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Resumo

Bombas centrífugas submersas (ESPs) são amplamente utilizadas em setores industriais
que necessitam de altas vazões e ganho de pressão. Na indústria de petróleo e gás, as ESPs
frequentemente operam sob condições de escoamento multifásico, tais como emulsões de
óleo-água. O comportamento não-Newtoniano das emulsões pode induzir um comportamento
dinâmico e instável do sistema. Contudo, a literatura existente foca no comportamento em estado
estacionário destes sistemas. O objetivo principal deste trabalho é desenvolver e validar um
modelo dinâmico para ESPs utilizando bond-graphs, conduzir análises de identificabilidade e
estimar parâmetros do sistema com um conjunto limitado de sensores. A metodologia adotada
engloba a coleta de dados experimentais em condições estacionárias e dinâmicas, modelagem
por meio de bond-graphs e o emprego de Redes Neurais Informadas por Física (PINNs). O
modelo da ESP foi formulado utilizando uma biblioteca desenvolvida, neste trabalho, em Julia.
Foram conduzidas análises de identificabilidade, tanto estrutural quanto prática do modelo.
As PINNs foram empregadas para abordar o problema inverso e foram avaliadas em dados
simulados e experimentais. A validação do modelo foi realizada através da comparação dos dados
experimentais com simulações numéricas. A pesquisa resultou em um modelo dinâmico para
ESPs baseado em bond-graph que incorpora os subsistemas mecânicos e hidráulicos, resultando
em um conjunto de equações diferenciais ordinárias (ODEs). Em condições estacionárias, o
modelo demonstrou um elevado coeficiente de determinação e um erro relativamente baixo.
Para cenários dinâmicos, ajustes finos nos parâmetros resultaram em melhoria na precisão do
modelo, especialmente em relação às pressões, embora algumas discrepâncias nos picos de
pressão tenham sido observadas. A análise de identificabilidade estrutural local identificou 12
parâmetros que são determináveis, mas a identificabilidade prática foi alcançada apenas com
oito. As PINNs mostraram eficácia na estimativa de parâmetros e estados, sobretudo em cenários
de baixa fração de água, mas apresentaram limitações em altas frações de água e em presença de
ruído nos dados. O modelo dinâmico, em conjunto com as PINNs, demonstra potencial para
aplicações em controle, monitoramento, detecção de falhas e otimização. Embora o modelo
capture a dinâmica do sistema, limitações surgem devido às hipóteses feitas quanto à viscosidade
da emulsão e ao acoplamento bomba-tubo. Para trabalhos futuros é sugerido aprimorar na
modelagem da propagação de ondas de pressão no sistema. Além disso, a adoção de algoritmos
mais robustos para PINNs, que poderia melhorar a estimativa dos parâmetros desconhecidos.
Este trabalho estabelece uma base para a modelagem de sistemas ESP mais complexos, com
potencial de aplicação além do setor de petróleo e gás.

Palavras-chave: Sistema dinâmico; Bond graph; Problema inverso; Análise de identificabilidade;
Redes Neurais Informadas por Física; Bomba centrífuga; Emulsão; Escoamentos multifásicos.



Abstract

Electrical Submersible Pumps (ESPs) are extensively utilized in industries requiring high
flow rates and boosting pressures. In the oil and gas sector, ESPs frequently handle multiphase
flows, including oil-water emulsions. The non-Newtonian behavior of the emulsions can lead
to system instabilities, resulting in a dynamic behavior. However, existing research primarily
targets the steady-state behavior of ESPs under emulsion conditions. The primary objective of
this research is to develop and validate a dynamic model for ESPs using bond graph theory, to
conduct identifiability analysis, and to estimate the system parameters with a limited number
of sensors. The adopted methodology encompasses collecting experimental data under both
stationary and dynamic conditions, modeling the ESP using bond graphs, and using Physics-
Informed Neural Networks (PINNs). The ESP model equations were obtained using a library
developed in this work in Julia. The identifiability analysis conducted on the model considered
the structural and the practical. The PINNs were employed to address the inverse problem
and evaluated using simulated and experimental data. The model was validated by comparing
experimental data with numerical simulations. This study presents a bond graph-based dynamic
model for ESPs that incorporates mechanical and hydraulic subsystems, resulting in a set of
Ordinary Differential Equations (ODEs). In steady-state conditions, the model yielded a high
coefficient of determination and relatively small error bounds, which attested to the model’s
reliability. In the dynamic scenario, the fine-tuning of parameters enhanced the model’s capability
in capturing pressure dynamics, although minor deviations in the pressure spike are observed.
Through local structural identifiability analysis, twelve parameters were identified as uniquely
determinable; however, practical identifiability was achieved with only eight. The application
of PINNs demonstrated effectiveness in estimating parameters and states, particularly in low
water cut conditions. The proposed method exhibited limitations in high water cut and noisy
environments, being areas for future investigation. The model with the PINN can be used in
control, condition monitoring, fault detection, and optimization, even in challenging scenarios of
unknown fluid properties. While the model accurately captures system dynamics, limitations
emerge due to assumptions on the viscosity and the pump-pipe coupling, requiring future work
on better modeling the pressure wave velocity in the system. For the inverse problem, a robust
PINN algorithm would enhance the unknown parameter estimation. The methodology lays a
foundation for modeling more complex ESP systems with applications beyond the oil industry.

Keywords: Dynamic systems; Bond graph; Inverse problem; Identifiability analysis, Physics-
Informed Neural Networks; Electrical Submersible Pump; Emulsion; Multiphase flows.
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Rc Pipeline resistance associated with dynamic pressure
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β Centrifugal pump blade angle
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δL Factor to account for the relationship between QL and Qcc

∆P Pressure drop in the pipe

∆x Length of the pipe segment

ϵr Surface roughness

η Pipe wall thickness

Γ Shear stress

γ Expression for the bond graph gyrator element representing the centrifugal pump

Γ Stress tensor

Γxy Shear stress component in the xy-plane



λ Friction factor
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λlam Laminar friction factor

µ Fluid viscosity

ω Angular velocity

ωt Angular velocity of the twin-screw

ΦC(q) Constitutive relationship for C-elements

ΦI(p) Constitutive relationship for I-elements

ΦR(f) Constitutive relationship for R-elements

ψ Set containing all the centrifugal pump local losses

ρ Fluid density

ρ0 Water density at 15 ◦C

ρ∗ Relative density of the fluid

ωi Electrical submersible pump initial angular velocity

ωf Electrical submersible pump final angular velocity

τdf Overall torque due to disk friction

τ Torque

τshaft Torque on the shaft

ξ Angle of the conduit with respect to the ground

ζ1 Term representing the influence of changes in impeller speed

ζ2 Term representing the effect of flow rate changes

ζ3 Coefficient representing ρ (r22 − r1
2)

ζ4 Coefficient representing ρ
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cot(β2)
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− cot(β1)
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)

Other symbols

SS Steady state
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Physics constants

ρ Density of fluid

Roman symbols

A Area vector on the control surface, oriented normal to the surface
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a Velocity of the pressure wave in a conduit

Acc Total circumferential clearance cross-sectional area
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B Fluid bulk modulus
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Cv Valve flow coefficient
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dA Differential area element
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dz Infinitesimal element along the axial coordinate z

E Energy at a multiport

e Generalized effort at a multiport

Ec Total energy within a control volume
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f Generalized flow at a multiport
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FL The liquid pressure recovery factor for a control valve in the absence of any attached
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Fr Valve Reynolds number factor

g Gravitational acceleration
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KE Constant describing conduit wall deformation due to pressure

ki Combined inertial loss constant

KL Loss coefficient representing flow losses in the circumferential clearance

klam Laminar viscous friction coefficient
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KLc Twin-screw pump local loss constant grouping geometrical parameters
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Km Local loss coefficient
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N1 Valve numerical constant for unit conversion

N2 Valve numerical constant for unit conversion
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nL Number of chambers of the twin-screw pump
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nv Valve trim style constant

p Generalized Momentum at a multiport

P Fluid pressure
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Q∗ Design flow rate

Q Volumetric flow rate
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Qfc Flow rate due to flank clearance

QL Leakage volumetric flow rate, representing internal leakage of a twin-screw pump

Qrc Flow rate due to radial clearance

Qt Theoretical volume displaced by a twin-screw pump

Qs Specific flow rate

r Position vector from the axis of rotation to a fluid element

rt Twin-screw pump transformer expression

rx Radius at specific point in impeller

t Time

θ Angular coordinate

u Fluid velocity

ux Fluid tangential velocity at the centrifugal pump, where x is 1 or 2.

V Average flow velocity

v Absolute fluid velocity

VD Displacement volume, the theoretical volume of liquid displaced per rotor revolution

Vi+1 Volume at the exit of the i-th pipe segment

Vi(t) Volume at the entrance of the i-th pipe segment

Vj Difference in volume between the entrance and exit of the pipe segment

v Fluid flow velocity vector

wcc Width of the circumferential clearance of the twin-screw pump



wfc Width of the circumferential flank clearance of the twin-screw pump

wrc Width of the circumferential radius clearance of the twin-screw pump

wsp Width of the screw profile of the twin-screw pump

wux Relative tangential component of velocity

z Height as a function of x

Subscripts

1 Inlet condition

2 Outlet condition

cc Circumferential clearance

CS Control Surface

CV Control Volume

fc Flank clearance

rc Radial clearance
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1 Introduction

1.1 Dynamic systems

The term dynamic characterizes phenomena that undergo temporal evolution, where their
attributes change over time. Thus, the term dynamic can be considered almost a synonym of
temporal evolution, where the unfolding of a chain of events results in an ongoing evolutionary
process [1, 2]. Many phenomena that we observe and study in daily life possess such dynamic
traits. Conversely, a system is defined as an assembly of interrelated components that collectively
form a cohesive whole. When combined, the notion of a dynamic system emerges, signifying that
the state of such a system at any given time is influenced by its prior state. In essence, the study
of system dynamics delves into understanding these temporal evolutions and the mathematical
equations that describe them [3].

The exploration of dynamic systems is driven by two primary goals: prediction of system
behavior and control. Climate forecasting, for instance, exemplifies the attempt to predict the
dynamic system behavior of a vast dynamic system, while the thermostatic control of boilers
for heating illustrates the control aspect [3]. The modeling approach depends on the intended
purpose of the model. When emphasizing behavior prediction, it is prudent to utilize extensive
relevant information. Conversely, model simplicity becomes paramount when the focus shifts to
system control. This simplicity, driven by practical constraints like sensor availability, recognizes
that an abundance of information does not always translate into enhanced control precision [3].

To achieve the goals mentioned above of prediction and control, it is necessary to develop
a mathematical model that captures the system’s behavior [3]. Most often, these models are
represented by differential equations. As highlighted by Luenberger [1], the study of dynamics is
deeply intertwined with the theory of differential equations. Through these equations, temporal
relationships among various system variables can be established. While some systems can be
described using linear differential equations, it is essential to acknowledge, as pointed out by
Marinca and Herisanu [2], that the majority of natural phenomena inherently exhibit non-linear
dynamics.

1.2 Bond-graphs

As highlighted by Damic and Montgomery [4], real engineering systems are inherently
complex. Constructing a valid mathematical model that is simultaneously accurate and computa-
tionally feasible presents significant challenges. Recent advances in computing have enhanced
the tractability of such problems, rendering the numerical solution of previously infeasible
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problems now attainable. Given the multifaceted nature of engineering systems, which often
span mechanical, electrical, hydraulic, and thermal domains, it becomes evident that domain-
independent modeling techniques are invaluable. Such techniques, not only accommodate the
diverse nature of these systems but also facilitate a seamless integration between the various
domains.

In this context, the bond-graphs stand out as a notable tool for multidomain system modeling.
Central to their approach is the principle of energy exchange among the system’s constituent
parts. This methodology allows for effects like friction and stiffness to be incorporated without
necessitating a complete overhaul of the model [5]. The bond-graphs main characteristic is their
modularity; modeling begins with basic elements and, step-by-step, evolves into a sophisticated
mathematical representation suitable for computational analysis.

The foundational development of bond-graphs can be attributed to Paynter [6]. Subsequent
refinements in their graphical representation and modeling methodologies were expanded by
others, as highlighted by Borutzky [7]. The essence of this approach is the flow of energy between
the ports of system components. These ports serve as conduits, ensuring the transmission of
energy from one component to another, its storage within a component, or its transformation, all
in accordance with established physical laws [8].

In the preliminary stages of bond-graph modeling, the focus is on a qualitative assessment
of the physical effects and interactions within the system. As the process unfolds, these quali-
tative observations are incrementally supplemented with detailed specifics, yielding a refined
mathematical model. A noteworthy aspect, as mentioned by Borutzky [7], is that a correctly
implemented bond-graph model is inherently consistent with the first law of thermodynamics.
This agreement eliminates the need for additional adjustments, presenting a unified modeling
methodology applicable across diverse physical domains [8].

1.3 Modeling and inverse problem

The task of generating a mathematical representation of a physical system inherently involves
some abstraction. Any model is a simplification of reality capturing mainly crucial features. It
is a challenging endeavour to encapsulate the whole complexity of a given system [3]. When
modeling, the main challenge is to balance the model’s complexity and its accuracy. As the
model’s complexity increases, often by incorporating additional physics, parameters, or structural
elements, it may offer improved accuracy but at the cost of increased computational burden and
the need for more information about the system. Information which may be unknown or difficult
to obtain in real conditions. Conversely, simpler and more parsimonious models may suffer from
accuracy loss due to idealizations or inaccurate parameter estimation.

In the mathematical modeling process of a physical system, the problems can be categorized
into direct and inverse types. The direct problem involves constructing a model that takes
known causes as inputs and predicts the resultant effects. However, real-world applications
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often necessitate the reverse: determining the underlying causes or system properties based on
observed effects. Such problems are termed inverse problems [9, 10]. Unlike direct problems,
where solutions’ existence, uniqueness, and stability are often assumed, inverse problems are less
forgiving. These key attributes may be absent, introducing considerable challenges in finding
viable solutions [10].

The challenges inherent to inverse problems extend beyond the identification of mathemati-
cally consistent solutions [11]. Once it may exist, several parameters may satisfactorily fit the
available data. Hence, it is crucial to assess the physical plausibility of these solutions. They
must not only fit the data well but also align with other known constraints and exhibit predictive
capability. In cases where multiple models fit the available data, additional information or
constraints must be introduced to restrict the search space to a unique, physically meaningful
solution. Among all challenges, stability, or the lack of it, is the most critical. Without stability,
any attempt to solve the problem becomes unproductive, as minor errors in measurement or
computation can lead to remarkably inaccurate solutions [12].

Inverse problems find applications in various disciplines, from biomedical imaging and
geophysical exploration to groundwater flow dynamics [13]. The shared objective among
various applications is to accurately estimate attributes that may not be directly observed or are
unobserved. While parameter estimation is a typical goal, inverse problems also offer a pathway
to discover missing physics by identifying functions or relations that complete the direct model.
However, these problems are often ill-posed where slight inaccuracies in measurement data can
drastically change the missing physics model.

1.4 Multi-phase flows

According to Falcone [14], a general definition of multiphase flow encompasses the simulta-
neous flow of a stream composed of two or more phases in a specific system. This multiphase
flow scenario is ubiquitous, ranging from biological systems like blood flow in the human body
to industrial applications involving oil-water-gas-sand mixtures in offshore pipelines [14, 15]. A
more straightforward category within multiphase flow is two-phase flow, which occurs when a
single pure substance is present in two different phases, such as steam-water, or when different
chemical substances co-exist, such as oil-water flow [14].

While the hydrodynamics of single-phase flow are well understood, Shoham [16] highlight
that the addition of even one more phase drastically increases the complexity, resulting in
challenges otherwise non-existent in single-phase systems. One of the notable aspects is the
drastic increase in the number of variables required for its characterization when compared to
single-phase flows. The increase in complexity is even more noteworthy for liquid-gas flows,
where the effect of gas compressibility is significant. Shoham [16] mentions that the exact
solution for two-phase flow is often impractical or exceedingly challenging.

A distinctive attribute of two-phase flows, setting them apart from their single-phase counter-
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parts, is the emergence of flow patterns or flow regimes [16]. These patterns emerge due to the
interaction between the phases and are a result of competing forces or mechanisms occurring
simultaneously within the flow [14]. As a result, the phases can rearrange in distinct ways that
can result in flows with considerably different characteristics, such as phase velocity and phase
percentage in a specific region. Importantly, identifying these flow patterns is critical, as the
process variables and literature models heavily rely on them [16].

In engineering applications, two-phase flow phenomena are indispensable across several
sectors. These range from petroleum, chemical, and nuclear industries to space and geothermal
applications [15]. In the context of the petroleum industry, for instance, understanding two-phase
flows is paramount during the conveyance of oil and gas across pipelines with varied orientations.

1.5 Emulsions

Two-phase flows involving immiscible liquid can provide the conditions necessary for
formation of emulsions. According to the IUPAC definition, an emulsion is characterized as a
dispersion when droplets of one liquid are dispersed in another immiscible liquid [17]. There
are primarily three types of dispersions pertinent to this context: gas foams in liquids, solid
suspensions in liquids, and emulsions formed by one liquid dispersed in another in the form of
droplets [18]. According to Perazzo et al. [19], the emulsions are typically formed by an organic
phase and an aqueous phase, for example, oil and water mixtures. In certain scenarios, the phases
are continually interpenetrated one in the other, being impossible to distinguish between the
dispersed phase and the continuous phase.

Emulsions, in their native state, are thermodynamically unstable and tend to phase separation
in pursuit of thermodynamic equilibrium. However, due to the characteristics of the constituting
fluids, emulsions can often exist in a metastable state. The relative thermodynamic stability
of emulsions presents challenges in numerous industries, especially when phase separation is
desired [19]. Several processes lead to the separation of phases, such as sedimentation, due to
specific mass differences and flocculation, when droplets tend to aggregate. Nevertheless, there
exists a category of emulsions called microemulsions. They are characterized by oil droplets
with nanometric diameters, and they are considered to be thermodynamically stable [19, 20].

1.6 Electrical submersible pumps

Multistage centrifugal pumps, play a vital role in diverse industrial applications such as oil
and gas extraction, water supply, chemical processes, power generation, and pulp transportation.
Introduced to the oil and gas sector in 1927, Electrical Submersible Pumps (ESP) have become
the second most widely utilized form of artificial lifting equipment [21]. Comprising a multi-
stage centrifugal pump driven by a submerged electric motor, ESP are commonly employed
in high-pressure boosting applications where significant flow rates are required [22, 23, 24].
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Typically installed at the end of the production column within an oil well, the ESP is powered by
an electric motor connected to an external power source through an electric cable [25, 26, 27, 28].
To enhance performance, some ESP configurations incorporate a gas separator for the extraction
of minor gas fractions present in the fluid flow. Further, to ensure operational integrity, ESP are
designed with components that insulate the motor from the reservoir fluids [25, 26, 27, 28].

Within the petroleum industry, ESP often encounter two-phase liquid-liquid flows, commonly
consisting of oil and water mixtures [29, 30]. These flows frequently give rise to colloidal
dispersions such as emulsions due to the inherent chemical characteristics of the liquids involved.
Emulsions are particularly noteworthy because they manifest non-Newtonian behavior, which
could cause instabilities in ESP operations [31].

1.7 Objectives

The overall objective of this research is to develop a bond graph-based model for electrical
submersible pump systems, conduct an identifiability analysis of the resulting model, and propose
a methodology for parameter estimation using a limited set of known measurements. The
validation of the model and estimation technique will be carried out in experimental multiphase
flow scenarios.

To realize the aforementioned research aim, the following specific objectives are outlined:

1. To formulate a bond graph-based model encapsulating the pumps’ mechanical and hy-
draulic domains.

2. To deduce the fundamental bond graph elements constituting the system from fundamental
model equations and ESP literature.

3. To validate the model against experimental data and existing literature, focusing on varying
multiphase flow conditions.

4. To carry out identifiability analysis on the established model for assessing structural,
practical identifiability, and parameter sensitivity.

5. To employ Physical-Informed Neural Networks (PINN) as an inverse problem-solving
technique for estimating unknown parameters and unmeasured states.

This work aims to develop a lumped system model for electrical submersible pumps (ESPs),
particularly for applications in the oil and gas industry. The model balances computational
efficiency with the complexity needed for practical industrial applications. By employing a bond
graph approach, the model simplifies the dynamics of fluid behavior in emulsions and multiphase
flows, which are critical for understanding the interactions within ESP systems. Although the
model abstracts detailed phase separation and droplet interactions to improve computational
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tractability, it retains the essential dynamics relevant for monitoring, fault diagnosis, and control
applications.

The model’s fidelity to fluid dynamics is balanced with computational feasibility, validated
against experimental data to ensure reliability for practical applications. Acknowledging the
model’s simplified nature, it is designed to capture crucial operational dynamics while rec-
ognizing its limitations in representing complex multiphase flow phenomena under untested
conditions.

Furthermore, the modular nature of bond graph modeling facilitates the model’s expansion
to accommodate more complex systems, such as those involving multiple pumps or valves. This
adaptability ensures the model’s relevance and scalability for practical applications, allowing for
the integration of well-validated subsystems into larger system models.

Thus, this work employs a combination of analytical, numerical, and machine learning
techniques to develop a comprehensive framework for ESP systems. Initially, the bond graph
method is utilized to develop a foundational model that captures the main dynamics of the
ESP system. Subsequently, Physics-Informed Neural Networks (PINNs), which leverage the
physics delineated by the bond graph model, are employed for state and parameter estimation.
By incorporating real-time measurements, PINNs facilitate relatively accurate monitoring and
adaptive adjustments in response to operational changes, such as water fraction variation and
wax deposition. This integration enables effective control and predictive capabilities, ensuring
the model’s accuracy and relevance under the evolving conditions of oil field operations.

1.8 Research contributions

This section presents the research contributions in the mechanical engineering domain,
specifically focusing on the modeling, analysis, and simulation of electrical submersible pumps
(ESP). Existing literature predominantly focuses on ESP under steady-state conditions, thus
limiting the scope for dynamic operational understanding. Further challenges arise in applications
such as oil exploration due to changes in fluid properties attributable to the well conditions and
temporal variations in pipeline characteristics attributable to phenomena like wax deposition.
Such variations require inverse problem-solving methodologies to enhance the reliability and
applicability of existing and developed models in this work.

Considering these aspects, the present research employed a multifaceted approach, leveraging
a variety of methodologies and tools to address distinct aspects of the ESP problem. The
contributions are detailed below.

Contribution 1 Development of a bond graph model for electrical submersible pumps:
This study advances the field by introducing a bond graph model that comprehends ESP
systems’ hydraulic and mechanical subsystems. Different from existing bond graph models
for centrifugal pumps, the proposed model incorporates the dynamic behavior of upstream
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and downstream pipelines, which was crucial to the considered experimental setup. The
bond graph elements of the pump model are derived from established literature, thereby
ensuring direct comparison with existing models. Thus, further advances in this area can
be seamlessly integrated into the model. Moreover, the model includes a formulation for
capturing pipeline transients with bond graphs derived from the continuity equation. For
the emulsion non-Newtonian behavior, the model uses literature effective viscosity model.

Contribution 2 Identifiability analysis of electrical submersible pump parameters:
The study provides an identifiability analysis of the model of the ESP system, encom-
passing both local structural and practical identifiability. This analytical approach enables
effective parameter estimation and addresses a lacuna in the existing ESP literature. Con-
sequently, the analysis provides a foundational basis for developing more robust parameter
estimation techniques in future investigations by delineating the parameters that can be
estimated reliably.

Contribution 3 Application of physics-informed neural networks for state and parameter
estimation in electrical submersible pumps:
This work also employs Physics-Informed Neural Networks (PINN) for addressing the
inverse problems of parameter and state identification in ESP models. The PINN imple-
mentation is designed to estimate key properties of the system from a restricted set of
available information, such as intake and discharge pressures. Notably, the method is
capable of obtaining reasonable accuracy even in noisy and experimental measurements.
Moreover, it does not require computing the numerical derivatives, offering an advantage
over traditional methods, like direct non-linear least squares, where accurate derivative
estimation is often challenging due to noise.

Contribution 4 Development of a software library in Julia for bond graph models:
Furthermore, the study introduces a software library, developed in the Julia programming
language, for the automated generation of bond graph equations and the derivation of corre-
sponding model governing equations. This software library is a significant contribution as
it streamlines the modeling process and introduces greater flexibility in dealing with bond
graph elements and equation manipulation. While devised in the context of mechanical
engineering, the applicability of this software library extends to other disciplines, thereby
broadening the impact of this contribution.
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2 Literature review

2.1 Two-phase flows

According to Angeli and Hewitt [30], liquid-liquid flow is present in several industrial
processes, particularly in the oil industry, where oil and water are produced and transported
together in long pipelines. The knowledge of the flow pattern in these processes is crucial in
these industries since the optimization of production, artificial lifting system design, and system
modelling are directly related to the flow pattern [32, 33].

The first studies on horizontal two-phase liquid-liquid flow were made by Russell et al. [34].
The authors observed, by images and varying the water and oil ratio, three patterns of distinct
flows called bubbles, stratified, and mixture. Russell et al. [34] also showed the pressure loss as
a function of the water’s superficial velocity. Then, Charles et al. [35] observed the same flow
patterns with the addition of the intermittent and concentric flow patterns. The authors found
that the flow pattern is independent of the oil viscosity.

Subsequently, Hasson et al. [36] observed flow patterns similar to that observed by Charles
et al. [35], but they classified the pattern called concentric by Charles et al. [35] as annular. Thus,
after Hasson et al. [36], several other authors have proposed several distinct flow patterns for
liquid-liquid flows until Bannwart et al. [37] proposed simplifying the number of flow patterns
for both vertical and horizontal flows. According to the Bannwart et al. [37] classification, the
horizontal flows were restricted to stratified, bubbles, dispersed bubbles, and annular. The flow
patterns for vertical flows were defined as bubbles, dispersed bubbles, intermittent, and annular.

Abood et al. [38] mention that the flow patterns are heavily dependent on the specific mass
of the fluids. In addition to the specific mass, the surface tension, the pipe geometry, and the pipe
roughness are relevant [39, 40]. Angeli and Hewitt [30] mention that another critical factor in
the flow pattern is tube wettability and how the phases are inserted in the pipe.

The main interest in studying liquid oil-water-water flows is mainly due to the low-pressure
losses and the energetic advantage of the annular flow pattern [41, 39, 37]. In this case, according
to Cavicchio et al. [42], the pressure loss of the annular flow is considerably smaller than the
single-phase oil flow. According to Rodriguez and Bannwart [43], Charles et al. [35] was the
first to observe a significant drop in the pressure loss in the annular and intermittent flow patterns.
In Charles et al. [35] work, such a decrease in the pressure loss was more significant with the oil
viscosity increase.

Thus, the development of the Core-Annular Flow (CAF) technique is made to maintain the
oil flow in the center of the pipe and the water flow on the periphery of the pipe by adding small
amounts of water to the flow [37, 41]. In this way, the water serves as a continuous lubricant layer
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along the pipe, which reduces the pressure loss [43]. Such a technique is particularly attractive
in transporting lubricants and for the oil industry, which often face highly viscous oil [37].

2.2 Emulsion

In oil production, emulsions are present in the various stages of transport and production.
One of the properties that the formation of emulsion influences significantly and has been
studied is the viscosity [20]. In the petroleum industry, crude oil’s viscosity directly influences
transportation and processing. In addition, the formation of emulsion is often inevitable since it is
often produced water with oil or the water is injected into the reservoirs to increase production, or
the water is used to reduce energy in production, core-annular flow. Goodarzi and Zendehboudi
[20] comments that emulsion formation in the oil industry is a problem that generates unexpected
thermodynamic and rheological behaviors in the fluids produced. Moreover, water emulsions
and crude oil are also considered a problem in the oil industry by causing inefficient separation
of phases, operational problems, and corrosion [20].

Jahanzad et al. [18] mention that despite the properties of the liquids that form the emulsion
can be established accurately, the final properties of the emulsion are not easily predictable and
depend heavily on the emulsification process used. Another emulsion feature is phase inversion,
obtained when there is an exchange between the dispersed and continuous phases. Such a process
is often desired in the industry because it is possible to obtain a more stable emulsion [44, 19].
Jahanzad et al. [18] and Perazzo et al. [19] mention that the process of phase inversion phases is
fast, and in this process, the emulsion properties also vary at the same rate. In this sense, the
phase inversion process has been described as catastrophic or transitional.

Emulsions tend to separate the liquid phases due to oil-water or water-oil immiscibility. The
separation time may vary from a scale of minutes or hours and can extend to days, months, and
even years according to the stability of the emulsion. The droplet size distribution, chemical
properties of the liquid phases, and the presence of surfactants determine the stability and type
of emulsion (water-in-oil or oil-in-water) [45]. Furthermore, there is the transition from one
emulsion type to another, commonly called phase inversion [46, 19, 47]. Emulsion in the ESP
system may be caused by turbulence and shear stress caused by the ESP, pipe system, and valve
Bulgarelli et al. [48].

The study by Pal [49] observed the impact of droplet size on the rheological characteristics
of water-in-oil (W/O) and oil-in-water (O/W) emulsions. The author found that fine emul-
sions exhibit significantly higher viscosities than coarse emulsions. Moreover, fine emulsions
demonstrate a shear-thinning effect on non-Newtonian behavior. Later [50] introduced a model
to correlate the effective viscosity of emulsions. The model considers factors such as shear
rate, droplet size and distribution, and the viscosity of the continuous and dispersed phases.
The author correlation was validated using experimental data from mineral oil-in-water and
kerosene-in-water emulsions. Pal [50] correlation establishes that the relative viscosity of the



38

emulsion is functionally dependent on the Reynolds number, the volume fraction of the dispersed
phase, the maximum packing concentration of the dispersed phase, and the continuous phase
viscosity.

Derkach [51] provides a comprehensive review of the rheological properties of emulsions,
varying from dilute to highly concentrated systems. For dilute emulsions, Derkach [51] present
parallels and contrasts with the properties of suspensions. The author examined various rheologi-
cal behaviors in concentrated emulsions, such as non-Newtonian flow curves. It also presented
different effective viscosities models. The review also elaborates on the shear stability of droplets
and the crucial role of surfactants in the stability of emulsions over time.

Plasencia et al. [52] conducted a comparative study on the pipe flow of water-in-crude-oil
emulsions with six different types of crude oil. The authors observed that the point of phase
inversion varies and is fluid-dependent and that the effective viscosity was relatively insensitive
to mixture velocities but was highly sensitive to water cut, significantly beyond 30%. Higher
shear rates led to the formation of smaller droplets, while larger droplets appeared as the amount
of dispersed water approached the inversion point.

Perazzo et al. [19] provides a comprehensive review of the phenomenon of phase inversion
in emulsions, detailing two primary methods: phase inversion composition (PIC) and phase
inversion temperature (PIT). The review illuminates how phase inversion is not an equilibrium
process, significantly influenced by factors such as the addition rate of one phase into another
and the dynamics of droplet breakup and coalescence. Mechanisms underlying phase inver-
sion are primarily attributed to changes in interfacial curvature, influenced by temperature or
compositional changes affecting surfactant affinity. The review highlights the challenges in
quantitative modeling of phase inversion, particularly at high addition rates, where the system
deviates significantly from equilibrium.

The Ariffin et al. [53] work conducted an investigation into the rheological behavior of light
crude oil emulsions, mainly focusing on their viscosity characteristics. They observed that these
emulsions exhibited non-Newtonian shear-thinning behavior at low shear rates, transitioning
to approximately Newtonian behavior at high shear rates for the light crude oil emulsions.
Additionally, in accordance with the literature, they observed the phase inversion phenomena
and the effective viscosity dependence on the water fraction.

Liu et al. [54] conducted systemic experiments focusing on the effect of droplet sizes on
the rheological properties of W/O emulsions. Their results reveal that the emulsions transition
from Newtonian to non-Newtonian flow behavior with increasing shear rates. In the Newtonian
regime, smaller droplets corresponded to higher viscosities, particularly at high dispersed phase
volume fractions. In agreement with other studies, they observed a shear-thinning behavior in
the non-Newtonian regime, which was well-described by the power law model. The authors
concluded that shear-thinning mainly arises from a reduction in cluster sizes and that more
compact and smaller clusters are formed at higher dispersed phase volume fractions.

Goodarzi and Zendehboudi [20] provides an exhaustive review of the formation and stability
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of W/O emulsions, particularly their behavior in physical systems like pipeline networks and
porous media. It emphasizes the inadequacy of current models to comprehensively link emulsion
stability to crucial parameters such as temperature, water-to-oil ratio, and salinity. Advanced
computational methods like Molecular Dynamics (MD) and Computational Fluid Dynamics
(CFD) are recommended for understanding thermodynamic properties and transport phenomena
behaviors in porous media despite the computational overhead involved. Goodarzi and Zende-
hboudi [20] recommends adopting comprehensive modeling strategies and experimental works
at both macro and micro-scales to better understand emulsion behaviors.

Vita et al. [55] employed numerical simulations to investigate the rheological properties of
emulsions under shear flow in dilute and moderate concentration regimes. They utilized Navier-
Stokes equations with the Volume of Fluid (VoF) technique for tracking the fluid interface,
allowing the study of droplet coalescence. They developed an Eulerian collision model to isolate
coalescence’s effects on emulsions’ rheological behavior. Thus, the authors observed that the
coalescence led to an effective viscosity reduction attributed to reduced interfacial tension stress.
On the other hand, when inhibiting coalescence, the authors observed that the emulsions behave
more like suspensions of deformable particles.

Additionally, Vita et al. [55] observed the presence of large droplets migrating toward the
channel center when coalescence is allowed, as well as a variable droplet size dependent on
volume fraction and viscosity ratio. The study suggests that realistic emulsion behaviors likely
lie between the two extremes of complete coalescence and no coalescence.

Yi et al. [56] investigated the dynamics of oil droplets dispersed in an ethanol-water solution
in turbulent shear flow without surfactants. They find that droplet sizes’ probability density
function (PDF) adheres to a log-normal distribution, indicating a fragmentation-driven droplet
generation process. By employing the Hinze theory for comparison, the study identified a scaling
dependence of droplet size on Reynolds number.

Yi et al. [56] observed that the effective viscosity increased with the oil volume fraction but at
a less pronounced rate than solid particle suspensions. The authors attributed this behavior to the
inherent characteristics of the dispersed phase, such as deformability and size distribution. They
observed that the emulsion exhibits a shear-thinning behavior as the shear rate increases, which
can be quantitatively modeled using the classical Herschel-Bulkley equation, with a dependency
on the volume fraction for the flow index.

More recently, Yi et al. [57] has focused on understanding the hydrodynamics of emulsions
in turbulent shear flow across varying oil volume fractions. The authors found that the average
droplet size in O/W and W/O emulsions is relatively insensitive to the oil volume fraction.
The authors concluded that droplet fragmentation is governed by dynamic pressure within the
boundary layer rather than energy dissipation rates, as indicated by the Weber number.

Yi et al. [57] observed that the effective viscosity follows an increasing trend as the dispersed
phase volume fraction increases, with O/W emulsions showing higher effective viscosities than
W/O under similar Reynolds numbers. However, this asymmetry in the effective viscosity, and
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also observed in droplet size, was attributed to the presence of surface-active contaminants,
primarily originating from the wall of the containment. By introducing an oil-soluble surfactant,
the authors were able to recover the symmetry in both droplet size and effective viscosity for
O/W and W/O emulsions.

2.3 Electrical submersible pumps

Dutra Leite Do Amaral [58] developed a model for evaluating the performance of ESP and
conventional centrifugal pumps in handling oils with medium to high viscosities. The author
used experimental data, collected from tests involving fluids with wide variety of viscosities,
to refine and validate the proposed model. The proposed model were benchmarked against the
experimental data and existing literature.

Vieira et al. [59] work serves as a comprehensive parametric study, contrasting various
correlations from existing literature against experimental data to address hydraulic losses in ESP,
specifically in the context of viscous fluid flow. The study distinguishes itself by its meticulous
analysis aimed at identifying the most accurate closure relationships for different hydraulic
losses, including impeller friction, disk friction, and diffuser losses.

Vieira et al. [59] provided an invaluable review of the available models and correlations and
compared which combination is the most appropriate for accurately modeling the hydraulic
losses in ESP. The authors quantified the predictive accuracy of diverse theoretical models and
combinations using Root Mean Square Error (RMSE) values, which revealed that the most
precise correlations vary depending on the specific conditions under study. However, the study
also uncovers limitations in the existing parameterizations. While some models excel in case-
specific settings, they may lack general applicability across different operational conditions. This
is especially true when accounting for fluid viscosity and rotational speed effects, indicating that
further research is warranted to extend the model’s adaptability.

Paternost et al. [60] proposes a correlation to estimate the pressure gain of ESP operating
under viscous and gas-liquid two-phase flows. The correlation is based on Euler’s equation and
theoretical losses inside the pump and was validated experimentally. The correlation allows the
prediction of pump performance across a wide range of viscosities and rotational speeds. The
authors observed that large bubbles at the pump intake, resulting from coalescence, negatively
impact pump performance, leading to surging conditions. The paper also identifies that higher
liquid viscosities exacerbate this problem due to low turbulence and fewer bubble breakups.

Biazussi [61] developed and experimentally evaluated a drift flux model for the ESP operating
under gas-liquid two-phase flows. The experimental tests were performed on three different ESP
configurations to determine characteristic curves under variable flow rates, inlet pressures, and
rotational speeds. In the single-phase water flow tests, the author used the correlation model
based on Paternost et al. [60] to describe the ESP head. In the case of two-phase (water-air)
flows, the developed model, when fitted with experimental data, demonstrated high accuracy in
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capturing the main trends of the ESP behavior. The authors observed that the centripetal and
Coriolis fields affect the velocity and phase distribution. Furthermore, the drift parameter in the
model was notably significant only for pumps with the smallest capacity, suggesting that gas
bubble drift becomes negligible at high liquid flow rates.

Ofuchi et al. [62] employed dimensional analysis and CFD simulations to study head and
flow rate degradation in ESP when dealing with highly viscous fluids. The dimensional analysis
revealed that while normalized rotational Reynolds numbers could generalize viscosity effects
for a given ESP, they were insufficient for correlating data across different pumps. However,
a trend was observed where head degradation occurred along curves of constant normalized
specific speeds, regardless of the pump geometry. Moreover, the author presented a model based
on Stepanoff [63] to correlate head and flow rate correction factors. It agreed well with the
numerical results for ESP and the experimental data for radial-type pumps.

Morrison et al. [64] investigated the flow behavior in a mixed-flow type pump with varying
fluid viscosities using CFD. The primary aim was to modify the conventional pump affinity laws
to incorporate the effects of viscosity. By simulating various fluids under different operating
conditions, the authors assessed how fluid viscosity influences the impeller and diffuser’s
performance. Dimensionless parameters like flow coefficient, head coefficient, and rotational
Reynolds number were utilized to characterize the changes in pump performance with respect to
fluid viscosity.

The study validated its CFD-derived modified affinity laws with empirical data from various
pump designs with different specific speeds and fluid viscosities. The modified laws produced a
common performance curve irrespective of operating conditions and viscosities for each specific
pump design. The results also indicated that the pump’s performance is more adversely affected
by high-viscosity fluids at higher flow rates. Furthermore, the study demonstrated that maximum
efficiency is lowered, and the flow rate at the best efficiency point decreases as the fluid viscosity
increases.

Patil and Morrison [65] aimed to provide a simplified methodology for predicting centrifugal
pump performance changes due to variations in fluid viscosity. The authors introduced an ap-
proach that blends the Modified Affinity Law for viscosity with friction loss modeling. The head
coefficient, flow coefficient, and rotational Reynolds number were found to be key parameters for
characterizing pump performance across different fluid viscosities. A dimensionless parameter
termed the Morrison number, was proposed as a function of the rotational Reynolds number to
delineate the impact of operational conditions like fluid viscosities and rotational speeds.

Zhu et al. [66] proposed a mechanistic model to estimate the pressure gain in ESP operating
under viscous-fluid flow conditions. The proposed model is based on Euler equations for
centrifugal pumps and introduces the concept of a best-match flow rate, which occurs when
the flow direction of the impeller outlet matches the intended flow direction. The mismatch of
velocity triangles, resulting from velocities different from the best efficient point, is to determine
recirculation losses. The proposed model also considers additional head losses due to flow-
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direction change, friction, and leakage. The authors argue that once the best-match flow rate is
determined, the hydraulic head under conditions of viscous fluid flow can be reliably calculated.
They validated the model with a large dataset and argued that the model could be calibrated
against catalog curves provided by manufacturers.

More recently Ofuchi et al. [67] proposed a novel, geometry-independent model to estimate
head and flow rate degradation across a broad spectrum of Reynolds numbers, incorporating
high fluid viscosities and low rotating speeds, differently from the other methods for adjusting
the performance of centrifugal pumps with viscous fluids which are either pump-specific or rely
on hard-to-obtain geometric parameters. The authors’ proposed model utilizes readily available
design parameters and the water baseline curve for its calculations. They validated the model
with experimental data from two mixed-flow and one radial type of ESP. However, further
validation with a more diverse set of pumps and extensions is still required to accommodate
gas-liquid flow effects.

Zhu et al. [68] proposed a model based on the Brinkman [69] to estimate the effective
viscosity of emulsion inside the ESP. Their experiments showed that the model yields results
within an error band of 10% error for oil-water emulsions when predicting the ESP pressure
gain.

Bulgarelli et al. [48] proposes model to predict the relative viscosity of stable emulsions
in ESP. The model takes into account the properties of the continuous phase and operational
parameters of the ESP. The authors also carried out experiments to understand ESP performance
under the emulsions condition. The experimental results showed the impact of surfactants on
effective viscosity, the influence of demulsifiers on relative viscosity, and a correlation between
ESP rotational speed and relative viscosity.

Bulgarelli et al. [47] focuses on the characterization of rheological behavior of stable and
unstable W/O emulsions in the context of ESP. The authors introduce a criterion based on the slip
ratio between the dispersed and continuous phases to understand the flow behavior of emulsions
in centrifugal pumps. The study identified a linear relationship between the Sauter mean diameter
and maximum droplet diameter, which may be directly associated with the ESP’s geometrical
properties and the number of stages. The study also noted that stable emulsions exhibited a slip
ratio of one in the impeller, indicating a homogeneous flow. Conversely, unstable w/o emulsions
exhibited drag reduction, likely due to slip between phases. The authors further introduce a
dimensionless parameter termed the Slip Relevance number to differentiate between stable and
unstable emulsion behaviors.

2.4 Centrifugal pump transient

The Dazin et al. [70] study presents a model based on angular momentum and energy equa-
tions to predict various internal parameters, including torque, power, and impeller head, for
turbomachinery under transient conditions. The model is validated by comparing its predictions
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with experimental data from a single-stage, single-volute radial flow pump during fast startup
periods. The model exhibited good agreement with experimental results. The authors identified
two distinct phases in the startup phase: an initial stage where the transient pressure signifi-
cantly exceeds the steady-state value due to substantial angular acceleration and a subsequent
phase dominated by flow acceleration where the pressure drops below the steady-state value.
Furthermore, the authors observed that the behavior of a pump impeller depends not only on the
acceleration and flow rates but also on the velocity profiles and their evolution. Dazin et al. [70]
suggest that future refinements to the model would include a more detailed evaluation of flow
losses, velocity profiles, and equivalent pipe lengths.

Chalghoum et al. [71] conducted a theoretical and numerical analysis to investigate the
transient flow characteristics inside a centrifugal pump during its starting period. The authors
considered a one-dimensional equation flow approximation. The authors considered that the
system is governed by a set of partial differential equations (PDE), taking into account the motion
and continuity. This set of PDE was solved numerically using the method of characteristics
(MoC). The pump impeller was modeled as a series of straight conduits connected in parallel. The
study performed numerical simulations under varying discharge valve openings and compared
the outcomes with existing experimental data, revealing a satisfactory match.

Chalghoum et al. [71] observed that the pressure increase within the pump is notably
significant in scenarios involving short startup periods and large pipeline water mass. The study
also explored the impact of impeller geometric properties such as diameter and number of blades
on pressure evolution. It was observed that the valve opening percentages and the starting
time significantly affect the pressure evolution during the startup period but have no substantial
influence on the steady-state pump characteristic curve. On the other hand, the impeller’s radius
and blade height were found not to affect the transient characteristic of the system.

Zhang et al. [72] employed CFD using a three-dimensional model of a single-stage centrifugal
pump with a dynamic mesh method. The study aimed to simulate the pump’s unsteady, three-
dimensional, incompressible viscous flow during its startup phase. The authors found that
rotor-stator interactions introduce minor fluctuations in the flow rate, even under stable operating
conditions. Importantly, they highlighted that the quasi-steady assumption is inadequate for fully
capturing the transient behavior, especially during the initial stages of startup.

The study by Kullick and Hackl [73] introduced a detailed state-space model for ESP in the
context of deep geothermal energy systems. This model is comprehensive, encompassing electri-
cal, mechanical, and hydraulic subsystems. However, it considers the pipeline dynamics with
the dynamic Bernoulli equation, which neglects the pressure transients. The authors considered
a simulation scenario where a Megawatt ESP system situated 950m below the surface, which
handles geothermal fluid at a temperature of 140 ◦C and a flow rate of 0.145m3 s−1. Notably,
the simulations captured electrical frequency changes from 0Hz to 60Hz and voltage amplitude
adjustments from 0V to 5750V during the system’s startup phase. Moreover, the study investi-
gated the role of motor self-excitation and its effects on system dynamics. While the mechanical
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two-mass system showed low-pass characteristics, cable effects were minimal at studied frequen-
cies. The work’s primary contributions include identifying key system components, abstraction
and rigorous simplification of governing physics, and a comprehensive and detailed state-space
modeling framework. However, the paper also notes that it lacks experimental validation.

Tanaka and Takatsu [74] performed both experimental and CFD analyses to study the transient
behaviors of centrifugal pumps during rapid startup. The authors measured instantaneous pressure
and flow rate at the pump’s suction and discharge ports while capturing the rotational speed.
The transient behaviors during the startup were found to deviate considerably from quasi-steady
changes, particularly at the early stages, similar to the observations of Zhang et al. [72]. The
authors attributed the deviation to the inability of the flow field to fully develop at high flow rate
changes, as compared to quasi-steady changes.

Li et al. [75] also utilized CFD but leveraged the Detached Eddy Simulation (DES) model
to investigate fast pump startups. Their simulations were validated against experimental data
and focused on identifying the most suitable startup time. The results revealed that optimal
performance is attainable when the startup time is equal to the difference between the time
constants of the pump and the downstream valve.

Similarly to the work of Chalghoum et al. [71], Omri et al. [76] analyzed rapid startup
conditions in pumps by solving a set of PDE accounting for continuity and motion. These
equations were solved using the MoC, and the results were experimentally validated. The study
found that faster startups were associated with increased torque oscillations and more significant
head impact. A positive correlation was also observed between transient head fluctuation and the
final pump flow rate.

2.5 Bond graphs

Given the possibility of easily using the bond-graphs in systems that have various physical
domains, this technique has been widely used in mechatronics, where several books such as
Damic and Montgomery [4], Merzouki et al. [5] and Das [77] used the bond-graphs to model
systems that depend on the electrical, hydraulic and mechanical domains. In addition, it is of
particular interest in this discipline because it enables easy modelling of sensors, valves, and
other components.

In addition to the mechatronics, the bond-graphs has been used for the modelling of biomolec-
ular systems such as in Gawthrop and Crampin [78], also in the organs modelling as in Moin et

al. [79] and in cardiovascular system modelling as in Le Rolle et al. [80]. In engineering, the
bond-graphs have been used to develop more robust diagnostic techniques as in Abdallah et al.

[81], Touati et al. [82] and Benmoussa et al. [83].
In fluid dynamic systems, there is some development, such as in the Karnopp [84], which

is one of the first works in this area, where incompressible and compressible unidimensional
flow are modelled considering the flow inertial effects. In addition, Baliño et al. [85] used the
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bond-graphs as an approach to solve CFD (Computational Fluid Dynamics), for single-phase and
compressible flows. Moreover, Li et al. [86] used the bond-graphs to model a power regeneration
system that includes positive displacement pumps, emulsions, and valves.

In the context of centrifugal pumps, one of the efforts to employ bond graph modeling is
presented by Paynter [87]. The authors introduce the concept of an Eulerian Turbomachine
(ETM), which refers to turbines and centrifugal pumps. The authors generically model the ideal
ETM as a modulated gyrator port. In addition to the modulated port, the authors propose two
additional loss terms: one capturing the mechanical dissipation related to the shaft and the other
accounting for hydraulic losses due to whirl and shock losses. Furthermore, the author presents
various case studies to validate the proposed dynamic models for ETM, focusing on pump startup
and control simulations.

Later, Tanaka et al. [88] extended the modeling of centrifugal pumps using bond graphs,
incorporating the mechanical domain by accounting for the rotational inertia of the pump shaft.
The energy conversion between the mechanical and hydraulic domains and the system loss
relationships were derived from the steady-state characteristics of each pump component. This
model was validated against experimental data, exhibiting high accuracy in capturing dynamic
characteristics, even in rapid transient states. The authors argue that the bond graphs proved
robust enough to make predictions based solely on steady-state parameters. Furthermore, the
authors introduce a new bond graph model for a torque converter based on the centrifugal pump
model. This new model was found to share its basic structure with existing models, further
attesting to the versatility of bond graphs in modeling complex fluid mechanical systems.

Higo et al. [89] investigate the reliability of utilizing bond graph lumped parameter models
for capturing the dynamic behavior of pipelines, critical components in hydraulic systems. The
proposed bond graph models are validated through comparative analysis against the Method
of Characteristics (MoC) and experimental results. The study reveals that bond graph models
yield predictions with similar precision to those obtained via MoC when an appropriate number
of lumped elements are incorporated into the pipe model. The authors assert that bond graph
methods offer a robust framework for the design and analysis of hydraulic circuits.

2.6 Identifiability analysis

The problem of estimating unknown properties based on measurements indirectly related
to these parameters is referred to as the inverse problem. It is a common challenge shared with
various fields, such as biomedical and geophysical imaging and groundwater flow modeling
[13]. However, solving inverse problems can be challenging due to non-guaranteed existence,
non-uniqueness, and stability issues. Additionally, multiple parameters may potentially provide
satisfactory fits to a given data [10, 9, 11, 90].

In this context, the identifiability analysis aims to determine if a specific system parameter
(or a set of parameters) can be accurately estimated uniquely (globally or locally) based on the



46

available input and output states. The structural identifiability analysis assumes an ideal scenario
where the observed states are noise-free, and the model itself is error-free [91, 90, 92]. This
analysis, also known as prior identifiability, can be performed without actual experimental data.
However, as noted by Tuncer and Le [92], while structural identifiability is necessary, it alone is
insufficient to identify model parameters accurately in noisy real-world data.

Various methods have been developed to analyze a system’s local and global structural
identifiability. Chis et al. [93] and Raue et al. [94] conducted comparative studies of these
methods found in the literature, focusing on biological systems. Castro and Boer [95] introduced
a simple scaling method, which exploits the invariance of the equations under parameter scaling
transformations. More recently, Dong et al. [96] proposed a method based on differential
elimination. It is important to note that structural identifiability alone does not account for the
quantity and quality of available data or the numerical optimization algorithm employed [97, 92].
Therefore, practical parameter estimation in real-world data necessitates practical identifiability
as a prerequisite, with structural identifiability serving as a necessary condition [96, 97].

2.7 Inverse problems

According to Karniadakis et al. [98], the inverse problems are ill-posed, and solve them is
frequently prohibitively expensive computationally requiring complicated formulations, novel
algorithms, and complex computer codes. Also, the standard techniques are still incapable of
solving real-life physical problems involving missing, gappy, or noisy boundary conditions.

The solution of an inverse problem is tightly connected with the data, information, available
which comes with an uncertainty that may vary according to the information source. The noisy
data will affect the inverse problem solution by adding uncorrelated information to the true model.
The only way to overcome this difficulty is by using more observational data [12]. However, as
stated by Karniadakis et al. [98], even with the prospect influx of multi-fidelity data of different
sources being collected or generated, in many real cases, such data cannot yet be seamlessly
integrated into current physical models.

Several methods have been developed to estimate unknown parameters of ordinary differential
equations (ODE). The Nonlinear Least Squares (NLS) method is widely adopted due to its
versatility and applicability to various ODE systems. However, it is computationally intensive,
and the inaccuracy in numerical approximations of derivatives may pose challenges, particularly
for stiff systems [99, 100, 101]. In addition to NLS, other methods, such as collocation methods
[99], Gaussian process-based approaches [102], Bayesian methods [103], and the recently
proposed two-stage approach using Neural ODE [101], are a few alternative techniques for
parameter estimation. The physics-informed neural network is one of the recent neural network-
based methods for parameter estimation for ODE/PDE.

In this context, the neural network has recently gained attention on inverse problems due to
its ability to handle complex and ill-posed problems. Raissi et al. [104] proposed the Physics-
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informed neural networks (PINN) to solve forward and inverse problems in the context of
differential equations.It trains the neural networks differently from the standard approach. The
method takes into account the physics of the problem while formulating the loss function. The
physics of the problem is introduced in the loss function by minimizing the residue of the
differential equations of the problem at some collocation points. Generally, the derivatives of the
predicted unknown are calculated using automatic differentiation [105].

The neural network and deep learning success in handling complex problems of interest, not
only on inverse ill-posed problems, derives from its capability to decompose the original complex
problem into several simpler representations and tasks. Thus, deep-learning enables a computer to
construct complex concepts from simpler ones [106, 107]. Deep learning approaches, according
to Karniadakis et al. [98], are capable of extracting features from vast amounts of multi-fidelity
observational data. Therefore, they can explore large design spaces, find multi-dimensional
correlations, and handle ill-posed problems.

Despite being capable of dealing with complex problems without any additional procedures,
the deep learning techniques that rely solely on data may present physically inconsistent or
implausible predictions resulting in poor generalization performance. In this context, the PINN
are a subset of deep learning algorithms that combine data with abstract mathematical operators,
such as PDE with or without missing physics. They yield more interpretable machine learning
methods robust to imperfect data and able to deliver accurate and physically consistent extrapola-
tion predictions. [98]. However, as mentioned by Jagtap et al. [108], the PINN have limitations.
One is the inaccuracy associated with solving high-dimensional non-convex optimization prob-
lems that may result in local minima. The other limitation is the high computational cost of
training deep neural networks and the long-time integration of the governing PDE.

The PINN was further developed to different variants like conservative PINN (cPINN) [109],
extended PINN (XPINN) [110], hp-VPINN [111], Parareal PINN (PPINN) [112], Separable
PINN [113] etc. Furthermore, McClenny and Braga-Neto [114] proposed a self-adaptive weights
technique that automatically tuned the weights for different loss functions in a multi-loss function
problem in PINN problem. In the present study, we consider self-adaptive weights for calculating
the total loss. PINN and its variants were considered in inverse problems like unsaturated
groundwater flow [115], diesel engine [116], supersonic flows [117] to name just a few.
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3 Theoretical framework
This chapter presents a brief overview of the theory, the development of the bond graph

elements used in this study and the structural identifiability analysis, structured into eight
sections. The first section introduces the assumptions regarding multiphase flow that underpin
this research. The second section delineates the bond graph representation of pipelines, grounded
in the assumptions detailed in Section 3.1. The subsequent section offers a succinct review of
flow losses within pipelines. The fourth section delves into the modeling of centrifugal pumps
using bond graph techniques. The fifth section is dedicated to discussing losses associated with
centrifugal pumps. The sixth section provides an overview of valve dynamics. The seventh
section discusses the characteristics and modeling of twin-screw pumps. Lastly, the eighth
section presents the concept of structural identifiability analysis. Readers seeking a foundational
understanding of bond graph theory are referred to Chapter A.

The primary objective of this chapter is to elucidate the bond graph modeling of each
subsystem within an ESP system, encompassing pipelines, valves, centrifugal pumps, and twin-
screw pumps. It details the dynamics of pipelines in Sections 3.2 and 3.3, valve dynamics in
Section 3.6, the dynamics of centrifugal pumps in Sections 3.4 and 3.5, and the behavior of
twin-screw pumps in Section 3.7.

3.1 Multiphase flow assumptions

Given the complexity inherent in multiphase flow, particularly in systems involving emulsions,
a simplifying assumption is often adopted where the emulsion is considered a dispersed flow
and treated as a pseudo-fluid (Assumption 3.1.1). Thus, the homogeneous model is used for
the pseudo-fluid density and the viscosity is considered the effective viscosity from emulsion
literature. Consequently, the emulsion’s non-Newtonian behavior hinges on the selected model
for effective viscosity.

These assumptions simplifies the mathematical and computational modeling by considering
the emulsion as a homogeneous mixture with uniform properties. It enables us to simplify
the complex interfacial dynamics between the immiscible liquids constituting the emulsion.
However, it is important to acknowledge that this approach may only partially capture the distinct
flow characteristics and phase interactions, especially under conditions where phase separation
is pronounced.

Assumption 3.1.1. Emulsions are treated as pseudo-fluids with a dispersed flow.

The applicability of this assumption is most justifiable under conditions where the emulsion is
well-mixed and exhibits stable characteristics, with minimal phase separation (Assumption 3.1.2)
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within the time interval analyzed. Furthermore, it is particularly valid when the relative velocities
between the phases are low.

Assumption 3.1.2. Stable emulsion conditions within the time interval studied.

Furthermore, the pseudo-fluid assumption assumes that the temperature, pressure, and shear
rate do not significantly alter the stability and rheology of the emulsion (Assumption 3.1.3).
While these factors can indeed influence the properties of emulsions, their impact is considered
negligible for the initial development of the model.

Assumption 3.1.3. Negligible impact of temperature, pressure, and shear rate on emulsion

properties.

It is important to highlight that in experimental setups and real-world applications, emulsion
properties are not static but vary due to several factors. These include turbulence and shear forces
generated by the ESP, valves, and other inline devices. These interactions can significantly alter
the properties of the emulsion as it moves through the system. Additionally, the fluid’s chemical
properties, the emulsion’s inherent stability, and the presence or addition of emulsifiers and
surfactants further complicate the emulsion characterization. Furthermore, temperature gradients
along the pipeline introduce another layer of complexity by significantly affecting emulsion
properties.

In the specific context of the ESP system analyzed in this study, several operational character-
istics justify the pseudo-fluid assumption. The system’s closed-loop nature provides a controlled
environment where the fluid’s properties, particularly temperature, can be regulated effectively
through a heat exchanger. This control reduces the variations in the emulsion’s rheological
properties that would otherwise arise from temperature fluctuations.

Moreover, the operational parameters of the ESP system, such as the volume of the emulsion
compartment, the operating volumetric flow rate, and the duration of transient experiments,
support the assumption of emulsion stability. Under these conditions, it is reasonable to infer that
the emulsion remains relatively homogeneous and stable throughout the duration of a dynamic
experimental run. This stability implies that the emulsion’s properties, including viscosity, do
not exhibit significant temporal variations, thus aligning with the pseudo-fluid model assumption.
The experimental details will be further discussed in Section 4.1.

This assumption of emulsion stability and uniformity allows for a considerable reduction in
the complexity of the modeling process. While it introduces a certain level of abstraction from the
intricacies of actual multiphase flow behavior, this simplification is deemed acceptable within the
scope of this study. It strikes a balance between the need for a manageable computational model
and the desire to capture the essential dynamics of the ESP system. Future work could extend
this model to incorporate more complex rheological characteristics of emulsions, particularly in
cases where the stability assumption may not hold or where the effects of external factors like
emulsifiers become significant.
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In the subsequent development of the bond graph model for the ESP system, the pseudo-fluid
assumption is employed with an understanding of these limitations. The implications of this
simplification on the model’s accuracy and applicability are further examined with the validation
with experimental data.

3.2 Pipeline transient

In the context of the ESP system dynamic analysis and modeling, it is fundamental to consider
the dynamics of the pipeline downstream and upstream of the ESP. In this section, it is presented
the dynamic equations that govern fluid dynamics in pipes, the continuity (Section 3.2.1) and
the momentum (Section 3.2.2) equations. Then, in Section 3.2.4 the bond graph elements are
obtained from these equations, which can be used to couple to the other elements of the ESP
system.

3.2.1 Continuity equation

The analysis of transient behaviors in pipeline systems is often initiated with the general
continuity equation for three-dimensional fluid flows. For the scope of this work, a less rigorous
but conceptually insightful approach is adopted, with a more exhaustive derivation available in
Chaudhry [118]. The differential form of the continuity equation is given by

∂ρ

∂t
+∇ · (ρv) = 0, (3.1)

where ρ denotes the fluid density and v represents the flow velocity vector. Equation (3.1) states
that the rate at which mass enters the system is equal to the rate at which it exits, as indicated by
the divergence term ∇ · (ρv). Concurrently, the term ∂ρ/∂t accounts for the accumulation or
depletion of mass within the system.

In practical applications involving ducts, Equation (3.1) can often be simplified to a one-
dimensional form by assuming a two-dimensional flow, and negligible flow in the vertical
direction when compared to the axial flow. The one-dimensional continuity equation is then
expressed as:

∂(ρA)

∂t
+
∂(ρuA)

∂x
= 0, (3.2)

where u is the axial fluid velocity and A is the cross-sectional area of the pipe. By expanding the
terms of Equation (3.2), the equation becomes:

A
∂ρ

∂t
+ ρ

∂A

∂t
+ uA

∂ρ

∂x
+ ρA

∂u

∂x
+ uρ

∂A

∂x
= 0. (3.3)
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Isolating ρA as a common factor, we rewrite the equation as:

ρA

(
1

ρ

∂ρ

∂t
+

1

A

∂A

∂t
+
u

ρ

∂ρ

∂x
+
u

A

∂A

∂x
+
∂u

∂x

)
= 0. (3.4)

By examination, we identify that specific terms within the parentheses can be rewritten as
components of total derivatives:

dρ

dt
=
∂ρ

∂t
+ u

∂ρ

∂x
, (3.5)

dA

dt
=
∂A

∂t
+ u

∂A

∂x
. (3.6)

Incorporating these total derivatives into the equation, we obtain:

ρA

(
1

ρ

dρ

dt
+

1

A

dA

dt
+
∂u

∂x

)
= 0. (3.7)

Dividing the equation by ρA, we arrive at the following form:

1

ρ

dρ

dt
+

1

A

dA

dt
+
∂u

∂x
= 0. (3.8)

The density variation with pressure can be expressed in terms of the fluid bulk modulus B as
follows:

B = ρ
dP

dρ
∴
dρ

dt
=

ρ

B

dP

dt
, (3.9)

where P is absolute the pressure. Additionally, for conduits with elastic walls, the cross-sectional
can vary according to the pressure variation. Thus, more generally, we have that

1

A

dA

dt
=

1

KE

dP

dt
, (3.10)

where KE is a constant that describes the conduit wall deformation due to pressure. For conduit
walls with linearly elastic walls, Chaudhry [118] deduced that it is given by:

1

KE

=
1

ηEym
d

− P

2

, (3.11)

where d is the pipe diameter, η is the pipe wall thickness, and Eym is Young’s modulus of
elasticity. For P/2 << ηEym/d, the KE equation simplifies to

1

KE

=
1

ηEym
d

. (3.12)
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Replacing these parameters in Equation (3.8) we have:

(
1

B
+

1

KE

)
dP

dt
+
∂u

∂x
= 0. (3.13)

Then, expanding the total derivatives and rearranging, we have:

∂P

∂t
+ u

∂P

∂x
+ ρa2

∂u

∂x
= 0, (3.14)

where a is defined as:
a2 =

BKE

ρ(KE +B)
, (3.15)

where a represents the velocity of the pressure wave in a conduit filled with a slightly compress-
ible fluid, as mentioned by Chaudhry [118].

3.2.2 Momentum equation

The fluid dynamics can be comprehensively described by the Navier-Stokes equations. In
their three-dimensional form, these equations are given as:

ρ
dv

dt
= ρg −∇P +∇ · Γ, (3.16)

where v denotes the fluid velocity vector, ∇P represents the pressure gradient, ρ is the fluid
density, g accounts for body force acceleration, and Γ is the stress tensor.

Analogous to the simplifications discussed in Section 3.2.1, Equation (3.16) can be reduced to
a one-dimensional form for practical applications involving ducts. This reduction is justified by
assuming a two-dimensional flow in the xy-plane, thereby neglecting variations in the z-direction.
The one-dimensional momentum equation is then given by:

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −ρg sin(ξ)− ∂P

∂x
+
∂Γxy
∂y

, (3.17)

where ξ is the angle of the conduit with respect to the ground, and Γxy is the shear stress
component in the xy-plane.

Assuming a Newtonian fluid, the shear stress Γxy is proportional to the velocity gradient in
the y-direction, as expressed by:

Γxy = µ
∂u

∂y
, (3.18)

where mu is the fluid viscosity. Substituting this into Equation (3.17), we obtain:

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −ρg sin(ξ)− ∂P

∂x
+ µ

∂2u

∂y2
, (3.19)

assuming the viscosity is constant along y-direction. The term µ∂u/∂y will be further discussed
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in Section 3.3.

3.2.3 Fluid dynamics with continuity and momentum equations

Solving the coupled Navier-Stokes (Section 3.2.2) and continuity equations (Section 3.2.1)
analytically is often intractable due to the inherent complexity of fluid dynamics. This complexity
frequently necessitates the use of numerical methods for solutions. Among these, the Method of
Characteristics (MoC) is commonly employed. The MoC is particularly effective as it transforms
the partial differential equations into ordinary differential equations along the characteristic lines,
thereby simplifying the computational requirements. Furthermore, the boundary conditions
definition is a critical aspect that must be carefully selected based on the specific engineering
application under consideration.

3.2.4 Bond graph

In this section, the focus is on deriving the essential elements for representing one-dimensional
fluid flow in pipelines through bond graph modeling. The derivation is based on the one-
dimensional incompressible Navier-Stokes and the continuity equations.

3.2.4.1 One-dimensional incompressible flow representation

Starting from the Equation (3.19), we have that the one-dimensional Navier-Stokes equation
is given by

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −ρg sin(ξ)− ∂P

∂x
+ µ

∂2u

∂y2
.

The bond graph framework represents the flow variable by the volumetric flow rate, denoted
as Q. Thus, considering an incompressible flow, the velocity u can be expressed in terms of Q as
Q = A(x)u. Substituting this into Equation (3.19), and considering the height (z) as a function
of x, we obtain

ρ

A(x)

∂Q

∂t
+
ρQ2

A(x)

∂1/A(x)

∂x
= −ρg dz

dx
− ∂P

∂x
+

µ

A(x)

∂2Q

∂y2
. (3.20)

The terms in Equation (3.20) have the following physical interpretations:

ρ

A(x)

∂Q

∂t︸ ︷︷ ︸
Inertia

+
ρQ2

A(x)

∂1/A(x)

∂x︸ ︷︷ ︸
Convective

= −ρg dz
dx︸ ︷︷ ︸

Gravity

− ∂P

∂x︸︷︷︸
Pressure

+
µ

A(x)

∂2Q

∂y2︸ ︷︷ ︸
Viscous

. (3.21)

The viscous friction term, denoted as Rf , will be discussed in detail in Section 3.3.1. For the
current analysis, we consider Rf as a constant.

In the bond graph framework, systems are described using lumped elements. To account for
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this, we integrate Equation (3.20) over x from 0 to l:

If
∂Q

∂t
+RcQ− (xl − x0)RfQ+ ρg(zl − z0) + (Pl − P0) = 0, (3.22)

where

If =

∫ l

0

ρ

A(x)
dx, (3.23a)

Rc = ρQ

∫ l

0

∂1/A(x)

∂x
dx =

ρQ

2

(
1

Al
− 1

A0

)
. (3.23b)

From Equation (3.22), the system can be represented by a 1-junction bond graph connected to
inertia (If ), resistance (Rc and Rf ), and source of effort elements, as illustrated in Figure 3.1.

1
P0

Q0

I: If R: RfR: Rc

Se: ρg∆z

Pl

Ql

Figure 3.1: Bond graph obtained from the integration of the momentum equation.

It is important to note that in Figure 3.1 the ∆z = zl − z0. Moreover, if we consider a pipeline
segment with constant cross-sectional area, the Equation (3.23) can be written as:

If =
ρl

A
, (3.24a)

Rc = 0. (3.24b)

where l is the pipeline segment length. Notably, the term Rc is associated with the dynamic
pressure of the fluid, which becomes significant only when there is a variation in the pipeline’s
cross-sectional area.

3.2.4.2 Continuity equation representation

In this section, the objective is to incorporate the effects of fluid compressibility and conduit
wall deformation into the bond graph representation. Starting from Equation (3.13), the continuity
equation is given by: (

1

B
+

1

KE

)
dP

dt
+
∂u

∂x
= 0.
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In the bond graph framework, the flow variable is represented by the volumetric flow rate,
denoted as Q. The velocity u can be expressed in terms of Q as Q = A(x)u. Differentiating
with respect to x and assuming a constant cross-sectional area (∂A/∂x = 0), we obtain:

∂u

∂x
=

1

A

∂Q

∂x
. (3.25)

In the bond graph, the systems are described using lumped elements. Therefore, for a finite pipe
segment with ∆x length, the spatial derivative can be approximated as:

∂Q

∂x
=
Qi+1 −Qi

∆x
=⇒ ∂u

∂x
=

1

A

Qi+1 −Qi

∆x
, (3.26)

where Qi and Qi+1 are the flow rate entering and leaving the i-th pipe segment, respectively.
Substituting Equation (3.26) into Equation (3.13), we arrive at:

(
1

B
+

1

KE

)
dP

dt
= − 1

A∆x
(Qi+1 −Qi), (3.27a)

∆xA

(
1

B
+

1

KE

)
dP

dt
= Qi −Qi+1. (3.27b)

From the tetrahedron of state, we can observe that this equation essentially describes the relation-
ship between effort (e(t)) and displacement (q(t)) but derived in time. The Equation (3.27b) can
be represented by the following bond graph, shown in Figure 3.2.

0
Pi

Qi

C: Ceq

Pj Qj

Pi+1

Qi+1

Figure 3.2: C-element for pipelines.

The equivalent compliance Ceq is defined as:

Ceq = ∆xA

(
1

B
+

1

KE

)
. (3.28)

It is important to note that Equation (3.28) accounts for the compliance effects due to both fluid
compressibility and wall elasticity. The equation allows for separating these two contributions,
enabling the derivation of a distinct C-element for each.

For completeness, to establish a standard relationship between effort e(t) and displacement
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q(t), we integrate Equation (3.27b) over time. We commence by isolating dP
dt

in Equation (3.29):

dP

dt
=

1

∆xA
(

1
B
+ 1

KE

)(Qi −Qi+1). (3.29)

Integrating both sides of Equation (3.29) with respect to t yields:

∫ P (t)

P0

dP =
1

∆xA
(

1
B
+ 1

KE

)
∫ t

t0

(Qi −Qi+1)dt (3.30)

Upon integration, we obtain:

P (t)− P0 =
1

∆xA
(

1
B
+ 1

KE

)((Vi(t)− Vi(t0))− (Vi+1(t)− Vi+1(t0))), (3.31)

where P0 denotes the initial pressure, Vi(t) and Vi+1(t) represent the volumes corresponding
with Qi and Qi+1 at time t and t0, the initial time instant.

Although P0, Vi(t0), and Vi+1(t0) are essential for an absolute representation of these vari-
ables, they are often omitted in bond graph modeling. This omission is motivated by focusing
on dynamic behavior rather than absolute states. Consequently, P0, Vi(t0), and Vi+1(t0) serve
to define the system’s equilibrium state but do not affect its intrinsic dynamics. This practice
is analogous to the frequent omission of the spring’s undeformed length when modeling mass-
spring systems, focusing instead on the deformation to capture the dynamics. Therefore, we can
omit these variables in Equation (3.31), and we obtain the following form:

Vi(t)− Vi+1(t) = ∆xA

(
1

B
+

1

KE

)
P (t), (3.32)

It is important to note that the energy stored in the fluid compressibility and wall deformation is
represented by the difference in volume between the pipe segment entrance and exit. Thus, we
define Vj(t) = Vi(t)− Vi+1(t). This leads to a more compact form:

Vj(t) = ∆xA

(
1

B
+

1

KE

)
P (t). (3.33)

3.3 Viscous flow in ducts

This section presents a brief overview of viscous flow in ducts. The objective is to introduce
the friction and local losses of a flow inside a duct, which can be a pipe, or the centrifugal pump
channel for instance.
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3.3.1 Friction losses

According to White [119], Weisbach proposed an empirical correlation to model pressure
losses in ducts, which accounts for the friction losses, and it is expressed as:

∆P = λ
ρL

dh

V 2

2
, (3.34)

where λ is the dimensionless friction coefficient, L denotes the length of the duct, dh represents
the hydraulic diameter, and V is the fluid average velocity within the duct.

The concept of frictional losses in ducts is fundamentally linked to the fluid’s shear stress,
denoted by Γ. This stress arises due to the presence of a velocity gradient in the fluid flow.
Specifically, for Newtonian fluids, the shear stress is proportional to the velocity gradient, ∂u/∂y,
as expressed by:

Γ = µ
∂u

∂y
. (3.35)

Given this relationship, it is necessary to know the velocity profile across the duct’s cross-
sectional area to quantify the frictional losses attributable to shear stresses. In the case of
laminar flows, deriving this profile is relatively straightforward, as illustrated by the classical
Hagen–Poiseuille flow, where the friction factor for laminar flow is determined by:

λlam =
64

Re
, (3.36)

where Re is the Reynolds number. However, characterizing this profile becomes considerably
more complex in turbulent flow conditions. In this study, due to the viscosity of the oil and
the emulsion, the flow is presumed to be laminar, as indicated by the Reynolds number in the
pipeline, which is below 2000.

In the context of bond graph notation, the friction loss as defined by Equation (3.34) can be
represented using a resistance element. From the tetrahedron of state and considering V = Q/A,
the friction losses in bond graph notation can be expressed as:

Rf = λ
ρL

dh

Q

2A2
, (3.37)

where A is the cross-sectional area.

3.3.2 Local losses

According to White [119] and Fox et al. [120], there are local or minor losses in a pipe
system besides the friction losses that occur along the duct length. Such losses arise from various
system factors like pipe entrances and exits, abrupt dimensional transitions from expansions
or contractions, and specific fittings such as bends, elbows, and tees. Additionally, the valves’
operational state, whether in a fully open or partially closed state, is a significant source of such
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losses. Therefore, these local losses are not always negligible. For instance, a partially opened
valve can induce a pressure drop comparable to or surpass the loss in a long pipeline.

As highlighted by White [119], the flow complexity within pipeline devices is notably high,
making the derivation of a generalized formulation quite challenging. Crane Co [121] elaborates
that local losses within these devices arise from various causes. These include alterations in
the fluid flow direction, the presence of obstructions in the flow trajectory, changes in the cross-
sectional area, and friction. It is important to note that friction is intrinsically affected by factors
such as the roughness of the internal surfaces, the piping’s inner diameter, and fluid attributes like
velocity, density, and viscosity. As a result of these intricacies, these losses are predominantly
obtained experimentally and then associated with the respective pipe flow parameters.

The local loss, denoted as Km, is commonly expressed by grouping the Darcy friction factor
with the pipe geometrical parameters L and d of the Weisbach equation. Thus, theKm expression
is given by:

∆P = λ
L

d

ρ

2
V 2, (3.38)

∆P = Km
ρ

2
V 2,

Km =
2∆P

ρV 2
. (3.39)

As noted by White [119], while Km is dimensionless, it is frequently associated more closely
with the raw size of the pipe in the literature than with parameters such as the Reynolds number
or the roughness ratio.

According to Crane Co [121], for the majority of valves and fittings operating in the complete
turbulence zone, losses from flow path length due to friction are considerably smaller when
compared to losses from directional changes, obstructions, and cross-sectional changes. As
a result, in turbulent conditions, the local loss Km can be considered approximately constant
and independent of the Reynolds number. This suggests that for any given obstruction, the
Km remains constant under fully turbulent flows. However, Crane Co [121] argues that in
non-turbulent flow regimes, the frictional effects tend to become more dominant compared to
other losses. This is especially true when the friction factor increases as the Reynolds number
decreases in both transition and laminar regimes. As a result, the resistance coefficient increases.

Crane Co [121] details that while resistance coefficients for various valves and fittings have
been derived from multiple investigations and works, obtaining this data for every specific size
and variant is challenging due to the time-intensive and expensive nature of the required tests.
Consequently, Crane Co [121] recommends using the manufacturer data or actual test data for a
system when available.

In the context of bond graph notation, the local loss as defined in Equation (3.39) can be
depicted using a resistance element. From the tetrahedron of state and considering V = Q/A,
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the local losses in bond graph notation can be expressed as:

Rm =
ρKmQ

2A2
. (3.40)

While Km is typically determined experimentally, as mentioned before, the cross-sectional area
A can present its own set of challenges for determination. To address this, we can incorporate it
with Km and determine experimentally. This simplifies Equation (3.40) to:

Rm =
ρKmaQ

2
(3.41)

with Kma = Km/A
2.

3.4 Centrifugal pumps

3.4.1 Power equation

The dynamics of a centrifugal pump can be modeled by analyzing the energy within a control
volume (CV) that encompasses the pump. The CV approach allows for a comprehensive analysis
of fluid behavior within the pump system. In such systems, the total energy is typically composed
of internal, kinetic, and potential energies. Accordingly, the total energy within a given CV can
be expressed as

Ec =

∫

CV

ρ

(
ec +

v2

2
+ gz

)
dV, (3.42)

where ρ represents the fluid density and ec denotes the internal energy per unit mass. The
term v2/2 is the kinetic energy per unit mass, where v is the absolute fluid velocity. The gz
represents the potential energy per unit mass, where g is the acceleration due to gravity and z is
the elevation.

Although Equation (3.42) provides a model for the pump, it is primarily focused on the
steady-state condition and does not encompass the dynamic aspects, which are crucial for this
study. The dynamic behavior of the pump, particularly under varying operational conditions,
necessitates an approach that more comprehensively incorporates pump dynamics.

To capture the power dynamics and by extension the pump dynamics, we can view the
power dynamics as the rate of change of energy over time within the control volume (CV).
Consequently, the dynamic model can be derived by differentiating the total energy Ec (as
defined in Equation (3.42)) with respect to time t. This differentiation yields:

dEc
dt

=
d

dt

∫

CV

ρ

(
ec +

v2

2
+ gz

)
dV. (3.43)

Applying the Reynolds Transport Theorem (RTT) to Equation (3.43) allows us to connect the
temporal rate of change of energy within the CV to the energy flux across the control surface
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(CS), leading to:

dEc
dt

=
∂

∂t

∫

CV

(
ρ

(
ec +

v2

2
+ gz

))
dV +

∫

CS

ρ

(
ec +

v2

2
+ gz

)
v · dA. (3.44)

In Equation (3.44), v denotes the velocity vector of the fluid, and dA is the differential area
vector on the CS, oriented normal to the surface. The first term represents the rate of change of
energy within the CV. The second term accounts for the net energy flow across the CS. The CV
and CS of the centrifugal pump are illustrated in Figure 3.3.

r1

r2

CS in (dA1)CS out (dA2)

CV (dV )

Figure 3.3: Control volume (CV) and control surfaces of a centrifugal pump.

3.4.2 Angular-momentum equation

Although the model presented in Equation (3.44) incorporates various aspects of the cen-
trifugal pump and has a small number of assumptions its analytical tractability is challenging.
For instance, it is required to know the velocity profile inside the control volume. Thus, another
approach for modeling the centrifugal pump involves applying the angular momentum conserva-
tion principle to the same control volume (CV) presented in Figure 3.3. This approach yields the
following equation:

τshaft =
d

dt

∫

CV

r × vρdV. (3.45)

In this equation, r represents the position vector from the axis of rotation to a fluid element,
and v is the fluid element’s velocity vector. The fixed coordinate system is chosen with the
z-axis aligned with the axis of rotation of the centrifugal pump. This alignment simplifies the
calculation of the cross-product r × v. The Equation (3.45) states that the torque applied to or
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produced by the shaft results in a change of the fluid’s angular momentum within the CV [122].
Similar to the application of the RTT on the energy equation, we apply RTT to the angular

momentum equation (Equation (3.45)), resulting in:

τshaft =
∂

∂t

∫

CV

r × vρdV +

∫

CS

r × vρv · dA. (3.46)

We can relate Equation (3.46) to the power equation using the angular velocity (ω). Thus, we
obtain the following power expression for the shaft:

τω = ω
∂

∂t

∫

CV

r × vρdV
︸ ︷︷ ︸

Unsteady(U)

+ω

∫

CS

r × vρv · dA
︸ ︷︷ ︸

Steady state(SS)

. (3.47)

In modeling the centrifugal pump using the conservation of angular momentum, the aim
is to improve analytical tractability and facilitate the development of a parsimonious bond
graph representation. This approach, however, introduces several assumptions, each crucial for
simplifying the model without significantly compromising its accuracy.

Firstly, it is assumed inviscid flow (Assumption 3.4.1). Although real fluids exhibit viscosity,
for the initial development of the model, the effects of viscosity are neglected. The impact of
viscous losses will be addressed in subsequent sections, allowing us to initially focus on the
primary dynamics of the fluid flow.

Assumption 3.4.1. Inviscid flow.

Additionally, given the symmetry within the pump, it is assumed that gravitational and
other body forces do not significantly affect the flow (Assumption 3.4.2). This assumption is
based on the understanding that, within the context of the pump’s operation, these forces do not
significantly influence the flow dynamics.

Assumption 3.4.2. Neglected body forces.

To further simplify our model, it is assumed uniform flow across the inlet and outlet of the
impeller (Assumption 3.4.3). This assumption reduces the complexity associated with varying
velocity profiles that are inherently dependent on the impeller’s geometry and operational
conditions.

Assumption 3.4.3. Uniform flow.

Furthermore, it is omitted considerations of leakage or secondary flows (Assumption 3.4.4).
While the intricate geometry of centrifugal pumps can lead to such complexities, their effects
will be addressed using simplified models based on literature in subsequent thesis sections.

Assumption 3.4.4. No leakage or secondary flows.
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Finally, the fluid being pumped is assumed to be incompressible (Assumption 3.4.5). This
simplification, treating the fluid density as constant across the control volume and over time, is a
reasonable approximation for liquids at moderate pressures and temperatures. It streamlines the
analysis, although it is important to note that this assumption may not be applicable for gases or
under conditions of significant pressure variations.

Assumption 3.4.5. Incompressible flow.

3.4.3 Transient term analysis

In this section, we focus on developing the transient term (U) of Equation (3.67), while the
steady-state term (SS) will be further developed in Section 3.4.4, for clarity. The development
will consider the assumptions made in Section 3.4.2 with the angular-momentum equation
(Section 3.4.2). Thus, we have

U = ω
∂

∂t

∫

CV

r × vρdV. (3.48)

The velocity of the liquid within the impeller of a centrifugal pump can be decomposed into
various components, each representing different aspects of the flow dynamics. These components
are conveniently represented in a triangle of velocities, as illustrated in Figure 3.4, for both
the entrance and discharge regions of the pump impeller. The decomposition of the velocity
vector into radial, axial, and tangential components allows us to isolate the component that
primarily contributes to the angular momentum under the pump’s specific design and operational
conditions.

w
1v 1

β1
α1

cm1

wu1cu1

u1

w
2v2

β2α2

cm2

wu2cu2

u2

Figure 3.4: Entrance and discharge velocity triangle.

Given the fixed coordinate system defined in Section 3.4.2 and considering the triangle of
velocities presented in Figure 3.4, the cross-product r×v in Equation (3.67) can be expressed as
rcu. This simplification is justified by the fact that, within the impeller, the tangential component
of the fluid velocity, cu, is predominantly responsible for imparting angular momentum to the
fluid. Therefore, the Equation (3.48) can be rewritten as:

U = ω
∂

∂t

∫

CV

rcuρdV. (3.49)
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Referring to Figure 3.4, we have that cu can be expressed as:

cu =ux − wu, (3.50a)

=ux −
cm

tan(β(r))
, (3.50b)

=ux − cm cot(β(r)), (3.50c)

where ux = ωr represents the tangential velocity, being r the radius in polar coordinate system.
Substituting this into Equation (3.50c), we obtain:

cu = ωr − cm cot(β(r)). (3.51)

Additionally, by the assumption of uniform flow (Assumption 3.4.3) we have that the normal
velocity (cm) relates to the volumetric flow rate by:

Q = 2πrhcm ∴ cm =
Q

2πrh
, (3.52)

where h is the height of the impeller. Substituting, Equation (3.52) into Equation (3.51) we have:

cu = ωr − Q cot(β(r))

2πrh
. (3.53)

Substituting Equation (3.53) into Equation (3.49), and writing the control volume (CV) in
cylindrical coordinate, dV = rdrdθdz, we obtain:

U = ω
∂

∂t

∫

CV

r

(
ωr − Q cot(β(r))

2πrh
ρ

)
dV, (3.54a)

= ω
∂

∂t

∫

CV

ωr2ρdV − ω
∂

∂t

∫

CV

Q cot(β(r))

2πh
ρdV. (3.54b)

= ω
∂

∂t

∫∫∫
ωr3ρdrdθdz − ω

∂

∂t

∫∫∫
Q cot(β(r))

2πh
ρrdrdθdz. (3.54c)

Considering the impeller height h in Equation (3.54c), we can integrate z from 0 to h.
Similarly, we can integrate and the angle (θ) from 0 to 2π to consider the whole impeller.
Moreover, with the incompressible flow assumption we have move the density out of the
integral.Thus, we have that Equation (3.54c) yields

U = ω
∂

∂t

∫∫∫
ωr3ρdrdθdz − ω

∂

∂t

∫∫∫
Q cot(β(r))

2πh
ρrdr, (3.55a)

= ω
∂

∂t

(
ωρ2πh

∫
r3dr

)
− ω

∂

∂t

(
Qρ

∫
r cot(β(r))dr

)
. (3.55b)

Assuming that the density and the impeller geometrical characteristics do not change with time,
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the Equation (3.55b) can be rewritten as:

U = ωρ2πh

∫
r3dr

∂ω

∂t
− ωρ

∫
r cot(β(r))dr

∂Q

∂t
. (3.56)

Rewriting Equation (3.56) in a more compact form, we obtain:

U = ωζ1
∂ω

∂t
+ ωζ2

∂Q

∂t
, (3.57)

where the terms ζ1 and ζ2 are defined as:

ζ1 = ρ2πh

∫
r3dr, (3.58a)

ζ2 = −ρ
∫
r cot(β(r))dr. (3.58b)

In Equation (3.57), the first term represents the influence of changes in impeller speed on
the fluid’s momentum, reflecting how alterations in angular velocity (ω) impact the fluid within
the impeller. The second term accounts for the effect of flow rate (Q) changes on the tangential
velocity of the fluid. It highlights the relationship between flow rate variations and the transient
component of the shaft torque.

3.4.4 Steady state term analysis

In this section, we focus on developing the transient term (SS) of Equation (3.67). The
development will consider the assumptions made in Section 3.4.2 with the angular-momentum
equation (Section 3.4.2).Thus, we have

SS = ω

∫

CS

r × vρv · dA. (3.59)

Given the coordinate system and the triangle of velocities presented in Figure 3.4, we can express
the dot product v · dA in Equation (3.59) as cmdA. From the Figure 3.3 we have that the control
surface (CS) is composed by two surfaces, one defining the pump inlet and the other defining the
pump outlet. Considering, these two areas the Equation (3.59) can be rewritten as

SS = ω

∫

CS

r × vρcm2dA2 − ω

∫

CS

r × vρcm1dA1. (3.60)

Similarly to the discussed in Section 3.4.3 we can express the cross-product r × v in
Equation (3.60) as rcu. Additionally, the cu can be further developed to Equation (3.53). Thus,
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we can rewrite the Equation (3.60) as:

SS = ω

∫

CS

r2ρ

(
ωr2 −

Q cot(β2)

2πr2h2

)
cm2dA2 − ω

∫

CS

r1ρ

(
ωr1 −

Q cot(β1)

2πr1h1

)
cm1dA1.

(3.61)
Exploiting the cylindrical symmetry of the control surface, where dA = rdθdz, equation

(3.61) becomes:

SS = ω

∫∫
r2ρ

(
ωr2 −

Q cot(β2)

2πr2h2

)
cm2r2dθdz−ω

∫∫
r1ρ

(
ωr1 −

Q cot(β1)

2πr1h1

)
cm1r1dθdz.

(3.62)
Integrating equation (3.62) with respect to θ and z, we obtain:

SS = ωr2ρ

(
ωr2 −

Q cot(β2)

2πr2h2

)∫∫
cm2r2dθdz − ωr1ρ

(
ωr1 −

Q cot(β1)

2πr1h1

)∫∫
cm1r1dθdz,

(3.63a)

= ωr2ρ

(
ωr2 −

Q cot(β2)

2πr2h2

)
(2πr2h2cm2)− ωr1ρ

(
ωr1 −

Q cot(β1)

2πr1h1

)
(2πr1h1cm1).

(3.63b)

Recognizing that 2πrhcm is the volumetric flow rate Q from Equation (3.52), we can simplify
Equation (3.63b) to:

SS = ωr2ρ

(
ωr2 −

Q cot(β2)

2πr2h2

)
Q− ωr1ρ

(
ωr1 −

Q cot(β1)

2πr1h1

)
Q, (3.64a)

= ωQρ

(
ωr2

2 − Q cot(β2)

2πh2

)
− ωQρ

(
ωr1

2 − Q cot(β1)

2πh1

)
, (3.64b)

= ω

[
ρωQ

(
r2

2 − r1
2
)
− ρQ2

(
cot(β2)

2πh2
− cot(β1)

2πh1

)]
. (3.64c)

Finally, we can express Equation (3.64c) in a more compact form as:

SS = ω
(
ζ3ωQ− ζ4Q

2
)
, (3.65)

where the coefficients ζ3 and ζ4 are defined as:

ζ3 = ρ
(
r2

2 − r1
2
)
, (3.66a)

ζ4 = ρ

(
cot(β2)

2πh2
− cot(β1)

2πh1

)
. (3.66b)
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3.4.5 Bond graph representation

Given the development of the unsteady U and steady state SS terms of the Equation (3.67)
equation in the Sections 3.4.3 and 3.4.4 we can rewrite Equation (3.67) as:

τω = ωζ1
∂ω

∂t
+ ωζ2

∂Q

∂t
+ ω

(
ζ3ωQ− ζ4Q

2
)
. (3.67)

To represent Equation (3.67) in bond graph notation, we rewrite it into the angular mechanical
domain by dividing both sides by ω, yielding:

τ = ζ1
∂ω

∂t
+ ζ2

∂Q

∂t
+
(
ζ3ωQ− ζ4Q

2
)
. (3.68)

Reorganizing Equation (3.69), we have:

τ︸︷︷︸
Source

− ζ1
∂ω

∂t︸ ︷︷ ︸
Inertia

− ζ2
∂Q

∂t︸ ︷︷ ︸
Q effects

= ζ3ωQ− ζ4Q
2

︸ ︷︷ ︸
Coupling

. (3.69)

The left-hand side of Equation (3.69) can be represented by a bond graph 1-junction and the
right-hand side by a two-port bond graph element, as described in Section A.4. However, the
term ζ2∂Q/∂t representation in bond graph notation is not straightforward. Furthermore, the
ζ2∂Q/∂t can be neglected based on the assumption that the angular mechanical domain dynamics
are significantly faster than the hydraulic domain dynamics. This assumption is similar to the
Kallesøe [123] and Kullick and Hackl [73] approach while simplifying similar models in their
work.

Assumption 3.4.6. The dynamics of the hydraulic domain are such that

ζ2
∂Q

∂t
<< ζ3ωQ− ζ4Q

2 − τ, (3.70)

holds at all times.

In the coupling term of Equation (3.69), there is a notable relationship between the effort
variable in the angular mechanical domain (torque τ ) and the flow variable in the hydraulic
domain (flow rate Q). According to Section A.4, this relationship is characteristic of the two-port
element known as a gyrator. Therefore, in this context, the gyrator has the following expression:

γ = ζ3ω − ζ4Q. (3.71)

Subsequently, the bond graph representation of Equation (3.69), excluding the ζ2∂Q/∂t term, is
illustrated in Figure 3.1.
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Figure 3.5: Centrifugal pump bond graph representation.

3.5 Centrifugal pump losses

Not all the torque applied to the shaft of a centrifugal pump is effectively converted into
hydraulic energy due to various operational losses. These losses, both hydraulic and mechanical,
significantly influence the pump’s overall performance and efficiency. This section aims to
characterize these losses, which include friction, local, shock, disk friction, and mechanical
losses, and to derive corresponding bond graph resistance elements for each.

3.5.1 Friction loss

In the Darcy equation, as delineated in Section 3.3.1, the frictional loss within a generic
channel is expressed as:

∆P = λ
ρL

dh

V 2

2
. (3.72)

According to Stepanoff [63], the Equation (3.72) can be employed for various pump compo-
nents, including the suction nozzle, impeller channel, volute, and discharge nozzle. However, the
practical measurement of both L and the hydraulic diameter dh can pose challenges in numerous
scenarios. As a solution, Stepanoff [63] proposed grouping all frictional losses under a single
term. In contrast, Paternost et al. [60] distinguished between local and viscous frictional losses.
They assumed that the friction factor within a generic channel is the sum of a viscous term,
which dominates at reduced flow rates, and a turbulent component that becomes significant at
high flow rates. As such, the friction factor within the pump’s channel can be expressed as:

λ =
klam

Re
+ kturbRe

nt , (3.73)

where klam, kturb, and nt are constants determined empirically.
Substituting Equation (3.73) into Equation (3.72) and taking into account that V = Q/A, we
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obtain:

∆P =

(
klam

Re
+ kturbRe

nt

)
ρL

dh

Q2

2A2
,

=

(
klamµA

ρQdh
+ kturb

(
ρQdh
µA

)nt
)
ρL

dh

Q2

2A2
,

=
klamµLQ

2dh
2A

+ kturb

(
ρQdh
µA

)nt ρL

dh

Q2

2A2
. (3.74)

Incorporating the friction losses using bond graph notation, by considering the tetrahedron of
states, Equation (3.74) can be rewritten as:

Rcf =
klamµL

2dh
2A

+ kturb

(
ρQdh
µA

)nt ρL

dh

Q

2A2
. (3.75)

Grouping the geometrical terms as constants, for simplification, we can express Equation (3.75)
as:

Rcfg = k′lamµ+ k′turbρ

(
ρQ

µ

)nt

Q, (3.76)

where k′lam and k′turb are the grouped terms for the laminar and turbulent coefficients.

3.5.2 Local losses

As discussed in Section 3.3.2, obtaining an analytical expression to calculate losses in
components like valves and fittings presents a considerable challenge due to the intricate nature
of the flow. Similarly, Stepanoff [63] argues that under the specific flow conditions encountered
within pumps, deriving an analytical solution for friction loss is also complex. In this context,
Stepanoff [63] suggests an approach that aligns with the methodology outlined in Section 3.3.2
for evaluating the equivalent local losses in valves and pipe fittings. In the context of a single-
stage centrifugal pump, these local losses encompass those originating from components such as
the suction nozzle, diffuser, discharge nozzle, and volute. It can be expressed as:

kmc =
∑

i∈ψ
Ki
m, (3.77)

where ψ is the set containing all the centrifugal pump local losses. In practice, however, it is
challenging to obtain the local loss for each component individually and then sum them. Usually,
the local losses are combined into one, kmc, and obtained experimentally. For the bond graph
element to represent this combined loss, we can use the expression presented in Equation (3.41),
which yields.

Rmc =
ρ kmcQ

2
. (3.78)
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3.5.3 Shock loss

Considering an impeller design where at a flow rate Qs, the flow direction aligns with the
vane angles at both entrance and exit of the impeller, there will be no additional losses in these
points. However, for flow rates other than Qs, there will be sudden changes in flow velocity
direction and magnitude that will induce losses [63]. These losses can be expressed as:

∆Ps1 = ρ ks1∆cu1
2, (3.79)

for the entrance, and
∆Ps2 = ρ ks2∆cu2

2, (3.80)

for the exit of the impeller, where ksx is a constant.
In Figure 3.6, when the flow rate is at Qs, the normal velocity at the entrance of the impeller

is denoted as cm1. In this condition, the flow approaches the impeller at an angle of α1 with
a tangential component of the absolute velocity, represented as cu1. If there is a reduction in
flow rate such that cm1

′ < cm1, the liquid is then expected to have a tangential component cu1′,
such the liquid keeps entering the vanes at an angle β1. The difference between these tangential
components can be calculated as:

∆cu1 = cu1
′ − cu1. (3.81)

Similarly, at the pump discharge, as depicted in Figure 3.6, for the flow rate Qs, the normal
velocity is denoted as cm2, and the tangential component of the absolute velocity is given by
cu2. If the flow rate is reduced, the tangential component will increase to cu2′. Consequently, the
increment in the tangential component is computed as:

∆cu2 = cu2
′ − cu2. (3.82)

For flow rates exceeding Qs, the values of both ∆cu1 and ∆cu2 turn negative.
Considering Figure 3.6 and a scenario wherein a flow rate, Q∗, the flow either enters or exits

perpendicular to the impeller:

αx = 90° =⇒ cux = 0 ∴ ∆cux = cux
′. (3.83)

From the velocity triangle illustrated in Figure 3.4, cux′ can be represented as:

cux
′ = ux − wux, (3.84a)

= ux −
cmx

′

tan βx
. (3.84b)
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Figure 3.6: Shock component of peripheral velocity at entrance and discharge of the impeller.

Furthermore, the volumetric flow from all the impeller vanes can be expressed as:

Q = cmx
′Ax ∴ cmx

′ =
Q

Ax
. (3.85)

Given that ux = ωrx, and by substituting Equations (3.84b) and (3.85) into Equation (3.83) we
obtain:

∆cux = ux −
cmx

′

tan βx
, (3.86a)

= ωrx −
cmx

′

tan βx
, (3.86b)

= ωrx −
Q

Ax tan βx
. (3.86c)

Then, by substituting Equation (3.86c) into Equation (3.79) and Equation (3.80) we obtain:

∆Ps1 = ρ ks1∆cu1
2, (3.87a)

= ρ ks1

(
ωr1 −

Q

A1 tan β1

)2

, (3.87b)

= ks1r
2
1ρω

2 − 2ks1r1ρωQ

A1 tan β1
+

ks1ρQ
2

A2
1 tan

2 β1
. (3.87c)

Similarly, for the impeller’s exit, we have:

∆Ps2 = ks2r
2
2ρω

2 − 2ks2r2ρωQ

A2 tan β2
+

ks2ρQ
2

A2
2 tan

2 β2
. (3.88)

To represent this in bond graph notation, considering the tetrahedron of states, we can rewrite
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Equations (3.87c) and (3.88) as:

Rsx = ksx

(
r2xρω

2

Q
− 2rxρω

Ax tan βx
+

ρQ

A2
x tan

2 βx

)
, (3.89)

where the subscript x can represent either 1 or 2, referring to the impeller’s inlet and outlet
respectively.

3.5.4 Leakage loss

According to Takács [124], the primary sources of leakage losses in pumps are the clearances
between stationary and rotating components, specifically in regions like the impeller eye and
balancing holes. Furthermore, the leakage losses tend to reduce as the liquid flow rate increases.
Additionally, Gülich [125] mentions that the annular seal significantly contributes to these losses.
They degrade the pump efficiency by transforming the kinetic energy from the impeller into heat,
which could have been converted into pressure instead.

As highlighted by Gülich [125], the friction estimation for turbulent flow due to these leakages
is primarily experimental. Obtaining these friction coefficients of annular seals across a broad
spectrum of Reynolds numbers is challenging. Since they require high-pressure differences and
due to measurement accuracy problems in these conditions, it is often necessary to extrapolate
from the available test data to analyze higher Reynolds numbers conditions.

Gülich [125] provides an expression for the friction coefficient that considers variations
on the seal surface, including potential grooves and isotropic patterns. However, as Gülich
[125] mentions, these coefficients and the related corrections are approximations. The effective
resistance coefficients are highly susceptible to the specificities of the surface structure. Due to
the various factors affecting leakages and the scarcity of pertinent test data, Gülich [125] acknowl-
edges that leakage calculations can carry uncertainties up to ±30%. Such uncertainties can arise
from turbulence, roughness structures, pressure variations across the seal, manufacturing-related
clearance variations, and considerations like stator deformations under operational stresses.
Notably, seemingly inconsequential deviations such as minor rounding or chamfering might lead
to substantial variations, often resulting in diminished loss coefficients.

3.5.5 Disk friction loss

When a circular disk or a cylinder is immersed and rotates within a static fluid, a velocity
gradient can be observed. This gradient induces shear stresses, denoted as Γ, in the fluid. These
stresses are directly proportional to the velocity gradient, ∂u/∂y, as shown in:

Γ ∝ ∂u

∂y
. (3.90)
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In practical applications, directly deriving Equation (3.90) can be challenging. Instead, it
is often represented using a coefficient fd(Re, ϵr/L) [125]. Therefore, for a disk rotating in a
stationary fluid (without the influence of a casing), the shear stress can be expressed as:

Γ =
fd(Re,

ϵ
L
)ρ v2

2
, (3.91)

where in case u is the fluid velocity. The frictional force acting on a surface element, defined by:

dA = 2π r dr, (3.92)

can be expressed in terms of shear stress as:

dF = Γ dA =⇒ dF = Γ2πr dr. (3.93)

This frictional force dF exerts a moment due to its position relative to the disk’s radius. This
torque due to friction is given by:

dτ = r dF. (3.94)

By substituting Equations (3.91) and (3.93) into Equation (3.94), we obtain:

dτ = πρfd

(
Re,

ϵ

L

)
v2r2 dr. (3.95)

Using u = ω r, the expression becomes:

dτ = πρfd

(
Re,

ϵ

L

)
ω2r4 dr. (3.96)

When computing the overall torque τd due to disk friction, it is essential to account for the
contributions of all surfaces rotating within the fluid. These surfaces encompass the impeller’s
front and rear shrouds, cylindrical faces, and annular seals. Thus, we need to integrate Equa-
tion (3.96) over the surfaces of these components. Consider ψn a parameter that describes the
geometry of each component. The integral limits for the geometry n are given by ψ1

n and ψ2
n.

Then we define a set ϕ containing these settings:

ϕ = {ψ0 ψ1 ψ2 . . . }. (3.97)

Using the set ϕ, the overall torque τdf can be obtained by integrating over all elements of set ϕ
and summing up the contributions from all components:

τdf =
∑

s∈ϕ

∫ s2

s1
πρf sd

(
Res,

ϵ

Ls

)
ω2r4 dr. (3.98)

The superscript or subscript s denotes applicability to the geometry ψn. In the specific scenario
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where we focus on one of the impeller’s faces (treated as a disk), the torque can be computed by
integrating Equation (3.96) between the impeller’s inner radius (r1) and outer radius (r2):

τ idf =

∫ r2

r1

πρf id

(
Re,

ϵ

L

)
ω2r4 dr, (3.99a)

τ idf =
π

5
ρf id

(
Re,

ϵ

L

)
ω2r2

5

(
1− r1

5

r25

)
. (3.99b)

However, obtaining an analytical solution for the integral becomes complex for other ge-
ometries due to their distinctive characteristics. Notably, the resulting expressions from these
integrals mainly depend on the specific geometry, allowing us to represent them with a con-
stant ksdf where s ∈ ϕ, we can group with others constants and geometrical parameters. Thus,
Equation (3.98) can be simplified as:

τdf =
∑

s∈ϕ
ksdfρf

s
d

(
Res,

ϵ

Ls

)
ω2. (3.100)

Nonetheless, we still have to define the friction coefficient function. It is worth noting that, despite
the various correlations for the disk friction coefficient (fd (Re, ϵ/L)), and friction contributions
of the complex geometries beyond the impeller’s face. The friction coefficient and geometrical
parameters are often grouped and obtained experimentally. Following the approach by Biazussi
[61], we consider two distinct contributions: a viscous component dependent on the reciprocal
of Reynolds number and an inertial one reliant solely on geometry. Thus, Equation (3.100) can
be expressed as:

τdf =
∑

s∈ϕ
ksdfρω

2

(
ksRe
Re

+ ksg

)
, (3.101a)

=
∑

s∈ϕ
ksdfρω

2

(
ksReµ

ρωr
+ ksg

)
, (3.101b)

=
∑

s∈ϕ

ksReµk
s
dfω

r
+ ksgk

s
dfρω

2, (3.101c)

where ksRe is a constant for viscous contribution and ksg the constant for inertial contribution.
Then, we can further combine constants across all components into just two terms, kv and ki,
resulting in:

τdf = kvµω + kiρω
2 (3.102)

Furthermore, Gülich [125] states that when a body revolves within a casing, as is common
in pumps, the velocity distribution between the casing and the rotating body is influenced by
the distance between the impeller and the casing wall. This distribution is also affected by the
boundary layers forming on both stationary and rotating surfaces. Consequently, a core flow of
u = 1/2ωr is typically established, suggesting that u = ωr might not always hold. Thus, as
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mentioned by Gülich [125], for a disk within a casing, the power absorbed can be half that for a
free disk in a stationary fluid. However, when obtained experimentally, the grouped constants of
Equation (3.102) will inherently account for the aforementioned disparities.

In the bond graph notation, to represent this loss using a resistance element, as illustrated
by the tetrahedron of states, we have to divide Equation (3.102) by ω. Thus, the disk friction
resistance is given by:

Rdf = kvµ+ kiρω. (3.103)

3.5.6 Mechanical losses

The mechanical losses associated with bearings and stuffing boxes have been extensively
researched, as evidenced by a vast literature. One key empirical phenomenon that emerges in
the context of journal bearings is the Stribeck effect, which describes the relationship between
friction, angular velocity, and contact forces. This effect typically considers three lubrication
regimes: boundary, mixed, and hydrodynamic.

In the boundary lubrication regime, surface roughness plays a pivotal role, mainly in dry or
semi-lubricated bearings. This state of lubrication is most pronounced during the start, stop, and
low-speed operations of machinery. Conversely, hydrodynamic lubrication is characterized by
a separating fluid film being drawn into a converging, wedge-shaped zone. Both the frictional
power loss and pressure within this film are determined by the lubricant’s viscosity, in conjunction
with the geometry and shear rate dictated by the bearing’s operational conditions. The mixed
lubrication is an intermediate condition between the boundary and hydrodynamic regimes. In
this condition, the load imposed on the system is shared between the fluid and the tips of the
asperities [126, 127].

In the context of centrifugal pumps, Stepanoff [63] states that friction loss in bearings and
stuffing boxes is of secondary importance. It is also worth noting that although the friction
loss in journal bearings has been standardized, discrepancies arise due to manufacturer-specific
variations. Furthermore, these losses are typically marginal and necessitate specialized instru-
mentation to measure.

Given the scope of this study, the mechanical friction analysis was simplified by excluding the
boundary and mixed lubrication regimes. Instead, it was opted for a constant as an approximation
of the hydrodynamic regime. This work focuses primarily on evaluating the dynamics stemming
from varying operational points and the impact of emulsions rather than delving into pump
startups and stops. Accordingly, the frictional components from the bearing and stuffing box can
be succinctly represented as:

τm = kbearing ω + kseal ω,

= kmec ω. (3.104)
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where km is an empirically derived constant encapsulating the friction factors from both the
bearings and the stuffing box. In the context of bond graph notation, this loss can be represented
using a resistance element, as delineated by the tetrahedron of states. Taking Equation (3.104)
and dividing by ω, we can then define the mechanical of bearings and stuffing boxes as friction
resistance as:

Rmec = kmec. (3.105)

3.6 Valves

A typical type of valve utilized in the process industry is the valve equipped with a spring-
diaphragm pneumatic actuator, as illustrated in Figure 3.7. This valve operates by injecting
pressurized air into a chamber, which contains a diaphragm. Variations in the air pressure cause
the diaphragm to actuate the valve stem, consequently modulating the valve’s position. The
regulation of this air pressure enables precise control over the valve’s position. Moreover, the
valve is designed with an integrated spring mechanism. This ensures the valve reverts to a
predetermined safe state (fully open or closed) during air pressure loss.

Figure 3.7: Schematic of a typical control valve featuring a spring-diaphragm pneumatic actuator.

This section provides an overview of the valve within the context of the ESP system under
study. It commences with the presentation of static models for turbulent and laminar flow regimes
in incompressible fluids (Sections 3.6.1 and 3.6.2). Following this, a bond-graph resistance model
pertinent to the valve is formulated in Section 3.6.3. Notwithstanding the inherent dynamic
nature of the valve, this study will not explore its dynamic characteristics. For the purpose of the
experimental investigations, the valve’s position will be assumed as fixed.

Assumption 3.6.1. The valve is considered to exhibit static behavior, with no dynamic changes

in position during the experiments.
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3.6.1 Static model for turbulent flows in incompressible fluids

According to ISA75.01.01 [128], the valve fundamental equation for turbulent flow in
incompressible fluids can be expressed as:

Q = CvN1Fp

√
∆P

ρ∗
, (3.106)

where Cv is the flow coefficient, N1 is a numerical constant for unit conversion. The term ρ∗ is
the relative density of the fluid in respect to the water density at 15 ◦C (ρ0). The Fp denotes the
pipe geometry factor, which accounts for variations in diameters between valves and pipes.

As mentioned by ISA75.01.01 [128], the relationship described in Equation (3.106), can be
used to obtain either the flow coefficient, the flow rate, or the pressure differential, given any two
of these variables. However, it is crucial to note the application limitations of this model. As
emphasized by ISA75.01.01 [128], this equation strictly applies to single-component, single-
phase fluids. Nevertheless, it is possible to cautiously extend its applicability to multi-component
liquid mixtures, provided certain conditions are met, such as the fluid mixture is homogeneous.
The mixture should be in chemical and thermodynamic equilibrium, and the throttling process
should predominantly occur outside the multiphase region.

In some scenarios, non-turbulent flow conditions might occur in the control valve due to
reduced flow rates and high fluid viscosities. In such conditions, a separate model becomes
necessary. According to ISA75.01.01 [128], the Equation (3.106) is applicable when the
Reynolds number of the valve, denoted as Rev, is greater or equal than 10 000. This Reynolds
number can be computed using:

Rev =
ρN4 FdQ

µ
√
Cv FL

(
FL

2Cv
2

N2 d4
+ 1

)1/4

, (3.107)

where N2 and N4 are a numerical constant for unit conversion. The term Fd denotes the valve
style modifier, and FL is the liquid pressure recovery factor for a control valve without any
attached fittings.

3.6.2 Static model for non-turbulent flows in incompressible fluids

It is crucial to consider the scope and applicability of the valve models and coefficients
found in the literature before using them. In this context, according to ISA75.01.01 [128], for
Rev ≤ 10 000, the equation Equation (3.106) is non-longer valid and appropriate equations for
non-turbulent flow should be applied. The ISA75.01.01 [128] states that the valve fundamental
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flow model for non-turbulent incompressible flow can be expressed as:

Q = CvN1Fr(Rev)

√
∆P

ρ∗
, (3.108)

where Fr is the Reynolds number factor. This factor, when Rev ≥ 10, is described as:

Fr = min





1 +
0.33

√
Fl

n0.25
v

log10 (ReV/10000) ,

0.026

FL

√
nv Rev,

1.0.

(3.109)

The trim style of the valve is described by the constant nv, obtained as:

nv =
N2

(Cv/d2)
2 . (3.110)

Noteworthy, this is strictly pertinent to valves with “full size” trim.
As stated by ISA75.01.01 [128], the Equations (3.108) and (3.109) are valid for fluids

exhibiting Newtonian rheology and non-vaporizing fluids. They argue that non-Newtonian fluids
require a different treatment due to their characteristic change in viscosity as a function of shear
rate (which is proportional to flow rate).

3.6.3 Valve bond graph resistance model

The valve models given by Equations (3.106) and (3.108), as discussed in Sections 3.6.1
and 3.6.2 respectively, are similar. Their main difference is the valve factor. The turbulent flows
use a valve pipe geometry factor (Fp), while the non-turbulent flows use the Reynolds number
factor (Fr). The latter, as indicated in Section 3.6.2, depends on the Reynolds number and has
the model restrictions. Therefore, considering a single expression for the valve in both flow
regimes, we introduce F ∗ as:

F ∗ =

{
Fp, Rev > 10000,

Fr(Rev), Rev ≤ 10000.
(3.111)

As mentioned in Section 3.6.1, the relationship described in Equation (3.106), can also be
used to obtain the pressure difference. Thus, considering the valve factor F ∗ and rearranging the
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Equation (3.106) we have:

Q =CvN1F
∗

√
∆P

ρ∗
, (3.112a)

Q2 =(CvN1F
∗)2

∆P

ρ∗
, (3.112b)

∆P =
ρ∗Q2

(CvN1F ∗)2
. (3.112c)

From the bond graph tetrahedron of states, we have that ∆P = RvQ. Considering the relationship
in Equation (3.112c) we have that the Rv can be expressed as:

Rv =
ρ∗Q

(CvN1F ∗)2
. (3.113)

If we consider the valve actuation we can rewrite Equation (3.113) as:

Rv(a) =
ρ∗Q

(Cv(a)N1F ∗)2
, (3.114)

where a is the valve opening.

3.7 Twin-screw pumps

3.7.1 Bond graph representation

According to Karassik [129], screw pumps are positive displacement devices that deliver a
specific volume of liquid at each rotor revolution. This volume is denoted as the displacement
volume, VD. It represents the theoretical volume of liquid displaced per rotor revolution and
depends solely on the rotors’ physical dimensions. In an ideal scenario, without internal
clearances, the actual net flow rate Q matches with the theoretical flow rate. Thus, we can model
this ideal relationship of rotor rotation with displaced volume using the transformer port of bond
graphs as shown in Figure 3.8.

TF
P

Q

r

1

τ ω

TF

r
P

Q

Figure 3.8: Bond graph representation of an ideal twin screw pump.
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In Figure 3.8, the bond graph provides a schematic representation of the screw pump, omitting
other significant elements. The series arrangement of the two transformers reflects the screw
pump’s series placement within the flow line, emphasizing the continuous flow passing through
it. In this arrangement regarding power flow, we have that the hydraulic power is first converted
to mechanical power and then reconverted to hydraulic power. Within the mechanical domain,
elements such as the rotor’s inertia and stiffness of the screw pump and mechanical frictional
losses can be modeled and considered.

However, in real-world conditions, there are internal clearances in the screw pumps. Con-
sequently, a pressure difference leads to internal leakage from the outlet to the inlet. This
phenomenon, termed “slip”, varies based on factors like the pump model, clearance amount, the
liquid’s viscosity during pumping, and the pressure difference. Notably, for any given set of
these conditions, the slip remains largely unaffected by the pump’s speed [129]. Therefore, the
actual screw pump flow rate is given by:

Q = Qt −QL(∆P, µ), (3.115)

where Qt denotes the theoretical flow rate, and QL represents the slip flow rate. In scenarios
where the pressure difference between the pump’s inlet and outlet is minimal, the influence of
slip can be disregarded, resulting in Q ≈ Qt. Although the slip can be computed from literature
correlations, it is usually obtained from experimental data.

Thus, we can further develop the bond graph model presented in Figure 3.8. We can
incorporate the inertia of the pump’s shaft and screw and account for losses from mechanical
friction from bearings and the interaction between the screw and the fluid, for instance. These
aspects can be directly incorporated into the bond graph’s mechanical domain. Further, based
on Equation (3.115), the internal leakage due to clearances can be modeled by introducing
a resistance element connecting the input and output of the screw pump with a 0-junction.
Consequently, the pump’s output Q will be the theoretical flow rate (Qt) minus and the leakage
flow rate (QL). Considering these aspects, a simplified bond graph representation of the screw
pump is illustrated in Figure 3.9.

As discussed by Karassik [129], the inertia effects within twin-screw pumps are minimal.
The inertia of the shaft, the screw, and the liquid dynamics inside the pump are argued to have
negligible impact on the overall system dynamics. It allows us not to consider the effects of the
inertia elements shown in Figure 3.9.

3.7.2 Ideal displacement or swept volume flow rate

In Section 3.7.1, it was introduced the bond graph model for a general screw-type pump.
However, the transformer port’s expression and leakage resistance values still need to be ad-
dressed. In this section, we present the formulation to obtain the expression relating to the
transformer port, particularly for a twin-screw pump, as illustrated in Figure 3.10.
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Figure 3.9: Bond graph representation of a screw pump, considering clearance and the mechani-
cal components.

Figure 3.10: Twin-screw pump [130].

According to Prang and Cooper [130], the theoretical volume displaced by a twin-screw
pump can be described as:

Qt = ns ωt
ds

3

2 (nl + 1)

Lsc
ds

αt (1− krd
2). (3.116)

In this formulation, the angular velocity of the twin-screw (ωt) is in radians per second. The
fraction αt signifies the annular space portion between the root and the tip of the screw threads
not occupied by the threads. The ratio of the screw’s root diameter to its tip diameter (ds) is
expressed as krd. The term Lsc stands for the axial length of each pumping screw. nl indicates
the number of chambers created by the interlocking screws, and ns is the count of screw threads.
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Examining the Equation (3.116), we note that a transformer port characterizes the relationship
between the rotational mechanical and hydraulic domains. Where the hydraulic domain’s flow
variable, Qt, corresponds to the mechanical domain’s flow variable, ωt. Consequently, the
transformer expression for the twin-screw pump can be given as:

rt = ns
ds

3

2 (nl + 1)

Lsc
ds

αt (1− krd
2). (3.117)

It is important to note that, as the parameters in Equation (3.117) are all constant and geometrical
parameters, we can group them into a single constant coefficient.

3.7.3 Liquid leakage in twin-screw pumps

In Section 3.7.1 it was introduced the general bond graph model for screw-type pumps.
However, the resistance due to leakage was not detailed. This section focuses on formulating this
resistance. According to Vetter [131], the primary leakage sources in twin-screw pumps arise
from the circumferential clearance between the screw’s peripheral diameter and the housing,
the radial clearance between the screw profile’s internal and external diameters, and the flank
clearances between the screw profile’s flanks.

Factors such as machining tolerances, screw stiffness, and housing compliance due to pressure
directly relate to these clearances. Consequently, the total clearance flow rate is a summation of
all individual leakages:

QL = Qcc +Qrc +Qfc, (3.118)

where Qcc, Qrc, and Qfc represent the flow rates due to circumferential, radial, and flank
clearances, respectively. Vetter [131] emphasized that the circumferential clearance, given its
larger cross-section, often dominates when compared to the others.

Vetter [131] provided formulations for both laminar and turbulent flows to calculate the
leakage flow rate for each clearance. These can be expressed in the bond graph framework as
resistance elements. For the circumferential clearance in laminar flow:

Rlcc =
12wsp µ

Lccwcc3
, (3.119)

where wsp is the width of the screw profile, wcc denotes the width of the circumferential clearance,
and Lcc represents the length of the circumferential clearance. For turbulent flow:

Rtcc =
ρwspQ

4wcc

(
2Lccwcc log

(
2wcc

Ksr
+ 0.97

))2 , (3.120)

where Ksr is roughness factor for the twin-screw pump. For the radial clearance under laminar



82

flow, it can be expressed as:

Rlrc =
12µ

wsp

∫ Lec

0

1

wrc(x)
dx, (3.121)

where wrc is the width of the radial clearance, and Lec represents the effective length of the radial
clearance. For turbulent flow:

Rtrc =
ρQ

wsp

∫ Lec

0

1

(2 log (2wrc(x)/Ksr + 0.97))2 wrc(x)3
dx. (3.122)

For the flank clearance under laminar flow, we have:

Rlfc =
24Lsf µ

Lsdw3
fc

, (3.123)

where wfc is the width of the flank clearance, Lsf represents the length of the flank clearance,
and Lsd denotes the chamber depth. For turbulent flow is given as:

Rtfc =
ρLscQ

wfc

(
2Lsdwfc log

(
2wcc

Ksr
+ 0.97

))2 , (3.124)

where Lsc is the active length of the flank clearance.
The bond graph resistance elements derived from Vetter [131] rely heavily on knowledge of

the twin-screw pump geometry. However, obtaining precise geometry parameters in practice can
be challenging. Prang and Cooper [130] provides a simplified approach for calculating the total
leakage flow rate, QL. They observed experimentally that Qcc approximates to 80% of QL, a
value that varies with the Reynolds number. A higher Reynolds number results in higher values.
As a result, they excluded Qfc and Qrc from their considerations, focusing only on Qcc and
introducing a factor δL to account for the 80%. It allows for a simplified bond graph resistance
element for the twin-screw pump leakage with experimentally determined constants.

Given this, the pressure difference between the chambers, ∆PL, can be expressed as:

∆PL = nL
ρ

2

(
Qcc

AccδL

)2(
λcc Lcc
dcc

+KL

)
, (3.125)

where, Acc refers to the total circumferential clearance cross-sectional area. The friction factor
for the circumferential clearance is given by λcc. The variables Lcc and dcc correspond to the
equivalent length and hydraulic diameter for the circumferential clearance, respectively. KL

is the loss coefficient representing flow losses as it enters the gap between the screw and the
housing, while nL denotes the number of chambers. We can rearrange Equation (3.125) to solve
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for the flow rate:

Qcc = δLAcc

√√√√ 2∆PL

nL ρ
(
λcc Lcc

dcc
+KL

) . (3.126)

In bond graph modeling, the resistance element is usually more easily characterized by the
effort variable, in this case, ∆PL. For laminar flows in pipelines, the friction factor is 64/Re.
Assuming only laminar flow through the clearances, we obtain:

∆PL = nL
ρ

2

(
Qcc

AccδL

)2(
64µ

ρQcc dcc

Lcc
dcc

+KL

)
, (3.127a)

=
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2 δL
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ρKLQcc
2
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2 δL
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From the bond graph’s tetrahedron of states and Equation (3.127b), the resistance element for
leakage is given by:

RL =
32µnL Lcc

dcc
2 δL

2Acc
2 +

ρKLQcc

2Acc
2 δL

2 . (3.128)

Grouping the terms, constants, and loss coefficient from Equation (3.128), we define KLL for
friction losses and KLc for local losses, we have:

RL = KLL µ+KLc ρQcc. (3.129)

3.7.4 Simplified liquid leakage in twin-screw pumps

In Section 3.7.1, it was presented a bond graph model for screw-type pumps, including
leakage as a connection between inlet and outlet. In this configuration the bond graph model
could result in a Differential-Algebraic Equation (DAE) system. To simplify, it is possible to
model leakage as a resistance at the twin-screw pump’s outlet, which results into an Ordinary
Differential Equation (ODE) format. This change streamlines the model by eliminating implicit
variables, facilitating the analysis while maintaining essential dynamics.

In Section 3.7.3, the leakage volumetric flow rate (QL) was approximated by the circum-
ferential clearance flow rate (Qcc), and the leakage-induced pressure drop could be described
by Equation (3.127b). By disregarding the minor loss KL, attributable to flow entering the gap
between the screw and the housing, and assuming predominant friction losses, we simplify
Equation (3.127b) to:

∆PL =
32µnL LccQcc

dcc
2 δL

2Acc
2 . (3.130)

Aggregating geometrical and constant parameters from Equation (3.130) results in:

Qcc =
∆PL
KLLµ

. (3.131)
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Following Equation (3.115), the actual flow rate (Q) is:

Q = Qt −Qcc. (3.132)

Substituting from Equation (3.131), the modified expression for the twin-screw pump is:

Q = rtω − ∆PL
KLLµ

. (3.133)

The term rtω corresponds to a modulated transformer element as discussed in Section 3.7.2,
while ∆PL

KLLµ
is as a resistance bond graph element, similar to Equation (3.129), thus:

RLS = KLL µ. (3.134)

3.8 Structural identifiability analysis

Given a set of ODE that describes a system dynamics, it contains a set of parameters and
state variables. Thus, before trying to estimate the unknown parameters of a given dynamic
system using an inverse problem-solving method, it is important to assess whether or not the
parameters can be uniquely determined from a given set of data.

Consider a dynamical system in the following format

ẋ(t) = f(x(t),u(t),Θ), (3.135)

y(t) = h(x(t),u(t),Θ), (3.136)

where x(t) is an m-dimensional state vector, u(t) is an n-dimensional input signal, y(t) is
an r-dimensional output signal or the measurable output, and Θ is k-dimensional vector of
parameters. A parameter set Θ is said to be structurally globally identifiable if the following
property holds:

h(x(t),u(t),Θ) = h(x(t),u(t),θ) =⇒ Θ = θ, (3.137)

where θ is a k-dimensional vector of parameters. Furthermore, if the property in Equation (3.137)
holds within a neighborhood of Θ, it is referred to as structurally locally identifiable.

Thus, the identifiability property serves as a prerequisite for practical parameter estimation.
Additionally, as stated by Daneker et al. [132], if a parameter is locally identifiable, it implies
that the search range for that parameter should be limited before attempting its estimation. On
the other hand, for globally identifiable parameters, there is no need to define a search range.
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4 Materials and methods

4.1 Experimental study

This chapter presents the experimental investigation carried out to validate the dynamic model
and obtain the parameters of the Electrical Submersible Pump (ESP) system. The chapter is
organized as follows: Sections 4.1.1 and 4.1.2 provide an in-depth description of the experimental
setup, detailing the equipment and materials used. Sections 4.1.3 and 4.1.4 describes the data
acquisition system employed for sampling instrument readings and the post-processing applied in
the signals. Section 4.1.5 elaborates on the development of the experimental procedure, designed
to ensure both safety and accurate data collection. Finally, Sections 4.1.6 and 4.1.7 outlines
the experimental test matrix, specifying the various combinations of variables and conditions
examined in this study.

4.1.1 Experimental assembly

The experimental setup is situated in the Experimental Laboratory of Petroleum Kelsen
Valente Serra (LABPETRO) at the Center for Energy and Petroleum Studies (CEPETRO) of the
University of Campinas. It was designed to investigate the behavior of Electrical Submersible
Pumps (ESP) under various flow conditions. The setup accommodates both single-phase and
two-phase (water/oil) flows. It serves multiple purposes, including pump performance evaluation
under varying emulsion conditions, pump parameter identification, control technique validation,
and dynamic model verification. The schematic representation of the experimental assembly is
provided in Figure 4.1.

The experimental setup consists of four distinct flow lines: an oil flow line, a water flow line,
a two-phase flow line dedicated to the oil-water mixture, and a closed-loop water line associated
with the heat exchanger (HE). The oil and water flow lines start from a separation tank and
converge at a T-joint, initiating the two-phase flow line forming the emulsion. Subsequently, the
emulsion is directed into the ESP and returns to the separation tank. Each flow line has a specific
instrumentation and devices mounted on it. The detailed explanation and the purpose of each
flow line is presented as follows:

• Oil flow line: It conveys the oil phase from the separation tank to the mixing point. Along
the oil flow line, a twin-screw pump is mounted to pressurize the line, and a shell and tube
heat exchanger for temperature control of the oil. This flow line has a water-cut meter and
a Coriolis meter used to measure the water fraction and the mass flow rate, respectively.
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Figure 4.1: Schematic diagram of the experimental setup.

The primary purpose of this line is to provide a controlled oil flow for the two-phase
experiments;

• Water flow line: Similar to the oil flow line, this line conveys the water phase from the
separation tank to the mixing point. A centrifugal pump pressurizes the water line to
enable the flow into the two-phase flow line. Additionally, the water line has a Coriolis
meter for measuring mass flow rate and a remotely controlled valve to regulate the line’s
open or closed state. The primary purpose of this line is to provide a controlled water flow
to obtain the desired emulsion condition;

• Two-phase flow line: This line conveys the oil-water mixture from the mixing point (in
the T-joint) back to the separation tank. The ESP, which is the primary subject of this
study, is mounted in this flow line. After being pumped by the ESP, the emulsion flows
through a remotely controlled valve, which controls the ESP pressure gain and the flow
rate. The main objective of this line is to enable the study of ESP performance under
two-phase flow conditions;

• Heat exchanger loop: This heat exchanger water loop allows the operation of the shell and
tube heat exchanger while regulating the oil flow line’s temperature. The heat exchanger is
equipped with a chiller, a heater, and a water tank, allowing for both cooling and heating
of the fluid to adjust the temperature.

The primary equipment of the experimental setup comprises two models of Electrical Sub-
mersible Pumps (ESP) from Baker Hughes®: the eight-stage model P100L 538 series and the
nine-stage model P47 538 series. These pumps are positioned downstream of the oil-water
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mixing point, facilitating the study of pump behavior under various flow conditions. The P100L
model features impellers with mixed flow geometry, each having an outer diameter of 108mm

and 7 blades. In contrast, the P47 model is a radial impeller of 108mm in diameter and 7 blades.
The ESP is driven by a three-phase AC induction motor controlled by a variable speed driver

(VSD). The VSD is programmed to change the pump speed in accordance with the desired
angular velocity. The instrumentation for the ESP includes pressure transmitters at each pump
stage, including the pump inlet and outlet, and temperature transmitters at the inlet and outlet.
Thus, it is possible to measure the suction and discharge pressures at each stage and the suction
and discharge temperatures. These measurements are crucial for real-time monitoring and proper
experimental data acquisition.

The equipments specifications are presented in Table 4.1, and the instrumentation character-
istics will be discussed in Section 4.1.2.

Table 4.1: Specifications of components used in the experimental setup

Line Device Manufacturer Model/Specification

Oil Pump NETZSCH Two-screw pump
Motor WEG 45 kW; 1775RPM
SY-101 WEG CFW 700 Vectrue inverter; input signal

4mA to 20mA

Water Pump IMBIL 65160
Motor WEG 22 kW; 3535RPM
SY-102 WEG CFW 700 Vectrue inverter; input signal

4mA to 20mA

Emulsion Pump Baker Hughes P100L 538 series
Motor WEG 37 kW; 3555RPM
SY-103 WEG CFW 09 Vectrue inverter; input signal 4mA

to 20mA

Tank Intelfibra Capacity 12 000 L

Heat control Heat exchanger FYTERM T3480 shell and tube
Heater Mecalor TMR-M-18-380/C
Chiller Mecalor MSA-60-CA-380/C

Valve Globe valve Fisher 657; input signal 4mA to 20mA

The experimental setup employs two different fluids: water and a blend of mineral oil.
These fluids are selected to obtain a two-phase liquid-liquid flow, forming a suitable emulsion
for evaluating the ESP dynamics in this condition. The water used in the experiments has no
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additional conditioning. The mineral oil blend was selected primarily for obtaining higher
viscosity fluids, approximating real-field conditions. The viscosity of the mineral oil blend was
characterized using a HAAKE MARS III rotational rheometer, as detailed in Appendix B.1.
This characterization is essential for determining the fluid’s viscosity while operating at different
temperatures.

The temperature control in the experiments is crucial as the oil viscosity strongly depends on
the temperature. Thus, the experiments can be conducted under different viscosity conditions
using the same oil by regulating the temperature. Additionally, as the system operates in a closed
loop, the temperature tends to rise over time, which leads to a constant temperature increase
in the fluid temperature. Such change could result in misleading measurements and analysis,
given that fluid viscosity directly influences the pump performance. Therefore, the temperature
control allows fluid viscosity adjustment and stabilizes the fluid temperature during experiments.
The temperatures at the inlet and outlet of the ESP are monitored, and the temperature control
considers the temperature at the pump’s inlet.

4.1.2 Instrumentation and measured variables

In Section 4.1.1, four distinct lines and their instrumentation were introduced as part of the
experimental setup. While their purpose was mentioned, the specific instrumentation was not
described. This section provides more detail on the variables that the experimental assembly can
measure and the instrumentation specifications. An overview of the types of variables that are
measured in this experimental setup is provided below.

• Pressure and temperature: The intake and discharge pressures of the ESP are monitored
using capacitive-type pressure transmitters. Temperature transmitters are installed at
approximately the same locations to measure the fluid temperature, which is crucial
for viscosity calculations. The pressure is also measured and monitored at each ESP
stage using the same pressure transmitter model. In configurations equipped with the
ESP P47 model, the experimental assembly incorporates further pressure monitoring
instrumentation: a pressure measurement at the heat exchanger intake and a differential
pressure measurement across the valve.

• Flow parameters: The water and oil mass flow rates are measured using Coriolis meters.
The water cut, or the water fraction in the oil phase, is determined using the water-cut
meter.

• Fluid properties: The oil viscosity was characterized using a rotational rheometer, and
this data is used in conjunction with temperature measurements to estimate the oil viscosity.
The oil and water densities are measured using the Coriolis meters. Additionally, as the
emulsion flows in the oil flow line, its density is measured by the Coriolis flow meter.
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• Mechanical parameters: The torque and the ESP shaft angular velocity are measured by
a torque meter.

• Electrical Parameters: The VSDs of each pump motor supply the three-phase induction
motors. Additionally, the VSD of the ESP electrical motor provides the motor voltage and
current measurements.

The pressure is measured using capacitive pressure transmitters of the 2088 series manufac-
tured by Emerson Rosemount™. A temperature transmitter equipped with a PT100 resistance
temperature detector (RTD) is employed for temperature monitoring, with a four-wire configura-
tion and 1/10 DIN accuracy. The torque and angular velocity of the pump shaft are measured
using the T21WN torque meter from HBM®. The water fraction in the oil phase is measured with
the water cut meter model Nemko 05 ATEX 112, manufactured by Roxar®. Additionally, the
Coriolis meter model F300S355 from Micro Motion®is utilized to measure the density and mass
flow rates in the oil and water flow lines. The operational ranges and uncertainties associated
with these instruments are provided in Table 4.2.

Table 4.2: Instrumentation specifications: range and uncertainty

Tag Instrument Model Range Uncertainty

FT-10X‡ Flow meters Micro
Motion®F300S355

0 to 100m3 h−1 0.2% O.V.*

TT-10X‡ Temperature sensors ECIL®PT100 0 to 100 ◦C 1/10 DIN
PT-10X‡ Pressure transducers Emerson Rosemount

2088
0 to 2MPa 0.065% F.S.†

PDT-101‡ Pressure transducers Emerson Rosemount
2051

−0.1 to 2MPa 0.065% F.S.†

WCM-101 Water cut meter Roxar Nemko 05
ATEX 112

0 to 100% 1% F.S.†

TTQ-101 Torque transmitter HBM T21WN 0 to 100Nm 0.1% F.S.†

TE-101 Encoder Minipa MDT-2238A 0 to 166Hz 0.05%F.S.†

* O.V. : of value;
† F.S. : of full scale;
‡ The X means that the specifications are also valid for the other instruments.

The sensors PT-10X, FT-10X, and WCM-101 produce output signals within the range of
4mA to 20mA, whereas the TTQ-101 and TE-101 sensors generates signals in the voltage range
of −10V to 10V. Notably, the TT-10X sensor utilizes a 4-wire resistance measurement scheme
for accurate signal acquisition.
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4.1.3 Data acquisition system

As presented in Sections 4.1.1 and 4.1.2, the instrumentation and actuators integrated into
the experimental apparatus exhibit different operational requirements. Specifically, the pressure,
water cut, and Coriolis meters generate DC signals, while the torque and angular velocity meters
produce DC voltage signals. The temperature transmitters employ a 4-wire scheme for resistance
measurements. In contrast, the variable-frequency drives (SY-101, SY-102, SY-103) and the flow
control valves (FCV-101, FCV-102, FCV-103) requires input signals within the range of 4mA to
20mA. Additionally, the temperature control system operates based on the Modbus protocol.

The experimental measurements are conducted through a data acquisition system model
cDAQ-9188 (DAQ-101) from the manufacturer National Instruments. For the pressure, Coriolis,
and water cut meters, which necessitate a 4mA to 20mA analog signal, an acquisition module
model NI-9203 from the same manufacturer is employed. This module comprises eight channels,
each with a 16-bit resolution, an operational range of ±20mA, and a maximum sampling rate of
200 kHz. In the case of the torque and encoder meters, the acquisition is managed by a NI-9201

module, which supports a voltage range of ±10V, a maximum sampling rate of 500 kHz, and
has a 12-bit resolution. The temperature signals are captured using a NI-9215 module, designed
to accommodate a voltage range of ±10V, a sampling rate of 100 kHz per channel, and a 16-bit
resolution. All modules used are integrated into the DAQ-101.

All the signal acquisition, generation, and control routines for the SY-101, SY-102, SY-

103, FCV-101, FCV-102, and FCV-103 were implemented in a Supervisory Control and Data
Acquisition (SCADA) system using the LabVIEW™software from National Instruments. The
signal generation is managed by a NI-9265 module integrated into the DAQ-101. It supports
generating a signal in the range of 0mA to 20mA with a 16-bit resolution. In addition to the data
collection and actuation routines, the SCADA development included designing and implementing
two independent fuzzy logic controllers.

The first controller actuates on the FCV-101 and the set-point of the temperature control
system, with the specific objective of achieving and maintaining the ESP intake temperature (
TT-101) within a range of a given set-point. The FCV-101 influences the fluid temperature by
controlling the volumetric flow rate that passes through the heat exchanger in the oil flow line.

The second controller actuates on the FCV-103 and SY-101 to obtain a desired volumetric
flow rate in the oil line (FT-101). Concurrently, the controller monitors the ESP intake pressure
(PT-102) to prevent low and high pressure. For the purposes of the experimental tests, a pressure
below 100 kPa is considered low, whereas a pressure above 600 kPa is considered high for the
intake pressure (PT-102). These limits can be adjusted in the SCADA code. The main objective
of this controller is to safely reach the targeted volumetric flow rate within the experimental
setup.

The SCADA program was developed using a multi-threading paradigm, incorporating
producer-consumer loops, state machines, and control loops. This architecture allowed for
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independent storage of measured signals from the instruments, real-time display on the user
interface, and execution of control routines. For the user interface, the SCADA system computes
a moving average of the instrument measurements over the most recent 5 s. In addition to the
directly measured variables, the SCADA system also estimates and displays the current viscosity
in the user interface, serving for reference and monitoring purposes.

Furthermore, the experimental procedures, that will be described in Sections 4.1.5.1 and 4.1.5.2,
were automated in the SCADA developed. This ensures that the points measured will rigorously
follow the same experimental procedure and timing. Also, several safety protocols were im-
plemented and integrated into the SCADA. It includes critical pressure checks for PT-102 and
PT-103, as well as the computer RAM availability checks. These protocols ensure the safe and
reliable operation of the experimental apparatus.

4.1.4 Data collection

The instrumentation described in Section 4.1.2 was collected at a sampling rate of 250Hz.
For steady-state analysis, the signals from each experimental point were averaged over the entire
acquisition time. On the other hand, for transient analysis, the collected signals were post-
processed in a separate computer, where they were downsampled to 10Hz. This downsampling
rate was selected to adhere to the Nyquist-Shannon sampling theorem based on the maximum
frequency specifications provided by the pressure transmitter manufacturer. In order to ensure
accurate signal representation and remove high-frequency noise, an 8th-order Butterworth
low-pass filter was employed with a cut-off frequency of 10Hz.

4.1.5 Experimental procedures

4.1.5.1 Steady state experiments

In this section, the experimental procedure designed to investigate the steady-state behavior
of the ESP system is delineated. It focuses on obtaining the ESP pressure difference between
the intake and discharge under different ESP shaft angular velocities and volumetric flow rates
for single-phase and two-phase oil and water flows. For clarity, any reference to ESP rotation
pertains to the angular velocity of the ESP shaft.

The experimental procedure is divided into two discrete phases. The first phase, denoted as
the start-up step, aims to reach a volumetric flow rate and a stable water cut for the two-phase
experiments. The second step, referred to as the steady-state acquisition step, outlines the
approach for an appropriate data collection, ensuring a relatively stable temperature and that
all pressures and volumetric flow rates are stable. The flow chart illustrating the experimental
procedure is presented in Figure 4.2 and detailed further below:

Step 1: Start-up:
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(a) Begin by slowly starting the oil pump and water pump (for two-phase flow experiments)
at a low rotational speed (e.g., 62 rad s−1) to ensure system stability and prevent sudden
pressure surges.

(b) Incrementally adjust the ESP angular velocity (SY-103) to a pre-determined target speed
while ensuring that the suction pressure remains above 100 kPa to prevent cavitation in
the ESP first stages.

(c) In the context of a two-phase flow experiment, monitor the water cut using the water cut
meter (WCM-101) and adjust the water pump angular velocity (SY-102) as necessary
until the pre-defined water cut is obtained.

(d) Stop the water pump operation after confirming the stabilization of the desired water
cut.

(e) Check the volumetric flow rate (FT-101). Fine-tune the twin-screw pump angular
velocity (SY-101) and the valve position downstream the ESP (FCV-103) until the
pre-defined volumetric flow rate is achieved.

Step 2: Steady-state acquisition:

(a) Allow sufficient time for the suction, discharge pressure, and volumetric flow rate to
stabilize. This stabilization period allows capturing only the steady state condition of
the ESP.

(b) Ascertain that the intake temperature of the ESP (TT-101) is within ±0.25 ◦C of the
targeted temperature.

(c) Initiate data acquisition.

(d) Collect data for a pre-defined duration of 15 s.

(e) Conclude data acquisition.

(f) Validate the stability of all monitored variables. Remove the data and return to the
stabilization step if any variables are outside the pre-defined tolerances or criteria (Step
2:a).

(g) For new experimental point return to the step Step 1:c.

A variable is considered stable if the coefficient of variation (CV) computed over the last
20 s of measurements is less than 0.8%. This criterion is the same as described by de Castro
Teixeira Carvalho et al. [133]. The time window was chosen based on preliminary system tests.
The coefficient of variation CV is defined as:

CV =
σx
x̄
, (4.1)
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where σx is the standard deviation and x̄ is the mean of the last 20 s of measurements for a
variable x. It is worth noting that steps Step 1:e to Step 2:g were automated in the SCADA
system.

Start

Initialize the oil and water
pumps (SY-101, SY-102)

Adjust ESP rotation (SY-
103) and monitor suc-
tion pressure (PT-101)

If two-phase flow adjust the
water pump rotation (SY-102)

Desired water cut?

Stop water pump (SY-102)

Adjust oil pump (SY-
101) and the ESP down-
stream valve (FCV-103)

Desired volumetric
flow rate?

Steady-state acquisition

Allow time for stabi-
lization of parameters

Check ESP intake tem-
perature (TT-101)

Start data acquisition

Collect data for 15 seconds

End data acquisition

All variables stable?

Store data

New
experimental

point?
End

No

Yes

No Yes

No

Yes

Yes

Figure 4.2: Steady-state experimental procedure flowchart.

4.1.5.2 Dynamic experiments

In this section, the developed experimental procedure employed to assess the dynamic
behavior of the ESP system is presented. It focuses on variations in the ESP shaft’s angular
velocity during operation under single-phase and two-phase flows. For clarity, any reference to
ESP rotation refers to the angular velocity of the ESP shaft.
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The experimental procedure is partitioned into two distinct steps. The first step, denoted as
start-up step, aims to obtain a stable water cut for the dynamic experiment. The second step,
referred to as transient acquisition step, presents the procedure to obtain the ESP transient and
data collection safely. The experimental procedure flow chart is presented in Figure 4.3, and it is
detailed below:

Step 1: Start-up:

(a) Begin by slowly starting the oil pump and water pump at a low speed (e.g., 62 rad s−1)
to ensure system stability and prevent sudden pressure surges.

(b) Gradually increase the rotation speed of the ESP while monitoring the suction pressure.
Maintain the ESP angular velocity below 105 rad s−1 and ensure the suction pressure
remains above 100 kPa to prevent cavitation in the ESP first stages.

(c) Check the measured water cut and adjust the water pump angular velocity if necessary.
Repeat this step until the desired water cut is achieved.

(d) Stop the water pump operation after confirming the stabilization of the desired water
cut.

Step 2: Transient acquisition:

(a) Increase the ESP angular velocity to the desired initial value.

(b) Increase the oil pump angular velocity while closing the ESP downstream valve to
maintain the suction pressure within the range of 100 kPa to 600 kPa. The upstream
pressure of the ESP should not exceed 600 kPa for a safe operation.

(c) Gradually increase the ESP angular velocity to reach the desired final value.

(d) Increase the oil pump angular velocity while closing the downstream valve to maintain
the suction pressure within the range of 100 kPa to 600 kPa.

(e) Return the ESP angular velocity to the desired initial speed.

(f) Allow sufficient time for the suction, discharge pressure, and volumetric flow rate to
stabilize. This stabilization period allows capturing only the dynamics of the ESP
angular velocity change.

(g) Start data acquisition.

(h) Wait 5 s.

(i) Adjust the ESP angular velocity on the VSD to the final desired value.

(j) Allow another stabilization period for the suction, discharge pressure, and volumetric
flow rate. This period allows the capture of the complete dynamic system response to
the rotation change.

(k) End data acquisition.
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Figure 4.3: Transient experimental procedure flowchart.

(l) Return to the Step 1:c

The criteria for system stabilization in the dynamic experiments were the same as those spec-
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ified in Section 4.1.5.1. Similar to the automation implemented in the steady-state experimental
procedure, the SCADA system autonomously monitors for system stabilization. Once stabilized,
it executes the steps automatically from Step 2:f to Step 2:k.

4.1.6 Steady-state test matrix

The steady-state experimental investigations focused on single-phase experiments examining
oil and water conditions for both ESP (P100L and P47). The Tables 4.3 and 4.4 summarize the
test parameters employed to assess ESP P100L performance for oil and water, respectively. For
the ESP P45, the test parameters used to assess its performance are summarized in the Tables 4.5
and 4.6. Each row in these tables represents a distinct parameter or factor that was varied during
the tests, with each parameter having multiple levels.

Table 4.3: Summary of experimental tests for evaluating ESP P100L performance for oil condi-
tions.

Parameter Levels Description

Temperature 3 20, 25 and 30◦C
ESP rotation 4 188, 251, 314 and 366rad s−1

Flow rate Varying 0 to open flow, ∆ = 0.5m3 h−1

Table 4.4: Summary of experimental tests for evaluating ESP P100L performance for water
conditions.

Parameter Levels Description

Temperature 3 30, 35 and 40◦C
ESP rotation 4 188, 251, 314 and 366rad s−1

Flow rate Varying 0 to open flow, ∆ = 1.5m3 h−1

Table 4.5: Summary of experimental tests for evaluating ESP P47 performance for oil conditions.

Parameter Levels Description

Temperature 3 22, 33 and 50◦C
ESP rotation 4 208, 259, 312 and 363rad s−1

Flow rate Varying 0 to open flow, ∆ ≈ 0.25m3 h−1∗

* The flow rate increment was subjected to adjustments based on
the specific experimental conditions and the system’s capacity to
maintain a stable temperature within the parameters set.

The data points collected from the experimental setup, following the test summaries previously
described, are displayed in separate figures for the ESP P100L and ESP P45 models. For the
ESP P100L, data under oil and water conditions can be found in Figures 4.4 and 4.5, respectively.
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Table 4.6: Summary of experimental tests for evaluating ESP P47 performance for water condi-
tions.

Parameter Levels Description

Temperature 3 23, 25 and 28◦C
ESP rotation 4 208, 259, 312 and 363rad s−1

Flow rate Varying 0 to open flow, ∆ ≈ 0.25m3 h−1

* The flow rate increment was subjected to adjustments based on the
specific experimental conditions.

Correspondingly, for the ESP P45, the Figures 4.6 and 4.7 present the data for oil and water
conditions.
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Figure 4.4: Steady-state experimental data of the ESP P100L for oil conditions.

4.1.7 Dynamic test matrix

To evaluate the dynamic performance of the ESP system modeled through bond graphs,
it is essential to consider varying operational conditions. In this work, it was focused on two
distinct water-in-oil emulsion conditions to account for two-phase flows. The parameters selected
for variation included the water fraction, temperature, and angular velocity step size. These
parameters significantly influence the system’s dynamic behavior. Moreover, the fluid properties,
such as density and viscosity, are subjected to change based on well conditions. Furthermore,
the variation in angular velocity is designed to simulate shifts in operational conditions.

The test matrix, detailed in Table 4.7, includes several experimental parameters: initial angular
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Figure 4.5: Steady-state experimental data of the ESP P100L for water conditions.
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Figure 4.6: Steady-state experimental data of the ESP P47 for oil conditions.

velocity (ωi), final angular velocity (ωf ), water cut, temperature, and twin-screw pump rotation
(ωt). Thus, the objective is to analyze the system’s dynamic behavior across different density and
viscosity conditions. Moreover, this approach enables the evaluation of the model’s accuracy in
capturing the performance of the ESP system, especially when influenced by emulsion formation.
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Figure 4.7: Steady-state experimental data of the ESP P47 for water conditions.

Table 4.7: Test matrix for assessing the dynamics of the ESP system in oil/water two-phase
flows.

Inv. (#) Pump ωi (rad s−1) ωf (rad s−1) Ω (%) Temp. (◦C) ωt (RPM)

1 P100L 272.3 314.2 14.0 33.5 1280.0

2 P100L 251.3 314.2 5.0 26.0 1160.0

3 P47 167.6 230.4 4.0 30.5 200.0

4 P47 219.9 282.7 4.0 35.5 400.0

5 P47 219.9 282.7 10.0 38.5 400.0

6 P47 125.7 178.0 15.0 33.0 200.0

4.2 Modeling using bond graphs

In this work, bond graph modeling serves as a cornerstone for analyzing and simulating the
ESP system. The theoretical foundations and mathematical derivations associated with bond
graph elements are elaborated in Chapter 3. This section is dedicated to the methodology for
constructing bond graph models, extracting the associated equations, and solving these equations
numerically. To facilitate these tasks, a specialized Julia library, BondGraphToolkit.jl, has been
developed. This library is built upon the ModelingToolkit.jl framework [134], which offers a
robust platform for defining acausal subsystems, establishing interconnections, and deriving
equations.
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The primary objective of this section is to elucidate the process of bond graph modeling
via the developed library. For illustrative purposes, we consider a single-degree-of-freedom
mass-spring-damper system augmented with a nonlinear cubic spring term. This leads to the
well-known Duffing equation, given as

mduff
d2x

dt2
+ cduff

dx

dt
+ klinx+ knlx

3 = F (t). (4.2)

where mduff, cduff, klin, knl are system parameters, and F (t) is the forcing function. A schematic
representation of the system and its bond graph are depicted in Figure 4.8. It should be noted that

mduff

klin knl cduff

F (t)

(a) Schematic representation.

1 I: mduff

C: 1/klin

R: cduff

C: 1/knl

Se: F (t)

(b) Bond graph.

Figure 4.8: Duffing equation as a mass-spring-damper system and its bond graph representation.

the methodologies described herein are generalizable, offering applicability to various systems
beyond the mass-spring-damper. The bond graph causalities are automatically assigned by the
ModelingToolkit.jl framework.

4.2.1 Initialization of 1-port elements

Prior to system definition, it is required to initialize the 1-port elements, which are funda-
mental elements in bond-graph modeling, and then interact with 2-port elements, 0-junctions,
or 1-junctions (described in Chapter A). For the purpose of this demonstration, the bond-graph
1-port elements were mapped to a longitudinal mechanical power system representation, a choice
motivated by its ubiquity in mechanical systems. Thus, the inertance is characterized using the
Mass() function, damping is represented through the Damper() function, and compliance is
defined via the Spring() function.

The Mass() function accepts two arguments: the inertia element value or expression and the
initial velocity. The Damper() function requires only the damping coefficient or an expression.
Similarly, the Spring() function necessitates the stiffness value or expression and the initial
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position as arguments. The expression refers to an algebraic mathematical expression. These
elements can be initialized as demonstrated in the following code.

1 @named m = Mass(m=1.); # Mass element

2 @named spring = Spring(k=5., x=1.); # Linear spring element

3 @named damper = Damper(c=0.2); # Damper element

The external forcing term, denoted by F (t) in Figure 4.8, can be defined either as an algebraic
expression or as a Julia function. The specific form of F (t) can be defined prior to solving the
resulting ordinary differential equations (ODE).

1 @parameters F(t) # Definition of the forcing term

2 @named f = Se(F) # Initialization of the 1-port source effort

element↪→

4.2.2 Custom 1-port elements

The library provides a framework for defining custom 1-port elements, thereby enabling
the representation of non-linear or complex physical phenomena beyond the standard linear
elements. The custom elements necessitate the formulation of their constitutive relationship
in terms of power variables, specifically generalized effort (e) and generalized flow (f). This
formulation ensures compatibility with the bond-graph framework developed, facilitating the
integration of custom elements into more complex models.

The code snippet below presents the definition of a cubic spring element, denoted as
Spring3:

1 @oneport function Spring3(; name, k = 1.0, x = 0.0)

2 # Arguments

3 # name -> multiport name

4 # k -> spring constant

5 # x -> initial position

6

7 # Initialize the state variable for displacement

8 @variables q(t) = x

9 # Define the spring constant parameter

10 @parameters C = 1 / k

11

12 # Constitutive equations for the Spring3 element

13 [
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14 power.e ~ q^3 / C, # Cubic non-linearity

15 D(q) ~ power.f # Flow as the derivative of displacement

16 ]

17 end

After executing the code above, the custom element can be initialized similarly to the standard
1-port elements, facilitating its integration into larger systems.

1 # Initialize cubic spring element

2 @named spring3 = Spring3(k=5., x=1.);

4.2.3 Connecting multiport elements

The process of interconnecting multiport elements constitutes a fundamental step in bond
graph modeling. Within the utilized library, both 1-junction and 0-junction elements are encap-
sulated by the Junction1 and Junction0 functions, respectively. These functions mandate as
arguments the elements intended for interconnection, with the sole requirement that each element
or subsystem should encapsulate a variable named power, initialized as @named power =

Power().
To exemplify, consider the bond graph model depicted in Figure 4.8b. The following code

snippet demonstrates the usage of Junction1 for interconnecting its components:

1 @named mdl = Junction1([-1, m], [-1, d], [-1, s], [-1, s3], f)

The structure generically defined as [-1, component] is used to define the direction of the
bond graph connection of the component. The -1 serves as an indication that the half arrow is
leaving the 1-junction. In cases involving complex networks of interconnected elements, an alter-
native method is the connect() function. This function accepts two arguments, representing
the multiport elements in which the power flows. In this framework, the convention is that power
flows from the first argument to the second. The subsequent code snippet performs the same
operations as the preceding one but employs the connect() function.

1 @named j1 = Junction1() # Initialize an empty 1-junction

element↪→

2

3 # Manually specify the connections

4 cons = [

5 connect(j1.power, m.power),

6 connect(j1.power, d.power),
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7 connect(j1.power, s.power),

8 connect(j1.power, s3.power),

9 connect(f.power, j1.power),

10 ]

11

12 # Define the overall system using the connections

13 @named mdl = ODESystem(cons, t)

14 # Integrate the elements into the model

15 mdl = compose(mdl, j1, m, d, s, s3)

4.2.4 Equation Extraction

This subsection elucidates the methodology for extracting the governing equations of the
bond graph model, denoted as mdl, and their subsequent rendering into LATEXcode for documen-
tation. The function equations(expand_connections()) enables the extraction of these
equations, while latexify() serves to convert them into LATEXcode. The resultant equations
are presented below:

dm+power+f (t)

dt
=
m+power+e (t)

m+I
(4.3a)

d+power+e (t) =d+Rd+power+f (t) (4.3b)

s+power+e (t) =
s+q (t)

s+C
(4.3c)

ds+q (t)

dt
=s+power+f (t) (4.3d)

s3+power+e (t) =
(s3+q (t))

3

s3+C
(4.3e)

ds3+q (t)

dt
=s3+power+f (t) (4.3f)

f+power+e (t) =f+F (t) (4.3g)

s+power+f (t) =d+power+f (t) (4.3h)

s+power+f (t) =m+power+f (t) (4.3i)

s+power+f (t) =s3+power+f (t) (4.3j)

s+power+f (t) =f+power+f (t) (4.3k)

0 =−m+power+e (t) + f+power+e (t)

− d+power+e (t)− s+power+e (t)

− s3+power+e (t) ,

(4.3l)

where e(t) and f(t) represent the power variables, while q(t) is the generalized displacement.
The system parameters are denoted as mass m+I , the linear and cubic spring stiffness s+C and
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s3+C, and the damping coefficient d+R.
It should be noted that the ModelingToolkit.jl library automatically appends each element’s

name along with a + suffix to each parameter in the equation. For instance, a 1-port resistance
element named d with a damping coefficient represented by R in the model would appear as d+R

in the equations and LATEXrendering. This nomenclature is intentional, as it serves to uniquely
identify parameters in cases where similar elements are present in the system.

As shown in Equation (4.3), these equations are in the form of DAE. For subsequent com-
putational analysis, especially employing the solve function from the DifferentialEquations.jl

library, these equations must be simplified, in this case to ODE. This simplification is achieved
using a custom function simplifysys(), which utilizes functionalities from the Modeling-
Toolkit.jl library. The resultant equations are presented as follows.

dm+power+f (t)

dt
=

− (s3+q (t))
3

s3+C
+

−s+q (t)
s+C

− d+Rm+power+f (t) + f+F (t)

m+I
(4.4a)

ds+q (t)

dt
=m+power+f (t) (4.4b)

ds3+q (t)

dt
=m+power+f (t) (4.4c)

4.2.5 Analytical validation

It is fundamental to verify the correctness of the equations presented in Equation (4.4). We
can analytically rearrange and simplify the equations, obtaining:

dm+power+f (t)

dt
=

− (s3+q (t))
3

s3+C
+

−s+q (t)
s+C

− d+Rm+power+f (t) + f+F (t)

m+I
, (4.5a)

ds+q (t)

dt
=
ds3+q (t)

dt
= m+power+f (t) , (4.5b)

Considering the states variables as only the displacement q(t), we derive:

m+I
d2s+q (t)

dt2
=

− (s+q (t))
3

s3+C
+

−s+q (t)
s+C

− d+R
ds+q (t)

dt
+ f+F (t) , (4.6)

m+I
d2s+q (t)

dt2
+

(s+q (t))
3

s3+C
+
s+q (t)

s+C
+ d+R

ds+q (t)

dt
= f+F (t) . (4.7)

As can be seen, the Equation (4.7) can be directly compared to the Duffing equation in
Equation (4.2), where the parameters map as mduff = m+I , x = s+q (t), klin = 1/s+C,
knl = 1/s3+C, cduff = d+R, and F (t) = f+F (t). This analytical validation confirms the
accuracy of the library in deriving the correct bond graph model.
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4.2.6 Numerical simulation

The system equations in Equation (4.4) can be solved using solve. However, we still need
to define the forcing term F (t). In this example, we considered an unforced system where
F (t) = 0. Then, we define the force function on the system, the simulation time range, the initial
conditions, and finally solve the system. The code snippet below shows the simulation steps:

1 # Set the forcing term to zero

2 sys = substitute(sys, Dict(f.F => 0.0))

3

4 # Specify the simulation time range

5 tspan = (0, 10)

6

7 # Define the ODE problem with initial conditions

8 prob = ODEProblem(sys_unforced, [m.power.f => 0.0, s.q => 1.0, s3.q

=> 1.0], tspan)↪→

9

10 # Perform the numerical simulation

11 sol = solve(prob)

4.3 Valve modeling

As discussed in Section 3.6.3, the fundamental valve equations for turbulent and non-turbulent
flow in incompressible fluids are similar. The main difference arises when the valve Reynolds
number, Rev, is lower than 10 000. In this regime, the factor multiplying the model changes
from a constant in the turbulent model, Fp, obtained from the ISA75.01.01 [128] table to a
Reynolds-dependent factor, Fr, whose expression is given by Equation (3.109).

As mentioned in Section 3.6.2, the Fr expression is particularly developed for fluids that
exhibit Newtonian rheology and non-vaporizing fluids. When dealing with non-Newtonian fluids,
the elevated shear rates experienced as the fluid passes through the valve can lead to significant
viscosity variations. These changes can influence the energy loss within the valve, thereby
impacting the standard model’s accuracy, which does not consider these variations. Despite emul-
sions being non-Newtonian, the ISA75.01.01 [128] restriction regarding the model applicability
in turbulent conditions is related to mixture homogeneity and whether the multiphase mixture is
in chemical and thermodynamic equilibrium. In the context of emulsions, the multiphase flow is
expected to be homogeneous. However, the emulsions are not in thermodynamic equilibrium.
Therefore, for instance, as the fluid flows through the valve, the temperature change could lead
to separate the phases.

Due to the high viscosity of the oil and previously discussed challenges, the ISA75.01.01
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[128] approach becomes less feasible for scenarios involving multiphase flows, laminar flows,
and non-Newtonian fluids. Instead of using the ISA75.01.01 [128] expressions for Fp or Fr,
it is recommended to derive these values experimentally. It should be noted, as indicated by
Equation (3.109), that the Fr factors is dependent on the Reynolds number, and by extension, on
fluid viscosity and density. Therefore, the applicability of the experimentally derived values may
be confined to a specific range of viscosity and density conditions.

Given the equation Equation (3.112c), we can combine terms Cv, N1, and F ∗. Thus,
Equation (3.112c) can be reformulated as:

∆P =
ρ∗Q2

C∗
v
2 , (4.8)

where C∗
v is a term that accounts for Cv, N1, and F ∗. Therefore, the bond graph resistance

element described by Equation (3.114) can be expressed as:

Rv(a) =
ρQ

(C∗
v (a))

2
. (4.9)

4.4 Practical identifiability analysis

The practical identifiability can be assessed using either Monte Carlo simulations or sensitivity
analysis. The Monte Carlo approach rigorously determines the practical identifiability of the
model but comes with a high computational cost due to the requirement of multiple model
fits. On the other hand, sensitivity analysis offers a faster computation method and provides
information about the correlation structure among the parameters. This correlation structure can
guide the fixing of parameters when practical identifiability is not achieved [92, 135].

In the sensitivity approach to practical identifiability, it was used the Fisher information
matrix (FIM) to compute the correlation matrix of all parameters to determine their practical
identifiability. The sensitivities of the ESP system model with respect to the parameters were
estimated with the Julia package DiffEqSensitivity.jl. For the sensitivity analysis, it was consid-
ered the simulated case, and similarly to Daneker et al. [132], it was considered a noise level of
the measurements of 1%.

Then, to obtain the correlation matrix, we first estimate the covariance matrix (C), which
can be approximately obtained from the FIM by

C = FIM−1. (4.10)

We then estimate the correlation matrix from (C) with




rij =

Cij√
CiiCjj

, if i ̸= j,

rij = 1, if i = j.
(4.11)
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When |rij| is close to 1, the parameters i and j are strongly correlated and cannot be individually
estimated. Therefore, the parameters are practically unidentifiable [92, 135].

4.5 Physics-informed neural networks

4.5.1 Neural network architecture

The Physics-Informed Neural Network (PINN) comprises two key elements: a Neural
Network (NN) used to approximate the solution of a specific differential equation and an
auxiliary component that incorporates this differential equation into the optimization process of
the network parameters. The embedding of the differential equation within the loss function of
the NN is facilitated by automatic differentiation [105]. In this work, the primary focus is on
employing a fully connected, feed-forward Deep Neural Network (DNN) for approximating the
state variables of the ESP system, the details of which will be elaborated in Sections 5.3 and 5.4.
For illustrative purposes, it is considered the set of state variables denoted as Φ1 corresponding
to the model states delineated in Section 5.4.

Φ1 = {Qp, ω,Q1, Q2, P1, P2}. (4.12)

It is pertinent to note that the methodology described herein is equally applicable to alternative
sets of state variables, denoted generically as Φ.

The architecture of the DNN is composed of one input layer, h hidden layers, and one linear
output layer. It can be formally represented as:

y0 = t, (Input layer) (4.13a)

yi = σ (Wiyi−1 + bi) , (Hidden layers), ∀ 1 ≤ i ≤ h− 1

(4.13b)

ŷ = yh =Whyh−1 + bh−1, (Output layer) (4.13c)

where W ∈ Rm×n and b ∈ Rm are the weight matrix and bias vector of the NN, respectively.
The terms n and m refer to the size of the previous and current layers. The function σ(·)
represents the NN activation function, which in this work was chosen to be tanh(·). For the
remainder of this work, the weights and biases are referred collectively to as the parameters of
the neural network, denoted as θ = {W , b}. They were initialized randomly using the Xavier
initialization method [136].

The schematic diagram of the PINN used in this study is shown in Figure 4.9. In this
work, one DNN is employed to approximate the set of state variables Φ1. This strategy yielded
satisfactory results while reducing the computational cost compared to training individual DNNs
for each state variable of Φ1, as will be discussed in Chapter 7.
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Figure 4.9: Schematics representation of the physics-informed neural network for the ESP
system.

The architecture of the DNN is illustrated in the red dashed-dotted rectangle on the left side
of Figure 4.9. The DNN takes time, t, as its input and yields the state variables in Φ1 as its
output, highlighted in the green dotted rectangle of the figure. The DNN is evaluated at NODE

collocation points, each associated with a residual term corresponding to the ESP system’s
differential equations. These residuals are indicated in the black-dotted region on the right side of
Figure 4.9. The time derivatives of the state variables are computed via automatic differentiation.
In the DNN architecture, the activation function is denoted by σ.

The architecture of the DNN considered in this study is denoted as [1, 20, 20, 20, 6]. This
indicates that the input layer consists of a single neuron corresponding to time t, followed by
three hidden layers each containing 20 neurons, and an output layer with 6 outputs corresponding
to the elements of Φ1.

4.5.2 Physics-Informed loss function

The NN loss function is denoted as L(θ,Λ,λd,λr,λic), and it is defined as

L(θ,Λ,λd,λr,λic) = Lode(θ,Λ,λr) + Ldata(θ,λd) + Lic(θ,λic). (4.14)

It is a composition of three distinct losses: the data loss Ldata(θ,λd) which compares the NN
adjustment regarding the data, the physics (ODE) loss Lode(θ,Λ,λr) corresponding to the
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residues at collocation points, and the initial condition loss Lic(θ,λic) which compares the DNN
output at t = 0 to the given initial conditions. The weights λd, λr, and λic are assigned to each
of these loss components and may be either fixed or adapted during the optimization process and
Λ denotes the unknown parameters within the ODE system.

The physics-informed loss function, Lode(θ,Λ,λr), was defined as a weighted (self-adaptive
weights) sum of individual physics losses corresponding to each differential equation in the
system. This sum is expressed as:

Lode(θ,Λ,λr) =
∑

s∈Φ
m(λsr)Lodes , (4.15a)

=
∑

s∈Φ
m(λsr)


 1
sN ode

sNode∑

i=1

(sri)
2


 , (4.15b)

=
∑

s∈Φ
m(λsr)


 1
sN ode

sNode∑

i=1

(
dŷs
dt

∣∣∣∣ti − fs (ŷ(ti;θ), τ(ti);Λ)

)2

 , (4.15c)

where s is an element of the set Φ1 (s ∈ Φ1), representing each state variable in the system. The
Lodes represents the physics-informed loss associated with the s state differential equation of the
system. The term sN ode denotes the number of collocation points for the equation of the s state.
The λsr is the self-adaptive weight associated with the state s equation of the physics loss. In this
work, m(·) serves as a mask function and is specifically chosen to be the softplus function Sp(·),
defined as:

Sp(x) = ln(1 + ex). (4.16)

The variable sri stands for the residual at the i-th collocation point for the s state differential
equation. It should be noted that, in this study, it was considered that all state variables use the
same set of collocation points, implying that all sN ode are identical. The detailed elaboration of
the calculation for these residuals for each state s differential is available in Appendix E for the
ESP system model evaluated.

The data loss, Ldata(θ,λd), is calculated as a weighted sum, defined by self-adaptive weights
of individual data losses corresponding to a state variable in the set ϕ of known states. The data
loss is given by:

Ldata(θ,λd) =
∑

s∈ϕ
m(λsd)Ldatas , (4.17a)

=
∑

s∈ϕ
m(λsd)


 1
sNdata

sNdata∑

i=1

[ys(ti)− ŷs(ti;θ)]
2


 , (4.17b)

where s is an element of the known state set ϕ, and the sNdata are the number of data points
available for each state variable s. The term ys(ti) refers to the actual value of the measured state
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variable s at time ti, and ŷs(ti;θ) is its corresponding neural network approximation. Similar to
the physics loss, λsd is the self-adaptive weight assigned to each data loss component, and m(·) is
a mask function chosen to be Sp(·) in this study.

The initial condition loss, Lic(θ,λic), is calculated as a weighted sum, determined by self-
adaptive weights, of individual initial condition losses corresponding to a state variable s in the
set Φ1. The initial condition loss is given by:

Lic(θ,λic) =
∑

s∈Φ
m(λsic)Lics , (4.18a)

=
∑

s∈Φ
m(λsic)

[
(ys(t0)− ŷc(t0;θ))

2] , (4.18b)

where ys(t0) is the known value of the s state variable at t = 0, and the NN approximation is
ŷs(t0;θ). Similarly to the other losses, the mask function m(·) was chosen to be Sp(·) in this
study.

The set of adjustable parameters, comprising θ, Λ, λd, λr, and λic, is optimized using the
Adam optimizer [137]. The automatic differentiation required for evaluating the derivatives
of the outputs with respect to input, the loss with respect to the NN parameters, and the loss
with respect to the self-adaptive weights are evaluated using the Python library JAX [138]. At
the same time, the optimization process employs the Optax library [139]. Thus, in order to
handle the adjustment of these parameters, distinct optimizers were defined for each of them: one
for the neural network parameters (i.e., weights and biases), another for the unknown physical
parameters, and another for the self-adaptive weights. The training epochs and the learning rate
scheduling details were elaborated in Appendix F for each case under consideration that will be
discussed in Chapter 7.

4.5.3 Input and output transformations

As previously defined, NN takes the time variable t as its input. Before proceeding to the
first hidden layer, the time input is scaled to the interval [−1, 1]. The scaling transformation is
expressed as follows:

hsc
0 (y0) = 2

y0 −min(y0)

max(y0)−min(y0)
− 1, (4.19)

where y0 denotes the initial time vector, as discussed in Equation (4.13a).
Subsequent to the NN output layer, the outputs undergoes an additional transformation to

map them back to the physical domain. This transformation is represented as:

hsc
h (x) =

(x+ 1)(xmax − xmin)

2
+ xmin, (4.20)

where hsc
h (x) denotes the state variable in the physical domain, while x indicates the NN’s output

corresponding to that specific state.
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For known states, such as the intake and discharge pressures of the ESP represented by P1

and P2, the bounds xmin and xmax correspond to the minimum and maximum measured values,
respectively. However, for the non-measured or unknown states, the xmin and xmax are estimated
by solving a system of equations at two specific time points t1 and t2. This system of equations
is derived from simplifications of the model that will be described in Section 5.4 and can be
expressed as follows:




k1p ρω(ti)Qp(ti) + k2p ρω(ti)

2 + k4p ρQp(ti)
2 − (P2(ti)− P1(ti)) = 0,

k1s ρQp(ti)
2 − k2s ρω(ti)Qp(ti) + τ(ti) = 0, ti ∈ {t1, t2}

(4.21)

where k1p, k2p, k4p, k1s, and k2s are the ESP system parameters, ρ represents the fluid density,
and ti denotes the time instant for the state variables (ω, Qp, P1, P2) and system input (τ ).

Furthermore, the time points t1 and t2 are determined based on the pressure difference
between P2(t) and P1(t) as follows:

t1 = argmin
t

(P2(t)− P1(t)) , t2 = argmax
t

(P2(t)− P1(t)) , (4.22)

Solving Equation (4.21) at t1 yields an estimation for xmin, and at t2 for xmax. However, in order
to solve it, the ESP system parameters k1p, k2p, k4p, k1s, and k2s and the fluid density ρ must
be defined. Thus, for the sake of solving these equations, as an initial guess the fluid density is
considered to have a corresponding value to a water fraction of 50% (e.g. ρ = 931.51 kgm−3).
All the other ESP system parameters are assumed to be 15% of their true values in this work.
Furthermore, the estimated values obtained for the volumetric flow rate Qp, are used for the
other volumetric flow rates state. The state ω is the state corresponding to the ESP shaft angular
velocity.

It is noteworthy that the state variables exhibit significant difference in their scale (magnitude).
To address these differences, the transformation described by Equation (4.20) was employed. It
aimed to obtain a more uniform magnitude for the state variables being approximated by the
NN. Therefore, this transformation can have different forms which will depend on the specific
requirements of the problem under analysis. The details of the transformations used in this work
will be elucidated in Chapter 7, as they varied according to the case being analyzed. Furthermore,
when considering the intake and discharge pressures (P1 and P2) as known quantities, for
instance, the bounds for xmin and xmax will vary across the different experimental investigations.

4.6 Data generation

This section elaborates on the methodology used for simulating the bond graph model of the
ESP system. The simulated data will serve two purposes. Firstly, the simulated data is used to
obtain the system response for validation with the experimental data. Secondly, the simulated
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data serves as a synthetic testbed for assessing the performance and reliability of PINN in inverse
problem-solving.

The mathematical formulation resulting from the bond graph model can be either a set
of ODE or Differential Algebraic Equations (DAE). Each set of equations necessitates the
employment of a distinct numerical solver. In this work, the equations derived from the bond
graph model resulted in a set of ODE. Consequently, the Tsitouras 5/4 Runge-Kutta method
was utilized, setting both relative and absolute tolerances to 1× 10−8. The solver operates with
a variable time step, which was subsequently resampled to a fixed time step. A time step of
∆t = 0.0001 s was established, selected to adequately capture the system’s dynamics while
ensuring compatibility with the sampling rate utilized in experimental tests.

In this work, as previously mentioned, the ESP system model focuses exclusively on the
mechanical and hydraulic domains. Thus, the model did not consider the electrical motors that
drive each pump described in Section 4.1. Instead, torque, an experimentally measured quantity
from instrumentation outlined in Section 4.1.2, serves as the system input. Despite undergoing
post-processing according to the methodology described in Section 4.1.3, the torque signal
retained relatively high-frequency components, which are unrealistic as a direct input for the
ESP system. Therefore, in addition to the procedure described in Section 4.1.3, a Butterworth
low-pass filter with a cut-off frequency of 2Hz was applied to the torque signal to obtain a more
representative input. This filtered signal was subsequently employed as input for the simulations.

Regarding the fluid properties required for system simulation, a single viscosity and density
value was assumed for the entire system under consideration. The viscosity was estimated
by first calculating the average temperature and water cut based on measurements taken at
the experimental investigation point of interest. These average values were then input into
the Brinkman [69] model to compute the emulsion viscosity. As for the fluid density, it was
determined as the average of readings obtained from the Coriolis meter (FT-101) during the
corresponding experimental investigation. For the states of the model, the initial values were
considered as the mean over the first 5 s of measurements before changing the ESP angular
velocity.

During the tuning phase of the dynamic model, parameter values are adjusted to align the
model’s output closely with real-world observations. Despite this calibration effort, discrepancies
between model predictions and measured data are inevitable. These discrepancies can originate
from uncertainties inherent in the collected data and the model’s inability to capture all the
nuances of the physical system it represents due to its assumptions and simplifications to improve
the problem tractability. In the context of inverse problems, it should be noted that even minor
variations or inaccuracies in the adjusted parameters can significantly influence the estimated
parameters of interest.

In the context of employing PINN for solving inverse problems to assess their capability
in accommodating measurement uncertainties while isolating the influences of either missing
physics or tuning steps, Gaussian noise was introduced into the simulated states considered
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as known quantities. The magnitudes of this noise were determined in accordance with the
manufacturer’s specifications for the uncertainties associated with the pressure transmitters, as
elaborated in Table 4.2.

4.7 Parameter estimation and tuning

This section aims to present the techniques employed for parameter estimation and tuning
within the context of the ESP system. Both steady-state and dynamic scenarios are considered.

4.7.1 Steady-state parameter estimation

In steady-state conditions, the time derivatives of a dynamic system vanish, converting the
dynamic system equations into a set of algebraic equations. Consequently, there is no need to
estimate the state derivatives. To identify the unknown system parameters denoted by ψ, an
optimization problem can be formulated using the steady-state data. The general form of this
problem is:

min
ψ

Lps(Aψ,a), (4.23)

where Lps(·, ·) represents a loss function measuring the difference between the predicted and
observed outputs. In this work, the L2-norm is employed as the loss function:

min
ψ

∥Aψ − a∥22 , (4.24)

where A is the matrix composed of steady-state experimental data and the system’s model
equations. The columns of A represent the terms of the algebraic equations whose parameters
are being estimated. The vector ψ represents the parameters to be estimated, and a denotes the
observed output vector, in this case, the sum of the system’s coupling and forcing terms.

The optimization problem in Equation (4.24) can be solved analytically by finding the point
where the gradient of the loss function with respect to ψ is zero. If ATA is invertible, the
parameter ψ̂ minimizing Equation (4.24) can be found using the Moore-Penrose pseudo-inverse
A+:

ψ̂ = A+a, (4.25)

where the pseudo-inverse A+ is defined as:

A+ = (ATA)−1AT . (4.26)

Furthermore, the efficacy of the model resultant from the parameters adjustment can be
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quantified through the coefficient of determination (R2), which is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

(4.27)

where yi and ŷi are the measured and predicted values, respectively, and ȳ is the mean of the
measured values.

4.7.2 Dynamic model tuning

The ESP system model underwent fine-tuning to enhance its predictive capability with
respect to experimental observations. Initial parameter estimates were obtained from steady-state
analysis, detailed in Section 4.7.1. The process of obtaining these initial estimates as a basis
for further refinement in a dynamic setting is elaborated in Appendix C. The tuning procedure
consists of two sequential steps: the first focuses on the ESP and pipeline model parameters, and
the second on the tuning of the pipeline C-elements. These stages are presented in the subsequent
sections.

4.7.2.1 Dynamic model tuning ESP and pipeline

The tuning strategy employed a manual iterative technique wherein one parameter was
adjusted at a time, holding others constant. Significant changes in model predictions were
primarily attributed to the equivalent resistance terms in the pump and pipeline models. These
terms will be discussed in further sections.

The model’s performance was evaluated using the Mean Absolute Percentage Error (MAPE)
calculated from the first and last 5 s of the dynamic pressure data at both the ESP intake and
discharge points. The MAPE is formulated as:

MAPEdyn =
1

n5s

n5s∑

i=1

∣∣∣∣∣
P i
x − P̂ i

x

P i
x

∣∣∣∣∣ , (4.28)

where n5s denotes the number of samples in a 5 s interval, P i
x and P̂ i

x represent the measured and
model-estimated pressures at time instant i, respectively. The subscript x can be 1 or 2 to refer to
the intake or discharge pressure, respectively. The MAPE metric was chosen to minimize the
impact of varying magnitudes among the variables when fine-tuning the model. The model was
considered tuned when MAPEdyn < 1%.

4.7.2.2 Dynamic model tuning C-element

In contrast to the procedures delineated in Section 4.7.2.1, tuning the C-elements within the
pipelines required a more elaborated methodology, which is outlined as follows:
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• Offset removal: The initial step focused on eliminating any potential offset or vertical
translation between the simulated and experimental data. This process considered the
difference between the means during the first 5 s of measurements and simulations.

• Initial grid search: A preliminary parameter search was performed over the range
[1, 1000] with 20 discrete points for each variable.

• Error metric: The optimal parameter set was determined by minimizing the function O
defined in Equation (4.29).

• Refinement: After identifying a promising parameter set, the search space is then halved
for each subsequent iteration.

• Convergence: The algorithm converges when the difference between successive minimum
objective function values is smaller than a pre-defined tolerance, ϵ = 1× 10−8.

The error metric O is defined as:

O =
NRMSE1 + NRMSE2

2
, where NRMSEx =

√
1

nmeas

∑nmeas
i=1

(
P i
x − P̂ i

x

)2

1
nmeas

∑nmeas
i=1 P i

x

, (4.29)

where nmeas denotes the number of experimental data points, and P i
x and P̂ i

x represent the
measured and model-estimated pressures at time instant i, respectively. The subscript x takes
values 1 or 2 to denote intake and discharge pressures. The pseudo-code for this methodology is
presented below.

Algorithm 1 Dynamic model tuning for C-elements

1: Initialize: Set initial parameter bounds [1, 1000]
2: Define: Tolerance ϵ = 1× 10−8

3: Compute: Calculate mean offset for the first 5 s of data
4: while |last_min_val − min_val| ≥ ϵ do
5: Conduct grid search within parameter bounds
6: Evaluate the error for each grid point using Equation (4.29)
7: Update last_min_val to min_val
8: Set min_val to minimum error found
9: Halve the parameter bounds around the new min_val

10: end while
11: Output: Optimized C-element parameters
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5 Modeling results

5.1 Pipeline model

In Section 3.2 it was discussed the pipeline dynamic governing equations, and from them,
several bond graph 1-port elements with junction elements were derived. However, despite
the similarity to the models proposed by Karnopp et al. [140] and Higo et al. [89], it is still
required to validate whether the obtained model produces accurate results. Due to experimental
constraints of the experimental setup described in Section 4.1, it was not possible to conduct
pressure transient analysis on it. Therefore, instead of validating the model with experimental
data. It was opted to validate the model against the continuity and momentum equations solved
using the method of characteristics (MoC), as mentioned in Section 3.2.3.

From the momentum equation delineated in Section 3.2, specifically equation (Equation (3.19)),
it can be simplified by incorporating the viscous friction term from the Darcy equation as dis-
cussed in Section 3.3. Consequently, the following equations can be derived:

∂P

∂t
+ u

∂P

∂x
+ ρa2

∂u

∂x
= 0, (5.1a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
− g sin(θ)− λ

u|u|
2dh

− Ju
ρ

= 0, (5.1b)

where the term Ju represents an additional term incorporated to capture unsteady flow viscous
friction.

As shown in previous works Chaudhry [118] and Vítkovský et al. [141], the steady-state
friction modeled by the Darcy equation does not adequately capture the dynamics observed
experimentally in unsteady flow conditions. This study employs the one coefficient Instantaneous
Acceleration-Based (IAB) method to address this limitation. The IAB model assumes that
unsteady friction arises from instantaneous local and convective accelerations. The general
expression for this model is given as:

Ju = ρKju

(
∂u

∂t
+ sign(u)a

∣∣∣∣
∂u

∂x

∣∣∣∣
)
, (5.2)

where Kju is an experimentally determined coefficient, which, as mentioned by Chaudhry [118],
ranges from 0.015 to 0.016.
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5.1.1 Problem definition

The current work aims to compare the bond graph model with the model described in
Equation (5.1). For this purpose, it was considered a system comprising two large tanks initially
filled with a liquid at different heights and interconnected by a pipe of constant diameter, as
depicted in Figure 5.1. The tanks are sufficiently large that the liquid level remains approximately
constant during the evaluation period, ensuring that the pressures at the pipe’s entrance and exit
remain nearly constant. The valve is assumed to open instantaneously and have a negligible
impact on the flow. Thus, the boundary conditions for the problem are constant pressures on both
ends of the pipe. Additional assumptions include a rigid pipe wall, excluding wall deformations
from the analysis.

Tank 1
Tank 2

Valve

∆h

HT2

LT

Figure 5.1: Two tanks interconnected by a pipe problem.

The system was modeled utilizing 1-port elements as deduced in Section 3.2.4. Due to the
pipe’s horizontal alignment and constant diameter, the convective term and hydrostatic pressure
contributions can be neglected, thereby simplifying the model to the bond graph shown in
Figure 5.2.

Se: ρgHT1 1

I: IfR: Rf

0

C: Ceq

Se: ρgHT2

Pipeline segment

Figure 5.2: Bond graph model for the two tanks interconnected by a pipe problem.

In Figure 5.2, HT1 represents the height of liquid in Tank 1, expressed as HT1 = ∆h + HT2.
For the compliance element Ceq in the pipeline, only the liquid’s compressibility is considered,
consistent with the assumption of a rigid pipe wall. The ellipsis in Figure 5.2 signifies that the
number of pipeline segments representing the interconnecting pipe can vary.
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In the Figure 5.2 bond graph model, two key dynamic behaviors are considered: inertial
dynamics and pressure wave dynamics. The inertial dynamics are governed by the inertance
element If , which primarily accounts for the fluid’s mass inertia. On the other hand, pressure
wave dynamics are characterized by the fluid’s compressibility and the pipe wall’s elasticity.
Thus, a single pipeline segment in the bond graph model can be considered sufficient to accu-
rately capture the inertial dynamics in the Figure 5.1. However, the representation of pressure
wave dynamics may require additional pipeline segments to capture wave propagation effects
accurately, as suggested by Higo et al. [89].

Thus, to assess the bond-graph model approximation accuracy in modeling both inertial and
pressure wave dynamics, specific dimensions and fluid properties were selected for the two-tank
system. The choice of these properties and parameters aimed to ensure laminar flow conditions
throughout the simulation, thereby avoiding the complexities in determining the friction factor in
the laminar-turbulent transition.

For the tanks, the dimensions are defined as HT2 = 0.25m, ∆h = 0.75m, and LT = 1m.
The fluid considered in this problem was the oil SAE 30W White [119]. At 20 ◦C and a pressure
of 101.325 kPa, the oil’s viscosity 0.29Pa s, the density is 891 kgm−3, and the bulk modulus is
1.31× 109 Pa. The results for the inertial dynamics are presented in Section 5.1.2 while for the
pressure wave in Section 5.1.3.

5.1.2 Validation inertial dynamics

To evaluate the inertial dynamics, simulations were conducted over a time range of 0 s to 5 s,
chosen to allow the system to reach the steady-state condition. For the bond graph discretization
of the pipeline, only one pipeline segment was considered to represent the entire pipeline, while
for the MoC, it was considered a length discretization of 0.1m. The results for the simulation
using the MoC with IAB and bond graph model using one pipeline segment are shown in
Figure 5.3.

It is noticeable in Figure 5.3 that the bond graph model with a single pipeline segment
resulted in a relatively accurate approximation of the inertial dynamics, as substantiated by the
mean absolute error of 1.563× 10−2 ms−1 for the entire simulation duration. As can be seen,
the bond graph approximation closely follows the MoC solution. In Figure 5.3, it is presented a
zoom in the region of 0.8 s to 1.25 s to highlight a region with a high absolute error.

The time interval 0.8 s to 1.25 s in Figure 5.3 indicates that the bond graph model converges
to the steady-state condition marginally faster than the MoC model. This observation persisted
even when multiple pipeline segments were incorporated into the bond graph model, suggesting
that the source of this discrepancy could be attributed to the damping effect induced by unsteady
friction.
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Figure 5.3: Bond graph and MoC comparison for inertial dynamics of the tank problem.

5.1.3 Validation pressure wave dynamics

In this section, the analysis is extended to the pressure wave dynamics. The simulations were
conducted over a time frame of 0 s to 5 s, consistent with Section 5.1.2, to ensure steady-state
conditions. For the bond graph model, the pipeline was discretized into 164 segments. This
discretization was selected based on a relative error criterion defined as

∥κi+1 − κi∥2
∥κi+1∥2

< 10−2 (5.3)

where κ represents the discretization with i segments. For the MoC, the same length discretization
as in Section 5.1.2 was adopted. The comparative results between the MoC with IAB and the
bond graph model using 164 segments are depicted in Figure 5.4.

Figure 5.4 reveals that the bond graph model with 164 segments offers a reasonably ac-
curate approximation of the pressure wave dynamics, evidenced by a mean absolute error of
1.829× 10−3ms−1 over the simulation duration presented in Figure 5.4. The bond graph model
approximates the MoC solution closely up to 3× 10−3 s. Beyond it, the bond graph approxima-
tion slowly deviates from the MoC solution. This behavior is consistent with observations from
Section 5.1.2.

Additionally, it is observable oscillations around each step in the flow velocity, as indicated
in Figure 5.4. These oscillations are similar to those reported by Chaudhry [118] for finite-
difference methods. Chaudhry [118] mentions these oscillations are numerical artifacts and
not representative of the true system dynamics. In the context of the bond graph model, the
oscillations are likely attributable to the finite representation of the pipeline segments. An
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Figure 5.4: Bond graph and MoC comparison for pressure wave dynamics of the tank problem.

increase in the number of segments was found to alleviate these oscillations.
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5.2 Shaft-pump bond graph model

In Sections 3.4 and 3.5, the bond graph elements for the centrifugal pump were derived by
analyzing the physical principles governing the pump system and reviewing existing literature
on centrifugal pumps. As an initial step in modeling the ESP system using bond graphs, the
shaft-pump subsystem with a single impeller is considered. The bond graph methodology enables
the straightforward integration of additional impellers, the validated pipeline model, and the
twin-screw pump to form a comprehensive model of the ESP system.

The most critical element within the bond graph of the shaft-pump model is the gyrator, as
defined in Section 3.4.5. This 2-port element establishes the relationship between the angular
velocity ω of the centrifugal pump shaft mechanical domain and the volumetric flow rate Q in the
hydraulic domain. This relationship is quantitatively represented by Equation (3.71), reproduced
below for clarity.

γ = ζ3ω − ζ4Q, where ζ3 = ρ
(
r2

2 − r1
2
)

and ζ4 = ρ

(
cot(β2)

2πh2
− cot(β1)

2πh1

)
.

The other elements essential to the bond graph representation of the pump subsystem include
the following resistance components:

• Rcf : Addresses friction loss within the impeller and is defined in Section 3.5.1.

• Rmc: Represents local losses in the centrifugal pump, as elaborated in Section 3.5.2.

• Rsx: Accounts for shock losses in the centrifugal pump, detailed in Section 3.5.3.

• Rcl: Models the leakage losses; it is described in Section 3.5.4.

For the bond graph of the shaft subsystem, the resistance elements are as follows:

• Rdf : Accounts for disk friction losses in the pump shaft, as defined in Section 3.5.5.

• Rm: Represents the friction from the journal bearing and stuffing box, detailed in Sec-
tion 3.5.6.

In addition to the frictional losses, it is necessary to account for the inertia of both the fluid
within the impeller, Icf , and the shaft, Is. For the shaft, the inertia can be straightforwardly
calculated using the moment of inertia of a cylinder with respect to its central axis, as expressed
by:

Is =
msr

2
s

2
, (5.4)

where ms is the mass of the shaft and rs is its radius. The shaft can be conceptualized as
comprising multiple segments, akin to the discretization applied to the pipeline in Section 5.1. In
this segmented representation, I is would denote the moment of inertia for an individual segment
i.
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In contrast, estimating the fluid inertia within the impeller, If , poses a greater challenge.
Derived from the momentum equation, Equation (3.23) presents an expression for the inertia
within a duct If as:

If =

∫ l

0

ρ

A(x)
dx. (5.5)

The equation accounts for unidimensional flow through a generic duct. If the impeller
channel is approximated as such a duct, the fluid inertia can be estimated. However, determining
an accurate cross-sectional area expression along the radius of the impeller is not trivial. As an
alternative, from Biazussi [61] measurements for the impeller of the pump used in this study, we
can estimate the cross-sectional areas at the entrance and exit of the impeller.

As a simplification, the cross-sectional area of the impeller channel is assumed to vary linearly
from the entrance to the exit along the radius, and the mean cross-sectional area is considered.
For this equivalent duct, the axial length is approximated as the radial difference between the
inner and outer radii of the impeller. Consequently, the inertia for this equivalent duct is given by
the following adapted equation from Equation (3.24a), rather than Equation (3.23):

Icf =
nbρ(r2 − r1)

Acm
, (5.6)

where nb is the number of blades and Acm is the mean cross-sectional area.
It is pertinent to acknowledge that the assumptions and simplifications made to estimate the

fluid inertia within the impeller constitute a limitation of this study. Although more accurate
estimates could be obtained with detailed geometric characterizations of the impeller, the inertia
of the liquid within the pump is considerably less significant than that of the pipeline fluid, given
that for this study, the pipeline inertia is 1.345 × 103 greater than the impeller. Therefore, the
errors introduced by these assumptions are not expected to substantially affect the behavior of
the entire system.

Furthermore, it is necessary to incorporate the stiffness of the shaft due to torsional deforma-
tions. The estimation of this parameter is straightforward and is expressed as:

kθ =
GJ

Ls
, where J =

πrs
4

2
. (5.7)

The term G represents the shear modulus of the shaft material, Ls denotes the length of the shaft,
and J is the polar moment of inertia. Analogous to the approach for inertia, the shaft may be
viewed as a composite of multiple segments in bond graph modeling. In this discretized model,
kiθ would represent the stiffness associated with individual segment i. In the bond graph notation,
the stiffness is represented by a C-type element where Cs = 1/kθ.

By integrating the shaft and impeller elements, we obtain the bond graph model for the shaft-
impeller subsystem, which is illustrated in Figure 5.5. This model consists of two subsystems:
the shaft and a single impeller, which are connected via a gyrator port. In Figure 5.5, these
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subsystems are demarcated by dashed black rectangles. The ellipsis within the figure signifies
points of connection to other subsystems, which may include additional impellers or the upstream
and downstream pipelines.

Se: τ(t) 0

1

I: Is

C: Cs

R: Rdf

R: Rmec

GY

γ

1

0

In

0 1

R: Rs2

Out

1 R: Rcl

R: Rsl

R: Rcf

R: Rs1

R: Rmc

I: Icf

Impeller subsystem

Shaft subsystem

Figure 5.5: Bond graph model of the shaft and impeller subsystem.

5.3 General ESP system bond graph model

The objective of this section is to delineate a comprehensive bond graph model for an ESP
system. This model incorporates an arbitrary number of pump stages, shaft segments, and
pipeline segments, which were previously discussed. Additionally, the model includes the
valve and twin-screw pump bond graph models outlined in Section 3.6.3 and Section 3.7.1,
respectively. Due to the model’s complexity, custom port names are employed to represent
individual subsystems.

To simplify connections among custom subsystems, the direction of half arrows is utilized
to indicate input or output ports. Specifically, half arrows originating from a subsystem denote
outputs, while those entering denote the inputs. The shaft segment is denoted as S i where i
represents the segment index; its bond graph model is presented in Figure 5.6. This model
accepts one input and provides multiple outputs. Importantly, the disk-friction loss term Ri

df is
only relevant for shaft segments immersed in a fluid.
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Figure 5.6: Bond graph model for a shaft segment (S i).

Similarly, the pipe segment is denoted as P i, its bond graph model is shown in Figure 5.7. It
integrates the bond models discussed in Section 3.2.4 and validated in Section 5.1. It has multiple
inputs and outputs.

Input

1
Pin

Qin

I: Iif

R: Ri
f R: Ri

c

Se: ρg∆zi

0

C: Ci
eq

Pout

Qout

Output

Figure 5.7: Bond graph model for a pipe segment (P i).

The centrifugal pump stage is represented as Ci, with its bond graph model specified in
Figure 5.8. It accepts two inputs, incoming torque and flow, and provides one output representing
the outgoing flow.
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Figure 5.8: Bond graph model for a centrifugal pump stage (Ci).

Additionally, the valve, discussed in Section 3.6, is denoted as V i, where i serves as the valve
identifier. As for the twin-screw pump, its model has been previously detailed in Figure 3.9
and is denoted by T . This model is characterized by two inputs: the angular velocity of the
twin-screw pump, ωt, and the pressure at the pump’s intake, Pin. It yields a single output, which
is the flow exiting the twin-screw pump.

By integrating these subsystems, a comprehensive bond graph model of the ESP system is
assembled as follows:

Se: τ(t)

Sn
C1

Sn C2

Sn

Cn

Pn

T

Sf: ωt

Se: Pin

Pn

Vn

Pn

Se: Pout

Figure 5.9: Bond graph model the ESP system.

In Figure 5.9, the subsystems accompanied by an ellipsis symbolize the capability to include
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multiple instances of that particular subsystem in the model.
It is worth noting that the presented bond graph model, although constructed with a focus on

a single multistage ESP and a twin-screw pump denoted by T , possesses inherent modularity that
allows for extensions to more complex ESP configurations. Specifically, the twin-screw pump
model can be substituted with a well-characterized well model. Additionally, further ESP can be
connected in parallel within the downstream pipeline. Consequently, the model’s architecture
is amenable to the incorporation of additional subsystems. The model equations are generated
in an automated fashion and are solvable using both ODE and DAE numerical solvers, thereby
facilitating both modifications and simulations of the ESP system.

5.4 Single impeller approximation

The ESP system bond graph model discussed in Section 5.3 is highly detailed and general
for ESP systems. It includes an arbitrary number of pipe segments for the pipelines and the
pump’s shaft and an arbitrary number of stages for the ESP. Although it allows for an accurate
assessment of the system dynamics, the computational tractability of this model is compromised.
Additionally, obtaining the required system parameters for this model’s level of detail in real
conditions can be challenging. Therefore, to assess the model’s validity when compared to
experimental measurements of the assembly discussed in Section 4.1, certain simplifications are
necessary for the model presented in Section 5.3. These simplifications are presented along with
their justifications and potential limitations.

Assumption 5.4.1. The upstream and downstream pipelines are modeled using a single pipeline

bond graph segment.

This assumption is grounded in the determination that a single pipe segment adequately
captures the inertial dynamics of the system. Given that the primary focus of this work is
on inertial dynamics rather than pressure wave propagation, the complexity of using multiple
segments for detailed pressure wave dynamics representation involving up to 164 segments per
1m, is not required within the scope of this study.

Assumption 5.4.2. The shaft of the experimental assembly is considered a rigid body under both

steady-state and dynamic loading conditions.

While this assumption simplifies the analysis, it introduces certain limitations, particularly
under dynamic loading conditions. This is notably relevant for ESP with large number of stages
and long shafts, where torsional vibrations become increasingly significant due to the inverse
relationship between shaft stiffness and length (Equation (5.7)). While these limitations are
acknowledged but have yet to be explored further.

Assumption 5.4.3. In the bond graph model of the impeller, leakage losses are excluded, and

shock losses within the pump are aggregated into a single term.
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This simplification is necessitated by the challenges in obtaining accurate experimental
data for the leakage coefficients. As discussed in Section 3.5.4, where the literature reports
uncertainties of up to ±30%. The pump shock losses were aggregated into a single term instead
of separate terms for the inlet and discharge due to the experimental difficulties in isolating these
variables. Despite these concessions, the methodology aligns with that of Biazussi [61], who
also condensed the shock and leakage losses into one term, arguing that these phenomena effects
are sufficiently interrelated and can be represented by a single term.

The bond graph model of the ESP system is presented in Figure 5.10. This model follows the
experimental setup described in Section 4.1 and incorporates the aforementioned simplifications.
The notations u and d as superscripts differentiate between the upstream and downstream
segments of the pipeline. The termRv is introduced as a modulated R-type element to encapsulate
the valve resistance. The set of ODE arising from the bond graph model, obtained using the
procedure described in Section 4.2, is expressed as:

dQp

dt
=

(P1 − P2 + k3 µQp)Ap
ρLp

+
Ap (k1p ωQp + k2p ω

2 + k4pQp
2)

Lp
, (5.8a)

dω

dt
=
τ(t)− k1s ρQp

2 − k2s ρω Qp − k3s µω − k4s ω − k5s ω
2

Is
, (5.8b)

dQ1

dt
=

(kbdωt −Q1) kbl µ+ Pin − P1 − ff (Q1, µ, Lu, du)Q1
2Au

ρLu
− kuQ1

2

2LuAu
, (5.8c)

dQ2

dt
=

(P2 − Pout − ff (Q2, µ, Ld, dd)Q2
2)Ad

ρLd
− kdQ2

2

2LdAd
− Q2

2Ad
LdCv(a)2 ρ∗

, (5.8d)

dP1

dt
=

(Q1 −Qp)B

Au Lu
, (5.8e)

dP2

dt
=

(Qp −Q2)B

Ad Ld
. (5.8f)

The input to the ESP system is denoted by τ(t), corresponds to the bond graph element Se: τ(t),
representing the torque applied to the ESP shaft. Given that both the intake pressure, Pin, and
the outlet pressure, Pout, are exposed to the same atmospheric separation tank, they are assumed
to be constant at 0Pa for simplification. They correspond to the bond graph elements Se: Pin
and Se: Pout. Furthermore, the rotation of the twin-screw pump, ωt, is encapsulated within the
bond graph as Sf: ωt. The friction factor model is represented by ff (·), and its explicit form is
dependent upon the flow characteristics, as elaborated in Section 3.3.

The Table 5.1 lists the state variables that define the ESP system, while the model parameters
are outlined in Tables 5.2 and 5.3. The methodology for obtaining these parameter values is
discussed in Section 4.1.6 and detailed in Appendix C. The Table 5.2 presents the parameters
that are constant for the dynamic experimental investigations (Inv.), and Table 5.3 presents the
parameters that change with the dynamic experimental investigation.

In the process of fitting parameters, presented in Tables 5.2 and 5.3, to experimental data, it
encountered several challenges, particularly within the ESP system with P100L. The absence
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of direct pressure measurements at the outlet of the twin-screw pump and including a bypass
valve after the heat exchanger necessitated the fitting of upstream parameters for each dynamic
experiment. This approach, while essential, occasionally resulted in the derivation of unrealistic
parameters, as evidenced in Table 5.3. Moreover, the downstream pipeline of the ESP system with
P100L lacked isolated measurements for valve pressure differences, leading to the aggregating of
various terms into an equivalent valve model. Despite these constraints, the fitting process yielded
a reasonable fit to the experimental data for upstream and downstream pipelines, suggesting
acceptable model accuracy within the tested conditions. However, extrapolation of these results
beyond the experimental scope requires caution.

In the ESP system with P47, similar challenges were encountered despite having direct
measurements of pressure after the twin-screw pump and valve pressure losses. The twin-screw
pump model exhibited limitations in accurately capturing the pressure gain, as indicated by the
absolute error and R2 values. Additionally, the fitting process for this system also resulted in
unexpectedly high parameter values similar to those observed in the ESP system with P100L,
highlighting the limitations of the twin-screw pump model and the parameters’ applicability
beyond the specific experimental setup and property range. Furthermore, the downstream
pipeline’s local loss fitting yielded a low R2 value, although the magnitude of these errors is
relatively minor compared to the pump’s discharge pressure.

Lastly, the equivalent resistances ku and kd in the upstream and downstream systems, pre-
sented in Table 5.3, account for losses associated with manual tuning. This aspect and other
details regarding the parameter fitting to experimental data are further elaborated in Section 5.5.
For a comprehensive discussion, please refer to Appendix C.

Table 5.1: States of the ESP system bond ghraph model

# Description Symbol Unit

1 Impeller volumetric flow-rate Qp m3 s−1

2 Upstream pipeline volumetric flow-rate Q1 m3 s−1

3 Downstream pipeline volumetric flow-rate Q2 m3 s−1

4 Suction pressure P1 kPa
5 Discharge pressure P2 kPa
6 ESP angular velocity ω rad s−1

It is important to mention that the set of ODE denoted by Equation (5.8a) is an expanded
and simplified form of the initial ODE system derived from the bond graph model presented in
Figure 5.10. This step is essential while assessing the identifiability of the model, which will be
discussed in Chapter 6.
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Table 5.2: Parameters for the ESP system bond graph model

# Description Symbol P100L P47 Unit

1 1st impeller-fluid coupling and shock loss co-
efficient

k1p 4.868 42.98 m−1

2 2nd impeller-fluid coupling and shock loss
coefficient

k2p 9.930E−3 14.39E−3 m2

3 Pump viscous flow loss coefficient k3p −63.06E6∗ −290.5E6∗ m−3

4 Pump equivalent resistance k4p −2.227E6∗ −8.551E6∗ m−4

5 Shaft 1st impeller-fluid coupling coefficient k1s −61.26∗ −111.7∗ sm−2

6 Shaft 2nd impeller-fluid coupling coefficient k2s 7.813E−3 7.894E−3 m s
7 Fluid-impeller disk friction constant k3s 110.4E−3 242.3E−3 m2 s
8 Shaft viscous damping coefficient k4s 67.32E−3 12.27E−3 kgm
9 Shaft second-order friction coefficient k5s 142.3E−6 232.4E−6 kgm s
10 Shaft moment of inertia Is 508.5E−6 508.5E−6 kgm2

11 Fluid bulk modulus B 1.310E9 1.310E9 Pa
12 Downstream pipeline diameter dd 76.20E−3 76.20E−3 m
13 Downstream pipeline cross-sectional area Ad 4.560E−3 4.560E−3 m2

14 Downstream pipeline length Ld 28.00 28.00 m
15 Upstream pipeline diameter du 76.20E−3 76.20E−3 m
16 Upstream pipeline cross-sectional area Au 4.560E−3 4.560E−3 m2

17 Upstream pipeline length Lu 31.50 31.50 m
18 Cross-sectional area of all impeller channels Ap 4.897E−3 2.290E−3 m2

19 Impeller channel length Lp 47.50E−3 47.50E−3 m

∗ The negative sign indicates that the obtained parameter is opposite in sign to what is considered in the
equations.
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Figure 5.10: Simplified bond graph model for the ESP system.
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5.5 Model validation

Utilizing the parameters acquired through the methodology delineated in Appendix C, the
ordinary differential equations presented in Section 5.4 can be solved using the numerical solver
as specified in Section 4.6. Prior to proceeding with the model validation, some assumptions
required to solve the model need to be explicitly addressed.

The dynamic experimental investigations detailed in Section 4.1.7 exhibited laminar flow
conditions, characterized by Reynolds numbers of 1657.78, 1028.10, 481.70, 1282.15, 1294.77
and 421.36 for the first through the sixth dynamic experiment, respectively. Thus, laminar flow is
assumed in both the emulsion and oil flow lines, so it is necessary to specify the friction function
for this study. Due to the laminar flow conditions, the friction function ff (Q, µ, L, d) is derived
using the correlation presented in Section 3.3.1 and is expressed as follows:

ff (Q, µ, L, d) =
128Lµ

πQd4
. (5.9)

Given the complexities of the emulsion flow discussed in Section 3.1, an appropriate model
for emulsion viscosity is indispensable for accurate simulation. Although numerous models exist
for this purpose (e.g., Einstein [142], Taylor [143], Pal and Rhodes [144]), this study employs
the model proposed by Brinkman [69]. The choice is motivated by the model’s widespread
application in the oil industry. It is worth noting that Bulgarelli et al. [48] introduced a model
specifically tailored for effective emulsion viscosity in ESP; however, this model lacks general
applicability and does not extend to pipeline flows. Therefore, the Brinkman model was chosen,
and it is expressed as follows:

µ = µc

(
1

1− Ω

)2.5

0 < Ω < 1, (5.10)

where Ω represents the water cut and µc is the viscosity of the continuous phase.
Furthermore, the liquid bulk modulus for oil and emulsion were not experimentally measured.

This represents a limitation in the accuracy of the proposed model. Instead, the liquid bulk
modulus used in this study are from White [119]. This choice was a necessary compromise
given the scope and constraints of the research, but future work should prioritize the direct
measurement of this property to enhance the model’s fidelity.

The subsequent sections present a comparison between the dynamic experimental investi-
gation and the numerical solutions of Equation (5.8). These comparisons, which utilize the
parameters and assumptions delineated thus far, can be found in Section 5.5.1. Additionally, a
fine-tuning of the bulk modulus and its impact on the model is explored in Section 5.5.2.
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5.5.1 Pump and pipeline tuning

Although the models detailed in Appendix C demonstrate reasonable accuracy under steady-
state conditions, as evidenced by their R2 values, additional fine-tuning is essential for improved
alignment with experimental measurements. This tuning process follows the methodology
outlined in Section 4.7.2.1. The Figures 5.11 to 5.16 provide a comparative analysis between ex-
perimental measurements and the numerical solutions of the model for the dynamic experiments
delineated in Table 4.7, which includes ESP models P100L and P47. The correlation between
the experimental and simulated data, quantified using the Pearson correlation coefficient, and the
MAPE for each state, are detailed in Table 5.4. The MAPE was calculated as follows:

MAPEval =
1

nexp

nexp∑

i=1

∣∣∣∣∣
Si − Ŝi
Si

∣∣∣∣∣ , (5.11)

where nexp denotes the number of samples in the experiment interval, Si and Ŝi represent the
measured and model-estimated state S at time instant i, respectively. The unmeasured states
in the experimental setup were excluded from this evaluation. In each sub-figure, the blue line
indicates the numerical solution, and the red dots are the measurements for a given state.

Table 5.4: Comparison of the MAPE and Pearson correlation coefficient between numerical
solutions and experimental data. The units are percentages, and the parenthetical
values correspond to the Pearson correlation coefficient, which is dimensionless.

# P1 P2 Q1 ω

1 16.97 (0.9740) 0.7795 (0.6413) 0.2088 (0.9145) 1.135 (0.9999)
2 6.583 (0.9825) 0.7728 (0.7113) 0.098 29 (0.9383) 0.7397 (0.9985)
3 9.583 (0.8431) 2.689 (0.7803) 1.504 (0.8066) 0.9579 (0.9950)
4 21.99 (0.8780) 2.629 (0.7039) 1.367 (0.8702) 0.5616 (0.9949)
5 74.61 (0.8509) 2.421 (0.5860) 0.5008 (0.8522) 2.925 (0.9961)
6 44.94 (0.7945) 4.079 (0.7424) 1.130 (0.7207) 5.612 (0.9967)

As illustrated in Figures 5.11 to 5.16, the tuned dynamic model effectively captures the
main dynamics of the system across various states and ESP models. Notably, the model excels
in replicating the ESP shaft angular velocity for both pumps (Figures 5.11d, 5.12d, 5.13d,
5.14d, 5.15d and 5.16d) and the upstream flow rate for the ESP model P100L (Figures 5.11c
and 5.12c). However, for the ESP model P47, a consistent offset in upstream flow rates is
observed (Figures 5.13c, 5.14c, 5.15c and 5.16c), likely due to limitations in the twin-screw
pump model fit, as discussed in Appendix C. While the model aligns closely with experimental
data under steady-state conditions, minor discrepancies are noted. For instance, a slight offset in
ESP angular velocity is observed in dynamic experiments 1, 2, 3 and 4 (Figures 5.11d, 5.12d,
5.13d and 5.14d), particularly within the initial 5 s. In contrast, a consistent offset throughout the
simulation is noted in experiments 5 and 6 (Figures 5.13d and 5.14d).
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Figure 5.11: Comparison of the numerical solution and the measured states for the ESP P100L
in the first dynamic experimental investigation (Table 4.7, row 1).

Conversely, in the case of Figures 5.11, 5.15 and 5.16, the intake pressure exhibits a more
pronounced offset despite the tuning procedures outlined in Section 4.7.2.1. Specifically, in the
ESP model P47 dynamic experiment 6 (Figure 5.16), the offset is also observed in the discharge
pressure. Given that these cases have a higher water cut, this phenomenon might be attributed to
the limitations of the Brinkman model for effective viscosity.

Upon analyzing the data presented in Table 5.4, it becomes evident that the MAPE values
for most of the measured variables remain below 2.4%, ascertaining the reasonable accuracy
of the model. This is further evidenced by the Pearson correlation coefficients, which exceed
0.8 in most experiments and states. The notable exception is the discharge pressure (P2), which
will be discussed further in this section. Regarding the MAPE values, the intake pressure (P1)
warrants particular attention; it exhibits the highest MAPE values, reaching up to 74.61% for the
ESP model P47 and 16.97% for the ESP model P100L. Although the P1 MAPE values are lower
in other experiments, they are comparatively higher than for other states. The elevated MAPE
values for P1 and the relatively high Pearson correlation coefficients suggest that the primary
contributor to this discrepancy is the offset error observed in the dynamic experiments. Despite
this, the general response of the model aligns well with the experimental data, as indicated by
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Figure 5.12: Comparison of the numerical solution and the measured states for the ESP P100L
in the second dynamic experimental investigation (Table 4.7, row 2).

the high Pearson correlation values, which do not account for offset errors.
Across all experiments (Figures 5.11 to 5.16), the model reaches the steady state more

rapidly than the experimental observations for intake and discharge pressures. This faster
stabilization is particularly noticeable for the ESP model P47, where it is also observed in the
upstream volumetric flow rate. The experimental data for both ESP models, in contrast, show a
more pronounced overshoot in discharge pressures than the numerical solution. This disparity
in pressure overshoot representation might be contributing to the lower Pearson correlation
coefficients for discharge pressure (P2) observed in Table 5.4, while the MAPE values remain
relatively low.

Furthermore, a closer look at the ESP model P47 reveals a slower increase in volumetric flow
rate (Figures 5.13c, 5.14c, 5.15c and 5.16c). This overall faster response of the model, compared
to experimental data for ESP pumps, suggests that the current model parameters might not fully
capture certain dynamic aspects. The initial suspicion fell on the inertia term assumptions for
the impeller; however, adjustments to the inertia parameter of the model failed to improve the
model’s fidelity.

Upon a thorough re-evaluation of the bond graph elements and the associated system equa-
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Figure 5.13: Comparison of the numerical solution and the measured states for the ESP P47 in
the third dynamic experimental investigation (Table 4.7, row 3).

tions (Equation (5.8)), it became apparent that the liquid bulk modulus term (B) in Equation (5.8)
is multifaceted, encompassing not only the liquid’s compressibility but also the elasticity of
the fluid-pipe wall interaction, as detailed in Section 3.2.1 with the bond graph element Ceq.
As observed in Equation (5.8), this term is responsible for determining the system’s pressure
response to variations in flow rate between the inlet and outlet of a subsystem. The hypothesis
for the observed discrepancies in the discharge pressure (pressure overshoot) is that the fluid
within the ESP accelerates more rapidly than the fluid in the upstream and downstream pipelines.
This results in an increased flow rate exiting the pump while the fluid in the pipeline is yet to
accelerate, leading to fluid compressibility and pipe wall deformation at the pump discharge.
Consequently, a pressure spike is observed at the pump discharge. As the mass of fluid in
the pipeline begins to accelerate, the flow rates at the pump and downstream start to equalize,
dissipating the pressure spike. Simultaneously, the “stored” fluid mass within the deformed
pipe wall also dissipates. This hypothesis also applies to the intake pressure, where a gradual
decrease in pressure is observed until the mass of fluid accelerates. Consequently, capturing these
complex interactions between the fluid and the pump intake and discharge with the respective
pipelines necessitated a separate tuning of the system’s compliance elements, further discussed
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Figure 5.14: Comparison of the numerical solution and the measured states for the ESP P47 in
the fourth dynamic experimental investigation (Table 4.7, row 4).

in Section 5.5.2.
Further analyzing the experimental data from the ESP P100L, specifically the dynamic

experimental investigations 1 and 2 as shown in Figures 5.11 and 5.12, it was observed that prior
to the increase in the ESP shaft’s angular velocity, the intake pressure is higher than the discharge
pressure. This trend reverses after the ESP shaft angular velocity increases, where the discharge
pressure exceeds the intake pressure. This behavior can be attributed to the relative rotational
velocity of the twin-screw pump, which was specifically set to facilitate dynamic experiments
within the context of the ESP model P100L.

It is crucial to note that in this experimental setup, the ESP model P100L is operating as
an energy source and a sink during dynamic experiments. However, the developed model, as
detailed in Section 3.4, is based on the conservation of angular momentum. This principle does
not restrict the impeller’s role to be an energy source. Therefore, the model would be capable
of simulating conditions similar to those observed in Figures 5.11 and 5.12. This is further
substantiated by the comparison between the experimental data and the numerical solution
discussed above, which exhibits a reasonable agreement.

Furthermore, the same model and methodology were applied to the dynamic experiments
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Figure 5.15: Comparison of the numerical solution and the measured states for the ESP P47 in
the fifth dynamic experimental investigation (Table 4.7, row 5).

of the ESP model P47 which encompasses the dynamic experiments 3, 4, 5 and 6, presented
in Figures 5.13 to 5.16. The results and the discussion above about the model satisfactorily
representing the system dynamics in a condition where the ESP is operating as an energy source
reinforce the model’s validity and applicability across different conditions.

5.5.2 Compliance element tuning

In Section 5.5.1, it was demonstrated that the model’s faster response in reaching the steady-
state conditions and the observed spike in the discharge pressure could be primarily influenced by
the compliance element, or C-elements in the bond graph model. Consequently, these elements
were explicitly fine-tuned using the methodology elaborated in Section 4.7.2.2. This refinement
was executed subsequent to the parameter adjustments described in Section 5.5.1. The results of
this fine-tuning process, applied to both dynamic experimental investigations, are presented in
Figures 5.17 and 5.18. The correlation between the experimental and simulated data, quantified
using the Pearson correlation coefficient, and the MAPE calculated for each state, similarly to
the Section 5.5.1, are presented in Table 5.5.



139

0 10 20 30 40 50

Time (s)

1.0

1.5

2.0

2.5

3.0
P
1

(P
a)

×105

Simulated
Experimental

(a) Intake pressure.

0 10 20 30 40 50

Time (s)

3.75

4.00

4.25

4.50

4.75

5.00

P
2

(P
a)

×105

Simulated
Experimental

(b) Discharge pressure.

0 10 20 30 40 50

Time (s)

2.60

2.65

2.70

2.75

Q
1

(m
3

s−
1
)

×10−3

Simulated
Experimental

(c) Upstream flow rate.

0 10 20 30 40 50

Time (s)

1.4

1.6

1.8

ω
(r

ad
s−

1
)

×102

Simulated
Experimental

(d) ESP angular velocity.

Figure 5.16: Comparison of the numerical solution and the measured states for the ESP P47 in
the sixth dynamic experimental investigation (Table 4.7, row 6).

Table 5.5: Comparison of the MAPE and Pearson correlation coefficient between numerical
solutions with tuned compliance element and experimental data. The units are percent-
ages, and the parenthetical values correspond to the Pearson correlation coefficient,
which is dimensionless.

# P1 P2 Q1 ω

1 15.12 (0.9968) 0.8673 (0.9392) 0.1893 (0.9353) 1.143 (1.000)
2 1.729 (0.9996) 0.5406 (0.9383) 0.085 23 (0.9521) 0.7159 (0.9988)
3 2.416 (0.9985) 1.050 (0.9956) 1.942 (0.9840) 0.9537 (0.9977)
4 11.97 (0.9976) 3.029 (0.9779) 1.697 (0.9898) 0.5480 (0.9975)
5 67.42 (0.9852) 1.034 (0.9589) 0.3597 (0.9829) 2.838 (0.9982)
6 33.10 (0.9886) 4.657 (0.9837) 1.462 (0.9500) 5.394 (0.9988)

As shown in Figures 5.17 to 5.22, the fine-tuning of the C-elements effectively induced the
observed spikes in pressure, as evidenced by Figures 5.17b, 5.18b, 5.19b, 5.20b, 5.21b and 5.22b.
After tuning, both the numerical solution and the experimental data exhibited comparable settling
times for intake and discharge pressures. Notably, the settling behavior for the upstream flow
rate in the ESP model P47 (Figures 5.19c, 5.20c, 5.21c and 5.22c) showed alignment with the
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Figure 5.17: Comparison of the numerical solution and the measured states for the ESP P100L
in the first dynamic experimental investigation (Table 4.7, row 1), after to the fine-
tuning of compliance elements in the bond graph model.

experimental data, a contrast to the results without the tuning presented in Section 5.5.1.
A comparison of Tables 5.4 and 5.5 reveals a notable increase in the Pearson correlation

coefficient for all states and experiments after tuning. For example, while Table 5.4 reported a
Pearson correlation coefficient for P2 as low as 0.5860, in the tuned cases, the lowest value for P2

improved to 0.9589. However, examining the MAPE values in Tables 5.4 and 5.5 indicates that
the overall improvement was not significant for all states and experiments. Despite the tuning
process successfully inducing the pressure spike, it did not rectify the offset issue discussed in
Section 5.5.1. This offset remains the primary cause of higher MAPE values, particularly in the
intake and discharge pressures.

Despite certain inaccuracies in the twin-screw pump model, its overall impact on the system
dynamics was not significant. The dynamics of pressure and volumetric flow rate, as illustrated
in Figures 5.17 to 5.22, were modeled with reasonable accuracy, evidenced by the Pearson
correlation coefficients values presented in Table 5.5. However, offsets in intake and discharge
pressures, as well as in the volumetric flow rate, are still present. As discussed in Section 5.5.1,
these offsets are likely attributable to errors in the twin-screw pump model. In real-world
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Figure 5.18: Comparison of the numerical solution and the measured states for the ESP P100L
in the second dynamic experimental investigation (Table 4.7, row 2), after to the
fine-tuning of compliance elements in the bond graph model.

applications, employing more sophisticated well models could prove beneficial. These advanced
models might better account for the complexities of the actual system and enhancing the overall
accuracy and reliability of the simulations.

Overall, the model proposed, despite all the assumptions and simplifications, could capture
reasonably well the ESP system dynamics for almost single-phase and low water cut emulsion
conditions and two ESP models (P100L and P47). The fine-tuning process in the C-elements
was demonstrated to be crucial to obtaining a complete representation of the system dynamics.
However, additional experimental investigations are required to model or obtain an expression for
the C-element properly. In general, the results obtained are satisfactory, indicating the model’s
potential utility in applications related to monitoring, control, and parameter estimation within
the field.
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Figure 5.19: Comparison of the numerical solution and the measured states for the ESP P47
in the third dynamic experimental investigation (Table 4.7, row 3), after to the
fine-tuning of compliance elements in the bond graph model.
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Figure 5.20: Comparison of the numerical solution and the measured states for the ESP P47
in the fourth dynamic experimental investigation (Table 4.7, row 4), after to the
fine-tuning of compliance elements in the bond graph model.
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Figure 5.21: Comparison of the numerical solution and the measured states for the ESP P47
in the fifth dynamic experimental investigation (Table 4.7, row 5), after to the
fine-tuning of compliance elements in the bond graph model.
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Figure 5.22: Comparison of the numerical solution and the measured states for the ESP P47 in
the sixth dynamic experimental investigation (Table 4.7, row 6), after the fine-tuning
of compliance elements in the bond graph model.
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6 Identifiability analysis results

6.1 Structural local identifiability

To evaluate the structural identifiability of the ESP system model it was utilized the method
of differential elimination for dynamical models via projections proposed by Dong et al. [96]. It
is important to note that this analysis focused specifically on assessing local identifiability due
to out-of-memory issues when attempting to test for structural global identifiability. Addition-
ally, this investigation considered the suction and discharge pressure (P1 and P2) as available
measurements, as they are typically measured in ESP deployments within oil fields.

From Tables 5.2 and 5.3, we observe that the ESP system model initially contains a total of
26 parameters. However, it is worth noting that 8 of these parameters are geometrical parameters,
such as pipe diameter, cross-sectional area, and pipeline length. They can be readily obtained,
and they were assumed as known for both the upstream and downstream pipelines. Furthermore,
3 parameters refer to the twin-screw pump, which serves as a pressure booster for the flow line.
In actual oil field extraction, the pressure is a characteristic of the well. Thus, it was reduced the
number of unknown parameters to 15. Subsequently, it was assessed the local identifiability of
the ESP system model based on these 15 parameters. The corresponding results are displayed in
the first row of Table 6.1.

Table 6.1: Local structural identifiability results of the ESP system model, considering that the
intake pressure (P1) and discharge pressure (P2) are known.

k1p k2p k3p k4p k1s k2s k3s k4s k5s Is ρ µ B ku kd

× × ✓ ✓ × × × × × × ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ × × ✓ − ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ − − ✓ − ✓ ✓ ✓ ✓ ✓

The ESP system model with 15 unknown parameters is found to be structurally locally
unidentifiable, and it is impossible to estimate all the parameters simultaneously. As discussed
by Daneker et al. [132], there are several approaches to address the identifiability issue, such as
fixing specific parameters or introducing additional measured variables. For simplicity, when it
is referred to fixing a parameter, it is considered that the parameter is known. In this study, it
was opted to work with the available measurements from the actual field and consider only the
suction and discharge pressures (P1 and P2). Therefore, it was decided to fix the shaft inertia
(Is). Despite this adjustment, the model remains structurally locally unidentifiable, with only k3s
and k4s being locally unidentifiable. The corresponding results are shown in the second row of
Table 6.1.
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Finally, it was solved the issue of the model being locally unidentifiable by fixing both k3s
and k4s. The results are shown in the third row of Table 6.1. It was found that fixing only one of
them did not solve the problem. In summary, the ESP system model can only be structurally
locally identifiable with the suction and discharge pressure measurements if the shaft inertia (Is),
viscous damping coefficient (k4s), and disk friction coefficient (k3s) are known.

6.2 Practical identifiability

In section Section 6.1, it was discussed the circumstances under which the ESP system is
structurally locally identifiable. However, it is worth noting that this analysis was conducted
assuming that the measured variables have no noise and that the model is error-free. Hence, we
must also assess if we can estimate parameters accurately based on the available data’s quantity
and quality. This analysis is known as practical or posterior identifiability analysis, and it is
possible that a structurally identifiable system may not be practically identifiable.

Following the procedure described in Section 4.4, the absolute of the correlation matrix of
the parameters structurally locally identifiable of the ESP system is shown in Figure 6.1. For the
practical identifiability analysis, it was considered the simulated case for the first experimental
dynamic investigation of the test matrix Table 4.7.
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Figure 6.1: Correlation matrix of the ESP system model parameters.

The correlation analysis shown in Figure 6.1 clearly demonstrates a significant correlation
among multiple parameters. Notably, the fluid density (ρ) and the pipeline resistances (ku and
kd) exhibit a strong correlation. Consequently, although the initial analysis indicated structural
local identifiability of these parameters, they are not practically identifiable within the context of
the conducted investigation.
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As many parameters are strongly correlated, we need to fix some parameters to make the
system practically identifiable. Thus, it was defined that the main variables of interest are the
fluid parameters and the pipeline resistances since the fluid parameters (B, µ, and ρ) change
within the water cut, which changes with the well’s life, and the pipeline resistance (ku and kd)
changes with the actuation of valves and wax deposition for instance. Thus, the pump and shaft
parameters were preferably fixed. The parameters fixing started with k1p, then the k3s, k2p and
k3p successively. The resultant parameter correlation matrix is presented in Figure 6.2.
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Figure 6.2: Correlation matrix of the ESP system model parameters after the practical identifia-
bility analysis.

It is noticeable from Figure 6.2 that after fixing some parameters, they are less correlated.
However, some parameters are still correlated, such as the viscosity (µ) and the pump equivalent
resistance (k4p). However, this correlation is not as strong as the correlation between density (ρ)
and pipeline resistance (ku) observed in Figure 6.1. In Figure 6.2, the correlation coefficient
between µ and k4p is 0.9880, while in Figure 6.1, the correlation coefficient between ρ and ku is
0.9994.
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7 Inverse problem results
From the structural identifiability analysis presented in Chapter 6, it was defined three cases

to evaluate the PINN for parameter and state estimation in the ESP system. Consistent with
Chapter 6, it was considered only the suction and discharge pressures as the measured variables.
The three cases are as follows:

Case 1 Flow parameters: In this case, it was assumed as known all parameters of the ESP system
model except for the flow properties, namely, density (ρ), viscosity (µ), and the bulk
modulus (B).

Case 2 Flow, pipeline, and impeller parameters: Based on the local identifiability analysis results
presented in the first row of Table 6.1, it was assumed as known the parameters marked
as locally unidentifiable and estimate the remaining identifiable ones. The unknown
parameters considered are the flow properties (B, µ, ρ), the upstream pipeline equivalent
resistances (ku and kd) and the pump parameters k3p and k4p.

Case 3 Flow, pipeline, impeller, and shaft parameters: Considering the findings from the practical
identifiability analysis outlined in Section 6.2, the parameters depicted in Figure 6.2 were
estimated while assuming as known the remaining parameters. The unknown parameters
are fluid properties (B, µ, ρ), the upstream pipeline equivalent resistances (ku and kd), the
pump parameter k4p, and the shaft parameters k1s and k5s.

For each case, it will be evaluated the performance and effectiveness of PINN in estimating the
unknown parameters and non-measured system states in three distinct data scenarios:

1. Simulated data: This scenario represents an ideal condition without any disturbances or
modeling errors, allowing us to assess the baseline performance of the proposed method.

2. Simulated data with Gaussian noise: In this scenario, gaussian noise was introduced to the
simulated data to evaluate the sensitivity of the proposed method to noisy data.

3. Experimental data: This scenario is closer to actual oil field conditions, incorporating
noisy measurements, modeling errors, and missing information about certain parameters.

Furthermore, for each study, it was trained the PINN 30 times to evaluate the impact of the neural
network weights initialization. The results are presented and discussed in each case for the first
two experimental conditions defined in Table 4.7.

The Figure 7.1 presents a schematic representation of the cases and scenarios evaluated,
where the two dynamic experimental investigations performed, considering different water cuts
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and initial angular velocities, are highlighted in blue. Each experimental investigation is analyzed
under three different data sources (scenarios): simulation data, simulation data with added
Gaussian noise, and experimental data collected from the instruments (highlighted in green). For
each scenario, three sets of unknown parameters, denoted as cases, are evaluated (highlighted in
red). Thus, we have 9 different results for each experimental investigation.

Investigation

SimulationExperimental Noisy

Case 2Case 1 Case 3

Experimental Investigation:
Investigation 1
Investigation 2

Data type:
Simulated (Clean)
Simulated (+Noisy)

Experimental

Unknown parameters:
Case-1: 3 unknowns
Case-2: 7 unknowns
Case-3: 8 unknowns

Figure 7.1: Cases and scenarios evaluated.

During the training of the PINN, it was observed that the significant difference in magnitude
between the states, with pressure in the order of 105 and flow rates in the order of 10−2, affected
the training and tuning process despite the scaling in the physics loss and the usage of self-
adaptive weights on the loss function. Therefore, the states units were converted from SI units
to m3 h−1 for the volumetric flow rates and to MWC (meters of water column) for the pressure.
After obtaining the results, they were converted back into SI units.

Furthermore, the transformation of the unknown parameters contributes to the convergence
and accuracy of the PINN by restricting the search space to the local neighborhood of the
parameter. It was first tried to keep the linear scaling for all parameters and cases during the
development. However, in Case 3, it was not possible to achieve satisfactory results without
restricting the parameter search space using bounded transformations such as tanh. Also, it
was taken advantage of that in our experiments. It is not possible to have a density higher than
the water. Then, it was set an upper bound for it. It helped to improve the results in all cases.
The transformation scheme for each parameter is shown in Table 7.1, and the scaling values are
presented in Table 7.2.

The Table 7.1 presents a variety of functions used in the unknown parameter transformations.
They are the softplus function Sp(·) and the Sm(·), defined as Sm(x) = x−Sp(x)+1, are utilized
along with a scaling constant Λ. The L(·) is a linear transformation given by L(x) = xΛ, which
considers only a scaling constant Λ. For Case 3, the transformation for an unknown parameter
is expressed as Λsc(x) = Λtrue (tanh(x)α + 1), where x represents the PINN-estimated value
of the unknown parameter, Λtrue is the parameter true value, and α denotes the span percentage
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Table 7.1: Transformations of the unknown parameters for each case evaluated.

Case B µ ρ ku kd k3p k4p k1s k5s

Case 1 (Sp(x) + 0.9)Λ L(x) Sm(x)Λ
Case 2 (Sp(x) + 0.9)Λ L(x) Sm(x)Λ L(x) L(x) L(x) L(x)
Case 3 Λsc(x) Λsc(x) Sm(x)Λ Λsc(x) Λsc(x) Λsc(x) Λsc(x) Λsc(x)

Table 7.2: Scaling constants for the unknown parameters.

Case B µ ρ ku kd k3p k4p

Case 1 1× 109 1 1000
Case 2 1× 109 1 1000 3× 102 1× 101 −1.0× 107 −1.0× 102

Case 3 1000

around the true value. For most parameters, it was set the span to ±50% (α = 0.5), except for
the B parameter, which spans ±15% (α = 0.15). Furthermore, in Table 7.2 table presents the
scaling constants used in linear parameter transformations and the scaling parameter for the
liquid bulk modulus (B) and density (ρ) transformations.

7.1 State estimation results

In this section it is assessed the state estimation capabilities of the PINN when applied to
the ESP system model. The PINN will estimate the remaining unknown system states using the
suction and discharge pressure signals as known variables (P1 and P2). In the simulated cases,
the unknown states include the pipeline and ESP volumetric flow rates (Q1, Q2, Qp) and the
ESP angular velocity (ω). However, in the experimental case, measurements of the downstream
pipeline and ESP volumetric flow rates (Q2 and Qp) are unavailable, and therefore, they were
excluded from the accuracy analysis. It is important to note that these results are from inverse
problems with unknown parameters discussed above, not forward problems. First, it is presented
the state estimation results for all the cases considered. Then, it is discussed the prediction of the
unknown parameters for all the cases in Section 7.2.

It is worth mentioning that in PINN, it is common practice to use second-order optimization
algorithms, such as L-BFGS, after training with the first-order algorithm. This additional step
usually aims to fine-tune the PINN’s performance. However, it was observed that using L-BFGS
after Adam adversely affected the parameter estimation in the noisy and experimental case.
Therefore, it was decided to rely solely on the first-order optimization algorithm, as our focus
is on unknown parameter estimation in more realistic scenarios. It is important to note that the
simulated cases serve as a baseline performance for assessing the PINN’s performance, and it is
expected that performance will be comparatively reduced under the more challenging conditions
posed by experimental data and noise.
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7.1.1 State estimation results for simulated data

As a baseline performance assessment, it is considered the simulated scenario. The predicted
states from the neural network are shown in Figure 7.2, while the Mean Absolute Percentage
Error (MAPE) corresponding to the prediction of different states is shown in Table 7.3. The
MAPE is defined as

MAPE =
1

Nmape

Nmape∑

i=1

∣∣∣∣
ys(ti)− ȳs(ti;θ)

ys(ti)

∣∣∣∣ , (7.1)

where Nmape is the total number of temporal data points. It was considered the same sample
rate as the experimental data described in Section 4.1.3, 10Hz (∆t = 0.1 sec). The variable
ys(ti) represents the true value of the state s at time ti, and ȳs(ti;θ) denotes the mean of the
predicted value of the state s from the PINN across 30 different realizations of the results. These
results are evaluated with different initialization of the parameters of the network and unknown
parameters. For the sake of brevity, the discussion is restricted to the state prediction results and
the MAPE table for the first experimental investigation in this section. Further results from the
second investigation are presented in Appendix D. Additionally, the mean value of the predicted
parameters and standard deviation for all the cases are presented in Tables D.4 and D.5.

The Table 7.3 presents the results for the simulation data considering three different cases
of unknown parameters. The MAPE values represent the error of the simulation results for the
states: P1, P2, Q1, Q2, Qp, and ω. As the number of unknown parameters increased, from Case
1 to Case 3, the MAPE values also increased, indicating a slight performance loss. However, the
MAPE values remain relatively small, and visual inspection of Figure 7.2 reveals a reasonable
agreement with the actual values.

Table 7.3: MAPE for the simulated scenario.

P1 P2 Q1 Q2 Qp ω

Case 1 0.142% 0.008% 0.004% 0.006% 0.007% 0.025%
Case 2 0.147% 0.009% 0.039% 0.038% 0.039% 0.872%
Case 3 0.932% 0.010% 0.041% 0.040% 0.041% 0.618%

In Figure 7.2, the blue line indicates the true values, while the × markers denote the data
points used for training the PINN. The red, black, and green lines represent the mean values of
the predicted states calculated at each time instant across the 30 trained PINN for Cases 1 to 3,
as defined earlier in this section (Chapter 7). Across all cases, the training dataset consists of 30
data points for the data loss in P1 and P2 and 100 collocation points for the physics loss.
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(f) ESP angular velocity.

Figure 7.2: Comparison of predicted and true states for simulated scenario of the first experimen-
tal investigation with unknown parameters.

The comparison between the predicted dynamics of the states by the PINN model and the
actual values, as shown in Figure 7.2, demonstrates a good overall agreement across all states
and cases. Notably, a small error is observed for the P1 and P2 states in all cases. However,
a slightly larger error is observed for the volumetric flow rate states (Q1, Q2, and Qp) and the
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ESP angular velocity state (ω). Among the different cases, Case 1 (red line) exhibits the best
agreement across the entire simulation range in both investigations. This is also observed in
Table 7.3, where the Case 1 presented the lower MAPE in all states except P1.

In the first investigation, the flow rates in Case 2 (black line) and Case 3 (green line) show a
reasonable agreement with the simulation approximately from the 6th second. However, a slight
offset from the actual value is observed from the beginning to the 6th second. As for the second
investigation (Figure D.1), a slightly higher offset is observed in the flow rate states and in the
ESP angular velocity across the entire simulation time for Case 3, while for Case 2, we no longer
observe the offset.

7.1.2 State estimation results for simulated data with noise

To further evaluate the robustness of the PINN model, the analysis is extended to include
a simulated scenario with Gaussian noise. This section aims to assess the performance of the
PINN model when subjected to noise alone without considering missing physics or errors in
the model parameter estimation. For each PINN realization, a different noise realization is also
considered. Similarly to the previous section, this section will focus on presenting the result
corresponding to the first experimental investigation, while the result for the second experimental
investigation can be found in Appendix D for reference. The MAPE for the different predicted
states are shown in Table 7.4, and the output of the predicted states from the neural network,
along with the addition of noise on the pressure signals, are shown in Figure 7.3.

The Table 7.4 presents the MAPE for the states prediction in the simulated case with added
noise data, considering three cases of unknown parameters. Similarly to Table 7.3, increasing
the number of unknown parameters (Case 1 to Case 3) leads to higher MAPE values for all
states, indicating a performance loss. Nevertheless, the MAPE values remain relatively small,
and visual inspection of Figure 7.3 shows a reasonable agreement with the actual values, except
for Case 2.

Table 7.4: MAPE for the simulated scenario with added noise.

P1 P2 Q1 Q2 Qp ω

Case 1 0.180% 0.073% 0.017% 0.017% 0.017% 0.027%

Case 2 0.165% 0.021% 0.455% 0.456% 0.455% 2.815%

Case 3 0.182% 0.034% 0.048% 0.045% 0.048% 0.159%

In Figure 7.3a and Figure 7.3b, the blue line indicates the signal with added Gaussian noise.
In other figures, the same blue line represents the noise-free simulated state. This differentiation
aids in evaluating the PINN’s accuracy by comparing its predictions with the actual state values
and also presents the signal used for PINN training. Each PINN training used a different random
seed. Therefore, the Gaussian noise in the signal varied for every PINN training and case.
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Specifically, the noisy signals for P1 and P2 in Figure 7.3a and Figure 7.3b correspond to the
first training for Case 1, and they were used as a reference. The added Gaussian noise considered
the uncertainty from the pressure transducers as specified in Table 4.2. For all cases, the training
dataset consisted of 37 data points for data loss in P1 and P2 and 100 collocation points for
physics loss. The plots show the mean value of results for 30 realizations of PINN. The noisy data
shown in the plots are one of the noisy data shown as a representative sample. The comparison
between the predicted dynamics of the states by the PINN and the actual values, as depicted in
Figure 7.3, demonstrates a good overall agreement in all states and investigations for almost all
cases. However, in Case 2 (black line), the PINN was unable to accurately estimate the flow
rate states (Q1, Q2 and Qp). They exhibit relatively higher errors. However, the model was able
to predict the general shape of the time series. Remarkably, these higher errors were observed
exclusively in the first experimental investigation (Figure 7.4) (higher water cut), whereas in
the second investigation (Figure D.3) (with low water cut), Case 2 demonstrated performance
similar to that of Case 1 (red line).

Notably, minor errors are observed in the P1 and P2 states for all cases and investigations.
Specifically, in the discharge pressure state (Figure 7.3b), it is noticeable that the neural network
did not overfit and successfully captured the signal trend and magnitude. Similarly to the
simulated data without noise (Section 7.1.1), Case 1 (red line) exhibits the best agreement across
the entire simulation range in both investigations. Additionally, as shown on Table 7.4, Case
1 had a lower MAPE than the other cases for the unknown states and a higher MAPE for the
known state P2.

Despite the addition of noise, the state estimation for Cases 1 and 3 provides good accuracy
without significant errors. These results were similar to those obtained in noise-free conditions,
with a slight increase in MAPE values. In Case 3, there is a noticeable offset in the volumetric flow
rates (Q1,Q2 andQp) approximately after the 8th second, which is different from the observations
made in Section 7.1.1, where the offset occurred only in the beginning. Additionally, the angular
velocity, in this case, remains closely aligned with the actual values throughout the simulation,
exhibiting no offset. It is observed that results for Case 2 deviate from the true values, particularly
for flow rates (Q1, Q2, Qp). It may be possible that, though Case 2 is structurally identifiable, it
is not practically identifiable. However, it is observed that the angular velocity of the ESP (ω)
was not significantly affected as that of the flow rates.
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Figure 7.3: Comparison of predicted and true states for the simulated case with noise of the first
experimental investigation and unknown parameters.

7.1.3 State estimation results for experimental data

This section assessed the performance of the PINN when subjected to experimental data,
which is a more representative scenario of real-world oil field conditions. In this case, noise
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in data and model uncertainties exist, posing a more challenging scenario for the PINN model.
Similarly to the previous sections, the results from the first experimental investigation are
provided in this section, while results from the second investigation can be found in Appendix D.
The MAPE values for these predictions are presented in Table 7.5. Meanwhile, the predicted
outputs of the neural network are shown in Figure 7.4.

The Table 7.5 presents the MAPE values for state predictions using experimental data across
the three cases with varying unknown parameters. Among the cases evaluated, Case 1 shows the
best agreement regarding the upstream volumetric flow rate (Q1) and the ESP angular velocity
ω. However, similarly to the noisy data scenario, Case 2 presented errors for ω and Q1 that are
considerably higher than the other states, as evident in Figures 7.4c and 7.4d. Nonetheless, the
MAPE values remain relatively small for the other cases and states, and visual inspection of
Figure 7.3 shows a reasonable agreement with the actual values.

Table 7.5: MAPE for the experimental data scenario.

P1 P2 Q1 ω

Case 1 4.517% 0.245% 0.137% 1.065%
Case 2 3.828% 0.243% 1.560% 8.290%
Case 3 2.963% 0.252% 0.218% 1.300%

In Figure 7.4, due to constraints in our experimental setup, it was only possible to directly
measure the states Q1, P1, P2, and ω. Therefore, the PINN results analysis will primarily
concentrate on these four states, denoted by the graphs’ blue lines. Moreover, for all cases, the
training dataset consists of 48 data points for data loss with 100 collocation points for physics
loss. The plots show the mean value of results for 30 realizations of PINN.

By comparing the PINN-predicted dynamics with the actual values (Figure 7.4), a good
overall agreement is evident across all states and cases, even in the presence of noise and model
errors. However, similarly to the noisy data scenario, in Case 2 (black line), the PINN was unable
to accurately estimate the flow rate (Q1) and angular velocity (ω) states. While the predicted
states follow the signal’s shape, they exhibit relatively high errors. Remarkably, these higher
errors were observed exclusively in the first experimental investigation (Figure 7.4) (high water
cut), whereas in the second investigation (Figure D.3) (low water cut), Case 2 demonstrated
performance similar to that of Case 3 (green line). These high errors are observed in Table 7.5,
where the Case 2 values for Q1 and ω had the highest MAPE values.

Notably, for the P1 state (Figure 7.4a), a minor deviation in the PINN prediction’s shape is
noticeable when compared to the experimental data. This difference could be attributed to the
influence of the C-elements, which, as discussed in Section 5.5.2, affects the system’s settling
time. In the parameter estimation section, it will be discussed the challenges encountered in
estimating the bulk modulus for the experimental data, as it was not experimentally measured.
Furthermore, in the discharge pressure state (Figure 7.4b), it is clear that the neural network
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Figure 7.4: Comparison of predicted and true states for the experimental case of the first experi-
mental investigation with unknown parameters.

did not overfit and successfully captured the signal trend and magnitude, including the signal
overshoot between 6 s to 12 s, which was considerably smaller in the simulations.

Additionally, a systematic error is noticeable at the beginning of the ω state (Figure 7.4d) for
Cases 1 and 3. Despite these deviations, the predicted ω signal aligns well with the experimental
data regarding shape and magnitude. When comparing the simulated and measured angular
velocity (ω), a systematic error is noticeable, indicating a difference between the actual and
the obtained model parameters. However, despite this difference, the PINN could reasonably
estimate the angular velocity state. It is possible that the observed discrepancies between the
experimental data and model predictions could be attributed to multiple factors. These factors
include model uncertainty arising from approximations, simplifications, and assumptions in the
model, as discussed in Section 5.5, as well as the influence of noise in the experimental data.
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7.2 Parameter estimation results

The results for parameter estimation in the experimental investigations 1 and 2 across
three cases are presented in the following sections. It should be noted that the emulsion bulk
modulus was not measured during the experiments. As a result, it is not possible to assess the
accuracy of the values determined by the PINN in the experimental data scenario. The viscosity
values obtained were compared to the Brinkman [69] model, described in Section 5.5. For
density estimation, it was considered the measurements from the Coriolis meter. This section
discusses absolute percentage error, but additional tables presenting actual values can be found
in Appendix D.2.

In this section, the mean of the absolute percentage error (MAPE) for the parameter estimation
results is defined as

MAPEΛ =
1

N init

N init∑

i=1

∣∣∣∣∣
Λ− Λ̂i

Λ

∣∣∣∣∣ , (7.2)

where N init is the number of PINN random initializations, considered 30 in this study. The
variable Λ represents the true value of the unknown parameter, and Λ̂i is the estimated unknown
parameter for the i-th PINN initialization. For simplicity, the error in this section is referred to as
the absolute percentage error.

7.2.1 Case 1: Three unknown parameters B, µ and ρ for different types of
data

In this section, it was focused on Case 1, where it was considered the bulk modulus (B),
viscosity (µ), and density (ρ) as unknown while considering the remaining parameters as known.
In Table 7.6, it is presented the MAPE for the two experimental investigations and all data
scenarios.

Table 7.6: Mean of the absolute percentage error for Case 1.

Data type B µ ρ

Investigation 1 Simulation 0.31% 0.03% 0.02%
Noisy 0.58% 0.12% 0.09%
Experimental N/A 1.80% 0.80%

Investigation 2 Simulation 0.61% 0.32% 0.29%
Noisy 0.48% 0.21% 0.21%
Experimental N/A 4.30% 2.40%

As can be seen in Table 7.6, the PINN could successfully estimate the flow parameters for all
cases. In the experimental data scenario, the MAPE was slightly higher, for investigation 1, the
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errors were below 2%, while investigation 2 had errors below 4.5%. It is important to mention
that for the experimental cases, the error refers to the difference between the obtained viscosity
and the Brinkman [69] model, which may not be entirely accurate. Also, it is considered the
single effective viscosity assumption, as described in Section 5.5. Thus, this higher percentage
difference can also be related to these assumptions and limitations.

In addition to the mean analysis, it is important to assess the parameter absolute percentage
error dispersion. The error dispersion for investigation 1 and 2 is visualized in Figure 7.5a and
Figure 7.5b, respectively.

In Figure 7.5, each subfigure shows a specific experimental investigation and contains
subplots for each unknown parameter under analysis. Within these subplots, three distinct box
plots are presented: blue for the experimental data, red for the simulated data, and gray for
the simulated data with added noise. These box plots include whiskers, outliers, and the mean
value, represented by a triangle symbol. Outliers are identified as data points that lie more than
1.5 times the interquartile range (IQR) above the third quartile or below the first quartile. The
horizontal axis represents the absolute percentage error calculated with respect to the reference
value. This graphical structure is consistently employed in subsequent figures related to inverse
problems.
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Figure 7.5: Box plot of the absolute percentage errors for Case 1.

In Figure 7.5a and Figure 7.5b, the fluid density (ρ) and viscosity (µ) parameters demonstrate
consistent behavior across multiple initializations and data sources with relatively low dispersion.
On the other hand, Investigation 2 presented outliers in all parameters for the simulated case and
for ρ and µ in the simulated with noise scenario.

When comparing Investigations 1 and 2 in Table 7.6 simulated and simulated with noise, it is
observable that the performance in Investigation 1 is superior to that in Investigation 2. However,
the box plots for both investigations suggest a similar data spread. This discrepancy can be
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attributed to the influence of outliers on the mean value calculation. As shown in Figure 7.5b, the
mean value, denoted by a triangle symbol, lies outside the interquartile range, which suggests
the impact of outliers. Furthermore, when we compare the median of the errors, they presented
similar values, which further indicated the influence of these outliers on the mean.

Notably, the addition of noise negatively affected the results, as for most of the parameters,
their distributions presented a slightly wider dispersion than the simulated. Further, analyzing
the experimental data results, it is evident that they exhibit a wider distribution when compared
to the simulated and simulated-with-noise data. This is expected as experimental data is more
challenging due to noise and potential model inaccuracies.

7.2.2 Case 2: Seven unknown parameters B, µ, ρ, ku, kd, k3p and k4p for
different types of data

In this section, it is examined the Case 2. The fluid’s bulk modulusB, viscosity µ, and density
ρ, along with the pump’s viscous flow loss coefficient k3p, the pump equivalent resistance k4p,
and the equivalent resistances of the upstream and downstream pipeline ku and kd respectively,
are treated as unknowns. The remaining parameters were considered known. The MAPE from
the two experimental investigations across all data scenarios is provided in Table 7.7.

Table 7.7: Mean of the absolute percentage error for Case 2.

B µ ρ ku kd k3p k4p

Inv. 1 Sim. 2.52% 13.10% 1.31% 24.22% 6.15% 4.28% 3.80%
Noisy 1.34% 36.43% 5.68% 40.58% 19.07% 9.79% 10.51%
Exp. N/A 120.19% 9.72% 77.35% 56.31% 27.68% 29.26%

Inv. 2 Sim. 0.98% 1.38% 0.18% 0.28% 1.20% 3.98% 2.27%
Noisy 1.29% 13.01% 3.10% 3.62% 12.62% 6.45% 6.57%
Exp. N/A 14.50% 7.99% 4.82% 15.39% 9.73% 5.73%

The results presented in Table 7.7 demonstrate the PINN’s successful estimation of flow
parameters across most cases, except for the first investigation’s simulated-with-noise and
experimental data scenarios. In these cases, the mean of errors was significantly higher compared
to the simulated, simulated, and Investigation 2 simulated-with-noise and experimental data
scenario. Notably, for the experimental data scenario, the viscosity (µ) exhibited a difference
of 120.19%, and most other parameters had errors higher than 27%. However, for the second
investigation, the mean of errors in Table 7.7 were all below 15.5%, indicating better performance
in the experimental data scenario. As discussed earlier, the higher error in the experimental case
may be caused due to model uncertainty, simplifications in the model, and experimental noise.

However, the results for Investigation 1 in the simulated data scenario require some attention.
As shown in Figure 7.6a, all unknown parameters presented outliers. Furthermore, their computed
means were observed to lie outside the IQR. It was also previously noted in Case 1 (Section 7.2.1),
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which implies an influence of these outliers on the mean value. When examining the median
values illustrated in Figure 7.6, the error metrics for simulated scenarios in both investigations
were predominantly found to be below 1%.

In Figure 7.6, the box plot illustrates the distribution of absolute percentage errors for each
parameter in Case 2. Each subplot represents an unknown parameter for the data scenarios
evaluated. The horizontal axis has been changed to logarithmic for better visibility. This graphical
structure is consistently employed in subsequent figures related to inverse problems.
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Figure 7.6: Box plot of the absolute percentage errors for Case 2.

The addition of noise considerably affected the results in both experimental investigations,
leading to higher mean errors as shown in Table 7.7, whereas in investigation, the mean of the
errors was smaller than in experimental Investigation 1. Analyzing the box plots in Figure 7.6, it
is observable that the simulated noisy scenario resulted in greater dispersion for most parameters.
This observation indicates that the introduction of noise adversely affected the accuracy of the
estimated parameters. Moreover, it is noticeable that similar to the discussed in Section 7.2.1,
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the experimental data scenario presented the highest mean errors across the initializations for
both experimental investigations, except for the k4p in the second experimental investigation.

Despite the high errors in Investigation 1’s experimental data scenario, most estimated
parameters exhibited relatively small dispersion across the weight initializations, as evident in
Figure 7.6a. It is worth noting that the parameter selection for this case did not consider the
practical identifiability analysis, which assessed, in this study, the parameter sensitivity to noise.
Therefore, this higher mean error with relatively low dispersion suggests that the system might
not be practically identifiable within the flow condition of experimental investigation 1. It is
possibly converging to a parameter set other than the true one. It is important to note that as the
water cuts increase up to the emulsion phase inversion, the fluid behavior becomes more complex,
posing a more challenging scenario than lower water cuts. Further, our practical identifiability
analysis considered only the sensitivity analysis rather than the Monte Carlo approach, where
the optimization algorithm, in this case, the PINN, would also be included.

Therefore, to draw more definitive conclusions about how the parameter estimation is sensi-
tive to the water cut, additional investigations need to be conducted with a larger experimental
test matrix that covers a wider range of water cuts. Additionally, a Monte Carlo approach with
the PINN on the practical identifiability analysis could potentially better evaluate the effects
of the model uncertainties with the experimental data scenario, as the approach described in
Section 6.2 considered only the simulated data. Further, as the local structurally identifiability
analysis assesses the identifiability of the neighborhood of the parameter set, it is possible that
restricting the search range and imposing stricter bounds on the parameter search could lead to
better results. This approach is suggested in [132].

7.2.3 Case 3: Eight unknown parameters B, µ, ρ, ku, kd, k4p, k1s and k5s
for different types of data

This section presents the results of the inverse problem for Case 3, specifically evaluating the
performance of the parameter estimation. The evaluation is based on the MAPE, as shown in
Table 7.8. The considered parameters, in this case, include the bulk modulus (B), viscosity (µ),
and density (ρ) of the fluid, as well as the pump equivalent resistance (k4p), the first impeller-fluid
coupling coefficient (k1s), the shaft second-order friction coefficient (k5s), and the equivalent
resistance of the pipeline upstream and downstream (ku and kd).

The results in Table 7.8 and Figure 7.7 indicate that the PINN successfully estimated the
density and viscosity for all scenarios in Case 3, but it encountered challenges in estimating the
bulk modulus. The 15% value represents the upper and lower bounds imposed on the output
scaling transformation for the bulk modulus. Additionally, when analyzing the dispersion in
Figure 7.7, it is evident that the distributions of the simulated with added noise case are similar
to those of the simulated case, with similar IQR.

In Table 7.8, the distinction between data sources with smaller errors, as observed in Cases 1
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Table 7.8: Mean absolute percentage error for Case 3.

B µ ρ ku kd k4p k1s k5s

Inv. 1 Sim. 14.95% 11.31% 3.02% 26.27% 3.25% 1.79% 6.92% 12.24%
Noisy 14.51% 10.41% 1.88% 25.97% 4.99% 2.06% 6.88% 6.00%
Exp. N/A 13.05% 9.26% 34.51% 16.01% 5.87% 12.37% 7.76%

Inv. 2 Sim. 15.00% 14.34% 4.12% 6.90% 6.66% 3.43% 12.71% 6.96%
Noisy 15.00% 13.66% 3.77% 4.92% 13.63% 7.04% 11.86% 12.22%
Exp. N/A 1.60% 10.16% 1.96% 12.05% 5.28% 7.01% 9.25%

and 2 (Section 7.2.1 and Section 7.2.2), is not evident. The Investigation 1 and 2 demonstrated
errors mostly below 13%. Notably, in Investigation 1, the upstream pipeline equivalent resistance
(ku) exhibited the highest errors across all data sources, reaching up to 34.51%. However, in
Figure 6.2, it is noticeable that the ku presented a relatively high correlation with other parameters,
such as the kd. On the other hand, in Investigation 2, we do not observe errors as high as in
Investigation 1. This discrepancy can likely be attributed to the distinct flow characteristics of
each investigation. As previously discussed in Section 7.2.2, further tests under diverse flow
conditions are essential to understand the performance difference between Investigation 1 and 2
comprehensively.

It is noteworthy that, for Case 3, besides the fluid bulk modulus and density, the other
parameters also have bounded output scaling transformations, which could have contributed to
lower errors. Thus, although Case 3 poses an additional challenge compared to Case 2, once
it involves estimating eight unknown parameters instead of seven, Case 3 and Case 2 are not
directly comparable.

In Figure 7.7, the box plot illustrates the distribution of absolute percentage errors of each
parameter in Case 3. The individual subplots correspond to the unknown parameters across
the evaluated data scenarios. To enhance visibility, the horizontal axis has been changed to a
logarithmic scale.
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Figure 7.7: Box plot of the absolute percentage errors for Case 3.
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8 Conclusions
This research aimed to model the electrical submersible pump system by leveraging the bond

graph framework, which was then utilized for identifiability analysis and parameter estimation.
The model was primarily designed to consider multiphase flow scenarios, typical in industrial
contexts, with a particular emphasis on water-oil mixtures. A key criterion for the model was to
strike a balance between simplicity and computational efficiency, thereby rendering it suitable for
real-time applications such as monitoring, fault diagnosis, and control in industrial environments.
The research was guided by the following objectives:

1. Derivation of elemental bond graph elements using fundamental equations of the subsys-
tems in Sections 3.2, 3.3, 3.4.5 and 3.5 to 3.7.

2. The formulation and validation of a bond graph-based model for pipeline transients in
Section 5.1.

3. The formulation of a bond graph-based model, accounting for both mechanical and
hydraulic subsystems inherent to the ESP systems in Sections 5.2 to 5.4.

4. Validate the obtained model through comparison with experimental data, on different
emulsion flow conditions in Section 5.5.

5. Identifiability analysis to assess the model’s structural and practical identifiability, as well
as parameter sensitivity in Chapter 6.

6. Utilization of Physics-Informed Neural Networks (PINN) for solving inverse problems,
aimed at estimating unknown parameters and unmeasured states in Chapter 7.

The objectives were addressed across the chapters, each fulfilling specific objectives in
the investigation of the dynamics of electrical submersible pump systems. Methodologically,
the research employed a multifaceted approach combining analytical, numerical, and machine-
learning techniques, including bond graph theory for modeling, identifiability analysis for
parameter assessment, and PINN for state and parameter estimation.

The Section 5.2 elaborated on the development of a minimal system required to represent the
centrifugal pump system, including the shaft and the pump subsystems. Then, in Section 5.3, a
general bond graph model composed of these subsystems is proposed to represent a generic ESP
system composed of n-impellers with an arbitrary number of pipe and shaft segments. However,
despite the system’s comprehensive description, the resultant system’s complexity is significant.
Thus, in Section 5.4, a simplification with a single pump stage is considered. The objective was
to reduce the number of parameters and increase the tractability of the problem while maintaining
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reasonable accuracy for the model. Then, besides the single impeller, two pipe elements were
considered to represent the upstream and downstream pipelines, respectively. The bond graph
model resulted in a set of ODEs composed of 6 equations, whose parameters can be obtained
from the steady state conditions.

Then, for validating the model with experimental data, it was assumed that the flow was
laminar in both emulsion and oil flow lines, as corroborated by the Reynolds number. Thus, the
friction function was formulated to meet these conditions, with the friction factor expressions
discussed in Section 3.3. Although real-world setups manifest complex variations in emulsion
viscosity, the closed-loop system of the ESP studied allowed for the reasonable assumption of
constant viscosity, and the Brinkman [69] model was chosen to represent emulsion viscosity due
to its simplicity and widespread usage in the oil industry.

The parameters were then obtained using the steady state condition, and the model presented a
reasonable accuracy as evidenced by the coefficient of determination and the error bounds shown
in Appendix C. However, fine-tuning was required to align the model with the experimental data
better. One limitation of the model was its reliance on literature-based values for the liquid bulk
modulus, as it was not experimentally measured. This necessitated compromise identified an
avenue for future research to improve model fidelity.

It followed the methodology described in Section 4.7.1 for pump and pipeline tuning. Then,
a comparative analysis using metrics like Pearson correlation coefficient and Mean Absolute
Percentage Error (MAPE) provided empirical evidence of the model’s performance. Despite
the model’s strengths in capturing specific system dynamics, discrepancies like lower overshoot
in discharge pressures and faster response in intake and discharge pressures offset were noted.
The first assumption in fine-tuning the model was to adjust the inertance element. However,
after attempts, it showed little to no effect on reproducing the pressure spikes observed in the
experimental data.

After some observations and revisiting the assumptions taken regarding the pipeline sub-
system capacitance and the development on the Section 3.2.1. The requirement for further
fine-tuning was observed, particularly on the elasticity of fluid-pipe walls. Then, after fine-tuning
the C-elements with the procedure described Section 4.7.2, the model’s accuracy improved
significantly. The model could capture the pressure spikes observed experimentally, and set-
tling times for intake and discharge pressures were adjusted accordingly. Although the model
proved effective in certain conditions, low and moderate water fraction emulsions flows, further
experimental studies are needed to comprehensively understand the C-elements’ characteristics.

A local structural identifiability analysis was conducted using the differential elimination
method for dynamical models via projections, as proposed by Dong et al. [96]. The results
revealed that the system is not locally structurally identifiable when both intake and discharge
pressures are the only known parameters. For local structural identifiability, it was required to
consider the parameters like shaft inertia (Is), fluid-impeller disk friction (k3s), and shaft viscous
damping (k4s) as known, resulting in 12 identifiable unknown parameters. Then, the parameter
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correlation matrix was derived using the Fisher information matrix for the practical identifiability
analysis. Practical identifiability provided a qualitative analysis of the unknown parameters in
the presence of noise. To attain this identifiability, it became necessary to define more parameters
as known. Thus, the most critical parameters in the context of the ESP’s actual operation were
selected as unknown, and other parameters as known. These unknown parameters included the
fluid properties and pipeline equivalent resistance.

The proposed PINN model in this study successfully estimated the ESP’s fluid properties
(bulk modulus, density, and viscosity) and dynamics of the states with reasonable accuracy.
The model provided reasonable accuracy when considering simulated data with low water cut
when considering fluid properties, pipeline equivalent resistances, shaft, and pump parameters.
However, a relatively higher error was observed for higher water cuts or when it was considered
simulated with noise and experimental data with lower water cuts.

In this case, it was observed outliers in the predicted results. Further study may include a
robust PINN method to eliminate the outliers and better performance. Furthermore, it was also
observed that errors are higher in the case of higher water cuts. This error is higher in the case
of noise and experimental data than in the simulated cases. These cases with more unknowns
may require additional measurements of the state variables, which are generally not measured in
the field. Future studies may also include further investigations with a broader range of water
fractions to understand better the water cut influences. The study may also focus on updating
the numerical model for higher water cuts if necessary, as assumptions made on the numerical
model may not be valid for higher water cuts.

Obtaining the estimated parameters and states for the ESP system in oil production can be
challenging, and the PINN offers a promising and cost-efficient alternative for estimating them.
Although this approach has its benefits, it also has some limitations. One of the limitations is
that the technique is computationally intensive. This means that for every desired estimation
of properties, the PINN must undergo training. More efficient PINN algorithms need to be
investigated for different operational conditions. Furthermore, the accuracy of the estimated
properties using PINN is heavily reliant on the accuracy of the measured states and known
parameters. In the event of a faulty reading or instrument failure, the PINN’s ability to provide
accurate estimations is compromised.

Additionally, a Monte Carlo approach with the PINN on the practical identifiability analysis
could potentially better evaluate the effects of the model uncertainties with the experimental
data scenario. As the experimental data contains noise, further study may include uncertainty
quantification. Furthermore, an ESP system model that considers the multistage separately would
be relevant for ESP in actual production, whose number of stages are considerably higher than
the one considered in this study. Moreover, the current model does not consider the electrical
domain and its inclusion would be more realistic. Another notable aspect is that the single
viscosity assumption for the system remains a limitation.
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Appendix A Bond graphs
The modeling of complex engineering systems often requires a structured, modular approach

to capture the intricate interactions between various subsystems. Bond graph theory provides
a unified framework, offering a versatile representation that spans multiple physical domains.
This section aims to provide a brief yet comprehensive understanding of bond graph theory’s
foundational principles and notations.

The section commences with exploring multiports, the fundamental building blocks that
serve as the nexus for subsystem interconnections (Section A.1). Following this, the section
introduces the concept of causal stroke, a notation that is used to distinguish between dependent
and independent power variables (Section A.3).

Subsequently, the section delves into the various bond graph elements that encapsulate the
behavior of systems across different physical domains (Section A.4). These include energy
storage elements like 1-port compliance (C-elements) and 1-port inertia (I-elements), dissipative
elements (R-elements), and source elements (Se and Sf). Each element’s constitutive relationships
and potential modifications by external signals are discussed in detail. The section then introduces
reversible transducer elements, which allows the connection of multiports across different
physical domains or coordinate systems. Finally, the section culminates with a discussion on
junction elements, which connect multiports within a consistent physical domain and coordinate
system.

A.1 Multiports

In engineering, systems are often conceptualized as a collection of interconnected subsystems.
Each of these subsystems interacts with each other, representing the entire system’s behavior.
Within the modeling framework, a given subsystem can describe different levels of detail of the
larger system. Consider an electrical motor as an example. Its representation as a subsystem can
span a broad spectrum: at one end, it might be portrayed in a rudimentary fashion, acting solely
as a transducer converting electrical energy into mechanical motion. At a more detailed level,
the model may integrate nuances such as winding resistance, inductance, parasitic capacitance,
and the complex interplay of magnetic field dynamics and rotation.

The modeler must carefully determine the appropriate level of detail for a model based on its
intended application. Valid assumptions must underpin such decisions. While a meticulously de-
tailed model may offer unparalleled accuracy, it often comes at the expense of computational cost,
presents challenges in analysis, and may rely on challenging parameters to obtain. Conversely, a
more abstract model, although more computationally tractable, may potentially overlook certain
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intricacies inherent to the real-world counterpart.
The points where the subsystems interconnect and allow power to flow between them

are referred to as ports. The physical subsystems possessing one or more such connections
are named multiports. These ports are characterized by two real, time-dependent variables:
effort (e) and flow (f ), whose product represents the instantaneous power (P ) flowing through
the port. These variables are commonly referred to as power variables or power conjugated.
When interconnecting subsystem ports, it is pertinent to note that the variables e and f are not
invariably a power conjugate. More generally, they can be described as dynamically conjugated.
In this context, the power conjugate condition is realized when the product of the dynamically

conjugated variables equates to power [140, 145].
The general notation of the power flowing through a port (Pwr(t)) is represented as:

Pwr(t) = e(t)f(t). (A.1)

Therefore, the energy E(t) transmitted through the port is the integral of P (t):

E(t) ≡
∫
Pwr(t)dt =

∫
e(t)f(t)dt. (A.2)

From the power variables (e and f ), it is possible to obtain other important quantities for dynamic
systems, such as the momentum, p(t), and the displacement, q(t). The momentum is defined as
the integral of the effort (e). Hence,

p(t) ≡
∫
e(t)dt = p0 +

∫ t

t0

e(t)dt. (A.3)

In the definite integral representation, it is necessary to specify the initial momentum, p0, and
the reference time, t0. Analogously, the displacement is expressed as the integral of the flow
variable, f(t). It is given by:

q(t) ≡
∫
f(t)dt = q0 +

∫ t

t0

f(t)dt, (A.4)

where q0 denotes the initial displacement at t0. Alternatively, the momentum and displacement
expressions can be written in the differential form:

dp(t)

dt
= e(t), (A.5)

dq(t)

dt
= f(t). (A.6)

The relationship between the previously mentioned variables can be represented in a mnemonic
device commonly called tetrahedron of state, shown in Figure A.1. In the tetrahedron, each
of the four variables e, f , p, and q are placed in the vertices of the tetrahedron and the edges
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indicate the relationship between them. The terms I , R, and C will be discussed in detail in
further sections.

∫
dt

I d
dt

R

C

f(t)

p(t) q(t)

e(t)

Figure A.1: The tetrahedron of state.

A.2 Ports and bonds

After connecting multiport subsystems through a port, the dynamically conjugated variables
are simultaneously constrained to be equal for both subsystems. In this condition, the two
multiports are said to have a common bond. In the case of power conjugates, the bond is termed
as a power bond. Correspondingly, the port involved in this connection is denoted as a power

port. In bond graphs, the power bond is represented by a half-arrow as illustrated in Figure A.2.

Subsystem 1 Subsystem 2
e

f

Figure A.2: Representation of a bond graph power bond from subsystem 1 to subsystems 2.

Importantly, the half arrow direction determines the assumed power flow direction. For instance,
in Figure A.2, we assumed a positive power flow from subsystem 1 to subsystem 2. If the actual
power flow or, for a certain period of the system, the power flows from subsystem 2 to subsystem
1; it will present a negative power flow [140, 145].

In addition to the power bond, a multiport can also have a signal attached to it, referred to as
a signal port. Signal ports can be categorized into two types: inputs and outputs. A signal serves
the purpose of linking an output to an input. The input and output signal can be from another
multiport, an effort variable, a flow variable, or a generated signal. When a signal with an inward
orientation connects to a multiport, the multiport is described as being modulated, commonly
referred to as a modulated multiport.
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Borutzky [145] states that a multiport fundamentally relates the efforts and flows across its
ports. Each power port has a dependent and independent variable that can either be an effort or
flow. The relationship between the power variables is called constitutive relations and can be
affected by the input signals of the multiport, which act as its independent variable. Furthermore,
the output signals of a multiport may come from any of its independent variables.

It is important to observe that the multiports can only connect with a power bond when
the associated effort and flow variables belong to the same physical domain and coordinate
system. In bond graphs, the connection across the physical domains and coordinate systems
occurs through specific ports, a topic that will be elaborated on in subsequent sections. The
Tables A.1 to A.4 enumerate various physical domains along with their corresponding power
variables. Moreover, they also detail the generalized displacement and momentum variables
pertinent to each domain.

Table A.1: Generalized variables for mechanical domain.

Generalized variables Symbol and Quantity Unit

Effort (e) Force (F ) N
Flow (f ) Velocity (v) ms−1

Momentum (p) Momentum (p) Ns
Displacement (q) Displacement (x) m
Power (P ) F (t)v(t) W
Energy (E)

∫
F (t)v(t)dt J

Table A.2: Generalized variables for mechanical rotation domain.

Generalized variables Symbol and Quantity Unit

Effort (e) Torque (τ ) Nm
Flow (f ) Angular Velocity (ω) rad s−1

Momentum (p) Momentum (pτ ) Nms
Displacement (q) Angle (θ) rad
Power (P ) τ(t)ω(t) W
Energy (E)

∫
τ(t)ω(t)dt J

Table A.3: Generalized variables for hydraulic domain.

Generalized variables Symbol and Quantity Unit

Effort (e) Pressure (P ) Pa
Flow (f ) Volume Flow Rate (Q) m3 s−1

Momentum (p) Momentum (pP ) Pa s
Displacement (q) Volume (V ) m3

Power (P ) P (t)Q(t) W
Energy (E)

∫
P (t)Q(t)dt J
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Table A.4: Generalized variables for electrical domain.

Generalized variables Symbol and Quantity Unit

Effort (e) Voltage (V ) V
Flow (f ) Current (I) A
Momentum (p) Momentum (pV ) V s
Displacement (q) Charge (Q) C
Power (P ) V (t)I(t) W
Energy (E)

∫
V (t)I(t)dt J

A.3 Causal stroke

As previously mentioned in Section A.2, one of the power variables is independent, while
the other depends on the constitutive relations and the independent variable. A crucial point to
observe is that the power bond, represented by a half-arrow as outlined in Section A.2, does not
explicitly differentiate between the dependent and independent variables. The distinction only
occurs after a specific decision regarding the direction of either the effort or the flow variable.
In bond graph methodology, this direction choice is represented by a small orthogonal line at
the end of the half-arrow. The end marked by this orthogonal line denotes the effort direction.
Consequently, the multiport nearest to this line receives the effort as an input, and serves the flow
variable as an output, as depicted in Figure A.3.

Subsystem 1 Subsystem 2
e

f

Subsystem 1 Subsystem 2

e

f

(a) The effort is output from Subsystem 1 and input to the subsystem 2.

Subsystem 1 Subsystem 2
e

f

Subsystem 1 Subsystem 2

e

f

(b) The effort is output from Subsystem 2 and input to the subsystem 1.

Figure A.3: Interpretation of the causal strokes in relation to the direction of power variables.

A crucial distinction to emphasize is that the half-arrow direction and the causal stroke, repre-
sented by the orthogonal line, serve different purposes. While the former defines the signal of
the power variables, the latter clarifies which variable is dependent or independent.
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A.4 Bond graph elements

In previous sections, the concept of multiport subsystems and the conditions when a power
bond is established between two or more multiports was defined. Also, it was defined a visual
representation for the power bonds and defined a visual representation to denote which power
variable is dependent or independent through the causal stroke. However, it is still required to
define a few basic multiport elements that represent the behavior of the systems across different
physical domains. In the following sections, these elements are defined based on their behavior.

A.4.1 Energy storage elements

The relationship between power variables, e and f , and the physical quantities of momentum,
p, and displacement, q, gives rise to the 1-port energy storage elements. The relationship is
illustrated in Figure A.1. For these elements, one of the power variables must undergo either
integration or differentiation with respect to time to contribute to the system’s dynamics actively.

When the 1-port element associates the power variable with the generalized displacement q,
it is termed as a 1-port compliance or a C-type port or simply C-element. Conversely, when the
power variable is linked with the generalized momentum p, the element is designated as a 1-port

inertia or an I-type port or simply I-element.
In both C-elements and I-elements, the constitutive relationship between power variables and

energy variables (p and q) can be described by linear or non-linear relationships. In general form,
for C-elements, we have that e = ΦC(q), while for I-elements, we have f = ΦI(p). Thus, the
energy stored by these elements can be quantified as:

E(t) =

∫ t

0

e(t)f(t) dt+ E0, (A.7)

where E0 represents the energy when t = 0. Considering the C-element, and referring to
Section A.1, q is defined such that dq(t) ≡ f(t) dt. Hence, for C-elements:

E(t) =

∫ t

0

e(t) dq(t) + E0 ∴ E(q) =

∫ q

q0

e(q) dq + E0, (A.8)

where q0 denotes the initial displacement.
The C-element and I-element can be altered by an external signal. When subjected to such

modifications, these elements are denoted as MC-element and MI-element for the C-element and
I-element, respectively. In the context of the mechanical domain, the C-element characterizes the
behavior of a spring. This behavior is represented by a constant for linear springs. Conversely,
for non-linear springs, there exists a distinct functional relationship correlating the effort variable
with the displacement. Additionally, within the mechanical domain, the I-element signifies the
mass or inertia.
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A.4.2 Dissipative element

The dissipative elements represent the conversion of power entering the port to thermal
energy. It is termed as a 1-port resistor or an R-type port or simply R-element. On the other hand,
if a signal influences its behavior, this variant is denoted as a modulated resistor or an MR-type

port or simply MR-element. While power ports ensure power conservation in interconnected
multiport systems, the R-element specifically converts all input power to thermal energy without
an explicit thermal port representation. This could be misconceived as energy loss. However, this
perspective assumes that the temperature of the “implicit thermal port” remains mostly constant,
or its deviations are slow compared to other significant variations [145].

The R-element establishes a relationship between the effort and flow variables, which can be
either linear or non-linear. In its generalized form, for R-elements, the relationship is represented
as e = ΦR(f) or alternatively f = ΦR

−1(e). In the context of the mechanical domain, the
R-element could represent phenomena such as the friction experienced between two juxtaposed
sliding surfaces. In scenarios where the relationship is linear, this can be comprehended as a
constant, such as the viscous friction consideration. Conversely, it manifests as a more intricate
functional relationship in non-linear instances, such as in the Stribeck curve [146].

A.4.3 Source elements

In bond graphs, source elements are characterized by their dependent variable being un-
affected by their independent variable. These variables can either be constant (in the linear
scenario) or a time-dependent function in modulated sources. As a result, multiport sources
can be reduced to an individual 1-port source modulated or not [145, 140]. Effort-based and
flow-based sources are denoted by Se and Sf, respectively. When modulated by a signal, they
adopt the notations MSe and MSf.

Conceptually, these source elements represent power supplies. Considering the bond graph’s
power sign convention, power is transferred from the source to the system when the product
of effort, e(t), and flow, f(t), is positive. Though source elements can consistently maintain
effort or flow, either as a constant or a time function, irrespective of the source’s power dynamics,
real-world devices might not strictly adhere to these model idealizations. Accurate modeling of
such devices might necessitate a combination of both source types along with other bond graph
elements [145, 140].

A.4.4 Reversible transducer elements

In Section A.1, it was mentioned that the multiports could only be connected when the power
variables belong to the same physical domain and same coordinate system, despite the connection
through a power bond, whose product of the power variable has the same units. When connecting
the different physical domains or coordinate systems, it is necessary to establish the constitutive
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relationship between them while keeping the power across them constant [145]. This is achieved
by considering a 2-port element (TP) with the following sign convention:

TP
e1

f1

e2

f2

Figure A.4: 2-port element sign convention.

The 2-port element illustrated in Figure A.4 can be expressed mathematically as function of time
by:

Pwr,1(t) = Pwr,2(t) =⇒ e1(t)f1(t) = e2(t)f2(t). (A.9)

It essentially states that the product of the power variables at 1 is consistently equal to the product
of the power variables at 2 for any given time t. From this relationship, we can introduce a
non-zero constant αr. By multiplying both sides of Equation (A.9) by αr, we obtain:

αre1(t)f1(t) = αre2(t)f2(t). (A.10)

Rearranging Equation (A.10), we can express it as:

e1(t)αrf1(t) = αre2(t)f2(t). (A.11)

From which, we deduce:

e1(t) = αre2(t), (A.12a)

αrf1(t) = f2(t). (A.12b)

The relationship given by Equations (A.12a) and (A.12b) is a multiport called transformer
denoted by TF. When modulated by a signal, it adopts the notation MTF. Alternatively, by
rearranging the terms differently, we infer:

e1(t)αrf1(t) = e2(t)αrf2(t). (A.13)

Leading to the following relationships:

e1(t) = αrf2(t), (A.14a)

αrf1(t) = e2(t). (A.14b)

The relationship given by Equations (A.14a) and (A.14b) is a multiport called gyrator denoted
by GY. When modulated by a signal, it adopts the notation MGY.
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A.4.5 Junction elements

Junction elements serve to interconnect multiports, integrating them into subsystem or
system models within a consistent physical domain and coordinate system. As mentioned by
Karnopp et al. [140], these elements represent one of the most fundamental principles of the
bond graph formalism. Importantly, junction elements neither dissipate nor store power; rather,
they strictly follow the power sign convention as denoted by the half-arrow symbol. Given this,
for n-connected multiports, we can express the power relationship as:

n∑

i=1

ϵiPwr,i(t) = 0 ∀ϵi ∈ {−1,+1}, (A.15)

where ϵi denotes the sign of the power (Pi), determined by the orientation of the half-arrow.
Expanding based on Equation (A.15), we can represent the relationship in terms of the individual
power variables as:

n∑

i=1

ϵiei(t)fi(t) = 0 ∀ϵi ∈ {−1,+1}. (A.16)

From Equation (A.16), we deduce:

n∑

i=1

ϵifi(t) = 0 ∀ϵi ∈ {−1,+1}, (A.17a)

ei = ej ∀i ̸= j. (A.17b)

This set of relationships is termed as 0-junction or zero-junction, symbolized by 0. Alternatively,
reinterpreting Equation (A.16), we can express:

n∑

i=1

ϵiei(t) = 0 ∀ϵi ∈ {−1,+1}, (A.18a)

fi = fj ∀i ̸= j. (A.18b)

This alternative representation is known as 1-junction or one-junction, denoted by 1.
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Appendix B Experimental setup

B.1 Fluid characterization

The viscosity of the oils used in the ESP P100L and P47 were measured using a HAAKE
MARS III rotational rheometer. These measurements were taken across a temperature range
of 10 ◦C to 60 ◦C, with incremental steps of approximately 0.5 ◦C for both oils. For each
temperature point, the oils’ viscosities were determined three times. The results are graphically
represented in Figure B.1, where the viscosity is plotted against temperature.
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Figure B.1: Oil viscosity plotted against temperature, ranging from 10 ◦C to 60 ◦C for the system
with the ESP P100L.

A fourth-order polynomial was fitted to the dataset using the least squares method to char-
acterize the relationship between viscosity and temperature. This relationship is described by
Equation (B.1) for the ESP system with P100L and Equation (B.2) for the ESP system with the
P47.

µ(T ) =
0.000 264 4T 4 − 0.048 64T 3 + 3.436T 2 − 114.3T + 1610

1000
(B.1)

µ(T ) =
0.000 109 6T 4 − 0.020 16T 3 + 1.422T 2 − 47.24T + 669.2

1000
(B.2)
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Figure B.2: Oil viscosity plotted against temperature, ranging from 10 ◦C to 60 ◦C for the system
with the ESP P47.
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Appendix C ESP system parameter estimation
For estimating the system parameters for both pumps, it was followed the procedure described

in Section 4.7.1 on the Equations (5.8a) to (5.8d), the performance of the parameters obtained
for each of these equations are shown in Appendices C.1 to C.4. The steady-state experimental
data employed was obtained from the test matrix described in Section 4.1.6. The geometrical
attributes, such as the pipeline diameter, length, and cross-sectional area, were directly obtained
from the experimental setup.

It is important to mention that, in cases where parameters were adjusted in the context of
two-phase flows, the viscosity was estimated using the effective viscosity model proposed by
Brinkman [69]. The rationale and assumptions for employing this model are elaborated in
Section 5.5.

C.1 ESP pump parameters

To obtain the parameters for the ESP pumps P100L and P47, the intake pressure (PT-102) and
discharge pressure (PT-103) were measured. The viscosity was estimated based on the average
temperature between the pump intake (TT-101) and discharge (TT-102). In the steady-state
condition, the ESP volumetric flow rate (Qp) is equivalent to the upstream volumetric flow
rate measured by FT-101 (Q1). The ESP shaft angular velocity ω is also directly measured by
TE-101.

The model fitting procedure was described in Section 4.7.1. The values of these parameters
are provided in rows 1, 2, 3 and 4 of Table 5.1. The regression plots in Figures C.1 and C.2
compare the measured and estimated values of pressure gain (∆P ) for pumps P100L and P47,
respectively. An identity line (y = x) serves as the reference for ideal model predictions. Two
additional lines, representing error bounds (y = x± ϵ), are included, with ϵ = 4× 104 Pa. Upon
analysis, 95% of the measured data points exhibited an absolute error below 2.25× 104 Pa for
P100L and 3.53× 104 Pa for P47. Furthermore, the coefficients of determination (R2) for the
P100L and P47 pumps are 0.9981 and 0.9987, respectively, indicating a high degree of accuracy
in the model predictions.
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Figure C.1: Regression plot comparing measured and estimated values of pressure gain, ∆P , for
the ESP system with the P100L.
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Figure C.2: Regression plot comparing measured and estimated values of pressure gain, ∆P , for
the ESP system with the P47.

C.2 ESP shaft parameters

To obtain the shaft torque parameters for the ESP pumps P100L and P47, the shaft torque
(τ(t)) was directly measured with TTQ-101. Additionally, the ESP shaft angular velocity ω is
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directly measured by TE-101 as part of the experimental assembly. The viscosity was determined
by calculating the average temperature from the pump intake (TT-101) to the discharge (TT-102).
When in a steady state, the ESP volumetric flow rate (Qp) is equivalent to the upstream volumetric
flow rate measured by FT-101 (Q1).

The procedure for fitting the model was described in Section 4.7.1. The values of these
torque-related parameters are presented in rows 5, 6, 7, 8 and 9 of Table 5.1. The Figures C.3
and C.4 display regression plots comparing the measured and estimated values of shaft torque (τ )
for the P100L and P47 pumps, respectively. An identity line (y = x) is included to serve as the
reference for ideal model predictions. Two additional lines are included. They represent the error
bounds (y = x± ϵ) of ϵ = 3.5Nm. Upon analysis, 95% of the measured data points exhibited
an absolute error below 1.858Nm for P100L and 1.5Nm. The coefficient of determination
(R2) for the P100L and P47 pumps are 0.9957 and 0.9965, respectively, attesting to the model’s
reasonable accuracy.
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Figure C.3: Regression plot comparing measured and estimated values of shaft torque for the
ESP system with the P100L.
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Figure C.4: Regression plot comparing measured and estimated values of shaft torque for the
ESP system with the P47.

C.3 Upstream pipeline parameters

As outlined in Section 4.1.1, the experimental setup was modified following the replacement
of the ESP pump from model P100L to P47. A notable alteration was the integration of a
pressure measurement device at the entrance of the heat exchanger. This difference resulted in a
distinct approach adopted for the P100L and P47 pump models. The approaches are detailed in
Appendices C.3.1 and C.3.2, respectively.

C.3.1 ESP system with P100L

The experimental setup for the P100L permits only the pressure measurement at the ESP
intake (P1) via sensor PT-102. Consequently, individual pressure gain due to the twin-screw
pump remains undetermined. To approximate both the upstream pipeline pressure drop from
the tank to the ESP intake and the twin-screw pump’s pressure gain, a methodology similar to
Appendix C.4 is employed. The pipeline upstream local losses are encapsulated into a single
constant that includes valve and pipeline fittings, while the static pressure due to gravity is
initially considered as hu = 0.5m.

Given Pin = 0Pa due to the tank being open to the atmosphere and measured pressure
P1 from PT-102, constants kbd, kbl, and ku can be estimated through rearrangement of Equa-
tion (5.8c), under the assumption of a steady-state condition. By incorporating the static pressure
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term, the resulting equation is formulated as:

P1 + ff (Q1, µ, Lu, du) = (kbdωt −Q1)kblµ− kuρQ1
2

2Au
2 + ρghu. (C.1)

The term ff (Q1, µ, Lu, du) is readily estimated using models described in Section 3.3, leaving
the right-hand side terms of Equation (C.1) dependent on constants to be estimated.

Due to constraints in temperature control within the experimental setup, a heat exchanger
bypass valve is employed for fine temperature regulation (Figure 4.1). It necessitated individually
distinguishing the equivalent resistance of the upstream pipeline and twin-screw pump parameters.
Such differentiation was feasible due to additional steady-state tests within the dynamic test
matrix (Table 4.7).

The model fitting procedures follow the methodology delineated in Section 4.7.1. Regression
plots comparing the estimated and measured values of P1 are displayed in Figures C.5 and C.6.
An identity line (red line) and error bounds (dashed black lines) are also presented for reference.
Upon analysis, 95% of the considered data points exhibited an absolute error 1.320× 104 Pa and
1.000× 104 Pa for the first and second experimental dynamic investigation, respectively. The
coefficient of determination (R2) were 0.9912 and 0.9975 for the first and second experimental
dynamic investigation, respectively. These metrics indicate a satisfactory model performance.
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Figure C.5: Regression plot comparing estimated and measured values of P1 for the first experi-
mental dynamic investigation.

In the second dynamic experimental investigation, challenges emerged in parameter estima-
tion. A negative value for equivalent resistance (ku) was initially obtained, which would mean
that a resistance element is instead a source element. This behavior is physically implausible.
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Figure C.6: Regression plot comparing estimated and measured values of P1 for the second
experimental dynamic investigation.

Attempts to bound the ku value through constrained least squares fitting led to diminished model
performance in absolute error and R2 values. Also, it resulted in values of approximately zero
for ku. Consequently, a fit that included the static pressure yielded reasonable performance,
as shown in Figure C.6, but yielded surprisingly high hu and ku values, 4.392 × 102m and
6.566 × 102 respectively. While the model fit remains reasonable within the property range
used and is suitable for evaluating the system dynamics, extrapolation should be approached
cautiously. The high hu and ku values indicate potential model overfit, rendering estimations
beyond the property range unreliable.

Lastly, the upstream equivalent resistance ku in Table 5.3 also accounts for losses associated
with manual tuning, elaborated further in Section 5.5.

C.3.2 ESP system with P47

Incorporating the pressure sensor PT-101 at the heat exchanger’s entrance refines the experi-
mental setup for the P47 pump. This setup enables the estimation of pressure gain attributable to
the twin-screw pump and the pressure losses extending from the heat exchanger to the ESP’s
entrance (P1) separately. Therefore, the addition of PT-101 allows for a different approach when
estimating the parameter. Additionally, during the experimental procedure for the P47 the heat
exchanger bypass valve were remained closed to prevent the issues observed in Appendix C.3.1.

For the parameter fitting, the upstream pipeline was divided into two distinct segments: the
first extending from the tank to the heat exchanger’s entrance and the second spanning from the
heat exchanger to the entrance of the ESP’s pump. For the first segment, assumptions similar to



197

those for the tank were applied, as outlined in Appendix C.3.1. Consequently, Equation (C.1)
was slightly modified to:

P0 + ff (Q1, µ, Lu, du) = (kbdωt −Q1)kblµ︸ ︷︷ ︸
Twin-screw pump

−kuρQ1
2

2Au
2 + ρghu, (C.2)

where P0 represents the pressure readings from sensor PT-101. For the segment from the heat
exchanger entrance to the ESP’s pump entrance, Equation (C.2) was adapted to:

P0 − P1 − ff (Q1, µ, Lu, du) =
kuρQ1

2

2Au
2 − ρghu. (C.3)

The model fitting procedures were conducted following the methodology outlined in Sec-
tion 4.7.1. Regression plots, which compare the estimated and measured values of P0 and P1,
are presented in Figure C.7 and Figure C.8. These plots include an identity line (in red) and error
bounds (as dashed black lines) for visual reference.
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Figure C.7: Regression plot comparing estimated and measured values of P0 for the twin-screw
pump segment.

Analysis revealed that 95% of the data points had an absolute error within 1.03 × 105 Pa

for the twin-screw pump segment and 7.302× 103 Pa for the segment from the heat exchanger
to the ESP pump entrance. The coefficient of determination (R2) values were 0.8369 for the
twin-screw pump segment and 0.9960 for the segment from the heat exchanger to the ESP pump
entrance, respectively. These metrics indicate a satisfactory model performance, particularly for
the heat exchanger to ESP pump entrance segment. However, for the twin-screw pump need
some discussion.
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Figure C.8: Regression plot comparing estimated and measured values of P1 for the heat ex-
changer to ESP pump entrance segment.

Challenges in parameter estimation were encountered in the twin-screw pump segment. As
illustrated in Figure C.7, there is notable dispersion in the measurements of P0 (PT-101), as
indicated by the low R2 value and substantial percentage errors, depicted in Figure C.9. This
figure presents a histogram of the absolute percentage error in the P0 estimations, revealing
that approximately 85% of the data points exhibit errors up to 25%. The errors and dispersion
suggests limitations in the twin-screw model’s ability to fully capture the phenomena associated
with the twin-screw pump. This is further evidenced by the estimated values of hu and ku,
1.773× 101m and 4.663× 101 respectively, which are notably high and unrealistic. Nonetheless,
this model is still useful in depicting the general behavior of the twin-screw pump. While these
inaccuracies in the twin-screw pump model may lead to overestimation of the ESP’s intake and
discharge pressures, they are unlikely to significantly impact the system’s overall dynamics. In
practical applications, the twin-screw pump model would be substituted with a more realistic
well model.

Similarly to the Appendix C.3.1 the upstream equivalent resistance ku in Table 5.3 also
accounts for losses associated with manual tuning, elaborated further in Section 5.5.
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Figure C.9: Histogram of absolute percentage errors in P0 for the twin-screw pump model.

C.4 Downstream pipeline parameters

As elaborated in Section 3.3, calculating pressure loss due to viscous friction is straightfor-
ward. However, taking into account the local losses associated with valves and fittings requires
some attention. Although coefficients for these exist, they are predominantly derived for turbulent
flows in Newtonian fluids, limiting their applicability for systems involving emulsions as detailed
in ISA75.01.01 [128] and Sections 3.6 and 4.3.

Given these limitations and in line with the discussed in Section 3.3, where the literature
recommendation is to utilize experimental data when possible, the valve flow coefficient Cv was
obtained experimentally. Then, to estimate the downstream pressure loss, an equivalent Cv was
calculated as a function of the valve aperture a by rearranging Equation (4.8). This yields:

Cv =
Q√
∆Pv
ρ∗

. (C.4)

The function Cv(a) is defined on the closed interval [0, 1], mapping to the real numbers as
Cv : [0, 1] → R. This function characterizes the range of aperture values the valve can assume.
Within this interval, the valve subsystem, discussed in Section 3.6, exhibits neither discontinuities
nor abrupt changes, making it a continuous function. Additionally, Cv(a) is bounded within this
interval, reaching its minimum and maximum values at a = 0 and a = 1, respectively. Given its
continuous and bounded nature, Cv(a) can be accurately approximated by a polynomial function
over the interval [0, 1]. To find the best-fitting polynomial, the Bayesian Information Criterion
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(BIC) was utilized for model selection. The BIC is defined as:

BIC = nv ln

(
1

nv

nv∑

i=1

(
Ci
v − Ĉi

v

)2
)

+ κv ln(nv), (C.5)

where nv is the number of samples, κv is the number of coefficients in the polynomial, Ci
v and

Ĉi
v are the i-th calculated and estimated values of Cv, respectively. The procedure for fitting the

polynomials was described in Section 4.7.1.
As detailed in Section 4.1.1, the experimental setup underwent modifications subsequent to

the replacement of the ESP pump, transitioning from model P100L to P47. A notable change
involved the direct measurement of valve pressure drop. This adjustment directly quantified valve
pressure loss in the P47 scenario and separately from the pipeline contributions. Consequently,
this led to a slightly divergent approach in handling the ESP systems for the P100L and P47
pumps, as elaborated in Appendices C.4.1 and C.4.2.

In both instances, initial efforts to model the entire dataset with a polynomial approach were
unsuccessful. Nonetheless, as discussed in Section 4.3, the relevance of experimentally obtained
Cv values may be confined to specific viscosity and density conditions. Therefore, the valve’s
Cv curve was fitted specifically to its corresponding viscosity range for each scenario.

C.4.1 ESP system with P100L

In the setup involving the P100L model of the ESP, the experimental assembly was limited
to measuring the discharge pressure at PT-103. This constraint prevented the measurement
of the pressure drop across the valve individually. Consequently, the pressure drop across the
valve and pipe fittings was aggregated into a single term. This term also encompasses the static
pressure attributable to gravity. Therefore, in Equation (C.4), ∆Pv = P2 −Q2R

d
f represents a

combination of the pressure measured by PT-103 (P2) and the viscous friction-related pressure
loss, expressed using bond graph notation (Q2R

d
f ).

The polynomial that minimized the BIC was of sixth degree, yielding:

Cv(a) = 86.36a6 +−228.7a5 + 200.3a4 +−66.64a3 + 12.07a2 + 0.9966a+ 0.1194 (C.6)

The fit is shown in Figure C.10. Additionally, Figure C.11 compares the calculated and
estimated Cv values. An identity line and error bounds are included, where the error considered
was of ϵ = 0.15. Upon analysis, 95% of the data points presented an absolute error below
0.065 30. The coefficient of determination R2 was 0.9980, indicating a reasonable accuracy.

Furthermore, the polynomial fit, presented in Figures C.10 and C.11, for Cv was restricted
to experimental points with a viscosity range of 0.1µ < 0.3Pa s. It is pertinent to note that the
dynamic experiments for the P100L, shown in Table 4.7, are in the range of viscosity considered.
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Figure C.10: Valve Cv as a function of the valve aperture a.
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Figure C.11: Regression plot comparing calculated and estimated values of the valve Cv.

C.4.2 ESP System with P47

In the configuration featuring the P47 model of the ESP, the experimental setup was enhanced
to enable the direct measurement of individual valve pressure loss. This capability facilitated the
independent adjustment of valve pressure, followed by the adjustment of downstream pipeline
parameters delineated in Equation (5.8d).

Considering Pout = 0Pa, due to the tank’s exposure to atmospheric pressure, and the mea-
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sured pressure P9 from PT-103, the constant kkd can be deduced by rearranging Equation (5.8d),
assuming steady-state conditions. By incorporating the static pressure term, the resulting equation
is formulated as:

P2 −
ρQ2

2

Cv(a)2 ρ∗
− ff (Q2, µ, Ld, dd)

︸ ︷︷ ︸
Remaining losses (Pr)

=
kdρQ2

2

2Ad
2 + ρghd. (C.7)

The term ff (Q1, µ, Lu, du) is readily estimated using models described in Section 3.3, leaving
the right-hand side terms of Equation (C.7) dependent on constants to be estimated.

Firstly, the valve’s Cv value was fitted with a polynomial that minimized BIC. This optimiza-
tion resulted in a fifth-degree polynomial, expressed as:

Cv(a) = −32.27a5 + 31.29a4 + 18.55a3 +−12.66a2 + 4.716a+−0.060 75. (C.8)

The fit is demonstrated in Figure C.12. Furthermore, Figure C.13 compares the calculated
and estimated Cv values, incorporating an identity line and error bounds with an error margin
of ϵ = 0.15. Analysis revealed that approximately 95% of the data points had an absolute
error below 0.221. The coefficient of determination, R2, was calculated as 0.9978, indicating a
reasonable accuracy.
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Figure C.12: Valve Cv as a function of valve aperture a.

Moreover, the polynomial fitting of Cv, as depicted in Figures C.10 and C.11, was confined
to experimental data within a viscosity range of 0.04µ < 0.09Pa s. This range encompasses the
dynamic experiments for the P47 model, as detailed in Table 4.7.

Subsequently, the pipeline parameters delineated in Equation (C.7) were fitted using the
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Figure C.13: Regression plot comparing calculated and estimated values of valve Cv.

methodology outlined in Section 4.7.1. The Figure C.14 presents the regression plot, comparing
the estimated and measured values of the remaining pressure (Pr), as defined in Equation (C.7).
The plot features an identity line (red line) and error bounds (dashed black lines) for refer-
ence. Analysis revealed that approximately 95% of the data points had an absolute error of
7949.838 400 509 748Pa. The coefficient of determination (R2) was calculated as −3.674, sug-
gesting that the model does not accurately represent the remaining pressure. However, it is
important to note that the magnitude of these errors is relatively small compared to the pump’s
discharge pressure, with most points exhibiting an error below 1%. In the downstream pipeline,
the valve predominantly contributes to the pressure drop, and the impact of this inaccurate model
is limited due to the magnitude of the pressure.
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Figure C.14: Regression plot comparing estimated and measured values of Pr.
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Appendix D Additional PINN results
Across all cases, the training dataset comprises 30 data points and by 100 collocation points.

D.1 State estimation results

Table D.1: Mean absolute percentage error for the simulation case.

P1 P2 Q1 Q2 Qp ω

Case 1 0.136% 0.007% 0.002% 0.004% 0.004% 0.017%
Case 2 0.103% 0.007% 0.012% 0.011% 0.011% 0.039%
Case 3 0.303% 0.007% 0.070% 0.093% 0.090% 2.083%

Table D.2: Mean absolute percentage error for the simulation with added noise case.

P1 P2 Q1 Q2 Qp ω

Case 1 0.256% 0.123% 0.013% 0.014% 0.015% 0.024%
Case 2 0.275% 0.118% 0.019% 0.025% 0.023% 0.102%
Case 3 0.344% 0.120% 0.019% 0.018% 0.020% 0.959%

Table D.3: Mean absolute percentage error for the experimental case.

P1 P2 Q1 ω

Case 1 7.120% 0.263% 0.091% 0.669%
Case 2 7.335% 0.249% 0.186% 1.330%
Case 3 5.651% 0.251% 0.124% 2.182%
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(f) ESP angular velocity.

Figure D.1: Predicted states for the simulated and unknown flow parameters for the second
experiment.
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Figure D.2: Predicted states for the simulated with noise and unknown flow parameters for the
second investigation.
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Figure D.3: Predicted states for the experimental data and unknown flow parameters for the
second investigation.
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D.2 Estimated unknown parameters mean and standard de-
viation

In this section, we present additional PINN results for parameter estimation in the ESP
system model. These results are obtained by averaging parameter estimations over the PINN 30
training runs and computing the standard deviation. The tables Tables D.4 and D.5 contain the
results of the first and second experimental investigations, respectively. It is important to note
that these tables serve as complementary results of the discussed in Section 7.2 and are not the
focus of detailed discussion in this work. They are included for the sake of completeness and
may be of interest to future research works.
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Appendix E Physics loss function for the PINN model
for the ESP system detail

As presented in Section 4.5, the PINN physics loss function for the ESP system is defined as

Lode(θ,Λ,λr) =
∑

s∈Φ
m(λsr)Lodes , Φ = {Qp, ω, Q1, Q2, P1, P2}, (E.1)

where, θ represents the neural network hyperparameters, Λ are the unknown parameters, and λr
are the physics loss self-adaptive weights for each ESP system equation. The function m(·) acts
as a mask and is considered to be a softplus function. Expanding Equation (E.1) for every state,
we get:

LQp = m(λQp
r )

1

N

N∑

i=1

r(Qp)
2 = m(λQp

r )
1

N

N∑

i=1

(
dQp

dt
− (P1 − P2 + k3 µQp)Ap

ρLp

+
Ap (k1p ωQp + k2p ω

2 + k4pQp
2)

Lp

)2

i

,

(E.2a)

Lω = m(λωr )
1

N

N∑

i=1

r(ω)2 = m(λωr )
1

N

N∑
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(
dω
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2 − k2s ρω Qp

Is

−k3s µω − k4s ω − k5s ω
2

Is

)2

i

,

(E.2b)

LQ1 = m(λQ1
r )
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N

N∑
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r(Q1)
2 = m(λQ1

r )
1

N

N∑

i=1

(
dQ1

dt
− (kbdωt −Q1) kbl µ+ Pin − P1

ρLu

−ff (Q1, µ, Lu, du)Q1
2Au

ρLu
− kuQ1

2

2LuAu

)2

i

,

(E.2c)

LQ2 = m(λQ2
r )
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LP1 = m(λP1
r )

1

N

N∑

i=1

r(P1)
2 = m(λP1

r )
1

N

N∑

i=1

(
dP1

dt
− (Q1 −Qp)B

Au Lu

)2

i

, (E.2e)
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where N denotes the collocation point, r(·) represents the residual, and the subscript i indicates
that the state variables are evaluated at t = ti.
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Appendix F PINN training settings
The training algorithm settings employed for each analyzed case are detailed in Tables F.1

to F.3. The training procedure involved multiple steps characterized by specific Adam optimiza-
tion settings. The tables present the number of epochs alongside the learning rates denoted as
NN for the neural network weights, PS for the ESP model’s unknown parameters, and SA for
the self-adaptive weights. The maximum number of epochs employing self-adaptive weights
for each step is also indicated as Max. SA. It is important to note that the training process is
continuous.

In the Case 1 settings, described in Table F.1, the same training procedure was applied to the
simulated and simulated-with-noise (Sim. noisy) data scenarios. However, it was necessary to
adapt it to suit the experimental data scenario. Importantly, the settings were maintained across
the investigations.

Table F.1: Adam training settings for neural network training in Case 1 (three unknown parame-
ters).

Scenario Adam

Epoch (#) NN PS SA Max. SA

Simulated
Sim. noisy

0 to 32k 1.0E−3 1.0E−3 8.0E−4 12k
32k to 38k 2.0E−5 1.0E−4 1.0E−6 12k
38k to 60k 1.0E−5 1.0E−6 1.0E−5 12k

Experimental
0 to 32k 1.0E−3 5.0E−3 5.0E−4 32k
32k to 38k 2.0E−5 1.0E−4 1.0E−6 38k
38k to 60k 1.0E−5 1.0E−6 1.0E−5 60k

In the Case 2 settings, described in Table F.2, it was employed a consistent training process
for both the simulated data and the simulated with noise data (Sim. noisy). However, adjustments
were necessary for the experimental data. In the initial step of each scenario, it was employed a
linear learning rate schedule for both the neural network weights (NN) and the unknown ESP
parameters (PS). For the learning rate of the neural network weights, denoted as χNN , it was
initiated at 1.0× 10−3 and linearly transitioned to 1.0× 10−4 between epochs 4000 and 6000.
Similarly, for the learning rate of the unknown ESP parameters, denoted as χPS , it was started at
1.0× 10−3 and transitioned to 1.0× 10−4 between epochs 4000 and 8000.

In the Case 3 settings, described in Table F.3, the same training approach was used for both
the simulated and simulated-with-noise (Sim. noisy) data scenarios. However, it was required to
adjust the training settings for the experimental data scenario. It is worth noting that the training
settings were kept consistent throughout our experimental investigations.
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Table F.2: Adam training settings for neural network training in Case 2 (seven unknown parame-
ters).

Scenario Adam

Epoch (#) NN PS SA Max. SA

Simulated
Sim. noisy

0 to 52k χNN χPS 5.0E−3 24k
52k to 63k 2.0E−5 1.0E−4 1.0E−6 24k
63k to 83k 1.0E−5 1.0E−6 1.0E−5 24k

Experimental
0 to 48k χNN χPS 5.0E−3 8k
48k to 59k 2.0E−5 1.0E−4 1.0E−6 8k
59k to 79k 1.0E−5 1.0E−6 1.0E−5 8k

Table F.3: Adam training settings for neural network training in Case 3 (eight unknown parame-
ters).

Scenario Adam

Epoch (#) NN PS SA Max. SA

Simulated
Sim. noisy

0 to 44k 5.0E−4 1.0E−2 1.0E−3 16k
44k to 70k 5.0E−4 5.0E−4 5.0E−4 16k
70k to 80k 2.0E−5 1.0E−5 2.0E−5 16k
80k to 90k 1.0E−5 1.0E−6 1.0E−5 16k

Experimental

0 to 16k 5.0E−4 2.0E−3 1.0E−3 6k
16k to 36.3k 5.0E−4 5.0E−4 5.0E−4 6k
36300 to 41k 5.0E−4 5.0E−4 5.0E−4 6k
41k to 51k 2.0E−5 1.0E−5 2.0E−5 6k
51k to 61k 1.0E−5 1.0E−6 1.0E−5 6k

The initial self-adaptive weight values significantly impacted the experimental data scenario
of Case 2 and all scenarios in Case 3. These cases were more challenging due to their higher
number of unknown parameters, noisy data, and model uncertainties. Although the self-adaptive
weights could adapt and achieve satisfactory state and parameter estimation results, they needed
further adjustment of the initial weights to improve performance and accuracy in these scenarios.
The initial weights are shown in Table F.4.

The Table F.4 presents the initial weights for data, physics, and initial conditions losses for
the cases and scenarios evaluated in this work. The Qp, ω, Q1, Q2, P1, and P2 represent initial
weights for the state corresponding ODE. The “Data” column is the initial weight for data loss,
and the “I.C.” column is the initial condition weights. The “Sim.” case is for the simulated and
simulated with noise scenarios, and “Exp.” is for the experimental data scenario.
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Table F.4: Initial weights for the data, physics, and initial conditions (I.C.) losses.

Case Data Physics I.C.

Qp ω Q1 Q2 P1 P2

Case 1: Sim. 4.00E2 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0
Case 1: Exp. 1.0E1 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0
Case 2: Sim. 1.0E1 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0E−6 1.0
Case 2: Exp. 1.0E−4 1.0E−6 1.0E−6 1.0E−4 1.0E−4 1.0E−6 1.0E−6 1.0
Case 3: Sim. 1.0E1 1.0E−6 1.0E−6 1.0E−4 1.0E−4 1.0E−6 1.0E−6 1.0
Case 3: Exp. 1.0E1 1.0E−6 1.0E−6 1.0E−4 1.0E−4 1.0E−6 1.0E−6 1.0
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