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Tese apresentada ao Instituto de Matemática, Es-
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Resumo

Nesse trabalho nós começaremos apresentando o problema do subespaço invariante e o con-

ceito de operador universal, estabelecendo a conexão entre esses dois tópicos. Ainda, enun-

ciaremos e provaremos alguns resultados clássicos da teoria dos espaços de Hardy, mais es-

pecificamente, do espaço de Hardy-Hilbert H2. Apresentaremos um maquinário que começa

de tópicos considerados clássicos como operadores de composição e fatorização canônica até

tópicos mais avançados como a função de contagem de Nevannlina e o espectro de funções

interiores.

Posteriormente, analisaremos os subespaços invariantes emH2 de um operador de composição

(denotado por Cϕa) cujo śımbolo que o define é afim. Os subespaços invariantes minimais,

que sempre são gerados por uma função f ∈ H2, estão relacionados a um dos problemas em

aberto mais clássicos da teoria de operadores: o problema do subespaço invariante (PSI).

Mostraremos ainda que sob determinadas condições envolvendo o comportamento de funções

próximo ao ponto 1 temos respostas positivas ao PSI. Além disso, provaremos que o número

de zeros da função f interfere na dimensão desses espaços e iremos propor uma abordagem

para unificar dois casos conhecidos de universalidade.

Para finalizar, classificaremos totalmente quais espaços modelo são invariantes pelo operador

de composição Cϕa . Ainda, seguindo a mesma linha de racioćınio, mostraremos quais espaços

de Beurling são invariantes por tal operador de composição; nesse caso obteremos um resul-

tado dicotômico. Conexões desses resultados com o clássico operador de Cesàro e ideias para

futuros trabalhos serão mencionadas no final do texto.

Palavras-Chave: operadores de composição; espaços de Hardy; operadores universais;

subespaços invariantes.



Abstract

In this thesis we begin by talking about the invariant subspace problem, universal operators

and the connection between this topics. Also, we state and prove some classic results from

the theory of Hardy spaces, more specifically, of the Hardy-Hilbert space H2. We present a

machinery that contains topics considered classic such as composition operators and canoni-

cal factorization, but also has more advanced topics such as the Nevannlina counting function

and the spectrum of inner functions.

Moreover, we analyze the invariant subspaces in H2 of a composition operator (denoted by

Cϕa) whose defining symbol is affine. Minimal invariant subspaces, which are always gener-

ated by a function f ∈ H2, are related to one of the most classic open problems in operator

theory: the Invariant Subspace Problem (ISP). We show that under certain conditions in-

volving the behavior of functions near to the point 1 we have positive answers to the ISP.

Furthermore, we prove that the number of zeros of f and the dimension of these spaces are

connected. We propose also an approach to unify two known cases of universal operators.

Finally, we classify which model spaces are invariant by the composition operator Cϕa ob-

taining a complete characterization in this case. Furthermore, following the same line of

reasoning, we tried to understand which Beurling spaces are invariant by such a composition

operator; in this case we obtained a dichotomic result. These results are related with a classic

operator called the Cesàro operator. Ideas for future works are mentioned in the end.

Keywords: composition operators; Hardy spaces; universal operators; invariant sub-

spaces.
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1 Introduction

In the field of function theory and operator theory, the composition operators are one of

the main classes of operators. Imagine a collection of complex or real functions defined on a

set X. If φ : X → X is any map, then it makes sense to define the operator Cφf := f ◦ φ.
This kind of operator is always linear because

Cφ(λf + g) = (λf + g) ◦ φ = λf ◦ φ+ g ◦ φ = λCφ(f) + Cφ(g)

where f, g are functions defined X and λ is a scalar. However, we can not go further in a

general context; the other properties of Cϕ depend on the space X and on the function φ.

There is an extensive literature that deal with these objects in many contexts. The books

[13] and [39] present some of the classical spaces of analytic functions (for example, the Hardy

spaces Hp(D), the Bergman spaces Ap(D) and the Dirichlet space D) and develop a theory

of composition operators on these spaces. In this text we will deal basically with the space

H2(D) = H2. As a field of research, this area has been much explored and a kind of result

that is central in the area is the following:

Cφ has the property (A) if, and only if, φ has the property (B).

Of course, one-side implications are very common also. Concrete results are for example

[30, Theorem 5.1.15] which classifies all the composition operators that are normal and [5,

Theorem 2.2] which is about the cyclicity and hypercyclicity of composition operators.

In the field of general functional analysis one of the major open questions is the Invariant

Subspace Problem (ISP). It belongs to a class of problems that can be stated in relatively

simple terms but the complete solution remains a mystery. The general version of the ISP is

the following: let B be a Banach space, if T ∈ B(B) (the space of bounded linear operators on

B), is it true that T has a non-trivial invariant subspace? By a non-trivial invariant subspace

we mean a closed subspace M ⊆ B such that M ̸= {0}, M ̸= B and T (M) ⊆M . Due to the

effort of many mathematicians, actually we can deal with the following important particular

case of the above question:

Let H be a complex, separable and infinite dimensional Hilbert space. If T ∈ B(H), is it

true that T has a non-trivial invariant subspace?

In the next chapter, we will explain how the above version of the ISP is obtained. Note

that the simplification above imposes certain hypotheses over the underlying space H and

nothing is assumed about the operator T . Thus, one way to reason in a slightly distinct

direction is to consider properties of the operator T to obtain solutions for particular cases.

Historically, this approach was very successful. For example, in 1973 Lomonosov ([29]) proved

that if there exists a compact operator S such that ST = TS then T has a non-trivial
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invariant subspace. This result today is known as Lomonosov’s Theorem. In 1978 Brown ([8])

showed that every subnormal operator (i.e, an operator that admits a normal extension) has

a non-trivial invariant subspace. Recently, in 2019 Tcaciuc ([42]) showed that every operator

T ∈ B(H) admits a rank-one perturbation F ∈ B(H) such that T + F has a non-trivial

invariant subspace.

There are a lot of possible approaches to the ISP; we refer to the detailed monograph of

Partington and Chalendar [10] for some of the modern approaches. One of these methods

(which will be used in this text) is based on the concept of a universal operator introduced

by Rota in [37]; universal operators can be thought of as operators with a very special

family of invariant subspaces. We comment also that while we were writing this text, Per

H. Enflo published a preprint in arXiv in which he claims the solution of the ISP; Enflo

solution’s appears to use only “basic” functional analysis and thus these ideas are not directly

related with our approach here. But how exactly does our approach work? How composition

operators and universal operators work together?

Due to the remarkable work of Nordgren, Rosenthal and Wintrobe (see [33]) we know

that if ϕ : D → D is a hyperbolic automorphism (i.e, the two fixed points belong to the unit

circle T) then Cϕ−λ is universal for every λ in the interior of the spectra of ϕ. Recently, this

result was extended by Carmo and Noor [9, Theorem 3.1] to non-automorphic hyperbolic self-

maps of the disk. This recent result leads us to study a special type of composition operator

denoted by Cϕa which will be the central point of our discussion in the next chapters. All

these concepts can be connected in the following statement:

The ISP has a positive solution if, and only if, every minimal invariant subspace of Cϕa
has dimension 1.

This claim will be proved in the next chapter. With this is mind, it is clear that the in-

variant subspaces of Cϕa are directly related with a major open question. But these operators

are interesting by themselves because it is not trivial to classify which spaces are invariant

under a composition operator. Moreover, another famous operator, called the Cesàro opera-

tor, will play a role. Thus, in general, this text can be viewed as an effort to understand the

invariant subspaces of Cϕa . After this introduction, the reader will find three chapters and

one appendix.

The first of them is called Preliminaries, as the name suggests, here we exhibit some

background results involving the ISP and the Hardy space H2. We start by explaining and

proving results related with the ISP and the simplification that we comment above, we also

provide a detailed proof of Caradus criterion and applications. Next, we present the Hardy-

Hilbert space H2 showing facts about this space that we thought to be necessary for the next

chapters. Once H2 is introduced, we focus on composition operators in this space and in

particular, we will show a detailed proof of Littlewood’s subordination theorem. After this,
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we will present also a classical tool used by J. Shapiro in his seminal work ([40]) that helps

us to compute the norm of composition operators. We finalize the chapter talking about the

canonical factorization as well Beurling and Model spaces. All the statements in this chapter

are known in the literature.

The next chapter is called Minimal Invariant subspaces of a universal operator. This

chapter is based in a recent work of Noor and Carmo. Using the results proved by them in

[9] we will study the ISP using the operator Cϕa . All the minimal invariant subspaces are

generated by some function f ∈ H2 and this leads us to study properties of these generators

to obtain properties of the corresponding invariant subspaces. Our first original contributions

appear in this chapter. We will prove the veracity of the equivalence

M is minimal ⇐⇒ dim M = 1

for some subspaces M that have functions with some specific properties. The behaviour of

these functions at the point 1 will be crucial and an important hypothesis (that we will call

EB) related with the derivative of this function will be considered. Moreover, the zero set

of the functions will play a role and we end this chapter suggesting a unified approach to

simplify the proofs that hyperbolic composition operators have universal translates.

In the last chapter, called About some types of invariant subspaces of Cϕa our main

question is the following: which Model spaces and which Beurling type spaces can be invariant

under Cϕa? To obtain the answers we used some recent results. Some of them appear in a

paper due to S. Bose, P. Muthukumar and J. Sarkar (see [3] and [32]) and the others are in

the work of E. Gallardo-Gutiérrez, J. Partington and W. Ross (see [21] and [22]). For the

case of model spaces, we obtain a complete characterization. In the case of Beurling type

spaces we obtain a dichotomic result that again shows us the relevance of the point 1 in the

same way as the last chapter. To finish this chapter we highlight a connection between these

results and the invariant subspaces of the Cesàro operator. We comment also about ideas

for future works.

The goal of the appendix is to provide a precise reference for some results that we used in

the text. All of these results are in general proved in courses of Functional Analysis, Measure

Theory or Complex Analysis.

We will finish this introduction with the following general comment: one of the goals of

our text is to be pleasant to read even to readers that have no previous contact with the area.

This approach makes sense if we think that the PhD thesis is some kind of legacy for future

students and we believe sincerely in this approach. We will prefer at many times write the

details rather than hide them to obtain a smaller text. In the case of theorems that we will

not prove, we provide a precise reference. We wish all readers a good experience with this

text.
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2 Preliminaries

The goal of this chapter is to provide the reader some background results to understand

the chapters 3 and 4. We start talking about the general version of the ISP and then we

focus on the space H2, which will be one of our main objects in the text.

2.1 The Invariant Subspace Problem and Universal Operators

Definition 2.1.1. Let B be a Banach space and T ∈ B(B) (the space of all bounded linear

operators defined on B). A subspace M of B is called T -invariant or simply invariant

if M is closed and T (M) ⊆ M . The subspaces {0} and B are called the trivial invariant

subspaces. A T -invariant subspace, M , is called non-trivial if M ̸= {0} and M ̸= B.

This concept is enough to know the following version of the ISP: let B be a Banach space

and T ∈ B(B) a non-null operator. Does T have a non-trivial invariant subspace?

If we allow the real scalar field then the ISP has a negative answer. A classical example

is any rotation operator Tα in R2 (with angle α not equal to a entire multiple of 2π rad) .

In fact, if M is a subspace of R2, M ̸= {0} and M ̸= R2 then M ∩T (M) = {0}. So, the only
invariant subspaces of T are the trivial ones.

Tπ
2
(M) M

The operator Tπ
2

Of course if dim B = 1 the only subspaces are {0} and B. So, in this chapter we will

suppose always that dim B > 1 and that the scalar field of B is C. Only to clarify the

terminology, we will say that the ISP is true for B if every operator T ∈ B(B) admits a

non-trivial invariant subspace. Similarly, we will say that the ISP is false for B if there

exists an operator T ∈ B(B) such that the only invariant subspaces of T are the trivial ones.

Moreover, the notation Lat(T ) will appear in some moments, this is the collection of all

invariant subspaces of some operator T , i.e,

Lat(T ) = {M | M is a T -invariant subspace }.
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Let us narrow our range of spaces now. In 1980 Per H. Enflo [15] constructed a non-

reflexive Banach space, B, and an operator T ∈ B(B) such that the only T -invariant

subspaces are the trivial ones. In 1985 Charles J. Read [36] found a more concrete counter-

example in l1 (which is not reflexive). So the ISP has a general negative answer when we

allow non-reflexive Banach spaces.

Due to these results, actually we can deal with one of the following versions of the ISP:

• Let B be a reflexive Banach space and T ∈ B(B) a non-null operator. Does T have a

non-trivial invariant subspace?

• Let H be a Hilbert space and T ∈ B(H) a non-null operator. Does T have a non-trivial

invariant subspace?

Note that the first version is more general because every Hilbert space is reflexive but our

choice here is the second case. From now on we will deal with Hilbert spaces. As we will see,

this case has some benefits. The first benefit is a consequence of the next proposition.

Proposition 2.1.2. Let H be a Hilbert space (with dimension greater than 1). Then:

a) If H is non-separable then the ISP is true for H.

b) If T ∈ B(H) is such that σp(T ) ̸= ∅ then T has a non-trivial invariant subspace.

c) If dim H <∞ then the ISP is true for H.

Proof. a) Let T ∈ B(H), choose x ∈ H − {0} and consider M = span{x, Tx, T 2x, . . .}. It

is clear that T (M) ⊆ M . Let us prove that M is T -invariant. If m ∈ M then there exists a

sequence of elements (mk)k∈N ⊆ M such that mk
k→∞−−−→ m. The continuity of T ensure that

Tmk → Tm. So Tm ∈M because (Tmk)k∈N ⊆M . Moreover, M ̸= {0} because x ∈M and

M ̸= H otherwise, by Lemma A.0.3 applied with A = {x, Tx, T 2x, . . .} we conclude that H

is separable. Thus M is a non-trivial invariant subspace.

b) Let λ ∈ σp(T ). If f is an eigenvector associated to λ then consider M := span{f}.
Note thatM is non-trivial, it is closed (because is finite dimensional) and is invariant because

T (αf) = αλf ∈ span{f} for any α ∈ C.
c) In the finite dimensional case we have σp(T ) = σ(T ) for any operator T ∈ B(H). We

are dealing only with the complex scalar case, so σ(T ) ̸= ∅ due to Theorem A.0.2. Item c)

follows now from b).

■

A consequence of the proof of item a) is that if T (M) ⊆ M then T (M) ⊆ M where M

is any subset of H. A more interesting consequence of this proposition is the following: the

only unsolved case of the ISP is when H is infinite dimensional and separable. In this case,

the Riesz-Fischer Theorem (see Theorem A.0.4) ensure that H is isometrically isomorphic to
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l2. So we can focus our effort in l2 or at our favorite separable infinite dimensional Hilbert

space due to the following proposition.

Proposition 2.1.3. Let H1, H2 be isomorphic Hilbert spaces. Then the ISP is true for H1

if, and only if, is true for H2.

Proof. Suppose that the ISP is true for H1 and let T ∈ B(H2) an arbitrary non-null operator.

Consider S : H1 → H2 an isomorphism, then the operator S−1 ◦ T ◦ S : H1 → H1 has a

non-trivial invariant subspace that we callM . Then S(M) is a non-trivial invariant subspace

of T (S(M) is closed because S is an isomorphism and non-trivial because S is, in particular,

a bijection). We are done. ■

There are a lot of possible approaches to the ISP at this moment. We suggests the book

[10] to learn about different methods. In this text, we will use one of these methods, based

in the following concept developed by Gian Carlo Rota in [37].

Definition 2.1.4 (Rota’s universal operator). Let H be a Hilbert space. An operator U ∈
B(H) is said to be universal for H if for any non-null operator T ∈ B(H) there exists M

an invariant subspace of U , α a non-null complex scalar and S : M → H an isomorphism

such that αT = SU|MS
−1.

The existence of universal operators is not trivial, but as proved in [37], it is always

possible to find universal operators in separable Hilbert spaces. It is hard to prove that an

operator is universal using the definition. Until recently the main method for identifying a

universal operator has been the Caradus criterion (see Theorem 2.1.6). Pozzi (see [35])

generalized this classical result and obtained the following theorem that we will call the

Caradus-Pozzi criterion.

Theorem 2.1.5 (Caradus-Pozzi criterion). Suppose that U ∈ B(H) satisfies:

1. Ker U is infinite-dimensional.

2. Im(U) has finite codimension.

Then U is universal.

Recall that the codimension of a subspace M ⊆ H is defined as the dimension of the

quotient space H⧸M which is equal to the dimension of M⊥ if M is a closed subspace. For

the sake of completeness and historical relevance, we present here also the classical Caradus

Criteria and a proof for it.

Theorem 2.1.6 (Caradus Criterion). Let H be an infinite dimensional separable Hilbert

space and U ∈ B(H). If ker(U) is infinite-dimensional and U is surjective then U is universal

for H.
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Proof. Let K = Ker(U). We define U = U|K⊥ : K⊥ → H, note that U is one-to-one since

the domain is U|K⊥ and U is surjective: in fact, if y ∈ H then U(x) = y for some x ∈ H, as

K is closed we can write H = K ⊕K⊥ and then x = x1 + x2 where x1 ∈ K and x2 ∈ K⊥.

Moreover, y = U(x) = U(x1) + U(x2) = U(x2) = U(x2). Define V = U−1 : H → K⊥.

Furthermore, let W : H → K be an isometric isomorphism (Riesz-Fischer Theorem). With

this notation we have the following properties:

UV = IdH , UW = 0, Ker W = {0}, and Im(V) = K⊥.

Now we will check the definition of a Universal Operator. Let T ∈ B(H). Choose λ ∈ C∗ such

that |λ|∥T∥∥V∥ < 1 and let η = |λ|∥T∥∥V∥. Note that the series
∞∑
k=0

λkVkWT k is absolutely

convergent because

∞∑
k=0

∥λkVkWT k∥ ≤
∞∑
k=0

|λk|∥V∥k∥W∥∥T∥k ≤ ∥W∥
∞∑
k=0

ηk <∞.

AsB(H) is a Banach space, absolutely convergence implies convergence, so
∞∑
k=0

λkVkWT k =:

J ∈ B(H). Note that W + λVJT = J and

UJ = U(W + λVJT ) = 0 + λIdHJT = λJT.

If we can prove that Im(J) is closed, Im(J) ∈ Lat(U) and J : H → Im(J) is an

isomorphism, then the above equation show us that U is universal.

• Im(J) is closed: Let y ∈ Im(J), choose a sequence (xn)n∈N ⊆ H such that J(xn) → y.

Let P : H → K be the orthogonal projection, applying P in the equation J(xn) =

W(xn) + λVJT (xn) we obtain

PJ(xn) = P (W(xn) + λVJT (xn)) = W(xn)

because W(xn) ∈ K and Im(V) = K⊥. So, W(xn) → Py. Since W is an isometry, so

xn → x for some x ∈ H which implies that J(xn) → J(x) and then y = J(x).

• Im(J) ∈ Lat(U): This is clear from UJ(x) = λJT (x) = J(λT (x)) for all x ∈ H.

• J : H → Im(J) is an isomorphism. Of course J is surjective and continuous. If

J(x) = 0 then W(x) + λVJT (x) = 0 and so W(x) and then x = 0. The open mapping

theorem ensures that J is in fact a isomorphism (H and Im(J) are Banach).

This finishes the proof of the Caradus Criterion. ■

Remark 2.1.7. The first hypothesis of Caradus criterion is a necessary condition to an

operator U be universal. In fact, suppose that U is universal and choose a non-null operator
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T ∈ B(H) such that ker(T ) is infinite dimensional (for example choose T (ei) = 0 for every

odd number i where {ei}n∈N is a Hilbert basis for H). Then

S−1αT = U|MS
−1

for some α ∈ C, M ∈ Lat(U) and S : M → H an isomorphism. Then U|MS
−1(ei) = 0 for

every i odd. Since S−1 is an isomorphism the set {S−1(ei) | i odd } is linearly independent

and infinite. This show us that Ker U is infinite dimensional.

Example 2.1.8. Let H be a separable infinite dimensional Hilbert space. We define:

l2(H) := {(hj)j∈N | hj ∈ H and
∑
j∈N

∥hj∥2H <∞}.

It is not hard to show that l2(H) is a separable Hilbert space with the inner product given by:

⟨x, y⟩l2(H) =
∞∑
n=0

⟨hn, gn⟩H

and is clear that the backward shift operator S(h0, h1, h2, . . .) = (h1, h2, ...) is a bounded linear

operator in this space. Note that:

• Ker(S) is infinite dimensional: If {d1, d2, . . .} is a Hilbert basis for H (countable and

infinite since H is separable and infinite-dimensional). Consider xi = (di, 0, 0, . . .) ∈
l2(H) for all i ∈ N. Note that S(xi) = 0 for all i ∈ N and {xi}i∈N is a linearly

independent set because {di}i∈N is linearly independent.

• S is surjective: If (h1, h2, . . .) ∈ l2(H) then S(0, h1, h2, . . .) = (h1, h2, . . .).

By Caradus Criterion, S is a universal operator in l2(H).

Let us establish the connection between Rota’s Universal Operator and the ISP. Let

T ∈ B(H) be any operator, in Lat(T ) consider the order given by inclusion of sets. We say

that {0} ≠ M ∈ Lat(T ) is a minimal invariant subspace if it is minimal with respect

to this order, i.e, M ∈ Lat(T ) is minimal if for all N ∈ Lat(T ) such that N ⊆ M we have

N = {0} or N = M . We begin with following simple but crucial remark about the minimal

invariant subspaces.

Remark 2.1.9. Let T ∈ B(H). If M ∈ Lat(T ) is a minimal invariant subspace then

dim M = ∞ or dim M = 1. In fact, if dim M > 1 but it is finite, then consider the

operator S = T|M : M → M . The operator S is an operator in a finite dimensional space

with dimension greater than 1, so it has a non-trivial invariant subspace N by Proposition

2.1.2. In particular, N ∈ Lat(T ) and {0} ⊂ N ⊂M ; this contradicts the minimality of M .



21

The connection between the ISP and the concept of Universal Operator is given by the

following theorem:

Theorem 2.1.10. Let H be a separable infinite dimensional Hilbert space and U ∈ B(H) be

a universal operator. Then, are equivalent:

1. The ISP is true for H, i.e, every non-null operator T ∈ B(H) has a non-trivial invari-

ant subspace.

2. The minimal invariant subspaces of U are one-dimensional.

Proof. 1) =⇒ 2). Let M ∈ Lat(U) such that dim M = ∞, by Riesz-Fischer Theorem

(see Theorem A.0.4) there exists an isometric isomorphism S : M → H. Then the operator

R = S ◦ U|M ◦ S−1 ∈ B(H) has a non-trivial invariant subspace N by the hypothesis. Note

that S−1(N) is closed because S is an isomorphism. Moreover,

{0} ⊂ S−1(N) ⊂M

where the equalities never occur because otherwise N = {0} or N = S(M) = H; that is not

possible because N is not-trivial. So, if M is minimal the only possibility is that dim M = 1

.

2) =⇒ 1). Using the universality of U we can choose α ∈ C,M ∈ Lat(U) and S :M → H

an isomorphism such that αT = S ◦ U|M ◦ S−1. So, M is not minimal because dim M = ∞
and we can choose {0} ⊂ N ⊂ M such that N ∈ Lat(U). Note that αT (S(N)) ⊆ S(N)

because U|M(N) ⊆ N , moreover {0} ⊂ S(N) ⊂ N otherwise N = {0} or N = S−1(H) =M .

As S(N) is closed (S is an isomorphism) we conclude that S(N) is a non-trivial invariant

subspace for αT . It is clear that Lat(αT ) = Lat(T ) and we are done. ■

There are some points that we want to emphasize about the above proposition: this

equivalence gives us the possibility to work with only one operator instead of analyze all

operators. However, this operator must be universal and of course this is a non-trivial

property. As in general a universal operator is not unique, our choice of a specific universal

operator can smooth or not the situation, depending on “how good” is the operator. In

chapter 3 we will work with a specific universal operator and comment about others. For

now, we will finish this section making a connection with the adjoint operator.

Remark 2.1.11. Let T ∈ B(H). Then a closed subspace M of H is T -invariant if, and

only if, M⊥ is T ∗-invariant. In fact, suppose that M is T -invariant. For every y ∈M⊥ and

x ∈M we have

⟨x, T ∗y⟩ = ⟨Tx, y⟩ = 0

because Tx ∈ M . So T ∗y ∈ M⊥ and M⊥ is T ∗-invariant. The same argument proves the

other direction.
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The application M → M⊥ defines a bijection between the set of minimal invariant sub-

spaces of T and the set of maximal invariant subspaces of T ∗, this can be checked easily using

the definitions and the above proposition. So, Theorem 2.1.10 can be rephrased in terms of

maximal invariant subspaces: the ISP is true for H if, and only if, all the maximal invariant

subspaces of U∗ have codimension equal to 1.

2.2 The Hardy-Hilbert Space

In the last section we saw that the ISP for Hilbert spaces is equivalent to the ISP for

one separable infinite dimensional Hilbert space. Perhaps the most popular example is l2,

but our choice in this text will be the Hardy-Hilbert space of the disk, some kind of complex

analysis brother of l2. In chapter 3 we will connect the concept of universal operator with a

special kind of operators called the composition operators.

This section is devoted to present properties of this space and some important concepts

involving it. We will enunciate some classical structural results as the Poisson integral formula

and the existence of the radial limit almost everywhere (a.e). Some properties will be proved

but the most part will be referenced. The main reference for this section is [30] and we

suggest this book for anyone who wants a solid and detailed introduction to the area.

Definition 2.2.1. The Hardy-Hilbert space of the disk, denoted by H2(D) or simply H2, is

defined as:

H2(D) = {f : D → C | f is analytic and f(z) =
∞∑
n=0

anz
n ,

∞∑
n=0

|an|2 <∞}.

So the functions in the Hardy-Hilbert space are precisely the analytic functions defined

on D whose expansion in Taylor series around 0 produces a sequence of square-summable

coefficients. Remember that the coefficients of the expansion of an analytic function around

any point are unique, so the definition make sense. Of course this is a complex vector space

with the classical definitions and it becomes a Hilbert space if we define a inner product given

by

⟨f, g⟩ =
∞∑
n=0

anbn

where f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n. A short way to proof that is considering the map

T : H2 → l2 given by

T (f) = (a0, a1, . . .) where f(z) =
∞∑
n=0

anz
n.
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It is not difficult to prove that this map is an isometric isomorphism between these two

spaces, so H2 is a separable infinite dimensional Hilbert space.

A very special class of functions inH2 are called the reproducing kernels defined as follows.

For every w ∈ D we define the reproducing kernel at w as the function κw : D → C given

by

κw(z) =
1

1− wz
.

The reproducing kernels will play a central role in the future. We will show the main

properties of these functions and some consequences. We comment that the next lines show

us that H2 is a Reproducing Kernel Hilbert Space (RKHS) (see [34] for the definition and

more details). For any w ∈ D the expression

κw(z) =
1

1− wz
= 1 + wz + (w)2z2 + . . .

show us κw ∈ H2 because |w| < 1. Moreover for any f ∈ H2(D) a direct computation implies

that

⟨f, κw⟩ =
∞∑
n=0

anw
n =

∞∑
n=0

anw
n = f(w).

As a consequence of this basic properties we can prove the following estimate:

Lemma 2.2.2. For any f ∈ H2 and any w ∈ D we have

|f(w)| ≤ ∥f∥√
1− |w|2

Proof. Note that ∥κw∥2 = ⟨κw, κw⟩ = 1
1−|w|2 . By Cauchy-Schwarz inequality we have

|f(w)| = |⟨f, κw⟩| ≤ ∥f∥∥κw∥ ≤ ∥f∥√
1− |w|2

.

■

Moreover, this growth estimate allow us to find a relation between the convergence of

functions in H2 and the classical locally uniform convergence of functions. The next result

will be used many times in the text.

Theorem 2.2.3. If (fn)n∈N ⊆ H2 is such that fn → f in H2 then fn → f uniformly on

compact subsets of D.

Proof. Let K ⊆ D be a compact set. Fix ϵ > 0, as K is a compact subset of D there exists
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0 < R < 1 such that |z| < R for any z ∈ K. Let n0 ∈ N such that for any n ≥ n0 we have

∥fn − f∥ < ϵ
√
1−R2.

So

|fn(z)− f(z)| ≤ ∥fn − f∥√
1− |z|2

<
∥fn − f∥√
1−R2

< ϵ ∀z ∈ K and ∀n ≥ n0.

■

There is an alternative characterization of when an analytic function belongs to H2. The

proof consists in writing |f(reiθ)|2 as a series and uses the following well known identity:

1

2π

2π∫
0

eniθemiθdθ =
1

2π

2π∫
0

e(n−m)iθdθ = δn,m.

Theorem 2.2.4. Let f : D → C be an analytic function. Then f ∈ H2 if, and only if

sup
0<r<1

1

2π

2π∫
0

|f(reiθ)|2dθ <∞.

Moreover, if this is the case then

∥f∥ =

 sup
0<r<1

1

2π

2π∫
0

|f(reiθ)|2dθ


1
2

.

Proof. See [30, Theorem 1.1.12]. ■

A direct consequence of this alternative characterization, which is not trivial from the

definition, is that H∞ ⊆ H2 where

H∞ = {f : D → C | f is analytic and bounded }.

As usual the sup norm is denoted by ∥f∥∞ and by definition ∥f∥∞ := sup
z∈D

|f(z)| where

f ∈ H∞.

Now, let us show that is possible to seeH2 as a subspace of some space of square summable

functions: consider the space L2(T) = L2(T, m
2π
) where m is the Lebesgue measure. It is

known that L2(T, m
2π
) is a Hilbert space with the inner product given by:
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⟨g, h⟩ = 1

2π

2π∫
0

g(eiθ)h(eiθ)dθ

where g, h ∈ L2(T). For each n ∈ Z the function un : T → C given by un(e
iθ) = einθ belongs

to L2(T) and the collection {un | n ∈ Z} is a Hilbert basis for L2(T) (see for example [38]).

This means that if g ∈ L2(T) then we can write

g =
∑
n∈Z

⟨g, un⟩un.

We define H2(T) as the closed subspace of L2(T) such that the negative terms of the above

sum vanishes, i.e,

H2(T) = {f ∗ ∈ L2(T) | ⟨f ∗, un⟩ = 0 ∀n < 0}.

By Bessel inequality,
∞∑
n=0

|⟨f ∗, un⟩|2 < ∞. So for each f ∗ ∈ H2(T) we know that f ∗ =∑
n∈N

⟨f ∗, un⟩un and we can associate the function f ∈ H2 given by f(z) =
∞∑
n=0

⟨f ∗, un⟩zn.

It is possible to see that the map T (f ∗) = f defined as above is an isometric isomorphism

between H2(T) and H2. For any f(z) =
∞∑
n=0

anz
n ∈ H2 and 0 < r < 1 we define fr : T → C

given by

fr(e
iθ) = f(reiθ) =

∞∑
n=0

anr
neinθ.

Clearly fr ∈ H2(T). The precise relation between f and f ∗ is more deep (see Theorem 2.2.8

below); for now the following proposition that relates fr and f
∗ is enough for our purposes.

Proposition 2.2.5. Let f(z) =
∞∑
n=0

anz
n ∈ H2. Then

lim
r→1−

∥f ∗ − fr∥H2(T) = 0

Proof. For a given ϵ > 0 we can choose n0 ∈ N such that

∞∑
n=n0

|an|2 <
ϵ

2

because the series
∞∑
n=0

|an|2 converges. Moreover, choose δ ∈ (0, 1) such that for all r ∈ (δ, 1)

n0−1∑
n=0

|an|2(1− rn)2 <
ϵ

2
.
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The following estimate finishes the proof:

∥f ∗ − fr∥H2(T) =

∥∥∥∥∥
∞∑
n=0

(an − anr
n)un

∥∥∥∥∥
2

=
∞∑
n=0

|an|2(1− rn)2

=

n0−1∑
n=0

|an|2(1− rn)2 +
∞∑

n=n0

|an|2(1− rn)2

<
ϵ

2
+
ϵ

2
= ϵ.

■

It is a known result of measure theory that L2 convergence implies that a subsequence

converges almost everywhere (see [17, Chapter II]). So the last proposition implies that there

exists an increasing sequence of real numbers (rk)k∈N such that f ∗(eiθ) = lim
k→∞

frk(e
iθ) almost

everywhere. In particular, if f ∈ H2 is analytic at a neighborhood of D then f ∗(eiθ) =

lim
k→∞

frk(e
iθ) = f(eiθ).

For all r ∈ [0, 1) we define the Poisson kernel as the function Pr : R → R+ given by

Pr(ψ) =
1− r2

1− 2r cosψ + r2
.

Of course 1− r2 > 0; moreover as cosψ ≤ 1 it follows that 0 < (1− r)2 ≤ 1− 2r cosψ + r2

and thus Pr is in fact a well defined positive function. The next theorem uses the Poisson

kernel to establish a connection between f and f ∗.

Theorem 2.2.6 (Poisson Integral Formula). If f ∈ H2 and reit ∈ D then

f(reit) =
1

2π

2π∫
0

f ∗(eiθ)Pr(θ − t)dθ.

Proof. For all z0 ∈ D the function κz0 is analytic at a neighborhood of D and as we commented

above

κ∗z0(z) =
1

1− z0eiθ

Thus

f(z0) = ⟨f, κz0⟩H2 = ⟨f ∗, κ∗z0⟩L2 =

∫
T

f ∗(eiθ)

(
1

1− z0e−iθ

)
dθ.



27

In view of the geometric series

1

1− z0e−iθ
= 1 + z0e

−iθ + z20e
−2iθ + z30e

−3iθ + . . .

we note that ∫
T

f ∗(eiθ)

(
1

1− z0e−iθ
− 1

)
dθ = 0

because f ∗ ∈ H2(T). Consequently

f(z0) =

∫
T

f ∗(eiθ)

(
1

1− z0e−iθ
+

1

1− z0eiθ
− 1

)
dθ

and the result follows from computation below, where z0 = reit;

1

1− z0e−iθ
+

1

1− z0eiθ
− 1 =

1− r2

1− re−iteiθ − reite−iθ + reite−iθre−iteiθ

=
1− r2

1− r(e−iteiθ + eite−iθ) + r2

=
1− r2

1− 2r cos (θ − t) + r2

= Pr(θ − t).

■

An immediate consequence of the above formula is that 1
2π

2π∫
0

Pr(θ − t)dθ = 1, where

r ∈ [0, 1) and t ∈ R. This follows by considering f as the constant function 1.

Let us back to the duality between H2 and H2(T); maybe the most important fact about

this is some kind of “pointwise” relation between f and f ∗. Given a function f ∈ H2 the

radial limit of f at a point eiθ ∈ T is defined as

lim
r→1−

f(reiθ).

The above limit may not exist at some point eiθ ∈ T as the following example show us.

First, note that the function f(z) = (1 − z)−πi belongs to H2 because f ∈ H∞, we also

comment that if n ∈ N and n ≥ 2 then log(n) ∈ R − Q (to prove this you can argue by

contradiction or use the seminal Lindemann-Weierstass Theorem).

Example 2.2.7. The radial limit of f(z) = (1−z)−πi does not exist at the point 1. Consider,
for example the sequence (1− 1

2n
)n∈N. Of course, this sequence converges to 1 as n→ ∞ and
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(
1−

(
1− 1

2n

))−πi

=

(
1

2n

)−πi

= e−πi(log(1)−log(2
n)) = eniπlog(2).

So the sequence (f(1− 1
2n
))n∈N is equal to the orbit of the irrational rotation Rπlog(2) : T → T

given by Rπlog(2)(e
iθ) = ei(πlog(2))eiθ at the point 1 ∈ T. This orbit is dense in the circle T by

the irrational rotation theorem (see [23, p.6-26]). In particular, the limit lim
r→1−

f(r) does not

exist.

Nevertheless, the set of points in the circle such that this limit does not exist is small

in the measure sense. This fact is a consequence of Poisson Integral Formula proved above

and the remarkable Fatou’s Theorem (see [30, p. 15]). With these tools, we obtain a precise

relation between f and f ∗:

Theorem 2.2.8. If f ∈ H2 then the radial limit lim
r→1−

f(reiθ) exists for almost all θ and

lim
r→1−

f(reiθ)
a.e
= f ∗(eiθ)

Proof. See [30, Corollary 1.1.28]. ■

2.3 Composition Operators

In this section we will see the basic facts about composition operators in the Hardy-

Hilbert space. In particular, we will present a complete proof for the fact that composition

operators are well defined on H2. In the end of the section we focus in some terminology

about the symbols that define the operators.

Let ϕ : D → D be an analytic function. We define the composition operator with

symbol ϕ, denoted by Cϕ, as the operator defined on H2 and given by Cϕf = f ◦ ϕ for all

f ∈ H2(D). Of course Cϕf ∈ Hol(D) because the composition of analytic functions remains

analytic; a direct computation show us that Cϕ is a linear operator and that Cϕ(f · g) =

(Cϕf) · (Cϕg) if f · g, f, g ∈ H2.

Two non-trivials facts that we will need here about this operator are the following:

Im(Cϕ) ⊆ H2 and Cϕ is a bounded linear operator. This is the content of the next theorem,

sometimes called Littlewood’s Subordination Theorem in the literature. To prove it we

need the following lemma.

Lemma 2.3.1. If f ∈ H2 then for all reit ∈ D we have

|f(reit)|2 ≤ 1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ.
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Proof. By Poisson Integral Formula (see Theorem 2.2.6) we can write

f(reit) =
1

2π

2π∫
0

f ∗(eiθ)Pr(θ − t)dθ.

The measure µ defined by µ(A) = 1
2π

∫
A

Pr(θ − t)dθ is such that µ ≪ m where m is the

Lebesgue measure, moreover it is clear that the Radon-Nikodym derivative
dµ

dm
is given by

1
2π
Pr(θ − t). This implies

f(reit) =
1

2π

2π∫
0

f ∗(eiθ)Pr(θ − t)dθ =

2π∫
0

f ∗(eiθ)dµ(θ).

As r is fixed and 0 ≤ r < 1 we have 1−2r cos(θ− t)+r2 ≥ (1−r)2 > 0 and then Pr(θ− t)
is bounded above by some constant Kr. Thus

2π∫
0

|f ∗(eiθ)|2dµ(θ) = 1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ ≤ Kr∥f ∗∥2 <∞.

where ∥f ∗∥2 means the norm of f ∗ in the space L2(T, m
2π
). This implies f ∗ ∈ L2(T, µ).

Applying Holder’s inequality to the functions f ∗ and 1 we obtain

|f(reit)| ≤
2π∫
0

|f ∗(eiθ)|dµ(θ)

≤

 2π∫
0

|f ∗(eiθ)|2dµ(θ)


1
2
 2π∫

0

1dµ(θ)


1
2

=

 1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ


1
2

because 1
2π

2π∫
0

Pr(θ−t)dθ = 1. The result follows by squaring both sides of the above inequality.

■

In the next theorem some facts about harmonic functions will be used. We refer to [11]

or [41] if the reader is not familiar with this topic and wants a precise reference.

Theorem 2.3.2. If ϕ : D → D is an analytic function then the operator Cϕ : H2 → H2 is

well defined and it is a bounded linear operator. Moreover,
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∥Cϕ∥ ≤

√
1 + |ϕ(0)|
1− |ϕ(0)|

.

Proof. Consider the function u : D → R given by

u(reit) =
1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ.

Using the previous lemma we conclude that

|f(reit)|2 ≤ u(reit) ∀reit ∈ D.

As ϕ(D) ⊆ D we obtain |f(ϕ(reit))|2 ≤ u(ϕ(reit)) ∀reit ∈ D and then

1

2π

2π∫
0

|f(ϕ(reit))|2dt ≤ 1

2π

2π∫
0

u(ϕ(reit))dt ∀reit ∈ D.

Now, note that

u(reit) =
1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ

=
1

2π

2π∫
0

|f ∗(eiθ)|2Pr(t− θ)dθ

=
1

2π

2π∫
0

|f ∗(eiθ)|2ℜ
(
1 + rei(t−θ)

1− rei(t−θ)

)
dθ

= ℜ

 1

2π

2π∫
0

|f ∗(eiθ)|2
(
1 + rei(t−θ)

1− rei(t−θ)

)
dθ


= ℜ

 1

2π

2π∫
0

|f ∗(eiθ)|2
(
eiθ + reit

eiθ − reit

)
dθ


where we used that Pr is an even function and made some computations. Writing reit = z

we note that

g(z) :=
1

2π

2π∫
0

|f ∗(eiθ)|2
(
eiθ + z

eiθ − z

)
dθ
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is an analytic function due to [41, Theorem 5.4].

Recalling that the real part of an analytic function is harmonic the above discussion

show us that u is harmonic. Moreover, from basic complex analysis it is known that the

composition of an analytic function with a harmonic function is again a harmonic function,

thus u ◦ ϕ is harmonic. Hence the mean value property for harmonic functions (see [11,

Chapter X]) implies that

u(ϕ(0)) =
1

2π

2π∫
0

u(ϕ(reit))dt ∀reit ∈ D

and consequently

∥Cϕf∥2 = ∥f ◦ ϕ∥2H2 = sup
0<r<1

1

2π

2π∫
0

|f(ϕ(reit))|2dt ≤ u(ϕ(0)) (⋆).

Moreover, we note that for all r ∈ (0, 1] we have

Pr(θ − t) =
1− r2

1− 2rcos(θ − t) + r2
≤ 1− r2

(1− r)2
=

1 + r

1− r

which implies that

u(reit) =
1

2π

2π∫
0

|f ∗(eiθ)|2Pr(θ − t)dθ ≤
(
1 + r

1− r

)
∥f ∗∥2L2 =

(
1 + r

1− r

)
∥f∥2H2 ∀reit ∈ D

or more briefly

u(z) ≤
(
1 + |z|
1− |z|

)
∥f∥2H2 ∀z ∈ D.

Using (⋆) and the above equation we conclude that

∥Cϕf∥2 ≤ u(ϕ(0)) ≤
(
1 + |ϕ(0)|
1− |ϕ(0)|

)
∥f∥2H2

which implies that Cϕ is a bounded linear operator. The promised estimate about the norm

follows by considering the supremum over all f ∈ H2 with ∥f∥H2 = 1.

■

The last theorem establishes that Cϕ is always a bounded linear operator if ϕ is an analytic

self-map of the disk. It is natural to expect that properties of the operator Cϕ can be deduced

from the symbol ϕ and vice-versa, in fact, we have a lot of examples of this approach in the

literature. We refer to the books [13], [30] and [39] for concrete results about compacity,

normality, fixed points and related properties.
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Recall that for every analytic nonconstant map ϕ : D → D the set ϕ(D) is a domain

(an open connected set) by the open mapping theorem for analytic functions. Thus if f ∈
Ker(Cϕ) then f(ϕ(D)) = {0} and this implies f = 0 by the principle of analytic continuation.

In particular, no composition operator can be a universal in the sense of Rota by Remark

2.1.7. However, we will see in section 3 that some translations of them are universal.

Another important property of the composition operators, is the relation between their

adjoints and the reproducing kernels: if ϕ : D → D is analytic and w ∈ D then for all f ∈ H2

we have

⟨f, C∗
ϕκw⟩ = ⟨Cϕf, κw⟩ = ⟨f ◦ ϕ, κw⟩ = f(ϕ(w)) = ⟨f, κϕ(w)⟩.

From this computation we conclude that:

Proposition 2.3.3. If ϕ : D → D is an analytic map and w ∈ D then C∗
ϕκw = κϕ(w).

To finish this section we will establish some terminology about the symbol ϕ that will be

used in the next chapter. It is a well known result in complex analysis that every automor-

phism of the disk (i.e, an analytic bijection of the disk) has the form

ψ(z) = λ
a− z

1− az

where λ is a unimodular constant and a ∈ D. If ψ is not the identity transformation and ψ

has a fixed point in D then we say that ψ is an elliptic automorphism. We recall also the

famous Denjoy-Wolff fixed point theorem.

Theorem 2.3.4 (Denjoy-Wolff). Let ψ be an analytic self map of D other than an elliptic

automorphism.

• If ψ has a fixed point q ∈ D then ψn → q uniformly in the compact parts of D and

|ψ′(q)| < 1.

• If ψ has no fixed point in D then there is a point p ∈ T (called the Denjoy-Wolff

point of ψ) such that ψn → p uniformly in the compact parts of D. Moreover the radial

limit of ψ at the point p is p and the point p is called the attractive fixed point.

Proof. See [39, Chapter V]. ■

Remember that a nonconstant map ϕ defined on C is called a linear fractional trans-

formation if there exists a, b, c, d ∈ C such that

ϕ(z) =
az + b

cz + d
∀z ∈ C.

Each element ϕ as above can be extended to a function defined on C∞ = C ∪ {∞} (the

one-point compactification of C) in the following way: if c = 0 we define f(∞) = ∞ and
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if c ̸= 0 then we define f(−d
c
) = ∞ and f(∞) = a

c
. If c = 0 then ∞ is clearly a fixed

point of ϕ, moreover the other fixed point is given by the solution of (a− d)z + b = 0; if we

suppose that ϕ is not the identity function (which means that a = d and b = 0 can not occurs

simultaneously) then the last equation has at most 1 solution. If c ̸= 0 then the solutions

of ϕ(z) = z are the solutions of a quadratic equation and thus ϕ(z) = z has at most two

solutions in C.
Thus every linear fractional transformation distinct from the identity has at least one and

at most two fixed points in C∞. In our work we will deal with linear fractional transformations

that preserves the disk, i.e, we will consider all the linear fractional transformations ϕ such

that ϕ(D) ⊆ D. This set will be denoted by LFT (D). All this discussion leads us to the

following definition:

Definition 2.3.5. Let ϕ ∈ LFT (D) without fixed points in D. We say that

• ϕ is parabolic if the unique fixed point of ϕ is the attractive fixed point in T.

• ϕ is hyperbolic if ϕ has an attractive fixed point in T and another fixed point that

belongs to C∞ − D.

Example 2.3.6. The maps ϕ(z) = z+1
2

and ψ(z) =
z− 1

2

1− 1
2
z
are both hyperbolic. The first has 1

and ∞ as fixed points while the second has 1 and −1 as fixed points. The map φ(z) = 1+z
3−z is

an example of a parabolic map with the only fixed point being 1.

2.4 Nevannlina Counting Function and Shapiro Theorems

Another crucial point in our work is to use the remarkable paper of Shapiro where he

characterizes the essential norm (i.e, the norm of an element in the Calkin algebra) of a

composition operator (see [40]). We will define in the next pages the Nevannlina counting

function, a tool that appears in Shapiro’s work. We need some preliminary arguments to

ensure that this function is well defined.

Lemma 2.4.1. Let 0 < R < 1 be a constant, if R < x < 1 then 1 − x ≈ log( 1
x
). I.e, there

exists positive constants C1, C2 (that does not depend on x) such that

C1(1− x) ≤ log

(
1

x

)
≤ C2(1− x) ∀x ∈ (R, 1).

Proof. Remember the integral definition of the logarithm function for x > 0:

log(x) =

x∫
1

1

t
dt

x<1
=⇒ −log(x) =

1∫
x

1

t
dt.
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For R < x ≤ t ≤ 1 we have

1 ≤ 1

t
≤ 1

x

and integrating in t over [x, 1] we obtain

1∫
x

1dt ≤
1∫

x

1

t
dt ≤

1∫
x

1

x
dt =⇒ 1− x ≤ −log(x) ≤ 1

x
(1− x).

As R < x and −log(x) = log
(
1
x

)
we conclude that

1− x ≤ log

(
1

x

)
≤ 1

R
(1− x).

Thus it is enough to choose C1 = 1 and C2 =
1
R
to finish the proof.

■

Definition 2.4.2. Let ϕ : D → D be a non constant analytic map. We define theNevannlina

counting function, denoted by Nϕ, for each w ∈ D− ϕ(0) as

Nϕ(w) =


∑

z∈ϕ−1{w}
log
(

1
|z|

)
, if w ∈ ϕ(D)− {ϕ(0)}.

0, if w /∈ ϕ(D).

with each point z ∈ ϕ−1{w} occurring as many times as its multiplicity.

Let us explain why the Nevannlina function is well defined. Of course, for w /∈ ϕ(D) this
is clear. Now, fix w ∈ ϕ(D)− {ϕ(0)}. The sum

∑
z∈ϕ−1{w}

log

(
1

|z|

)

is a series because we are summing over all z ∈ D such that ϕ(z)− w = 0; since the number

of zeros of an analytic function is always countable (apply the compact exhaustion principle

in D and the analytic continuation principle) this sum is a series and we need to check the

convergence.

For that, we will use Lemma 2.4.1. We can write {zn}n∈N = ϕ−1{w}. There exists R > 0

such that |zn| > R for all n ∈ N, otherwise, since ϕ is analytic at 0 we can use the analytic

continuation principle again to conclude that ϕ(z) = ϕ(0) for all z ∈ D and so ϕ is constant.

Using Lemma 2.4.1 we obtain a constant C2 > 0 such that

∑
z∈ϕ−1{w}

log

(
1

|z|

)
=

∞∑
n=1

(
log

1

|zn|

)
< C2

(
∞∑
n=1

(1− |zn|)

)
.
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Moreover, ϕ ∈ H∞ and so ϕ − w ∈ H∞. In particular ϕ − w ∈ H2. So, {zn}n∈N are the

zeros of a function in the Hardy-Hilbert space. In particular, this sequence satisfies Theorem

2.5.7 and then

C2

(
∞∑
n=1

(1− |zn|)

)
<∞.

We conclude the convergence of the desired series. To prove the results that motivate this

section the Nevannlina counting function is one of the main tools. The other is the following

identity due to Littlewood and Paley (recall that dA(z) := 1
π
dxdy).

Theorem 2.4.3. (Littlewood-Paley Theorem) Let f ∈ H2, then

∥f∥2 = |f(0)|2 + 2

∫
D

|f ′(z)|2log
(

1

|z|

)
dA(z)

where A is the area measure in D.

Proof. See [18, Theorem 4.35]. ■

We will use explicitly (and prove now) two results proved by Shapiro related with the

Nevannlina counting function. But first, remember that every analytic function ϕ can be

written as ϕ(x, y) = u(x, y)+iv(x, y) where u and v are real functions. A simple computation

shows us that for any z0 ∈ D we have ϕ′(z0) =
∂u
∂x
(z0) + i ∂v

∂x
(z0). Using the Cauchy-Riemann

equations we deduce that

|ϕ′(z0)|2 =
∂u

∂x

2

(z0) +
∂v

∂x

2

(z0) = det

[
∂u
∂x
(z0)

∂u
∂y
(z0)

∂v
∂x
(z0)

∂v
∂y
(z0)

]
.

Thus the change of variable theorem (see Theorem A.0.7) takes the following form:∫
ϕ(Ω)

f(x, y)dxdy =

∫
Ω

(f ◦ ϕ)(x, y)|ϕ′(x, y)|2dxdy

where Ω is an open set of C and ϕ : Ω → C is analytic.

Theorem 2.4.4. If g is a non-negative measurable function in D and ϕ is a nonconstant

analytic self-map of D then∫
D

g(w)Nϕ(w)dA(w) =

∫
D

g(ϕ(z))|ϕ′(z)|2 log 1

|z|
dA(z)

Proof. By the principle of analytic continuation the analytic function ϕ′ vanishes on an at

most countable set and all the zeros of ϕ′ are isolated. Let Z be the set of zeros of ϕ′; the
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restriction of ϕ′ to the open connected set D−Z never vanishes and thus for every point of

D − Z there is an open set containing this point such that ϕ is a homeomorphism (by the

inverse function theorem). Note that D−Z can be written as the countable union of disjoint

semi-closed polar rectangles, that we call Rn, and on each Rn the function ϕ is one-to-one.

Now we denote by ψn the inverse function of the restriction ϕ : Rn → ϕ(Rn). The change of

variable formula and the discussion before the theorem show us that

∫
Rn

g(ϕ(z))|ϕ′(z)|2 log
(

1

|z|

)
dA(z) =

∫
ϕ(Rn)

g(w) log

(
1

|ψn(w)|

)
dA(w)

=

∫
D

g(w)χϕ(Rn)(w) log

(
1

|ψn(w)|

)
dA(w)

As D =
⋃̇
n∈NRn if we consider the sum of the above integrals with respect to n we obtain:

∫
D

g(ϕ(z))|ϕ′(z)|2 log
(

1

|z|

)
dA(z) =

∫
D

g(w)

(
∞∑
n=1

χϕ(Rn)(w) log

(
1

|ψn(w)|

))
dA(w).

To finish the proof, it is enough show that

∞∑
n=1

χϕ(Rn)(w) log

(
1

|ψn(w)|

)
= Nϕ(w) a.e

To do this, note that if w ∈ D− {ϕ(0)} is such that w /∈ ϕ(D) then by definition Nϕ(w) = 0

and the equality ϕ(D) =
⋃
n∈N ϕ(Rn) show us that the left side of the above equation is also

0. Now, suppose that w ∈ ϕ(D)− ({ϕ(0)}∪ϕ(Z)); if z ∈ ϕ−1{w} there exists exactly one set

Rn such that z ∈ Rn. Thus ϕ(z) = w ∈ ϕ(Rn) and the term log( 1
|ψn(w)|) = log( 1

|z|) appears

once in the sum in the left side of the above equation. Moreover, since ϕ(z) = w /∈ ϕ(Z) we

see that the multiplicity of z is one and then the term log( 1
|z|) appears exactly once in the

sum that defines Nϕ(w). Since ϕ(Z) is countable it has zero measure and thus we obtain the

equality almost everywhere. ■

Theorem 2.4.5. If ϕ : D → D is analytic then ∀g ∈ H2(D) we have

∥Cϕg∥2 = 2

∫
D

|g′(w)|2Nϕ(w)dA(w) + |g(ϕ(0))|2.
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Proof. From the Littlewood-Paley Theorem applied for the function g ◦ ϕ it follows that

∥g ◦ ϕ∥2 − |g(ϕ(0))|2 = 2

∫
D

|(g ◦ ϕ)′(z)|2 log

(
1

|z|

)
dA(z)

= 2

∫
D

|g′(ϕ(z))|2|ϕ′(z)|2 log

(
1

|z|

)
dA(z).

But from Theorem 2.4.4 applied to f = |g′|2 we deduce that

2

∫
D

|g′(ϕ(z))|2|ϕ′(z)|2 log

(
1

|z|

)
dA(z) = 2

∫
D

|g′(w)|2Nϕ(w)dA(w)

and the result follows. ■

2.5 Canonical Factorization, Beurling and Model spaces

One of the major results from the theory of Hardy spaces is called the canonical fac-

torization. In the present section, using this factorization, we will define some concepts (in

particular, some subspaces of H2) that will be important in chapter 4.

On the way to enunciate this theorem for H2 functions we need to introduce some con-

cepts. The shift operator inH2 is denoted byMz : H
2 → H2 and defined byMz(f) = zf(z)

where f ∈ H2. It is not difficult to see thatMz is well defined and is a bounded linear operator

(in fact an isometry) in H2.

Definition 2.5.1. Let f ∈ H2. We say that:

1. f is an outer function if span{f,Mzf,M2
z f, . . .} = H2.

2. f is an inner function if |f ∗(eiθ)| a.e= 1.

3. f is a singular-inner function if f is nonconstant, inner and f is zero-free in D.

There are some alternative characterizations of these concepts.

Theorem 2.5.2. A function S ∈ H2 is a singular inner function if, and only if, S can be

written in the form

S(z) = λ exp

− 1

2π

2π∫
0

eiθ + z

eiθ − z
dµ(θ)

 ∀z ∈ D

where λ is a unimodular constant, µ is a positive, finite and regular Borel measure in [0, 2π].

Moreover, µ ⊥ m where m is the Lebesgue measure in [0, 2π].

Proof. See [30, Theorem 2.6.5]. ■
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Using Theorem A.0.8 for the map f : (0, 2π] → T given by f(θ) = eiθ we see that

2π∫
0

eiθ + z

eiθ − z
dµ(θ) =

∫
T

ξ + z

ξ − z
dν(ξ).

where ν is the pushforward measure of µ by f . Since f is a bijection and µ is singular to m

the measure ν is singular to the Lebesgue measure in T, which is defined as the pushforward

measure of the Lebesgue measurem defined on (0, 2π] by the map f . Thus the above theorem

can be restated using measures in T.

Example 2.5.3. Let η ∈ T and L > 0. Consider the point mass measure defined on T by

ν(A) = L if η ∈ A and ν(A) = 0 if η /∈ A. In this case:

− 1

2π

∫
T

ξ + z

ξ − z
dν(ξ) = −K

(
η + z

η − z

)
where K is a positive constant. Thus the functions of the form

e−K(
η+z
η−z ) (K > 0)

are all singular inner functions.

Theorem 2.5.4. A function G ∈ H2 is outer if and only if there exists a unimodular constant

λ such that

G(z) = λ exp

 1

2π

2π∫
0

(
eiθ + z

eiθ − z

)
log |G∗(eiθ)|dθ


for all z ∈ D.

Proof. See [30, Corollary 2.7.8]. ■

Definition 2.5.5. Let {zk}k∈N ⊆ D. We say that {zk}k∈N satisfies the Blaschke condition

if

∞∑
k=1

(1− |zk|) <∞.

Moreover, if s ∈ N ∪ {0} we define the Blaschke product with zeros {zk}k∈N ⊆ D and multi-

plicity s at 0 as the function

B(z) = zs
∞∏
k=1

zk
|zk|

(
zk − z

1− zkz

)
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Theorem 2.5.6. Let {zk}k∈N ⊆ D a Blaschke sequence and s ∈ N. Then the function B

defined as above is an inner function whose zeros are exactly the sequence {zk}k∈N, counting
multiplicities, and 0 which is a zero of multiplicity s.

Proof. See [30, Theorem 2.4.13]. ■

If z1, . . . , zn are elements of D then we define the Blaschke product B with zeros z1, . . . , zn
and multiplicity s at 0 in the same way. In this situation, as the product is finite, it is possible

to see that B is in fact analytic in a neighborhood of D.
Every inner function Θ can be written as a unimodular constant multiple of Θ = BSν

where B is the Blaschke product formed by the zeros of Θ and Sν is a singular inner function

(ν is the measure that appears in the representation given by Theorem 2.5.2 ). See [30,

Corollary 2.4.14].

The next theorem tells us that the zeros of functions in H2 must go to the boundary with

a certain speed.

Theorem 2.5.7. Let f ∈ H2 not null. If {zk}k∈N are the zeros of f then {zk}k∈N satisfies

the Blaschke condition, i.e,
∞∑
k=1

(1− |zk|) <∞.

Proof. See [30, Corollary 2.4.10]. ■

With these concepts, we present the canonical factorization theorem:

Theorem 2.5.8. If f ∈ H2 is not null then we have a unique factorization

f = λBSO

where λ is a unimodular constant, B is a Blaschke products formed exactly by the zeros of f ,

S is a singular inner function and O is an outer function. Moreover,

∥f∥ = ∥O∥.

Proof. See [18, Theorem 4.19]. ■

The canonical factorization, as we said, is one of the major results about H2 and can

be naturally generalized to the Hardy spaces Hp. Another major result of this area is the

celebrated Beurling theorem which gives us a complete characterization of the invariant

subspace of the shift operator Mz.

Theorem 2.5.9 (Beurling’s Theorem). Every invariant subspace of Mz other than {0} has

the form ΘH2, where Θ is a inner function.
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Proof. See [30, Corollary 2.2.12]. ■

Motivated by the above theorem, it is common to consider two special subspaces of H2.

Definition 2.5.10. Let Θ be an inner function. Then:

• A space of the form ΘH2 is called a Beurling type space.

• A space of the form (ΘH2)⊥ is called a Model space.

The model spaces are, by definition, the orthogonal complements of Beurling type spaces.

By Beurling Theorem and by Remark 2.1.11 we conclude that the model spaces are exactly

the M∗
z -invariant subspaces.

To finish this chapter we will make some comments about the boundary behaviour of

some H∞ functions. Consider a function f ∈ H∞ such that ∥f∥∞ ≤ 1. We say that a point

z ∈ D is a regular point of f if z ∈ D and f(z) ̸= 0 or if z ∈ T and f has an analytic

continuation in a neighborhood V of z with |f(w)| = 1 for every w ∈ V ∩ T.

Definition 2.5.11. Let f ∈ H∞. We define the resolvent of f as:

ρ(f) := {z ∈ D | z is a regular point of f}

and we define the spectrum of f as:

σ(f) = D− ρ(f).

Let Θ ∈ H∞ be an inner function. Then z ∈ D is a regular point of Θ if, and only

if, z ∈ D and Θ(z) ̸= 0 or if z ∈ T and Θ has an analytic continuation in a neighborhood

V . In fact, to check this we only need to verify that |Θ(w)| = 1 for every w ∈ V ∩ T. This

is clear because we know that |Θ(eiθ)| a.e= 1, so given w ∈ V ∩ T we can choose a sequence

(wn)n∈N ⊆ T such that wn → w and |Θ(wn)| = 1. Thus |Θ(w)| = 1 because Θ is analytic at

w.

The following theorem will be important for us in the next sections.

Theorem 2.5.12. Consider f ∈ H∞ such that ∥f∥∞ ≤ 1 and let λ ∈ D. Then are equivalent:

1. λ ∈ ρ(f)

2. Either λ ∈ D and f(λ) ̸= 0, or λ ∈ T and there exists ϵ > 0 such that

|f ∗(η)| a.e= 1, η ∈ T ∩B(λ, ϵ)

and

inf{|f(z)| : z ∈ D ∩B(λ, ϵ)} > 0.
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Moreover, if f = Θ is a inner function with singular inner part Sν then

σ(Θ) =

{
z ∈ D | lim inf

w→z, w∈D
|Θ(w)| = 0

}
= Z(Θ) ∪ supp(ν)

Proof. See [18, Theorem 5.4] ■

In the above theorem supp(ν) is the support of the measure ν, defined as:

supp(ν) := {ξ ∈ T | ν({ξeit | − ϵ < t < ϵ}) > 0 ∀ϵ > 0}.

Thus the support of µ consists on the points in the circle such that any open symmetric arc

centered at this point has positive measure. The functions f ∈ H∞ such that ∥f∥∞ ≤ 1

are called the Schur functions and the set of all such functions are denoted by S. Thus the
above theorem holds exactly for the functions in the class

S = {f ∈ H∞ | ∥f∥∞ ≤ 1}.
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3 Minimal Invariant subspaces of a universal operator

The main purpose of this chapter is to study the minimal invariant subspaces of a specific

universal operator, denoted by Cϕa , which was studied recently by Carmo and Noor in [9].

It is not hard to see (and we will prove soon) that if M is a minimal invariant subspace of

Cϕa then

M = Kf := span{f, Cϕaf, C2
ϕa
f, . . .}

for every f ∈M − {0}.
With this remark in mind it makes sense to study the spaces Kf using known properties

of the function f . This leads us to introduce the notion of eventually bounded functions

and prove the main results of the chapter. We will exhibit a class of functions for which the

claim

Kf is minimal ⇔ dim Kf = 1.

is true. In a general way these hypotheses are related with the behaviour of the function

f near to the point 1. Moreover we will show some relations between the number of zeros

of f , the dimension of the space Kf and the ISP. In the end of this section we provide a

universality criterion based on the work of Pozzi (see [35]).

3.1 Carmo-Noor Universal Operator

For each 0 < a < 1 we define the function ϕa as ϕa(z) = az+1− a for every z ∈ D. Note
that ϕa ∈ LFT (D) because

|az + 1− a| ≤ |az|+ |1− a| < a+ 1− a = 1.

A simple computation show us that the fixed points of ϕa are 1 and ∞ which means that ϕa
is of hyperbolic type. By Theorem 2.3.2 the composition operator Cϕa given by

Cϕaf = f ◦ ϕa

is a bounded linear operator in H2.

For any function f ∈ H2 we define Kf as the closure of the span of the orbit of f under

Cϕa , more precisely:

Kf := span{f, Cϕaf, C2
ϕa
f, . . .} = span{f, f ◦ ϕa, f ◦ ϕ2

a, . . .}.

This definition will play a central role from now on due to the next proposition.

Proposition 3.1.1. If f ∈ H2 then Kf is a Cϕa-invariant subspace. Moreover if M is a

minimal Cϕa-invariant subspace, then M = Kf for any f ∈M − {0}.
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Proof. The fact that Kf is a Cϕa-invariant subspace follows exactly by the same argument

that we used in item a) of Proposition 2.1.2. For the second claim, note that if f ∈M −{0}
then

{0} ⊂ span{f, f ◦ ϕa, f ◦ ϕ2
a, . . .} ⊆M

because f belongs to M , M is Cϕa-invariant and M is a subspace. Since M is closed consid-

ering the closure in the inclusions above we obtain {0} ⊂ Kf ⊆ M and then the minimality

implies Kf =M as desired. ■

Note that for all n ∈ N and z ∈ D we have

ϕna(z) = ϕn−1
a (az + 1− a)

= ϕn−2
a (a(az + 1− a) + 1− a)

= ϕn−2
a (a2z + 1− a2)

=
...

= anz + 1− an = ϕan(z).

This property is called the semigroup property and allows us to write

Kf = span{f, f ◦ ϕa, f ◦ ϕa2 , . . .}.

In 2022 Carmo and Noor generalized a famous result of Nordgren, Rosenthal andWintrobe

(see [33, Theorem 6.2]) proving the following theorem.

Theorem 3.1.2. [9, Theorem 3.1]. If ϕ ∈ LFT (D) then Cϕ−λ is universal on H2 for some

λ ∈ C if, and only if, ϕ is hyperbolic.

Moreover, it is not hard to see that for every λ ∈ C and T ∈ B(H) we have Lat(T ) =

Lat(T −λ) and thus the minimal invariant subspaces of an operator T and the translations of

T are the same. Combining this fact with Theorem 2.1.10 we obtain the following Corollary

which is crucial for the next section:

Corollary 3.1.3. Let a ∈ (0, 1) and ϕa : D → D as defined above. Then the ISP has a

positive solution if, and only if, every minimal invariant subspace of Cϕa has dimension 1.

3.2 The minimal invariant subspaces Kg

The aim of this section is to study the minimal invariant subspaces M (which are of the

form M = Kg by Proposition 3.1.1) of Cϕa , using properties of the function g. By Corollary

3.1.3 if we understand all these spaces we have the answer to the ISP.
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Our first original contribution is the result below, it says that if g has a “good” behaviour

around 1 then we have an answer in the positive direction. This theorem resembles another

theorems obtained by Matache (see [31, Theorem 2]), Gallardo-Gutiérrez and Gorkin (see

[20, Proposition 2.1]) while they work with the hyperbolic automorphisms.

Theorem 3.2.1. If g ∈ H2(D) with lim
z→1

g(z) = L ̸= 0 (z → 1 within D), then Kg contains

the constants. In particular if Kg is minimal, then g ≡ L and dim Kg = 1.

Proof. There exists a δ > 0 such that if z ∈ D and |z − 1| < δ then |g(z) − L| < 1. In

particular, for every z ∈ B(1, δ) ∩ D we obtain

|g(z)| ≤ |g(z)− L)|+ |L| < 1 + |L| =: K

As ϕan(D) = anD + 1 − an are circles with center 1 − an (converging to 1) and radius an

(converging to 0) there exists n0 ∈ N such that for all n ≥ n0 we have ϕan(D) ⊆ B(1, δ) ∩D.
So, given reiθ ∈ D we conclude that anreiθ + 1− an ∈ B(1, δ) ∩ D and so

|g ◦ ϕan(reiθ)|2 = |g(anreiθ + 1− an)|2 ≤ K2 ∀n ≥ n0.

Consequently we get

∥Cϕang∥
2 = ∥g ◦ ϕan∥2 = sup

0<r<1

1

2π

2π∫
0

|g ◦ ϕan(reiθ)|2dθ ≤ K2 ∀n ≥ n0.

This shows that the sequence (Cϕang)n∈N is bounded. Moreover, for each z ∈ D we have

anz + 1− an → 1 as n→ ∞ and then

g ◦ ϕan(z) = g(anz + 1− an) → L.

So (Cϕang)n∈N converges pointwise to L. By [13, Corollary 1.3] (Cϕang)n∈N converges weakly

to the constant function L. So L belongs to the weak closure of the convex set

span{g, Cϕag, C2
ϕag, . . .}

which is equal to the norm closure by Mazur’s Theorem (see Theorem A.0.5). So L ∈ Kg

and hence Kg = KL since L ̸= 0. ■

Remark 3.2.2. The proof above works in the same way if lim
z→1

g(z) = 0 but the conclusion

about minimality is not true, in fact the conclusion in that case is a trivial information:

0 ∈ Kg.

Every function g ∈ A(D) (where A(D) denotes the disk algebra) such that g(1) ̸= 0

satisfies the above hypothesis; thus for such functions Kg is minimal if and only if g is
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constant. Note that we can not apply the theorem for simple H2 functions like g(z) =

z4 + z3 − z2 − z1. We will see soon some ways to deal with this situation.

For now we can at least solve this problem for polynomials due to the following basic but

interesting property of Cϕa : if p is a polynomial of degree N , say p(z) =
N∑
j=0

ajz
j then

Cϕap(z) = p(az + 1− a) =
N∑
j=0

aj(az + 1− a)j

is again a polynomial of degree N . Thus the orbit of p by Cϕa , i.e, the set {p, Cϕap, C2
ϕa
p, . . .}

contains only polynomials of degreeN and consequently the setKp = span{p, Cϕap, C2
ϕa
p, . . .}

is contained in the finite dimensional space of polynomials of degree at most N . We summa-

rize this discussion in the following proposition for future citations.

Proposition 3.2.3. If a ∈ (0, 1) and p is a polynomial of degree N then Cϕap is again a

polynomial of degree N . In particular Kp is always a finite dimensional space and thus is

minimal if and only if dim Kp = 1.

Proof. Follows from the above discussion and from Remark 2.1.9. ■

Now we will focus in more general situations. In [9] the authors already had the idea that

the behaviour of g around 1 is a key point and they used the notion of radial limit at 1 to

divide the problem in three cases. Here, corroborating this intuition with Theorem 3.2.1 we

propose a similar but new division according to the behaviour of the sequence of complex

numbers (g(1− an))n∈N. More precisely, we will consider three cases:

A) g(1− an) converges to a number L ̸= 0.

B) g(1− an) converges to 0.

C) g(1− an) does not converges.

Of course this three cases covers all the possibilities. We define, for each n ∈ N, Dn as the

open disk with center 1−an and radius an, i.e, Dn := B(1−an, an) (see the picture below for a

geometric vision). We say that an analytic function f defined on D is eventually bounded

(EB) if there exists a number n0 ∈ N such that f is bounded in Dn0 (and consequently, it is

bounded in every Dn for n ≥ n0).
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{z | Re(z) = 1}

D D1 D2 D3 1

Figure 2: The disks Dn = ϕan(D) shrinking to the point 1.

To obtain our results, we begin with technical lemma.

Lemma 3.2.4. If g ∈ H2 is such that g′ is eventually bounded then∫
D
|g′(w)|2Nϕan (w)dA(w) → 0 as n→ ∞.

Proof. Let n0 ∈ N such that g′ is bounded in Dn0 . Applying Theorem 2.4.4 for f = |g′|2 and
ϕ = ϕan we obtain:∫

D

|g′(w)|2Nϕan (w)dA(w) =

∫
D

|g′(anz + 1− an)|2|ϕ′
an(z)|2 log

1

|z|
dA(z)

≤
∫
D

Ca2n log
1

|z|
dA(z) = a2nK (n ≥ n0)

where C is a constant such that |g′(anz+1− an)|2 ≤ C for all n ≥ n0 and K is the constant

given by C times the integral of log 1
|z| over D. So, if n → ∞ then a2n → 0 and we conclude

the proof. ■

Another important tool is the following family of functions: for each s ∈ C Hurst showed

in [25, Lemma 7] that the functions fs(z) := (1− z)s belong to H2 if and only if ℜ(s) > −1
2
.

For ℜ(s) > −1
2
these functions are eigenvectors of Cϕa :

Cϕafs(z) = fs ◦ ϕa(z) = fs(az + 1− a)

= (1− az − 1 + a)s

= (a(1− z))s = asfs(z).
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With this in mind, we are able to proof a central result in the section. Recall that a

sequence of complex numbers (zn)n∈N is called bounded away from zero if there exists a

constant M such that |zn| ≥M > 0 for all n ∈ N.

Theorem 3.2.5. Suppose that f = fsg for some g ∈ H2 and Re(s) ≥ 0. If g′ is eventually

bounded and there exists a subsequence of (g(1 − an))n∈N which is bounded away from zero,

then fs ∈ Kf . So, Kf is minimal, if and only if, dimKf = 1.

Proof. By hypothesis f ∈ H2 (because fs ∈ H∞) and we can choose a subsequence (g(1 −
ank))k∈N which is bounded away from zero, i.e, there exists a constant M such that |g(1 −
ank)| ≥ M > 0. As fs is an eigenvector we obtain by a direct calculation the following

relation:

Cnk
ϕa
f = Cnk

ϕa
fsg = anksfsC

nk
ϕa
g.

Using the expression obtained above, Theorem 2.4.5 and Lemma 3.2.4 we obtain:

∥∥∥∥ Cnk
ϕa
f

anksg(1− ank)
− fs

∥∥∥∥2
2

=

∥∥∥∥ fsC
nk
ϕa
g

g(1− ank)
− fs

∥∥∥∥2
2

≤ ∥fs∥2∞
∥∥∥∥Cϕank

(
g

g(1− ank)
− 1

)∥∥∥∥2
2

= 2∥fs∥2∞
∫
D

∣∣∣∣ g′(w)

g(1− ank)

∣∣∣∣2Nϕank
(w)dA(w) +

∣∣∣∣g (1− ank)

g (1− ank)
− 1

∣∣∣∣2
≤ 2∥fs∥2∞

M2

∫
D
|g′(w)|2Nϕank

(w)dA(w)
n→∞−−−→ 0.

.

This means that fs is the limit (with respect to the H2 norm) of a sequence of elements living

in span{f, Cϕaf, . . .}, i.e, fs ∈ Kf and by minimality, Kf = Kfs . We are done because fs is

an eigenvector. ■

Corollary 3.2.6. Suppose that g ∈ H2 is such that g′ is eventually bounded and there exists

a subsequence of (g(1 − an))n∈N which is bounded away from zero then 1 ∈ Kg. So, Kg is

minimal, if and only if, dim Kg = 1.

Proof. Apply the above theorem to s = 0. ■

The result above corrects an error in [9, Theorem 4.2] which rendered the conclusion

incorrect. The hypothesis of g′ being EB is in fact necessary, as the following example

demonstrates.

Example 3.2.7. Choose g(z) = ft(z) = (1− z)
2πi
log a where t = 2πi

log a
in Corollary 3.2.6. Then

g(1− an) = (an)
2πi
log a = e

2πi
log a

log an = e2πin = 1
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for all n ∈ N and in particular (g(1− an))n∈N is bounded away from zero. But for r ∈ (0, 1)

|g′(r)| =
∣∣∣∣ 2πilog a

1

r − 1
e

2πi
log a

log(1−r)
∣∣∣∣ = ∣∣∣∣ 2π

log a

∣∣∣∣ ∣∣∣∣ 1

r − 1

∣∣∣∣ r→1−−→ ∞

which shows that g′ is not EB. Then Kg = Cg because g is a Cϕa-eigenvector and 1 /∈ Kg.

As a consequence of these results, we have a partial solution from case A) and C):

Theorem 3.2.8. If g ∈ H2 belongs to case (A) or (C) defined above and g′ is EB, then Kg

is minimal if and only if dim Kg = 1.

Proof. If g belongs to case (A) then (g(1 − an))n∈N converges to a non-zero number, say

L. Then, there exists n0 ∈ N such that for every n ≥ n0, |g(1 − an) − L| < |L|
2

and then

|g(1− an)| ≥ |L|
2
> 0 for n ≥ n0. If g belongs to case (C) then the radial limit does not exist,

and in particular it is not 0. So we can find an ϵ > 0 and a subsequence (g(1− ank))k∈N such

that |g(1− ank)| ≥ ϵ > 0. The result follows by Corollary 3.2.6. ■

As the reader may have noticed, the case B), when g(1−an) → 0 is actually our problem.

However (B) (and another cases) can be solved if there is some generator g which is analytic

at 1. These was one of the main results (proved incorrectly) in [9].

Theorem 3.2.9. Suppose that g ∈ H2 is analytic at 1. So, Kg is minimal, if and only if,

dim Kg = 1.

Proof. Notice that as g is analytic at 1 then g′ is analytic at 1, so g′ is eventually bounded.

If g(1) ̸= 0 then we are in the case A) and we are done by the above theorem. Suppose

that g(1) = 0, then g(z) = (1 − z)Kh(z) in some on some open ball V around 1, where K

is multiplicity of the zero 1, h analytic at V and h(1) ̸= 0. Choose n0 ∈ N such that for

all n ≥ n0, Dn ⊂ V . Note that h′ is eventually bounded because h′ is also analytic at V .

Moreover,

g ◦ ϕan(z) = anK(1− z)Kh ◦ ϕan(z).

So h ◦ ϕan ∈ H∞ because h is bounded Dn (in particular, h ◦ ϕan ∈ H2). As the function

f = fKh ◦ ϕan0 = g◦ϕan0

an0K
satisfies the hypotheses of Theorem 3.2.5, we conclude that fK ∈

KfKh◦ϕan0
= Kg◦ϕan0

⊆ Kg. So Kg = KfK by minimality and we are done. ■

We conclude this section by considering case (B) more carefully. Even with the EB

hypothesis over g′, case (B) appears to be delicate. However if g(1− an) has a subsequence

that converges to 0 at a sufficiently slow rate, then we can still obtain a positive result.

Theorem 3.2.10. Suppose that g ∈ H2 is such that g′ is EB and there exists 0 < ϵ < 1

and a constant L > 0 such that |g(1− ank)| ≥ Lank(1−ϵ) for some subsequence (nk)k∈N. Then

1 ∈ Kg, and Kg is minimal if and only if dim Kg = 1.
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Proof. The computations are very similar to the last result:∥∥∥∥ Cnk
ϕa
g

g(1− ank)
− 1

∥∥∥∥2
2

=

∥∥∥∥ Cnk
ϕa
g

g(1− ank)
− 1

∥∥∥∥2
2

=

∥∥∥∥Cϕank

(
g

g(1− ank)
− 1

)∥∥∥∥2
2

= 2

∫
D

∣∣∣∣ g′(w)

g(1− ank)

∣∣∣∣2Nϕank
(w)dA(w) +

∣∣∣∣g (1− ank)

g (1− ank)
− 1

∣∣∣∣2
= 2

∫
D

|g′(w)|2

|g(1− ank)|2
Nϕank

(w)dA(w)

= 2

∫
D

|g′(ankw + 1− ank)|2

|g(1− ank)|2
|ϕ′
ank (w)|2 log

1

|w|
dA(w)

≤ 2

∫
D

C2 1

L2a2nka−2nkϵ
a2nk log

1

|w|
dA(w)

= a2nkϵM
k→∞−−−→ 0

where C is a upper bound for the values of g′ in some open ball Dnk0
and M is a constant.

This proves the result. ■

To obtain a complete solution for case (B) under the EB hypothesis over g′, it is natural

to ask what happens if g(1− an) → 0 faster than required by Theorem 3.2.10. For instance

if

|g(1− an)| ≤ a
n
2

then the next result shows that the series
∞∑
n=1

Cϕang converges in H2.

Proposition 3.2.11. Let g ∈ H2 with g′ an EB function. Then h :=
∞∑
n=1

Cϕang converges

absolutely if, and only if,
∞∑
n=1

|g(1− an)| converges in C. Moreover h ∈ Kg.

Proof. Suppose
∞∑
n=1

|g(1− an)| converges in C. Using Theorems 2.4.5 and 2.4.4 we conclude

that for all n ≥ n0 (where Dn0 is a ball in which g′ is bounded)

∥Cϕang∥
2 =

∫
D

|g′(w)|2Nϕan (w)dA(w) + |g(1− an)|2

=

∫
D

|g′(anz + 1− an)|2|ϕ′
an(z)|2 log

1

|z|
dA(z) + |g(1− an)|2

≤ a2nL+ |g(1− an)|2
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where L is a positive constant. So

∥Cϕang∥ ≤
√
a2nL+ |g(1− an)|2 ≤ an

√
L+ |g(1− an)| for n ≥ n0.

Since a < 1 and
∞∑
n=1

|g(1− an)| <∞, the comparison test implies

∞∑
n=1

∥Cϕang∥ <∞.

The reciprocal follows from

∥Cϕang∥
2 =

∫
D

|g′(w)|2Nϕan (w)dA(w) + |g(1− an)|2 ≥ |g(1− an)|2

and by the comparison test again. ■

Under the hypotheses of Proposition 3.2.11 if we define hk :=
∑∞

n=k Cϕang, then h ∈ H2

obviously implies all hk ∈ H2 for k ≥ 1. In this case, if Kg is a minimal invariant subspace

for Cϕa then we must have Kg = Khk for all k ∈ N. Notice that if some hl were independent

of the rest (say hl /∈ span{hl+1, hl+2, . . .}), then Khl would properly contain Khk for k > l

and in particular Kg can not be minimal. This leads us to conjecture that

If g ∈ H2 and
∞∑
n=1

Cϕang ∈ H2, then Kg is minimal if and only if g is a Cϕa-eigenvector.

3.3 The role of Z(f)

In this section we present some results showing how the cardinality of the zero set of f

affects the dimension of Kf . The basic idea is that the shrinking property of the orbits allows

us to consider the behaviour of the functions in smaller disks. We will use the notation Z(f)

to denote the set of zeros of f in D and by |Z(f)| the cardinality of this set.

Proposition 3.3.1. If 0 < |Z(f)| <∞ then dim Kf ≥ 2.

Proof. By the hypothesis of finite zeros, we can choose a number 0 < K < 1 such that f is

zero-free in the annulus D − B(0, K) (for example, K := max{|z| | z ∈ Z(f)}). Moreover,

we can choose n0 ∈ N such that for every n ≥ n0, f ◦ ϕan(D) ⊆ D−B(0, K).



51

D

K

0

B(0, K)

f ◦ ϕan0 (D)

Figure 3: Choosing K and n0.

If n ≥ n0 we claim that {f, f ◦ ϕan} is a linearly independent set. In fact, consider any

scalars α, β ∈ C such that αf + βf ◦ ϕan = 0. If z0 ∈ Z(f) we have

βf ◦ ϕan(z0) = αf(z0) + βf ◦ ϕan(z0) = 0

and since f ◦ ϕan is zero-free, we conclude that β = 0 and, consequently, α = 0. ■

This result has the following interesting consequence: If the ISP is true, then every Kf

with f satisfying the above hypotheses is necessarily non-minimal. On the other hand if Kf

is minimal for such an f , then the ISP is false. Next we study the cases when |Z(f)| = 0 or

|Z(f)| = ∞, then Kf can be either minimal or not. The first case is more simple:

Example 3.3.2. Consider g1(z) = z2 + 1 and g2(z) = 1− z. Both functions are zero-free in

the disk; moreover Kg2 is minimal because g2 is an eigenvector and Kg1 is not minimal due

to Theorem 3.2.1 or Theorem 3.2.9.

For the case when |Z(f)| = ∞ we will use the following result:

Proposition 3.3.3. Let w ∈ D. If f(w) ̸= 0 but there exists n0 ∈ N such that for all n ≥ n0

we have f(anw + 1− an) = 0 then Kf is not minimal.

Proof. In fact, if Kf is minimal then Kf = Kf◦ϕan0
and consequently (Kf )

⊥ = (Kf◦ϕan0
)⊥.

Considering the reproducing kernel κw we observe that κw ∈ (Kf◦ϕan0
)⊥ since f(anw + 1 −

an) = 0 (n ≥ n0) but κw /∈ (Kf )
⊥ because f(w) ̸= 0. This is a contradiction. ■

Example 3.3.4. The sequence {ϕan(0)}n≥2 = (1 − an)n≥2 is a Blaschke sequence because
∞∑
n=2

|1− (1− an)| =
∞∑
n=2

an <∞. Consider B the Blaschke product associated to this sequence

(in particular B has infinitely many zeros). We can write B as
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B(z) =
∞∏
n=2

(
1− an − z

1− (1− an)z

)
.

Note that B(0) ̸= 0 but B(an0 + 1 − an) = B(1 − an) = 0 for n ≥ 2, so by the previous

remark KB is not minimal.

The only remaining case is an example of some f ∈ H2 such that Kf minimal and

|Z(f)| = ∞.

Example 3.3.5. Let a = 1
2
. Consider the function f = e0 + fs where s =

2πi
log a

and e0 is the

constant function 1. Since

Cϕa(e0 + fs) = e0 + asfs = e0 + a
2πi
log afs = e0 + fs.

it follows that e0 + fs is a Cϕa eigenvector. So Kf is minimal. Moreover, note that

(e0 + fs)(1−
√
2) = 1 + fs(1−

√
2) = 1 + e

2πi
−2 log 2

log 2 = 1 + e−πi = 0.

Now, consider the sequence {ϕan(1−
√
2)}n∈N ⊆ D. Then

(e0 + fs)(ϕan(1−
√
2)) = Cn

ϕa(e0 + fs)(1−
√
2) = (e0 + fs)(1−

√
2) = 0

and thus we conclude that f has infinitely many zeros in D.

The next result of this section strengthens Proposition 3.3.1 and shows we can always

find a function in Kf that is orthogonal to another certain functions in Kf .

Proposition 3.3.6. Suppose that 0 < |Z(f)| <∞ and let z0 ∈ Z(f). There exists a non-zero

g ∈ Kf such that ⟨g, h⟩ = 0 for every h ∈ Kf such that h(z0) = 0.

Proof. Let z0 ∈ D a zero of f and consider the continuous map Ez0 : Kf → C which is

exactly the restriction of the evaluation map at z0 defined on H2. Note that Ez0 is surjective

because there exists n ≥ n0 such that Cn
ϕa
f(z0) ̸= 0. So,

Kf ⊖KerEz0
≃ Kf

KerEz0

≃ C.

which implies that Kf ⊖KerEz0
is a one-dimensional space. Let g ∈ Kf ⊖KerEz0

a non-null

element. Thus ⟨g, h⟩ = 0 whenever h ∈ Kf is such that h(z0) = 0.

■

We end this chapter with a result that highlights a connection between cyclicity and

universality. We note that the best known examples of universal operators are adjoints of
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analytic Toeplitz operators Tϕf = ϕf for ϕ ∈ H∞, f ∈ H2 or those that are similar to them

(see [12] and [20]), and all such coanalytic Toeplitz operators are cyclic (see [43]).

Our universality result is based in the Caradus-Pozzi criteria and give a direction for a

future work (see the discussion after the next theorem). The definition of a cyclic operator

will appear in the next chapter (see Definition 4.1.1) but we will use it now.

Theorem 3.3.7. If T ∈ B(H) is a cyclic operator with closed range and with infinite di-

mensional kernel then T is universal.

Proof. By the Caradus-Pozzi criterion (Theorem 2.1.5) it is enough to prove that T (H) has

finite codimension. In fact for any cyclic T the dimension of T (H)⊥ is either 0 or 1. Although

this is known to experts, we provide a proof for the sake of completeness. Let f be a cyclic

vector for T ∈ B(H) and define N := spann≥1{T nf}. Let P : H → N⊥ be the orthogonal

projection onto N⊥. Now let g be any element in T (H)⊥. Then we have ⟨g, T nf⟩ = 0

for n ≥ 1 and consequently g ∈ N⊥. Since f is a cyclic vector, we can find a sequence

gn ∈ spann≥0{T nf} such that gn → g. If we write gn = αnf+ tn where the αn are scalars and

tn ∈ N , then we obtain αnf + tn → g. Applying P to this we conclude that αnPf → Pg = g

and hence g = αPf for some α ∈ C. Since g is an arbitrary element of T (H)⊥, the latter

space is at most one-dimensional. Finally codim T (H) = dim T (H)⊥ ≤ 1 because T has

closed range and the result follows. ■

Recall that if ϕ ∈ LFT (D) is hyperbolic then Cϕ−λ is universal for all eigenvalues λ. The

classical proof of the automorphic case (see [33]) and the recent proof of the non-automorphic

case (see [9]) are both elaborate and involved. An elegant proof of the automorphic case was

found recently by Cowen and Gallardo-Gutiérrez (see [12]). Theorem 3.3.7 suggests a possible

approach to simplify both proofs: this approach is based on showing that the range of Cϕ−λ
is closed for some eigenvalue λ, rather than proving surjectivity. It is known that when

ϕ ∈ LFT (D) is a hyperbolic map then the composition operator Cϕ is hypercyclic, and in

particular cyclic (see [1, Theorem 1.47]). Also for every λ ∈ C and bounded linear operator

T we have

span{f, Tf, T 2f, . . .} = span{f, (T − λ)f, (T − λ)2f, . . .}.

It follows that T is cyclic if and only if T −λ is cyclic. Thus for all λ ∈ C the operator Cϕ−λ
is cyclic whenever ϕ is hyperbolic. Moreover for λ in the point spectrum of ϕ, the kernel of

Cϕ−λ is infinite dimensional ([13, Lemma 7.24 and Theorem 7.4]). Therefore the closure of

the range of Cϕ − λ gives universality by Theorem 3.3.7. For now, we do not have a simple

proof of this fact.
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4 About some types of invariant subspaces of Cϕa

Recall from the last chapter that the minimal elements of Lat(Cϕa) are related with the

Invariant Subspace Problem. The main goal of this chapter is to understand which Model

and Beurling type spaces are invariant under Cϕa , i.e, to understand which of these spaces

are in Lat(Cϕa). Moreover, we will see some interesting connections with another topics

including linear dynamics and the Cesàro operator that are not directly related with the ISP.

4.1 Some aspects about the dynamic of Cϕa

In this section we begin by proving some dynamical properties of the operator Cϕa . One

of the most classical definitions in linear dynamics is the following:

Definition 4.1.1. Let T be a bounded linear operator in a Banach space X. We say that:

• T is hypercyclic if there exists x ∈ X such that Orb(x, T ) := {x, Tx, T 2x, . . .} is dense

in X. In this case, x is called a hypercyclic vector for T .

• T is cyclic if there exists x ∈ X such that span{x, Tx, T 2x, . . .} is dense in X. In this

case, x is called a cyclic vector for T .

We commented in the end of the last section that the composition operator Cϕa is a

hypercyclic operator (see [1, Theorem 1.47]). It is interesting that the hypothesis that we

used during the last section excludes the hypercyclic possibility, more precisely:

Proposition 4.1.2. Let f ∈ H2 be a hypercyclic vector for Cϕa where a ∈ (0, 1).

• If n ≥ 1 then f (n) (the n-th derivative of f) is not eventually bounded (EB).

• lim
n→∞

f(1− an) does not exist. In particular, f is not analytic at 1.

Proof. • Let f be a hypercyclic vector for Cϕa . Suppose on the contrary that f (n) is EB

for some n ≥ 1 and consider en(z) = zn. Then there exists a subsequence (Ckl
ϕa
f)l∈N

such that Ckl
ϕa
f → en as l → ∞. Note that for every g ∈ H2 we have ⟨g, en⟩ = g(n)(0)

n!
,

so

⟨Ckl
ϕa
f, en⟩ =

(
Cϕ

akl
f
)(n)

(0)

n!
=

(akl)nf (n) ◦ ϕakl (0)
n!

k→∞−−−→ 0

because f (n) is EB and (akl)n = (an)kl → 0 as l → ∞. On the other hand

⟨Ckl
ϕa
f, en⟩ → ⟨en, en⟩ = ∥en∥2.

Thus en = 0 which is absurd. This contradiction establishes the result.
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• We will argue by contradiction again. Suppose that lim
n→∞

f(1 − an) = L and pick a

function g ∈ H2 such that g(0) ̸= L. As f is hypercyclic there exists a subsequence

(Cnk
ϕa
f)k∈N such that Cnk

ϕa
f → g. Since H2 convergence implies pointwise convergence

we obtain

f(1− ank) = (Cnk
ϕa
f)(0) → g(0).

This is a contradiction.

■

Remark 4.1.3. Note that the proof of the second item above shows us that any hypercyclic

vector f has the property that (f(1 − an))n∈N is a sequence that contains subsequences con-

verging to any complex number. This means that {f(1− a), f(1− a2), . . .} = C. Until now,

we are not able to give a concrete example of a hypercyclic vector; however, this seems to be

a general difficult problem in linear dynamics as commented in [1, p. 264].

In the above theorem we saw some hypotheses that are not compatible with hypercyclicity,

we can ask now if the same is true when we change hypercyclicity by cyclicity. The answer

is no and this can be viewed as a consequence of the characterization of when a reproducing

kernel is a cyclic vector. This will be our next theorem.

There is a classical way to prove that some vector is cyclic: by Proposition A.0.1: f ∈ H2

is cyclic (i.e, Kf = H2) if and only if {f, f ◦ ϕa, f ◦ ϕa2 , . . .}⊥ = {0}. We will use this idea

many times without explicit remarks.

Theorem 4.1.4. Let κα ∈ H2 be a reproducing kernel (α ∈ D). Then κα is a cyclic vector

for Cϕa if and only if α ̸= 0.

Proof. If κα is cyclic then α ̸= 0, otherwise κα = κ0 = 1 and Kκα is the space of constants

functions. For the other direction, let κα with α ̸= 0. Note that 1 − α + αa ̸= 0, otherwise

1 = α(1− a) and this is not possible because α, (1− a) ∈ D. Thus

κα ◦ ϕa(z) =
1

1− α(az + 1− a)
=

1

1− α + αa− αaz
=

1

1− α + αa

(
1

1− αaz
1−α+αa

)
.

We observe that a function of the form h(z) = 1
1−yz where y ∈ C belongs to H2 if, and only

if, y ∈ D; so αa
1−α+αa ∈ D. Consequently, for every a ∈ (0, 1) we have

κα ◦ ϕa =
1

1− α + αa
κ αa

1−α+αa
.

Now let f ∈ H2 such that ⟨f, κα ◦ ϕan⟩ = 0. Then f( αan

1−α+αan ) = 0 for every n ∈ N. As the

sequence { αan

1−α+αan}n∈N is a sequence of distinct points (because α ̸= 0), αan

1−α+αan → 0 and f

is analytic at 0 we conclude that f = 0. Thus Kκα = H2. ■
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Every reproducing kernel κw is analytic at a neighborhood of D. In particular, the same

is true for all derivatives of κw. As a consequence, κ
(l)
w is eventually bounded for all l ∈ N

and κw(1 − an) → κw(1) =
1

1−w as n → ∞. So, as promised, this show us that Proposition

4.1.2 is not more true when we change hypercyclic vectors by cyclic vectors. Another class

of functions that are cyclic vectors of Cϕa and are analytic in a neighborhood of D are the

following Blaschke products.

Theorem 4.1.5. Let B(z) = z1−z
1−z1z where z1 ∈ D− {0}. Then B is a cyclic vector of Cϕa.

Proof. We will argue as in the above proof. Let f ∈ H2 such that ⟨f,B ◦ ϕan⟩ = 0 for all

n ∈ N. Our objective is to prove that f = 0. First, note that

B ◦ ϕan(z) =
z1 − anz − 1 + an

1− z1(anz + 1− an)

=
z1 − 1 + an

1− z1anz − z1 + z1an
− anz

1− z1anz − z1 + z1an

=
z1 − 1 + an

1− z1 + anz1

(
1

1− z1anz
1−z1+anz1

)
− an

1− z1 + anz1

(
z

1− z1anz
1−z1+anz1

)

Let us define for each n ∈ N the number ηa,n := z1an

1−z1+anz1 for notation reasons. By the proof

of the above theorem, this is an element of D and then

B ◦ ϕan =
z1 − 1 + an

1− z1 + anz1
κηa,n − an

1− z1 + anz1
Mzκηa,n

where Mz denotes the shift operator (multiplication by z) in H2. Thus

0 = ⟨f,B ◦ ϕan⟩ =
〈
f,

z1 − 1 + an

1− z1 + anz1
κηa,n

〉
−
〈
f,

an

1− z1 + anz1
Mzκηa,n

〉
=

z1 − 1 + an

1− z1 + anz1

〈
f, κηa,n

〉
− an

1− z1 + anz1

〈
f − f(0)

z
, κηa,n

〉
=

z1 − 1 + an

1− z1 + anz1
f(ηa,n)−

an

1− z1 + anz1

(
f − f(0)

z

)
(ηa,n).

=
z1 − 1 + an

1− z1 + anz1
f(ηa,n)−

an

1− z1 + anz1

(
f(ηa,n)− f(0)

z1an

1−z1+anz1

)
.

=
z1 − 1 + an

1− z1 + anz1
f(ηa,n)−

1

z1
(f(ηa,n)− f(0)) (⋆)

where we used that M∗
z (g) =

g−g(0)
z

for every g ∈ H2. Now, note that lim
n→∞

ηa,n = 0. So, if we

let n→ ∞ in the above equality we obtain:
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0 = lim
n→∞

(
z1 − 1 + an

1− z1 + anz1
f(ηa,n)−

1

z1
(f(ηa,n)− f(0))

)
=

(
z1 − 1

1− z1

)
f(0)

because f is in particular continuous at 0. Then f(0) = 0 and by (⋆)

0 =

(
z1 − 1 + an

1− z1 + anz1
− 1

z1

)
f(ηa,n) ⇒

(
z1 − 1 + an

1− z1 + anz1

)
f(ηa,n) =

1

z1
f(ηa,n)

for each n ∈ N which implies f(ηa,n) = 0 for at least infinitely many numbers n ∈ N because(
z1−1+an

1−z1+anz1

)
n∈N

converges to a number of modulus 1 and the modulus of 1
z1

is greater than

1. Then f is null in a sequence of distincts points that goes to 0. The analicity of f at 0 is

enough to conclude that f = 0. We are done. ■

Remark 4.1.6. The above theorem shows a difference between the non-automorphic and the

automorphic hyperbolic case. It was shown in [19, Proposition 3.4] that no finite Blaschke

product can be a cyclic vector of a composition operator induced by a hyperbolic automorphism.

Moreover, note that hypotheses of the above two theorems excludes exactly the functions 1

and −z, respectively. These vectors are never cyclic due to Proposition 3.2.3.

The result above is not more true for general Blaschke products as the following example

show us.

Example 4.1.7. Consider the sequence (1 − an)n∈N; note that this is a Blaschke sequence

because
∞∑
n=0

1 − |1 − an| =
∞∑
n=0

an < ∞. So the Blaschke product whose zeros are 0 (with

multiplicity one) and (1− an)n∈N is well defined and we call it B.

Consider the constant function 1 = κ0. Note that ⟨B, κ0⟩ = B(0) = 0 and for every

natural number n we have

⟨B ◦ ϕan , κ0⟩ = B ◦ ϕan(0) = B(1− an) = 0

Thus B is not a cyclic vector because κ0 ∈ {B,B ◦ ϕa, . . .}⊥.

4.2 Invariant Model spaces

In this section we will characterize which Model spaces are invariant under Cϕa . A first

step in this direction should be an example of a Model space that is invariant:

Example 4.2.1. For all n ∈ N0 let en(z) = zn and consider the model space (enH
2)⊥. If

n = 0, (enH
2)⊥ = {0} which is of course Cϕa-invariant. If n ≥ 1 we claim that (enH

2)⊥ is

the space of polynomials of degree at most n− 1: in fact, let p(z) = a0 + . . .+ an−1z
n−1 and

consider eng ∈ enH
2. Thus en(z)g(z) = b0z

n + b1z
n+1 + . . . for certain scalars and we see

that ⟨p, eng⟩ = 0 and therefore p ∈ (enH
2)⊥. This show us one inclusion, the other inclusion
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is true because if g ∈ (enH
2)⊥ then ⟨g, em⟩ = 0 for all m ≥ n by considering the products

enel for l ≥ 0. By Proposition 3.2.3 whenever p is a polynomial Cϕa(p) is again a polynomial

with the same degree of p; thus for every n ∈ N0 (enH
2)⊥ is Cϕa-invariant.

Despite the simplicity of this example we will show in the next pages that there are no

model spaces of the form (ΘH2)⊥ that are invariant subspaces of Cϕa unless Θ = en for

some n ∈ N0. To obtain this conclusion we will need two recent results due to S. Bose, P.

Muthukumar and J. Sarkar.

Theorem 4.2.2. [32, Theorem 2.1] Let Θ be an inner function and φ be a holomorphic

self-map of D. The following are equivalent:

1. ΘH2 ∈ Lat(Cφ).

2.
Θ ◦ φ
Θ

∈ S (The Schur class).

3.
Θ ◦ φ
Θ

∈ H∞.

4.
Θ ◦ φ
Θ

∈ H2.

Theorem 4.2.3. [32, Theorem 4.3] Let Θ be an inner function and let φ(z) = az+ b, a ̸= 0.

Suppose σ(z) = az
1−bz , z ∈ D. The following are equivalent:

1. (ΘH2)⊥ ∈ Lat(Cφ).

2.
Θ ◦ σ
Θ

∈ H∞.

3. ΘH2 ∈ Lat(Cσ).

The idea of the next pages is to apply these general theorems and to use the concrete

symbol that we have to obtain the results. We proceed with the following lemma.

Lemma 4.2.4. Let a ∈ (0, 1). Then for all θ ∈ (0, 2π]∣∣∣∣ aeiθ

1− eiθ + aeiθ

∣∣∣∣ ≤ 1

and if ∣∣∣∣ aeiθ

1− eiθ + aeiθ

∣∣∣∣ = 1

for some θ ∈ (0, 2π] then eiθ = 1.
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Proof. We can write eiθ = x + iy with x2 + y2 = 1. A direct computation show us that the

above inequality is true if, and only if,

|a|2 ≤ |1− eiθ + aeiθ|2 = |1− x− iy + ax+ aiy|2 = (1− x+ ax)2 + (y(a− 1))2.

Computing the right site we obtain:

(1− x+ ax)2 + (y(a− 1))2 = 1− 2x+ x2 + 2ax− 2ax2 + a2x2 + y2a2 − 2ay2 + y2

x2+y2=1
= 2− 2x+ 2ax− 2a+ a2.

Thus the inequality is true if, and only if,

a2 ≤ 2− 2x+ 2ax− 2a+ a2 ⇔ 0 ≤ 1− x+ ax− a⇔ (1− x)(1− a) ≥ 0.

As (1− a) > 0 and (1− x) ≥ 0 the first claim is true. For the second claim, note that this is

equivalent to a2 = 2− 2x+ 2ax− 2a+ a2, i.e, equivalent to

(1− x)(1− a) = 0

and this implies x = 1 and consequently y = 0. We are done. ■

The next theorem show us that if (ΘH2)⊥ is invariant then the only possible zero of Θ is

0.

Theorem 4.2.5. Let Θ be an inner function. If (ΘH2)⊥ is Cϕa-invariant then Θ(z1) ̸= 0

for all z1 ∈ D− {0}.

Proof. For the sake of contradiction, suppose that Θ(z1) = 0 for some z1 ∈ D− {0}. Thus

⟨Θf, κz1⟩ = Θ(z1)f(z1) = 0 ∀f ∈ H2

which implies κz1 ∈ (ΘH2)⊥. By hypothesis, this is a Cϕa-invariant subspace, so Kκz1
⊆

(ΘH2)⊥. By Lemma 4.1.4 κz1 is a cyclic vector (because z1 ̸= 0) and thus H2 = (ΘH2)⊥

which implies {0} = ΘH2. So Θ is the zero function which give us a contradiction. We

conclude that Θ does not have zeros in D−{0} as desired. The second part follows from the

Canonical Factorization Theorem (Theorem 2.5.8). ■

By the above Theorem the only possible inner functions Θ such that (ΘH2)⊥ is invariant

have the form Θ(z) = λznS(z). The next theorem analyzes the inner singular case.

Theorem 4.2.6. Let M = (ΘH2)⊥ be a model space where Θ is a singular inner function.

Then M is not Cϕa-invariant.
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Proof. Suppose that M = (ΘH2)⊥ is Cϕa-invariant, we will arrive at a contradiction. Con-

sider the function σ(z) = az
1−(1−a)z which is an analytic self map of D. Note that

(Θ ◦ σ)∗(eiθ) = lim
r→1−

Θ ◦ σ(reiθ) = lim
r→1−

Θ(σ(reiθ)) = lim
r→1−

Θ

(
areiθ

1− (1− a)reiθ

)
.

If θ ̸= 2π then by Lemma 4.2.4 we have
(

aeiθ

1−(1−a)eiθ

)
∈ D. Using that Θ is continuous in D

and |Θ(w)| < 1 for all w ∈ D because Θ is nonconstant (see [30, Theorem 2.2.10]) we obtain:

|(Θ ◦ σ)∗(eiθ)| a.e=
∣∣∣∣Θ( aeiθ

1− (1− a)eiθ

)∣∣∣∣ a.e< 1.

By Theorem 4.2.3 M is invariant under Cϕa if, and only if, ΘH2 is invariant under Cσ. Thus

there exists g ∈ H2 such that

Θ ◦ σ = Cσ(Θ) = Θg =⇒ Θ(σ(z)) = Θ(z)g(z) ∀z ∈ D. (1)

Passing to the radial limits and considering the modulus we conclude that

1
a.e
> |(Θ ◦ σ)∗(eiθ)| a.e= |g∗(eiθ)|.

As g ∈ H2 this implies that |g(z)| ≤ 1 for every z ∈ D see for example ([30, Corollary 1.1.24]).

But, if we consider z = 0 in (1) we conclude that

Θ(0) = Θ(σ(0)) = Θ(0)g(0)

and thus g(0) = 1 because Θ is inner singular, in particular, zero-free. So by the maximum

module principle, g is constant and g ≡ g(0) = 1. Looking at (1) again we conclude that

Cσ(Θ) = Θ and then Θ is a fixed point. But considering the equality

Θ ◦ σ = Cσ(Θ) = Θ,

passing to radial limits and using the estimates proved above we obtain

1
a.e
> |(Θ ◦ σ)∗(eiθ)| a.e= |Θ∗(eiθ)| a.e= 1

which is a contradiction. So Θ is constant and we arrived at a contradiction. ■

Corollary 4.2.7. Let Θ be an inner function. If Θ(z) = λznS(z) for some S inner singular

and n ≥ 1 then (ΘH2)⊥ is not Cϕa-invariant.
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Proof. By Theorem 4.2.3 (ΘH2)⊥ is invariant under Cϕa if and only if Θ◦σ
Θ

∈ H∞ where

σ(z) = az
1−(1−a)z . Note that

Θ ◦ σ(z)
Θ(z)

=
anznS ◦ σ(z)

(1− (1− a)z)nznS(z)
=

anS ◦ σ(z)
(1− (1− a)z)nS(z)

.

If this function belongs to H∞ then multiplying by (1−(1−a)z)n
an

which belongs to H∞ we

conclude that S◦σ
S

∈ H∞. Thus (SH2)⊥ is Cϕa-invariant using again Theorem 4.2.3. This

contradicts Theorem 4.2.6. ■

We conclude that the singular inner part cannot appear in the decomposition of the inner

function Θ above. Moreover, for any scalar λ ̸= 0 the spaces λenH
2 and enH

2 are the same;

thus Example 4.2.1 and the work above implies the following consequence which is the main

result of this section:

Corollary 4.2.8. The only model spaces that are invariant under Cϕa are of the form

(enH
2)⊥ for some n ∈ N0.

In what follows we will show some corollaries of our results. Since a model space is a

closed subspace of a reproducing kernel Hilbert space (RKHS), (ΘH2)⊥ is itself a RKHS and

the reproducing kernels are given by the functions

κΘλ (z) =
1−Θ(λ)Θ(z)

1− λz

where λ is some fixed element in D and z ∈ D (see [18, Corollary 14.12]).

Proposition 4.2.9. If Θ is inner and non constant and n ≥ 1 the spaces en(ΘH
2)⊥ are not

Cϕa-invariant.

Proof. Suppose that this space is invariant and let eng ∈ en(ΘH
2)⊥ where g ∈ (ΘH2)⊥; then

Cϕa(eng) = enG for some G ∈ (ΘH2)⊥. This means that

(az + 1− a)ng ◦ ϕa(z) = znG(z) ∀z ∈ D.

Evaluating at 0 we conclude that g(1− a) = 0. But there are functions in (ΘH2)⊥ that does

not satisfies this condition: the reproducing kernel κΘ0 given by κΘ0 (z) = 1−Θ(0)Θ(z) is such

that κΘ0 (1− a) = 1−Θ(0)Θ(1− a) ̸= 0 (because Θ is inner and non constant, which implies

that Θ(0) and Θ(1− a) are in D). ■

Corollary 4.2.10. If S is inner singular and n ∈ N then (enSH
2)⊥ is the direct sum of an

invariant and a non-invariant Cϕa-subspace.

Proof. It is known that

(enSH
2)⊥ = (enH

2)⊥ ⊕ en(SH
2)⊥
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(see for example [18, Lemma 14.6]) and the result follows from the above proposition and

Example 4.2.1. ■

To finish this section, we will present a consequence involving universality. Since the

operator Cϕa has some universal translates, the minimal elements of Lat Cϕa are specially

interesting because they are related with the ISP as we commented in the introduction. The

next corollary show us that if some minimal invariant subspace is a model space, we have a

positive answer related with the ISP.

Corollary 4.2.11. Suppose that Kf is minimal. If Kf is a model space, then dim Kf = 1.

Proof. It is clear that Kf = (enH
2)⊥ for some n ≥ 1 due to Corollary 4.2.8. The space

Kf = (enH
2)⊥ is finite dimensional and thus Remark 2.1.9 implies the result. ■

A more general question inspired by the above corollary is what happens if some minimal

invariant subspace Kf contains a function g ̸= 0 that belongs to some model space. In this

case, of course Kg = Kf . We mention here a result that answer part of this question.

Proposition 4.2.12. Suppose that Θ is a nonconstant inner function such that 1 /∈ σ(Θ)

and let f ∈ (ΘH2)⊥. If Kf is minimal, then dim Kf = 1.

Proof. It is known that each function f ∈ (ΘH2)⊥ has an analytic continuation across the

point 1 because 1 ∈ T − σ(Θ) (see [18], Lemma 14.27). The result follows from Theorem

3.2.9. ■

4.3 Invariant Beurling type spaces

If Θ is a zero free inner function then Θ = λSµ where λ is a unimodular constant and

Sµ is a singular inner function. In this case, by Theorem 2.5.12 we conclude that σ(Θ) =

supp(µ) ⊆ T. If supp(µ) has only one point ξ0 ∈ T then

Sµ(z) = e
−K

(
ξ0+z
ξ0−z

)

for some K > 0 (see Example 2.5.3). The function above is called the atomic singular

inner function with atom ξ0. Our aim in the next pages is to clarify when a Beurling type

space is invariant under Cϕa and the atomic inner function will play a role in this context.

When the inner function is a Blaschke product, a recent characterization using multiplicity

of zeros was proved in [3].

Theorem 4.3.1 ([3], Corollary 2.4). Let B be a Blaschke product whose set of zeros is

denoted by Z(B) and let ϕ be an analytic self-map of D. Then the following statements are

equivalent:
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• BH2 is Cϕ-invariant.

• multB(w) ≤ multB◦ϕ(w) for every w ∈ Z(B).

Consider for example the Blaschke product formed by the (simple) zeros (1 − a2n)n∈N.

Every w ∈ Z(B) has multiplicity equal to 1 and B ◦ ϕa2(1 − a2n) = B(1 − a4n) = 0. This

means that the zeros of B are all zeros of B ◦ ϕa2 which implies by the above Theorem that

BH2 is Cϕa2 -invariant. Moreover, note that B ◦ ϕa(1− a2) = B(1− a3) ̸= 0 and thus using

again the above theorem we conclude that BH2 is not Cϕa-invariant. We summarize this in

the following example.

Example 4.3.2. The Blaschke product B formed by the zeros (1 − a2n)n∈N = (1 − a2, 1 −
a4, 1 − a6, . . .) all with multiplicity 1 is such that BH2 a Cϕa2 -invariant subspace but is not

Cϕa-invariant.

The above example can be adapted to orbits starting in any point: let z0 ∈ D and let B

be the Blaschke product formed by the simple zeros (z0, az0 + 1− a, a2z0 + 1− a2, . . .). The

space BH2 is Cϕa-invariant because B ◦ ϕa(anz0 +1− an) = B(an+1z0 +1− an+1) = 0 for all

n ∈ N0. This basic fact helps us to obtain the following result:

Corollary 4.3.3. Let Θ be an inner function such that ΘH2 is Cϕa-invariant. Then there

exists an inner function Υ such that {0} ⊂ ΥH2 ⊂ ΘH2 and ΥH2 is also Cϕa-invariant. In

particular, no minimal invariant subspace of Cϕa can be a Beurling type space.

Proof. Let z0 ∈ D be any point and consider the Blaschke product B formed by the zeros

(z0, az0 + 1 − a, a2z0 + 1 − a2, . . .). By the above discussion BH2 is Cϕa-invariant. Define

Υ = BΘ, of course {0} ⊂ ΥH2 ⊂ ΘH2 and Υ is inner.

To prove that ΥH2 is Cϕa-invariant we argue as follows: by Theorem 4.2.2 we have
B◦ϕa
B

∈ S ⊆ H∞. Moreover, if Υg = BΘg ∈ ΥH2 then

(B ◦ ϕa)
B

B(Θ ◦ ϕa)(g ◦ ϕa) =
(B ◦ ϕa)

B
BΘg2 = BΘ

(B ◦ ϕa)
B

g2 = Υh.

where h ∈ H2. Thus Cϕa(Υg) = Υh ∈ ΥH2 and we are done. The last claim follows directly

by the definition of minimality.

■

Going back to the general question of when a Beurling type space can be Cϕa-invariant

we present our main result of this section. To prove item 2) below we follow an idea that

appears in [22, Chapter VII] for which we give the credit.

Theorem 4.3.4. Let Θ be a non constant inner function and consider the Beurling type

space ΘH2. If ΘH2 is Cϕa- invariant, then:

1. 1 ∈ σ(Θ).
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2. If 1 is not a cluster point for the zeros of Θ, then σ(Θ) ∩ S1 = {1} and 1 ∈ supp(µ),

where µ is the singular measure associated with Θ.

Proof. 1. Suppose by contradiction that 1 /∈ σ(Θ). By Theorem 4.2.2 ΘH2 is Cϕa-invariant

if, and only if,

Θ ◦ ϕa
Θ

∈ S (⋆)

where S = {f ∈ H∞ | ∥f∥∞ ≤ 1}. Since 1 /∈ σ(Θ) we know, by the definition of

ρ(Θ), that Θ has an analytic continuation across some open arc I in T with 1 ∈ I and

|Θ(w)| = 1 for all w ∈ I. Now, consider the sequence (1− an)n∈N = {ϕan(0)}n∈N. Note
that there exists n0 ∈ N such that for every n ≥ n0, we have |Θ(1−an)| ≥ 1

2
, otherwise

we conclude that for some subsequence (1−ank) we have 1
2
≥ |Θ(1−ank)| → |Θ(1)| = 1

by continuity and this is a contradiction. So, for n ≥ n0 the condition (⋆) implies that

. . . ≤ |Θ(1− an0+2)| ≤ |Θ(1− an0+1)| ≤ |Θ(1− an0)| ≤ 1

when we evaluate Θ◦ϕa
Θ

at the points {(1− an)}n≥n0 . Thus

|Θ(1− an0+j)| ≤ |Θ(1− an0)| ≤ 1. (⋄)

As (1− an0+j) → 1 then letting j → ∞ in (⋄) we conclude that |Θ(1− an0)| = 1 which

implies Θ constant because every nonconstant inner function has image contained in D
(see [30, Theorem 2.2.10]). This is a contradiction.

2. We can write σ(Θ) = {z1, z2, . . . } ∪ supp(µ) where µ is the measure associated to the

singular inner part of Θ and (zn)n∈N are the zeros of Θ. Let ξ ∈ T − {1} such that

ξ ∈ σ(Θ). By Theorem 2.5.12 we know that

lim inf
w→ξ, w∈D

|Θ(w)| = 0

As 1 is not a cluster point of the zeros of Θ, we can choose m0 ∈ N such that Θ is

zero free in ϕan(D) for all n ≥ m0. By hypothesis ΘH2 is Cϕa-invariant and then ΘH2

is also Cϕ
am0+1 -invariant. By Theorem 4.2.2 we can write Θ ◦ ϕam0+1 = Θg for some

g ∈ S. Note that am0+1ξ + 1− am0+1 ∈ ϕam0 (D) (because ξ ̸= 1) and

lim inf
w→ξ, w∈D

|Θ ◦ ϕm0+1
a (w)| = lim inf

w→ξ, w∈D
|Θ(am0+1w + 1− am0+1)|

= |Θ(am0+1ξ + 1− am0+1)| ≠ 0
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because Θ is zero-free in ϕam0 (D). So

lim inf
w→ξ, w∈D

|g(w)| = ∞

which implies g unbounded which is a contradiction. So the only possible point in

σ(Θ)∩T is 1. For the last claim, since 1 /∈ {z1, z2, . . .} the only possibility is 1 ∈ supp(µ).

■

It is known that the space e−K( 1+z
1−z

)H2 (where K > 0 is a constant) is Cϕa-invariant, this

follows from a more general result due to Cowen and Wahl (see [14, Theorem 6]). As a

consequence of this result and of the above theorem we have:

Corollary 4.3.5. Let a ∈ (0, 1). The only zero free inner functions Θ such that ΘH2 is

Cϕa-invariant are Θ(z) = λe−K( 1+z
1−z

) for some K > 0 and λ ∈ T.

Proof. By the above theorem, the unique possibility is σ(Θ) = supp(µ) = {1} where µ is the

measure associated to the singular inner part of Θ. Thus Θ is as desired. ■

Corollary 4.3.6. Let a ∈ (0, 1) and Θ ∈ H2 inner. If ΘH2 is Cϕa-invariant then exactly

one of the two following situations happens.

• Θ(z) = λe−K( 1+z
1−z

) for some K > 0 and |λ| = 1.

• Θ has infinitely many zeros accumulating at 1.

Proof. If Θ is zero free by the previous corollary we have the first case. If Θ has a zero z0,

as ΘH2 is Cϕa-invariant we have
Θ ◦ ϕa
Θ

∈ H∞

by Theorem 4.2.2. So Θ(az0 +1− a) = 0 otherwise this quotient is not an analytic function;

But ΘH2 is also Cϕa2 invariant because Cϕa2 (ΘH
2) = Cϕa(Cϕa(ΘH

2)) ⊆ Cϕa(ΘH
2) ⊆ ΘH2.

Using again Theorem 4.2.2 we conclude that

Θ ◦ ϕa2
Θ

∈ H∞

Thus Θ(a2z0 +1− a2) = 0. Repeating this argument for each n ∈ N we obtain Θ(anz0 +1−
an) = 0 which implies the desired result. ■

Remark 4.3.7. Due to Example 4.3.2 there exists Beurling type spaces that are invariant

under Cϕã for some ã ∈ (0, 1) but are not invariant under all Cϕa where a ∈ (0, 1) and thus

this functions are in the second case of the above theorem because the atomic inner functions

generates Beurling spaces that are common invariant subspaces, meaning that it is invariant

under all Cϕa for all a ∈ (0, 1).
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4.4 A connection with the Cesàro Operator

In this section we will highlight a connection of our work in the last sections with a

classical operator called the Cesàro Operator. The connection is based in a recent result

proved by Gallardo-Gutiérrez and Partington in [21] and it is similar to results obtained in

[22].

The Cesàro operator is defined as the operator C : H2 → H2 given by

Cf(z) = 1

z

z∫
0

f(ξ)

1− ξ
dξ if z ∈ D− {0}

and Cf(0) = f(0) where f(z) =
∞∑
n=0

anz
n ∈ H2. Using the power series expansion of H2

functions and integrating term by term we see that the Cesàro operator can be defined also

as

(Cf)(z) =
∞∑
n=0

(
1

n+ 1

n∑
k=0

ak

)
zn.

From the last expression it follows from the famous Hardy’s inequality ([24], Chapter

IX) that the operator C is a well defined bounded operator. There is an extensive literature

concerning the Cesàro Operator; classical properties like subnormality, spectra, norm and

many others was studied by many authors for several years (see [7], [27] and [28]). We

mention here that it is possible to define the Cesàro operator similarly in another spaces like

Hp for 1 < p <∞ but four our purposes H2 is enough.

In the recent paper [21], the authors obtained the following result:

Theorem 4.4.1. [21, Theorem 2.1] Let Φ = {φt}t≥0 be the holomorphic flow given by

φt(z) = e−tz + 1− e−t (z ∈ D).

A closed subspaceM in H2 is invariant under the Cesàro operator if and only if its orthogonal

complement M⊥ is invariant under the semigroup of composition operators induced by Φ,

namely, {Cφt}t≥0.

The bijection between (0,∞) and (0, 1) given by t → e−t show us that the families

{Cφt}t>0 and {Cϕa}a∈(0,1) are the same. From this we can deduce the following statement:

Corollary 4.4.2. A Beurling type space M is invariant under the Cesàro operator if and

only if M = enH
2 for some n ∈ N, where en(z) = zn.

Proof. If M is a Beurling type space that is invariant under the Cesàro operator then by

Theorem 4.4.1 and the above comment the model space M⊥ is invariant under the family
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{Cϕa}a∈(0,1). Thus Corollary 4.2.8 implies the M⊥ = (enH
2)⊥ which proves the first impli-

cation. For the reverse implication, Corollary 4.2.8 implies that the spaces (enH
2)⊥ are all

invariant under the family {Cϕa}a∈(0,1) and thus under the family {Cφt}t>0. Moreover, the

operator Cφ0 = Id clearly leaves this spaces invariant. This finishes the proof. ■

Using the results of the last section, we can naturally obtain a result like the above

corollary for Model spaces. In fact, such type of result was obtained by Gallardo-Gutiérrez,

Partington and Ross in [22]:

Theorem 4.4.3. [22, Theorem 7.7] If u is a non constant inner function and (uH2)⊥ is an

invariant subspace for the Cesàro operator, then u = uα for some α > 0 where uα(z) = eα(
z+1
z−1

)

Note that the above theorem can now be viewed as the first case of the Corollary 4.3.6,

in fact is clear from the proof of this result that if a Beurling type space is invariant for all

Cϕa and the function Θ is not zero free then Θ(az0 + 1− a) = 0 for all a ∈ (0, 1) where z0 is

a zero of Θ. This is impossible by the analytic continuation principle. Thus the only option

is the first case of the Corollary 4.3.6.

4.5 Future works

In this section we will talk about some ideas for future works. Motivated by the remarks

in the end of the chapter 3 one of our future ideas is to obtain a simple proof for the fact

that the operators Cϕ − λ have closed range for ϕ hyperbolic and for appropriate λ. It is a

known fact of functional analysis that an operator T has closed range if and only if T ∗ has

the same property, so the question above can be reformulated using the adjoints.

A classical result (see [13, Theorem 9.2]) shows us how to write the adjoint of a com-

position operator using a Toeplitz operator and another composition operator. In the next

proposition, we apply this theorem to obtain an explicit expression for Cϕa .

Proposition 4.5.1. For a ∈ (0, 1), n ∈ N and f ∈ H2(D) we have:

C∗
ϕan
f(z) =

1

(an − 1)z + 1
f

(
anz

(an − 1)z + 1

)
∀z ∈ D

Proof. Note that the normal form of ϕa is

ϕa(z) =

√
az + (1−a)√

a

1√
a

With this expression, we can apply [13, Theorem 9.2] directly to obtain the above formula. ■

The central question here is if this concrete formula for the adjoint can help us to prove

that some translations like C∗
ϕa

− Id are closed range operators; we do not have a concrete
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answer for now. Despite that, the above expression can be used for example, to deduce the

following results about the dynamics of Cϕa .

Theorem 4.5.2. Let f ∈ H2, consider C∗
ϕa

where a ∈ (0, 1) and consider any subsequence

of (C∗
ϕan
f)n∈N. Then this subsequence converges to 0 or diverges.

Proof. Consider f ∈ H2 and pass to a arbitrary subsequence that we denote by (C∗
ϕan
f)n∈N

for notation reasons . Using Proposition 4.5.1 we conclude that for every z ∈ D

C∗
ϕan
f(z) =

1

(an − 1)z + 1
f

(
anz

(an − 1)z + 1

)
n→∞−−−→ 1

1− z
f(0).

If C∗
ϕan
f diverges, we are done. Otherwise, C∗

ϕan
f → g where g ∈ H2, consequently we

have pointwise convergence (i.e., C∗
ϕan
f(z) → g(z) for all z ∈ D). So g(z) = 1

1−zf(0). If

f(0) ̸= 0 then g is a constant multiple of 1
1−z which give us a absurd because this function

does not belongs to H2. So f(0) = 0, this implies g = 0 and C∗
ϕan
f → 0. ■

Corollary 4.5.3. For every a ∈ (0, 1) the operator C∗
ϕa

is not hypercyclic.

Proof. Consider C∗
ϕa

and let f ∈ H2 . Then if g ∈ Orb(f, C∗
ϕa
) there exists a sequence

(C∗
ϕank

f)nk∈N such that C∗
ϕank

f → g in H2 norm. This implies pointwise convergence and in

particular C∗
ϕank

f(0) → g(0). As C∗
ϕank

f(0) = f(0) (look at Proposition 4.5.1) we conclude

that g(0) = f(0). This means that only H2 functions that agree with f at 0 can belong to

Orb(f, C∗
ϕa
), in particular, Orb(f, C∗

ϕa
) ̸= H2 for every f ∈ H2. ■

These two results show us at least the distinct behaviours of Cϕa and C∗
ϕa
, since the

orbits of Cϕaf can converge for some functions f (see the proof of Theorem 3.2.1) and Cϕa
is hypercyclic. Of course another question based in chapter 3 is to complete the picture of

the eventually bounded case and perhaps to extend these arguments.

About the content of section 4, we recently learned in [22] about the existence of a

Reproducing Kernel Hilbert Space called the Kriete-Trutt space: for any complex number

w ∈ D we define the function qw : D → C given by qw(z) = (1−z)
w

1−w . A computation writing

w as the sum of the real and imaginary part show us that ℜ( w
1−w ) > −1

2
and thus by [25,

Lemma 7] we conclude that qw ∈ H2. Noting that q n
n+1

(z) = (1− z)n we conclude also that

{q n
n+1

}n∈N spans all the polynomials and as a consequence, span{qw | w ∈ D} = H2 because

the polynomials are dense in H2. Note the functions qw are exactly the eigenvectors

that we used in chapter 3.

We define for each function f ∈ H2 the following function:

Kf(w) = ⟨f, qw⟩ ∀w ∈ D.

The Kriete-Trutt space is defined as H = {Kf |f ∈ H2}. Since span{qw | w ∈ D} = H2

the map K : H2 → H given by K(f) = Kf is one-to-one and is, of course, surjective. We

consider in H the range norm, i.e, ∥Kf∥H = ∥f∥H2 and thus K is an isometry.
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This space was one of the main tools developed in [27] and [28] to study the subnormality

of the Cesàro operator and there are a lot of open questions related with it (see the last chapter

of [22]). Moreover, Kriete and Trutt (see [27]) also proved that there exists a positive finite

Borel measure in D that we call µ such that∫
D

|p|2dµ = ∥p∥2H.

for every analytic polynomial p. An interesting point in the context of this text is that the

support of this measure is a sequence of circles shrinking to 1 (see [22, Figure 4]) in the

same form that happened in section 3 (see the Figure 3.2).

With new results and approaches involving the Cesàro operator and the operators Cϕa we

believe that this space can be useful and maybe could be a central object in a future study.
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[6] Haim Brézis. Functional analysis, Sobolev spaces and partial differential equations.

Springer, 2(3), 2011.

[7] Arlen Brown, Paul R Halmos, and Allen L. Shields. Cesàro operators. Acta Sci.
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A Appendix

The objective of this appendix is to provide the reader the precise statement of some

background results that we used explicitly in the text as well as the references for their

proofs.

Proposition A.0.1. Let H be a Hilbert space andM ⊆ H such thatM ̸= ∅. ThenM⊥ = {0}
if, and only if, span M = H.

Proof. See [26, Lemma 3.3− 7]. ■

Theorem A.0.2. If X ̸= {0} is a Banach space and T ∈ B(X) then σ(T ) ̸= ∅.

Proof. See [26, Theorem 7.5− 3]. ■

Lemma A.0.3. Suppose that E is a normed space. Then E is separable if, and only if, there

exists a countable set A ⊆ E such that span A is dense in E.

Proof. See [4, Lemma 1.6.3]. ■

Theorem A.0.4 (Riesz-Fischer). Every separable and infinite dimensional-Hilbert space is

isometrically isomorphic to l2.

Proof. See [4, Theorem 5.4.4.]. ■

Theorem A.0.5 (Mazur’s Lemma). Let E be a Banach space.

a) If K ⊆ E is convex then the closure of K in the norm topology is equal to the closure

of K in the weak topology, i.e, K
∥ ∥

= K
σ(E,E′)

.

b) Assume that (xn)n∈N ⊆ E converges weakly to x ∈ E. There exists a sequence (yn)n∈N
made up convex linear combinations of the vectors (xn)n∈N such that yn → x in the

norm topology of E.

Proof. See [4, Theorem 6.2.1] for item a) and [6, Corollary 3.8] for part b). ■

Theorem A.0.6. (The Principle of Analytic Continuation) Suppose that f and g are analytic

in a domain U and (zn)n∈N is a sequence of distinct points in U such that zn → z0 ∈ U. If

f(zn) = g(zn) for every n ∈ N then f = g in U.

Proof. See [16, Corollary 6.30]. ■

Theorem A.0.7. Suppose that Ω is an open set in Rn and G : Ω → Rn is a C1 diffeomor-

phism. If f is a Lebesgue measurable function in G(Ω) then f ◦G is a Lebesgue measurable

function on Ω. If f ≥ 0 or f ∈ L1(G(Ω),m) then∫
G(Ω)

f(x)dx =

∫
Ω

(f ◦G)(x)| detDxG|dx

where DxG is the matrix of partial derivatives given by ∂gi
∂xj

with G = (g1, g2, . . . , gn).
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Proof. See [17, Theorem 2.47] ■

Theorem A.0.8. Let µ be a non negative measure and f : X → Y be a measurable map. A

measurable function g defined on Y is integrable with respect to µ ◦ f−1 precisely when the

function g ◦ f is integrable with respect to µ. In addition, one has:∫
Y

g d(µ ◦ f−1) =

∫
X

(g ◦ f)dµ

Proof. See [2, Theorem 3.6.1]. ■
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