, 5 cm and 8 cm as a function of photon energy for monoenergetic x-rays. Figure 6c displays Kair 
for a 5 cm breast as a function of photon energy. The dependence of the incident air kerma (Kair) on 
photon energy follows a similar trend for the other breast thicknesses, but their values are corrected 
by the inverse-square law to account for the beam divergence. These results were obtained using 
the unnormalized photoelectric cross sections. Figure 6b and 6d present the relative differences 
between the results of MGD and Kair, respectively, calculated with the renormalized and 
unnormalized photoelectric cross sections. In both figures, data above (below) the dashed 
horizontal line indicate MGD or Kair values higher (lower) for renormalized cross sections. The MGD 
and Kair are higher for the renormalized cross sections at low energies up to approximately 12-
20 keV, when the unnormalized values become higher. This behaviour is explained by Figure 3. The 
relative difference for µen/ρ between the databases decreases with energy, whereas for µ/ρ it 
remains almost constant.

Page 11 of 22 AUTHOR SUBMITTED MANUSCRIPT - PMB-111132.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

CHAPTER 2. PHOTOELECTRIC CROSS SECTION AND SYSTEMATIC
UNCERTAINTY IN MAMMOGRAPHY 31



12

Figure 6. (a) MGD values for breasts of the indicated thicknesses simulated with the unnormalized photoelectric cross 
sections. (c) Kair calculated for the 5 cm breast. The relative differences for the analyzed photoelectric cross section 
databases are plotted for MGD (b) and Kair (d).

                             
3.4. Normalized glandular dose

As already mentioned, the DgN was calculated by the ratio MGD/Kair, and it is shown in Figure 
7a for monoenergetic x-rays and three breast thicknesses. Figure 7b depicts the relative differences 
of renormalized vs unnormalized cross sections, equation (2). The trend is a combination of the 
results from Figure 6b and 6d, i.e. the ratio of the MGD and Kair differences. The renormalized DgN 
values are systematically higher than the unnormalized ones from 8.25 keV to 48.75 keV. Since DgN 
is the ratio between MGD and Kair, the pattern observed in Figure 7b can be understood recalling 
the discussion in section 3.3.
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Figure 7. (a) DgN computed using the unnormalized photoelectric cross section database for monoenergetic photon 
beams and three breast thicknesses (20% glandular fraction). (b) Relative differences between the DgN calculated with 
the renormalized and unnormalized photoelectric cross sections, as a function of photon energy.

The DgN values for polyenergetic spectra simulated with the unnormalized photoelectric cross 
sections are displayed in Figure 8a for various x-ray spectra and three breast thicknesses. Figure 8b 
plots the relative difference of the DgN results simulated using the two photoelectric cross section 
databases. From Figure 8a it is evident that DgN depends on the breast thickness and the incident 
x-ray spectrum (anode/filter combination and tube potential). The DgN values computed with the 
two databases vary from ≈0.5% for the high-energy beams employed in contrast-enhanced 
mammography to ≈2.5% for conventional mammography. This is a consequence of the integration 
of the monoenergetic DgN over the x-ray spectra because the largest relative differences happen 
for low-energy photons (see Figure 7). This systematic uncertainty on the DgN estimation 
introduced by the selection of cross section database is, in principle, below the threshold 
established by the IAEA Report TRS 457 (IAEA 2007), where uncertainties up to 7% are tolerated in 
some conditions. However, as pointed out by Dance and Sechopoulos (2016), there are other 
sources of systematic uncertainty in breast dosimetry that should be evaluated as well, such as the 
elemental composition of breast tissues and the adopted breast models. Even for a specific breast 
thickness, the systematic uncertainties could vary depending on the imaging modality owing to the 
differences in the respective x-ray spectra.

It is worth mentioning that another important source of systematic errors associated to MC-
based breast dosimetry data is the limited and old information on breast tissue composition, which 
affects significantly the MGD estimation. However, its impact on the systematic uncertainty from 
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the photoelectric cross sections may not be important because the variation between the 
unnormalized and renormalized databases is modified only slightly by the composition for low 
atomic number materials in the mammographic energy range.

Figure 8. (a) DgN values calculated with the unnormalized photoelectric cross sections for the indicated x-ray spectra 
and breast thicknesses. (b) DgN relative difference between the renormalized and unnormalized photoelectric cross 
sections, matching the spectra and thicknesses from (a). In most cases, the error bars are not visible because they are 
smaller than the symbols.

3.5. Glandular depth dose
Figure 9a shows the glandular depth-dose distribution, GDD(z), simulated with the 

unnormalized photoelectric cross sections. Each bin corresponds to a depth interval. The results 
were computed for a polyenergetic beam, with a Mo/ Mo Anode/Filter combination and 30 kV tube 
potential. This combination represents the average beam quality used for imaging a breast with this 
thickness (Sechopoulos et al 2015). As anticipated, GDD(z) decreases with depth z due to photon 
attenuation through the breast tissues. The corresponding relative difference between the 
renormalized and unnormalized photoelectric cross sections, equation (2), is plotted in Figure 9b. 
The differences between the cross sections over the MGD varies with the breast depth, being higher 
for the unnormalized near the breast entrance and changing progressively as the depth increases. 
At the bottom of the breast, the variations can be as high as 4%. This is expected from the mass 
attenuation coefficients of the two databases (Figure 3): since µ/ρ for the renormalized cross 
sections is lower, photons have a higher probability to interact at larger depths in the breast as 
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compared to the unnormalized cross sections. The results for thicker breast were not included 
because a similar Rel. diff. GDD behaviour was observed between 8 cm and 5 cm breasts, this is 
mainly due to the more energetic spectrum employed for thicker breasts. These findings highlight 
that, together with the thickness of the breast, the x-ray spectrum is an important factor to dictate 
the differences for the GDD between the cross-section databases.

Figure 9. (a) GDD(z) obtained with the unnormalized photoelectric cross sections. (b) Relative differences for glandular 
depth dose values as function of the breast depth computed between the two photoelectric cross section databases. 
Breast: 5 cm thick, 20% glandular fraction.

3.6. Glandular dose in simplified heterogeneous models
Table 1 summarizes the relative differences for the mean glandular dose, obtained with the 

simplified heterogeneous breast models, between the normalized and unnormalized cross section 
databases. The results indicate that the breast glandular content provides a minor impact over the 
MGD differences compared to the tissue distribution inside the breast. The highest discrepancies 
occur for thicker breasts when most of the glandular tissue is located towards the bottom of the 
breast (up to 1.85(2)%).

Figure 10 compares the energy spectrum of the x-ray beam at various depths for a 5 cm 20% 
glandular volume breast, considering two glandular tissue distributions: concentrated either at the 
top of the breast or towards the bottom. For both configurations, the x-ray beam hardening is 
evident as the depth increases. Additionally, Figures 10d and 10h reveal that the disagreement 
between the scored spectra for the analyzed cross section databases grows with depth, explaining 
the results contained in Table  1, where the largest deviations for the MGD occur when most of the 
glandular tissue is located towards the bottom of the breast. The relative difference between the 
recorded spectra decreases with higher energies, and this is due to the attenuation coefficients 
values (as discussed in section 3.1 and shown in Figure 3b). The uncertainty changes with depth 
owing to the number of glandular voxels in that particular location.
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Table 1. MGD relative differences between the unnormalized and renormalized cross section databases for various breast 
thickness, glandular volume percentages and glandular tissue distributions.

Breast 
thickness

Glandular volume 
percentage (%)

Glandular 
distribution center Rel. diff.

Lower -0.06(9)%
Middle -0.47(8)%1
Upper -0.86(7)%
Lower 0.02(2)%
Middle -0.38(2)%20
Upper -0.80(2)%
Lower 0.04(1)%
Middle -0.36(1)%

2 cm

40
Upper -0.75(1)%
Lower 1.49(9)%
Middle 0.70(7)%1
Upper -0.13(5)%
Lower 1.43(2)%
Middle 0.71(2)%20
Upper 0.00(1)%
Lower 1.48(1)%
Middle 0.76(1)%

5 cm

40
Upper 0.05(1)%
Lower 1.76(9)%
Middle 0.95(7)%1
Upper 0.18(5)%
Lower 1.85(2)%
Middle 1.00(1)%20
Upper 0.20(1)%
Lower 1.82(2)%
Middle 1.01(1)%

8 cm

40
Upper 0.23(1)%

Figure 10. (a)-(c) and (e)-(g) scored photon spectrum in glandular tissue for renormalized and unnormalized cross 
sections, at different depths for a 5 cm thick 20% glandular volume breast.  Figures (a)-(d) and (e)-(h) show, respectively, 
the results when the glandular tissue is located towards the bottom and surface of the breast. Figures (d) and (h) compare 
the relative differences in frequency for each energy bin. 
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3.7. Mean glandular dose and anthropomorphic breast models
TableError! Reference source not found. 2 displays the differences, calculated with equation 

(2), for the MGD between the two cross section databases for the five anthropomorphic phantoms, 
represented by a slight variation of glandular fraction resulting from the phantom model. A non-
negligible variation between the relative MGD difference for the renormalized and unnormalized 
cross sections is found in each case, although all models have a similar glandular fraction, the same 
compressed breast thickness, and they were irradiated with the same x-ray spectrum. The statistical 
uncertainties were around 0.001%. The origin of this behaviour might be the glandular tissue 
distribution inside the breast. The heterogeneous models present some regions of high glandular 
content while other regions are predominantly adipose tissue (Huang et al 2011, Hernandez et al 
2015, Sechopoulos et al 2012). As discussed in section 3.5, the relative glandular dose difference for 
the two cross section databases varies with depth. Therefore, the glandular dose distribution inside 
the breast, especially in depth, could be one explanation for the MGD difference between the cross-
section models.

Table 2. Relative differences for the MGD across five anthropomorphic breast phantoms (with slight variation on 
glandular mass proportions) between the renormalized and unnormalized cross sections.

Breast Model Glandularity (%) Rel. diff.

1 23.5 0.789(1)%

2 23.3 0.813(1)%

3 23.1 0.824(1)%

4 23.0 0.761(1)%

5 22.9 0.680(1)%

4. Conclusions
The photoelectric effect is the photon-atom interaction mechanism responsible for most of 

the energy deposition by mammography x-ray beams. Consequently, the dosimetry results in the 
MC simulations are sensitive to the employed database for this interaction process. The present 
work demonstrates that the adoption of the newer renormalized photoelectric cross sections, which 
apply the normalization screening correction, has a significant impact on the simulated MGD and 
DgN. In addition, a comparison was made with the TG-195 values obtained with MC codes that 
implement the unnormalized cross sections. Hence, there is a considerable systematic uncertainty 
for low-energy beams, mainly present in the mammography energy interval. This effect is smaller 
for techniques that use x-rays beams of higher energy, such as contrast-enhanced mammography 
and breast CT. Moreover, the effects as a function of the depth in the breast as well as the 
anthropomorphic phantoms were also addressed. It is important to remark that the aim of our 
investigation was not to endorse one of the databases, but rather to quantify the possible 
differences they bring about when applied to breast dosimetry. Consequently, the discrepancies 
brought about by the selection of photoelectric cross-sections should be considered in the 
interpretation of the simulation results, specifically regarding the systematic uncertainties, in the 
dosimetry, risk assessment and optimization studies recommended by the international guidelines.
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Unfortunately, it is not possible to encompass all the conclusions of this work in a single result 
due to the large variety of parameters and quantities (e.g. x-ray spectrum, breast characteristics, 
MGD, Kair, DgN, etc.) involved. However, since the DgN and MGD are the most used quantities in 
breast dosimetry studies, our results highlight that for conventional x-ray spectra employed in 
mammography differences of up to 2.5% appear in the DgN values calculated with the renormalized 
and unnormalized databases. The present simulations were carried out with the PENELOPE MC 
code, but similar findings are anticipated if other codes were employed that offer (or might offer in 
the future) to choose between renormalized and unnormalized photoelectric cross sections.
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ABSTRACT 

 

This work proposes to use Artificial Neural Networks (ANN) for the regression of dosimetric quantities 
employed in mammography. The data were generated by Monte Carlo simulations using a modified 
and validated version of PENELOPE (v. 2014) + penEasy (v. 2015) code. A breast model of 
homogeneous mixture of adipose and glandular tissue was adopted. The ANN were constructed 
with Keras and scikit-learn libraries for Mean Glandular Dose (MGD) and air kerma (Kair) regressions, 
respectively. In total, seven parameters were considered, including the incident photon energies 
(from 8.25 to 48.75 keV), the breast geometry, breast glandularity and Kair acquisition geometry. Two 
ensembles of 5 ANN networks each were formed to calculate MGD and Kair. The Normalized 
Glandular Dose coefficients (DgN) are calculated by the ratio of the ensembles outputs for MGD and 
Kair. Polyenergetic DgN values were calculated weighting monoenergetic values by the spectra bin 
probabilities. The results indicated a very good ANN prediction performance when compared to the 
validation data, with median errors on the order of the average simulation uncertainties ( 0.2%). 
Moreover, the predicted DgN values compared with works previously published were in good 
agreement, with mean(maximum) differences up to 2.2(9.4)%. Therefore, it was showed that ANN 
could be a complementary or alternative technique to tables, parametric equations and polynomial 
fits to estimate DgN values obtained via MC simulations.

Key words: Mammography; Dosimetry; Glandular Dose; Monte Carlo; Machine Learning; Neural 
Networks 
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1. Introduction 

The exposure of the breast to ionizing radiation in mammography and other advanced breast 
imaging techniques has led the development of several dosimetric protocols among the years 
(Dance et al 1999, Dance and Sechopoulos 2016). Nowadays, the mean glandular dose (MGD) is 
the standard quantity for dosimetric studies in breast imaging, being employed in quality controls 
and risk assessment routines (Dance and Sechopoulos 2016). The MGD can be derived by the 
product of the air kerma (Kair), which is usually obtained experimentally, and conversion factors, 
calculated via Monte Carlo simulations (Wu et al 1991, 1994, Dance 1990, Boone 1999). These 
conversion factors, called Normalized Glandular Dose (DgN), are dependent on several parameters, 
including the exposure geometry, beam quality and breast characteristics (Boone 1999). 
Additionally, the DgN values for a given group of parameters are usually published in tables (Wu et 
al 1991, Boone 1999, Nosratieh et al 2015, Dance 1990, Dance et al 2000, 2009), or can be 
computed using parametric equations (Sobol and Wu 1997, Dance 1990) or fit equations (Boone 
2002, Sarno et al 2019). From these approaches, DgN values can be directly calculated without the 
necessity of reperforming the simulations.  

The anode/filter combination, tube potential and half-value layer are factors that strongly influences 
the incident x-ray spectra and, consequently, the DgN values (Wu et al 1991). Therefore, the 
published DgN values need to cover a variety of mammography x-ray spectra. The polyenergetic 
DgN can be directly obtained simulating a polyenergetic mammography spectra or can be calculated 
via monoenergetic DgN weighted by the spectra probabilities (Boone 2002). The DgN values also 
depends on the breast characteristics, dictated by breast composition (Wu et al 1991, Boone 1999, 
Dance 1990, Sarno et al 2019), thickness (Wu et al 1991, Boone 1999, Dance 1990, Sarno et al 
2019), radius (Boone 2002), and thickness of the skin layer (Boone 1999, Massera and Tomal 2018, 
Huang et al 2008). Although recent studies showed an overall overestimation of the dose compared 
to anthropomorphic breast models (Sechopoulos et al 2012, Hernandez et al 2015), the 
homogeneous adipose-glandular mixture model is still used for model comparison studies, and 
quality control routines (Dance and Sechopoulos 2016). Additionally, the geometry for air kerma 
estimation must be considered because it also influences the DgN values (Dance et al 2009, Sarno 
et al 2017b), as showed by the effect of the compression paddle to the ionization chamber distance 
(Dance et al 2009).  

The DgN values published in previous works relies from the previous cited parameters implemented 
in the MGD and Kair simulations. Considering the possible combinations derived from the 
parameters, this becomes a high-dimensional problem. In practice, only a limited number of 
parameters and specific values ranges were studied. For example, fixing the breast radius and skin 
thickness to a constant value (Boone 2002). Another difficult arises on how to represent the DgN 
results, as tables, parametric equations or other methods. If the number of parameters combinations 
is high, it could be impractical to share it in table form. Or if the results are in parametric equations, 
it could be difficult to add more parameters in future works without remodeling the previously 
published equations. Moreover, in some cases, interpolations and extrapolations are implemented 
to calculate DgN values, respectively, between or outside published intervals. Care must be taken 
with these approaches since they can introduce significant deviations (Wilkinson and Heggie 2000, 
Sobol and Wu 1997). Consequently, a method that could handle efficiently a large number of 
parameters is desirable, with interpolations errors as low as possible. 

Recently, machine learning techniques have been used for different applications on medical physics 
(Litjens et al 2017). These applications includes mammography and related imaging techniques (Lee 
and Nishikawa 2018, Ma et al 2019, Samala et al 2017, Caballo et al 2018b, Sechopoulos and Mann 
2020). Among its capabilities, machine learning algorithms have been used for automated 
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segmentation of the breast tissues and aiding in the detection of malignant lesions. More specifically, 
Artificial Neural Networks, a type of machine learning algorithm, was used to estimate the MGD for 
W/Rh spectra with varying breast thicknesses and compositions (Erguzel et al 2018). One drawback 
that difficulties the ANN in some applications is the lack of data for training, validation and testing. 
On the other hand, for the homogeneous breast geometry, it is now possible to generate a large 
enough database with Monte Carlo simulations in a reasonable amount of time due to the advance 
of computer hardware and computation parallelism. Therefore, the ANN and other Machine Learning 
techniques were successfully employed in different complex tasks in the medical physics area, 
including mammography. 

This work proposes the use ANN to estimate the Normalized Glandular Doses coefficients for 
homogeneous breasts models considering different parameters as inputs: x-ray beam energy, breast 
thickness and radius, glandularity, skin thickness, adipose shielding thickness and compression 
plate ionization chamber distance. For this, a modified and validated PENELOPE + penEasy Monte 
Carlo code was employed with a Python script for automatization of the simulation setup and output 
storage. Afterwards, ANN were trained with the simulation results for MGD, Kair for DgN predictions.  

  

2. Materials and methods 

2.1.1 Monte Carlo Code 

The PENELOPE code (version 2014) (Salvat 2015) with a modified and validated penEasy extension 
(v. 2015) (Sempau et al 2011), as a main program was employed. Moreover, a Python script was 
written to automatize the simulations. More details about the code and validations can be seen on 
the reference (Massera and Tomal 2018). For each evaluated parameter (beam energy, breast 
characteristics and irradiation geometry), two independent simulations were performed in order to 
determine the MGD and the Kair. Only photons were simulated, with a cutoff energy of 1 keV. The 
electrons were considered locally deposited. The simulations were stopped when one of the following 
conditions were achieved: the statistical uncertainties were on the order of 0.5% (considering 2 
standard deviations); the maximum number of simulated particles or the maximum simulation time 
were reached. Following all these conditions, the uncertainties were never higher than 1%, as 
commented in Section 3.1. The average simulation speed 5 histories per 
second per thread, requiring a few minutes to complete, considering the three used personal 
computers (processor, base clock in GHz, cores/threads): (i) AMD Ryzen 1700X (@3.6 GHz, 8/16), 
(ii) AMD Ryzen 2700 (@3.2 GHz, 8/16), (iii) Intel Core i7 7700 (@3.6 GHz, 4/8). For the MGD 
simulation, the uncertainty was estimated with the history-by-history method and for the Kair with the 
batch method (4 identical simulations with independent seeds) (Badal and Sempau 2006, 
Sechopoulos et al 2018). The breast glandular, adipose and skin tissue compositions were extracted 
from Hammerstein et al. (Hammerstein et al 1979), while the other material compositions were taken 
from NIST databased (Berger et al 2010). The cross sections were computed by the PENELOPE 
MC code (Salvat 2015). 

 

2.1.2 Geometry 

The simulated geometry was based on a planar mammography examination, representing a 
craniocaudal (CC) projection (Sechopoulos et al 2015). The included features depend on the output 
quantity of the simulation (MGD or Kair). The geometry is described as follow: a point source 
collimated within 4 edges of an ideal detector with 30 x 24 cm² area. The source emits monoenergetic 
photons from 8.25 to 48.75 keV (0.5 step), and the heel effect was not considered. For the MGD 
calculations, it was included: a block of water (30 x 17 x 30 cm³) which mimics the patient body; the 
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compression and support plates (PMMA, 30 x 24 x 0.2 cm³). The source distance to detector is 
66 cm and the source distance to the breast support plate is 64.5 cm. The breast is located between 
the plates and is shaped as a semicylinder with varying radius and thickness. The inner section of 
the breast is composed of a homogeneous mixture of glandular and adipose tissues in different 
weight fractions (glandularity, fg). A layer of skin or adipose tissue from 0 to 5 mm thick surrounds 
the mixture, except the contact area between the breast and the body. We also included the 
combination of 1.45 mm skin plus 2 mm adipose (Sarno et al 2017a). For the Kair calculations, only 
the compression plate was present, and an air cylinder (2 cm radius, 0.2 mm in height) was included, 
simulating an ionization chamber. The top of the air-cylinder was in all the cases aligned with the 
breast entrance plane. The compression plate was raised to a distance (called Compression plate - 
Ion chamber distance - CPCD) that ranged from 0 to 40 cm to the top of the air cylinder. In the 
simulations, the world is filled with air. Figure 1 shows the out of scale geometry for both cases.  

 

 
Figure 1. Illustration of the simulated geometries (out of scale) for calculating the quantities: (a) MGD and (b) 
Kair. 

 
Table 1 shows the summary of the parameters used in the simulations and, when applied, where 
the information was retrieved. The first batch of simulations were performed with a fixed spaced 
parameter grid. Afterwards, new simulations were performed at low energies, where the ANN training 
proved to be more difficult to converge, the maximum interval value between the parameters is 
described in table 1. 
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Table 1. Summary of the parameters considered in the simulations, the value range when applicable. 

Parameter  Description Value-range if applicable 
(maximum interval 
between values) 

MGD, Kair or 
both 

SDD (source detector 
distance) 

Distance from x-ray 
source to the detector 

66 cm  Both 

Field size  X-ray field size at the 
detector  

24 x 30 cm Both 

Photon energy beam Initial photon energy 8.25  48.75 keV (0.5 keV) Both 
Breast thickness The height of the 

compressed breast 
2  11 cm (1 cm) Both 

Breast radius The radius of the 
compressed breast 

6  12 cm (2 cm) MGD 

Breast glandularity (fg) The glandular mass 
fraction of the 
homogeneous mixture 

0  1 (0.3) MGD 

Breast skin thickness The skin layer that 
surrounds the 
homogeneous mixture 

0  5 mm 
*also used 1.45 mm skin + 2 
mm adipose (Sarno et al 
2017a) (1) 

MGD 

Breast adipose shielding 
thickness 

The adipose layer that 
surrounds the 
homogeneous mixture 

0 - 5mm 
*also used 1.45 mm skin + 2 
mm adipose (1) 

MGD 

Compression plate-
ionization chamber 
distance (CPCD) 

Distance from the top of 
the air cylinder to the 
bottom of the 
compression plate 

0  40 cm (10 cm) Kair 

 
2.1.3 Mean Glandular Dose and Air Kerma Computations 

The energy deposited in glandular tissue (Egland) was determined by weighting the energy deposited 
in the homogeneous breast mixture (Edep), interaction-by-interaction (Wilkinson and Heggie 2001), 
by the G factor, as described in equation (1) (Boone 1999). 

    (1) 

Where is the energy deposited in the homogeneous mixture per interaction i obtained via MC 

simulation,  is the mass absorption coefficient for glandular (g) and adipose (a) tissues; fg 
is the glandular fraction. 

The MGD was calculated by equation (2). 

                                             (2) 

Where R and t are the breast radius and thickness, respectively;  is the skin plus adipose shielding 
thickness;  is the homogeneous mixture density and N the total number of histories simulated.  

The Kair was calculated by the ratio between the total energy transferred to the charged particles in 
the air cylinder and its mass. Finally, the Normalized Glandular Dose (DgN) was calculated with the 
ratio MGD/ Kair. The DgN for polyenergetic beams were obtained by averaging the monoenergetic 
MGD and Kair  with the respective probability spectra (Boone 2002, Sarno et al 2019) according to 
equation (3).  
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                                                                                                             (3) 

Where  is the spectra fluence in a given energy bin (E) equal to 0.5 keV. The raw spectra were 
obtained from MASMICS, TASMICS and RASMICS programs (Hernandez et al 2017), and filtered 
afterwards with NIST-XCOM attenuation coefficient data (Berger et al 2010). A variance reduction 
technique named Interaction Forcing (Sempau et al 2011) with a value of 1000 was used for the Kair 
simulations to speed-up the data acquisition without biasing the results.  

 
2.2.1 Artificial Neural Networks Implementation 

Python (v. 3) scripts were developed to train and test the Artificial Neural Networks (ANN) for the 
regression of MGD and Kair. For the MGD, the ANN were constructed with Keras (v. 2.2.4) (Chollet 
and Others 2015) library plus TensorFlow (v. 1.12) (Abadi et al 2016) as backend. Keras was chosen 
since it is a well stablished library for Neural Networks implementations and allows the use of GPU 
for a faster training. For the Kair, the selected library was scikit-learn (0.21.1) (Pedregosa et al 2011), 
another well documented library with machine learning implementations, but does not support GPU 
training. However, the Kair ANN were quite simple and can be trained relatively fast in a CPU. 
Moreover, scikit-learn provides preprocessing and data selection tools to facilitate the ANN 
implementations. For MGD and Kair, feed-forward ANN were employed using Keras Dense layers 
and scikit-learn MLPRegressor, respectively. Table 2 describes the features and regression 
quantities considered in the ANN. 

 
Table 2. Summary of the features used for training the ANN.  

ANN Type & Regression Quantity MGD Kair 
Photon Energy  1. Monoenergetic 1. Monoenergetic  

Breast Characteristics  2. Breast thickness 
3. Breast radius 

4. Breast composition 
5. Skin thickness 

6. Adipose thickness 

2. Breast thickness 
 

Irradiation Geometry  3. CPCD  

 

2.2.2 Training, Validation and Test Processes 

The ANN consists of a set of neurons, more particularly in this case the Multi-Layer Perceptron 
(MLP), divided in three types of layers (Murtagh 1991). The artificial neuron is a mathematical 
function 

are responsible to receive the parameters of the problem in question, named features, and to 
propagate to another layers. In this case, the MGD or Kair features used for training the respective 
ANN, as detailed in Table2. The middle, known as hidden layers (there could be one or more) are 
responsible for the learning process: they receive the information from the previous layer and by 
applying the weights, the information is modified and passed to the next layer. Finally, the output 
layer converges the information from the intermediate layers to form the output (label), in this case, 
the MGD or Kair numerical values. The ANN architecture implemented in this work is the fully-
connected feed-forward neural network, i.e. each neuron from the previous layer are connected to 
the subsequent layer, and the information passes within one direction, starting from the input and 
ending in the output. The ANN usually starts with neurons with randomly assigned weights. The 
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backpropagation (LeCun 1988), to minimize the differences between the label in the dataset, and 
the output value calculated by the ANN. For this, it is crucial to separate the dataset between the 
training, validation and test samples. The training sample is used to update the weights of the ANN 
in each interaction, until the error reaches a certain threshold, or the maximum number of interactions 
is surpassed. The validation samples guarantee that there is no overfitting during the training phase, 
and they are presented after each epoch to verify the ANN performance. Finally, the test samples 
are presented only after the ANN is fully trained and ensembled, and they are used to verify the 
generality of the ANN to novel data. Following all those steps, it is necessary to guarantee the optimal 
performance of the ANN. For this, the ANN hyperparameters must be tailored for each specific 
problem. For example, finding the best activation functions, best number of neurons and hidden 
layer, batch size, error metric, learning algorithm, which will be discussed in section 3.2. 

From the total data acquired with MC simulations (4,181 for Kair and 262,222 for MGD) as described 
in section 2.1, 80% were randomly selected for training and validating, while the remaining 20% were 
dedicated for testing. Before the ANN training, data preprocessing was applied on the simulation 
results as following: for both MGD and Kair the features where scaled between 0 to 1 (from scikit-
learn MinMax and Standard transform, respectively). Moreover, for the MGD and Kair, the labels were 
divided by the minimum value (MinNorm). The optimal hyperparameters were found using a search 
grid and selecting the models that produced the smallest errors for the training, validation and testing 
steps. For this, the absolute percentage error (APE) was considered as a performance metric and is 
calculated by equation (4). 

                                             (4) 

Where ylabel/ANN is the ith element for the label or ANN regression value. For evaluating the 
performance of the ANN, we considered the following metrics for the dataset: (1) mean APE; (2) 
median APE; (3) 70% and (4) 90% percentiles APE, which is the average of the highest APEs in 
those intervals;  (5) maximum APE; (6) 100 outliers APE, which is the average APE of the 100 
highest errors. A geometric mean ( g) was calculated to encompass the 6 previous metrics, which 
is given by equation (5).   

                                                                  (5) 

Where  represents each one of the six APE metrics previous defined. To account for the test 
and validation data, the final metric was calculated by equation (6). 

(6) 

The metric  is employed to select the best performing ANN for a given set of hyperparameters 
selected from the original hyperparameters grid. Once the hyperparameters were defined, a 5 k-fold 
cross validation was performed in the 80% of the training data yielding two ANN ensembles of 5 
trained networks, one for MGD and other for Kair. During the ensemble training, the labels were 
sampled by a normal distribution, centered at the label value with a standard deviation equal to it 
uncertainty. This ensured a variation of the data during the k-fold training, incorporating the label 
uncertainty acquired using Monte Carlo simulations. Figure 2 illustrate the scheme implemented in 
this work. 
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Figure 2. ANN framework implemented in this work for training and validation. 

 
The results expressed in this work, if not explicitly indicated, corresponds to the mean and standard-
deviation output of the ensembles. This method allows an approximate estimation of the ANN 
uncertainty over the predicted values. Besides, the early-stopping technique was implemented for 
the MGD training (patience=5, i.e. maximum number of consecutive tries without improvement) to 
prevent overfitting.  

To calculate the relative DgN values between samples, the convention of equation (7) was used. 

                                             (7) 

 

3. Results  

3.1 Simulation Results 

Figure 3 summarize the results of the simulations for MGD and Kair for all parameters evaluated, 
which are described in table 2. In figure 3(a), the histograms are normalized to have area equal to 
one. In general, the MGD presented values below 2x10-12 mGy/history, in contrast to Kair values, with 
values up to 6x10-12 mGy/history. The MGD and Kair distributions are attributed to the influence of 
the parameters, including the beam energy, the geometric and breast thickness, radius and 
composition. The label distribution was analyzed before the machine learning process to verify if 
there are any discontinuities in the dataset or unbalanced data distribution that could bias the ANN 
training. In this study, as shown in 3(a), both MGD and Kair have a continuous and relatively even 
distributed values. Therefore, no correction technique was applied in the datasets. Figure 3(b) shows 
the uncertainty distribution of the simulated MGD and Kair values. The errors derived from the 
simulation are below 1% for both cases, with a median of 0.21% and 0.22% for MGD and Kair, 
respectively, as indicated with a horizontal bar inside the boxes. The boxes lower and upper limits 
represent the first and third quartiles. Moreover, as indicated in figure 3(b) the whiskers represent 
the 99% intervals and shows that the uncertainties were below 0.4% and 0.7% for MGD and Kair, 
respectively. The simulation uncertainty could be one of the indicators to benchmark the ANN 
performance. It is expected that during training, the ANN prediction errors are in the order of the 
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simulation uncertainties. If the prediction errors are much smaller than the uncertainties, it could 
suggest an overfitting behavior, i.e. the ANN is learning the error pattern and not the actual desired 
values.  

 
Figure 3. (a) Value distribution for MGD and Kair. (b) Boxplot of the uncertainty distribution for MGD and Kair, 

centerline: median, lower and upper box edges: first and third quartiles. Whiskers: 1% and 99% percentiles. 
The dashed line indicates the 0.25% uncertainty value. Circles: outliers. 

 

3.2 Optimal ANN hyperparameters 

Table 3 summarizes the optimal hyperparameters for the MGD and Kair ANN obtained after a 
thoughtful search in the hyperparameters grid and using the metric determined by equation (6). 
Appendix A1 contains an explanation of each hyperparameter, meanwhile appendix A2 shows the 
influence of different ANN hyperparameters over the training performance. It is observed that the 
parameters are different for each ANN type. In general, the ANN for MGD regression were more 
complex, as expected due to the higher number of parameters and bigger dataset. 
 

Table 3. Optimal parameters found for the ANN after the search grid. 

 MGD Kair 
Parameter Name Value Value 
Number of Neurons 500 20 
Number of Hidden Layers 3 2 
Activation Function RELU TanH 
Feature Scaler MinMax Standard 
Label Scaler MinNorm MinNorm 
Loss Function MAPE MSE 
Optimizer ADAM Lbfgs 
Learning Rate 10-3 N/A 
Decay 10-4 N/A 
Activity Regularizer L2: 10-4 L2: 10-5 
Batch Size 250 N/A 
Max Epochs 500 N/A 
Tolerance N/A 10-5

Max Iteration N/A 103
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Figure 4 shows the error distribution for training and validation processes for (a) MGD and (b) Kair. 
However, the performance of the ANN could vary due the selected training and validation sample 
populations and the initial random activation weights. Considering this, the process was repeated at 
least 40 times with independent seeds, measuring the mean and standard deviation of the population 
results, which are described in table 4. The maxima errors - mean(std) - obtained were 5(1)% and 
3(1)% for MGD ANN validation and test, respectively. Although most of the highest errors belong to 
lower energies (below 8.75 keV) which represents the lowest DgN contribution for polyenergetic 
mammography spectra. Observing the whiskers in figure 4, the 1% to 99% intervals are contained 
within a relative error below 2% for MGD and 1% for Kair. The errors of the testing process were 
slightly below the validation errors, indicating that the use of 5 ANNs as an ensemble could predict 
unknown values more precisely than an individual ANN. Moreover, the ensemble was less prone to 
outlier errors, as seen in table 4. 

 
Figure 4. Boxplot of the relative error distributions for the ANN validation and testing processes for (a) MGD 
and (b) Kair, respectively. Centerline: median, lower and upper box edges: first and third quartiles. Whiskers: 
1% and 99% percentiles.  Circles: outliers. Results obtained with the addiction of normal sampled noise. 

 
Table 4. Relative percent prediction errors (in %) for the ANN regressors, for validation and testing processes. 
Results are shown as mean (standard deviation) over 40 measurements with independent seeds. The outliers 
represent the average of the 100 highest APE values. Results obtained with the addiction of normal sampled 
noise. 

 Validation Test 
ANN 
Type 

Median Std. Dev. Outliers Max.Error Median Std. Dev. Outliers Max.Error 

MGD 0.23(1) 0.27(2) 3.1(6) 5(1) 0.16(1) 0.17(1) 1.3(2) 3(1) 
Kair 0.15(1) 0.21(3) 0.9(1) 1.7(4) 0.15(1) 0.18(3) 0.6(1) 1.6(2) 

 

3.3 The additional noise influence over training and testing 

We compared the ANN performance without and with the addition of the gaussian noise over the 
training data. The results for the median APE are shown in figure 5 for (a) MGD and (b) Kair, 
respectively, for the other metrics (not shown) there was a similar trend. As expected, the inclusion 
of the noise provided an increase in the validation and test errors, in the order of 0.02% for the 
median, since there is a penalty proportionally with the simulation uncertainty. This method provides 
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a penalization for the training reducing the likelihood of overfitting. Moreover, it propagates the data 
uncertainty over the ensemble, allowing a more accurate error estimation when the ANN is trained.  

 
Figure 5. Boxplot of the relative error distributions of the median for the ANN validation and testing processes 
for (a) MGD and (b) Kair, respectively. Centerline: median, lower and upper box edges: first and third quartiles. 
Whiskers: 1% and 99% percentiles. Circles: outliers. 

 

3.4 ANN regressions for monoenergetic energies  

Figure 6 shows the relative DgN as function of the breast (a) radius and (b) thickness for different 
photon energies. The relative DgN represents the DgN values normalized by the leftmost value of 
each curve. On the right of each curve the conversion factor for computing the absolute values of 
DgN is provided. The DgN is almost independent of the breast radius for photons with energies of 
20 keV. On the other hand, for lower and higher energies the DgN has a variation up to 10% with 
the breast radius. As expected, the DgN decreases with breast thickness due to the photon 
exponential attenuation and glandular volume increasing (Cunha et al 2010). 

 
Figure 6. Relative DgN as function of breast (a) radius and (b) thickness for different photon energies, 
normalized by the value for the lowest (a) breast radius and (b) thickness. Therefore, the absolute DgN values 
can be obtained by multiplying the relative values by the number on the right of each curve. The Relative DgN 
values were calculated for the following parameters: (a) Breast 5 cm thick, 20% glandular; (b) Breast 10 cm 
radius, 20% glandular. CPCD = 0 cm.  
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The DgN variation with the breast model in terms of skin and adipose thickness is shown in figure 7, 
considering as reference (a) 1.45 mm skin and (b) 0 mm adipose, respectively. The predicted values 
for 5 mm skin are in good agreement with the work of Sarno et al. (Sarno et al 2017a) as shown in 
figure 7(a), with differences smaller than 1.8%. In figure 7(b), the DgN is lower as the adipose 
thickness increases for energies below 25 keV, for higher energies the DgN increases slightly with 
the adipose thickness. The contribution of the thickness of the breast shielding layer over the DgN 
values becomes less important as the incident photon energy increases.  
 

  
Figure 7. (a) Relative DgN differences as function of the photon energy for various skin thickness. Reference 
skin thickness: 1.45 mm. Values from Sarno et al. (Sarno et al 2017a) were also included for comparison. (b) 
Relative DgN differences as function of the energy for various adipose thickness. Reference adipose thickness: 
0 mm. Both cases: 5 cm breast, 20% glandular. Graphs are in symbolic logarithm scale, with a linear interval 
between -1% to 1%. 

 
The DgN as function of the breast glandularity is shown in figure 8(a), where DgN values are lower 
for denser breasts. This behavior is more evident for lower photon energies. Figure 8(b) shows the 
relation between DgN and CPCD, with the DgN increasing with increasing CPCD. This behavior is 
explained by the lower number of scattered photons from the compression plate that can reach the 
ionization chamber. In figure 8(b), this effect is dependent on the energy, since the cross section of 
the incoherent scattering increases with increasing energy for the mammographic energy range. In 
both cases, the relative DgN represents the DgN values normalized by the leftmost value of each 
curve. 
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Figure 8. Relative DgN for different photon energies as function of: (a) the breast glandularity, and (b) the 
CPCD. Therefore, the absolute DgN values can be obtained by multiplying the relative values by the number 
on the right of each curve. Both cases: 5 cm breast, 1.45 mm skin thickness.  

 

3.5 Implementation for Polyenergetic Spectra 

The ANN performance was investigated over polyenergetic spectra, employing the weighting 
described in section 2. For this, the ANN input parameters were matched as close as possible from 
the works of Nosratieh et al. (Nosratieh et al 2015) and Dance et al. (Dance 1990, Dance et al 2000, 
2009) in order to generate values for comparison. The comparison between the results of this work 
with the reference values is showed in figure 9. A good agreement was achieved for both cases with 
mean (maxima) differences of 1.7(3.5)% and 2.2(9.4)% for Nosratieh et al. and Dance et al. 
(Nosratieh et al 2015, Dance 1990, Dance et al 2000, 2009), respectively. 
 

 
Figure 9. Comparison of the ANN calculated DgN with the works of (a) Nosratieh et al. (Nosratieh et al 2015) 
and (b) Dance et al. (Dance 1990, Dance et al 2000, 2009). 

 
The influence of each parameter over the DgN was evaluated using a random sampling on the 
parameter space. For each variable, 1000 DgN samples were selected as the control group. 
Afterwards, these values were compared with new ones randomly sampled. For this, we calculated 
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the relative difference between the DgN values from the control group and the newly sampled values 
(equation 7). This process was repeated 4 times for each variable to calculate the mean and standard 
deviation of the variations. Figure 10 shows the relative DgN difference of the samples compared to 
control data obtained with this procedure as function of the sorted parameter.  

 
Figure 10. DgN relative difference between the control and sampled groups following the convention used in 
equation (7), for each   parameter the intervals of the median and 90 percentile are displayed and sorted 

The error bars describe the standard variations after 4 
repetitions.  

 

3.6 Graphical Interface Implementations 

A Python script was written using the Jupyter (Kluyver et al 2016) package to provide a graphical 
user interface for achieve the DgN estimations via ANN. Figure 11 shows an example of the ANN 
implementation in this environment, where the user can select the values for each variable and the 
program returns the DgN values in the desired energy range. The program works for monoenergetic 
and polyenergetic spectra produced by different anode/filter combinations. Moreover, the code can 
be modified to include other anode and filter materials. 

 
Figure 11. Example of implementation of the ANN to calculate DgN values for the user using a Jupyter 
script. 
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4. Discussion 

According to the results, the ANN showed an overall good performance over the predicted values to 
calculate MGD, Kair and consequently, DgN values. However, there are still the presence of outliers, 
with errors in the order of 3(1)%. Nevertheless, these values are observed for very low energies and 
have a small significance over a polyenergetic spectrum implemented in mammography. It is worth 
to mention that the minimal energy studied in this work is 8.25 keV, which is a threshold for a 
conventional mammography spectrum where the probabilities become significant. For a Mo/Mo 28 
kV and W/Rh 22 kV x-ray spectra, the cumulative probability for energies below 8.25 keV is 
negligible, being in the order of 0.3% and 0.15%, respectively. If there is an interest to study an 
alternative spectrum with less filtration, this effect can be more relevant. From our studies, for an 
extreme case of an unfiltered spectra, errors in the order of 5% were observed (results not included). 
Training the ANN algorithms with energies below 8 keV could be difficult due to the drastic reduction 
of the MGD values, as consequence of the low number of photons that can reach the homogeneous 
tissue without being absorbed by the skin, air or the compression plate. Besides the photon energy 
of the spectrum, the breast thickness has a large influence in DgN values (section 3.4) due to the 
depth dose curves (Cunha et al 2010), and the acquisition geometry (the reference of Kair changes 
with breast thickness). 

A significant database size (over 200,000 values) was necessary to train the ANN to result in an 
acceptable performance, which could be a disadvantage for small datasets, when compared to other 
common employed techniques for DgN estimations, like parametric equations. However, when the 
number of parameters is sufficiently large, the ANN could be an automated alternative over the other 
techniques, since their use would be extremely complex or impractical. Additionally, most previous 
works focus on a specific breast model (e.g. a constant skin thickness, or breast radius) (Wu et al 
1991, Boone 1999, Dance 1990), while the ANN method allowed the inclusion of more parameters. 
This characteristic could be an advantage considering recent studies of more complex and realistic 
breast models for dosimetric calculations (Sechopoulos et al 2016, Hernandez et al 2015, 
Sechopoulos et al 2012). 

Therefore, this setup allows the study of different parameters combinations and their influence over 
the DgN. Once trained, the ANN can be easily implemented in different frameworks to calculate DgN 
values for the final users, as shown in section 3.6. The script shown in this section was intended to 
cover the most common parameters and their value range employed in breast dosimetry, and 
consequently is limited to these options and parameters range. The data augmentation with gaussian 
noise guaranteed a penalization proportional to the MC uncertainty, allowing a more generalized 
model. However, if the uncertainties are extremely small, the addition of the noise becomes 
irrelevant. 

The input ANN parameters were selected from those commonly considered in DgN calculations: 
breast thickness, composition and beam quality. Additionally, the skin and adipose tissue 
thicknesses were included, considering their influence over the DgN as pointed out in previous 
studies (Sarno et al 2017a, Huang et al 2008, Massera and Tomal 2018). This work also 
implemented the breast radius, although its influence is less noticeable than other parameters. The 
air kerma acquisition geometry, which can also influence the DgN final values was included by 
varying the compression plate and ionization chamber distance, and the results are in agreement 
with published results (Dance et al 2009). Considering the breast characteristics and the geometry 
parameters, the ANN implementation allows the conversion between different acquisition protocols 
without performing new MC simulations. For example, it is possible to calculate in this setup the ratio 
between the DgN using a breast with 5 mm adipose shield layer and a compression plate in contact 
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with the chamber and a 4 mm skin or 1.45 mm skin and the compression plate not in contact with 
the chamber. This could be helpful in an experimental measurement, where the phantom has very 
specific characteristics, and a comparison with other models is needed. With few modifications, the 
ANN approach could be extended to link with current adopted dosimetry protocols and new ones 
that are currently in development (AAPM Task Group No. 282 - Development of a new universal 
breast dosimetry method) (Sechopoulos et al 2016). 

This work focused on a homogeneous breast model, which is not recommended for patient-specific 
applications. Several works applied machine learning for breast imaging techniques in 
anthropomorphic models or real images (Lee and Nishikawa 2018, Caballo et al 2018a), including 
tissue segmentation tasks and to increase the model resolution (Caballo et al 2018b). Thus, the ANN 
could be employed in the future for the estimation of DgN coefficients in anthropomorphic phantoms. 
A major difficult is to acquire a relatively large dataset for training and validation. However, with the 
recent advances in computer generated realistic phantoms and the increasing in simulation 
performance this could be possible. 

 

5. Conclusions 

This work shows that artificial neural networks can be employed in DgN regressions trained via MC 
generated data. The ANN successfully learned the complex pattern involved between DgN and the 
different input parameters, being an efficient method to convert DgN values between different 
acquisition protocols. The ANN could be an alternative or a complementation to other techniques, 
such as tables, parametric equations and polynomial fits for DgN estimation. Moreover, the inclusion 
of new parameters in the future studies is straightforward using the ANN approach discussed in this 
work. The database, the trained ANN and the training scripts are available in the following repository: 
https://github.com/rtmass/ANNDgN for those interested. The scripts can be used to generate DgN 
values for traditional mammography spectra, for digital breast tomosynthesis  and also for contrast-
enhanced mammography. Future works could consider the heel effect and other parameters that 
can influence the DgN values to extend the ANN parameter space, besides to study of ANN to 
estimate DgN values for anthropomorphic breast phantoms.  
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Appendix 

A.1 Additional information regarding the ANN parameters 

This appendix gives more details about the ANN parameters cited in Table 3. 

Table A1. ANN parameters definition employed in this work. More information can be found in the 
documentation of Scikit-learn (Pedregosa et al 2011) and Keras (Chollet and Others 2015).  
 
Parameter Name Explanation 
Number of Neurons The number of neurons in each hidden layer 
Number of Hidden Layers Number of layers that are between the input and output layer. 
Activation Function The type of the function (f(x)) that will be implemented in the neurons. 

In this case, hyperbolic tangent (Tanh) or rectified linear unit (RELU). 
Feature Scaler Specifies how the feature values will be scaled. MinNorm: the values 

are normalized and scaled between 0 and 1. Standard: Similar to 
MinNorm, but the standard deviation of the labels is also modified. 

Label Scaler Specifies how the label values will be scaled. It works similar to Feature 
Scaler. 

Loss Function Specifies which metric will be used to quantify the loss in the training. 
In this case, the Mean Absolute Percentage Error (MAPE) and Mean 
Squared Error (MSE). 

Optimizer The algorithm that is used in the training process of the ANN. In this 
case, Lbfgs or ADAM. 

Learning Rate This parameter determines how fast the training converges. High 
learning rates tends to faster trainings, but with the risk of not correctly 
converging. 

Decay The reduction of the learning rate after each batch.  
Activity Regularizer Parameter that introduces a penalty in the ANN to avoid overfitting and 

helping in generalization. In this case, the L2 method is used. 
Batch Size The number of samples presented in each interaction during the 

training process. 
Max Epochs The maximum number of repetitions of the training data. 
Tolerance Value that is considered acceptable to stop the training process. 
Max Iteration Maximum number of interactions. 

 
 

A.2 Training performance as function of ANN hyperparameters 

This appendix presents some hyperparameters of the ANN and their relationship with the training 
performance.  

Figure A.2.1 shows the Training Loss as function of the epoch number for different ANN topologies 
for (a) MGD and (b) Kair. The improvement factor achieved by increasing the complexity of ANN 
reaches a plateau for ANN with more than the number of neurons and hidden layers shown in figure 
A.2.1.  

Figure A.2.2 shows the training loss as function of the epoch number for different activation functions 
for (a) MGD and (b) Kair. This case in particular shows that the best activation function varies with 
the application. While for MGD the RELU and Sigmoid functions had an overall good performance, 
for Kair the hyperbolic tangent was the optimal one. 

Figure A.2.3 shows the training loss as function of the epoch number for (a) MGD and (b) Kair, 
computed for different Learning rate and L2 penalty factor, respectively. Higher learning rates 
produce a faster convergence, but it does not guarantee a good fitting. On the other hand, low 
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learning rates require a large number of epochs. The L2 penalty factor plays an important role during 
training to prevent overfitting, as seen in (b). However, this value must be adequate with the 
application, if inappropriate, it prevents am optimal convergence. 

 

 

Figure A.2.1. Performance of the ANN as function of the epoch number measured by the training loss, for 
different number of hidden layers and the number of neurons on each layer for (a) MGD and (b) Kair. The 
notation follows the standard: X-Y-Z, meaning 3 hidden layers with X neurons on the first one, Y on the second 
and Z on the third. 

 

Figure A.2.2. Performance of the ANN as function of the activation function for (a) MGD and (b) Kair. 
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Figure A.2.3. Performance of the: (a) MGD ANN as function of the epoch number measured by the training 
loss, for different learning rate values; and (b) Kair ANN as function of the epoch number measured by the 
training loss, for different L2 penalty factors. 

 

References 

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M, 
Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, 
Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, 
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, 
Wattenberg M, Wicke M, Yu Y and Zheng X 2016 TensorFlow: Large-Scale Machine Learning on 
Heterogeneous Distributed Systems Online: http://arxiv.org/abs/1603.04467 

Badal A and Sempau J 2006 A package of Linux scripts for the parallelization of Monte Carlo simulations 
Comput. Phys. Commun. 175 440 50 Online: 
https://www.sciencedirect.com/science/article/pii/S001046550600230X 

Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S and Olsen K 2010 
Tables of X-Ray Mass XCOM: Photon Cross Sections Database. National Institute of Standards and 
Technology (NIST) Online: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients 

Boone J M 1999 Glandular Breast Dose for Monoenergetic and High-Energy X-ray Beams: Monte Carlo 
Assessment Radiology 213 23 37 Online: http://www.ncbi.nlm.nih.gov/pubmed/10540637 

Boone J M 2002 Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: 
Computer-fit values of Monte Carlo derived data Med. Phys. 29 869 75 Online: 
http://www.ncbi.nlm.nih.gov/pubmed/12033583 

Caballo M, Boone J M, Mann R and Sechopoulos I 2018a An unsupervised automatic segmentation 
algorithm for breast tissue classification of dedicated breast computed tomography images Med. Phys. 
45 2542 59 Online: http://doi.wiley.com/10.1002/mp.12920 

Caballo M, Fedon C, Brombal L, Mann R M, Longo R and Sechopoulos I 2018b Development of 3D patient-
based super-resolution digital breast phantoms using machine learning Phys. Med. Biol. Online: 
http://iopscience.iop.org/article/10.1088/1361-6560/aae78d 

Chollet F and Others 2015 Keras Online: https://keras.io 

Cunha D M, Tomal A and Poletti M E 2010 Evaluation of scatter-to-primary ratio, grid performance and 
normalized average glandular dose in mammography by Monte Carlo simulation including interference 
and energy broadening effects Phys. Med. Biol. 55 4335 59 Online: http://stacks.iop.org/0031-
9155/55/i=15/a=010?key=crossref.69e6ab10310c5dba5b142a95f9a7d1ca 

Dance D R 1990 Monte Carlo calculation of conversion factors for the estimation of mean glandular breast 

CHAPTER 3. GLANDULAR DOSE IN MAMMOGRAPHY WITH ANN 64



21 

dose. Phys. Med. Biol. 35 1211 9 Online: http://www.ncbi.nlm.nih.gov/pubmed/2236205 

Dance D R and Sechopoulos I 2016 Dosimetry in x-ray-based breast imaging Phys. Med. Biol. 61 R271 304 
Online: http://www.ncbi.nlm.nih.gov/pubmed/27617767 

Dance D R, Skinner C L and Alm Carlsson G 1999 Breast dosimetry Appl. Radiat. Isot. 50 185 203 Online: 
http://www.sciencedirect.com/science/article/pii/S0969804398000475?via%3Dihub 

Dance D R, Skinner C L, Young K C, Beckett J R and Kotre C J 2000 Additional factors for the estimation of 
mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45 
3225 40 Online: http://www.ncbi.nlm.nih.gov/pubmed/11098900 

Dance D R, Young K C and van Engen R E 2009 Further factors for the estimation of mean glandular dose 
using the United Kingdom, European and IAEA breast dosimetry protocols Phys. Med. Biol. 54 4361
72 Online: http://www.ncbi.nlm.nih.gov/pubmed/19550001 

Erguzel T T, Tekin H O, Manici T, Altunsoy E E and Tarhan N 2018 Comparison of multiple linear regression 
analysis and artificial neural network approaches in the estimation of monte carlo mean glandular dose 
calculations of mammography Dig. J. Nanomater. Biostructures 13 163 76 

Hammerstein R G, Miller D W, White D R, Masterson M E, Woodard H Q and Laughlin J S 1979 Absorbed 
Radiation Dose in Mammography Radiology 130 485 91 Online: 
http://www.ncbi.nlm.nih.gov/pubmed/760167 

Hernandez A M, Seibert J A and Boone J M 2015 Breast dose in mammography is about 30% lower when 
realistic heterogeneous glandular distributions are considered Med. Phys. 42 6337 48 Online: 
http://doi.wiley.com/10.1118/1.4931966 

Hernandez A M, Seibert J A, Nosratieh A and Boone J M 2017 Generation and analysis of clinically relevant 
breast imaging x-ray spectra Med. Phys. 44 2148 60 Online: http://doi.wiley.com/10.1002/mp.12222 

Huang S-Y, Boone J M, Yang K, Kwan A L C and Packard N J 2008 The effect of skin thickness determined 
using breast CT on mammographic dosimetry Med. Phys. 35 1199 206 Online: 
http://www.ncbi.nlm.nih.gov/pubmed/18491511 

Kluyver T, Ragan-kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, 
Corlay S, Ivanov P, Avila D, Abdalla S and Willing C 2016 Jupyter Notebooks a publishing format for 
reproducible computational workflows Positioning and Power in Academic Publishing: Players, Agents 
and Agendas ed F Loizides and B Scmidt (IOS Press) pp 87 90 Online: 
https://eprints.soton.ac.uk/403913/ 

LeCun Y 1988 A theoretical framework for Back-Propagation Proc. 1988 Connect. Model. Summer Sch. 

Lee J and Nishikawa R M 2018 Automated mammographic breast density estimation using a fully 
convolutional network Med. Phys. 45 1178 90 Online: http://doi.wiley.com/10.1002/mp.12763 

Litjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F, Ghafoorian M, van der Laak J A W M, van Ginneken 
B and Sánchez C I 2017 A survey on deep learning in medical image analysis Med. Image Anal. 42 
60 88 Online: https://www.sciencedirect.com/science/article/pii/S1361841517301135 

Ma X, Wei J, Zhou C, Helvie M A, Chan H-P, Hadjiiski L M and Lu Y 2019 Automated Pectoral Muscle 
Identification on MLO-view Mammograms: Comparison of Deep Neural Network to Conventional 
Computer Vision Med. Phys. Online: http://doi.wiley.com/10.1002/mp.13451 

Massera R T and Tomal A 2018 Skin models and their impact on mean glandular dose in mammography 
Phys. Medica 51 

Murtagh F 1991 Multilayer perceptrons for classification and regression Neurocomputing 2 183 97 

Nosratieh A, Hernandez A, Shen S Z, Yaffe M J, Seibert J A and Boone J M 2015 Mean glandular dose 
coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems. Phys. Med. Biol. 
60 7179 90 Online: http://www.ncbi.nlm.nih.gov/pubmed/26348995 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, 
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay É 2011 
Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 12 2825 30 Online: 
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html 

Salvat F 2015 PENELOPE-2014: A Code System for Monte Carlo Simulation of Electron and Photon 

CHAPTER 3. GLANDULAR DOSE IN MAMMOGRAPHY WITH ANN 65



22 

Transport Online: https://www.oecd-nea.org/tools/abstract/detail/nea-1525 

Samala R K, Chan H-P, Hadjiiski L M, Helvie M A, Cha K and Richter C 2017 Multi-task transfer learning 
deep convolutional neural network: application to computer-aided diagnosis of breast cancer on 
mammograms Phys. Med. Biol. 62 8894 Online: http://iopscience.iop.org/article/10.1088/1361-
6560/aa93d4 

Sarno A, Mettivier G, Di Lillo F and Russo P 2017a A Monte Carlo study of monoenergetic and polyenergetic 
normalized glandular dose (DgN) coefficients in mammography Phys. Med. Biol. 62 306 25 Online: 
http://stacks.iop.org/0031-9155/62/i=1/a=306?key=crossref.ff01f67cef7dc341833304c2b3e09bab 

Sarno A, Mettivier G and Russo P 2017b Air kerma calculation in Monte Carlo simulations for deriving 
normalized glandular dose coefficients in mammography Phys. Med. Biol. 62 N337 49 Online: 
http://stacks.iop.org/0031-9155/62/i=14/a=N337?key=crossref.06eb191ff947c7acfe600fb45a298662 

Sarno A, Tucciariello R M, Mettivier G, di Franco F and Russo P 2019 Monte Carlo calculation of 
monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in 
mammography using a homogeneous breast model Phys. Med. Biol. 64 125012 Online: 
https://iopscience.iop.org/article/10.1088/1361-6560/ab253f 

Sechopoulos I, Ali E S M, Badal A, Badano A, Boone J M, Kyprianou I S, Mainegra-Hing E, McMillan K L, 
McNitt-Gray M F, Rogers D W O, Samei E and Turner A C 2015 Monte Carlo reference data sets for 
imaging research: Executive summary of the report of AAPM Research Committee Task Group 195 
Med. Phys. 42 5679 91 Online: http://doi.wiley.com/10.1118/1.4928676 

Sechopoulos I, Bliznakova K, Qin X, Fei B and Feng S S J 2012 Characterization of the homogeneous tissue 
mixture approximation in breast imaging dosimetry Med. Phys. 39 5050 9 Online: 
http://doi.wiley.com/10.1118/1.4737025 

Sechopoulos I, Boone J M, Dance D R, Glick S J, Hulme K W and Seibert J A 2016 AAPM Committee - Task 
Group No. 282 - Development of a new universal breast dosimetry method (TG282) Online: 
https://www.aapm.org/org/structure/?committee_code=TG282 

Sechopoulos I and Mann R M 2020 Stand-alone artificial intelligence - The future of breast cancer 
screening? The Breast 49 254 60 Online: 
https://linkinghub.elsevier.com/retrieve/pii/S0960977619312214 

Sechopoulos I, Rogers D W O, Bazalova-Carter M, Bolch W E, Heath E C, McNitt-Gray M F, Sempau J and 
Williamson J F 2018 RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: 
Report of the AAPM Research Committee Task Group 268 Med. Phys. 45 e1 5 Online: 
http://doi.wiley.com/10.1002/mp.12702 

Sempau J, Badal A and Brualla L 2011 A PENELOPE -based system for the automated Monte Carlo 
simulation of clinacs and voxelized geometries-application to far-from-axis fields Med. Phys. 38 5887
95 Online: http://www.ncbi.nlm.nih.gov/pubmed/22047353 

Sobol W T and Wu X 1997 Parametrization of mammography normalized average glandular dose tables 
Med. Phys. 24 547 54 Online: http://doi.wiley.com/10.1118/1.597937 

Wilkinson L and Heggie J C P 2000 Glandular breast dose: potential errors Radiology (electronic letter in 
response to: Boone J M 1999 Glandular breast dose for monoenergetic and high-energy x-ray beams: 
Monte Carlo assessment Radiology 213 23 37 

Wu X, Barnes G T and Tucker D M 1991 Spectral dependence of glandular tissue dose in screen-film 
mammography. Radiology 179 143 8 Online: http://www.ncbi.nlm.nih.gov/pubmed/2006265 

Wu X, Gingold E L, Barnes G T and Tucker D M 1994 Normalized average glandular dose in molybdenum 
target-rhodium filter and rhodium target-rhodium filter mammography. Radiology 193 83 9 Online: 
http://www.ncbi.nlm.nih.gov/pubmed/8090926 

 

CHAPTER 3. GLANDULAR DOSE IN MAMMOGRAPHY WITH ANN 66



67

Chapter 4

Breast glandularity and MGD assessment
with DL

Original article title: Breast glandularity and mean glandular dose assessment using a deep
learning framework: virtual patients study.
Authors: Rodrigo T. Massera, Alessandra Tomal.
Published in: Physica Medica. 2021;83:264–77. DOI: https://doi.org/10.1016/j.
ejmp.2021.03.007

https://doi.org/10.1016/j.ejmp.2021.03.007
https://doi.org/10.1016/j.ejmp.2021.03.007


Breast glandularity and mean glandular dose assessment using a

deep learning framework: virtual patients study

Rodrigo T. Massera, Alessandra Tomal∗

Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, Brazil

Abstract

Breast dosimetry in mammography is an important aspect of radioprotection since
women are exposed periodically to ionizing radiation due to breast cancer screening pro-
grams. Mean glandular dose (MGD) is the standard quantity employed for the establish-
ment of dose reference levels in retrospective population studies. However, MGD calcula-
tions requires breast glandularity estimation. This work proposes a deep learning framework
for volume glandular fraction (V GF ) estimations based on mammography images, which in
turn are converted to glandularity values for MGD calculations. For this, 208 virtual breast
phantoms were generated and compressed computationally. The mammography images were
obtained with Monte Carlo simulations (MC-GPU code) and a ray-tracing algorithm was
employed for labeling the training data. The architectures of the neural networks are based
on the XNet and multilayer perceptron, adapted for each task. The network predictions
were compared with the ground truth using the coefficient of determination (r2). The re-
sults have shown a good agreement for inner breast segmentation (r2=0.999), breast volume
prediction (r2=0.982) and V GF prediction (r2=0.935). Moreover, the DgN coefficients us-
ing the predicted V GF for the virtual population differ on average 1.3% from the ground
truth values. Afterwards with the obtained DgN coefficients, the MGD values were esti-
mated from exposure factors extracted from the DICOM header of a clinical cohort, with
median(75 percentile) values of 1.91(2.45) mGy. Therefore, we successfully implemented a
framework for V GF and MGD calculations for virtual breast phantoms.

Keywords: Mammography, Mean Glandular Dose, breast glandularity, deep learning

1. Introduction

Digital mammography is an imaging technique recommended in several countries for
breast cancer screening, being associated with a reduction in mortality rate and success-
ful treatment of breast cancer [1]. Mean glandular dose (MGD) is currently the adopted
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quantity used for dosimetry in mammography, since glandular tissue is the most prone to
radiation-induced mutations. Historically, MGD values have been estimated considering
simplified breast models [2], which are not, however, representative of mean population
glandular tissue content and distribution [3], and can results in significant differences [4, 5].

With the development of new breast imaging techniques (i.e. digital breast tomosynthe-
sis, DBT, and breast-CT), the quantity and vertical location of glandular tissue within the
breast could be better evaluated to generate heterogeneous breast models [6–13]. Breast-
CT provides more accurate breast models, since it allows to characterize in details the 3D
distribution of the breast tissues [14] and could be used for patient-specif dose estimation.
However, this technique is not available worldwide and it is limited to a small cohorts or
number of images. Thus, breast models based on breast-CT images are not viable to cover
the large populations variability where this technique is not implemented yet. Although the
vertical location of glandular tissue within the breast is necessary for patient-specific dose
estimation, homogeneous models based on more realistic and specific breast characteristics
(i.e. dimensions and composition) could be used to obtain a more accurate radiation dose
estimates. This allows to establish more accurate Dose Reference Levels [15] for large pop-
ulations compared to a model that adopts the same glandularity for the entire population.
In addition, the large number of images from mammography screening acquired each year
around the world could be an important data source for the development of population-based
breast models.

For a more accurate evaluation of MGD in a large population-based screening mam-
mography, it is desirable to use an estimator to predict the breast glandular content from
the images for each patient breast. Quantitative assessment of breast density (BD) based
on mammography images has been largely performed using automated or semi-automated
imaging systems, such as Cumulus (University of Toronto, Canada), Volpara (Matakina
Technology Ltd, New Zealand), Quantra (Hologic Inc., Bedford, MA) and LIBRA (Univer-
sity of Pennsylvania USA), among others. Most of them are commercially available and
used for clinical applications. Although the accuracy and robustness of these systems has
been extensively explored and they have excellent or moderate reliability for repeated breast
density measures [16, 17], the results are validated against other 3D breast imaging modali-
ties results or using physical breast phantoms. However, such validations can be challenging
since the ground truth from real patient images are always unknown and the target breast
density are indirectly estimated from 3D imaging techniques, resulting in uncertainties due
to tissue segmentation. Moreover, when physical breast phantoms (simplified or anthro-
pomorphic) are used, a limitation of availability and variability between them in terms of
materials, costs and infrastructure appears. There is also the distinction between breast
density based on area and the volumetric breast density (V BD), where the latter considers
the variation of the breast thickness during compression and enables an estimation of the
breast composition[18].

Recently, also deep learning techniques have been employed for breast density assess-
ments in mammography [19–23]. Although with promising results, a significant number of
labeled data is required to train these models, which are usually acquired via other breast
density algorithms or categorized by radiologists. On top of the difficulty to obtain the train-
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ing data, the labeled results acquired indirectly do not represent the ground truth values,
but predictions (which could carry potential errors and biases). Therefore, another method
to acquire labeled data to train deep learning models would be useful. Considering this
scenario, a virtual clinical study could generate the necessary data, where the ground truth
is known in order to train deep learning models. Additionally, an independently trained
deep learning model freely available could be a comparative/complementary result to other
V BD algorithms.

This work presents the development of a deep learning framework for calculating the
breast volume and the volume glandular fraction (V GF , consequently the V BD) from
simulated mammography images obtained with anthropomorphic virtual phantoms. In this
preliminary study, we show the feasibility and performance of training three neural networks,
one for each specific task (segmentation, height prediction and relative glandular height
prediction) with a labeling system based on a ray-tracing algorithm in order to obtain
the breast glandularity. Afterwards, in an application topic, the MGD is estimated for
the virtual breast phantoms using a homogeneous model approximation with the predicted
glandularity and exposure parameters based on a clinical cohort.

2. Materials and Methods

The methodology used in this study is summarized in Fig. 1. Specific details related to
each step of the flowchart are described in the following sections.

Figure 1: Flowchart of the whole pipeline of this study to calculate the breast glandularity and mean
glandular dose based on virtual patients.

2.1. Computational breast phantoms

Anthropomorphic 3D breast phantoms were generated with the BreastPhantom soft-
ware [24], based in two steps. First, the input parameters were selected in order to gen-
erate breasts with different sizes, shapes and glandular content, based on breast-CT data,
to address the variability present in the population [6, 9, 25]. The phantoms consisted
of 0.25 mm cubic voxels, and a 1.5 mm skin thickness was considered [26]. The virtual
breasts are composed of skin, adipose, glandular, blood (for arteries), muscle and connective
tissues. Second, the breast was compressed (BreastCompress program)[27] with a finite-
element software (FEBio v. 2.9)[28] and cropped to remove uncompressed tissues, mainly
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muscle (BreastCrop program)[27]. The whole process for generating each phantom took less
than 30 minutes (depending on the breast thickness) using a standard computer (Ryzen 2700
3.2 GHz, 8 cores 16 threads, 16 GB RAM). A Python (v.3) script was written to automate
the process to generate a total of 208 phantoms, whose characteristics are summarized in
Table 1.

Table 1: Characteristics of the breast phantoms. The radius is calculated by approximating the breast as a
semicylinder. The values are expressed as median(25 – 75 percentiles).

♯Phantoms Thickness (cm) Volume (cm3) Radius (cm) V GF
208 5.8(4.6-6.8) 420(325-580) 6.7(5.9-7.9) 0.23 (0.13-0.51)

2.2. Data generation: Monte Carlo simulations

The image acquisition for a mammography cranio-caudal (CC) examination was simu-
lated with the MC-GPU Monte Carlo code [29]. This code was chosen because it was already
used successfully in a virtual clinical trial for mammography studies [30, 31]. Moreover, the
code runs on graphical processing units (GPUs), which offers high performance to simulate
the image acquisition in a reasonable time, considering the available hardware.

The simulated geometry consists of a point source, the compression plate (2.75 mm thick
of polycarbonate), the support plate (2 mm of carbon fiber) and the compressed breast.
The effects of a linear grid, whose grid parameters were based on Cunha et al. [32], were
accounted using the transmission factors calculated using the algorithm proposed by Day and
Dance [33]. An amorphous-selenium detector (200 µm thick), comprised of 1024×832 pixels,
is located, respectively, 70 cm and 2.5 cm below the x-ray source and the bottom of the
breast. The number of pixels was chosen based on real mammography detectors [34] with
a 4×4 binning. The detector and the compression/support plates have an area equal to
29×24 cm2, while the x-ray field irradiated an area of approximately 27.6×17.3 cm2 of
the detector (sufficient to irradiate all the surface of the breast phantoms). The detector
is an ideal energy integrating device, with parameters set to default: electronic signal of
5200 electrons (mean), Swank factor of 0.99 and detector gain (W) equals to 50 eV per
detected charge. Therefore, the signal is given in electrons/cm2, and no dynamic range
scaling was performed. After the image is generated, a mask is applied to modify the pixel
intensity values to compensate for inhomogeneities introduced by the x-ray beam divergence
geometry (i.e. inverse square law and angle of incidence). No further processing was applied,
thus the images are equivalent as “for processing”.

The number of photon histories varied between approximately 1011 and 1012 with a
speed of 108 histories/s on a Tesla P100 (NVIDIA, USA) GPU. The corresponding average
and standard deviation of the incident air kerma values, including all cases, were 1.5 and
0.7 mGy, respectively.

The absorption energy for photons is 1 keV, while the electrons are locally absorbed [35].
The photon cross sections were calculated using PENELOPE (v. 2018) [36]. The composi-
tion of breast tissues (adipose, glandular and skin) were obtained from Hammerstein et al.
[37], while for all other breast tissues were obtained from Woodard and White [38]. The
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x-ray spectra were generated using the TASMICS software for a tungsten target [39]. Ta-
ble 2 shows the filter material and tube potential for the x-ray spectra used for each breast
thickness interval, considering tungsten as the anode material. In some cases (when the
breast thickness is near the limit for an interval), the tube potential selected was 1 kV above
or below from those displayed from Table 2 in order to evaluate possible variations from the
automatic exposure control (AEC).

Table 2: X-ray spectra used for image simulation as a function of the compressed breast thickness range.
Thickness range (mm) Filter material Tube potential (kV)

20-25

Rhodium

25
25-35 26
35-45 27
45-50 28
50-55 29
55-60 30
60-65 31
65-70

Silver

30
70-80 32
80-85 33
85-90 34

2.3. Breast models masks: segmentation, relative height and relative glandular height

The breast phantoms segmentation to separate different tissues was performed by a
simplified ray-tracing algorithm (a generalist and complete ray-tracing algorithm implemen-
tation is explained in the reference [40]). First, for each material, a numerical matrix (Mi)
filled with zeros is defined in the same place as the x-ray detector with each matrix element
representing the detector pixels. Afterwards, for each pixel, a dummy particle is generated
and travels backwards, in the direction of the x-ray source (in this case a point source). For
each step “s” traveled by the particle (defined by the user), the algorithm checks the current
voxel material and adds one to the counter. After the mapping is finished for all matrix
elements, the counts are returned for the material. This process is repeated for all materials,
thus several matrices are generated (Mi...MN). The value s was empirically determined to
be equal to the voxel side length.

After this process is performed and with the MN matrices, three masks were build in
order to train the neural networks. Each mask belongs to a specific task, explained in the
following.

The first mask (task I) classified the image in three regions: (i) background, (ii) skin
contour plus nipple and (iii) inner tissues. For this purpose, the following criteria were used:
(i) is defined as the elements of the matrices that did not contain any breast tissues; (ii)
the matrices elements that contain nipple or a certain threshold of skin content (this value
was determined as the minimum fraction to form a continuous contour around the breast);
(iii) the elements that did not fit the criteria (i) or (ii) were selected as region (iii) using the
flood fill technique inside the contour formed by (ii). A binary erosion technique [41] was
used to remove isolated pixels from (ii) that could be present inside (iii).
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The second mask (task II) describes the relative breast height (h) for each pixel located
in the inner breast (obtained from the first mask). It is calculated by summing all the
matrices elements in depth and normalizing them by the compressed breast thickness. Due
to the beam divergence, the relative height was corrected to yield values between 0 and 1. It
was noticed that during the breast compression routine, small air gaps were present between
the breast and the compression or support plates (generally less than 3% the compressed
breast thickness), shifting the maximum height in some regions.

The third mask (task III) quantifies the relative glandular height (g) of each projected
pixel (i.e. the ratio between the height of glandular tissue and total height on the breast).
For this specific case, the mask is divided in patches of 4×4 pixels, and the average glandular
height is calculated for each patch.

The inner volume of the breast (V ol) (without skin and nipple) was estimated from
masks I and II, as:

V ol =

(
SDD− AG− t/2

SDD

)2

×
i=N∑

i=0

mi × hi × (t− 2× ST)× A (1)

where SDD is the source-to-detector distance, AG is the distance between the bottom of
the breast and the detector, t is the compressed breast thickness, N the number of patches,
mi is the ith element of mask I (the value is 1 for inner breast, 0 otherwise), hi the relative
height from mask II for the element i, ST is the skin thickness and A the pixel area. This
approximation considers that the projected breast image corresponds to the area at half of
the breast thickness.

The volume glandular fraction (V GF , i.e. ratio between the glandular volume and the
total volume, excluding skin) [6] was estimated by combining masks I, II and III, by per-
forming a sum over the 4×4 patches

V GF =

∑i=N
i=0 Āi × h̄i × gi∑i=N

i=0 Āi × (h̄i − hs)
(2)

where N the number of patches, Āi is the relative area of the patch belonging to the inner
breast (from 0 to 1), gi the glandular height (from 0 to 1), h̄i the relative average height of
the patch (with skin), hs the relative skin thickness.

The calculated volumes were compared with the nominal volumes for 178 phantoms with
average and maximum differences of 0.9% and 3.6%, respectively. We also studied the re-
lation between the ground truth breast volume with and without skin, and found a linear
behavior (r2=0.999). These results are summarized in Appendix A.1. The calculated V GF
using the masks were compared with the nominal values for 178 phantoms, showing differ-
ences up to 10% due the constant skin thickness approximation. A third order polynomial
fit was adjusted to convert mask V GF to ground truth V GF to remove potential bias with
this approximation, as explained in Appendix A.1. All V GF results further on have this
correction applied.
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2.4. Neural networks: deep learning framework

A total of three neural networks architectures were employed, one for each segmentation
task (I to III) described in section 2.3. The first two are based on an adapted version of
XNet [42], a convolutional neural network architecture previously used for x-ray imaging
classification. From now in this work, the terms network and neural network are used inter-
changeably. The network implementation was made in Python (v. 3.6.9) using the PyTorch
framework (v. 1.6.0) [43], while the training was performed on a NVIDIA GTX 1060 (6 GB
of VRAM, CUDA v. 11.0). The network hyperparameters, if not explicitly mentioned, were
obtained empirically by testing exhaustively the values that yielded better training and val-
idation results. 178 phantoms were used for training and validation (80%:20% proportion),
while 30 phantoms were selected for testing.

Fig. 2 depicts the configuration used for the skin segmentation and tissue height projec-
tion (masks I and II, respectively). The channel sizes and layers types are indicated with
the concatenation operations (which skips certain layers indicated by the arrows). In this
work, a transpose convolution layer substitutes a linear upsampling operation in the original
architecture. The input layer for task I is the image (1024×832 pixels), normalized by the
pixels from (487-537, 25-75), corresponding to a fixed small region near the breast phantoms
center. For task II, the input is the same from task I, but only regions segmented as inner
breast are selected (the other values are zeroed). The output layer differs between tasks: for
task I is a three channel image, with the probabilities for skin, inner breast and background,
while for task II is a one channel image with the relative local height (the output layer is a
sigmoidal function which limits the values from 0 to 1). Due to memory constraints, a batch
of size 1 was used during training and consequently, the batch norm layers were removed
from the original architecture. For both networks the ReLU activation function was used,
and a weight decay (L2 penalization) of 5×10−5.

Figure 2: XNet [42] adapted architecture implemented in tissues segmentation and height quantification
tasks. Each box corresponds to a layer, and the number below represents the number of channels.

For task III, an ensemble of five multi-layer perceptrons was adopted. The network
consists of two fully connected layers of 200 neurons each and a linear output, as shown in
Fig. 3. The procedure adopted started from the original image, where a box is drawn around
the inner breast tissue segmented from mask I. Afterwards, this box is divided in images
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patches of 4×4 pixels. The pixel values are normalized by the number of incident photons. In
total, 11 features are included: the x-ray spectra (a label varying between 0 to 9), spectrum
HVL (in millimeters of aluminum) and mean energy (in keV), the breast thickness (in mm),
the average relative local height, the distance between the patch and the mask’s center of
mass, the area covered by the breast patch on image detector, the average and standard
deviation pixel intensity, and two first order statistics (kurtosis and skewnes)[41]. All the
features are normalized between 0 and 1. The network predicts the relative glandular height
(i.e. the product of the glandular height by the relative local height, g×h) in that image
patch, and the output values were manually limited between 0 to 1 (values predicted outside
this range were rounded to the nearest acceptable value). For stability purposes, we only
considered patches that have an area 100% covered by breast.

Table 3 summarizes the networks used in this work. To account for uncertainties derived
from the relative height predicted by task II, we implemented a five-fold cross validation
scheme (i.e. the training data is divided in 5 non-overlapping parts). Then, five networks
were trained in which 4 parts are for training and one is for validation (each network has a
distinct training combination validation part). For each batch interaction during training,
the relative heights (h) were multiplied by a factor sampled with a normal distribution
N (C, σ = 0.05), where C is specific for each each network: 0.90, 0.95, 1.00, 1.05, 1.10. The
final predicted relative glandular height is calculated by averaging the output from the five
networks and the variation is calculated by the standard deviation. The ReLU activation
function was used, and a weight decay (L2 penalization) of 10−4.

Figure 3: Illustration of glandular fraction estimation and the implemented architecture, which consists of
five trained multi-layer, followed up by two fully connected layers (dense).

During the training of the network for task I, the skin and inner breast had a weight of 6
and 3, respectively, to compensate imbalanced dataset distributions. Moreover, the training
data was augmented for tasks I and II, by flipping the image over the horizontal axis and
translating the image by a random number between 0 and 50 in upwards and downwards
directions, this procedure is applied for each epoch. The performance of the network from
task I, besides the loss function used during training, is also benchmarked by comparing the
inner breast and skin areas to the ground truth for validation and test samples. The task II is
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Table 3: Summary of the networks used in this work.
Task Architecture Input Output Loss function
I - Skin
segmentation

Fig. 2 Mammography image, pixels binned
4×4. Pixels normalized by the pixels
from a fixed region, with the average
pixel value subtracted and divided by
the standard deviation

. A tensor with three channels with
probabilities for background, skin
and inner breast.

Cross entropy

II - Relative
height

Fig. 2 Mammography image, pixels binned
4×4. Pixels normalized by the pixels
at the center of the breast.

Matrix with the relative breast
height by pixel (h, values between
0 and 1).

Mean squared error

III - Relative
glandular height

Fig. 3 11 features. Pixels normalized by
number of histories.

Relative glandular height (glandu-
lar height times relative height,
g×h).

Mean squared error

benchmarked by comparing the ground truth breast phantom volume to the predicted breast
volume (excluding skin) calculated from Eq. 1. The task III performance was benchmarked
by comparing the predicted (Eq. 2) and the ground truth V GF values.

For the training and validation parts, the networks are evaluated separately (i.e. com-
pared to each mask), while for the test step, the full framework is implemented and compared
to the VGF expected values. The coefficient of determination (r2)[44] is calculated when
comparing the ground truth (T ) and the predicted values by the networks (P ) by adjusting
a linear equation: P = a × T + b, and forcing a=1 and b=0. The best linear fit was also
adjusted by determining a and setting b = 0. The absolute differences (∆) and the relative
differences (∆r) are calculated as:

∆ = P − T, ∆r(%) = 100× (P − T )/T (3)

In this work, the result representing the output of the networks, or those calculated from
these outputs will be defined as “predicted”.

Further information regarding comparison of our predicted VGF values and breast den-
sity values estimated with LIBRA tool for a small phantom dataset is available in the
Supplementary material[45].

2.5. Estimation of glandularity

After the volume glandular fraction (V GF ) of the breast was estimated, the breast
glandularity (G) (i.e. the percentage by mass of glandular tissue in the breast, excluding
skin) was calculated as:

G = 100× V GF × ρg
(1− V GF )× ρa + V GF × ρg

(%) (4)

where ρa and ρg are the densities of adipose and glandular tissues (0.93 g/cm3 and 1.04 g/cm3),
respectively [37]. In our approximation, tissues that were neither glandular nor skin were
classified as adipose tissue.

2.6. Dosimetry and dose levels in mammography

The mean glandular dose (MGD) for the breast phantoms was estimated as:

9

CHAPTER 4. BREAST GLANDULARITY AND MGD ASSESSMENT WITH DL 76



MGD = DgN ×Kair (5)

whereKair is the incident air kerma, andDgN is the normalized glandular dose (a conversion
coefficient) [2].

The DgN values were obtained using neural networks from our previous work [46] based
on the following input parameters: x-ray beam (anode, filter, tube potential and HVL),
breast radius and thickness, glandularity, skin thickness and compression-plate ionization
chamber distance. Summarizing the process, the parameters were fed through an ensemble
of multi-layer perceptrons (MLP) as it performed the regression operations and returned the
DgN for each case.

The x-ray beam parameters were obtained from the input files used to generated the
images (Table 2). The breast thickness is known, while the radius is calculated by approxi-
mating the breast as a semicylinder (the radius value is limited from 6 cm to 12 cm). The
glandularity was obtained from Eq. 4 and the skin model was set to 1.5 mm skin. The
compression-plate ionization chamber distance is equal to 40 cm (the maximum allowed
distance). The reported DgN values follow the homogeneous adipose-glandular tissue dis-
tribution. More details are contained in the original paper [46].

2.7. Clinical case selection

This study employed data from a retrospective analysis of patient mammography images,
acquired on routinely collected anonymous data, ethical-board approved (CAAE: 47878315.
2.0000.5404). All mammograms were acquired using AEC with the Selenia Dimensions
system (Hologic, Danbury, CT, USA) which is installed at the Institute of Radiology (InRad)
in the Faculty of Medicine, University of São Paulo. The data was filtered to only consider
CC images. A total of 2134 clinical images were used. The HVL values in the DICOM
header were matched from those used in the DgN calculations by adding 3 mm additional
filtration of PMMA. The Kair is extracted from the DICOM header, which is believed to be
a good approximation from measured values obtained with an ionization chamber [47]. We
also extracted the MGD values reported by the Organ Doses tag for further comparisons.

The following procedure was adopted. For each phantom in this study, we filtered the
DICOM headers that present the same x-ray spectra and the compressed breast thickness
(with 2 mm tolerance). Afterwards, we established Kair intervals based on percentiles 10%,
25%, 50%, 75% and 90%, which were selected based on the breast phantom glandularity
(respective intervals: G ≤5%, 5%< G ≤15%, 15%< G ≤25%, 25%< G ≤40%, G >40%), as
shown in Fig. 4. Finally, Kair values returned for each case and the MGD was estimated
from Eq. 5. From the 208 original virtual phantoms, the MGD was estimated for 132 cases,
the others 76 failed due to insufficient patient data for comparison.

3. Results

3.1. Breast segmentation training and validation

The training and validation loss values as a function of the interaction number for the
three networks: image segmentation, relative height and relative glandular height predictions
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Figure 4: Incident air kerma values as function of breast thickness reported in the DICOM header and the
respective percentile.

are shown in Figs. 5(a), (c), and (e), respectively. Figs. 5(b), (d), and (f) show the learning
rate as a function of the interaction number (in the same order as described above). As
expected, the training and validation losses decrease with the learning rate, until a plateau
is reached, triggering the early training stop. The validation values are more stable because
they represent the average validation values for all cases on each epoch (calculated when
the training iterated over all the training samples), besides they are similar to the training
trend (calculated using a moving average).

The skin and inner breast segmented relative areas (ground truth×predicted) for the
validation and test images are shown in Fig. 6(a) and 6(b), respectively. In this case,
to facilitate the comparison, the results were normalized by the maximum value on each
ground truth sample. The area marked for skin plus nipple is approximately two orders of
magnitude lower than the inner breast area (respectively 7.0×103 pixels versus 2.5×105, on
average), thus a higher fluctuation is observed between the mask and the predicted values.
For both validation and test, the predicted skin+nipple areas are usually higher than the
ground truth, as seen by the angular coefficients a values (1.20 and 1.08, respectively) and r2

(-0.638 and 0.284, respectively). This behavior is further explained in Fig. 7. An excellent
agreement is observed regarding the inner breast area for both validation and test cases
(r2 >0.999 for both), with an average relative error below 1%.

The image segmentation performed for the four randomly selected breast models from the
test data are exemplified in Fig. 7. For each case, the original simulated mammography image
is compared with the ground truth mask and prediction. An interesting behavior observed
is that the skin contour for the ground truth masks is not smooth, which contrasts with
the predicted segmentation where the contours are smoothed out and continuous. Although
the nipple is correctly identified in the four images, in some cases, we observe an over-
classification inwards the breast. The validation and training results (images not shown
here) also present a few cases where the nipple is only partially identified, and the other
region is classified as inner breast tissue. The smoothing and the over-classification could
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Figure 5: Training/validation results for: (a)/(b) breast segmentation; (c)/(d) relative height; (e)/(f) relative
glandular height. A total of 60, 70 and 60 epochs are shown for (a), (c), (e), respectively. The step number
is obtained by multiplying the value in the x-axis with the offset number indicated on each graph. C is the
offset factor for each network of the ensemble for task III regarding the noise sampling for the relative height
(Fig.s (e) and (f)).

be an explanation of the skin + nipple area discrepancies showed in Fig. 6 and consequently
low r2 values. Nevertheless, for our application, due to the inner breast area being orders
of magnitude higher than the skin + nipple region, the impact of this effect on the other
results can be neglected.

The relative height prediction for the four selected breast phantoms (the same cases from
Fig. 7) are shown in Fig. 8. The vertical and horizontal profile views are also compared.
Cases (a) and (b) illustrate standard acquisitions with full breast compression and a smooth
variation in the glandular distribution across the breast, where an excellent agreement be-
tween the mask and the predicted relative height map is observed. The cases (c) and (d)
correspond to unusual virtual phantoms to assess the performance of the network. For the
case (c), when a drastic variation of glandular content is present within a large region of
the breast, the network interprets as a variation of the relative thickness, as shown by the
discontinuity around the 0.8 relative x-axis location. The case (d) shows an example of the
breast not being properly compressed, where the relative horizontal height drops smoothly
as function of the pixel coordinates. For all selected cases, the nipple artifact discussed in
Fig. 7 is present in the images, since the breast was previously segmented with the first
network.
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Figure 6: (a) Validation and (b) test results for the image segmentation task. The areas are normalized by
the maximum values for each region: (a) 13204 pixels for skin + nipple, 483592 pixels for inner breast; and
(b) 13114 pixels for skin + nipple, 391670 pixels for inner breast. In both (a) and (b), the identity line is
represented by the dashed gray line.

Figure 7: Four randomly selected cases (with labels from (a) to (d)) illustrating the image segmentation
process for the test sample.
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Figure 8: Relative height prediction from the cases showed in Fig. 7. The blue and red patches represent
cross sections in the horizontal and vertical directions. The respective profile views are displayed in the
third row.

The breast volume obtained with the relative height predicted maps versus the ground
truth is shown in Fig. 9(a). Both validation and test results presented a good agreement
with the ground truth volumes (r2 > 0.994 and 0.982, respectively). The relative differences
(∆r) between the predicted and ground truth values are displayed in Fig. 9(b). The dashed
red line and the shaded area represent, respectively, the average relative difference and one
standard deviation for test cases. The average relative difference and standard deviation
are in the order of 4% for both validation and test data. The predicted breast volume is
systematically underestimated for very thinner breasts (thickness near 2 cm and volumes
below 250 cm3) due to the approximation of the skin layer being constant (1.5 mm thick).

Fig. 10(a) shows the relative glandular height prediction compared to the ground truth
for the validation data, with the identity as the dashed gray line. The results of relative
glandular height present a good agreement, with a r2=0.986. The differences ∆ are quantified
in Fig. 10(b), with an absolute average difference of 0.02 in the relative glandular height.

The ground truth relative glandular height, the patches calculated with the 4×4 binning
mask and the network predictions for four test breasts are shown in Fig. 11. A good overall
agreement was observed between the predicted and ground truth values for cases (a), (b)
and (d). The incorrect height prediction showed in Fig. 8(c) causes the network to predict
a slightly higher glandular height than the ground truth in case (c).

With the three networks trained, we implemented the full pipeline to estimate the volume
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Figure 9: (a) Validation and test results for volume predicted compared to the ground truth volumes derived
from breast phantoms. The identity line is represented by the dashed gray line. (b) Relative differences
∆r between the values. The dashed red line and the shaded area indicate, respectively, the average relative
difference for the test cases and one standard deviation.

Figure 10: (a) Validation results for relative glandular height prediction compared to the ground truth values
from the masks. The identity line is represented by the dashed gray line. (b) Distribution of the differences
∆ between prediction and the ground truth values.

glandular fraction (V GF ) for the test data. For sake of completeness, we also predicted
the V GF for the phantoms that were used for training since the full pipeline was not used
beforehand. The results shown in Fig. 12(a) indicates a good correlation between the ground
truth V GF and the predicted values, with r2 coefficients of 0.959 and 0.935 for training and
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Figure 11: Relative glandular height prediction from the cases shown in Fig. 7. The predicted patches are
assembled to match the original mask shape.

test data, respectively. The average absolute differences ∆ (standard deviation) for training
and test data are 0.03(4) and 0.04(5), respectively, as illustrated in Fig. 12(b). It is important
to notice that the distribution of V GF , in a real population, is more concentrated towards
low values, and values higher than 0.5 represent the minority of cases [3].

3.2. Breast dosimetry

The DgN conversion coefficients were estimated for all 208 phantoms after the glandu-
larity values were calculated based on the V GF obtained with the ground truth and the
ones predicted with the network. The DgN coefficients obtained with fixed glandularity
given by the median glandularity of all phantoms (approximately 23%) were also calculated.
Fig. 13(a) shows the relative DgN differences calculated from the predicted glandularity and
those using the median glandularity compared to the ground truth. It is observed that using
a fixed glandularity for the entire population introduces a systematic error that, in general,
overestimates the DgN coefficients calculated compared the ground truth glandularity, on
average 8.5%. Meanwhile, the DgN coefficients obtained with the glandularity calculated
with the pipeline resulted in an average error of 1.3% compared to the ground truth.

Fig. 13(b) shows the predicted MGD distribution for 132 test phantoms calculated using
the pipeline, as described in section 2.6, and the incident air kerma extracted from the
DICOM header for clinical cases. For sake of completeness, we also included values estimated
with a 4 mm skin thickness (model used for organ dose by the Hologic system [48]) and
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Figure 12: (a) Reconstructed volume glandular fraction (V GF ) for the training and test data as function
of the ground truth extracted from the breast phantoms. (b) Differences between predicted and the ground
truth values. The shaded area indicates one standard deviation for test data. Bars: standard deviation of
the ensemble prediction.

50% glandularity for the test phantoms (Estimated) and the Organ Dose reported in the
DICOM header for the entire clinical dataset. Simulated cases that did not presented a
real counterpart were ignored in this process. The median(75 percentile) MGD values are
1.91(2.45) mGy, while the estimated and DICOM values are 1.60(2.10) mGy and 1.62(2.00)
mGy, respectively. From those distributions, the dose reference levels could be extracted
based on the 75 percentile values.

The predicted MGD as a function of the breast thickness is shown in Fig. 14(a). The
apparent discontinuity for breasts thickness closer to 4 cm is due to the combination of
variations on average breast compositions and incident air kerma values used in this work,
considering the glandularity percentiles. Fig. 14(b) compares the MGD between the pre-
dicted and DICOM values for three breast thickness groups. The trend of increasing the
MGD for thicker breasts becomes evident. It is observed a significant variation for each
interval, represented by the bars (one standard deviation). This behavior can be explained
because a 2 cm interval width is considered, covering a range of MGD values, also there is
a variation of glandularity within the patients for each interval. Nevertheless, the average
MGD predicted values for each interval are higher than the respective Organ Dose DICOM
values for all thickness range, due to the dosimetry models employed in each case.

4. Discussion

The segmentation of mammography images including edge detection and nipple removal
was previously implemented by other authors using different algorithms [49, 50]. In our im-
plementation, the ground truth masks were created by establishing threshold values (only for
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Figure 13: (a) DgN relative differences for all 208 breasts calculated from the predicted glandularity and
those using the median glandularity of the population, compared to the ground truth. (b) Boxplot of MGD
distribution for three cases: (i) predicted by the network with 1.5 mm skin, (ii) estimated using 4 mm skin
and 50% glandularity (iii) extracted from the DICOM header. Centerline: median, lower and upper box
limits: 25 and 75 percentiles, whiskers: 10 and 90 percentiles, circles: outliers.

Figure 14: (a) MGD dose distribution from Fig. 13(b) as function of breast thickness. (b) Predicted MGD
and Organ Dose from DICOM header trends as function of breast thickness for three intervals, bars indicate
one standard deviation.

task I) for the projected skin and nipple, which resulted in some skin and nipple boundaries
to be not smooth and in some regions presenting slight discontinuities. This pattern could
explain the discrepancies between the ground truth skin plus nipple areas and the predicted
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areas by the network. However, for the application proposed in this work, an excellent
agreement was found between the ground truth inner breast areas and the predicted ones.
The performance of breast segmentation can still be improved since in a few cases, regions of
the nipple were incorrectly classified as inner breast. Moreover, the breasts are imaged in a
CC view, thus the pectoral muscle is not present and consequently, the inclusion of medium
lateral oblique projections would require the additional segmentation of muscle tissue [51].
Since the exact shape of the breast cannot be reconstructed from a single 2D image, a model
that approximates the breast with a 1.5 mm skin layer was adopted. This approximation
according to our comparisons, induced systematic errors specially for thinner breasts that
were compensated with correction factors using a polynomial fit. From the results, it was
showed that the overall prediction performance is better for firmly compressed breasts and
with phantoms with a more homogeneous glandular distribution, as those achieved in high
quality clinical mammography images for real patients. Although the relative glandular
height maps presented a lower resolution than a native mammography image, it did not
interfere significantly on the overall VGF predictions. The highest errors were observed for
unusual cases where the compression was partially incomplete or the phantoms presented an
extremely heterogeneous glandular tissue distribution. We are studying, for future versions,
to include the compression force as an input parameter to address some of these issues, since
the correct measure of breast thickness is an important factor for an accurate breast density
estimations [52]. We successfully trained a network to predict the relative glandular height
within the breast, which showed a good performance for the validation and test samples.
An interesting aspect observed in this work was the limitation of the technique when tissues
different from glandular and adipose are present in the phantoms. The predicted values tend
to overestimates the glandular height since these other tissues have higher attenuation coeffi-
cients than adipose tissue and more similar to glandular tissue. The framework is purposely
divided in three parts to facilitate future implementations that requires one specific task.
Although this work focused primarily on images generated from Monte Carlo simulations,
preliminary tests (not included) showed that the deep learning algorithm performed equally
under different quantum noise levels. For a relative dose varying from 0.1 to 10 times the
original dose, the predicted VGD varied less than 0.01 for a nominal 0.12 VGF. Moreover,
the MC code tries to simulate a real mammography image, as previously stated in other
works [30, 31]. A future work is planned to apply this algorithm for real mammography
breast images.

From the volume glandular fraction values predicted by our framework, it was possible
to calculate the glandularity and finally the DgN factors using neural networks previously
trained [46] for the 208 virtual breast phantoms generated in this work. We found 1.3%
of difference, on average, between the DgN values from the predicted glandularity and the
ground truth DgN , with a maximum below 8%. We also compared the case where the
median glandularity (23%) of the phantoms is considered, which resulted on average error
of 8.5%, and a maximum error of 35%. Naturally, these errors are propagated to the MGD
calculations and could induce bias on the dose reference levels. In terms of radioprotec-
tion, it is desirable to minimize potential biases and errors for the dose estimation. With
incidente air kerma values extracted from DICOM mammography images, we estimated the
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MGD for 132 phantoms and found a median(75 percentile) values of 1.89(2.44) mGy. On
the other hand, by employing a traditional model of 4 mm thick skin used for Organ Dose
estimation by the Hologic system [48] and 50% (constant) glandularity, the reported values
are 1.60(2.10) mGy, which are closer to the Organ Dose tag values 1.62(2.00) mGy. This
highlights the importance of knowing which model is being considered for the MGD estima-
tions when comparing dose levels, since some models could result in systematically higher or
lower doses than others [8]. It is important to notice that the model used for calculating the
MGD value reported by the Organ Dose tag within the DICOM header can vary between
manufactures [48].

The results presented in this work are based on anthropomorphic virtual phantoms and
Monte Carlo simulations, thus they are based on the characteristics of the virtual breasts
generated by the software and the limitations of the simulations. It offers the advantage
of knowing the ground truth values and, to easily label the training data, which is a good
environment for testing the concept of the deep learning proposed in this work. However,
it is still an approximation and does not reflect completely a clinical situation, requiring
further studies and refinements before applying for clinical cases. Therefore, this approach of
determining the breast density with deep-learning models trained on virtual phantoms shows
promising preliminary results and it could be a complementary method over the existing
ones, since it uses a different methodology of determining breast density with virtual breast
phantoms, and not relying on physical models developed by other algorithms. Additionally,
the framework could be adapted for other tasks and improved over time, with different neural
network architectures or expanding the training dataset. Since the images were generated
from virtual patients, there is the advantage of openly sharing and distributing the database
and the algorithm.

5. Conclusions

In this work we introduce a deep learning framework to estimate V GF values from 208
virtual breast phantoms, with promising preliminary results. From the predicted V GF val-
ues, the DgN coefficients were calculated by using another neural network. Afterwards, the
mean glandular dose values are obtained from air kerma extracted from DICOM header for
a clinical cohort. This approach enables to establish dose reference levels more accurately
for a given population than using an average glandularity model. This framework could be
adapted for other applications (e.g. image processing and segmentation) by employing trans-
fer learning techniques, especially in cases where the training dataset is small. Moreover,
future studies can explore this implementation for real mammography units and clinical
images, and compare the results with other glandularity estimation algorithms. Finally,
application for deriving patient-specific doses need different approaches, since the vertical
location of glandular tissue cannot be determined by using single view mammography im-
ages. The database and the deep learning algorithm used in this study are freely available
by request to the corresponding author atomal@ifi.unicamp.br.
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[11] Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, et al. Deep learning reconstruction
of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose
estimation. Tech. Rep.; Accessed November 27, 2020. arXiv:2006.06508v1.

[12] di Franco F, Sarno A, Mettivier G, Hernandez AM, Bliznakova K, Boone JM, et al. GEANT4 Monte
Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept. Phys Med
2020;74:133–42. doi:https://doi.org/10.1016/j.ejmp.2020.05.007.
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Appendix A. Appendix

Appendix A.1. Calibration for breast volume and VGF

Fig. A.15(a) shows the ground truth breast volume compared to the mask volume cal-
culated from Eq. (1), while Fig. A.15(b) compares the breast volumes with and without
skin. Fig. A.16(a) shows the relation between the ground truth V GF calculated directly
from the phantoms and the reconstructed V GF using the masks calculated from Eq. (2).
Fig. A.16(b) quantifies the ratio between the the ground truth and the reconstructed V GF
obtained from the masks as function of breast thickness. The results are for the training
sample (179 phantoms).

Figure A.15: Comparison between: (a) the ground truth breast volume and the ones calculated using the
height mask, and (b) the ground truth breast volumes with and without skin.
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Figure A.16: (a) Comparison between the ground truth V GF and the one calculated using the relative
glandular height mask. (b) Ratio between the ground truth and the mask V GF (rVGF) as function of
breast thickness (t, in cm), fitted with a third order polynomial (dashed line).
rV GF = 3.51× 10−4 × t3 − 8.96× 10−3 × t2 + 7.58× 10−2 × t+ 0.79.
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Abstract

Purpose: To validate the MC-GPU Monte Carlo code for dosimetric studies in x-
ray breast imaging modalities: mammography, digital breast tomosynthesis, contrast
enhanced digital mammography and breast-CT. Moreover, to implement and validate
a phase space file generation routine.
Methods: The MC-GPU code (v. 1.5 DBT) was modified in order to generate phase
space files and to be compatible with PENELOPE v. 2018 derived cross section
database. Simulations were performed with homogeneous and anthropomorphic breast
phantoms for different breast imaging techniques. The glandular dose was computed
for each case and compared with results from the PENELOPE (v. 2014) + penEasy
(v. 2015) and egs brachy (EGSnrc) Monte Carlo codes. Afterwards, several phase
space files were generated with MC-GPU and the scored photon spectra were com-
pared between the codes. The phase space files generated in MC-GPU were used
in PENELOPE and EGSnrc to calculate the glandular dose, and compared with the
original dose scored in MC-GPU.
Results: MC-GPU showed good agreement with the other codes when calculating the
glandular dose distribution for mammography, mean glandular dose for digital breast
tomosynthesis, and normalized glandular dose for breast-CT. The latter case showed
average/maximum relative differences of 2.3%/27%, respectively, compared to other
literature works, with the larger differences observed at low energies (around 10 keV).
The recorded photon spectra entering a voxel were similar (within statistical uncer-
tainties) between the three Monte Carlo codes. Finally, the reconstructed glandular
dose in a voxel from a phase space file differs by less than 0.65%, with an average
of 0.18% to 0.22% between the different MC codes, agreement within approximately
2σ statistical uncertainties. In some scenarios, the simulations performed in MC-GPU
were from 20 up to 40 times faster than those performed by PENELOPE.
Conclusions: The results indicate that MC-GPU code is suitable for breast dosimetric
studies for different x-ray breast imaging modalities, with the advantage of a high per-
formance derived from GPUs. The phase space file implementation was validated and
is compatible with the IAEA standard, allowing multiscale Monte Carlo simulations
with a combination of CPU and GPU codes.
Key words: Monte Carlo; dosimetry; breast imaging; GPU
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I. Introduction

Monte Carlo (MC) simulations are a powerful tool employed for glandular dose assessments

for x-ray breast imaging.1–5 With advances in computational power and promising imaging

techniques for studying breast anatomy, there is a growing interest in performing advanced

dose evaluations in mammography and other related x-ray imaging techniques,6–8 such as

mean glandular dose calculations and 3D dose distribution in anthropomorphic breast phan-

toms. The increase in complexity, mainly from the realistic breast models, and a high number

of simulations (from hundreds to thousands possible combinations between parameters and

models) requires considerable hardware resources and computational power. One option is

to take advantage of central processing unit (CPU) parallelism capabilities and distribute the

necessary MC calculations over a large number of CPUs. Another option, depending of the

application, is to implement Graphical Processing Units (GPUs) to perform the calculations

instead the traditional CPUs. With this approach, a single GPU could match the perfor-

mance of several CPUs, as previously shown with the MC-GPU code,9 thus allowing complex

simulations with reduced hardware resources. However, this MC code only simulates photon

transport.9 MC-GPU has already been employed for simulating some applications involving

low-energy (x-ray) beams, e.g. breast imaging studies and virtual clinical trials10,11 and co-

herent x-ray scattering12 by adapting the code to include molecular interference.13 Original

and modified MC-GPU codes were also validated for applications in interventional radiology

and cardiology.14,15 MC-GPU was also adapted for patient specific CT dose calculations.16

In addition, traditional CPU Monte Carlo codes were adapted to GPU, e.g. Geant417 and

EGSnrc.18 A GPU Monte Carlo code was also developed for DNA damage simulations due

to ionizing radiation.19,20 These examples demonstrate the capabilities of GPU MC codes

and their possible applications. Nevertheless, to our knowledge, a framework for multiscale

dose calculations in mammography x-ray imaging using a combination of GPU and CPU

MC codes was not yet implemented.

MC-GPU has been used for breast imaging studies with a focus on image quality (due

to its performance advantages), however, there has not been a detailed comparison between

MC-GPU and other MC codes with a focus in breast dosimetry. This would be useful,

especially with the current developments in anthropomorphic phantoms for breast dosimetry,

and could support migration from CPU MC codes to GPU ones. With recent interest in
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other x-ray breast imaging modalities besides mammography, an efficient and validated MC

code capable of performing dosimetry studies in different modalities would be of interest.

With MC-GPU, the simulations are limited to macroscopic scales, where the geometric

components (e.g., voxels) are several times the electron range, and only photon transport

is modeled. This approximation is acceptable, for example, to estimate the mean glandular

dose and 3D dose distributions (e.g., in mm-scale voxels).21,22 On the other hand, a more

detailed approach for dosimetric analysis in x-ray breast imaging involves multiple length

scales, including cell populations,23 for which electron transport must be considered.

One possible approach for these multiscale simulations is to segment the simulation into

different steps. First, the GPU code could simulate photon transport in the macroscopic

geometry (e.g. in a virtual patient model) and then record the phase space information for

particles entering a smaller region. Next, a CPU code could be used to simulate coupled

electron-photon transport within the smaller volume with more detailed microscopic model.

With this concept, MC-GPU could be employed in a multiscale framework for x-ray breast

imaging dosimetry.

The present work focuses on developments that are relevant for application of MC-GPU

for breast dosimetry and is divided in two main parts: the first one describes a detailed val-

idation with MC-GPU for breast dosimetry considering different imaging modalities: mam-

mography, digital breast tomosynthesis (DBT) and breast-CT. Meanwhile, the second part

consists of an implementation and validation of the phase space file generation algorithm

which includes the previous cited imaging modalities plus contrast-enhanced digital mam-

mography (CEDM).

II. Methods

The MC-GPU (v. 1.5 VICTRE-DBT)24 code was employed with some modifications. This

code uses the interaction scoring method. The cross section database was updated from

PENELOPE 2006 to the newer version 2018.25 For comparison purposes, two other codes

were used: the previously modified and validated26 PENELOPE25 (v. 2014) + penEasy27

(v. 2015); and egs brachy,28 an application of EGSnrc. For PENELOPE 2014, the default

cross section database was implemented (which is similar to the 2018 version) and the in-
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teraction scoring was used, while for EGSnrc the mcdf-XCOM photon cross section with

the PENELOPE energy absorption coefficients were used (calculated using PENELOPE

routines) with tracklength scoring. The statistical uncertainties were estimated using the

history-by-history method, which updates the uncertainty counters at the end of each pri-

mary particle history (more details in Refs.29,30).

Electron transport was not modeled. The photon energy cutoff was set to 1 keV.

Information regarding the material compositions and the respective references are contained

in Table 1.

The simulations using PENELOPE were performed in a Ryzen 1700x (AMD, USA) and

Core i7 7700 (Intel, USA), while for MC-GPU the simulations were performed in a GeForce

GTX 1060 (NVIDIA, USA).

II.A. Dosimetry validations

This section covers the dosimetry validation for different breast imaging modalities and

breast models. Subsection II.A.1. includes the digital breast tomosynthesis (DBT) and

breast-CT validations for homogeneous breast models, while subsection II.A.2. describes the

validation for mammography using heterogeneous breast models. Table 2 summarizes the

general parameters employed in the simulations explained further.

II.A.1. Dosimetry validations for homogeneous breast models

The DBT dosimetry validation consisted of two steps. First, a modified version of PENE-

LOPE/penEasy MC code for breast dosimetry was validated against the report of Task

Group 22334 (results of this step are available in the Supplementary Materials). Second, we

compared the modified PENELOPE code results with MC-GPU using a geometry adapted

from Task Group 223. The MC-GPU geometry consisted of voxelized rectilinear geometries,

which are the only geometries that may be simulated within this code, with 0.5 mm reso-

lution. The adapted geometry is described as a 66 cm source-to-detector distance, and a

26 × 14 cm2 x-ray field at the detector entrance (Table 2). The support and compression

II.A. Dosimetry validations
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plates (2 mm thick, PMMA) were also included. In MC-GPU and PENELOPE, the breast

was modeled as a randomly sampled adipose-glandular distribution. For both codes, the

inner breast is surrounded by a 1.5 mm skin thickness, and the breast has a semi-cylindrical

shape (8 cm radius) to address a cracioncaudal (CC) view. The skin is absent in the region

where the breast would be in contact with the chest wall. Three breast thickness/glandularity

combinations were evaluated: 2 cm/100%; 5 cm/50%; 8 cm/1%, whose selection was based

on the extreme values usually employed in dose validation studies.3,34 The following spectra,

obtained from TASMICS,35 were used: W/Rh 23 kV; W/Rh 28 kV; W/Rh 35 kV for 2 cm,

5 cm and 8 cm breast thicknesses, respectively. The detector-center of rotation distance

was set to 0 cm, and the mean glandular dose (MGD, i.e. the sum of the energy deposited

in glandular voxels by their total mass) was compared between MC-GPU and PENELOPE

codes from a 0◦ to 30◦ tube rotation angle (5◦ step). The 0◦ DBT projection presents a

similar acquisition geometry of a mammography examination, thus a specific mammography

validation for the homogeneous model was not included. The total number of primary pho-

tons were in the order of 108 for PENELOPE and 109 for MC-GPU. We validated MC-GPU

with PENELOPE and not with TG223 directly due to the difficulty to convert the geometry

to voxels.

For the breast-CT validations, the setup was based on the work of Sarno et al.4 The

breast was modeled as a cylinder with a radius/height of: 4 cm/4 cm; 6 cm/9 cm; 9 cm/18 cm,

including a 1.5 mm skin layer and the patient chest (a block of muscle tissue, while the orig-

inal work uses water). For the original work and PENELOPE, the breast was modeled as a

homogeneous mixture of adipose-glandular tissues. Meanwhile, for MC-GPU, the geometry

consisted of voxelized rectilinear geometries, and the breast model was voxelized with a ran-

domly sampled adipose-glandular distribution. The glandularity varied from 0.1% to 100%.

The MGD for the heterogeneous model was calculated by summing the energy deposited in

glandular voxels divided by their total mass. Meanwhile, the MGD for the homogeneous

models was obtained by applying a weighting factor (G)3,4 to the imparted energy in the

homogeneous mixture then dividing by the mass of glandular tissue. Afterwards, the breast

was replaced by rectangular box of air (3 × 1.8 × 1.1 cm3) simulating an ionization chamber

(at the isocenter) and the air kerma (Kair) was scored inside this region. Finally, the Nor-

malized Glandular Dose (DgNCT) was calculated by the ratio: MGD/Kair. Therefore, the

DgN was compared between the reference work and PENELOPE/MC-GPU results for mo-

II.A. Dosimetry validations
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noenergetic photons from 10 to 80 keV (5 keV steps). The total number of primary photons

was on the order of 108. Figure 1 illustrates the geometry implemented in the simulations

for dosimetry validations in this section.

The comparisons with EGSnrc were not included within these tests because the imple-

mentation and validation of the code adaptation to perform DBT and breast-CT simulations

were beyond the scope of this work.

II.A.2. Dose distribution comparison for anthropomorphic breast models

To quantify the dose distribution within the breast, a voxelized anthropomorphic breast

phantom was generated using the BreastPhantom software36 (0.5 mm resolution, 20%

glandularity), and computationally compressed using the BreastCompress software (with

FEBiO37) to 5 cm thick. The breast was irradiated with a W/Rh 28 kV spectrum with a ge-

ometry similar to Report-195 (Case III)21 (as described in Table 2, column Mammography).

Afterwards, the dose in all breast voxels (comprising different materials) was compared be-

tween the codes MC-GPU, PENELOPE and EGSnrc to verify the agreement between them,

including the dose distribution. The dose was normalized by the number of histories (i.e.

the number of primary photons that were generated in the source, collimated within the

detector field). The total number of primary photons was on the order of 1010. The relative

dose difference in a voxel (∆) was calculated as follows:

∆ = 100 × Dgii −Dgi
Dgi

%, (1)

where subscripts refer to MC-GPU (i) and PENELOPE or EGSnrc (ii).

II.B. Phase Space File

A tracking algorithm was adapted from PENELOPE

for MC-GPU (named “Voxel intercept”) to identify photons that cross the boundaries of

a given voxel from the outside. The ray tracing routine for quadric geometries was imple-

mented to check if the photon intercepts one of the six cube faces. If more than one plane is

crossed, the plane closest to the starting point is selected, then the routine stores the partial

state variables in memory (energy, position coordinates and direction of movement). After

each angular step of the x-ray tube rotation, the information stored in the GPU memory

II.B. Phase Space File
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is dumped to disk in a temporary binary file. When the simulation is finished, a software

program (PSFConverter), which was written from an adapted code from penEasy 2019, is

called to convert the raw binary file to a format compatible with the IAEA standard.38 Data

for each particle (position, direction, energy) are stored in 29 bytes. In order to verify if the

framework is set up correctly, three tests described in the following sections were performed.

II.B.1. Energy distribution comparison

The simulation of the anthropomorphic phantom (section II.A.2.) was adapted to record the

energy of photons that entered in a specific voxel near the middle of the breast (simulation

description in Table 2). Two spectra were employed (from TASMICS): W/Rh 28 kV and

W/Cu 49 kV, to represent mammography and CEDM modalities, respectively. The functions

to score the energy spectrum of photons were enabled in PENELOPE and EGSnrc. For MC-

GPU, the information was retrieved by the generated phase space file. Finally, the photon

energy spectra recorded by the three codes were compared.

In addition, the anthropomorphic phantom was downsampled to 2 mm voxels and two

phase space files were generated: one in MC-GPU and other in PENELOPE for the mam-

mography spectrum. Afterwards, the distribution of the particles’ position and direction

contained in the phase space files were compared.

II.B.2. Glandular dose reconstruction

MC-GPU was used to simulate irradiation of the anthropomorphic breast phantom in four

scenarios: (i) mammography; (ii) DBT; (iii) CEDM; (iv) breast-CT (uncompressed breast).

For each setup, five phase space files were recorded in glandular voxels using MC-GPU. Af-

terwards, the phase space file was loaded in PENELOPE and EGSnrc where the geometry

consisted of a single glandular voxel, and it was irradiated in order to score the dose. There-

fore, the reconstructed doses from the phase space files in PENELOPE and EGSnrc were

compared to the MC-GPU reported doses.

For all modalities, the number of simulated histories in MC-GPU was fine-tuned to

yield a mean glandular dose of 4 mGy. For mammography and CEDM, the spectrum was

the same as the previous section, while for the breast-CT simulation, the selected spectrum

II.B. Phase Space File
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was W/Al 49 kV.39 The number of projections was 120, with a constant number of histories

(fixed mAs per scan). For DBT, the selected spectrum was W/Al 31 kV, with 31 projections.

II.B.3. Practical example

As an example of application of the phase space file implementation, a simplified case of

multiscale MC simulation was studied and the results of a full simulation performed in

PENELOPE was compared to a simulation with MC-GPU plus PENELOPE (using the

phase space file approach).

For this, the geometry for the mammography case described in Table 2 was imple-

mented. The inner breast tissue was modified to include only adipose tissue (to facilitate

the implementation), except in one region at the middle of the breast (a cube of 2 mm sides)

where the material was set to glandular tissue. In this glandular region, the energy cutoffs

for electrons and photons were set to 50 eV to enable a detailed simulation. In addition, the

cube was sectioned in small sub regions of 10 µm side voxels, and the specific energy (energy

imparted divided by mass) distribution was scored. In PENELOPE, this simulation was

performed in a single step. For MC-GPU, the macroscopic simulation was performed and a

phase space file was generated to describe the particles entering in the glandular voxel. After-

wards, the phase space file was loaded in PENELOPE and a detailed simulation was carried

out to score the specific energy distribution in the cube subregions, i.e., (10× 10× 10 µm3).

Only subregions more than 50 µm from the edge of the glandular voxel were considered for

the analysis to ensure that electron transport is accurately modeled. A total of 3.2×1011

primary photons were simulated.

III. Results

III.A. Digital Breast Tomosynthesis and Breast-CT

Figure 2(a) compares the relative MGD values for the DBT between PENELOPE and MC-

GPU for three breast thicknesses with distinct glandular proportions. An excellent agreement

was found between the codes with differences smaller than 0.25% (statistical uncertainties

below 0.14%, 1σ), except for the 8 cm breast with projection angles 25◦ and 30◦, where
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the differences were 0.9% and 3.0%, respectively. This difference could be explained by the

variations on the beam collimation algorithm for the DBT mode among the codes, more

specifically, the projected x-ray field fluence at the surface of thicker breasts for high angles

of incidence. Figure 2(b) shows a good agreement between the MC codes and also with

the work of Sarno et al.,4 with linear fits close to an ideal line, and an average relative

difference of 2.3%. However, it is important to notice that for low energies (around 10 keV)

where the DgNCT is below 0.05, some differences between MC-GPU and Sarno et al. were

up to 27%. This could be explained by the different cross sections used in the codes, the

air kerma acquisition geometry and the randomized-sampling of glandular voxels inside the

heterogeneous breast phantom. However, those low energies have a negligible impact in

the dose when integrating over a breast-CT spectrum. For PENELOPE and MC-GPU, the

average and maximum DgNCT relative differences were 0.87% and 12.6%, respectively.

Regarding performance, for illustration, MC-GPU and PENELOPE (Ryzen 1700X, us-

ing only 1 core) presented a simulation speed of 1.76×107 and 1.44×105 histories/s, re-

spectively for a breast-CT simulation of 50 keV monoenergetic photons and a large breast

(50% glandular tissue). The ratio between the simulation speed achieved for MC-GPU and

PENELOPE codes goes from approximately 242 at 10 keV down to 121 at 80 keV.

III.B. Dose distribution

The relative difference between the breast dose distribution in voxels for PENELOPE and

EGSnrc compared to MC-GPU are shown in Figure 3(a). The differences resemble a normal

distribution, without an apparent offset (i.e. centered near zero), which is consistent with

the statistical uncertainty of the values. The uncertainty obtained with PENELOPE were

higher compared to the other codes due to the longer computation times (smaller number of

available processors). Nevertheless, the majority of the differences are contained within the

-1 to 1% interval. The glandular dose as function of the breast depth is shown in Figure 3(b).

An excellent agreement was found between the codes, with differences smaller than 0.35%.

The voxel with maximum dose (excluding air and the plates) was the same for all three

codes, which is located at the top of the breast, with differences lower than 0.4% between

the dose values.

III.B. Dose distribution
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III.C. Phase Space File: Photon energy spectrum

In order to validate the algorithm implemented in MC-GPU to generate the phase space files,

the recorded spectrum of photons entering in a voxel was compared with the PENELOPE

and EGSnrc MC codes. The results are shown in Figure 4 where it can be observed that the

relative probability is similar between the codes within the estimated statistical uncertainty

for both x-ray spectra. The bins below 10 keV were omitted due to the relative low proba-

bility and, consequently, the low impact in the results. The average relative differences for

W/Rh 28 kV (10 keV threshold) and W/Cu 49 kV (20 keV threshold) between MC-GPU

and PENELOPE/EGSnrc were lower than 2.5%.

III.D. Phase Space File: Glandular Dose reconstruction

The glandular dose values obtained in MC-GPU (full simulation) compared to those obtained

within PENELOPE and EGSnrc (phase space files) are shown in Table 3 with their respective

statistical uncertainties. The average ∆ between MC-GPU and PENELOPE/EGSnrc was

0.22%/0.18%, with maximum ∆ values of 0.63%/0.43%. Considering that 1σ statistical

uncertainty is approximately 0.3% for both PENELOPE and EGSnrc, and 0.004% for MC-

GPU, the glandular dose values computed using phase space files (PENELOPE, EGSnrc)

are in good agreement with those from full simulation (MC-GPU).

III.E. Practical example

Figure 5 compares the results from the multiscale simulation using PENELOPE and the

phase space file using MC-GPU plus PENELOPE method proposed in this work, showing

an excellent agreement. The PENELOPE simulation took approximately 65.4 hours (Ryzen

1700X, using 8 cores) to finish. Meanwhile, the whole process of MC-GPU generating the

phase space file then simulating in PENELOPE took approximately 3.2 hours, a speed-up of

approximately 20 times. The time spent in file manipulations was on the order of seconds,

6% of the time in the PENELOPE simulation and the rest in MC-GPU. It is important

to notice that by turning on the additional phase space files calculations in MC-GPU, the

performance was slowed by approximately 30%. The generated phase space file size was

approximately 450 megabytes, which resulted in a negligible impact on the performance of

III.C. Phase Space File: Photon energy spectrum
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the calculations (≈ hours) due to disk read/write operations (≈ seconds).

IV. Discussion

MC-GPU simulates photon transport through matter with physics models based on PENE-

LOPE,9 with minor modifications. As seen in the results, there is a good overall agreement

between MC-GPU and the other considered MC codes. Moreover, a comparison with EGSnrc

and the work of Sarno et al.4 (which used a program based on GEANT4) was also included.

In the latter case, high discrepancies were observed at very low energies, but could be ex-

plained by the differences in the cross sections of the codes and minor modifications in the

geometry. In breast imaging simulations, it is often assumed that the electrons are locally

deposited4,21 due to mm-to-cm length scales of simulated objects, significantly larger than

the short range of electrons at low energies (from 0.05 µm at 1 keV to 144 µm at 100 keV,

CSDA in liquid water). Thus, MC-GPU may be used for efficient dosimetric simulations,

enabling a large number of simulations with limited compute cluster resources. A general-

ized comparison of simulation speeds shows that using MC-GPU in a GeForce GTX 1060

(NVIDIA, USA) had a performance 40 times greater than PENELOPE in a Core i7 7700

(Intel, USA) processor (using all cores). Although limited (since we are comparing CPU

to GPU), these results at least show the performance improvements that could be achieved

when desktops (with a limited number of CPUs) are used in MC simulations. The need to

optimize simulation efficiency becomes important especially with recent studies focusing in

complex breast models,6–8,10,39 where a high computation power is needed. The MC-GPU

code also supports the use of a search tree in the tracking algorithm which greatly reduces

the amount of memory to store high-resolution phantoms. This is highly efficient compared

to the parallelism implemented in some MC simulations where the jobs do not share memory

and the same breast phantom must be loaded for every job.

The phase space file functionality implemented in MC-GPU was developed to support

future multiscale studies of breast dosimetry,23 where the macroscopic scale would be sim-

ulated in MC-GPU and the microscopic scale in a different code with electron transport,

such as PENELOPE or EGSnrc. The effects of potentially missed secondary photons, in this

application, is small22 and can be disregarded since low energy photons are used for x-ray

imaging of the breast, associated with low atomic number of breast tissues.
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Moreover, this routine could be adapted for other purposes, such as simulating energy

deposition in a detector. There is a trade off between the simulation speed and the number

of particles being scored. The user should optimize between the size of the scoring region

and the total number of particles entering the region for efficiency and in order to limit

the size of the phase space file considering the overhead time to write and load them. It is

important to notice that MC-GPU does not simulate electrons and does not have routines

to calculate fluorescence effects in the materials. Since the effective atomic number of breast

tissues is relatively low, the probability of fluorescence is negligible. However, this might be

needed in other applications. Another interesting feature implemented in the phase space

file generating algorithm is the option to not kill particles that enter the volume of interest.

This is particularly useful for the application discussed in this work of recreating a dose in

a voxel because it ensures that backscatter photons are included.

Preliminary tests (not included in this work) show that for a mammography simulation

and a voxel in the middle of the breast, 2% and 0.5% of photons are missed if photons are

killed when they enter the volume of interest for voxels with 2 mm and 0.5 mm side length,

respectively.

For the practical example (Section III.E.), the average dose in adipose tissue was

0.54 mGy, almost on the same order of magnitude found in real mammography imaging.

Thus, it is expected that the size of the phase space files in this type of multiscale studies

would be in the worst case scenario of a few gigabytes, which is still viable with most current

hardware available.

V. Conclusion

Recent studies of breast dosimetry employ complex breast models with realistic features,

presenting considerable demands on computing power. The present article demonstrates

that MC-GPU is suitable for carrying out accurate MC dosimetric evaluations for differ-

ent x-ray breast imaging modalities. Moreover, the option to record phase space files in

specific regions of the geometry has been successfully implemented. This development will

enable future studies of energy deposition on different scales by also employing an MC

code that models coupled electron-photon transport, e.g., the relation between dose in
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macroscopic models and the specific energy imparted in cells. In theory, any code that

allows the IAEA phase space file format is compatible to work with the files generated

with MC-GPU. The authors will release the modified MC-GPU code in a digital repository

(https://github.com/rtmass/MCGPU-PSF). Future studies could expand these applications

to other x-ray imaging techniques besides the breast and other low x-ray energies applica-

tions.

Conflicts of interest

The authors have no conflicts of interest.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo

(FAPESP) - Project numbers 2015/21873-8, 2016/15366-9 and 2018/05982-0, Ministério
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14 D. Fernández Bosman, V. Garćıa Balcaza, C. Delgado, S. Principi, M. A. Duch, and

M. Ginjaume, Validation of the MC-GPU Monte Carlo code against the PENE-

LOPE/penEasy code system and benchmarking against experimental conditions for typ-

ical radiation qualities and setups in interventional radiology and cardiology, Physica

Medica 82, 64–71 (2021).
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VI. Figures

Figure 1: Schematic of the geometries used in section II.A.1. for the dosimetry validations.
Figures not in scale.

Figure 2: (a) Comparison between the relative MGD (rMGD) values for MC-GPU and
PENELOPE for DBT for different breast thicknesses, glandularities and tube potentials.
The results were normalized by the PENELOPE 0◦ projection MGD value for each breast
thickness to obtain the rMGD values. Coefficient of variation: 0.25% (2σ). (b) Comparison
between DgNCT values for MC-GPU, PENELOPE and Sarno et al.4 for photon energies
between 10 keV and 80 keV. The linear fit quantifies agreement between them, coefficient of
variation: 0.7% (2σ). For both cases, the dashed lines indicate a perfect agreement.
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Figure 3: (a) Relative difference between MC-GPU and PENELOPE/EGSnrc for the breast
dose voxels. The arrows indicate the minimum and maximum values. Maximum coefficient
of variation: 2%. (b) Glandular dose as function of the breast depth for different MC codes.
Each point represents the average value for all glandular voxels in a particular depth. The
reference plane is exemplified by the insert. Imaging modality: Mammography.

Figure 4: Spectra of photons entering in a glandular voxel inside the breast recorded in
different MC codes. The simulations were performed with the following spectra: (a) W/Rh
28 kV and (b) W/Cu 49 kV.
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Figure 5: (a) Specific energy distribution obtained in a full simulation within PENELOPE
and using the phase space file approach (MC-GPU + PSF + PENELOPE). (b) Relative
differences (∆) between both approaches for each bin. Values of specific energy higher than
6 mGy where excluded due to their low probabilities.

VII. Tables
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Table 1: Elemental composition (in mass percent composition) of the materials employed in
the simulations with their respective reference.

Material Density
(g/cm3)

H C N O Others

Adipose31 0.93 11.2 61.9 1.7 25.1 P(0.025),S(0.025),K(0.025),Ca(0.025)
Glandular31 1.04 10.2 18.4 3.2 67.7 P(0.125),S(0.125),K(0.125),Ca(0.125)

Skin31 1.09 9.8 17.8 5.0 66.7 P(0.175),S(0.175),K(0.175),Ca(0.175)
Connective32 1.12 9.4 20.7 6.2 62.2 Na(0.2),S(0.6),Cl(0.3)

Blood (ICRP)33 1.06 10.187 10.002 2.964 75.941 Na(0.185),Mg(0.004),Si(0.003),
P(0.035),S(0.185),Cl(0.278),K(0.163),
Ca(0.006),Fe(0.046),Zn(0.001)

Muscle (ICRP)33 1.04 10.064 10.783 2.768 75.477 Na(0.075),Mg(0.019),P(0.180),S(0.241),
Cl(0.079),K(0.302),Ca(0.003),
Fe(0.004),Zn(0.005)

PMMA33 1.19 8.054 59.985 - 31.961 -

Table 2: Overview of simulations for dosimetric validations: breast geometric descriptors
(shape, radius, thickness) and glandularity, source parameters (x-ray spectra, field size,
source-detector/isocenter distances), and scored quantities for each simulated modality, as
well as the publication motivating the simulation.

Simulated modality
Parameter DBT Breast-CT Mammography

Breast shape Semicylinder Cylinder Semicylinder
Breast radius 8 cm 4, 6, 9 cm ≈ 10 cm
Breast thickness (height) 2, 5, 8 cm 4, 9, 18 cm 5 cm
Glandularity 1, 50, 100% 0.1, 50, 100% 20%
Field size 26 × 14 cm2 40 × 30 cm2 26 × 14 cm2

Source detector distance 66 cm 92.3 cm 66 cm
Source isocenter distance 66 cm 65 cm -
X-ray spectra W/Rh: 23, 28, 35 kV Mono: 10 – 80 keV W/Rh: 28 kV
Scored quantity MGD DgNCT DD*
Adapted geometry from TG-195,21 TG-22334 Sarno et al.4 TG-19521

*DD: dose distribution.
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Table 3: Dose in five distinct glandular voxels (ROI) obtained directly with MC-GPU, and
reconstructed from phase space files for EGSnrc and PENELOPE. Values in mGy. The
statistical uncertainty (in mGy) is indicated by the values in parentheses.

ROI MC-GPU PENELOPE EGSnrc
Mammography

1 3.4230(1) 3.424(9) 3.416(9)
2 3.7656(1) 3.769(9) 3.760(9)
3 3.3138(1) 3.302(9) 3.296(9)
4 3.3027(1) 3.295(9) 3.280(9)
5 3.2874(1) 3.299(9) 3.296(9)

DBT
1 3.4508(1) 3.442(9) 3.442(9)
2 3.6832(1) 3.661(9) 3.661(9)
3 3.3716(1) 3.362(9) 3.362(9)
4 3.4411(1) 3.433(9) 3.433(9)
5 3.4237(1) 3.409(9) 3.409(9)

CEDM
1 4.4531(2) 4.46(1) 4.46(1)
2 4.1154(1) 4.13(1) 4.13(1)
3 4.1303(1) 4.15(1) 4.15(1)
4 4.2368(1) 4.26(1) 4.25(1)
5 4.3637(2) 4.36(1) 4.36(1)

Breast-CT
1 3.4240(1) 3.44(1) 3.43(1)
2 3.7656(1) 3.78(1) 3.76(1)
3 3.3138(1) 3.311(8) 3.31(1)
4 3.3027(1) 3.30(1) 3.32(1)
5 3.2874(1) 3.308(9) 3.29(1)
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Abstract

Background: X-ray breast imaging modalities are commonly employed for breast
cancer detection, from screening programs to diagnosis. Thus, dosimetry studies are
important for quality control and risk estimations since ionizing radiation is used.
Purpose: To perform multiscale dosimetry assessments for different breast imaging
modalities and for a variety of breast sizes and compositions. The first part of our
study is focused on macroscopic scales (millimeters).
Methods: Nine anthropomorphic breast phantoms with a voxel size of 0.5 mm were
computationally generated, representing three breast sizes with three distinct volume
glandular fraction for each size. Four breast imaging modalities were studied: digi-
tal mammography, contrast enhanced digital mammography (CEDM), digital breast
tomosynthesis (DBT) and breast-CT (BCT). Additionally, the impact over tissue ele-
mental compositions were compared between two databases. Monte Carlo simulations
were performed with the MC-GPU for all cases to obtain the 3D glandular dose dis-
tribution. For all cases, the mean glandular dose (MGD) was fixed at 4 mGy.
Results: The glandular dose distribution within the breast is more uniform for the
CEDM and BCT compared to mammography and DBT. For large breasts, the ratio
between the minimum/maximum glandular dose to MGD is 0.12/4.02 for mammogra-
phy and 0.53/1.77 for BCT, while for a small breast the minimum/maximum ratios are
0.35/1.98, respectively. The elemental tissue composition of skin, adipose and glandu-
lar tissue have a significant impact over the MGD, with variations up to 30% compared
to the baseline. On the other hand, the inclusion of tissues other than glandular and
adipose within the breast does not change significantly the MGD (differences below
2%).
Conclusions: The glandular dose distribution varies significantly between breast imag-
ing modalities for a constant MGD. The elemental tissue compositions impacts signif-
icantly the MGD values, being a source of systematic uncertainties in Monte Carlo
simulations and, consequently, in breast dosimetry.
Key words: Digital Mammography, Digital Breast Tomosynthesis (DBT), Breast CT,
Contrast imaging, Radiation dosimetry, Monte Carlo
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I. Introduction

X-rays have been employed in breast imaging for decades1 and play an important role in

screening and early diagnosis of breast cancer among women.2 Several techniques have

been developed with different acquisition geometries and technologies. Among them, digital

mammography is currently the standard technique for breast cancer screening with several

studies pointing to its benefits in detecting breast cancer at early stages and saving’s lives.3,4

Recent studies indicate that digital breast tomosynthesis (DBT), which provides a pseudo

3D image of the breast, could also be employed in screening,5–7 with the advantage of par-

tially overcoming tissue overlap of 2D mammography images.8 Contrast enhanced digital

mammography (CEDM) is an advanced breast imaging technique with the potential to be

used in screening for women with high risk of developing breast cancer:9 a contrast-agent (io-

dine) is injected into the breast to increase the contrast between tissues and x-ray beams of

higher energy are employed.10 Dedicated breast computed tomography (BCT) is an imaging

modality capable of producing real three-dimensional breast tissue information, thus yield-

ing a superior contrast compared to projection radiography11,12 and providing anatomical

breast information.13

Given that the breast is a highly radiosensitive organ14 and the above-cited imaging

modalities expose the breast to ionizing radiation, screening benefits must outweigh risks.

For risk assessment, dosimetric studies play an important role in quality control and proto-

col optimization,15 thus aiding to determine pros and cons for each technique. Furthermore,

screening programs mean women are exposed to radiation multiple times during their life-

times, further increasing the concern of radiation-induced cancers.16 The standard dosimetric

quantity in x-ray breast imaging is the mean glandular dose (MGD), which is usually studied

by Monte Carlo (MC) simulations.15 Several works addressed the MGD or DgN (Normalized

Glandular Dose, i. e. the MGD divided by the incident air kerma) for the following tech-

niques: mammography;17–25 CEDM,23,26 DBT,24,27–29 and BCT.11,24,30–32 Moreover, it was

shown that the glandular distribution inside the breast could impact MGD estimates and

that the traditional assumption of homogeneously-distributed gland results in overestima-

tion of MGD by 30% for mammography22,33 and 4% for BCT33 compared to heterogeneous

distributions.

The MGD provides the average ratio of the energy imparted in glandular tissue by
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its mass, and consequently does not inform about the dose distribution within the breast.

For the low energy x-rays usually employed in some breast imaging modalities and system

geometries, the exponential attenuation of the photons through matter could contribute for

a more heterogeneous glandular dose distribution. For example, Sechopoulos et al.34 showed

that the doses at the entrance of the breast are four times higher than the average dose

in mammography, while this effect is less noticeable in high energy beams such as those

used in BCT.33,34 Therefore, the dose distribution inside the breast could provide additional

information of the dose ranges deposited in glandular tissue. Additionally, the behavior of

energy deposition at microscopic length scales (in cells) could bring new insights in breast

dosimetry, since damage to the DNA can induce mutations and consequently radio-induced

carcinogenesis.35 In this scope, Oliver and Thomson36 investigated the energy deposition in

glandular tissue from microscopic to macroscopic length scales for mammography varying

the x-ray spectra, the compressed breast thickness, the glandular content distribution within

the breast, cell configurations and cell sizes. The authors reported that the glandular dose

distribution varies between 0.1 and 4 times the MGD, the specific energy in cell nuclei

could be approximately 30% higher than the respective scored voxel glandular dose, and is

dependent on the cell composition and nucleus size. Although the aforementioned works

studied breast dosimetry for different x-ray imaging techniques and even from microscopic

to macroscopic scales, to our knowledge, no study yet comprehensively considered different

breast x-ray imaging techniques for detailed 3D dosimetric studies in multiple length scales.

In light with these findings, an extension to other breast imaging modalities would help

understand the influence of the diverse parameters presented in distinct contemporary breast

imaging modalities, such as the beam energy, the geometry of the irradiation and the breast

shape to the overall dose distributions.

The scope of this study is to perform multiscale Monte Carlo simulations to study the

breast dosimetry for different imaging modalities: mammography, DBT, CEDM and BCT

and to compare the results between them in microscopic and macroscopic length scales. The

work is divided in two parts: in the first one, addressed here, the macroscopic length scales

are studied. In the second one, the study is focused on microscopic length scales and the

energy deposited in cells (nucleus and cytoplasm).
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II. Methods

II.A. Monte Carlo code

The macroscopic length scale Monte Carlo simulations were performed in a modified version

of MC-GPU (v. 1.5b)37,38 which was validated for breast dosimetry studies in our previous

work.39 Table 1 describes general Monte Carlo parameters implemented in this work, while

more specific ones are described in the following sections.

Table 1: General parameters regarding the Monte Carlo simulations performed in this work
following TG-268 guidelines.40

Checklist item Description

(5) Hardware The simulations were performed in two GPUs: GeForce GTX 1060 and
GTX Titan (NVIDIA, USA) both with 6 GB of VRAM. The simulation
speeds were in the order of 5×107 histories/s and took from 5 to 17
hours.

(7) Materials The elemental compositions of the materials, if not explicitly indicated,
are taken from NIST.41

(9) Crosss sections The cross sections values were obtained from PENELOPE (v. 2018,
default settings).

(10) Transport Parameters Photon energy cutoff: 1 keV. The code does not simulate electrons, thus
those generated by photon interactions were locally absorbed.

(12,13,14) Scoring The dose deposited in voxels was scored and its value is normalized by
the number of primary particles (photons) that were generated in the
source. The statistical uncertainty was estimated via the history-by-
history method. The number of generated primary particles was in the
order of 1012.

II.B. Breast Phantoms

The breast models used in the simulations were generated by the BreastPhantom software42

and compressed (when applicable) via a finite element algorithm.43 The skin thickness is 1.5

mm.44,45 The breast tissues are assigned as: skin, glandular, adipose, connective or blood.42

The breast sizes and volume glandular fraction (VGF)13 were based on values provided by

Hernandez et al.,32 while the compressed thickness were approximately fitted by the linear

relation with breast diameter by Boone et al.46 Since, in our work, the breast phantoms are

composed by tissues other than glandular and adipose, the formula to calculate the VGF

was modified accordingly to include other tissues as VGF= Ngland/Ntotal, where Ngland is the
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number of voxels assigned as glandular tissue and Ntotal the total number of voxels of the

whole breast, excluding skin. Table 2 describes the main characteristics of the breast models

used in this work.

Table 2: Parameters of the breast phantoms generated and used in this work.

VGF (%)
Size Total volume

(cm3)
Breast diameter
(cm)

Compressed
thickness (cm)

Low Medium High

Small 299 9.7 2 9.9 19.6 30.5
Medium 653 12.0 4 5.8 9.6 17.0
Large 1193 15.0 6 2.1 4.0 7.7

In order to verify the impact of the elemental composition of breast tissues in dosimetry,

two databases were used for skin, glandular and adipose tissues: Hammerstein et al.47 and

Woodard and White.48 Since the tables from those works provide the average and a typical

range of elemental proportions for each tissue, we developed an analytic model to search for

the elemental combinations which minimizes and maximizes the dose in glandular tissue (i.e.

the mean glandular dose), which is explained in details in Appendix A. Table 3 summarizes

the combinations of tissues compositions used in this work, while the detailed description of

the elemental compositions is presented in Appendix B.

Table 3: Breast tissue combinations studied in this work and their respective nomenclature.

Hammerstein et al.47 (H) Woodard and White48 (WW)
Target Glandular Dose Skin Adipose Glandular Skin Adipose Glandular
Low H H1 H1 W3 W1 W1

Average H H2 H2 W2 W2 W2

High H H3 H3 W1 W3 W3

Note: for Woodard and White48 the notation representing each elemental composition matches those in the
original work, while the notation numbers for Hammerstein et al.47 were included in this work to maintain
the same notation pattern, thus were not present in the original work. The skin for Hammerstein et al.47

was the same for all tests.

II.C. Breast imaging modalities: simulation geometries

For each breast imaging modality, a distinct geometry was implemented in the simulations,

this includes the source position, x-ray field size and, when applied, the source rotation.

In addition, the geometry contains the breast phantom, and the support and compression

II.C. Breast imaging modalities: simulation geometries
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plates (PMMA, 26 × 14 × 0.2 cm3) for mammography, CEDM and DBT. The detector, the

antiscatter grid and the patient chest were not included in the simulations. Table 4 describes

the geometry parameters designed for the breast imaging modalities studied in this work.

The geometry structures (i.e. breast phantom, support and compression plates) are made of

rectilinear cubic voxels of 0.5 mm sides. The world is vacuum, except the regions near the

breast were the material was set to air. For CEDM, the iodine application was not simulated

during the dose estimation.

Table 4: Information about the geometry employed in the simulations for each modality.

Simulated modality
Parameters Mammography DBT CEDM BCT
Source-detector distance (cm) 66 66 66 92.3
X-ray field size (cm2) 26 × 14 26 × 14 26 × 14 40 × 30
Compression plate-detector gap (cm) 1.1 1.8 1.1 N/A
Detector-center of rotation distance (cm) N/A 0 N/A 27.3
Number of projections 1 31 1 300
Projection angle range (o) N/A -30 to 30 N/A 0 to 360

An isotropic point source was modeled and the heel effect was not considered. Table 5

describes the spectrum employed for each modality and breast size. The x-ray spectra were

calculated by the TASMICS (M-T and BCT) programs.49

Table 5: Anode/filter and tube potential combinations for each breast size and imaging
modality. The filter thickness is also included.

Modality
Breast Size Mammography DBT CEDM BCT
Small W/Rh 22 kV W/Al 26 kV W/Cu 45 kV W/Al 49 kV
Medium W/Rh 28 kV W/Al 29 kV W/Cu 47 kV W/Al 49 kV
Large W/Rh 30 kV W/Al 33 kV W/Cu 49 kV W/Al 49 kV
Filter thickness 0.05 mm 0.7 mm 0.3 mm 1.5 mm

II.D. Glandular dose assessment

MC-GPU provides the voxel and material doses contained in the geometry. In this study,

we focused in the dose corresponding to glandular voxels, which is the tissue of interest for

breast dosimetry.15 The MGD was obtained by the energy imparted in all voxels of glandular

II.D. Glandular dose assessment
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tissue by the mass of glandular tissue in the breast, and is obtained via the output file at

the end of the simulation. For all cases, the number of primary photons was fine-tuned

to yield a MGD of 4 mGy, small variations were observed (less than 0.5% differences) and

were corrected by normalizing the number of histories and the results to match exactly the

nominal value. The relative standard deviation for the glandular dose scored in voxels was

below 0.1% for all simulations. The MGD ratio between two cases (a and b) is defined as:

MGDratio =
MGDa

Na

×
(
MGDb

Nb

)−1

(1)

Where N is the number of histories for a or b. Since in this work, the MGD was fixed

at 4 mGy for all simulations, the expression can be simplified as: MGDratio = Nb/Na.

Three conditions are studied: (i) The first assessment consists of the glandular dose

distribution (GDD) compared to different modalities, for each breast size and VGF. In

this case, the glandular, adipose and skin have the compositions of HAverage by default (see

Appendix B for details). This totaled in 36 simulations. (ii) The second test compared

the impact of the tissue compositions over the MGD. For this, only the medium VGF is

considered. Therefore, a total of 72 simulations were performed. (iii) The third test compared

the influence of the blood, connective and muscle tissues over the MGD. These tissues were

changed to adipose and the dose distribution was compared between the original model.

In this test, the comparison was selected for mammography and BCT, and medium/large

breast sizes with HAverage composition.

III. Results

III.A. Glandular dose distribution across modalities

Figure 1 illustrates the glandular dose distribution for the same MGD within the breast for

two breast imaging modalities (mammography and BCT) obtained by MC simulation. The

higher energy employed in BCT and the rotating source, related to the irradiation geometry,

result in a more homogeneous dose across the breast in contrast to mammography.

The glandular dose distributions is shown in Figure 2 for different breast sizes and imag-
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Figure 1: Glandular dose distribution for two breast imaging modalities: BCT and Mam-
mography, the other tissues are transparent. Medium sized breast with average VGF. MGD
is 4 mGy.

ing modalities. We observe that a higher variability between the dose values is observed for

mammography and DBT compared to CEDM and BCT due to the higher energy spectra

employed in the latter modalities. The CEDM presented a narrower dose distribution com-

pared to BCT for small and medium breasts, this could be the effect of the smaller breast

thickness due to compression. Additionally, the variability is also related to the breast size:

the dose intervals (between minimum and maximum) increases with breast size (in increas-

ing breast size order: Figures 2 (a), (b) and (c)). This behavior could be explained by the

exponential attenuation of low energy photons, which have a higher probability of depositing

energy at the entrance of the breast, while deeper tissues present less probability of being

irradiated.

Table 6 summarizes the glandular dose values for the median, 1 and 99 percentiles,

minimum and maximum, considering all glandular voxels. The table comprises the results

obtained for all imaging modalities, breast sizes and compositions. In order to keep a clear

view in the comparison, the results were normalized by the MGD which corresponds to 4

mGy. An interesting aspect is that the median is slightly below the MGD for mammography

and DBT, which indicates that more than half of the voxels received less than the MGD. The

minimum and maximum dose values drastically changes between breast sizes. While for small

breasts the glandular dose varies from 0.35 to 2.24 times the MGD, large breasts present

variations from 0.12 to 4.02 times the MGD. Comparing these values, a non symmetric

behavior is observed. The VGF affects the range of glandular dose values: fatty breasts have

III.A. Glandular dose distribution across modalities
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Figure 2: Boxplot of the glandular dose distribution among voxels for different imaging
modalities and breast sizes: (a) small, (b) medium and (c) large. Dashed line MGD (4
mGy), centerline: median. Box lower and upper edges: first and third quartiles, respectively.
Whiskers: 1-99% intervals, blue dots: outliers. Breast tissue compositions: HAverage.

a narrower distribution compared to dense breasts. This is due to the attenuation coefficient

of glandular tissue being higher than the fat tissue.

III.B. Glandular dose and the tissues elemental compositions

The impact of the elemental compositions of the breast tissues following the combinations

described in Table 3 is shown in Figure 3. To facilitate the comparison, the results for the

different imaging modalities were condensed by taking the average and standard deviations.

The MGD ratio was calculated using equation 1 setting HAverage as b, and the compared case

as a. (RMT: I’m confused here. Are MGD values taken in the ratio with different numbers

of histories (not the number of histories in ratios?) Also, not all simulations are tuned to

obtain 4 mGy, right (so that you can show that the different compositions yield different

doses corresponding to different cross sections)? Did I miss something in the methods?

RTM: in this case, all MGD are 4 mGy for all compositions, I included an equation in the

methodology) The results shows that only the HHigh combinations yielded significantly higher

MGD than the HAverage (up to 1.09(2)). Meanwhile, the WWLow andWWAverage compositions

presented lower MGD values (down to 0.68(3)) and the WWHigh compositions resulted in

practically identical values (from 1.00(1) to 1.01(1)). HLow values were similar to WWAverage,

and this was expected due to the more similar densities and elemental compositions of the

breast tissues.

III.B. Glandular dose and the tissues elemental compositions
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Table 6: Glandular dose distribution values for different imaging modalities and breast
models, considering all glandular voxels. All values are normalized by the MGD (4 mGy).
The 1% and 99% correspond to the respective percentile intervals while Min. and Max. are
the minimum and maximum values, respectively.

Ratio to MGD
Size VGF Modality Median 1% 99% Min. Max.

Small

Low

Mammography 0.96 0.45 1.83 0.35 1.98
DBT 0.96 0.49 1.79 0.40 1.94
CEDM 1.01 0.76 1.18 0.64 1.21
BCT 0.99 0.69 1.36 0.63 1.42

Medium

Mammography 0.90 0.41 1.99 0.32 2.16
DBT 0.91 0.45 1.94 0.36 2.10
CEDM 1.00 0.76 1.20 0.64 1.24
BCT 0.99 0.71 1.38 0.64 1.45

High

Mammography 0.92 0.41 2.02 0.29 2.24
DBT 0.92 0.45 1.96 0.33 2.18
CEDM 1.01 0.76 1.20 0.61 1.23
BCT 0.99 0.69 1.37 0.65 1.54

Medium

Low

Mammography 0.86 0.28 2.32 0.17 2.68
DBT 0.86 0.30 2.32 0.20 2.72
CEDM 1.01 0.58 1.34 0.44 1.40
BCT 1.00 0.66 1.42 0.56 1.49

Medium

Mammography 0.82 0.27 2.46 0.18 2.76
DBT 0.82 0.29 2.45 0.20 2.77
CEDM 1.00 0.59 1.37 0.44 1.40
BCT 1.00 0.61 1.46 0.54 1.51

High

Mammography 0.76 0.26 2.65 0.16 3.21
DBT 0.77 0.28 2.62 0.20 3.23
CEDM 0.98 0.59 1.40 0.42 1.46
BCT 0.98 0.66 1.48 0.56 1.59

Large

Low

Mammography 0.73 0.22 3.13 0.14 3.69
DBT 0.74 0.24 3.03 0.16 3.62
CEDM 0.97 0.49 1.58 0.33 1.64
BCT 0.99 0.56 1.57 0.49 1.69

Medium

Mammography 0.78 0.21 2.91 0.14 3.88
DBT 0.82 0.24 2.78 0.16 3.74
CEDM 0.96 0.47 1.58 0.33 1.66
BCT 1.01 0.53 1.47 0.44 1.64

High

Mammography 0.65 0.21 3.31 0.12 4.02
DBT 0.69 0.24 3.17 0.15 3.89
CEDM 0.93 0.50 1.63 0.35 1.70
BCT 0.99 0.53 1.58 0.46 1.77

III.B. Glandular dose and the tissues elemental compositions

CHAPTER 6. MULTISCALE BREAST DOSIMETRY PART I 126



Multiscale breast dosimetry: part I page 11

Figure 3: MGD comparison between the different elemental compositions for distinct breast
sizes averaged across all imaging modalities. Values normalized by HAverage. Error bars:
standard deviation calculated from the MGD across all imaging modalities. In this case,
only the medium VGF is considered for all breast sizes.

The impact of the elemental composition on the dose distribution is shown in Figure 4.

The MGD was set to 4 mGy, and the glandular voxel doses are compared between HAverage

and the other compositions. The cases (a) BCT for a small breast and (b) mammography

for a large breast cases were selected to illustrate the extremes, where more energetic x-

ray beam ensures lower differences for (a) and a low energy x-ray beam produces higher

differences for (b). The others breast sizes and imaging modalities, not included here, have a

pattern in between (a) and (b). In general, distributions are narrower for small breasts and

high energy beams (such as CEDM and BCT). Meanwhile, a double-peaked distribution is

observed for larger breasts and low energy beams (mammography and DBT). In addition,

the HLow and WWLow compositions deviated more than the other studied compositions. The

highest discrepancies for the glandular dose distribution are in the order of 20%.

III.C. Glandular dose and the tissue assignment

The glandular dose was compared between the breast models containing only three type of

tissues (adipose, glandular and skin) and a more complex model (which also includes muscle,

blood and connective tissues). The relative differences in the glandular dose distribution is

shown in Figure 5 for (a) medium and (b) large breasts. The more energetic beam employed

III.C. Glandular dose and the tissue assignment
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Figure 4: Glandular dose relative differences between HAverage and other elemen-
tal compositions for different breast sizes/imaging modalities: (a) small/BCT and (b)
large/mammography. MGD is 4 mGy.

in BCT produced a single peaked distribution centered near 0 for both breast sizes, while

the mammography distributions (with a lower energy beam) presented two peaks with a

larger value distribution. This is expected since the elemental composition of the tissues has

more impact at lower energies than at higher energies (same behavior as shown in Figure 4).

When the MGD is corrected for a constant number of simulated histories, and considered

for each imaging modality and breast sizes as in Figure 5, the MGD is consistently lower

for the three tissue breast model from 1.4% to 1.7% compared to the more complex breast

model (other combinations were not included).

IV. Discussion

The MGD is a well established dosimetric quantity for breast imaging and is employed

in a variety of studies: from quality control, to model comparison and risk assessment.15,50

However, as its name suggests, it provides an average estimation of the glandular dose within

the breast and consequently it does not consider the spacial variations.

In this work, for mammography, the glandular dose varied from 0.35 to 1.98 the MGD

for small breasts, from 0.12 to 4.02 the MGD for the large breast. For BCT, the variations

were less sensitive to breast sizes, going from 0.63 to 1.54 the MGD for small breasts and
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Figure 5: Relative differences of glandular dose in voxels between standard breast phantom
and the one replaced with adipose tissues when the MGD is set to 4 mGy. (a) Medium breast
and (b) large breast. The arrow indicates the maximum difference value. Composition:
HAverage.

0.44 to 1.77 for larger ones. We also included the 1% to 99% intervals because a large dose

variation is present in a small voxel subset. For example, excluding 2% of the voxels, the

dose variation for large breast in mammography dropped to 0.21 to 3.31 times the MGD. We

also found that the median of the glandular dose distributions is lower than the MGD for

mammography and DBT, specially for large breasts. In the extreme case (mammography,

large breast and high VGF) the median was 0.65 times the MGD, which indicates that a

significant number of voxels are receiving less than the average dose.

The elemental composition of breast tissues has a significant impact in the dosimetry re-

sults, which was expected comparing the respective attenuation coefficients between the ma-

terials.15 The MGD obtained with the HAverage composition (traditionally employed in dosi-

metric studies) was higher than the other studied compositions, except the HHigh/WWHigh

cases. In addition, the results with WWHigh were in closer agreement with HAverage compared

to HHigh. The MGD between the different elemental compositions varied approximately be-

tween 0.7 to 1.1 the HAverage. The breast imaging modalities and breast sizes affected the

MGD ratio in a few percent without modifying the overall dose underestimation or overesti-

mation for different elemental compositions. The HAverage provides a conservative estimation

of the dose, i. e. the maximum MGD underestimation is in the order of 10% while in the

other cases the values are lower (reaching 30% less dose at WWLow). This behavior may
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be explained by the variations of the elemental composition of each tissue in the databases,

mainly the differences between Carbon and Oxygen. The glandular dose distribution varied

between the breast tissue composition databases when the MGD was set to 4 mGy for all

combinations. For small breasts and high energy beams (BCT), the differences were less

than 8%, while for large breasts and low energy modalities (mammography) the differences

reached 20%. HLow and WWLow compositions yielded the highest discrepancies compared to

HAverage, this could be explained, as explained for the MGD ratio, by the combination of the

tissues elemental compositions, more specifically the variations of O and C, and densities for

WW.

The traditional three-tissue breast model (skin, adipose and glandular) yielded a sys-

tematic higher MGD in the order of 1.4% to 1.7% compared to the breast model including

other tissues, due to the additional tissues having a higher density than the adipose tissue.

The impact of the three-tissue breast model approximation over the MGD is less pronounced

than the impact of the MGD due to the other variations and uncertainties presented earlier

(such as the breast tissue elemental compositions). However, it is important to notice that

the results were obtained with computer-generated phantoms, and a comparison with models

built from real patient data is necessary.

The exponential attenuation of photons trough the breast, which is more evident at

low energies such as those employed in mammography (≈ 20 keV), in addition with the

geometry of a fixed beam source, makes the dose distribution significantly heterogeneous in

this imaging modality. This behavior was studied by Boone et al.,11 when they compared

the dose profiles between mammography and BCT. For the latter, a more homogeneous

dose was observed. Oliver and Thomson36 found that the glandular dose distribution within

the breast varies from approximately from 0.1 to 4 times the MGD in a mammography

simulation. Sechopoulos et al.33 also found variations in the same order for mammography,

and from 0.5 to 1.5 times the MGD for BCT. The results shown in this work are in an

excellent agreement compared to those in literature. In addition, the disposition of the

glandular tissue within the breast affects the glandular dose distribution, and consequently

the mean glandular dose.22 Due to the uncertainty of the effects of ionizing radiation to

biological tissues at very low doses, it is difficult to determine if a more homogeneous dose

within the breast (from CEDM and BCT) is less harmful than more heterogeneous ones

(from mammography and DBT).11 However, studying the dosimetry at multiscale levels
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could help to better understand the energy deposition at cell scales36 and its relation at

macroscopic scales. The second part of our study explores this subject.

In this work we studied a limited number of breast sizes and compositions, thus the

values could vary significantly for a female breast population, specially for very large breasts

not explored in this work. Moreover, the breast dose at this study is maintained the same

for all breast sizes and modalities, which is reasonable for relative comparisons. However, in

clinical practice, the doses will vary significantly between modalities, breast characteristics

and equipment from different vendors. The results of this work show the uncertainty of the

glandular dose distribution within the breast due to the elemental composition of breast

tissues, which in turn vary between databases and could be explored in future works to

include new elemental composition databases of breast tissues. Furthermore, the influence

of the iodine and the glandular dose in multiple length scales could be quantified, since in

our work this effect was neglected.

V. Conclusion

The glandular dose distributions was assessed at macroscopic scales for a variety of breast

sizes and compositions. These distributions of glandular dose vary significantly within the

breast, specially for low energy x-ray beams such as mammography and DBT. The tissue

elemental compositions of glandular, adipose and skin affect directly the MGD and the

glandular dose distributions. The three tissue breast model approximation had a minor

impact on the MGD for the computer-generated breast models used in this study. The second

part of our work compares the relation between the dose at macroscopic and microscopic

scales in order to better understand how the dose variations will affect the energy depositions

in a cellular level.
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A Analytic model description

To select the tissues compositions of the breast within the databases, a simplified analytic

model based on Ref.51 was implemented to estimate the mean glandular dose. The geometry

consists of a parallel beam of monoenergetic x-rays incident on a 5 cm semi-cylinder, 20%

glandular breast with 1.5 mm skin thickness. In our case, the contribution of scattered

x-rays were neglected. An optimization routine was used to determine which elemental

compositions for skin, adipose and glandular tissue would minimize or maximize the mean

glandular dose. The calculations were done interactively until the results converged (usually

80 interactions were necessary). The optimization constraints for Hammerstein47 database

were based on the elemental composition values range for the elements Oxygen and Carbon

for glandular and adipose tissues. For the Woodard and White48 database, there are three

different elemental compositions for adipose, glandular and skin tissues. The combinations

between the three tissues were tested exhaustively until they yielded the minimum and

maximum MGD values.

B Elemental Compositions

This appendix describes the elemental composition for every material used in this work.

Table 7: Adipose elemental composition (by weight) employed in the simulations with their
respective reference.

Reference Density
(g/cm3)

H C N O Others

H1
47 0.93 11.2 51.3 1.7 35.7 P(0.025),S(0.025),K(0.025),Ca(0.025)

H2
47 0.93 11.2 61.9 1.7 25.1 P(0.025),S(0.025),K(0.025),Ca(0.025)

H3
47 0.93 11.2 68.1 1.7 18.9 P(0.025),S(0.025),K(0.025),Ca(0.025)

W1
48 0.97 11.2 51.7 1.3 35.5 Na(0.1),S(0.1),Cl(0.1)

W2
48 0.95 11.4 59.8 0.7 27.8 Na(0.1),S(0.1),Cl(0.1)

W3
48 0.93 11.6 68.1 0.2 19.8 Na(0.1),S(0.1),Cl(0.1)
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Table 8: Glandular elemental composition (by weight) employed in the simulations with
their respective reference.

Reference Density
(g/cm3)

H C N O Others

H1
47 1.04 10.2 30.5 3.2 55.6 P(0.125),S(0.125),K(0.125),Ca(0.125)

H2
47 1.04 10.2 18.4 3.2 67.7 P(0.125),S(0.125),K(0.125),Ca(0.125)

H3
47 1.04 10.2 10.8 3.2 75.3 P(0.125),S(0.125),K(0.125),Ca(0.125)

W1
48 0.99 10.9 50.6 2.3 35.8 Na(0.1),S(0.1),Cl(0.1)

W2
48 1.02 10.6 33.2 3.0 52.7 Na(0.1),S(0.2),Cl(0.1)

W3
48 1.06 10.2 15.8 3.7 69.8 Na(0.1),S(0.2),Cl(0.1)

Table 9: Skin elemental composition (by weight) employed in the simulations with their
respective reference.

Reference Density
(g/cm3)

H C N O Others

H47 1.09 9.8 17.8 5.0 66.7 P(0.175),S(0.175),K(0.175),Ca(0.175)
W1

48 1.09 10.0 25.0 4.6 59.4 Na(0.2),P(0.1),S(0.3),Cl(0.3),K(0.1)
W2

48 1.09 10.0 20.4 4.2 64.5 Na(0.2),P(0.1),S(0.2),Cl(0.3),K(0.1)
W3

48 1.09 10.1 15.8 3.7 69.5 Na(0.2),P(0.1),S(0.2),Cl(0.3),K(0.1)

Table 10: Elemental composition (by weight) of the remaining materials employed in the
simulations with their respective reference.

Material Density
(g/cm3)

H C N O Others

Air (dry)41 0.001205 - 0.0124 75.5267 23.1781 Ar(1.2827)
PMMA41 1.19 8.054 59.985 - 31.961 -

Blood (ICRP)41 1.06 10.187 10.002 2.964 75.9414 Na(0.185),Mg(0.004),Si(0.003),
P(0.035),S(0.185),Cl(0.278),
K(0.163),Ca(0.006),Fe(0.046),
Zn(0.001)

Connective48 1.12 10.064 10.783 2.768 75.477 Na(0.2),S(0.6),Cl(0.3)
Muscle (ICRP)41 1.04 10.064 10.783 2.768 75.477 Na(0.075),Mg(0.019),P(0.18),

S(0.241),Cl(0.079),K(0.302),
Ca(0.003),Fe(0.004),Zn(0.005)
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Abstract9

Background: Although the benefits of breast screening and early diagnosis are known10

for breast cancer, the effects and risks of low radiation doses from the exams to the11

cells in the breast is still an ongoing topic of study.12

Purpose: To study the specific energy distribution in cytoplasm and nuclei of cells13

corresponding to glandular tissue for different x-ray breast imaging modalities.14

Methods: A cubic lattice (500 µm length side) containing 4064 spherical cells was15

irradiated with photons loaded from phase space files with varying glandular voxel16

doses (Dg). The specific energy distribution (f(z,Dg)) was scored for nucleus and17

cytoplasm using the PENELOPE (v. 2018) + penEasy (v. 2020) Monte Carlo (MC)18

code. The phase space files, generated in a previous work, were obtained from Monte19

Carlo (MC) simulations in a voxelized anthropomorphic phantom corresponding to20

glandular voxels for different breast imaging modalities, including mammography, dig-21

ital breast tomosynthesis (DBT), contrast enhanced digital mammography (CEDM)22

and breast-CT (BCT).23

Results: In general, the average specific energy in nuclei is higher than the respective24

glandular dose scored in the same region, up to approximately 10%. The f(z,Dg) for25

nucleus and cytoplasm is directly related to the glandular dose in the voxel (Dg), with26

a weak dependence on the spacial location. For similar Dg values, f(z,Dg) in nuclei is27

slightly different between Mammography/DBT and CEDM/BCT, indicated that the28

distinct x-ray spectra plays a significant role in f(z,Dg). In addition, it was observed29

that the specific energy distribution in glandular tissue f(z) also varies between the30

modalities.31

Conclusions: Microdosimetry studies are complementary to the traditional macro-32

scopic breast dosimetry based on the mean glandular dose (MGD). For the same33

MGD, the specific energy distribution in glandular tissue varies between breast imag-34

ing modalities, indicating that this effect could be considered when studying the risks35

of exposing the breast to ionizing radiation.36

Key words: breast dosimetry; multi-scale Monte Carlo simulations; microdosimetry.37
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I. Introduction38

The exposure of breast cells to low doses of ionizing radiation resulting from diagnostic mam-39

mography is a topic of interest for risk assessments.1 This includes its effects on cell growth40

and survival, and DNA damage.2 Despite clear evidences indicating that mammography41

screening is beneficial in decreasing breast cancer mortality and is recommended mainly for42

women between 50 to 69 years (with some variations between countries),3,4 the available43

microdosimetry data at low doses employed in diagnostic breast imaging is still limited and44

more studies are necessary to access the long term effects.5 The benefits of early detection45

should overcome the risks of radio-induced breast cancer,6 and this relation is considered to46

determine the recommended starting age of breast cancer screening.7,8 Therefore, dosimetry47

studies are important for understanding the dose deposited in biological tissues of interest48

(i.e. glandular tissue), and to especially define the dose levels found in radiodiagnostics49

examinations, allowing to assess the associated risks at low doses.50

Besides digital mammography, other x-ray breast imaging modalities are currently em-51

ployed for breast cancer detection, such as digital breast tomosynthesis (DBT), contrast en-52

hanced mammography (CEDM) and dedicated breast breast CT (BCT). Each x-ray breast53

imaging modality has its particular geometry and x-ray spectrum energy,9–11 which could54

provide different breast dose profiles as discussed in Part I of our work.12 Moreover, it is still55

unclear the real impact of these factors and the dose at cellular level. Thus, multiscale stud-56

ies could contribute to better understand the relation between mean glandular dose (MGD),57

glandular dose distribution (GDD) and energy deposited in cells between different breast58

imaging modalities.59

Since the energy deposition in matter due to x-rays is derived from a stochastic phenom-60

ena, it is expected that the behavior observed at macroscopic scales would be different from61

the microscopic scales, especially when the characteristic size of the region of interest is of62

the same order of the electrons track length. Thus, different dosimetry quantities are defined63

for each regimen. While the absorbed dose, i.e. energy imparted per unit mass, is a com-64

monly quantity used for dosimetry at macroscopic scales, its counterpart for miscroscopic65

scales is defined as specific energy (z). However, single values of z carry little information,66

and what is usually studied is the distribution of z (f(z)) for a large sample population67

(from hundreds to thousands of cells).13 In addition, f(z) and the macroscopic absorbed68
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dose values are related, and as previously discussed in Part I, the dose distribution within69

the breast can vary significantly depending of the x-ray imaging modalities.70

Although breast dosimetry at macroscopic scales is a extensively researched topic that71

span decades,14 multiscale breast dosimetry is still a recent topic and, to our knowledge, no72

work compared microscopic dosimetry between different x-ray breast imaging modalities. In73

addition, considering the distinct glandular dose distribution inside the breast discussed in74

Part I, a new methodology is necessary to effectively compare the specific energy distribution75

in cells for mammography, DBT, CEDM and BCT.76

The first part of our work was focused in the glandular dose at macroscopic scales within77

the breast, including MGD and the glandular dose distribution in sub-millimeter voxels. This78

second part addresses the specific energy distribution at microscopic scales (i.e. cells) and79

its relation with macroscopic dosimetry quantities employed in x-ray breast imaging.80

II. Methodology81

II.A. Monte Carlo code and general parameters82

The macroscopic simulations are explained in details in part I of this study.12 Here, only83

a brief summary is provided regarding the parameters and geometries. In part I, a total84

of nine anthropomorphic breast phantoms were generated. The glandular dose distribution85

(h(Dg)) was studied considering a variety of breast imaging modalities and breast sizes.86

However, for the microscopic studies only the medium sized breast with average glandular87

content was considered, with the following characteristics: 635 cm3 of total volume, 12 cm88

diameter near the chest wall, 4 cm compressed breast thickness (when applied) and a volume89

glandular fraction of 9.6%. The following modalities were studied for this phantom size (with90

the respective x-ray spectrum): digital mammography (W/Rh 28 kV), DBT (W/Al 29 kV),91

CEDM (W/Cu 47 kV) and BCT (W/Al 49 kV). The MGD was fixed at 4 mGy for all cases.92

From a previous modification15 in the MC-GPU (v. 1.5)16 code, we generated phase93

space files in glandular voxels for a variety of x-ray breast imaging modalities sampled from94

h(Dg). The phase space files contains the information for each photon that enters the95

selected voxel volume (energy, direction and position). Afterwards, these files were loaded96
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in PENELOPE (v. 2018) with penEasy (v. 2020) as the steering code in order to perform97

detailed simulations. Table 1 summarizes the parameters employed in this work.98

Table 1: General parameters regarding the Monte Carlo simulations performed in this work
following TG-268 guidelines.17

Checklist item Description

(5) Hardware The simulations were performed in two CPU models: Ryzen 1700X and
Ryzen 2700 (AMD, USA). The simulation speeds were in the order of
3×104 histories/s and lasted 10 minutes.

(7) Materials The elemental compositions of breast tissues were extracted from Ham-
merstein et al.18 and Woodard and White.19 The cytoplasm and nuclei
compositions were based on Oliver and Thomson20

(9) Crosss sections The cross sections values were obtained from PENELOPE (v. 2018,
default settings).

(10) Transport Parameters Photon energy and electron cutoff: 50 eV. The detailed simulation pa-
rameters were selected: C1,2=0.0, WCC,CR=50, DSMAX=10−5 cm.

(12,13,14) Scoring The dose in glandular voxel is scored along with the specific energy
distributions for cell cytoplasm and nucleus compartments.

II.B. Simulation geometry99

Figure 1 illustrates the implemented steps for Part I and Part II, respectively. The simulated100

geometry in this work consists of a cube of glandular tissue measuring 500 µm on each side.101

Inside and centered it is located another cube of 306 × 306 × 306 voxels (each voxel has 1 µm102

in length). This volume between the cubes is a “buffer” zone to compensate for electrons103

that could be generated from photon-interactions and escape the innermost cube. The vox-104

elized cube hosts a lattice geometry of cells as described in Ref.,21 this ensures that the cells105

are tightly packed within the geometrical volume. Each cell is composed of two concentric106

voxelized spheres of radii equals to 9 and 6 µm representing cytoplasm and nucleus, respec-107

tively.22 The gap between cells in the lattice is fixed at 2 µm yielding 4064 cells, and a cell108

number density of 1.42 × 108 cells/cm3. The glandular tissue density and composition was109

extracted from Refs.,18,19 while for the nucleus and cytoplasm were obtained from Oliver and110

Thomson20 (case “g”). The extracellular matrix (ECM) material composition and density111

were set to be equivalent as glandular tissue considering a homogeneous mixture of nucleus,112

cytoplasm and ECM inside the innermost cube.113

II.B. Simulation geometry
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Figure 1: Schematics showing the two parts of our study and the corresponding employed
Monte Carlo codes with an inset describing the geometry of the microscopic simulations.

Figure 2: Cross section of the lattice showing one layer of voxelized cells.

II.B. Simulation geometry
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II.C. Scored quantities114

The geometry detailed in section II.B. was irradiated with photons loaded from phase space115

files, and the energy imparted in each voxel was scored, along with the energy imparted116

in the buffer zone. The dose in the simulated region (Dmix), consisting of mixture of cells117

(cytoplasm and nucleus) and glandular tissue, which compose the buffer zone, is defined as:118

Dmix =
εbuffer + εcyto + εnucl

mbuffer +mcyto +mnucl

(1)119

where ε is the imparted energy in each material and m their respective mass. The Dmix was120

compared with the respective dose in macroscopic glandular voxel (Dg) for a given phase121

space file.122

The specific energy (z) was calculated for nucleus (znucl) and cytoplasm (zcyto) by sum-123

ming the imparted energy in the voxels corresponding to each cell structure and dividing by124

the respective mass; this procedure was repeated for all cells. With z calculated for all cells,125

the specific energy distribution f(z,Dg) was obtained. To facilitate the comparison between126

different f(z,Dg) the following convention was implemented. The range between z = 0 and127

z = zmax is divided in 100 bins with the same width and the relative frequency is compared128

for each interval, hence most of the comparisons were illustrate as histograms. Moreover,129

the fraction of structures (nucleus or cytoplasm) that did not register any deposited energy130

(z = 0) was defined as f(z = 0, Dg) and calculated as:131

f(z = 0, Dg) =
Nz=0

Ntot

(2)132

Where Nz=0 is the number of structures with zero specific energy and Ntot the total133

number of scored structures (in this work this number is fixed as 4064).134

II.D. Comparison between different f(z,Dg)135

Each phase space file is characterized by its macroscopic glandular voxel dose (Dg), the136

spatial location within the breast and the original imaging modality. We compared the137

behavior of f(z,Dg) under three conditions:138

i. Similar Dg values but different breast imaging modalities.139

II.C. Scored quantities

CHAPTER 7. MULTISCALE BREAST DOSIMETRY PART II 146



Multiscale breast dosimetry: part II page 7

ii. Distinct Dg values for the same breast imaging modality.140

iii. SimilarDg values for the same breast imaging modality but at different spatial locations141

within the breast.142

The Dg from the phase space files studied in this work varied between approximately143

1.6 mGy to 8.6 mGy, and the number of primary photons are in the order of 106 to 107144

particles.145

II.E. Assessment of specific energy distribution in glandular tissue146

The specific energy distribution f(z,Dg) depends upon the macroscopic voxel glandular dose,147

which in turn, follows a distribution h(Dg) for the entire breast. Therefore, we could define148

a distribution of specific energy taking into account h(Dg). This could be particularly useful149

when comparing different breast imaging modalities that results in distinct h(Dg). For the150

following evaluation, we approximate that for a given Dg and an specific imaging modality,151

the macroscopic voxel spacial location within the breast does not influence the behavior of152

f(z,Dg), which was studied in the previous section, case ii. Moreover, we assume that the153

distribution of cells is constant for all glandular voxels.154

For a given glandular dose distribution h(Dg) within the breast, we can define a specific155

energy distribution f(z) for the entire glandular tissue inside the breast as:156

f(z) =

[∫
h(Dg) dDg

]−1 ∫
f(z,Dg)h(Dg) dDg (3)157

where the integration is overDg. Since the glandular dose is scored in voxels, we approximate158

as a discrete distribution (dDg becomes ∆Dg), and assuming h(Dg) is already normalized:159

f(z) ≈
Dgmax∑

Dgmin

f(z,Dg)h(Dg)∆Dg (4)160

Unfortunately, it is impractical to sum over all glandular voxels within the breast, thus161

h(Dg) was sampled at fixed points. To determine the Dg values, the cumulative distribution162

function of h(Dg) was calculated (H(Dg)). Afterwards, H(Dg) was divided at 10 fixed163

intervals (percentiles) from 5% to 95% (10% step) and the respective values of Dg were164

II.E. Assessment of specific energy distribution in glandular tissue
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selected (see appendix A for more details). In other words, the product h(Dg)∆Dg is constant165

and equals to 0.1. Finally:166

f(z) ≈ 1

10

10∑

i=1

f(z,Dg|p=10i−5%) (5)167

where p is the respective percentile. The computed f(z) distributions were compared between168

the imaging modalities studied in this work. The average (z̄) and standard deviation (σ)169

were also calculated and compared for all specific energy distribution for the entire glandular170

tissue (f(z)).171

III. Results172

III.A. Relation between dosimetry quantities173

The relation between different dosimetry quantities is shown in Figure 3 for two x-ray breast174

imaging modalities. It is observed that Dg, Dmix and z̄nucl follows an upward trend as175

function of the Dg percentile. However, this trend is more accentuated in mammography176

(Figure 3a) than CEDM (Figure 3b) due to the different x-ray spectra employed in each177

case. Since more energetic x-rays are used in CEDM, the glandular dose distribution within178

the breast tends to be more homogeneous compared to mammography. Another feature is179

that Dmix is systematically lower than Dg (from approximately 1% to 3%), which could be180

explained by the escaping electrons released through photon interaction within the buffer181

zone and the different materials present in the mixture. The same behavior is present for182

z̄nucl, where Dmix is systematically lower from approximately 4% to 13%. It is important183

to notice that the material for the nucleus is denser than the glandular tissue, which could184

also contribute for this behavior. The ratio z̄nucl/σ presents the lowest and highest values185

in mammography, varying from 0.79 to 2.00 when Dg = 1.3 mGy and Dg = 8.6 mGy,186

respectively. Meanwhile, for CEDM, z̄nucl/σ ranges from 1.09 to 1.54 when Dg = 2.6 mGy187

and Dg = 5.3 mGy, respectively.188
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Figure 3: Comparison between MGD, glandular voxel dose, and specific energy for: (a)
mammography and (b) CEDM.

III.B. Comparison of f(z,Dg) under distinct conditions189

Figure 4 shows the specific energy distribution for (a) nucleus and (b) cytoplasm under190

different Dg values. For both cell structures, f(z,Dg) shifts to higher specific energies as191

Dg increases. The values of f(z = 0) decreases with increasing Dg for both nucleus and192

cytoplasm, i.e. the probability of no event depositing energy in the cells is becomes lower when193

the total dose in the lattice is high. Interestingly, this dependency between f(z = 0) and194

Dg is distinct between the cell structures, which is expected since the volume of cytoplasm195

is bigger than the volume of nucleus, and the shapes are different among the structures.196

This difference in size between structures also explains why fcyto(z,Dg) is narrower than197

fnucl(z,Dg).198

Figure 5 compares specific energy distributions between different locations in the breast199

when the nominal voxel dose value is fixed. f(z,Dg) is practically spatially independent for200

a same value of Dg (approximately 4 mGy), with z̄nucl/σ ranging from 1.33 to 1.36 (less than201

2.3%). In addition, f(z = 0) varies from 4.6% to 5.2% for nucleus and is 0% for cytoplasm.202

III.B. Comparison of f(z,Dg) under distinct conditions
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Figure 4: Specific energy distribution as function of the glandular dose in a voxel for (a):
nucleus and (b): cytoplasm.

Figure 5: Specific energy distribution in glandular tissue with similar Dg values (approxi-
mately 4 mGy) under different spatial locations, (a): nucleus and (b): cytoplasm. Modality:
DBT.

III.B. Comparison of f(z,Dg) under distinct conditions
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The comparison between fz(z,Dg) for nucleus and cytoplasm, with similar Dg values203

and considering all the imaging modalities in this study is shown in Figures 6 (a) and (b),204

respectively. While fcyto(z,Dg) presents minor variations between modalities, fnucl(z,Dg)205

differs at low z values, specially when a low energy spectrum is employed (mammography206

and DBT) in contrast to high energy spectrum (CEDM/BCT). In addition, f(z = 0) for207

the nuclei varies between the imaging modalities, ranging from 3.3% for CEDM to 7.4% for208

mammography.209

Figure 6: Specific energy distribution in glandular tissue with similar Dg values for distinct
imaging modalities, (a): nucleus and (b): cytoplasm. Dg range: 3.4 to 3.5 mGy.

III.C. Specific energy distribution in glandular tissue210

The specific energy distributions obtained in glandular tissue for different imaging modalities211

is illustrated in Figure 7(a) and Figure 7(b), for nucleus and cytoplasm, respectively. For both212

graphs there is a clear distinction between the distributions for (i) mammography/DBCT213

and (ii) CEDM/BCT cases. The lower energy spectrum from (i) yields a more heterogeneous214

distribution compared to (ii). The peak at a specific energy of approximately 3 mGy observed215

in Figure 7(a) for mammography and DBT is equivalent to the dose deposited in a single216

photoelectric interaction considering the average energy of the spectrum.217

III.C. Specific energy distribution in glandular tissue
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Figure 7: Specific energy distribution in glandular tissue (f(z)) for different modalities, (a):
nucleus and (b): cytoplasm.

Table 2 quantifies z̄, σz and f(z = 0) from the data displayed in Figure 7(a) and (b). z̄218

is systematically higher compared to the MGD for all cases, with slightly higher values for219

nucleus in contrast to cytoplasm. On the other hand, the values of σz are lower for cytoplasm220

compared to nucleus, which is a behavior already mentioned when the distributions of fcyto(z)221

and fnucl(z) were compared. The fraction of nucleus without energy deposition (f(z = 0))222

ranges from 0.03 for CEDM to 0.13 for mammography. Almost all (>0.99) cells’ cytoplasm223

presented a nonzero specific energy for all modalities, indicating that the size of the cellular224

structure is an important factor to determine the shape of f(z) and consequently, the fraction225

of structures that absorbs the energy deposited from secondary particles.226

Table 2: Average (z̄) and standard deviation (σz) calculated from the specific energy distri-
bution in glandular tissue for nucleus and cytoplasm considering different imaging modalities.

Nucleus Cytoplasm
Modality z̄ σz f(z = 0) z̄ σz f(z = 0)
Mammo 4.30 4.03 0.13 4.17 2.97 0.01
DBT 4.29 3.99 0.12 4.16 2.93 0.01
CEDM 4.16 3.23 0.03 4.14 1.93 0.00
BCT 4.23 3.31 0.04 4.15 1.91 0.00

III.C. Specific energy distribution in glandular tissue
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IV. Discussion227

The MGD is one of the main quantities studied in breast dosimetry.14 However, as discussed228

in part I of our work, the same value of MGD could be obtained with different glandular dose229

distributions within the breast, since it considers the average energy imparted in glandular230

tissue. In addition, in some modalities the breast is compressed (mammography, DBT,231

CEDM) or pendant (BCT),11 and this could also influence how the dose is distributed in232

glandular tissue. Now, in part II, we studied how the different glandular dose distributions233

could impact the microdosimetry quantities, and consequently, link the relations between234

MGD, glandular dose distribution and specific energy distributions.235

Oliver and Thomson22 showed that, for digital mammography, the average specific en-236

ergy in cells’ nuclei at a specific location in the breast is higher than the glandular dose in237

the same region. Our results are in agreement with these findings, and the same behavior238

is present for all imaging modalities studied in this work, suggesting that the nucleus ele-239

mental composition plays an important role on the observed specific energy distributions.240

However, while Oliver and Thomson22 findings showed an increase on the average specific241

energy deposition in the order of 30% compared to the glandular dose, our results were242

lower, in the order of 10%. Several factors could contribute for this difference, including the243

elemental composition of breast tissues, the cells distribution and size. It is important to244

notice that the focus of our work was to study the specific energy distribution for different245

imaging modalities, and consequently only one configuration of the cells’ geometry was con-246

sidered. However, since we implemented a two-step simulation with phase space files, only247

the simulations considering the microscopic part with different cells’ configurations would248

be necessary to access the effects of cell parameters over the specific energy distributions.249

Future works could take advantage of this setup, requiring significant less computational250

time to study different microscopic configurations.251

A distinct behavior was found for fz(z,Dg) between nucleus and cytoplasm. In general,252

fcyto(z,Dg) presented a lower dispersion compared to fnucl(z,Dg). Additionally, f(z = 0) is253

systematically higher for the nuclei in contrast to cytoplasm. This is due to the difference254

in shape and volume, the cytoplasm is more than two times bigger than the nuclei, thus,255

the probability of an interaction occurring in cytoplasm is higher. For similar values of256

Dg, fz(z,Dg) is almost the same inside the breast, independent of the spacial location. On257
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the other hand, the similar values of Dg but with different modalities yielded in distinct258

fnucl(z,Dg). The range of the secondary electrons released by the photon interactions at the259

average energy of each spectrum, calculated with PENELOPE, for the nucleus varied from260

7 µm and 24 µm for mammography and CEDM, respectively. For mammography and DBT,261

the range of the secondary electrons is smaller than the size of the nucleus (diameter of 12262

µm), while for CEDM and DBCT the secondary electrons have a range larger than the cell263

size, this directly impacts the shape of fz(z,Dg).264

Unfortunately is difficult to compare the specific energy distribution in glandular tis-265

sue considering the glandular dose distribution for the entire breast, due to the number of266

required simulations to account for all regions. To circumvent this, we proposed to select267

specific samples, 10 in total, based on the percentiles of Dg, and afterwards combine the re-268

sults to approximately estimate the behavior for the entire breast. Using this methodology,269

it was possible to compare f(z) under different modalities in a reasonable simulation time.270

Albeit the average specific energy is almost equal for cytoplasm across the different modal-271

ities, the standard deviation is lower for BCT/CEDM compared to Mammography/DBT.272

Meanwhile, both the average and standard deviation are distinct between BCT/CEDM,273

and Mammography/DBT for nucleus, being higher for the latter. Under the 10 sampling274

approximation, 12%/13% of the nuclei registered no energy deposition events for Mam-275

mography/DBT, compared to 3%/4% for BCT/CEDM, indicating that for more energetic276

spectrum, the specific energy distribution is more homogeneous although more nuclei suffer277

energy deposition events.278

The multiscale simulations for breast dosimetry could be employed along with other279

breast models with a complex glandular tissue distributions .23–25 In this case, the differences280

between realistic (heterogeneous) and simplified (homogeneous) models could be extended281

beyond the MGD to encompass also the glandular dose distribution and the specific energy282

distribution. The methodology that was used in this work (equation 3) can, in theory, be283

adapted for any breast model with the advantage that, while the macroscopic simulations284

are necessary to map the h(Dg) distributions, the distributions of f(z,Dg) can be reused285

from previous microscopic simulations.286
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V. Conclusion287

In this work, we studied breast dosimetry at microscopic scales with Monte Carlo simulations288

under different x-ray breast imaging techniques. The behavior of the specific energy distri-289

bution depends upon the macroscopic glandular dose distribution, which in turn, varies290

with the x-ray spectra. Thus, multiscale Monte Carlo simulations could bring additional291

information besides the MGD, specially when comparing different imaging modalities and292

the distinct glandular dose distributions. Future works could extend these results exploring293

more detailed cell models to study the DNA damage in cells. In addition, the contribution of294

different cells’ configurations to the specific energy distributions could be studied and their295

relation with the x-ray breast imaging modalities. The effect of the contrast agent, used in296

CEDM, in the specific energy distribution for cells could also be investigated in the future.297
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A Determining the number of f (z,Dg) sampling points308

This section describes the methodology used for determining the necessary number of sam-309

pled points of f(z,Dg) from H(Dg) for a good convergence of f(z). The following procedure310

was performed for the mammography modality, since it provides the widest distribution ofDg311

between minimum and maximum values. The simulations for the specific energy deposited312

in nuclei were obtained with a parallel beam and a fixed mammography x-ray spectrum313
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(W/Rh 28 kV), the number of primary photons was fine-tuned to yield a particular value of314

Dmix (which is similar to Dg according to our previous results). The selected values of Dg315

followed the procedure described in section II.E. but instead the 10 fixed points the number316

varied between 1 to 64.317

Figure 8 shows the specific energy distribution in glandular tissue in nucleus for a variety318

of sampled Dg values. The behavior of the distribution converges specially after N>8, with319

an average relative difference (in module) below 10% compared to N=64, indicating that320

N=10 is an acceptable approximation is this case to study f(z) in glandular tissue.321

Figure 8: Specific energy distribution for different Dg sampled points.
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Chapter 8

General discussions

This chapter provides a general discussion of the results obtained in Chapters 2, 3,
4,5, 6, 7 and their potential impact in breast dosimetry. In addition, the current limitations and
possible improvements are also discussed for each topic.

8.1 Monte Carlo simulations and cross section impact in breast
dosimetry

Monte Carlo simulations are being used for breast dosimetry studies since the 1980
years, with different free and open source MC codes available [24, 25, 66]. In general, the
user should tailor the general parameters of the simulations for the desired application. These
parameters include, among many, the number of particles that are simulated, which impacts the
statistical uncertainties of the results, and the minimum particle energy for absorption. More
advanced parameters include the physics modeling of the particle interactions, and the cross sec-
tion databases. Detailed physics modeling could produce more accurate results at the expense
of longer computational times. Meanwhile, the cross section database dictates the probabilities
of each type of interaction occurring for each chemical element as a function of the energy.
Therefore, different cross sections could yield distinct dose values. In chapter 2, it was studied
the differences between two cross section databases for the photoelectric effect related to breast
dosimetry in mammography.

Before version 2014, PENELOPE employed the photoelectric cross sections from
EPDL97 database that did not incorporate the normalization screening correction (unnormal-
ized). Starting from version 2014, PENELOPE uses by default the EPDL97 database with the
normalization screening correction (renormalized). Since the photoelectric effect is the predom-
inant type of interaction regarding energy deposition in the energy range for x-rays employed
in mammography, the differences between cross sections directly impact the energy deposited
in the breast. Indeed, the comparisons contained in chapter 2 showed that differences up to
2.5% are present for DgN values between the two databases for a conventional mammography
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spectrum. In addition, the differences were more evident for the glandular depth dose distri-
butions, with differences ranging from 1% to 4%. Although small, these differences could be
significant considering the recommendations from TRS 457, where a maximum uncertainty of
7% is desirable when comparing dose results [36, 67].

Future studies are required to determine which cross section yields results closer to
experimental measurements. However, it is challenging to obtain experimental results with the
necessary low uncertainties to differentiate both cross sections. Nevertheless, the systematic
uncertainty discussed in this chapter is important for comparison between MC codes, where
the relative statistical uncertainties are usually below this threshold of a few percent, and this
systematic uncertainty could become apparent. If more MC codes start adopting these renor-
malized cross sections, differences are expected with the validations with previous works that
used the unnormalized cross section. For example, the report of AAPM Task Group 195 [68]
that presents instructions for validations of MC codes, including a mammography and DBT
case, contains results using the PENELOPE 2006 version, and other MC codes which adopt the
unnormalized cross sections. New users that are performing simulations with recent versions of
PENELOPE will obtain different results from those contained in the report, and chapter 2 could
point to the causes and the order of magnitude of the systematic uncertainty.

8.2 Machine learning and deep learning in breast dosimetry

Undoubtedly, artificial intelligence (AI) presence in medical physics research has
become more common in recent years. Deep learning has allowed the use of AI in complex
tasks regarding medical imaging, including lesion detection, image segmentation and artificial
image generation. X-ray breast imaging is one of the fields that has benefited with this recent
surge in AI applications. Chapters 3 and 4 present applications of AI in breast dosimetry.

The use of artificial neural networks for the calculation of conversion coefficients
(DgN), based on homogeneous breast models, in breast dosimetry is shown in chapter 3. This
method is advantageous when a significant number of parameters are considered during the
simulations, including the x-ray energy, breast size and composition and the geometry of ac-
quisition of air kerma. Traditional methods of representing values of DgN, such as parametric
equations or tables poses a limitation of the number of parameters that could be considered in
the simulations, because the parameter space increases rapidly and the necessary amount of ta-
bles or equations could make these approaches impractical. On the other hand, neural networks
are capable of learning complex patterns and intrinsic relations between the data. The median
error, using the neural network ensembles, for MGD and Kair was below 0.25% for the test
data. Still, some outliers were present with maximum errors up to 3%. Despite their good per-
formance, the use of neural networks require additional steps for a correct setup and use, mainly
installing the required packages and running the code. These steps are not required in a more
conventional approach, such as tables and parametric equations. A graphical user interface was
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developed and is publicly available to assist the deployment and use of the neural networks
developed in this work. The limitations of using artificial intelligence in such tasks is the large
number of data for correct training, validation and testing. In addition, the selection of the best
models is time consuming and requires an additional effort. Nevertheless, neural networks is a
promising new method of sharing DgN values besides tables and parametric equations.

Machine learning frameworks, including deep learning, were successfully imple-
mented for breast density estimation from mammography images [62, 63, 69]. However, it is
challenging to obtain the labeled data in sufficient numbers to train the algorithms to a desirable
level of performance. Chapter 4 explored the concept of employing computer generated anthro-
pomorphic breast phantoms to overcome this limitation, with mammography images generated
using MC simulation. The proposed framework consisted of a combination of two XNets (a
variation of Unet) and an ensemble of multi-layer perceptrons. Each network was responsi-
ble for a different task, from image segmentation, relative breast height and relative glandular
height prediction, respectively. This structure was selected because, in preliminary tests, the
performance achieved by separating each task was better, when compared to a single network.
However, this finding could be dependent on the size of the dataset (original of 208 images),
and further tests are necessary for larger datasets with more diverse breast phantom models.
The framework showed promising results for the volume glandular fraction (VGF) prediction,
with an average absolute difference of 0.04(5) for the test data. Applied to dosimetry, the glan-
dularity calculated using the deep learning framework provided conversion coefficients closer
than a constant glandular value (median of the population), with average differences of 1.3%
and 8.5% to the ground truth. It is important to note that these DgN values are for population
references only, and do not reflect patient specific information because the assumption of the
homogeneous breast model is employed for dose calculations [55]. In the future, the framework
could be expanded to accept images from the MLO projection instead of only accepting the CC
projection, and the information of both views could be combined to provide more reliable breast
density estimations. In addition, currently this framework is not accepting real mammography
images, thus more studies are necessary for validation and testing before the application for
clinical mammography images.

8.3 Multiscale Monte Carlo simulations for breast dosimetry

MC-GPU was validated with other MC codes, and the implementation of phase
space files could be useful for multiscale simulations, as detailed in chapter 5. Since the com-
putation speed in MC simulations usually scales with the processing power, computer clusters
are employed for complex simulations that would require an unfeasible time to finish in a per-
sonal computer. However, a high optimized MC designed for GPUs (e.g. MC-GPU) allows
some complex simulations to be performed with fewer hardware resources. The results have
shown that MC-GPU using a single GPU was almost 30 times faster when compared with
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PENELOPE using a CPU for breast dosimetry simulations. However, MC-GPU does not sim-
ulate electrons, and this could be a limitation if the dose at small scales is needed because the
approximation of locally energy deposition is no longer accurate. To overcome this limitation,
we proposed the use of phase space files that are generated in MC-GPU, and then loaded in an-
other general purpose MC code (i.e. PENELOPE) to simulate a small region in space with finer
details, including electron transport. However, this approach is limited for certain conditions,
for example scoring the photons entering in a voxel of a breast model, because generating phase
space files requires storage in memory and is a costly process in terms of performance if the
files are too big. The validations performed comparing splitting the simulations in MC-GPU
and PENELOPE using phase space files with only PENELOPE showed an excellent agreement
with differences smaller than 0.7%, but with the advantage of being approximately 20 times
faster.

The developments and validations made in chapter 5 were applied for multiscale
MC simulations for x-ray breast imaging contained in chapters 6 and 7. The differences be-
tween the dosimetry quantities at distinct length scales is evident when comparing the results
for the MGD, the glandular dose distribution and the specific energy distribution in cells. While
maintaining the same MGD value for all the imaging modalities, the glandular dose range in
voxels varied considerably. For a medium size breast, the minimum and maximum glandular
dose values were approximately 0.2 to 3 times the MGD. Meanwhile, for BCT these values
were approximately 0.5 and 1.5, respectively. The x-ray beam energy and the geometry of ac-
quisition are important for the behavior of the dose distribution within the breast. The elemental
tissue composition and density of breast tissues, mainly glandular, adipose and skin, is a source
of uncertainty in breast dosimetry. Comparing two databases that define the composition of
breast tissues, differences up to 30% in the MGD observed. This systematic uncertainty due to
the composition of breast tissues should also be considered when studying dose levels in breast
dosimetry, along with the systematic uncertainty of the cross sections discussed in section 8.1.

At cellular length scales (in the order of micrometers), the specific energy distribu-
tion between nucleus and cytoplasm is mainly dependent on the glandular dose scored in the
respective voxel. Voxels with the same glandular dose but at different spatial locations pro-
vided similar specific energy distributions. However, the specific energy distribution for nuclei
is slightly different between mammography and DBT compared to CEDM and DBCT when
similar dose levels are compared. This is mainly due to the x-ray beam energy and the range
of the secondary particles. The spectra employed in mammography and DBT are less energetic
than CEDM and DBCT, thus, on average, the electrons travel a shorter distance within the cells
before transferring their kinetic energy, and consequently, this impacts the shape of the specific
energy distribution.

The multiscale MC simulations provide additional information regarding breast
dosimetry and the relation between the macroscopic and microscopic quantities. The relation
between dose and risk is still uncertain at the dose levels found in diagnostic imaging. However,
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the findings contained in chapters 6 and 7 provide at least a generalization of the specific en-
ergy distributions and dose values for different x-ray imaging modalities of the breast. Further
experimental studies could pursue the assessment of the damage to the cells, particularly DNA,
with the dose values found in our study.
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Chapter 9

Final conclusions and future perspectives

In this work, a comprehensive study was performed in breast dosimetry using MC
simulations. Since breast dosimetry is a complex field with a plethora of parameters involved,
only certain aspects could be detailed explored. A special attention was given to the param-
eters that could be selected in the simulations to assess their effect over the dosimetry data.
In addition, it was explored the possibility of using MC generated data and machine learning
algorithms for breast dosimetry.

The cross section databases used in the MC simulations can interfere significantly
in dosimetry results, based on different simplifications on the physics description. Thus, the
choice of the databases is a factor that must be considered when comparing results from MC
simulations for breast dosimetry, and the systematic uncertainty derived from these approxima-
tions should be take into account for risk assessments.

ML proved to be a useful tool for breast dosimetry, from determining the normalized
glandular dose in a homogeneous breast, to prediction of the glandularity of virtual phantoms
in simulated mammography images. Neural networks could successfully predict DgN values,
for homogeneous breast models, with neural networks trained using MC results. In addition,
DL combined with data from MC simulations and computer generated phantoms proved to be a
powerful combination for breast density estimation. A natural step for the future is to implement
the DL framework for real mammography images, and to extend into the MLO projection.

Although the mean glandular dose is the common factor between them in breast
dosimetry, each type of exam presents its particularities, from the geometry of the system to the
x-ray beam. Those particularities reflect how the glandular dose is distributed over the breast
and, consequently, impact the specific energy distribution in cells. Multiscate dosimetry studies
could possibly help future works to investigate the implications of the cell damage due to x-ray
breast imaging under different modalities. To overcome the computer-intensive requirements
of multiscale MC simulations, the combination of different MC codes, tailored for macroscopic
and microscopic simulations, using phase space files, could be viable option. A future topic of
study would be to consider the energy interaction process at DNA scales, adding another step
into the multiscale simulations.
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DADOS DO PARECER

Introdução-  O câncer de mama é o tipo de câncer mais comum entre as mulheres e o maior responsável

por óbitos nesta população. De acordo com o Instituto Nacional do Câncer, a cada ano no Brasil são

diagnosticados em torno de 50.000 novos casos da doença. O diagnóstico precoce é a forma mais eficaz de

reduzir a mortalidade pela doença, aumentando a sobrevida dos pacientes. Atualmente, a mamografia é a

técnica mais utilizada para esse detecção e diagnósticodo câncer de mama, sendo amplamente aplicada em

programas de rastreamento. Apesar disso, a taxa de falso negativos em mamografia é aproximadamente 20

-30%. Diversos estudos da literatura têm mostrado que um dos fatores associados com menores

sensibilidade e especificidade da mamografia é a densidade da mama, definida como o volume da mama

ocupado pelo tecido fibroglandular. Além disso, estudos a respeito da composição de tecidos mamários têm

mostrado que além de afetar a sensibilidade da mamografia, a densidade da mama é um fator de risco para

o câncer de mama. O risco relativo da doença associado com a alta densidade mamária é apenas menor

que os associados com a idade e a mutação do gene BRAC. Apesar disso, o mecanismo exato que

relaciona o risco de câncer com a densidade da mama ainda não são totalmente conhecidos. Desta forma, a

análise quantitativa da densidade mamária pode ter um papel essencial na predição do risco do câncer de

mama em uma população. Tradicionalmente, a avaliação da densidade mamária é baseada na imagem

mamográfica e realizada visualmente pelo médico radiologista, sendo baseado em diversos protocolos de

classificação. Os mais populares são Breast
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Imaging Reporting and Data System (BI-RADS), Boyd’s six category classification, e Tabar. Esse tipo de

avaliação é subjetiva e depende do treinamento e experiência do radiologista, de forma que pode estar

sujeita a erros de interpretação. Uma avaliação mais precisa da densidade da mama poderia ser realizada

de forma quantitativa. Com esse objetivo, diversos métodos semiautomáticos computacionais têm sido

desenvolvidos, principalmente após o desenvolvimento da mamografia digital. A densidade mamária têm

sido estudada em diferentes populações baseada na avaliação da imagem mamográfica digital sem

processamento (raw data) e também usando dados de aquisição das imagens (potencial do tubo, mAs e

espessura da mama comprimida). A densidade mamária têm sido estudada em mulheres de diferentes

grupos étnicos, tais como Chinesas, Malasianas, Indianas, Americanas, Australianas e Alemãs. Estes

estudos têm mostrado diferenças na proporção de tecido glandular presente na mama entre diferentes

grupos étnicos, principalmente entre as mulheres mais jovens. De acordo com o conhecimento dos

pesquisadores, não existe nenhum estudo que quantifique a densidade mamária de mulheres brasileiras

através do exame mamográfico. Em sumário, a determinação da densidade mama representa um estudo

fundamental tanto para avaliação da sensibilidade de detecção do exame mamográfico quanto para a

estimativa do risco do câncer de mama. Neste contexto, a densidade mamária pode ser utilizada para

melhorar a predição individualizada do câncer de mama e fornecer métodos mais eficazes e de menor custo

para o rastreamento desta doença dos que os disponíveis atualmente. A longo prazo, o conhecimento da

densidade mamária de uma população e de sua correlação com fatores como idade, espessura da mama e

diagnóstico, pode auxiliar a compreensão da base biológica que relaciona a alta densidade mamária com o

risco de câncer de mama.          Hipótese: Avaliar se existe correlação entre a densidade mamária

determinada através das imagens mamográficas e a idade da paciente, espessura e área da mama.

Metodologia Proposta: Nesta proposta pretende-se adotar uma abordagem experimental para estudar a

densidade volumétrica das mamas de mulheres brasileiras baseado nas imagens mamográficas adquiridas

nos programas de rastreamento. O trabalho será dividido em três etapas: (i) primeiramente serão adquiridas

imagens de objetos simuladores de diferentes composições para validação do método; (ii) depois serão

avaliados as imagens de mamas de pacientes de forma quantitativa visando determinar a densidade

mamária e a área de contato entre a mama e o suporte do receptor de imagem;(iii) por fim, a densidade

mamária será correlacionada com diversos parâmetros extraídos do cabeçalho DICOM das imagens (idade,

dose, técnica de exposição). Critério de Inclusão: Imagens mamográficas de pacientes que realizaram esse

tipo de exame e estão armazenadas na base de dados do sistema PACS do INRAD HCUSP e ICESP.
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Objetivo Primário: A meta central deste trabalho é estudar, de forma quantitativa, a glandularidade de

mamas em mulheres brasileiras a partir de imagens mamográficas de 50000 pacientes. Inicialmente, a

metodologia será testada parem imagens de objetos simuladores (phantoms) com diferentes

glandularidades, e em seguida serão avaliadas as imagens adquiridas na projeção crânio-caudal. Objetivo

Secundário: 1 - Levantar o perfil de densidades de mama (glandularidade) de mulheres brasileiras, e estudar

sua correlação com outros parâmetros das participantes, tais como idade e espessura da mama. 2 - Efetuar

análise estatística automatizada, correlacionando informações adquiridas no cabeçalho DICOM das imagens

clínicas, para auxílio ao controle de qualidade dos sistemas avaliados. 3 - Elaborar relatórios técnicos

destinados ao desenvolvimento de um padrão de qualidade das imagens com doses de radiação

otimizadas.

Objetivo da Pesquisa:

Mantidos em relação ao projeto original.

Avaliação dos Riscos e Benefícios:

Esta versão é uma emenda ao protocolo aprovado em 18/11/2015 via parecer nº 1327787 do CEP do

HC/USP. Apresenta a seguinte justificativa: “Inclusão de três novos membros na equipe do projeto (alunos

de iniciação científica e pós-graduação). Inclusão das etapas de análise estatística dos dados e estimativa

da dose na mama baseada nos dados das imagens.”                    Novos membros: GABRIEL SARON- Aluno

de graduação em Física Médica na Unicamp, RODRIGO TREVISAN MASSERA -Aluno de doutorado em

Física da UNICAMP e THAIS DAMASIO QUADROS- Aluna de graduação em Física Médica na Unicamp.

Comentários e Considerações sobre a Pesquisa:

Foram cons ide rados  pa ra  a  e labo ração  des te  pa rece r  os  segu in tes  documen tos :

“PB_INFORMAÇÕES_BÁSICAS_1131108_E2.pdf”, “AlessandraDensidadeFIM.pdf” e “emenda.pdf”.

Considerações sobre os Termos de apresentação obrigatória:

Não há.

Recomendações:

A solicitação de emenda foi apresentada e justificada de forma adequada.

Conclusões ou Pendências e Lista de Inadequações:

- O participante da pesquisa deve receber uma via do Termo de Consentimento Livre e Esclarecido, na

íntegra, por ele assinado (quando aplicável).
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- O participante da pesquisa tem a liberdade de recusar-se a participar ou de retirar seu consentimento em

qualquer fase da pesquisa, sem penalização alguma e sem prejuízo ao seu cuidado (quando aplicável).

- O pesquisador deve desenvolver a pesquisa conforme delineada no protocolo aprovado. Se o pesquisador

considerar a descontinuação do estudo, esta deve ser justificada e somente ser realizada após análise das

razões da descontinuidade pelo CEP que o aprovou. O pesquisador deve aguardar o parecer do CEP

quanto à descontinuação, exceto quando perceber risco ou dano não previsto ao participante ou quando

constatar a superioridade de uma estratégia diagnóstica ou terapêutica oferecida a um dos grupos da

pesquisa, isto é, somente em caso de necessidade de ação imediata com intuito de proteger os

participantes.

- O CEP deve ser informado de todos os efeitos adversos ou fatos relevantes que alterem o curso normal do

estudo. É papel do pesquisador assegurar medidas imediatas adequadas frente a evento adverso grave

ocorrido (mesmo que tenha sido em outro centro) e enviar notificação ao CEP e à Agência Nacional de

Vigilância Sanitária – ANVISA – junto com seu posicionamento.

- Eventuais modificações ou emendas ao protocolo devem ser apresentadas ao CEP de forma clara e

sucinta, identificando a parte do protocolo a ser modificada e suas justificativas e aguardando a aprovação

do CEP para continuidade da pesquisa.  Em caso de projetos do Grupo I ou II apresentados anteriormente à

ANVISA, o pesquisador ou patrocinador deve enviá-las também à mesma, junto com o parecer aprovatório

do CEP, para serem juntadas ao protocolo inicial.

- Relatórios parciais e final devem ser apresentados ao CEP, inicialmente seis meses após a data deste

parecer de aprovação e ao término do estudo.

-Lembramos que segundo a Resolução 466/2012 , item XI.2 letra e, “cabe ao pesquisador apresentar dados

solicitados pelo CEP ou pela CONEP a qualquer momento”.

-O pesquisador deve manter os dados da pesquisa em arquivo, físico ou digital, sob sua guarda e

responsabilidade, por um período de 5 anos após o término da pesquisa.
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CAMPINAS, 09 de Agosto de 2018

Renata Maria dos Santos Celeghini
(Coordenador)

Assinado por:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

Informações Básicas
do Projeto

PB_INFORMAÇÕES_BÁSICAS_113110
8_E2.pdf

15/07/2018
15:12:07

Aceito

Projeto Detalhado /
Brochura
Investigador

AlessandraDensidadeFIM.pdf 15/07/2018
15:11:45

Alessandra Tomal Aceito

Outros emenda.pdf 15/07/2018
15:10:02

Alessandra Tomal Aceito

Declaração de
Instituição e
Infraestrutura

inrad.pdf 16/09/2015
14:30:48

Alessandra Tomal Aceito

Folha de Rosto Scan0134.pdf 04/08/2015
08:47:27

Aceito

Declaração de
Instituição e
Infraestrutura

Carta de anuência.pdf 31/07/2015
08:23:15

Aceito

Situação do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não
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Pesquisador:

Título da Pesquisa:

Instituição Proponente:

Versão:

CAAE:
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imagens mamográficas

Alessandra Tomal

Instituto de Física "Gleb Wataghin"

5

47878315.2.0000.5404

Área Temática:

DADOS DA EMENDA

Número do Parecer: 4.752.335

DADOS DO PARECER

Trata-se da apresentação de uma Emenda ao projeto CAAE 47878315.2.0000.5404.

Apresentação do Projeto:

Apresentar uma Emenda.

Objetivo da Pesquisa:

Os riscos e benefícios não foram alterados em relação ao projeto original.

Avaliação dos Riscos e Benefícios:

Esta versão é uma emenda ao protocolo aprovado em 18/11/2015 via parecer nº 1327787 do CEP do

HC/USP. Apresenta a seguinte justificativa: “Venho através desta justificar a emenda no projeto “Avaliação

da densidade volumétrica mamária em mulheres brasileiras baseada em imagens mamográficas” com

número CAAE 47878315.2.0000.5404. Essa emenda baseia-se na inclusão de dois novos membros na

equipe do projeto (um aluno de iniciação científica e um pesquisador) e atrasos na coleta das imagens

devido à pandemia de COVID-19. Além disso, durante a análise das imagens observamos variações nos

resultados do software utilizado para quantificação da densidade mamária, como por exemplo variações nos

valores obtidos usando em imagens adquiridas usando diferentes equipamentos e para mulheres que

realizaram mais de um exame. Dessa forma, com base nesses achados e em estudos publicados

recentemente na literatura desde a aprovação do presente projeto, consideramos necessário fazer a

inclusão da etapa de
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comparação entre dados de densidade mamária extraídos das imagens mamográficas usando diferentes

softwares disponíveis comercialmente ou frameworks baseados em deep learning, uma área de pesquisa

que teve um amplo desenvolvimento nos últimos anos e altamente promissora para imagens médicas,

visando alcançar uma melhor precisão e confiança nos resultados. Os nomes dos novos membros estão

destacados na tabela da equipe do Projeto de Pesquisa apresentado, bem como a metodologia apresentada

foi descrita mais detalhadamente para incluir a descrição dos diferentes softwares de análise.” A

pesquisadora anexou uma carta em relação à pendência com a seguinte informação: “Em resposta às

pendências da emenda no projeto “Avaliação da densidade volumétrica mamária em mulheres brasileiras

baseada em imagens mamográficas” com número CAAE 47878315.2.0000.5404 submetida ao CEP-

UNICAMP, as seguintes correções foram realizadas: 1. A lista de todos os pesquisadores que fazem parte

do projeto foi incluída na capa do projeto detalhado. 2. Os pesquisadores Eric Francisco Scolastici e Mariana

Yuamoto que constam no projeto detalhado foram incluídos no item “equipe de pesquisa” do Formulário de

Informações Básicas da Plataforma Brasil. 3. O pesquisador Dr Prof Kwan–Hoong Ng é professor da

University of Malaya, na Malásia. Pelo fato do pesquisador ser estrangeiro, justifico que não conseguimos

realizar a sua inserção dele na Equipe de Pesquisa do Formulário de Informações Básicas da Plataforma

Brasil. Apesar disso, ressalto que o Dr. Ng fará parte da Equipe do projeto e seu nome foi incluído na capa e

na descrição da equipe do projeto detalhado.”

P a r a  a  e l a b o r a ç ã o  d e s t e  p a r e c e r  f o r a m  a n a l i s a d o s  o s  s e g u i n t e s  d o c u m e n t o s :

“PB_INFORMAÇÕES_BÁSICAS_1740891_E3.pdf”, “carta_resposta_pendencias.pdf” e “Projeto.pdf”.

Considerações sobre os Termos de apresentação obrigatória:

A Comissão Nacional de Ética em Pesquisa (Conep), do Conselho Nacional de Saúde (CNS) orienta a

adoção das diretrizes do Ministério da Saúde (MS) decorrentes da pandemia causada pelo Coronavírus

SARS-CoV-2 (Covid-19), com o objetivo de minimizar os potenciais riscos à saúde e a integridade dos

participantes de pesquisas e pesquisadores.

De acordo com carta circular da CONEP intitulada “ORIENTAÇÕES PARA CONDUÇÃO DE PESQUISAS E

ATIVIDADE DOS CEP DURANTE A PANDEMIA PROVOCADA PELO CORONAVÍRUS SARS-COV-2

(COVID-19)” publicada em 09/05/2020, referente ao item II. “Orientações para Pesquisadores”:

- Aconselha-se a adoção de medidas para a prevenção e gerenciamento de todas as atividades de

pesquisa, garantindo-se as ações primordiais à saúde, minimizando prejuízos e potenciais riscos, além de

prover cuidado e preservar a integridade e assistência dos participantes e da equipe de pesquisa.

Recomendações:

13.083-887

(19)3521-8936 E-mail: cep@fcm.unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126
Barão Geraldo

UF: Município:SP CAMPINAS
Fax: (19)3521-7187

Página 02 de  05

APPENDIX A. ETHICS COMMITTEE APPROVAL 179



UNICAMP - CAMPUS
CAMPINAS

Continuação do Parecer: 4.752.335

- Em observância às dificuldades operacionais decorrentes de todas as medidas impostas pela pandemia do

SARS-CoV-2 (COVID- 19), é necessário zelar pelo melhor interesse do participante da pesquisa, mantendo-

o informado sobre as modificações do protocolo de pesquisa que possam afetá-lo, principalmente se houver

ajuste na condução do estudo, cronograma ou plano de trabalho.

- Caso sejam necessários a suspensão, interrupção ou o cancelamento da pesquisa, em decorrência dos

riscos imprevisíveis aos  participantes da pesquisa, por causas diretas ou indiretas, caberá aos

investigadores a submissão de notificação para apreciação do Sistema CEP/Conep.

- Nos casos de ensaios clínicos, é permitida, excepcionalmente, a tramitação de emendas concomitantes à

implementação de modificações/alterações no protocolo de pesquisa, visando à segurança do participante

da pesquisa, assim como dos demais envolvidos no contexto da pesquisa, evitando-se, ainda, quando

aplicável, a interrupção no tratamento dos participantes da pesquisa. Eventualmente, na necessidade de

modificar o Termo de Consentimento Livre e Esclarecido (TCLE), o pesquisador deverá proceder com o

novo consentimento, o mais breve possível.

Emenda aprovada.

Conclusões ou Pendências e Lista de Inadequações:

- O participante da pesquisa deve receber uma via do Termo de Consentimento Livre e Esclarecido, na

íntegra, por ele assinado (quando aplicável). - O participante da pesquisa tem a liberdade de recusar-se a

participar ou de retirar seu consentimento em qualquer fase da pesquisa, sem penalização alguma e sem

prejuízo ao seu cuidado (quando aplicável). - O pesquisador deve desenvolver a pesquisa conforme

delineada no protocolo aprovado. Se o pesquisador considerar a descontinuação do estudo, esta deve ser

justificada e somente ser realizada após análise das razões da descontinuidade pelo CEP que o aprovou. O

pesquisador deve aguardar o parecer do CEP quanto à descontinuação, exceto quando perceber risco ou

dano não previsto ao participante ou quando constatar a superioridade de uma estratégia diagnóstica ou

terapêutica oferecida a um dos grupos da pesquisa, isto é, somente em caso de necessidade de ação

imediata com intuito de proteger os participantes. - O CEP deve ser informado de todos os efeitos adversos

ou fatos

Considerações Finais a critério do CEP:
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relevantes que alterem o curso normal do estudo. É papel do pesquisador assegurar medidas

imediatas adequadas frente a evento adverso grave ocorrido (mesmo que tenha sido em outro centro) e

enviar notificação ao CEP e à Agência Nacional de Vigilância Sanitária – ANVISA – junto com seu

posicionamento. - Eventuais modificações ou emendas ao protocolo devem ser apresentadas ao CEP de

forma clara e sucinta, identificando a parte do protocolo a ser modificada e suas justificativas e aguardando

a aprovação do CEP para continuidade da pesquisa. Em caso de projetos do Grupo I ou II apresentados

anteriormente à ANVISA, o pesquisador ou patrocinador deve enviá-las também à mesma, junto com o

parecer aprovatório do CEP, para serem juntadas ao protocolo inicial. - Relatórios parciais e final devem ser

apresentados ao CEP, inicialmente seis meses após a data deste parecer de aprovação e ao término do

estudo. -Lembramos que segundo a Resolução 466/2012 , item XI.2 letra e, “cabe ao pesquisador

apresentar dados solicitados pelo CEP ou pela CONEP a qualquer momento”. -O pesquisador deve manter

os dados da pesquisa em arquivo, físico ou digital, sob sua guarda e responsabilidade, por um período de 5

anos após o término da pesquisa.

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

Informações Básicas
do Projeto

PB_INFORMAÇÕES_BÁSICAS_174089
1_E3.pdf

27/05/2021
15:04:02

Aceito

Outros carta_resposta_pendencias.pdf 27/05/2021
15:02:57

Alessandra Tomal Aceito

Projeto Detalhado /
Brochura
Investigador

Projeto.pdf 27/05/2021
15:02:16

Alessandra Tomal Aceito

Outros Material_complementar.pdf 30/04/2021
13:49:54

Alessandra Tomal Aceito

Outros Carta.pdf 30/04/2021
13:49:24

Alessandra Tomal Aceito

Declaração de
Instituição e
Infraestrutura

inrad.pdf 16/09/2015
14:30:48

Alessandra Tomal Aceito

Folha de Rosto Scan0134.pdf 04/08/2015
08:47:27

Aceito

Declaração de
Instituição e
Infraestrutura

Carta de anuência.pdf 31/07/2015
08:23:15

Aceito
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CAMPINAS, 02 de Junho de 2021

Renata Maria dos Santos Celeghini
(Coordenador(a))

Assinado por:

Situação do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não
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Appendix B

Permission to use articles in thesis

B.1 Permission I

For articles published in Physics in Medicine & Biology, contained in Chapters 2
and 3.

This text was retrieved from the link: https://publishingsupport.iops
cience.iop.org/current-policy-author-rights-policy-for-subscri

ption-articles-for-which-the-copyright-form-was-submitted-on-o

r-after-26-april-2016/ in 02/12/2021.

https://publishingsupport.iopscience.iop.org/current-policy-author-rights-policy-for-subscription-articles-for-which-the-copyright-form-was-submitted-on-or-after-26-april-2016/
https://publishingsupport.iopscience.iop.org/current-policy-author-rights-policy-for-subscription-articles-for-which-the-copyright-form-was-submitted-on-or-after-26-april-2016/
https://publishingsupport.iopscience.iop.org/current-policy-author-rights-policy-for-subscription-articles-for-which-the-copyright-form-was-submitted-on-or-after-26-april-2016/
https://publishingsupport.iopscience.iop.org/current-policy-author-rights-policy-for-subscription-articles-for-which-the-copyright-form-was-submitted-on-or-after-26-april-2016/
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B.2 Permission II

For the article published in Physica Medica, contained in Chapter 4.

B.3 Permission III

For the articles submitted or published in Medical Physics, contained in Chapters 5,
6, 7.

This text was retrieved from the link: https://medphys.msubmit.net/cg
i-bin/main.plex?form_type=do_cat&file_nm=medphys_specific_info.

html in 02/12/2021.

https://medphys.msubmit.net/cgi-bin/main.plex?form_type=do_cat&file_nm=medphys_specific_info.html
https://medphys.msubmit.net/cgi-bin/main.plex?form_type=do_cat&file_nm=medphys_specific_info.html
https://medphys.msubmit.net/cgi-bin/main.plex?form_type=do_cat&file_nm=medphys_specific_info.html
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