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You can avoid reality, but you cannot avoid 

the consequences of avoiding reality.  

 – Ayn Rand 
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Resumo 

A análise em larga escala de proteínas tem avançado significativamente a nossa 

compreensão sobre fenômenos naturais, da busca por biomarcadores à descoberta de 

novos mecanismos biológicos. Neste contexto, a proteômica baseada em espectrometria 

de massas se destaca como a principal abordagem para análise quantitativa de proteínas 

em sistemas biológicos. Embora apresente uma vantagem intrínseca na geração de 

informação, analisar essa extensa quantidade de dados implica diversos desafios que 

demandam grande investimento de tempo,  como realizar análises de proteômica 

diferencial, análises de enriquecimento, busca por interação proteína-proteína, 

integração de resultados independentes, e outras aplicações. Nesta tese, apresentamos 

o OmicScope, um pacote desenvolvido para as análises de dados que sucedem os 

processos de identificação e quantificação de proteínas. O OmicScope é dividido em três 

componentes principais que realizam, respectivamente, proteômica diferencial, análise 

de enriquecimento e meta-análise. Cada módulo oferece seu próprio conjunto de 

funções, que incluem a geração de figuras e de redes, permitindo a análise dos dados a 

nível de sistemas. Além de sua distribuição como pacote Python, o OmicScope também 

pode ser acessado como um aplicativo web através do endereço 

https://omicscope.ib.unicamp.br/. Para demonstrar as melhorias trazidas pelo 

OmicScope ao nosso laboratório, dois artigos originais desenvolvidos pelo nosso grupo 

foram incluídos nessa tese, exemplificando os avanços no nosso fluxo de análise de 

dados e a apresentação dos resultados, tanto antes quanto durante o desenvolvimento 

da ferramenta.  

https://omicscope.ib.unicamp.br/


 
 

 
 
Abstract 

The large-scale analysis of proteins has significantly advanced our 

understanding of biological phenomena, ranging from the search for biomarkers to 

discovery of new biochemical mechanisms. In this context, mass-spectrometry-based 

proteomics stands out as the primary approach for quantitatively analyzing proteins in 

biological systems. Despite its intrinsic advantage in generating data, analyzing this 

data presents challenges, such as the expressive investment of time to carry out 

differential proteomics and enrichment analysis, exploring protein-protein interactions, 

integrating data with independent results, and other applications. This thesis introduces 

OmicScope, a package developed for downstream data analysis following the protein 

identification and quantitation process. OmicScope is divided into three major 

components to perform, respectively, differential proteomics, enrichment analysis, and 

meta-analysis. Each mode offers a range of functions, including the generation of 

publication quality figures and networks, facilitating systems-level data analysis. In 

addition to its distribution as a Python package, OmicScope is also available as a web 

app at https://omicscope.ib.unicamp.br/. To showcase the enhancements brought by 

OmicScope to our laboratory, two original articles developed by our group are included, 

exemplifying the advancements in our data analysis pipeline and the presentation of 

results both before and during the tool's development.  

https://omicscope.ib.unicamp.br/
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1 GENERAL INTRODUCTION 

1.1 INTRODUCTION TO MS-BASED PROTEOMICS 

The term "proteome" was coined by Marc Wilkins to describe the "total 

complement of proteins that can be encoded by a given genome”1. While the term was 

introduced in 1995, the large-scale analysis of proteins dates back decades to the use of 

two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 2 . This technique 

involves loading a complex protein mixture into a gel, allowing the separation of 

individual proteins based on their isoelectric point and molecular weight. Experimental 

outcomes comprise images of gels potentially containing thousands of spots, each one 

theoretically corresponding to a single protein. However, despite its utility, 2D-PAGE 

has limitations, including low reproducibility between gel replicates and experiments, 

as well as the inability to directly identify proteins within each spot3. The last limitation 

was addressed later by integrating 2D-PAGE with advanced technologies like Matrix-

Assisted Laser Desorption Ionization (MALDI) 4  and Electrospray Ionization (ESI) 5 , 

enabling the ionization of large molecules for subsequent analysis via Mass 

Spectrometry (MS). The introduction of MS into protein analysis has revolutionized our 

understanding about the proteome. Coupled with technological advancements and 

computational tools, this technique has enabled the large-scale identification of proteins 

in paths previously unexplored. 

Presently, MS-based proteomics has evolved beyond the necessity for the 2D-

PAGE technique, enabling in-depth proteome characterization and offering researchers 

versatility in addressing diverse inquiries. This technique facilitates large-scale 

 
1  Valerie C. Wasinger et al., “Progress with Gene-Product Mapping of the Mollicutes: Mycoplasma 
Genitalium,” ELECTROPHORESIS 16, no. 1 (1995): 1090–94, https://doi.org/10.1002/elps.11501601185. 
2 Patricia Kahn, “From Genome to Proteome: Looking at a Cell’s Proteins,” Science 270, no. 5235 (October 
20, 1995): 369–70, https://doi.org/10.1126/science.270.5235.369. 
3 Shao-En Ong and Matthias Mann, “Mass Spectrometry–Based Proteomics Turns Quantitative,” Nature 
Chemical Biology 1, no. 5 (October 2005): 252–62, https://doi.org/10.1038/nchembio736. 
4 Koichi Tanaka et al., “Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-
Flight Mass Spectrometry,” Rapid Communications in Mass Spectrometry 2, no. 8 (1988): 151–53, 
https://doi.org/10.1002/rcm.1290020802. 
5 John B. Fenn et al., “Electrospray Ionization for Mass Spectrometry of Large Biomolecules,” Science 246, 
no. 4926 (October 6, 1989): 64–71, https://doi.org/10.1126/science.2675315. 
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exploration of protein-protein interactions 6 , protein structures 7 , post-translational 

modifications (PTMs)8 , drug-protein interactions9 , protein stability10 , and more. In 

proteomics, these applications are achieved through two primary approaches: top-down 

and bottom-up proteomics11. 

In top-down approach, proteins are analyzed under native conditions, 

providing valuable insights into PTMs and proteoforms. However, studying intact 

proteins introduces some technical challenges, elevated costs, limitations in proteome 

depth, and complexities in spectra data analysis12. In contrast, bottom-up proteomics 

infers protein information through peptide analysis (Figure 1). Peptides, being more 

easily fractionated, ionized, and fragmented, enhance sensitivity and the proteome 

coverage. For these reasons, bottom-up approach is established as the predominant 

pipeline for protein large-scale analysis. 

Briefly, the backbone of the bottom-up approach involves13 : 1) extracting 

proteins from the target biological system (e.g., plasma, cell extract, tissue), 2) enzymatic 

digestion of proteins, 3) analyzing peptides using Liquid Chromatography coupled to 

MS (LC-MS), 4) identifying and quantifying proteins, and 5) conducting differential 

proteomics analysis. Additionally, enrichment analysis is commonly integrated as a 

sixth step in most biological investigations. Despite each step in the workflow being 

essential to guarantee high quality results, LC-MS analysis plays a central role as it 

yields the raw results. 

 
6 Fan Liu et al., “The Interactome of Intact Mitochondria by Cross-Linking Mass Spectrometry Provides 
Evidence for Coexisting Respiratory Supercomplexes,” Molecular & Cellular Proteomics : MCP 17, no. 2 
(February 2018): 216–32, https://doi.org/10.1074/mcp.RA117.000470. 
7  Aline M. Santos et al., “FERM Domain Interaction with Myosin Negatively Regulates FAK in 
Cardiomyocyte Hypertrophy,” Nature Chemical Biology 8, no. 1 (January 2012): 102–10, 
https://doi.org/10.1038/nchembio.717. 
8  Elise J. Needham et al., “Personalized Phosphoproteomics Identifies Functional Signaling,” Nature 
Biotechnology 40, no. 4 (April 2022): 576–84, https://doi.org/10.1038/s41587-021-01099-9. 
9  Severin Lechner et al., “Chemoproteomic Target Deconvolution Reveals Histone Deacetylases as 
Targets of (R)-Lipoic Acid,” Nature Communications 14, no. 1 (June 15, 2023): 3548, 
https://doi.org/10.1038/s41467-023-39151-8. 
10  Mikhail M. Savitski et al., “Tracking Cancer Drugs in Living Cells by Thermal Profiling of the 
Proteome,” Science 346, no. 6205 (October 3, 2014): 1255784, https://doi.org/10.1126/science.1255784. 
11 Yaoyang Zhang et al., “Protein Analysis by Shotgun/Bottom-up Proteomics,” Chemical Reviews 113, 

no. 4 (April 10, 2013): 2343–94, https://doi.org/10.1021/cr3003533. 
12 Zhang et al.; Timothy K. Toby et al., “A Comprehensive Pipeline for Translational Top-down Proteomics 

from a Single Blood Draw,” Nature Protocols 14, no. 1 (January 2019): 119–52, 

https://doi.org/10.1038/s41596-018-0085-7. 
13 Steven R. Shuken, “An Introduction to Mass Spectrometry-Based Proteomics,” Journal of Proteome 
Research 22, no. 7 (July 7, 2023): 2151–71, https://doi.org/10.1021/acs.jproteome.2c00838. 
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Figure 1-1 General bottom-up proteomics pipeline. The proteomics pipeline initiates with the protein 
extraction process, followed by protein digestion and peptide analysis using LC-MS platforms. The 
computational step involves conducting protein identification and quantitation. Subsequent analyses 
encompass differential proteomics to identify differentially regulated proteins, and, when applied, 
enrichment analysis.  

Due to the elevated sample complexity in proteomics research14, MS setups 

commonly incorporate nano Ultra High-Performance Liquid Chromatography (UPLC) 

for the prior separation of peptides via reversed-phase chromatography (RP-LC). This 

setup decreases sample complexity, avoiding ion suppression and increasing technical 

sensitivity15. The peptides loaded onto the UPLC are subsequently analyzed in the MS 

equipment, which comprises three main components: the ion source, mass analyzer(s), 

and detector. In the first component, often the ESI source, molecules are ionized and 

transitioned to gaseous state, enabling the ion flighting and subsequent analysis on 

mass analyzers. Mass analyzers work discriminating ions according to their mass-to-

charge ratios, thereby determining the advantages and limitations of MS equipment. In 

 
14 Shuken. 
15  Matthias Wilm and Matthias Mann, “Analytical Properties of the Nanoelectrospray Ion Source,” 
Analytical Chemistry 68, no. 1 (January 1, 1996): 1–8, https://doi.org/10.1021/ac9509519; Yangyang Bian 
et al., “Robust, Reproducible and Quantitative Analysis of Thousands of Proteomes by Micro-Flow LC–
MS/MS,” Nature Communications 11, no. 1 (January 9, 2020): 157, https://doi.org/10.1038/s41467-019-
13973-x. 
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large-scale proteomics applications, MS systems typically incorporate a quadrupole (Q) 

followed by a collision chamber and a high-resolution mass analyzer, such as time-of-

flight (TOF) or Orbitrap. Additionally, modern MS configurations, known as tribrids, 

feature three mass analyzers, such as Q-LTQ-Orbitrap or Q-Orbitrap-TOF 16 . This 

modular nature of MS provides a highly versatile tool for conducting proteomics 

experiments, enabling the equipment to acquire mass spectra using diverse acquisition 

modes. 

In large-scale proteomics, acquisition modes segregate into two categories: 

Data-Dependent Acquisition (DDA) and Data-Independent Acquisition (DIA) (Figure 

2). Data-Dependent Acquisition allows the direct association between precursors and 

their transitions by initially acquiring precursor ions mass spectrum (MS, full scan), 

followed by the selection of specific precursors for fragmentation, and subsequent 

transition ions acquisition (MS/MS or tandem-MS)17. On the other hand, DIA is a class 

of several MS/MS experiments that do not require the selection of particular precursor 

ions but rather simultaneous fragmentation of multiple precursors18. Classical examples 

within this category include SWATH19, where precursor ions are selected based on a 

window mass range, and MSE20, which alternates between low and high energy without 

utilizing any window cutoff. In addition to inherent differences related to 

manufacturers, data generated by DIA and DDA exhibit marked dissimilarities 

concerning precursor and transition assignments, requiring the utilization of distinct 

computational tools for subsequent peptide and protein identification.  

 
16 Hamish I. Stewart et al., “Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-
Throughput Quantitative Analysis,” Analytical Chemistry 95, no. 42 (October 24, 2023): 15656–64, 
https://doi.org/10.1021/acs.analchem.3c02856. 
17 Reta Birhanu Kitata, Jhih-Ci Yang, and Yu-Ju Chen, “Advances in Data-Independent Acquisition Mass 
Spectrometry towards Comprehensive Digital Proteome Landscape,” Mass Spectrometry Reviews 42, no. 6 
(2023): 2324–48, https://doi.org/10.1002/mas.21781. 
18 John D. Venable et al., “Automated Approach for Quantitative Analysis of Complex Peptide Mixtures 

from Tandem Mass Spectra,” Nature Methods 1, no. 1 (October 2004): 39–45, 

https://doi.org/10.1038/nmeth705; Kitata, Yang, and Chen, “Advances in Data-Independent Acquisition 

Mass Spectrometry towards Comprehensive Digital Proteome Landscape.” 
19  Ludovic C. Gillet et al., “Targeted Data Extraction of the MS/MS Spectra Generated by Data-
Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis,” Molecular & 
Cellular Proteomics : MCP 11, no. 6 (June 2012): O111.016717, https://doi.org/10.1074/mcp.O111.016717. 
20 Jeffrey C. Silva et al., “Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs,” 
Analytical Chemistry 77, no. 7 (April 1, 2005): 2187–2200, https://doi.org/10.1021/ac048455k. 
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Figure 1-2 Acquisition methods in proteomics. Data-dependent acquisition (DDA) involves an initial full 
scan to determine precursor ions and their intensities, followed by the selection and fragmentation of the 
most intense precursors. Data-independent acquisition encompasses various MS/MS experiments 
without prior selection of precursors. Examples include SWATH and MSE, which select based on a mass 
window and alternate between low and high energies, respectively.  

In bottom-up proteomics, mass spectra stem from peptides obtained through 

sample digestion, allowing this approach to infer the presence of proteins in a sample 

via peptide identification. To carry out peptide assignment, the search engine requires 

a proteome database containing protein sequences from the target organisms in a 

FASTA format. This reference proteome undergoes in silico digestion considering 

experimental conditions, such as the use of trypsin and reducing reagents. Trypsin 

cleaves proteins at arginine (R) and lysine (K) residues, leading search engines to 

calculate precursor monoisotopic mass. Considering fragments potentially generated in 

collision chamber, such as –y and –b fragments for Collision Induced Dissociation (CID) 

experiments, search engines also generate theoretical mass spectra based on peptide 

sequence. Then, computational tools match theoretical and experimental mass spectra 

result and generate a peptide spectral match (PSM) associated with a similarity score 

(Figure 3). 

Since score varies according to run and search engine, quality control and 

statistical analysis for peptide identification often rely on the target-decoy approach21. 

This method involves reversing or scrambling protein sequences, creating nonexistent 

sequences (decoy sequences) that are also searched against experimental mass spectra. 

 
21 Joshua E. Elias and Steven P. Gygi, “Target-Decoy Search Strategy for Increased Confidence in Large-
Scale Protein Identifications by Mass Spectrometry,” Nature Methods 4, no. 3 (March 2007): 207–14, 
https://doi.org/10.1038/nmeth1019. 
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The distribution of PSM scores from both target and decoy sequences helps estimate 

and filter peptides based on false discovery rates. 

 
Figure 1-3 General search engine workflow. Comparable to experimental procedures, search engines 
conduct in silico digestions of FASTA files, considering protease cleavage sites along with potential 
variable and fixed modifications. Utilizing CID-derived peptide fragmentats, these computational tools 
generate theoretical spectra to compare against experimental data, yielding a confident score assessing 
the spectral match.  

Although this workflow is widely adopted among proteomics search engines, 

each tool employs distinct methods to match theoretical and experimental spectra, 

calculate scores, implement thresholds, and report results. These differences become 

more pronounced when considering that some software performing protein 

identification is also capable of quantitative proteomics. 

In quantitative proteomics, the goal is to extract quantitative data on peptides 

in a sample, thereby inferring protein abundance. Despite this information being 

independent from protein identification process, the quantitative values are also derived 

from the same LC-MS raw data. Intra-sample protein quantitation can be accessed using 

normalized spectral abundance factor (NSAF), which considers the spectral counts and 

protein lengths to measure relative protein amounts 22 . While comparing multiple 

samples, protein quantitation becomes more laborious and involves several methods, 

 
22  Boris Zybailov et al., “Statistical Analysis of Membrane Proteome Expression Changes in 
Saccharomyces c Erevisiae,” Journal of Proteome Research 5, no. 9 (September 1, 2006): 2339–47, 
https://doi.org/10.1021/pr060161n. 
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categorized into four main classes: metabolic labeling, stable isotope labeling, internal 

standards, and label-free approaches (Figure 4). While each method has its strengths 

and weaknesses (extensively reviewed in 23 and 24), label-free proteomics has prevailed 

due to cost-effectiveness and broad dynamic range. In label-free quantitation (LFQ), a 

primary approach involves assuming a peptide quantity is proportional to the area of 

respective precursor extracted ion chromatogram (XIC), enabling peptide quantitation 

across multiple samples. Post XIC measurements, quantitative proteomics tools 

normalize data for inter-sample comparison, commonly using total ion current as 

normalization factor. Regarding protein quantitation, software tools vary in protein 

normalization methods, handling missing values, and performance, which profoundly 

impact downstream analysis25. 

 
Figure 1-4 General categories of quantitative proteomics workflows. Each class possesses distinct strengths 
and limitations, particularly concerning cost-effectiveness, quantitative variation, and protein dynamic 

 
23 Marcus Bantscheff et al., “Quantitative Chemical Proteomics Reveals Mechanisms of Action of Clinical 
ABL Kinase Inhibitors,” Nature Biotechnology 25, no. 9 (September 2007): 1035–44, 
https://doi.org/10.1038/nbt1328. 
24 Marcus Bantscheff et al., “Quantitative Mass Spectrometry in Proteomics: Critical Review Update from 
2007 to the Present,” Analytical and Bioanalytical Chemistry 404, no. 4 (September 1, 2012): 939–65, 
https://doi.org/10.1007/s00216-012-6203-4. 
25 Tommi Välikangas, Tomi Suomi, and Laura L Elo, “A Comprehensive Evaluation of Popular Proteomics 
Software Workflows for Label-Free Proteome Quantification and Imputation,” Briefings in Bioinformatics 
19, no. 6 (November 27, 2018): 1344–55, https://doi.org/10.1093/bib/bbx054. 
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range. Red and green boxes denote experimental conditions, while horizontal lines indicate sample 
combination points and steps contributing to experimental variation (dashed lines). Adapted from 26. 

As previously mentioned, proteomics offers multiple software options for both 

protein identification and quantitation from MS-raw data. Since DDA method is the 

most used approach, several computational tools are designed to process DDA-derived 

raw data, such as MaxQuant27 and PatternLabV28. On the other hand, DIA experiments 

utilize a different set of tools, like DIA-NN29 and Progenesis Qi for Proteomics (Waters 

Co), to process chimerical MS2 spectra for identification and quantitation. Due to this 

diversity of tools, establishing a straightforward bioinformatics protocol for 

downstream proteomics analysis, such as differential proteomics, becomes challenging. 

1.2 DIFFERENTIAL PROTEOMICS ANALYSIS 

In genomics and transcriptomics, researchers conduct differential expression 

analysis to compare different groups and identify distinct gene patterns between 

populations. Considering definition and experimental approaches, in proteomics, the 

workflow focuses not on evaluating changes in expression patterns but rather on 

differences in protein abundance across multiple groups. Protein abundance can be 

regulated by several processes and may not always correlate directly with the 

expression of a specific gene30. Therefore, the term used to assess changes across groups 

when working with proteins is "differential proteomics analysis".  

The differential proteomics workflow encompasses a series of computational 

steps designed to comparing protein abundance in a large scale manner, employing 

quantitative parameters to distinguish groups. This pipeline has evolved in parallel with 

 
26 Bantscheff et al., “Quantitative Mass Spectrometry in Proteomics.” 
27 Jürgen Cox and Matthias Mann, “MaxQuant Enables High Peptide Identification Rates, Individualized 
p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification,” Nature Biotechnology 26, no. 
12 (December 2008): 1367–72, https://doi.org/10.1038/nbt.1511; Stefka Tyanova, Tikira Temu, and Juergen 
Cox, “The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics,” Nature 
Protocols 11, no. 12 (December 2016): 2301–19, https://doi.org/10.1038/nprot.2016.136. 
28  Marlon D. M. Santos et al., “Simple, Efficient and Thorough Shotgun Proteomic Analysis with 
PatternLab V,” Nature Protocols 17, no. 7 (July 2022): 1553–78, https://doi.org/10.1038/s41596-022-00690-
x. 
29 Vadim Demichev et al., “DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome 
Coverage in High Throughput,” Nature Methods 17, no. 1 (January 2020): 41–44, 
https://doi.org/10.1038/s41592-019-0638-x. 
30  Fredrik Edfors et al., “Gene‐specific Correlation of RNA and Protein Levels in Human Cells and 
Tissues,” Molecular Systems Biology 12, no. 10 (October 2016): 883, https://doi.org/10.15252/msb.20167144; 
Yansheng Liu, Andreas Beyer, and Ruedi Aebersold, “On the Dependency of Cellular Protein Levels on 
mRNA Abundance,” Cell 165, no. 3 (April 21, 2016): 535–50, https://doi.org/10.1016/j.cell.2016.03.014. 
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other computational proteomics strategies, enabling the exploration of biomarkers and 

biological mechanisms within increasingly diverse and complex proteomes 31 . 

Consequently, its exploratory nature should encompass a range of biological inquiries, 

considering both the technical and biological variables inherent in experimental 

designs. 

In differential proteomics, statistical analysis forms the core, involving the 

management of technical and biological replicates, data filtering, normalization, and 

application of suitable statistical tests32. While each step is crucial for ensuring the most 

reliable and confident outcomes, selecting the right statistical test poses a challenge. 

This challenge is particularly complex due to various factors associated with 

experimental design, including variable dependencies, the number of groups being 

compared, and the necessity for multiple hypothesis correction. 

Proteomics studies typically employ a static experimental design, aiming to 

uncover molecular signatures for disease stratification or identify biological 

mechanisms related to diseases or treatments (Figure 5). This experimental design 

assumes independence between variables, meaning each group features distinct 

characteristics unrelated to protein levels in other groups33. As protein abundance is 

frequently log-transformed to approximate a normal distribution in the data, 

comparisons between two groups can be performed using an independent t-test. For 

studies involving more than two groups, under similar principles of independence, 

Analysis of Variance (ANOVA) is employed to assess differentially regulated proteins 

(DRPs) among these groups. Both the t-test and ANOVA assume data with a normal 

distribution and equal variances, being statistical tests suitable for comparing groups 

with at least three replicates34. 

 
31 Ruedi Aebersold and Matthias Mann, “Mass-Spectrometric Exploration of Proteome Structure and 
Function,” Nature 537, no. 7620 (September 2016): 347–55, https://doi.org/10.1038/nature19949. 
32 Bantscheff et al., “Quantitative Mass Spectrometry in Proteomics.” 
33 Bantscheff et al.; Bantscheff et al., “Quantitative Chemical Proteomics Reveals Mechanisms of Action 
of Clinical ABL Kinase Inhibitors.” 
34 Bantscheff et al., “Quantitative Mass Spectrometry in Proteomics”; Bantscheff et al., “Quantitative 
Chemical Proteomics Reveals Mechanisms of Action of Clinical ABL Kinase Inhibitors.” 
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Figure 1-5 Static experimental design. In the LFQ approach, computational tools analyze the extracted ion 
chromatograms (XIC) from individual peptides to assess protein abundance and compare various groups. 
Within static experimental designs, protein levels across groups remain independent, enabling statistical 
analyses such as t-tests or ANOVA to distinguish between groups. Subsequently, multiple hypothesis 
corrections and filtering are employed to identify differentially regulated proteins.  

In addition to the static experimental designs, the incorporation of time as a 

variable in longitudinal analysis significantly broadens the spectrum of inquiries and 

challenges (Figure 6). In time-course experiments, it is possible to evaluate the 

progression of a disease over time, the variation of protein abundance between different 

treatments, or take into account data sampling details – such as the independence of 

samples or time ranges in data sampling. While seeking differentially regulated 

proteins, one approach involves predefining thresholds and counting instances where 

protein levels surpass specific fold-change cutoffs35. Critically, this ad hoc methodology 

relies on arbitrary thresholds and assumes uniform turnover processes for all proteins, 

which inherently limits its applicability36. Alternatively, specialized statistical methods 

tailored for this analysis have emerged, integrating automated workflows and 

considering protein abundance for longitudinal proteomics analysis. Storey (2005) 

proposed a method initially developed for microarrays and embedded in the EDGE R 

 
35 Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon, “Studying and Modelling Dynamic Biological 
Processes Using Time-Series Gene Expression Data,” Nature Reviews Genetics 13, no. 8 (August 2012): 
552–64, https://doi.org/10.1038/nrg3244. 
36 Bar-Joseph, Gitter, and Simon. 
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package, assuming gene expressions vary over time according to a natural cubic 

spline 37 . This approach fits null and full models—no differential expression and 

differential expression, respectively—employing an F-test to compute p-values. Storey's 

methodology accommodates many longitudinal experimental features, spanning 

multiple range sampling, related or independent sampling, and comparisons within or 

between groups (Figure 6). Although initially devised for microarrays, researchers have 

applied Storey's approach to evaluate protein abundance in longitudinal proteomics 

studies, showcasing its adaptability across different experimental contexts38.  

 

 

 

Figure 1-6 Longitudinal experimental design. Incorporating time into experimental designs allows various 
inquiries, including comparisons within or between groups and considering related or independent data 

 
37 John D. Storey et al., “Significance Analysis of Time Course Microarray Experiments,” Proceedings of 
the National Academy of Sciences 102, no. 36 (September 6, 2005): 12837–42, 
https://doi.org/10.1073/pnas.0504609102. 
38 Nils Kurzawa et al., “A Computational Method for Detection of Ligand-Binding Proteins from Dose 
Range Thermal Proteome Profiles,” Nature Communications 11, no. 1 (November 13, 2020): 5783, 
https://doi.org/10.1038/s41467-020-19529-8; Brian C. Searle et al., “Chromatogram Libraries Improve 
Peptide Detection and Quantification by Data Independent Acquisition Mass Spectrometry,” Nature 
Communications 9, no. 1 (December 3, 2018): 5128, https://doi.org/10.1038/s41467-018-07454-w. 
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sampling. In Storey methodology39, protein levels exhibit variation based on a spline, and differentially 
regulated proteins (DRPs) are identified by comparing full (DRPs) or null (not DRPs) models. 

After executing both static and longitudinal pipelines, the tools generate 

nominal p-values for each protein, indicating the likelihood of observing DRPs by 

random chance. Given the simultaneous evaluation of thousand proteins, multiple 

hypothesis testing increases the risk of identifying false positives, requiring additional 

steps to mitigate false discoveries. In this context, the widely adopted approach in 

differential expression and proteomics analyses is the Benjamini-Hochberg correction 

for controlling false discovery rates  (FDR)40. This correction involves sorting, ranking, 

and recalculating p-values, assigning critical values based on pre-specified FDR41. The 

resulting adjusted p-values, also referred to as p-adjusted, identify DRPs, providing a 

more reliable discrimination between the studied groups. 

In quantitative proteomics, alongside statistical analysis, a crucial aspect 

involves measuring how much a condition alters protein abundance relative to others. 

A common method is averaging individual protein abundances across analyzed 

conditions and calculating ratios, termed fold change, between experimental groups 

versus control groups42. The fold change also serves as an additional filter to enhance 

bolster confidence in defining DRPs. However, this approach assumes uniform 

variances across all proteins, which may not hold true and potentially leads to the loss 

of valuable information. Noteworthy, within 'omics approaches, log2-transformation of 

fold-change values finds widespread application 43 , aiding data interpretation and 

visualization by normalizing the alterations between conditions. 

While performing differential proteomics analysis, a variety of computational 

tools are available, offering distinct strengths and limitations. The first category 

encompasses tools like PatternLab V and Progenesis QI for Proteomics, combining 

search engines with differential proteomics capabilities, providing comprehensive 

platforms within a unified environment. Despite their rich feature sets, these tools may 

 
39 Storey et al., “Significance Analysis of Time Course Microarray Experiments.” 
40 Yoav Benjamini and Yosef Hochberg, “Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing,” Journal of the Royal Statistical Society. Series B (Methodological) 57, no. 1 
(1995): 289–300. 
41 Benjamini and Hochberg. 
42 Bantscheff et al., “Quantitative Chemical Proteomics Reveals Mechanisms of Action of Clinical ABL 
Kinase Inhibitors.” 
43 Lily Ting et al., “Normalization and Statistical Analysis of Quantitative Proteomics Data Generated by 
Metabolic Labeling,” Molecular & Cellular Proteomics : MCP 8, no. 10 (October 2009): 2227–42, 
https://doi.org/10.1074/mcp.M800462-MCP200. 



General Introduction  30 
 
 

 

lack extensive visualization functions or dedicated statistical workflows to effectively 

address experimental questions. The second category includes tools like Perseus44 and 

AlphaPeptStats45, downstream to search engines and suited specifically for differential 

proteomics analysis. While these tools often offer enhanced visualization and statistical 

analysis features, their applicability might be constrained to a limited set of accepted 

software inputs, often built around templates like MaxQuant. Lastly, the third category 

comprises R packages and Python libraries, enabling a comprehensive proteomics 

analysis via command line or notebooks. However, these tools demand a steep learning 

curve in programming skills, posing a time-consuming challenge and an initial barrier 

for users seeking to conduct thorough statistical analyses in proteomics.  

After delineating DRPs, researchers encounter a vast list, often comprising 

hundreds or thousands of proteins affected in a biological condition. To further 

characterize these proteins based on the study's objectives, various approaches come 

into play. These include selecting potential biomarker candidates, unraveling co-

regulated proteins via clustering algorithms, exploring protein-protein interactions, and 

comprehending the collective impact of proteins within a system. While these pursuits 

are crucial for a comprehensive understanding of proteome dynamics, enrichment 

analysis is a common method used to examine the role of proteins at the system level. 

1.3 ENRICHMENT ANALYSIS 

Enrichment analysis comprises a range of methods used to compare 

experimental results, such as DRPs, with predefined/theoretical datasets, typically 

cataloged in databases. The term 'enrichment' signifies the primary aim of this analysis: 

whether a specific set of genes/proteins appears more frequently than expected by 

chance within a list of genes/proteins, often obtained through high-throughput 

 
44  Stefka Tyanova et al., “The Perseus Computational Platform for Comprehensive Analysis of 
(Prote)Omics Data,” Nature Methods 13, no. 9 (September 2016): 731–40, 
https://doi.org/10.1038/nmeth.3901; Stefka Tyanova and Juergen Cox, “Perseus: A Bioinformatics 
Platform for Integrative Analysis of Proteomics Data in Cancer Research,” in Cancer Systems Biology: 
Methods and Protocols, ed. Louise von Stechow, Methods in Molecular Biology (New York, NY: Springer, 
2018), 133–48, https://doi.org/10.1007/978-1-4939-7493-1_7. 
45 Elena Krismer et al., “AlphaPeptStats: An Open-Source Python Package for Automated and Scalable 
Statistical Analysis of Mass Spectrometry-Based Proteomics,” Bioinformatics 39, no. 8 (August 1, 2023): 
btad461, https://doi.org/10.1093/bioinformatics/btad461. 
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techniques46. In proteomics, the list of proteins is used to explore potential biological 

pathways linked to phenotypes, to investigate transcription factors influencing protein 

abundance, and to pinpoint cell markers for further in-depth examination of cellular 

specificity.  

The most prevalent method for conducting enrichment analysis is Over-

Representation Analysis (ORA)47 . ORA treats the experimental data and the target 

library as categorical variables, allowing the creation of a contingency matrix that 

considers the count of experimental proteins, proteins in the target library, and the total 

possible entities – often termed background, like the number of proteins in a database, 

or proteins identified in a study (Figure 7). The association between these variables can 

be assessed using a Fisher’s exact test, determining the likelihood of the variables being 

correlated by random chance48. Enrichment analysis commonly involves databases (e.g., 

KEGG49) comprising various gene sets (e.g. 'Glycolysis/Gluconeogenesis' or 'MAPK 

signaling'). To comprehensively explore these databases, experimental data are tested 

against multiple gene sets, requiring multiple hypothesis tests for p-value correction50. 

Once again, the Benjamini-Hochberg method can correct p-values to control FDR. 

Terms with adjusted p-values below a predefined threshold are considered enriched 

terms, often selected for subsequent biological investigations and validations. 

 
46  Elizabeth I. Boyle et al., “GO::TermFinder—Open Source Software for Accessing Gene Ontology 
Information and Finding Significantly Enriched Gene Ontology Terms Associated with a List of Genes,” 
Bioinformatics 20, no. 18 (December 12, 2004): 3710–15, https://doi.org/10.1093/bioinformatics/bth456. 
47 Da Wei Huang, Brad T. Sherman, and Richard A. Lempicki, “Bioinformatics Enrichment Tools: Paths 
toward the Comprehensive Functional Analysis of Large Gene Lists,” Nucleic Acids Research 37, no. 1 
(January 2009): 1–13, https://doi.org/10.1093/nar/gkn923. 
48 Huang, Sherman, and Lempicki. 
49 Minoru Kanehisa et al., “KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs,” Nucleic 
Acids Research 45, no. D1 (January 4, 2017): D353–61, https://doi.org/10.1093/nar/gkw1092. 
50 Huang, Sherman, and Lempicki, “Bioinformatics Enrichment Tools.” 
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Figure 1-7 Over-representation analysis workflow. In traditional enrichment (or over-representation 
analysis), differentially regulated proteins are compared against databases containing numerous terms 
associated with genes. Utilizing the target database, a list of proteins, and background information 
(defined as either all genes in databases or all experimentally identified proteins), a contingency matrix 
is constructed. Fisher's test is then applied to each term, followed by multiple hypothesis correction.  

In addition to ORA, functional class scoring approach incorporates gene 

expression levels within statistical framework to perform enrichment analysis, being 

Gene-Set Enrichment Analysis (GSEA) the most popular method51 . GSEA involves 

ranking the experimental gene list based on fold-change between two conditions, where 

the algorithm determines whether members of a gene set library tend to cluster towards 

the top (up-regulated) or bottom (down-regulated) of this ranked list (Figure 8). In 

essence, this statistical approach evaluates whether a specific term (e.g., Glycolysis 

pathway) exhibits a higher occurrence of up or down-regulated genes than expected.  

Furthermore, GSEA provides not only p-values but also the Normalized Enrichment 

Score (NES), indicating the extent to which a library gene set is overrepresented at the 

extremes (top or bottom) of the entire ranked list. Despite biological mechanisms being 

regulated by intricate networks of interactions, GSEA is often employed as a tool to 

anticipate regulation within biological pathways, allowing researchers to design 

experiments that corroborate the regulatory processes associated with their findings52. 

 
51  Aravind Subramanian et al., “Gene Set Enrichment Analysis: A Knowledge-Based Approach for 
Interpreting Genome-Wide Expression Profiles,” Proceedings of the National Academy of Sciences 102, no. 
43 (October 25, 2005): 15545–50, https://doi.org/10.1073/pnas.0506580102. 
52 Aravind Subramanian et al., “GSEA-P: A Desktop Application for Gene Set Enrichment Analysis,” 
Bioinformatics 23, no. 23 (December 1, 2007): 3251–53, https://doi.org/10.1093/bioinformatics/btm369. 
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Figure 1-8 Gene Set Enrichment Analysis (GSEA) workflow. GSEA utilizes quantitative information to rank 
and assess whether an experimental gene list shows over-representation at the top or bottom of a gene 
set (Gene Set S), typically derived from a database, which may correlate with a determined phenotype. 
The maximum deviation from zero yields the enrichment score, which can be positive or negative when 
genes are over-represented at the top or bottom of the list, respectively. Figure from Subramanian 53. 

In conventional proteomics computational tools, the integration of enrichment 

analysis remains relatively scarce. While certain tools like Perseus requires the 

download of specific databases for Over-Representation Analysis (ORA), others like 

AlphaPeptStats utilize a limited selection of databases for enrichment analysis, such as 

Gene Ontology libraries. These limitations prompt users to turn to third-party tools 

prevalent in genomics and transcriptomics fields, such as DAVID 54 , Enrichr 55 , 

Metascape 56 , and Reactome 57 . Despite offering streamlined pipelines, these tools 

introduce additional steps into the proteomics workflow. They often require the 

conversion of protein accessions into alternative entries, might not perform both ORA 

and Gene-Set Enrichment Analysis (GSEA), and typically provide either a limited 

database selection or a constrained toolset for analysis and visualization. 

 
53 Subramanian et al., “Gene Set Enrichment Analysis,” October 25, 2005. 
54 Da Wei Huang, Brad T. Sherman, and Richard A. Lempicki, “Systematic and Integrative Analysis of 
Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols 4, no. 1 (January 2009): 44–
57, https://doi.org/10.1038/nprot.2008.211. 
55 Edward Y. Chen et al., “Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis 
Tool,” BMC Bioinformatics 14 (April 15, 2013): 128, https://doi.org/10.1186/1471-2105-14-128. 
56 Yingyao Zhou et al., “Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-
Level Datasets,” Nature Communications 10, no. 1 (April 3, 2019): 1523, https://doi.org/10.1038/s41467-
019-09234-6. 
57 Marc Gillespie et al., “The Reactome Pathway Knowledgebase 2022,” Nucleic Acids Research 50, no. D1 
(January 7, 2022): D687–92, https://doi.org/10.1093/nar/gkab1028. 
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While enrichment analysis adds an extra layer of information to researchers' 

inquiries, deciphering this massive data presents a notable challenge in proteomics. 

Extracting biological relevance from differential analysis and enrichment results 

demands considerable time, especially for non-programmers who often depend on 

various computational tools or engage in manual data curation. To address this 

limitation, a widely employed strategy involves the adoption of systems biology 

methodologies to manage these extensive datasets. 

1.4 SYSTEMS BIOLOGY 

Systems biology emerged as a scientific field that evolved in parallel with 

molecular biology, providing a holistic approach to comprehending the intricate 

complexities inherent to biological systems58. While integrating into omics pipelines, 

this methodology aids researchers in mining and understanding the roles played by 

thousands of molecular entities implicated in diseases and biological phenomena. Much 

like other disciplines that aim to study phenomena at the system-level, systems biology 

applies network theory to extract information about nature, delving into its intricate 

details by analyzing the interactions within biological systems 59. 

In network theory, a network is a graph characterized by nodes and edges, each 

possessing distinct attributes60. Typically, nodes in proteomics represent proteins, while 

edges denote protein-protein interactions (PPI). The term PPI encompasses various 

forms of interaction in the literature and databases—ranging from physical contact 

between proteins (physical interactions) to proteins co-expressed or engaged in shared 

biological mechanisms (functional interactions)61. These nodes and their interactions 

combine to build the network structure, and alterations within this structure constitute 

the network dynamics 62 . Over recent decades, studies have highlighted the close 

relationship between disturbances in both node (such as proteins, genes, and 

metabolites) edge properties and the onset of diseases and disorders. Notably, recent 

 
58 Hiroaki Kitano, “Systems Biology: A Brief Overview,” Science 295, no. 5560 (March 2002): 1662–64, 
https://doi.org/10.1126/science.1069492. 
59 Kitano. 
60 Albert-László Barabási and Zoltán N. Oltvai, “Network Biology: Understanding the Cell’s Functional 
Organization,” Nature Reviews Genetics 5, no. 2 (February 2004): 101–13, https://doi.org/10.1038/nrg1272. 
61 Damian Szklarczyk et al., “The STRING Database in 2021: Customizable Protein–Protein Networks, and 
Functional Characterization of User-Uploaded Gene/Measurement Sets,” Nucleic Acids Research 49, no. 
D1 (January 8, 2021): D605–12, https://doi.org/10.1093/nar/gkaa1074. 
62 Barabási and Oltvai, “Network Biology.” 
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research by Krogan's group underscored substantial variations in PPIs within breast, 

and head and neck cancer cell lines. Their findings suggest that drugs targeting 

dysfunctional interactions could serve as potential treatments for respective diseases63. 

When exploring biological and molecular networks, the distribution of 

connections among nodes (known as degree) follows a non-random pattern within the 

network. Typically, most studies consider natural networks presenting a scale-free 

topology, wherein the degree distribution follows a power law64. In essence, this means 

that a few nodes exhibit a higher number of connections, while the majority of nodes 

have fewer links (Figure 9). These nodes with an elevated degree are termed "hubs" and 

significantly influence the network structure. Biologically, hub proteins tend to exhibit 

several characteristics: they may correspond to essential genes, display slower 

evolution, demonstrate a tendency towards higher abundance, and have profound 

phenotypic outcomes stemming from their modification or deletion65.  

 
63 Minkyu Kim et al., “A Protein Interaction Landscape of Breast Cancer,” Science 374, no. 6563 (October 
2021): eabf3066, https://doi.org/10.1126/science.abf3066; Danielle L. Swaney et al., “A Protein Network 
Map of Head and Neck Cancer Reveals PIK3CA Mutant Drug Sensitivity,” Science 374, no. 6563 (October 
2021): eabf2911, https://doi.org/10.1126/science.abf2911. 
64 Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo, “Network Medicine: A Network-Based 
Approach to Human Disease,” Nature Reviews Genetics 12, no. 1 (January 2011): 56–68, 
https://doi.org/10.1038/nrg2918. 
65 Barabási, Gulbahce, and Loscalzo. 
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Figure 1-9 Random topology vs. Scale-Free Topology. Two graphs were generated comprising 50 nodes, 
with degrees following either a random distribution (left) or a scale-free distribution (right). The random 
topology exhibits a uniform edge distribution, whereas the scale-free topology displays a deviation in 
degree distribution, characterized by numerous nodes with few links and a few nodes with notably high 
degrees (hubs). 

Additionally, biological networks encompass numerous nodes forming densely 

interconnected local neighborhoods, referred to as communities or topological modules 

(Figure 10)66. Within these regions, nodes exhibit a stronger propensity to connect with 

others within the same community rather than with nodes outside it. Detecting these 

communities within a complex network involves leveraging clustering algorithms, such 

as the widely applied Louvain algorithm 67 . This method perform a hierarchical 

clustering approach considering both the amount and strength of pairwise connections 

within the network. Consequently, as communities are delineated based on link 

properties, proteins allocated to a specific module often exhibit more shared 

characteristics than would be anticipated by random chance 68 . In proteomics, this 

 
66 Barabási, Gulbahce, and Loscalzo. 
67 V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden: Guaranteeing Well-Connected 
Communities,” Scientific Reports 9, no. 1 (March 26, 2019): 5233, https://doi.org/10.1038/s41598-019-41695-
z. 
68 Traag, Waltman, and van Eck. 
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phenomenon results in the clustering of proteins involved in the same complex, similar 

biological pathways, or shared cellular compartments.  

 
Figure 1-10 Community detection in PPI networks. Complex networks present intricate information, and 
the search for communities, facilitated by methods like the Louvain algorithm, aids in dissecting network 
structures. The graph was generated using differentially regulated proteins (up-regulated in red and 
down-regulated in blue) and includes physical interactions from STRING database. 

Enrichment analysis also takes advantage of the power of systems biology 

approach. When exploring databases, such as KEGG, the enriched terms often exhibit 

common genes or proteins, which connect distinct biological pathways. However, when 

employing enrichment using hierarchical databases, such as Gene Ontology and 

Reactome, the results often exhibit a substantial redundancy69. This redundancy arises 

as child terms entirely overlap with parent terms, leading to repetitive outcomes that 

highlight the same pathways. To address the integration of distinct terms and mitigate 

data redundancy, graph representation proves valuable in visualization. In this network, 

referred to as an enrichment map, nodes symbolize terms while links are established 

based on pairwise correlation metrics, such as the Jaccard similarity index (Figure 11)70. 

This method generates a weighted network, which can be further analyzed through 

modularity analysis to identify communities at the enrichment level. 

 
69 Zhou et al., “Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level 
Datasets.” 
70  Daniele Merico et al., “Enrichment Map: A Network-Based Method for Gene-Set Enrichment 
Visualization and Interpretation,” ed. Timothy Ravasi, PLoS ONE 5, no. 11 (November 15, 2010): e13984, 
https://doi.org/10.1371/journal.pone.0013984. 
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Figure 1-11 Enrichment Map. An enrichment map connects enriched terms that share common 
genes/proteins, effectively mitigating data redundancy within hierarchical databases. This map was 
generated using the same input from Figure 11 and compared against the Gene Ontology Cellular 
Compartment 2023. 

Additionally, systems biology's integrative nature allows meta-analysis 

studies, aiding in the comparison of independent data and mitigating false discovery 

rates associated with individual studies 71 . Similar to the strategy employed in 

enrichment map, each study encompassed within a meta-analysis can be represented as 

a node, with linkages indicative of the proportional sharing of proteins/genes between 

studies. Alternatively, a more intricate network can be generated depicting studies and 

respective proteins as nodes, connected by unweighted edges72. This last visualization 

facilitates the identification of protein clusters linking two or more studies. These 

clusters can undergo deeper investigation, exploring shared characteristics among 

proteins, such as cellular compartments, offering valuable insights into biological 

inquiries related to the studies involved in the meta-analysis. 

Noteworthy, the practical application of the systems biology approach often 

requires tools capable of analyzing complex networks. While programming languages 

 
71 Shashank Tripathi et al., “Meta- and Orthogonal Integration of Influenza ‘OMICs’ Data Defines a Role 
for UBR4 in Virus Budding,” Cell Host & Microbe 18, no. 6 (December 9, 2015): 723–35, 
https://doi.org/10.1016/j.chom.2015.11.002. 
72 Tianzhi Wu et al., “clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data,” The 
Innovation 2, no. 3 (August 28, 2021): 100141, https://doi.org/10.1016/j.xinn.2021.100141. 



General Introduction  39 
 
 

 

offer libraries for network analysis, software tools equipped with graphical user 

interfaces (GUI) offer a dynamic network analysis and visualization, crucial for 

enhancing performance and gaining insights regarding biological systems. Cytoscape 

stands out by providing a comprehensive environment for biological network analysis, 

featuring specific plugins for enrichment analysis, PPI exploration, database 

comparisons, and data visualization73 . However, it does have drawbacks, including 

loading times and a steep learning curve, which can be further impacted using plugins. 

On the other hand, Gephi also serves as a well-established tool for network analysis, 

offering various plugins to enhance network insights and visualization, although its 

learning curve is comparable to Cytoscape, and it lacks plugins tailored for biological 

data 74 . Despite both tools accepting universal network file formats like graphml, 

creating a file containing all necessary network information can pose challenges, 

consuming valuable time and acting as a barrier to the wider adoption of the systems 

biology approach in proteomics workflows. 

In the specific context of proteomics, only a few tools incorporate network 

analysis directly into the workflow, often necessitating the use of third-party software. 

The Cox group has recently integrated a network module into Perseus, offering 

proteomics researchers a unified environment for both differential proteomics and 

systems biology analyses75. Despite the developers' efforts to provide a tutorial for 

configuring the network module, implementing this type of analysis remains a 

laborious task and demands some programming skills for thorough execution. While 

the learning curve for Perseus can be time-consuming, its workflow lacks meta-analysis 

capabilities for comparing results across independent groups. 

Taking the above information together, proteomics stands as a field in constant 

evolution, from technical advances to data analysis workflows. In the last case,  

researchers often need multiple computational tools to conduct thorough data analysis, 

encompassing search engines for protein identification, quantitative tools, pipelines for 

 
73 Paul Shannon et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular 
Interaction Networks,” Genome Research 13, no. 11 (November 2003): 2498–2504, 
https://doi.org/10.1101/gr.1239303. 
74 Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy, “Gephi: An Open Source Software for 
Exploring and Manipulating Networks,” Proceedings of the International AAAI Conference on Web and 
Social Media 3, no. 1 (March 19, 2009): 361–62, https://doi.org/10.1609/icwsm.v3i1.13937. 
75 Jan Daniel Rudolph and Jürgen Cox, “A Network Module for the Perseus Software for Computational 
Proteomics Facilitates Proteome Interaction Graph Analysis,” Journal of Proteome Research 18, no. 5 (May 
3, 2019): 2052–64, https://doi.org/10.1021/acs.jproteome.8b00927. 
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differential proteomics, algorithms for enrichment analysis considering multiple 

databases, and systems-level tools. Despite notable advancements in concatenating 

search engine and quantitative proteomics steps, the downstream analysis lacks a 

unified computational environment, especially given the diversity of experimental 

proteomics workflows available. 

In this context, this thesis aimed to develop a novel computational proteomics 

tool capable of executing 1) differential proteomics analysis, 2) enrichment analysis, and 

3) comparison of multiple independent studies (meta-analysis) within a unified 

environment. Given the diversity in proteomics workflows utilizing multiple search 

engines for protein identification and quantitation, this tool needs to handle data files 

from various sources. Furthermore, the tool must incorporate network analysis to 

facilitate a system-level assessment of biological questions, spanning from differential 

proteomics outcomes to comparisons across multiple studies. Crucially, this 

computational tool aims for inclusivity, catering to both experienced programmers and 

proteomics beginners, offering accessibility through programming languages and a 

user-friendly graphical interface. 

As a result, this thesis is structured into three chapters, showcasing the 

progression of data analysis within our group and the development of our 

computational tool. The chapters are organized as follows: 

• Chapter 1: Digging deeper in the proteome of different regions from 

schizophrenia brains. This chapter focuses on conducting differential 

proteomics across three post-mortem brain regions from patients with 

schizophrenia. The findings, published in the Journal of Proteomics in 2020, 

exemplify the efforts in our group's approach to proteomics data analysis. 

However, despite the substantial time and effort invested in this analysis, a 

retrospective analysis shows that the analyses and figures generated exhibited 

inefficiencies. They suffered from issues such as inefficient use of space, 

redundancy, limited information, confusing network representations, and 

inadequate depiction of group overlaps. More information about this critical 

review can be found in “Thesis Considerations” section on this chapter. 

• Chapter 2: OmicScope: from differential proteomics to systems biology. 

Positioned as the thesis's core, this chapter introduces and elucidates 

OmicScope, our solution tailored for handling quantitative proteomics data. We 
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comprehensively tested the OmicScope pipeline using real-world and 

benchmark datasets, showcasing its capabilities. This chapter has been 

submitted for publication.  

• Chapter 3: Diving into the proteomic atlas of SARS-CoV-2 infected cells: 

insights of viral infection in different cell types. Here, OmicScope was 

employed to evaluate nine SARS-CoV-2 infected cell lines, culminating in the 

construction of an in vitro infectome based on proteomic findings. The 

utilization of the OmicScope package markedly improved paper performance 

compared to the 2020 publication. It facilitated quicker work development. 

OmicScope was pivotal in conducting enrichment analysis, meta-analyses, and 

generating most figures for the nine in vitro models. This chapter is an example 

of the progression observed in our laboratory regarding proteomics data 

analysis, highlighting the advancements realized through the development and 

application of OmicScope. More information can be found in “Thesis 

Considerations” section on this chapter. 

 

 

 

  



 
 

 

2 CHAPTER 1: DIGGING DEEPER IN THE PROTEOME OF 

DIFFERENT REGIONS FROM SCHIZOPHRENIA BRAINS 

2.1 THESIS CONSIDERATIONS 

This chapter is the full article published in the Journal of Proteomics in 2020 – 

DOI: 10.1016/j.jprot.2020.103814. In this article, we analyzed the proteome of three 

different post-mortem brain regions from patients with schizophrenia and compared 

them with mentally healthy controls. To increase the proteome coverage, we performed 

subcellular fractionation of mitochondria and nucleus for each brain region, resulting 

in 9 independent differential proteomics analyses that were concatenated. In 

experimental terms, we used the bottom-up approach with whole proteome and 

subcellular fractions, and performed MS analysis in a Q-TOF with HDMSE acquisition 

mode (DIA). We used Progenesis Qi for Proteomics (Non-Linear, Waters) for protein 

identification, quantitation and differential proteomics, followed by downstream data 

analysis using four distinct tools: R language, Cytoscape, DAVID, and Ingenuity 

Pathway Analysis (IPA, QIAGEN). 

Upon critical review of the data analysis process related to this article, we 

identified several issues. The first one concerns the time invested to analyze and 

concatenate the 9 datasets, which involved learning R language, Cytoscape and its 

plugins, DAVID and IPA. The process to concatenate all data took approximately 2 

years, starting in 2018 and ending with the publication date in 2020. Most of this time 

was dedicated to analyzing data and choosing appropriate formats to present the 

information. 

Another notable issue was the use of a licensed software, IPA, to conduct 

enrichment and network analysis. Although IPA provides a comprehensive and curated 

database, using licensed software for scientific purposes limits the reproducibility of 

results for groups that do not have financial support to pay for the license. Currently, 

even our group does not have the IPA license, which prevents us from reproducing and 

re-analyzing the data if needed. 

Regarding visualization features, figures 1-3 present the same template: one 

circular diagram, three horizontal bar plots, and one network. The circular diagram was 
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an attempt to design an alternative to Venn-Diagram, but it became a confusing 

representation of overlaps, especially for more than 2 conditions. Moreover, despite bar 

plot being a classical plot in scientific papers, here it was used repeatedly throughout 

the article, without information gain, highlight for specific terms or pivotal outcomes. 

The last category, network plots, present a complex structure, mainly in the link 

distribution, which makes data visualization and interpretation difficult. 

Finally, the last significant data analysis issue in this work relates to the 

integration of quantitative and enrichment results. In general, the work focused on 

enrichment results to analyze data, due to the challenges in concatenating the multiple 

data. However, differential proteomics has the ability to indicate protein regulation, and 

associating this outcome with enrichment result could provide more precise 

information about the dysregulation in the brain of patients with schizophrenia. 

This chapter summarizes and showcases the challenges in analyzing multiple 

proteomics datasets and is an example of the need for the development of an integrative 

tool to accelerate the data analysis process and improve its quality. 

2.2 ABSTRACT 

Schizophrenia is a psychiatric disorder that affects 21 million people 

worldwide. Despite several studies having been shown that some brain regions may 

play a critical role in the pathophysiology of schizophrenia, the molecular basis to 

explain this diversity is still lacking. The cerebellum (CER), caudate nucleus (CAU), and 

posterior cingulate cortex (PCC) are areas associated with negative and cognitive 

symptoms in schizophrenia. In this study, we performed shotgun proteomics of the 

aforementioned brain regions, collected postmortem from patients with schizophrenia 

and compared with the mentally healthy group. In addition, we performed a proteomic 

analysis of nuclear and mitochondrial fractions of these same regions. Our results 

presented 106, 727 and 135 differentially regulated proteins in the CAU, PCC, and CER, 

respectively. Pathway enrichment analysis revealed dysfunctions associated with 

synaptic processes in the CAU, transport in the CER, and in energy metabolism in the 

PCC.  In all brain areas, we found that proteins related to oligodendrocytes and the 

metabolic processes were dysregulated in schizophrenia.  
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2.3 SIGNIFICANCE 

Schizophrenia is a complex and heterogeneous psychiatric disorder. Despite 

much research having been done to increase the acknowledgment about the role of each 

region in the pathophysiology of this disorder, the molecular mechanisms underlying 

it are still lacking. We performed shotgun proteomics in the postmortem cerebellum 

(CER), caudate nucleus (CAU) and posterior cingulate cortex (PCC) from patients with 

schizophrenia and compared with healthy controls. Our findings suggest that each 

aforementioned region presents dysregulations in specific molecular pathways, such as 

energy metabolism in the PCC, transport in the CER, and synaptic process in the CAU. 

Additionally, these areas presented dysfunctions in oligodendrocytes and metabolic 

processes. Our results may highlight future directions for the development of novel 

clinical approaches for specific therapeutic targets. 

2.4 INTRODUCTION 

Schizophrenia is a severe psychiatric disorder that affects 21 million people 

around the world76. It is characterized by the presence of positive (e.g. hallucinations, 

delusions) and negative symptoms (disorganized speech, social withdraw, anhedonia), 

and cognitive deficits77. Schizophrenia is a neurodevelopmental disorder, in which N-

methyl-D-aspartate receptor (NMDAr) hypofunction and dysfunction in dopaminergic 

activity in mesolimbic and mesocortical pathways are associated with symptoms 

development78. In addition, several brain imaging studies have described the role of each 

brain area in the pathophysiology of schizophrenia. 

The cerebellum (CER) is a well-known brain region related to motor 

coordination, as well as functions in language, emotions, sleep, and visceral responses79. 

 
76  WHO, “Schizophrenia,” accessed May 1, 2019, https://www.who.int/news-room/fact-
sheets/detail/schizophrenia. 
77  Robert Freedman, “Schizophrenia,” N. Engl. J. Med. 349, no. 18 (October 30, 2003): 1738–49, 
https://doi.org/10.1056/NEJMra035458. 
78 Joshua T Kantrowitz and Daniel C Javitt, “N-Methyl-d-Aspartate (NMDA) Receptor Dysfunction or 
Dysregulation: The Final Common Pathway on the Road to Schizophrenia?,” Brain Res. Bull. 83, no. 3–4 
(September 2010): 108–21, https://doi.org/10.1016/j.brainresbull.2010.04.006; Oliver D Howes et al., “The 
Role of Genes, Stress, and Dopamine in the Development of Schizophrenia,” Biol. Psychiatry 81, no. 1 
(January 1, 2017): 9–20, https://doi.org/10.1016/j.biopsych.2016.07.014. 
79 Stacey L Reeber, Tom S Otis, and Roy V Sillitoe, “New Roles for the Cerebellum in Health and Disease,” 
Front. Syst. Neurosci. 7 (November 14, 2013): 83, https://doi.org/10.3389/fnsys.2013.00083; Oliver Baumann 
et al., “Consensus Paper: The Role of the Cerebellum in Perceptual Processes,” Cerebellum 14, no. 2 (April 
2015): 197–220, https://doi.org/10.1007/s12311-014-0627-7. 
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Increasing recognition of the importance of the cerebellum has pointed to a potential 

role of this area in the pathophysiology of schizophrenia80. A recent mega-analysis 

showed that patients with schizophrenia present a decrease in gray matter in posterior 

regions of the cerebellum, which has functional connectivity with associative areas, 

such as the cortex81. In addition, evidence suggests a correlation between the positive 

symptoms and cerebello-thalamo-cortical disconnectivity82. 

The posterior cingulate cortex (PCC) plays a pivotal role in cognitive functions 

and in the default mode network 83. Patients with schizophrenia show alterations in the 

default mode network when presented to passive tasks84. Despite the PCC exhibiting a 

high metabolic rate, imaging studies have described disturbances in glucose metabolic 

rate in the PCC from patients with schizophrenia85. Recently, Kirino and colleagues 

have found that patients with schizophrenia present an enhanced functional 

connectivity between cortical areas, such as the PCC and caudate nucleus, suggesting 

an additional disruption in cortico-striatal networks86. 

 
80  Nancy C Andreasen and Ronald Pierson, “The Role of the Cerebellum in Schizophrenia,” Biol. 
Psychiatry 64, no. 2 (July 15, 2008): 81–88, https://doi.org/10.1016/j.biopsych.2008.01.003. 
81 T Moberget et al., “Cerebellar Volume and Cerebellocerebral Structural Covariance in Schizophrenia: 
A Multisite Mega-Analysis of 983 Patients and 1349 Healthy Controls,” Mol. Psychiatry 23, no. 6 (June 
2018): 1512–20, https://doi.org/10.1038/mp.2017.106. 
82 Jessica A Bernard, Joseph M Orr, and Vijay A Mittal, “Cerebello-Thalamo-Cortical Networks Predict 
Positive Symptom Progression in Individuals at Ultra-High Risk for Psychosis,” Neuroimage Clin 14 
(March 6, 2017): 622–28, https://doi.org/10.1016/j.nicl.2017.03.001; Hengyi Cao et al., “Cerebello-Thalamo-
Cortical Hyperconnectivity as a State-Independent Functional Neural Signature for Psychosis Prediction 
and Characterization,” Nat. Commun. 9, no. 1 (September 21, 2018): 3836, https://doi.org/10.1038/s41467-
018-06350-7. 
83 Robert Leech and David J Sharp, “The Role of the Posterior Cingulate Cortex in Cognition and Disease,” 
Brain 137, no. 1 (2014): 12–32, https://doi.org/10.1093/brain/awt162. 
84  Susan Whitfield-Gabrieli et al., “Hyperactivity and Hyperconnectivity of the Default Network in 
Schizophrenia and in First-Degree Relatives of Persons with Schizophrenia,” Proc. Natl. Acad. Sci. U. S. A. 
106, no. 4 (January 27, 2009): 1279–84, https://doi.org/10.1073/pnas.0809141106; Randy L Buckner, “The 
Brain’s Default Network: Origins and Implications for the Study of Psychosis,” Dialogues Clin. Neurosci. 
15, no. 3 (September 2013): 351–58. 
85 M Mehmet Haznedar et al., “Cingulate Gyrus Volume and Metabolism in the Schizophrenia Spectrum,” 
Schizophr. Res. 71, no. 2–3 (December 1, 2004): 249–62, https://doi.org/10.1016/j.schres.2004.02.025; Serge 
A Mitelman et al., “Metabolic Disconnection Between the Mediodorsal Nucleus of the Thalamus and 
Cortical Brodmann’s Areas of the Left Hemisphere in Schizophrenia,” American Journal of Psychiatry 162, 
no. 9 (2005): 1733–35, https://doi.org/10.1176/appi.ajp.162.9.1733; Jeong-Hee Kim et al., “Altered 
Interregional Correlations between Serotonin Transporter Availability and Cerebral Glucose Metabolism 
in Schizophrenia: A High-Resolution PET Study Using [C]DASB and [F]FDG,” Schizophr. Res. 182 (April 
2017): 55–65, https://doi.org/10.1016/j.schres.2016.10.020. 
86  Eiji Kirino et al., “Functional Connectivity of the Caudate in Schizophrenia Evaluated with 
Simultaneous Resting-State Functional MRI and Electroencephalography Recordings,” 
Neuropsychobiology 77, no. 4 (2019): 165–75, https://doi.org/10.1159/000490429. 
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The caudate nucleus (CAU), which plays a pivotal role in learning and reward 

processes, is a basal nucleus and a part of the striatum87. Dysfunctions in the CAU are 

related to negative symptoms, such as deficits in reward processes, which is 

hypothesized to be due to a dysregulation of dopamine pathways in the striatum88. In 

addition, the CAU was also associated with cognitive symptoms, since this region and 

cortical areas connected to the CAU present abnormal hemispheric specialization, 

which can affect memory and language functions89. 

Despite all these efforts to understand schizophrenia, a molecular basis related 

to the brain regions mentioned above is still lacking. Proteomics is a powerful approach 

to investigate complex and multifactorial diseases such as schizophrenia and other 

psychiatric disorders90. Several investigations have been done using postmortem brain 

tissue from patients with schizophrenia, mainly with the prefrontal cortex91, anterior 

 
87 Brian Knutson and Jeffrey C Cooper, “Functional Magnetic Resonance Imaging of Reward Prediction,” 
Curr. Opin. Neurol. 18, no. 4 (August 2005): 411–17, https://doi.org/10.1097/01.wco.0000173463.24758.f6. 
88 James M Gold et al., “Negative Symptoms of Schizophrenia Are Associated with Abnormal Effort-Cost 
Computations,” Biol. Psychiatry 74, no. 2 (July 15, 2013): 130–36, 
https://doi.org/10.1016/j.biopsych.2012.12.022; Alexis E Whitton, Michael T Treadway, and Diego A 
Pizzagalli, “Reward Processing Dysfunction in Major Depression, Bipolar Disorder and Schizophrenia,” 
Curr. Opin. Psychiatry 28, no. 1 (January 2015): 7–12, https://doi.org/10.1097/YCO.0000000000000122; 
Mette Ødegaard Nielsen et al., “Negative Symptoms and Reward Disturbances in Schizophrenia Before 
and After Antipsychotic Monotherapy,” Clin. EEG Neurosci. 49, no. 1 (January 2018): 36–45, 
https://doi.org/10.1177/1550059417744120; Sarah Saperia et al., “Reward-Driven Decision-Making 
Impairments in Schizophrenia,” Schizophr. Res., November 12, 2018, 
https://doi.org/10.1016/j.schres.2018.11.004. 
89 Sophia Mueller et al., “Abnormalities in Hemispheric Specialization of Caudate Nucleus Connectivity 
in Schizophrenia,” JAMA Psychiatry 72, no. 6 (June 2015): 552–60, 
https://doi.org/10.1001/jamapsychiatry.2014.3176. 
90 Juliana M Nascimento and Daniel Martins-de-Souza, “The Proteome of Schizophrenia,” NPJ Schizophr 
1 (March 4, 2015): 14003, https://doi.org/10.1038/npjschz.2014.3; Juliana M Nascimento et al., “Proteomics 
and Molecular Tools for Unveiling Missing Links in the Biochemical Understanding of Schizophrenia,” 
Proteomics Clin. Appl. 10, no. 12 (December 2016): 1148–58, https://doi.org/10.1002/prca.201600021; 
Verônica M Saia-Cereda et al., “Psychiatric Disorders Biochemical Pathways Unraveled by Human Brain 
Proteomics,” Eur. Arch. Psychiatry Clin. Neurosci. 267, no. 1 (February 2017): 3–17, 
https://doi.org/10.1007/s00406-016-0709-2. 
91 S Prabakaran et al., “Mitochondrial Dysfunction in Schizophrenia: Evidence for Compromised Brain 
Metabolism and Oxidative Stress,” Mol. Psychiatry 9, no. 7 (July 2004): 684–97, 643, 
https://doi.org/10.1038/sj.mp.4001511; Daniel Martins-de-Souza et al., “Proteomic Analysis of 
Dorsolateral Prefrontal Cortex Indicates the Involvement of Cytoskeleton, Oligodendrocyte, Energy 
Metabolism and New Potential Markers in Schizophrenia,” J. Psychiatr. Res. 43, no. 11 (July 2009): 978–
86, https://doi.org/10.1016/j.jpsychires.2008.11.006. 
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temporal lobe92, orbitofrontal cortex 93,  corpus callosum94, and thalamus95. Proteomic 

approaches even allow for the investigation of subcellular fractions, such as the nucleus 

and mitochondria. Studies have shown that nuclei from white and gray matter are 

differentially regulated in patients with schizophrenia 96 , as well as mitochondria 

presenting aberrant size, location, and number among the brain areas97. 

Here, we performed shotgun proteomics to characterize the proteome of 

postmortem Posterior Cingulate Cortices, Caudate Nuclei, and Cerebella from patients 

with schizophrenia and compared them with a mentally healthy control group. 

Additionally, we carried out a subcellular fractionation of mitochondria and nuclei from 

the same brain regions, performing each respective proteomic analysis. Therefore, this 

approach allows a whole, mitochondrial, and nuclear analysis to hypothesize about 

novel molecular features associated with schizophrenia spectrum disorder.  

2.5 MATERIALS AND METHODS 

2.5.1 Brain extraction and storage 

Brain samples were collected postmortem and provided by the Brain Net 

Europe Consortium. Patient samples (n = 5, for each region) came from the State Mental 

Hospital, Wiesloch, Germany. The individuals were chronic patients with residual 

symptoms, diagnosed antemortem according to the Diagnostic and Statistical Manual 

of Mental Disorders IV (DSM-IV) criteria and were medicated. The mentally healthy 

group (n = 5, for each region) did not present any brain disorder or somatic disease, 

neither were they medicated with antidepressants or antipsychotics. Control samples 

 
92 Daniel Martins-de-Souza et al., “Alterations in Oligodendrocyte Proteins, Calcium Homeostasis and 
New Potential Markers in Schizophrenia Anterior Temporal Lobe Are Revealed by Shotgun Proteome 
Analysis,” J. Neural Transm. 116, no. 3 (March 2009): 275–89, https://doi.org/10.1007/s00702-008-0156-y. 
93  Erika Velásquez et al., “Synaptosomal Proteome of the Orbitofrontal Cortex from Schizophrenia 
Patients Using Quantitative Label-Free and iTRAQ-Based Shotgun Proteomics,” J. Proteome Res. 16, no. 
12 (December 1, 2017): 4481–94, https://doi.org/10.1021/acs.jproteome.7b00422. 
94 Verônica M Saia-Cereda et al., “Differential Proteome and Phosphoproteome May Impact Cell Signaling 
in the Corpus Callosum of Schizophrenia Patients,” Schizophr. Res. 177, no. 1–3 (November 2016): 70–77, 
https://doi.org/10.1016/j.schres.2016.03.022. 
95 Daniel Martins-de-Souza et al., “Proteome Analysis of the Thalamus and Cerebrospinal Fluid Reveals 
Glycolysis Dysfunction and Potential Biomarkers Candidates for Schizophrenia,” J. Psychiatr. Res. 44, no. 
16 (December 2010): 1176–89, https://doi.org/10.1016/j.jpsychires.2010.04.014. 
96 Verônica M Saia-Cereda et al., “The Nuclear Proteome of White and Gray Matter from Schizophrenia 
Postmortem Brains,” Mol Neuropsychiatry 3, no. 1 (July 2017): 37–52, https://doi.org/10.1159/000477299. 
97 Rosalinda C Roberts, “Postmortem Studies on Mitochondria in Schizophrenia,” Schizophr. Res. 187 
(September 2017): 17–25, https://doi.org/10.1016/j.schres.2017.01.056. 
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came from the Institute of Neuropathology, Heidelberg University, Heidelberg, 

Germany. Both groups were represented by German Caucasians with no history of 

alcohol or drug abuse. Supplementary Table 1 shows individual aspects of patients and 

healthy subjects, as well as the respective brain regions collected. Additional 

information about patients can be found in Saia-Cereda, 201598. 

2.5.2 Subcellular fractionation, protein extraction, and digestion 

Subcellular fractionation, protein extraction, and digestion were carried out 

following the protocol described by Reis-de-Oliveira99. Approximately 45 mg of brain 

tissue was weighed out in duplicate; the first sample was used for subcellular 

fractionation and the second was for whole-proteome analysis. The portion used for 

subcellular fractionation was submitted to cell lysis and a sucrose gradient, followed by 

differential centrifugation to isolate high membranous organelles (e.g. nuclei) and 

mitochondria. Both enrichment and whole tissue samples were added in denaturing 

buffer (Tris-SDS, 2-mercaptoethanol, glycerol, and bromophenol blue), followed by 

mechanical lysis with pestle and ultrasonication. The samples were then heated at 95ºC 

and centrifuged at 21,000 x g. Samples were desalted using electrophoresis on a 12% 

polyacrylamide gel. This experiment was carried out on a short electrophoresis run and 

a unique gel spot was generated and digest. Each gel lane was trimmed and submitted 

to in-gel trypsin digestion. The peptides were dried and stored at -80ºC100. 

2.5.3 LC-MS/MS Analyses  

Peptides were resuspended in ammonium formate (50 mM, pH 10), quantified 

by a spectrophotometer (DS-11, DeNovix), and analyzed by liquid chromatography 

tandem-mass spectrometry (LC-MS/MS). Samples were injected into an ACQUITY 

UPLC M-Class (Waters, Co) coupled to a Synapt G2-Si mass spectrometer (Waters, Co). 

The peptides were separated using an HSS T3 1.8 µm x 75 µm x 150 mm column, 

carrying out a binary gradient from 3 to 40% acetonitrile (ACN) with 0.1% formic acid, 

 
98 Verônica M Saia-Cereda et al., “Proteomics of the Corpus Callosum Unravel Pivotal Players in the 
Dysfunction of Cell Signaling, Structure, and Myelination in Schizophrenia Brains,” Eur. Arch. Psychiatry 
Clin. Neurosci. 265, no. 7 (October 2015): 601–12, https://doi.org/10.1007/s00406-015-0621-1. 
99  Guilherme Reis-de-Oliveira, Mariana Fioramonte, and Daniel Martins-de-Souza, “A Complete 
Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue,” Methods Mol. Biol. 1916 
(2019): 319–28, https://doi.org/10.1007/978-1-4939-8994-2_31. 
100 Reis-de-Oliveira, Fioramonte, and Martins-de-Souza. 
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followed by a binary gradient from 40 to 85% ACN at a flow rate of 400 nL/min. When 

performing two-dimensional liquid chromatography (2D), the peptides were first loaded 

on an XBridge BEH130 C18 5µm x 300 µm x 50 mm column and fractionated in five 

elutions before the stepwise gradient across the analytical column, using 11.4%, 14.7%, 

17.4%, 20.7%, and 50.0% ACN. The chromatographic conditions were based on previous 

work from our group101.  Details about each experiment are described in Table 1. 

NanoElectrospray ionization was set to positive mode and Data-Independent 

Acquisition was performed using ion mobility separation and fragmented using 

collision-induced dissociation (CID) (HDMSe, Waters Co.). The acquisition range 

utilized was 50 to 2000 m/z, using a collision energy fragmentation ramp of 19 to 53 eV. 

Glu-fibrinopeptide B was used as reference lock mass compound, at a flow rate of 500 

nL/min and 100 fmol/uL. CER analyses were enhanced by optimizing precursor 

fragmentation efficiency based on drift time-specific collision energy profiles (UDMSe). 

Table 2-1 Chromatographic and mass spectrometry methods for each experiment 
performed. 

Brain 

Region 

Sample 

type 

UPLC 

system 

Fractions/ 

sample 

Gradient 

time (min) 

MS acquisition 

mode 

CAU WP 1D - 95 HDMSE 

CAU MIT 1D - 95 HDMSE 

CAU NUC 1D - 95 HDMSE 

PCC WP 1D - 120 HDMSE 

PCC MIT 1D - 54 HDMSE 

PCC NUC 1D - 54 HDMSE 

CER WP 2D 5 54 UDMSE 

CER MIT 2D 5 54 UDMSE 

CER NUC 2D 5 54 UDMSE 

CAU = Caudate Nucleus; PCC = Posterior Cingulate Cortex; CER = Cerebellum; WP 

= Whole-proteomic; MIT = Mitochondrial-enrichment; NUC = Nucleus-enrichment. 

 
101 Saia-Cereda et al., “Differential Proteome and Phosphoproteome May Impact Cell Signaling in the 
Corpus Callosum of Schizophrenia Patients”; Reis-de-Oliveira, Fioramonte, and Martins-de-Souza, “A 
Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue.” 
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2.5.4 Data Processing and Statistical Analysis 

Progenesis QI for Proteomics® (version 3.0) was used to analyze MS raw files. 

MS/MS spectra were searched against the Homo sapiens database (Uniprot Reviewed 

database, March 2019), using the Ion Accounting algorithm (Version 4.0)102. Cysteine 

carbamidomethylation was applied as fixed modification and methionine oxidation as 

variable one. Trypsin was set as the digestion enzyme with a maximum of 1 missed 

cleavage and 600 kDa as the maximum peptide mass. The ion set requirements were 2 

or more fragments/peptide, 5 or more fragments/protein, 1 or more peptides/protein, 

and a false discovery rate (FDR) of 1% for peptide and protein identification. 

Quantitation was performed using the 3 most abundant peptides for each protein103. 

Proteins with absolute mass error of 20 ppm were deleted.  

Progenesis QI for proteomics performs a variation of the one-factor ANOVA 

calculation, which assumes that the conditions are independent, and the means of the 

conditions are all equal. Therefore, the tests return a p-value that takes into account the 

mean difference and the variance and also the sample size 104. Proteins differentially 

regulated (ANOVA<0.05) were used to perform the in silico analyses in Database for 

Annotation, Visualization and Integrated Discovery (DAVID)105 and Ingenuity Pathway 

Analysis® (IPA, QIAGEN). Data visualization was performed using R environment and 

Cytoscape106. 

2.6 RESULTS 

2.6.1 Proteomic analysis  

The postmortem caudate nucleus (CAU), cerebellum (CER), and posterior 

cingulate cortex (PCC) samples from patients with schizophrenia and the control group 

were submitted to differential centrifugation in order to perform subcellular 

 
102 Guo-Zhong Li et al., “Database Searching and Accounting of Multiplexed Precursor and Product Ion 
Spectra from the Data Independent Analysis of Simple and Complex Peptide Mixtures,” Proteomics 9, no. 
6 (March 2009): 1696–1719, https://doi.org/10.1002/pmic.200800564. 
103 Jeffrey C Silva et al., “Absolute Quantification of Proteins by LCMSE,” Molecular & Cellular Proteomics 
5, no. 1 (2006): 144–56, https://doi.org/10.1074/mcp.m500230-mcp200. 
104 Timothy Clough et al., “Protein Quantification in Label-Free LC-MS Experiments,” J. Proteome Res. 8, 
no. 11 (November 2009): 5275–84, https://doi.org/10.1021/pr900610q. 
105 Huang, Sherman, and Lempicki, “Systematic and Integrative Analysis of Large Gene Lists Using 
DAVID Bioinformatics Resources,” January 2009. 
106 Shannon et al., “Cytoscape.” 
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fractionation of high-density organelles (e.g. nuclei) and low-density mitochondria. The 

proteins from all experiments, whole tissue and respective enrichments, were extracted 

and digested in-gel with trypsin. The peptides were loaded in the liquid-

chromatographic system coupled to a Q-TOF mass spectrometer and the data were 

analyzed in Progenesis® QI for Proteomics (Figure 1A).  

 

Figure 2-1 Proteomic analysis of postmortem brain tissue from patients with schizophrenia and controls. A) 
Experimental workflow for sample preparation and quantitative mass spectrometry. B) Number of 
proteins identified, quantified, and differentially regulated for the three brain regions and subcellular 
fractions. C) Pearson correlation between analyses of control subjects and patients with schizophrenia. 

The CER analyses represented the highest number of proteins quantified, with 

1518, 1599, and 1703 proteins from mitochondrial enrichment (CERMIT), nuclear 

enrichment (CERNUC), and the whole proteome (CERWP), respectively. For the CAU 

samples, 1518 (CAUMIT), 1599 (CAUNUC), and 1703 (CAUWP) proteins were quantified 

among the experiments. Finally, the PCC was the region with the lowest number of 

quantitated proteins: 788 proteins in mitochondrial enrichment (PCCMIT), 1097 in 

nuclear enrichment (PCCNUC), and 1473 in the whole proteome (PCCWP) analysis 

(Figure 1B). 
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We also calculated Pearson’s correlation coefficient between the patient and 

control datasets (Figure 1C). The hierarchical clustering suggests a switching in the 

proteomic similarities among the brain areas of schizophrenia patients when compared 

with control subjects. This data suggests that patients with schizophrenia share more 

similarities in proteome profiling between the PCC and CAU than the control group, in 

which the PCC is closer to the CER. 

2.6.2 Cerebellum 

 Proteomic analysis of the CER revealed 135 proteins to be differently regulated 

in patients with schizophrenia compared to controls (ANOVA <0.05, Figure 2A and  

Supplementary Table 2). Functional enrichment analyses carried out using Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) suggest 

these proteins are mainly related to cellular junctions and cytoskeleton processes 

(Figure 2B). 

The network analysis performed in IPA (Figure 2C) presented dysfunction in 

cellular organization, which highlighted the role of these proteins in the over-

migration of neurons (p = 1.40e-06) and Purkinje cells (p = 3.14E-05), and other 

cellular movements (p = 1.97e-06). Additionally, deregulated proteins in these 

networks can lead to dysfunctions in the proteasome, NfkB complex, caspase, and 

ERK signaling pathways (Figure 2D). 
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Figure 2-2 Proteomic analysis of the cerebellum. A) Diagram with numbers of proteins found differentially 
regulated in different fractions. B) Pathway enrichment analysis performed in KEGG pathway database 
under Gene Ontology (GO) Biological Process. C) Diseases and functional annotation performed using 
IPA. D) Merging of network analysis from each experiment, performed with IPA. Red arrow: activation; 
blue arrow: inhibition; red circles: proteins found upregulated in the proteomic analysis; blue circles: 
proteins found downregulated in the proteomic analysis. WP = Whole proteome; MIT = Mitochondrial 
enrichment; NUC = Nuclear enrichment. 

2.6.3 Caudate Nucleus 

The proteomic analysis of the CAU showed 106 proteins differentially 

regulated in patients with schizophrenia when compared with control subjects 

(ANOVA <0.05, Figure 3A, Supplementary Table 3). The in silico functional analysis 

carried out using GO and KEGG revealed that the CAU region from patients 

presented dysregulations in vesicle-mediated transport (p=2.0e-04), and the synaptic 

vesicle cycle (p=3.11e-04, Figure 3B). 

The network analysis performed in IPA reinforced the dysregulation of 

transport synaptic vesicles (p=2.55e-08) in the top scoring networks. Additionally, 

IPA revealed that patients with schizophrenia presented disturbances in the 

apoptotic process in neurons (p = 4.80e-05, Figure 3C). Proteins related to these 

networks can also affect key molecules of the immunological process (e.g. TCR, NFkB 

complex), signalling (ERK1/2), and hormonal pathways (LSH, growth hormone, 

Figure 3D). 
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Figure 2-3 Proteomic analysis of the caudate nucleus. A) Diagram with numbers of proteins found 
differentially regulated in different fractions. B) Pathway enrichment analysis performed in KEGG 
pathway database under GO Biological Process. C) Diseases and functional annotation performed using 
IPA. D) Merging of network analysis from each experiment, performed with IPA. Red arrow: activation; 
blue arrow: inhibition; red circles: proteins found upregulated in the proteomic analysis; blue circles: 
proteins found downregulated in the proteomic analysis. WP = Whole proteome; MIT = Mitochondrial 
enrichment; NUC = Nuclear enrichment. 

2.6.4 Posterior Cingulate Cortex 

The posterior cingulate cortex showed a total of 727 proteins differentially 

regulated in patients compared to controls (ANOVA <0.05, Figure 4A-B, Supplementary 

Table 4). The in silico analysis revealed these proteins are related to the tricarboxylic 

acid cycle (p = 2.96e-15), carbon metabolism (p = 9.24e-25), oxidative phosphorylation 

(p = 2.92e-22), and neuronal processes, such as synaptic vesicle cycle (p = 2.61e-11) and 

dopaminergic synapses (p = 6.55e-07). 

The further network analyses carried out in IPA uncovered that proteins 

deregulated in the merged networks were related to transport of proteins (p = 1.20e-07), 

vesicles (p = 6.38e-06), and molecules (p = 1.16e-05); mitochondrial disorders (p = 3.73e-

05); and neuritogenesis (p = 1.18e-04, Figure 4C). In addition, this merged network 

presented proteins related to energy metabolism (e.g. phosphatases, ATPases), as well 

as signaling pathways (e.g. ERK1/2, 14-3-3) and the immunological process (e.g. NFkB, 

TCR). 
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Figure 2-4 Proteomic analysis of the posterior cingulate cortex. A) Diagram with numbers of proteins 
found differentially regulated in different fractions. B) Pathway enrichment analysis performed in 
KEGG pathway database under Gene Ontology Biological Process. C) Diseases and functional 
annotation performed using IPA. D) Merging of network analysis from each experiment, performed 
with IPA. Red arrow: activation; blue arrow: inhibition; red circles: proteins found upregulated in the 
proteomic analysis; blue circles: proteins found downregulated in the proteomic analysis. WP = Whole 
proteome; MIT = Mitochondrial enrichment; NUC = Nuclear enrichment. 

2.6.5 All brain regions 

According to the proteomic analyses, patients with schizophrenia presented 

897 differentially regulated proteins. Of the three regions, the PCC was the region that 

was most affected, while the CAU was the least affected (Figure 5A). Although there is 

no shared dysregulated protein among all three brain regions, the PCC shared 35 

proteins with both the CAU and CER, while the CAU and CER just presented 1 protein 

in common (VPS35). 

The enriched pathways generated from differentially regulated proteins were 

submitted to the Enrichment Map107 and MCODE108 plugins in Cytoscape in order to 

select the regions with higher connections in the pathway networks (Figure 5C). This 

analysis showed a relationship between the brain areas and their main affected 

pathways: the PCC was highly represented by energy metabolism and signaling 

pathways, the CAU was most deregulated in neurotransmission processes, and the CER 

 
107 Merico et al., “Enrichment Map.” 
108 Gary D. Bader and Christopher WV Hogue, “An Automated Method for Finding Molecular Complexes 
in Large Protein Interaction Networks,” BMC Bioinformatics 4, no. 1 (January 13, 2003): 2, 
https://doi.org/10.1186/1471-2105-4-2. 
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presented a dysregulation in transport-related proteins. In addition, translational 

processes were affected in all the brain regions. 

 

Figure 2-5 Association between brain areas. A) Venn diagram with proteins found differentially regulated 
in each cerebral region. B) Heatmaps of proteins found differentially regulated in more than one brain 
region. C) Network of pathways deregulated according to proteomic analysis, showing clusters 
associated with individual cerebral regions. D) Protein-protein interactions of proteins deregulated in 
the posterior cingulate cortex and other brain regions. WP = Whole proteome; MIT = Mitochondrial 
enrichment; NUC = Nuclear enrichment; CAU = Caudate nucleus; PCC = Posterior Cingulate Cortex; 
CER = Cerebellum. 

As mentioned above, 35 differentially regulated proteins were identified in the 

CAU and PCC areas, as well as in the CER and PCC (Figure 5B). We performed a 

pathway enrichment analysis of just these proteins that were deregulated in the PCC 

and other regions (Figure 5D). Despite the absence of shared proteins among all three 

regions, the proteins deregulated in more than one region were related to metabolic 

pathways, oxidative phosphorylation, neuron development, the myelin sheath, and the 

MAPK signaling pathway. Taken together, despite our data suggesting 

compartmentalization of cellular dysfunctions throughout the brain of patients with 

schizophrenia, these regions also share some dysregulations in their biological 

processes. 

2.7 DISCUSSION 

As far as we are aware, this is the first study using shotgun proteomics to 

investigate multiple postmortem brain areas from patients with schizophrenia, areas 



Chapter 1: Digging deeper in the proteome of different regions from 
schizophrenia brains  57 
 
 

 

which are known to be associated with different functions, such as movement 

coordination, default mode network, and reward processes. These divergent functions 

were reflected in our proteomic results, in which each brain region presented specific 

dysregulated pathways, such as the transport process in the CER, synaptic processes in 

the CAU, and energy metabolism in the PCC. 

Proteomic analyses of all brain areas suggested that the proteome of patients 

with schizophrenia share different profiles in each brain area compared to healthy 

subjects. These data suggest that functional dysconnectivity observed in imaging 

studies with schizophrenia patients109 may be associated with the molecular changes 

observed in our study. 

2.7.1 Cerebella from patients present dysregulation in transport-related processes 

The cerebellum has emerged as a pivotal brain region in schizophrenia 

development, such as the cortico-cerebellar-thalamic-cortical circuits highlighted in 

gene expression analyses 110. Our findings showed that patients with schizophrenia 

present a dysfunction in proteins related to cytoskeleton processes, such as cell over-

migration of Purkinje cells (Figure 2C). Purkinje cells are GABAergic interneurons 

present in the cerebellum and they were found reduced in patients with schizophrenia 

and bipolar disorder111. G Protein Subunit Alpha 12 (GNA12) and G Protein Subunit 

Alpha 13 (GNA13) are transducer proteins associated with migration112 (Gan et al., 2012) 

and cell-adhesion processes113. Studies have shown that these genes are affected in 

 
109 Garry D Honey et al., “Functional Dysconnectivity in Schizophrenia Associated with Attentional 
Modulation of Motor Function,” Brain 128, no. Pt 11 (November 2005): 200, 
https://doi.org/10.1093/brain/awh632; Tumbwene E Mwansisya et al., “Task and Resting-State fMRI 
Studies in First-Episode Schizophrenia: A Systematic Review,” Schizophr. Res. 189 (November 2017): 9–
18, https://doi.org/10.1016/j.schres.2017.02.026. 
110 Andreasen and Pierson, “The Role of the Cerebellum in Schizophrenia”; Tharani Sundararajan, Ann 
M Manzardo, and Merlin G Butler, “Functional Analysis of Schizophrenia Genes Using GeneAnalytics 
Program and Integrated Databases,” Gene 641 (January 30, 2018): 25–34, 
https://doi.org/10.1016/j.gene.2017.10.035. 
111 Ekrem Maloku et al., “Lower Number of Cerebellar Purkinje Neurons in Psychosis Is Associated with 
Reduced Reelin Expression,” Proc. Natl. Acad. Sci. U. S. A. 107, no. 9 (March 2, 2010): 4407–11, 
https://doi.org/10.1073/pnas.0914483107. 
112 Xiaoqing Gan et al., “PRR5L Degradation Promotes mTORC2-Mediated PKC-δ Phosphorylation and 
Cell Migration Downstream of Gα12,” Nat. Cell Biol. 14, no. 7 (May 20, 2012): 686–96, 
https://doi.org/10.1038/ncb2507. 
113 Thomas E Meigs et al., “Galpha12 and Galpha13 Negatively Regulate the Adhesive Functions of 
Cadherin,” J. Biol. Chem. 277, no. 27 (July 5, 2002): 24594–600, https://doi.org/10.1074/jbc.M201984200. 
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schizophrenia 114  and their partial ablation in a mouse model affects Purkinje cell 

migration and the development of the cerebellum115. Disruption in neuronal migration 

was reported in patients with schizophrenia, playing a crucial role in the 

neurodevelopment of cerebellum and other brain regions116.  In addition, our data also 

showed upregulation of the AIF1 protein, which is an activation marker for microglial 

cells, suggesting a potential inflammatory status in the brains of patients. The 

inflammation has critical relevance to schizophrenia117. A recent postmortem study has 

shown that the cerebellum of patients with schizophrenia presented an over-activation 

of the TLR4 pathway, which is directly associated with inflammatory conditions118.  

2.7.2 Caudate Nuclei from patients present dysregulation in synaptic pathways 

The CAU is a region rich in D2 receptors119, which are pivotal receptors in 

schizophrenia pathophysiology120. Our data showed that proteins dysregulated in the 

CAU are related to transport in synaptic vesicles (AP2M1, DNM2, EPN1, SPTBN2, 

STX1A, VAMP2). Accordingly, dysfunctions in synaptic organization have been 

reported in the CAU from patients with schizophrenia, which present an increase in 

synaptic density in striatal areas121 . In addition, proteomic analyses also showed a 

 
114 Peilin Jia et al., “Network-Assisted Investigation of Combined Causal Signals from Genome-Wide 
Association Studies in Schizophrenia,” PLoS Comput. Biol. 8, no. 7 (July 5, 2012): e1002587, 
https://doi.org/10.1371/journal.pcbi.1002587. 
115 Alexandra Moers et al., “Galpha12/Galpha13 Deficiency Causes Localized Overmigration of Neurons 
in the Developing Cerebral and Cerebellar Cortices,” Mol. Cell. Biol. 28, no. 5 (March 2008): 1480–88, 
https://doi.org/10.1128/MCB.00651-07. 
116  Hanna Jaaro-Peled et al., “Neurodevelopmental Mechanisms of Schizophrenia: Understanding 
Disturbed Postnatal Brain Maturation through Neuregulin-1-ErbB4 and DISC1,” Trends Neurosci. 32, no. 
9 (September 2009): 485–95, https://doi.org/10.1016/j.tins.2009.05.007; Jessica A Bernard and Vijay A 
Mittal, “Cerebellar-Motor Dysfunction in Schizophrenia and Psychosis-Risk: The Importance of Regional 
Cerebellar Analysis Approaches,” Front. Psychiatry 5 (November 25, 2014): 160, 
https://doi.org/10.3389/fpsyt.2014.00160. 
117 Norbert Müller et al., “The Role of Inflammation in Schizophrenia,” Front. Neurosci. 9 (October 21, 
2015): 372, https://doi.org/10.3389/fnins.2015.00372. 
118 Karina S MacDowell et al., “Differential Regulation of the TLR4 Signalling Pathway in Post-Mortem 
Prefrontal Cortex and Cerebellum in Chronic Schizophrenia: Relationship with SP Transcription Factors,” 
Prog. Neuropsychopharmacol. Biol. Psychiatry 79, no. Pt B (October 3, 2017): 481–92, 
https://doi.org/10.1016/j.pnpbp.2017.08.005. 
119 R A Lahti, R C Roberts, and C A Tamminga, “D2-Family Receptor Distribution in Human Postmortem 
Tissue: An Autoradiographic Study,” Neuroreport 6, no. 18 (December 15, 1995): 2505–12, 
https://doi.org/10.1097/00001756-199512150-00015. 
120 Oliver D Howes and Shitij Kapur, “The Dopamine Hypothesis of Schizophrenia: Version III--the Final 
Common Pathway,” Schizophr. Bull. 35, no. 3 (May 2009): 549–62, https://doi.org/10.1093/schbul/sbp006. 
121 Emma Perez-Costas, Miguel Melendez-Ferro, and Rosalinda C Roberts, “Basal Ganglia Pathology in 
Schizophrenia: Dopamine Connections and Anomalies,” J. Neurochem. 113, no. 2 (April 2010): 20, 
https://doi.org/10.1111/j.1471-4159.2010.06604.x. 
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dysregulation in apoptosis of neurons (ASAH1, CD200, CYCS, LINGO1, MAP3K1, 

MAPK13, P4HB, STXBP1), which could explain the reduced number of neurons found 

in the CAU in patients with schizophrenia122. Leucine-rich repeat and immunoglobulin-

like domain-containing nogo receptor-interacting protein 1 (LINGO-1) was also found 

to be upregulated in schizophrenia in the dorsolateral prefrontal cortex and 

hippocampus123. LINGO-1 plays a role in brain development, regulating the maturation 

of oligodendrocytes and neuronal outgrowth, and whose upregulation could lead to a 

reduction of myelin-related processes (reviewed in 124). Our data also showed that 

proteins associated with carbon metabolism and pyruvate decarboxylase deficiency 

(PDHX, PGLS, DLAT, PGK2, GLUD2, ALDOB) were deregulated, showing a disturbance 

in energy metabolism of the CAU in schizophrenia. These results are in line with 

alterations in mitochondrial density, size, and distribution already described in neurons 

and glial cells from the CAU of patients125. 

2.7.3 Posterior Cingulate Cortices from patients present dysregulation in energy 

metabolism 

The PCC was the most affected brain region in patients with schizophrenia. 

Although the PCC presents a high metabolic rate at default states 126, some studies have 

shown a reduction in its metabolic rate in patients with schizophrenia during verbal 

working memory tasks127.This is in line with our proteomic analysis, since it revealed a 

 
122 Pawel Kreczmanski et al., “Volume, Neuron Density and Total Neuron Number in Five Subcortical 
Regions in Schizophrenia,” Brain 130, no. Pt 3 (March 2007): 678–92, https://doi.org/10.1093/brain/awl386. 
123 F Fernandez-Enright et al., “Novel Implications of Lingo-1 and Its Signaling Partners in Schizophrenia,” 
Transl. Psychiatry 4 (January 21, 2014): e348, https://doi.org/10.1038/tp.2013.121. 
124 Jessica L Andrews and Francesca Fernandez-Enright, “A Decade from Discovery to Therapy: Lingo-1, 
the Dark Horse in Neurological and Psychiatric Disorders,” Neurosci. Biobehav. Rev. 56 (September 2015): 
97–114, https://doi.org/10.1016/j.neubiorev.2015.06.009. 
125  Natalya A Uranova et al., “Ultrastructural Alterations of Synaptic Contacts and Astrocytes in 
Postmortem Caudate Nucleus of Schizophrenic Patients,” Schizophr. Res. 22, no. 1 (October 1996): 81–83, 
https://doi.org/10.1016/0920-9964(96)00059-X; Natalya Uranova et al., “Electron Microscopy of 
Oligodendroglia in Severe Mental Illness,” Brain Res. Bull. 55, no. 5 (July 2001): 597–610, 
https://doi.org/10.1016/S0361-9230(01)00528-7; Shahza M Somerville, Robert R Conley, and Rosalinda C 
Roberts, “Mitochondria in the Striatum of Subjects with Schizophrenia,” World J. Biol. Psychiatry 12, no. 
1 (February 2011): 48–56, https://doi.org/10.3109/15622975.2010.505662; Roberts, “Postmortem Studies on 
Mitochondria in Schizophrenia.” 
126 M E Raichle et al., “A Default Mode of Brain Function,” Proc. Natl. Acad. Sci. U. S. A. 98, no. 2 (January 
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disturbance in carbon and energy metabolism, such as glycolysis, the tricarboxylic acid 

cycle, and oxidative phosphorylation. These processes were already associated with 

other brain areas in patients with schizophrenia, with dysregulations in protein and 

metabolite levels128 . Proteomic analyses of the anterior cingulate cortex revealed a 

dysfunction in energy metabolism proteins in schizophrenia and bipolar disorder129. It 

was already described that patients with schizophrenia present anterior cingulate cortex 

decreased mitochondrial and synaptic density, which could suggest a correlation 

between energy process and synaptic function130. In addition, our data also showed that 

PCC presented a downregulation in superoxide dismutase 1 (SOD1). SOD1 is 

antioxidant metalloprotein already described to be downregulated in cerebrospinal 

fluid131 and plasma132 from patients with schizophrenia. Positive symptoms presented 

in patients with schizophrenia has been inversely associated with SOD levels133, as well 

as cognitive deficits related to antioxidant status134. 

Proteins related to synaptic vesicles and the transport of proteins were also 

found differentially regulated in the PCC. Synaptophysin (SYP) is a presynaptic protein 

 
128  Martins-de-Souza et al., “Proteomic Analysis of Dorsolateral Prefrontal Cortex Indicates the 
Involvement of Cytoskeleton, Oligodendrocyte, Energy Metabolism and New Potential Markers in 
Schizophrenia”; Daniel Martins-de-Souza et al., “Proteome Analysis of Schizophrenia Patients Wernicke’s 
Area Reveals an Energy Metabolism Dysregulation,” BMC Psychiatry 9 (April 30, 2009): 17, 
https://doi.org/10.1186/1471-244X-9-17; B Dean et al., “Evidence for Impaired Glucose Metabolism in the 
Striatum, Obtained Postmortem, from Some Subjects with Schizophrenia,” Transl. Psychiatry 6, no. 11 
(November 15, 2016): e949, https://doi.org/10.1038/tp.2016.226. 
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69, https://doi.org/10.1016/j.schres.2016.10.040. 
132 Ömer Akyol et al., “The Indices of Endogenous Oxidative and Antioxidative Processes in Plasma from 
Schizophrenic Patients,” Prog. Neuropsychopharmacol. Biol. Psychiatry 26, no. 5 (June 2002): 995–1005, 
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Schizophrenia,” Schizophr. Res. 139, no. 1–3 (August 2012): 66–72, 
https://doi.org/10.1016/j.schres.2012.04.009. 
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directly associated to synaptic density 135  (Calhoun et al., 1996) and was linked to 

intellectual disabilities136. Although our results have pointed to an upregulation of SYP, 

a recent meta-analysis found this protein to be downregulated in patients with 

schizophrenia in the anterior cingulate cortex and hippocampus137. Dysregulation in 

the synaptic process was already described in metabolomic analysis of anterior 

cingulate cortex, which presents lower GABA levels in patients with schizophrenia than 

healthy subjects138. Taken together, these data could suggest that synaptic deficits have 

regional specificities, affecting each area in different ways compared to others.   

 

2.7.4 Immunological system and signalling pathways are dysfunctioned among all brain 

regions 

In all brain regions, the Nuclear Factor-κB Transcriptional Complex (NFκB) 

were enriched in IPA network analysis. NFκB plays a key role in the immune system, 

controlling the regulation of inflammatory molecules, such as cytokines139. Recently, 

Volk and colleagues have shown that the prefrontal cortex from patients with 

schizophrenia presents higher levels of NFκB transcripts, suggesting an immune 

activation in these patients140. In addition, several reports have shown that patients with 

schizophrenia present dysfunctions in immune systems, including high levels of 
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Exons in Mental Retardation,” Nat. Genet. 41, no. 5 (May 2009): 535–43, https://doi.org/10.1038/ng.367. 
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https://doi.org/10.1038/s41380-018-0041-5. 
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Med. 9, no. 1 (July 28, 2017): 72, https://doi.org/10.1186/s13073-017-0458-5. 
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cytokines cortical areas 141, overactivation of microglial cells142, and genomic variants 

associated with Major Histocompatibility Complex (MHC)143. 

The extracellular-regulated protein kinase (ERK) was also enriched in IPA 

networking analysis for all the brain regions. This pathway was already found 

dysregulated in schizophrenia, being associated with a reduction in synaptic plasticity 

in these patients144. In addition, a recent proteomic analysis using the prefrontal cortex 

from patients with schizophrenia has shown that the suppression in GNA13-ERK 

signaling affects the synaptic plasticity in the patients145. Since synaptic plasticity is a 

biological process directly associated with learning and memory, dysfunction in this 

process are associated with the negative and cognitive symptoms found in patients with 

schizophrenia146. 

2.7.5 Schizophrenia patients present a brain compartmentalization of protein 

dysfunctions  

Taking these dysregulations together, it can be concluded that our results 

showed differences among the brain regions encompassing proteins and molecular 

pathways. The changes in the CER were related to dysfunctions in transport processes, 

while the CAU had associations with synaptic processes and the PCC with energy 

metabolism and signaling pathways. These results agree with studies that showed 

divergences of patterns among brain regions in schizophrenia147. On the other hand, 
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our data also showed proteins that were differentially regulated in more than one 

region, which were related to the myelin sheath (STXBP1, EHD3, CNP, NEFH, INA, 

EEF1A2, NME1, COX5A, GOT2), metabolic pathways (PDHX, PRDX6, PGLS, GLUD2, 

GOT2, NME1, COX5A, NDUFS8, ATP5MF, HADH, AHCY), and neuron development 

(CNP, NRCAM, NEFH, SERT2, EFHD1, STXBP1, DCLK2, RAB13, UBB, CTNNB1, Figure 

5 C-D). 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) is an oligodendrocyte marker 

associated with the size of the oligodendrocyte population in tissue. Our results showed 

lower levels of CNP in the CAU and PCC in schizophrenia, suggesting a decrease in the 

oligodendrocyte population in schizophrenia. Studies have shown decreased 

oligodendrocyte density in the CAU148 and prefrontal cortex149, and in the anterior 

frontal cortex, anterior cingulate cortex, and hippocampus 150  of patients with 

schizophrenia.  Since oligodendrocytes play a pivotal role in myelination and energy 

support to neuron axons 151 , we suggest that dysfunctions in both processes are 

intrinsically related to the whole-brain dysfunctions seen in schizophrenia. 

2.7.6 Limitations 

When working with postmortem brain tissues in psychiatric disorders, the 

main limitations are associated with the inherent characteristics of this model, such as 

the sample size, methods of collection, and storage conditions. In this study, the major 

limitation is indeed the modest sample size used in our analysis. In addition, the samples 

used in this study were collected from patients that were treated with antipsychotics. 

Although the treatment may affect the identification of novel proteins associated with 

schizophrenia, Chan and colleagues showed that antipsychotics normalize the effects of 
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disease according to lifetime medication152. Finally, each brain region was analyzed with 

different chromatographic and MS acquisition methods, which affect protein 

identification and comparison between the regions. Despite these limitations, 

postmortem brain tissue is a unique model to perform molecular analysis directly in the 

brains of patients with schizophrenia. In addition, our findings are supported by several 

other results in the literature and for all experiments, we applied the same statistical 

parameters to obtain the highest proteome coverage and trust in the data as possible. 

2.8 CONCLUSION 

This study provides a differential pattern of proteins in the CER, CAU and PCC 

from patients with schizophrenia compared with healthy controls. Our results pointed 

to 135, 106 and 727 deregulated proteins in the aforementioned regions, respectively. In 

addition, pathway enrichment analysis showed dysfunctions in synaptic processes in 

the CAU, transport in the CER, and energy metabolism in the PCC. Our study also 

reinforces the role of oligodendrocytes and metabolic processes in these areas in 

schizophrenia. Further analyses using other Omic approaches, such as lipidomics and 

metabolomics, are needed to complement our results and show if these changes can be 

seen among the brain regions also in metabolic levels. 

 
152 M K Chan et al., “Evidence for Disease and Antipsychotic Medication Effects in Post-Mortem Brain 
from Schizophrenia Patients,” Mol. Psychiatry 16, no. 12 (December 2011): 1189–1202, 
https://doi.org/10.1038/mp.2010.100. 



 
 

3 CHAPTER 2: OMICSCOPE: FROM DIFFERENTIAL 

PROTEOMICS TO SYSTEMS BIOLOGY 

3.1 ABSTRACT 

Shotgun proteomics analysis presents multifaceted challenges, demanding 

diverse tool integration for insights. Addressing this complexity, OmicScope emerges 

as a comprehensive solution for quantitative proteomics data analysis. Engineered to 

handle various data formats, it conducts differential proteomics analysis for both static 

and longitudinal designs. Empowered with Enrichr, OmicScope allows user to perform 

Over Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) with 

over 224 databases. Additionally, its Nebula module facilitates multi-omics integrative 

analysis, providing a systems biology approach for enriched insights. Complete with a 

data visualization toolkit and accessible as both a Python package and a web application 

(https://omicscope.ib.unicamp.br/), OmicScope democratizes proteomics analysis, 

offering an efficient, high-quality pipeline for researchers. 

3.2 INTRODUCTION  

Mass spectrometry-based proteomics has emerged as an indispensable tool for 

unraveling the intricate molecular mechanisms underlying complex diseases and 

biological phenomena. This technique enables simultaneous interrogation of thousands 

of proteins, allowing for the discovery of novel protein candidates without prior 

knowledge or defined targets. The flexibility provided by shotgun proteomics enables 

large-scale exploration of protein-protein interaction (PPI) networks 153 , subcellular 

processes154, protein thermal stability155, protein-drug interactions 156, and signaling 
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Kinase Inhibitors”; Lechner et al., “Chemoproteomic Target Deconvolution Reveals Histone Deacetylases 
as Targets of (R)-Lipoic Acid.” 
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pathways157. Furthermore, due to the pivotal role of proteins in bridging genotypic 

information to phenotypic outcomes, proteomics complements other 'omics disciplines, 

including genomics, transcriptomics, and metabolomics. Despite its widespread 

adoption and continuous technical advancements, proteomics continues to present 

substantial challenges, with data analysis complexity remaining a prominent issue. 

To achieve comprehensive information from proteomics data, the current 

approach requires the use of an array of software tools. This encompasses raw data 

processing, protein identification, quantitation, differential proteomics, and enrichment 

analysis (e.g., MaxQuant158 , PatternLab V159 , DIA-NN160 , Perseus161 , PatternLab V, 

Progenesis QI for Proteomics, MSstats 162 ; DAVID 163 , Enrichr 164 ).  While this 

conventional pipeline forms the core of proteomics data analysis, additional steps like 

exploring protein-protein interactions, conducting network analyses, and customizing 

data visualization are often necessary. 

The complexity and number of computational tools present an initial barrier, 

particularly for non-programmers and newcomers to proteomics, as mastering the 

functions, capabilities, and limitations of each software tool demands a steep learning 

curve. Furthermore, the challenge with tools for differential proteomics analysis 

involves accommodating the wide spectrum of data formats generated by search 

engines and quantitative proteomics software (Supplementary Table 1). Considering the 

distinctive features and necessities of each tool, encompassing data normalization, 

structure, and treatment of missing values, any new software tool must account for 

these varied input options. Additionally, a versatile and generic format is crucial to 

facilitate data importation from emerging proteomics tools, incorporate innovative 

 
157 Needham et al., “Personalized Phosphoproteomics Identifies Functional Signaling.” 
158 Cox and Mann, “MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range 
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160 Demichev et al., “DIA-NN.” 
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Data.” 
162  “MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic 
Experiments with Chromatography-Based Quantification at Scale | Journal of Proteome Research,” 
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statistical analyses, and integrate data from other 'omics' platforms, such as genomics 

and transcriptomics. 

Statistical analysis for differential proteomics can exhibit substantial variations 

contingent upon the experimental design adopted by researchers (Supplementary Table 

1). Typically, experimental designs can be broadly categorized into two main types: 

static and longitudinal 165 . Despite the common occurrence of both static and 

longitudinal analyses, the majority of proteomics tools often lack comprehensive 

coverage of the wide spectrum of experimental designs. 

Within the proteomics workflow, enrichment analysis assumes a pivotal role 

in aiding researchers to uncover system-level biological insights. One widely adopted 

approach is over-representation analysis (ORA), wherein experimentally derived 

entities are compared against annotated databases to ascertain whether biologically 

relevant properties are overrepresented in the experimental gene list166. Alternatively, 

gene-set enrichment analysis (GSEA) compares two conditions to find coordinated 

changes in gene expression in biologically relevant databases167. The inherent data 

requirements associated with enrichment analysis compel researchers to seek web tools 

that provide extensive datasets to perform such analyses. Enrichr, for instance, offers 

access to over 224 distinct and regularly updated libraries 168 . Enrichment analysis 

typically plays a pivotal role in the proteomics workflow, highlighting potential 

biological pathways for targeted validation through orthogonal approaches.  

Despite the importance of enrichment analysis within the broader proteomics 

workflow, its power can be significantly enhanced by comparing individual 

experiments with independent results or data published by third-party research groups. 

This meta-analysis approach reduces false discovery rates and enables a more reliable 

assessment of molecular features associated with biological phenomena, as numerous 

sources contribute to a systems-level investigation169. While specific enrichment tools 
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support the analysis of multiple gene lists, many existing proteomics tools frequently 

lack the capacity to conduct a broad analysis across multiple experiments and integrate 

data with other omics technologies (Supplementary Table 1). For researchers aiming to 

analyze multiple gene lists, several web-based tools are accessible, including 

Metascape170 and DAVID171. Nevertheless, these tools often overlook crucial protein 

statistics, such as protein fold changes, and offer a restricted array of figures that can 

integrate enrichment outcomes with respective protein attributes. 

In light of the complexities inherent in the proteomics workflow, we 

introduce OmicScope—an integrated solution designed to streamline proteomics data 

analysis from differential expression to system-level integration. Here, we elucidate the 

features of OmicScope, which is available both as a Python package and a web 

application (https://omicscope.ib.unicamp.br). OmicScope empowers users to perform 

differential expression analysis across diverse platforms, conduct enrichment analysis 

with access to over 224 libraries offered by Enrichr, and seamlessly integrate 

independent studies to enhance biological insights. Additionally, we offer a 

comprehensive suite of graphical outputs, encompassing gold-standard proteomics 

figures and a unique set of plots tailored to enhance comprehension in individual 

experiments and systems-level analyses. OmicScope also provides a versatile array of 

output files for integration with third-party software, including tables, vectorized 

images, network files, and its output format. Together, OmicScope stands as a user-

friendly tool engineered to facilitate proteomics data analysis, integration, and 

interpretation for the entire research community. 

 

3.3 METHODS  

3.3.1 OmicScope architecture and User Interface 

OmicScope is developed in Python (v. 3.11) and distributed in Pypi repository 

(https://pypi.org/project/omicscope/) under MIT license. The comprehensive 
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OmicScope pipeline comprises three modules: OmicScope, EnrichmentScope and 

Nebula (Figure 1), designed to handle differential expression analysis, enrichment 

analysis, and multi-study comparisons, respectively.  

The web application (https://omicscope.ib.unicamp.br) was developed using 

the Streamlit framework, leveraging the OmicScope package in the background. 

Interactive figures were developed separately using Altair v.4 172  and the Vega 

visualization grammar. Step-by-step instructions for using the web application are 

provided in the Supplementary material, covering both OmicScope and Nebula 

workflows. 

3.3.2 Study design and data collection 

For our study, we utilized previously published COVID-19 datasets to run the 

OmicScope pipeline. Crunfli et al. 173 (PXD023781) performed label-free quantitative 

proteomics on Progenesis QI for Proteomics, evaluating 2,278 proteins in post-mortem 

brain tissue from COVID-19 patients. They identified 735 proteins as differentially 

regulated (pAdjusted < 0.05, Supplementary Table 2). This biological relevant dataset 

served as a demonstration for a single analysis in OmicScope, showcasing its ability to 

handle quantitative proteomics data, generate publication quality figures, and perform 

enrichment analysis.  Moreover, we conducted the complete workflow within 

OmicScope using the benchmark dataset supplied by Demichev, and the corresponding 

results can be found in Supplementary Figure 2. Demichev applied Frag-Pipe and DIA-

NN methodologies to analyze data initially published by Meier. Meier's study involved 

spiking 15 ng and 45 ng of Yeast digest into Hela digest (PXD017703). 

To showcase the capabilities of the Nebula module, we combined Crunfli's 

dataset with differentially regulated proteins/genes found by Nie et al. 2021174 and 

Wang et al. 2021175. Nie and colleagues evaluated autopsied tissues from seven organs 

of COVID-19 patients, of which we focused on the liver, the most affected organ 
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according to their findings. Additionally, Wang and colleagues assessed protein and 

RNA levels in lungs from COVID-19 patients, providing differentially regulated genes 

and proteins. Files related to single-study analyses or Nebula workflows are available 

as supplementary files.  

3.3.3 Input and data structure 

OmicScope offers six distinct modules for integrating external data into its 

pipeline, four of which rely on widely used proteomic software for protein identification 

and quantitation: Progenesis Qi for Proteomics, PatternLab V176, MaxQuant177, and DIA-

NN 178 . For alternative sources, the General and Snapshot methods support data 

importing, with Snapshot offering a more concise file format with limited information. 

Additionally, our import methods categorize raw data into three primary matrices: 

assay (protein abundances), phenotype data (metadata or pdata), and row data (protein 

information). Users also have the option to independently import pdata into the 

workflow, replacing original pdata when necessary, to tailor statistical analysis to 

specific needs. Detailed information on input data, method specifications, and data 

structure can be found in the appendix and supplementary table 3. 

3.3.4 Differential Proteomics Analysis – OmicScope Module 

Differential proteomics analysis within the OmicScope workflow is optional, 

contingent on input data. In cases where p-value information is absent, OmicScope prior 

joins technical replicates calculating average protein abundance, followed by filtering 

stage of proteins detected in all conditions. By default, OmicScope applies log2-

transformation for statistical tests. 

OmicScope conducts two data analysis pipelines based on experimental design: 

static and longitudinal. In the static approach, it performs t-tests or Analysis of Variance 

(ANOVA) for two or more conditions, respectively. For longitudinal analysis, 

OmicScope adapted the workflow proposed by Storey in 2005, employing a natural 

cubic spline in a generalized linear model to model gene expression over time179. After 

 
176 Santos et al., “Simple, Efficient and Thorough Shotgun Proteomic Analysis with PatternLab V.” 
177 Cox and Mann, “MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range 
Mass Accuracies and Proteome-Wide Protein Quantification.” 
178 Demichev et al., “DIA-NN.” 
179 Storey et al., “Significance Analysis of Time Course Microarray Experiments.” 
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obtaining nominal protein p-values, OmicScope corrects for multiple hypotheses using 

the Benjamini-Hochberg method180 . Further details on the statistical workflow are 

provided in the appendix. 

The result of differential proteomics analysis, even if previously imported into 

OmicScope, is the quantitative data (quant_data). Quantitative data is a comprehensive 

table containing all protein information available, including gene names, log2-

transformed fold changes, log10-transformed p-values, mean protein abundances across 

conditions, and more. This data serves as the basis for generating figures in the 

OmicScope module and is also employed for enrichment analysis and figures in the 

EnrichmentScope module. 

3.3.5 Enrichment Analysis – EnrichmentScope module 

Enrichment analysis is an integral part of the OmicScope workflow, handled 

within the EnrichmentScope module. This module employs the GSEApy package181 to 

conduct two distinct methods of enrichment analysis: over-representation analysis 

(ORA) and Gene-Set Enrichment Analysis (GSEA). EnrichmentScope leverages data 

from the OmicScope object to query databases provided by the Enrichr API. OmicScope 

currently supports Human, Mouse, Yeast, Fly, Fish, and Worm as target organisms due 

to its dependency on Enrichr182. 

For ORA, EnrichmentScope uses the proteins differentially regulated in the 

OmicScope object as input, employing a Fisher’s exact test against target databases. In 

contrast, GSEA utilizes assay data and phenotype data to determine whether a database 

term is significantly enriched at the top or bottom of a ranked list of genes based on 

their differential regulation. In both cases, EnrichmentScope generates a table 

containing evaluated terms, Benjamini-Hochberg-adjusted p-values, Combined Score 

(ORA) or Normalized Enrichment Score (GSEA), log10-transformed p-values, proteins 

related to each term, and the respective regulation of each protein. 

 
180 Benjamini and Hochberg, “Controlling the False Discovery Rate.” 
181 Zhuoqing Fang, Xinyuan Liu, and Gary Peltz, “GSEApy: A Comprehensive Package for Performing 
Gene Set Enrichment Analysis in Python,” Bioinformatics (Oxford, England) 39, no. 1 (January 1, 2023): 
btac757, https://doi.org/10.1093/bioinformatics/btac757. 
182 Chen et al., “Enrichr.” 
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3.3.6 Multi-Studies Integration – Nebula Module 

The Nebula module within OmicScope facilitates the integration of data from 

independent studies, enabling multi-omics analysis. Input data for Nebula is provided 

by the OmicScope and EnrichmentScope modules. While OmicScope exports 

quantitative analysis, EnrichmentScope exports both quantitative and enrichment 

results. The output is a text file with omics extension, including conditions and 

statistical parameters applied in the respective study. For each analysis conducted in 

OmicScope, one file can be exported and later imported into Nebula. 

To import data into the Nebula workflow, users must place all exports in the 

same directory (or zip file, in web application) and import them collectively. Once 

imported, Nebula divides each file into quantitative and, where applicable, enrichment 

data. Differentially regulated proteins are defined based on a user-defined p-value 

cutoff, consistently applied to all imported data. To ensure reproducibility and 

consistency between OmicScope and EnrichmentScope outputs, Nebula remaps genes 

reported in EnrichmentScope to match the naming and format used in OmicScope data. 

3.3.7 Outputs  

Each module described above offers a unique set of visualization tools tailored 

to specific analyses (see appendix for details). In the OmicScope package, figures are 

primarily generated using matplotlib, seaborn, networkx, and pycirclize183 packages. In 

the web application, plots are generated based on Altair and Vega libraries. This setup 

allows for the export of figures in vectorized formats (e.g., SVG) and high-resolution 

images. Additionally, data used to construct networks can be exported as graphml files, 

compatible with network-specific tools like Cytoscape184 and Gephi185. 

3.4 RESULTS 

3.4.1 Overview 

The OmicScope pipeline includes three primary components: OmicScope, 

EnrichmentScope, and Nebula (Figure 1). Briefly, once quantitative data is inserted into 

 
183  Yuki Shimoyama, “pyCirclize: Circular Visualization in Python,” Python, December 2022, 
https://github.com/moshi4/pyCirclize. 
184 Shannon et al., “Cytoscape.” 
185 Bastian, Heymann, and Jacomy, “Gephi.” 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  73 
 
 

 

the workflow, the OmicScope determines differentially regulated proteins (DRPs). 

These DRPs are then subjected to enrichment analysis using the EnrichmentScope 

algorithm, aiming to elucidate key biological features. Additionally, individual studies 

analyzed using the OmicScope and/or EnrichmentScope algorithms can be exported and 

used as input for Nebula. In Nebula, users can analyze independent studies collectively, 

establishing correlations and identifying shared features across independent results. 

Each component, when activated, generates a set of figures and tables, streamlining user 

interactions for both the package and web application. 

 
Figure 3-1 OmicScope workflow. The OmicScope workflow begins with the import of data from various 
sources, including outputs from proteomics tools and generic formats. Once imported, the OmicScope 
module determines differentially regulated proteins. These proteins are then directed to the 
EnrichmentScope module, which facilitates over-representation and gene-set enrichment analyses. Data 
derived from both OmicScope and EnrichmentScope can be seamlessly used as input for Nebula, a module 
that integrates results from multiple studies using a systems biology approach. Each module within 
OmicScope is equipped with its own visualization toolset and allows for the export of tables, vectorized 
images, and graphml files.  

Proteomics research exhibits substantial diversity in experimental workflows, 

including mass spectrometer selection, acquisition modes, fragmentation methods, and 

quantitative approaches. This inherent diversity requests a wide array of software tools 

for protein identification and quantitation, each with its strengths and limitations, 

leading to interoperability challenges186. 

 
186 Chen Chen et al., “Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis,” 
International Journal of Molecular Sciences 21, no. 8 (April 20, 2020): 2873, 
https://doi.org/10.3390/ijms21082873; Bantscheff et al., “Quantitative Mass Spectrometry in Proteomics.” 
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To address these challenges, OmicScope offers six data import methods (See 

Methods, Appendix and Figure 1), including four tailored to widely adopted proteomic 

software: MaxQuant, PatternLab V, DIA-NN, and Progenesis QI for Proteomics. These 

methods seamlessly import outputs from respective software considering their unique 

characteristics. 

For software not yet integrated into OmicScope, the "General" method allows 

users to create custom spreadsheets for input into the OmicScope pipeline. This method 

accepts generic expression files, making OmicScope compatible with data from various 

omics platforms, such as genomics and transcriptomics. “General” method is able to 

perform differential proteomics analysis or import existing statistical analyses based on 

imported spreadsheet. 

Aiming to provide an import method that joins succinctness, simplicity, and 

speed, we implemented "Snapshot" method, in which the users can import proteomics 

results containing assessed proteins, along with their associated fold changes and 

statistical outcomes. While Snapshot presents certain limitations concerning the 

number of plots that can be generated (Supplementary Table 3), this method 

substantially improves interoperability across studies, especially given that many 

studies typically provide restricted information from their analyses, as demonstrated in 

the cases of Nie 2021 and Wang 2021. 

3.4.2 OmicScope: the core module 

The central module of OmicScope shares the same name as the tool described 

herein. This module plays a pivotal role in data organization and filtration, as well as in 

conducting differential proteomics analysis, defining differentially regulated entities, 

and generating ready-to-publish figures (Figure 2A). 

To provide maximum versatility, pre-filtering and statistical steps are optional 

within the OmicScope pipeline. When no statistical results are provided, OmicScope 

autonomously conducts statistical analysis, filtering data based on pre-specified 

parameters and selecting the most suitable statistical tests based on the data architecture 

(see Appendix section for details). This flexible architecture accommodates various 

experimental designs, including static and longitudinal approaches. In static cases, 

comparisons between independent groups are typically made using t-tests for binary 

comparisons or One-way ANOVA for more than two independent conditions. In 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  75 
 
 

 

longitudinal analyses, OmicScope employs the Storey approach187, considering that 

differentially regulated genes vary over time based on natural cubic splines. In this 

longitudinal approach, statistical evaluations consider both within-group and between-

group comparisons. Once nominal p-value is calculated, OmicScope performs 

Benjamini-Hochberg multiple hypothesis correction 188 . By default, OmicScope 

designates proteins as differentially regulated if their adjusted p-value is below 0.05, 

although users can define other parameters, such as fold-change and nominal p-value 

cutoffs (Figure 2A). 

OmicScope module offers a visualization toolkit for data overviewing, 

clustering, and protein-specific features (Supplementary figure 1). In the overview 

category, users can generate bar plots, volcano plots, MA-plots, and dynamic range 

plots, facilitating the visualization of data distribution and normalization, providing 

initial insights into the dataset. The clustering category includes functions for 

hierarchical clustering, principal component analysis (PCA), and K-means clustering, 

allowing users to compare samples based on protein abundances and assess sample 

clustering. In this category, users can select various metrics and calculation methods to 

perform the data clustering. Lastly, protein-specific category aims to extract deeper 

insights about selected proteins, using bar plots and box plots. In this category, 

OmicScope also includes an integration with STRING API, providing a protein-protein 

interaction network of differentially regulated proteins. 

To demonstrate the capabilities of OmicScope, we employed previously 

published COVID-19 studies as illustrative examples (refer to the Methods section for 

details). These studies employed quantitative proteomics and transcriptomics to 

investigate SARS-CoV-2's effects on various tissues.  Specifically, we conducted a single 

analysis example, showcasing both differential proteomics and enrichment analysis, 

using proteins quantified by Crunfli189 in the brain tissue of patients who succumbed to 

SARS-CoV-2 complications. In this study, the authors meticulously detailed the 

processing parameters and furnished quantitative outputs from the analysis, ensuring 

 
187 Storey et al., “Significance Analysis of Time Course Microarray Experiments.” 
188 Benjamini and Hochberg, “Controlling the False Discovery Rate.” 
189 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients.” 
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reproducibility, and enabling result comparisons. For multi-study integration, we 

incorporated data from Crunfli, Nie190, and Wang191 studies.  

Crunfli's dataset was imported into OmicScope with default parameters, 

filtering out contaminants192, and resulting in the identification of 721 differentially 

regulated proteins (Figure 2B). After OmicScope defines the differentially regulated 

proteins, proteomics figures can be generated using a dedicated function for each plot 

type. For scatter plots and heatmaps, users can specify gene names as arguments to 

highlight specific target proteins (as demonstrated in Figure 2C). Additionally, for 

clustering analyses, users optionally can set a p-value cutoff to filter proteins and 

conduct analyses based on statistical significance (Figure 2D). 

In Crunfli’s dataset, for instance, we selected the MAPK family, including 

MAPK1, MAPK14, and MAPK9, all of which showed upregulation in SARS-CoV-2 

infection compared to the control group (Figure 2E).  Moreover, the protein-specific 

category includes a function for exploring protein-protein interactions (PPIs) by 

querying the STRING database 193 . In this network analysis, users can identify 

communities based on the Louvain algorithm194 and filter data based on protein p-

values and/or specific proteins.  In our analyzes, we filtered proteins based on a p-value 

threshold (pAdjusted < 0.005), applied the Louvain algorithm to conduct modularity 

analysis, and exported the data to facilitate data visualization (Figure 2F). 

While the Crunfli dataset offers advantages for our pivotal analysis, it does 

pose a limitation due to the relatively small number of evaluated proteins in the study. 

To address this, we expanded our analysis by utilizing the OmicScope workflow with a 

quantitative proteomics dataset provided by Meier 195  and Demichev 196 . Meier 

introduced two distinct concentrations of Yeast digest into 200 ng of HeLa digest, while 

 
190 Nie et al., “Multi-Organ Proteomic Landscape of COVID-19 Autopsies.” 
191 Wang et al., “A Single-Cell Transcriptomic Landscape of the Lungs of Patients with COVID-19.” 
192 Ashley M. Frankenfield et al., “Protein Contaminants Matter: Building Universal Protein Contaminant 
Libraries for DDA and DIA Proteomics,” Journal of Proteome Research 21, no. 9 (September 2, 2022): 2104–
13, https://doi.org/10.1021/acs.jproteome.2c00145. 
193 Szklarczyk et al., “The STRING Database in 2021.” 
194 Traag, Waltman, and van Eck, “From Louvain to Leiden.” 
195 Florian Meier et al., “diaPASEF: Parallel Accumulation–Serial Fragmentation Combined with Data-
Independent Acquisition,” Nature Methods 17, no. 12 (December 2020): 1229–36, 
https://doi.org/10.1038/s41592-020-00998-0. 
196 Vadim Demichev et al., “Dia-PASEF Data Analysis Using FragPipe and DIA-NN for Deep Proteomics 
of Low Sample Amounts,” Nature Communications 13, no. 1 (July 8, 2022): 3944, 
https://doi.org/10.1038/s41467-022-31492-0. 
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Demichev employed Frag-Pipe and DIA-NN workflows, resulting in the evaluation of 

over 12,000 proteins, specifically identifying differentially regulated proteins from the 

yeast digest. Through OmicScope, we pinpointed proteins highlighted by the authors 

exhibiting two distinct expression profiles, emphasizing differential abundance among 

yeast protein concentrations (Supplementary figure 2). These outcomes highlight 

OmicScope's capacity to handle varying data formats and sizes, performing a robust 

analysis of differential proteomics. 
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Figure 3-2 OmicScope provides a robust platform for differential proteomics analysis and comprehensive data 
visualization. A) OmicScope offers various data import methods, including established software and 
generic approaches. Once data is successfully imported, OmicScope defines data architecture, performs 
differential proteomics analysis, filters data, identifies differentially regulated proteins (DRPs), and 
generates tables, figures, and exports. B-E) Illustrative figures generated by OmicScope: B) Bar plot 
displaying the count of identified proteins and DRPs. (C) Volcano plot with accompanying density plot 
highlighting the top 10 DRPs based on Adjusted p-value. D) Heatmap of DRPs with Adjusted p-value less 
than 0.002, with colors representing log2(fold-change). COVID-19 patients and controls are denoted as 
dark cyan and purple, respectively. E) Boxplot depicting the abundance of proteins identified from the 
MAPK family. F) Protein-protein interaction network generated by OmicScope with DRPs having an 
Adjusted p-value less than 0.005. In the left graph, proteins are colored based on log2(fold change), while 
the right graph represents proteins colored according to their communities identified using Louvain 
algorithms.  
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3.4.3 EnrichmentScope: enhancing biological insights 

One of the critical and challenging aspects of omics studies is extracting 

meaningful biological insights from hundreds or even thousands of differentially 

regulated entities. A commonly applied method for this purpose is enrichment analysis, 

wherein experimental gene or protein sets are compared against pre-established 

datasets, which may encompass biological pathways, molecular functions, kinase-

associated genes, and other relevant categories. EnrichmentScope addresses this 

challenge by furnishing specialized enrichment analysis capabilities. 

After executing the OmicScope module, users can proceed to perform 

enrichment analysis on EnrichmentScope module, specifying between two approaches: 

Over-Representation Analysis (ORA, conventional enrichment) or Gene-set 

Enrichment Analysis (GSEA). Then, users must select specific databases, choosing 

between the 224 libraries offered by Enrichr197 . Noteworthy, EnrichmentScope can 

optionally consider more stringent background, using all proteins identified in the study 

for enrichment analysis. Once the analysis is performed, the module provides a result 

table and a toolkit of visualization functions, including the ability to export quantitative 

and enrichment data (Figure 3A, Supplementary Figure 3). 

EnrichmentScope offers effective visualization tools like dot plots, facilitating 

the assessment of enrichment statistics and the number of proteins considered for 

enrichment (Figures 3B–C). Users can select top enriched terms based on adjusted p-

values to identify relevant biological processes (Figure 3B). Another dot plot option 

allows users to explore protein regulation in depth, illustrating the number of 

differentially regulated proteins and splitting in up- and down-regulation in each 

enriched term (Figure 3C). In Crunfli's study, for instance, the top 10 enriched terms 

using KEGG Database were filtered, and pathways related to neurodegenerative 

diseases were selected, showing the ratio of up- and down-regulated proteins (Figures 

3B–C). 

EnrichmentScope also generates heatmaps and network graphs, both linking 

enriched terms to respective proteins (Figure 3D-E). These visualizations reveal protein 

fold changes and proteins overlap among groups, shedding light on key factors in 

biological events. In the previously chosen pathways, proteins related to processes such 

 
197 Chen et al., “Enrichr.” 
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as the proteasome, electron transport chain, and cytoskeleton were shared across all 

neurodegenerative processes, offering insights into the effects of SARS-CoV-2 on 

COVID-19 patients (Figure 3E). Following this analysis, users can further investigate 

proteins of interest within the OmicScope module using functions like box plots, 

protein-protein interaction networks, and more. 

A challenge encountered in enrichment analysis is dealing with data 

redundancy, particularly prevalent in hierarchical databases such as Reactome198 and 

Gene Ontology199, which can lead to an overwhelming amount of information, as many 

pathways indicate a similar biological function (Supplementary Figure 4). To address 

this limitation, EnrichmentScope apply systems biology approach similar to what is 

proposed by EnrichmentMap, wherein enrichment terms are represented as nodes 

within a network200 (Figure 3F). The enrichment map is created by calculating pairwise 

Jaccard similarity indices, considering genes shared between enriched terms (See 

appendix). By default, EnrichmentScope establishes links between terms when the 

Jaccard Similarity Index exceeds 0.25, enabling graph construction. Additionally, 

EnrichmentScope automatically searches for communities within the enrichment map, 

labeling nodes (terms) that present highest intra-module degree. Besides providing a 

cleaner representation of the network, this strategy also simplifies information 

extraction, reduces data redundancy without omitting any data, and aids in selecting 

targets for further experimental validation (Figure 3F). 

 
198 Gillespie et al., “The Reactome Pathway Knowledgebase 2022.” 
199 Michael Ashburner et al., “Gene Ontology: Tool for the Unification of Biology,” Nature Genetics 25, no. 
1 (May 2000): 25–29, https://doi.org/10.1038/75556. 
200  “Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and 
Interpretation | PLOS ONE,” accessed October 1, 2023, 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013984. 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  81 
 
 

 

 
Figure 3-3 EnrichmentScope employs a systems biology approach for enrichment analysis based on data 
provided by OmicScope. A) EnrichmentScope performs Over-represented analysis (ORA) or Gene Set 
Enrichment Analysis (GSEA) using Enrichr libraries. B-F) Depiction of figures generated using the 
EnrichmentScope module: B) Dot plot illustrating the top 10 enriched terms in the analysis. C) Dot plot 
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showcasing the count of up- and down- regulated proteins in terms related to neurodegenerative diseases. 
D) Heatmap of differentially regulated proteins associated with terms from C. E) Network connecting 
enriched terms with their respective proteins, colored based on foldchange. The labeled proteins are 
shared among all processes. F) Enrichment map displaying all enriched pathways, colored by modules 
defined using the Louvain algorithm. Term labels were determined based on intra-module connectivity 
and p-value. 

3.4.4 Nebula: from singular studies to meta-analysis 

The advent of Omics platforms has exponentially increased the accumulation 

of data over the years, driving scientists to develop tools capable of comparing 

independent studies or even integrating experiments in a multi-omics fashion. 

Therefore, OmicScope introduces the Nebula module, designed to enhance data 

integration, interpretability, and comparison between studies. 

The Nebula workflow utilizes the outputs of OmicScope/EnrichmentScope for 

data integration and visualization. These outputs have the extension ".omics" and can 

be generated by running the OmicScope module, which returns quantitative data, or the 

EnrichmentScope module, which provides both quantitative and enrichment results. For 

each independent analysis, one of these previously described modules must be executed, 

and Nebula will read each output file to compile them into a unified object. Once the 

files are imported into Nebula, a set of visualization functions becomes available for 

conducting studies comparisons at the protein and/or enrichment levels (Figure 4A, 

Supplementary figure 5). 

To demonstrate Nebula's capabilities, we used data from Crunfli 2022, Nie 2021, 

and Wang 2021. These selected studies assessed the effects of SARS-CoV-2 on patients' 

tissues, with Crunfli examining proteomic signatures in the brain, Wang evaluating 

proteomics and transcriptomics effects in the lungs, and Nie reporting the liver as the 

most affected organ in proteomics terms. In Nie's and Wang's studies, the authors just 

provided differentially regulated proteins and genes, enabling the application of the 

Snapshot method for over-representation analysis (Figure 4B). 
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Figure 3-4 Nebula, the multi-omics integrative module, compares independent studies utilizing data outputs 
from OmicScope and EnrichmentScope. A) Nebula facilitates comparative analysis of independent studies 
based on OmicScope and EnrichmentScope outputs. B-H) Figures generated using Nebula: B) Bar plot 
depicting the count of whole (gray) and differentially regulated proteins/genes (colored) across various 
studies, as well as the combined count. C) Dot plot showing the count of up-regulated and down-
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regulated entities. D) Top 10 enriched pathways according to the KEGG database for all organs. E-F) 
Upset plots for E) proteins and F) enrichment terms, illustrating overlapping sizes among conditions. G) 
Circular plot displaying all differentially regulated proteins and their shared relationships among 
evaluated groups (cyan links), along with shared enrichment terms among groups (black links). Each 
protein is annotated with its respective foldchange. H) Circular plot depicting proteins differentially 
regulated in Oxidative phosphorylation among studies, with accompanying foldchange values. 

Nebula's pipeline supports various plots that facilitate the simultaneous 

comparison of all target groups. Bar plots and dot plots offer an initial overview of the 

groups by comparing the number of proteins and pathways evaluated in each condition, 

serving as initial steps in establishing associations between studies (Figures 4B-D). In 

the selected datasets, the lungs exhibited the highest number of differentially regulated 

proteins and genes, followed by the liver and brain (Figure 4B). Utilizing the Nebula 

integrative analysis approach, we noteworthy all examined tissues presents a consistent 

elevated number of up-regulated entities when compared to down-regulated 

counterparts (Figure 4C).  When filtering enrichment terms to highlight the top 10 

pathways identified in each condition, Nebula can pinpoint several potential pathways 

worthy of further investigation (Figure 4D). 

To delve deeper into comparisons, Nebula offers tools for examining overlaps 

at both protein and enrichment levels. While Venn diagrams are commonly used for 

visualizing overlaps, they have limitations when comparing more than four conditions, 

producing illegible plots (Supplementary Figure 6). To overcome this limitation, Nebula 

includes circus plots and upset plots in its pipeline (Figure 4E-F). In the Upset plot201, 

each condition is depicted in a row, while columns illustrate non-zero intersections 

exclusively among the labeled groups specified in the frame (Figure 4E-F). The 

advantage of the Upset plot lies in its readability and the absence of limitations 

regarding the number of groups analyzed. In the example datasets, only 19 proteins and 

genes exhibited dysregulation in all tissues, whereas the largest overlap encompassed 

467 differentially regulated proteins between the lung and liver proteomes (Figure 4E). 

On the other hand, when examining overlaps in enrichment terms, the highest overlap 

was found between brain and lung proteomes, with 34 terms exclusively shared 

between these two tissues. 

 
201 Alexander Lex et al., “UpSet: Visualization of Intersecting Sets,” IEEE Transactions on Visualization and 
Computer Graphics 20, no. 12 (December 2014): 1983–92, https://doi.org/10.1109/TVCG.2014.2346248. 
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In addition to the Upset plot, Nebula can also perform comparisons across 

groups using circular plots. In this plot, Nebula links each group with lines, with each 

link representing a protein that overlaps between those conditions. Each protein also 

displays its respective fold change in the respective study, generating a circular 

heatmap. This circular plot complements the Upset plot by providing a view of the 

proportion of up- and downregulated proteins shared among groups. As expected, in 

the studies under evaluation, the major shared proteins were up-regulated (Figure 4-G). 

Nebula also offers a three-dimensional interpretation of data, considering 

groups, proteins, and enrichment terms simultaneously. In the "circular_term" function, 

the user specifies an enrichment term to be searched in all datasets, followed by the 

filtering of proteins associated with those terms in each study. Nebula then generates a 

circular plot that connects study and proteins, color-coding proteins based on their 

respective fold changes per group. In the example datasets, "oxidative phosphorylation," 

enriched in all studies, was chosen to demonstrate that major proteins in this pathway 

were indeed up-regulated in all organs (Figure 4H). 

Nebula's array of visual representations also comprises network and statistical 

analyses. Similar to the methodology employed in EnrichmentScope, Nebula generates 

a graphical representation that establishes connections between groups and their 

corresponding differentially regulated proteins, which also can be exported to third-

party software tools (Figure 5A). 

Two other systems biology strategies employed by Nebula to assess the 

similarity between studies in a pairwise fashion are similarity analysis and Fisher's exact 

test. In pairwise similarity analysis, Nebula computes similarity indices using the 

Jaccard algorithm by default across the target studies202. Nebula is also capable of using 

different correlational metrics, like Pearson, Euclidean, and others, to calculate the 

similarity index using protein fold change. On the other hand, in pairwise Fisher's exact 

tests Nebula compares the overlap between studies by considering the entire set of 

imported proteins as the background, which results in pairwise p-values. Similar to 

conventional enrichment analysis, users can optionally specify alternative background 

sizes, such as the number of reviewed proteins in a specific organism according to the 

 
202  “Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and 
Interpretation | PLOS ONE.” 
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Uniprot database. The results from both the similarity and Fisher's analysis can be 

visualized using heatmaps and graphs. In the network representation, each node 

represents a group, while links are depicted as either similarity indices or p-values, 

filtered based on pre-defined thresholds (Figure 5 B-C).  

In the example discussed here, differentially regulated proteins from the four 

groups were compared using the Fisher's Exact Test approach, utilizing the reviewed 

human proteome database as the background (proteome size: 20,423 proteins). The 

heatmap showcases all pairwise p-values generated in this analysis (Figure 5B), whereas 

the network representation filters p-values below 0.05 and connects each group 

accordingly, using log10(p-value) to link groups (Figure 5C). This analysis effectively 

illustrates the relationship between the Liver and Lung proteomes, as previously 

observed in the Upset plot, while also highlighting associations between the other 

proteome datasets. 

 
Figure 3-5 Systems Biology Approach with Nebula. A) Nebula employs a systems biology approach, 
presenting proteins differentially regulated for each study as networks, enabling a detailed exploration 
of shared proteins among groups. B) Differentially regulated proteins can be used to compare the 
independent studies in a pairwise manner using Fisher's Test or similarity indices, with a heatmap 
displaying each pairwise result. Users have the option to define background size or utilize the sum of all 
identified genes in among conditions as background for Fisher’s Test. C) Based on results from similarity 
indices or Fisher's Test, users can generate a network, linking studies that share similar under specified 
thresholds. 

3.4.5 User Interface and output flexibility  

OmicScope is designed to cater to the diverse needs of the proteomics 

community, offering both code-based and user-friendly options for data analysis. The 

code is freely available on the PyPI repository under the MIT License, allowing 

experienced programmers and bioinformaticians to contribute and enhance its 
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capabilities. For non-programmer users, OmicScope is accessible as a Streamlit app 

(https://omicscope.ib.unicamp.br), providing a user-friendly interface with a high level 

of interactivity, making it easy for users to interact with the generated plots.  

Furthermore, all OmicScope platforms prioritize the reporting of proteomics 

results to the scientific community. Figures can be exported in a vectorized manner, 

data used for all plots can be easily obtained, and networks can be exported to third-

party software using the universal graphml file format. 

3.5 DISCUSSION 

Alongside the maturation of the field of MS-based Proteomics the field has 

witnessed the evolution of mass spectrometers, leading to enhanced resolution, 

sensitivity, and consequently, the capability to identify thousands of proteins. In 

response to these advancements, the field of computational analysis has progressed in 

parallel with technological advancements, offering robust methods for protein 

identification and quantification. The ability to assess thousands of proteins in a single 

experiment generates extensive datasets that necessitate a systems-level approach for 

meaningful interpretation. In this context, OmicScope was not designed to replace 

existing specialized tools but to function as a versatile pipeline capable of harnessing 

the powerful features of various analysis platforms. Its primary objective is to facilitate 

effective, integrative, and snapshot downstream analysis of proteomics datasets.  

Here, we evaluated nine pipelines commonly used for downstream proteomics 

analysis (Supplementary Table 1). Our findings underscore the need for more 

integrative tools equipped to handle the diversity and complexity of proteomics data. 

While PatternLabV 203  and Progenesis QI for Proteomics were included in our 

comparison due to their capacity for differential expression analysis and related 

visualizations, their primary function revolves around protein identification and 

quantitation from raw MS files. On the other hand, MSstats204 stands out by including 

a wide array of proteomics search engines, encompassing nine distinct tools that can be 

seamlessly integrated into its pipeline. Another noteworthy candidate, 

 
203 Santos et al., “Simple, Efficient and Thorough Shotgun Proteomic Analysis with PatternLab V.” 
204  “MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic 
Experiments with Chromatography-Based Quantification at Scale | Journal of Proteome Research.” 

https://omicscope.ib.unicamp.br/
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AlphaPeptStats205, offers compatibility with inputs from four different tools and even 

accommodates the generic mzTab format, ensuring versatility for users. Similarly, 

OmicScope also provides four import methods based on quantitative proteomics 

engines. However, OmicScope distinguishes itself by offering two generic methods, the 

General and Snapshot approaches. This flexibility allows integration and analysis of 

data from other omics platforms, including genomics and transcriptomics, and 

facilitates the straightforward incorporation of previously reported data, which is often 

presented in a more concise format. 

OmicScope offers distinct advantages compared to the other software tools 

mentioned in this study. While DEP, MSPypeline, and MSstats primarily rely on R 

architecture and offer diverse linear models for differential proteomics analysis, and 

InfernoRDN, Pattern Lab V, Perseus, Progenesis, and AlphaPeptStat utilize t-tests and 

ANOVA for statistical analysis, OmicScope combines frequentist and probabilistic 

approaches to address both static and longitudinal experimental designs. 

In static analyses, OmicScope employs t-tests or one-way ANOVA to 

effectively identify differentially regulated proteins among two or more conditions, 

ensuring robust results in various scenarios. On the other hand, while performing 

longitudinal analysis, OmicScope employs the Storey methodology, incorporating a 

generalized linear model and considering gene variability over time through natural 

cubic splines. This approach allows OmicScope to investigate within- and between-

group variations comprehensively, providing a more nuanced understanding of the 

data. Additionally, OmicScope employs the Benjamini-Hochberg method to correct p-

values, effectively controlling false discovery rates. This ensures a higher level of 

statistical rigor, minimizing the risk of false positives in the results. Overall, 

OmicScope's ability to adapt to both static and longitudinal designs while offering a 

powerful and accurate statistical framework makes it a versatile choice for differential 

proteomics analysis. 

In our survey of existing tools, we observed that only four applications 

incorporate enrichment analysis within their workflows. Perseus, MsPypeline, and 

AlphaPeptStat support over-representation analysis, though Perseus requests the 

download of target databases for to perform ORA. In contrast, MSPypeline and 

 
205 Krismer et al., “AlphaPeptStats.” 
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AlphaPeptStat are limited in their capacity to enrich data with a restricted number of 

databases. Moreover, the DEP package primarily focuses on Gene Set Enrichment 

Analysis, employing the Enrichr API to encompass an extensive array of databases for 

the enrichment analysis. In line with DEP, OmicScope harnesses the vast resource of 

224 databases available in Enrichr. Notably, OmicScope goes a step further by 

implementing both Over-Representation Analysis (ORA) and Gene Set Enrichment 

Analysis (GSEA) algorithms. Beyond the analysis itself, OmicScope offers a rich set of 

innovative visualization features, including network analysis, heatmaps, and dot plots. 

These visualization tools serve a dual purpose: they enhance the presentation of 

enrichment analysis statistics and incorporate protein fold-change data, facilitating a 

deeper integration between proteomics and enrichment results, providing a broader 

overview of the entire landscape of changes within the system. 

In addition to the conventional proteomics workflow, the integration of results 

with independent and orthogonal datasets has emerged as a valuable strategy to 

mitigate false discovery rates206. While the Perseus workflow stands out for its capacity 

to facilitate multi-study and multi-omics comparisons, other evaluated tools often 

require the use of third-party software and packages to perform additional analyses. 

OmicScope introduces the Nebula module, specifically designed for multi-study 

comparisons. Nebula empowers users with innovative visualization strategies that 

facilitate both an overall view and pairwise comparisons of target studies. While Venn 

diagrams are conventionally employed to distinguish sets of proteins, they are 

constrained by the limited number of sets that can be simultaneously analyzed 207 . 

Nebula effectively addresses this limitation by introducing Upset plots and circular plots 

that provide insights into overlapping protein sets and the corresponding fold changes 

observed in each study. Additionally, the Nebula workflow extends to network analysis 

for group comparisons, featuring Fisher’s exact test and similarity indices that highlight 

relationships between target studies. 

To cater to the diverse community of proteomics researchers, several software 

tools incorporate a Graphical User Interface (GUI) alongside their primary packages. 

 
206 Tripathi et al., “Meta- and Orthogonal Integration of Influenza ‘OMICs’ Data Defines a Role for UBR4 
in Virus Budding.” 
207 Lex et al., “UpSet.” 
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DEP, MSPypeline, and AlphaPeptStats offer both command-line and GUI, ensuring 

accessibility for users across a range of technical backgrounds. Similarly, OmicScope 

provides both a Python package and a web application 

(https://omicscope.ib.unicamp.br) for running OmicScope, EnrichmentScope, and 

Nebula modules. While the web application delivers the interactivity necessary for data 

analysis and interpretation, the Python package enhances flexibility by facilitating 

integration with other pipelines and allowing developers to contribute updates to input 

formats and algorithms. Furthermore, both the web application and Python package 

support data export in various formats, including tables containing all information 

required for generating figures and graphml files that enable network visualization in 

third-party software, such as Cytoscape208. 

In conclusion, OmicScope has been meticulously crafted to empower 

experimentalists for the comprehensive analysis and interpretation of proteomics 

datasets. Our tool guides proteomics researchers in intricate biological questions, 

unraveling drug mechanisms of action, and elucidating molecular pathways of 

disorders. OmicScope stands as an open-access resource, readily available at 

https://omicscope.ib.unicamp.br and can be conveniently downloaded from the PyPI 

repository. 

3.6 APPENDIX 

3.6.1 Data organization and input methods. 

To ensure versatile compatibility with various data formats, OmicScope adopts 

the data organization approach outlined by Morgan et al. in 2023209, which divides data 

into three primary components: assay, pdata (metadata and phenotype data), and rdata 

(comprising information regarding proteins), as visually depicted in Supplementary 

Figure 7. 

The assay represents the abundance matrix A, with dimensions i x j, where i 

denotes the number of proteins, and j represents the number of samples. Meanwhile, 

the rdata is a compound matrix R, with dimensions i x r, where r indicates the number 

 
208 Shannon et al., “Cytoscape.” 
209 Martin Morgan et al., “SummarizedExperiment: SummarizedExperiment Container” (Bioconductor 
version: Release (3.17), 2023), https://doi.org/10.18129/B9.bioc.SummarizedExperiment. 

https://omicscope.ib.unicamp.br/
https://omicscope.ib.unicamp.br/
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of compound features, such as Accession, gene name, and p-value. Pdata is the sample 

matrix P, with dimensions j x p, where p refers to the number of columns describing 

samples. 

In order to ensure seamless integration within OmicScope, data terminologies 

have been standardized among the import methods. Additionally, each import method 

incorporates suggestions previously reported by the respective authors in their 

publications210. 

- Progenesis Qi for proteomics: Progenesis exports a .csv file containing all the 

necessary information for the OmicScope pipeline. The assay data corresponds to 

normalized abundance levels, while rdata includes all available information about 

proteins. Pdata is extracted from columns located below the "Normalized 

Abundance" label. Due to the simplicity of data exported by Progenesis, OmicScope 

also accommodates Excel files (with extensions .xls or .xlsx) containing unique 

sheets. 

- MaxQuant: MaxQuant exports the "proteinGroups.txt" file, which provides a 

comprehensive description of the assay and rdata. While importing these data, 

OmicScope filters out reverse proteins and contaminants, and selects the abundance 

based on the 'LFQ intensity' columns. As pdata is missing in the "proteinGroups" 

file, OmicScope necessitates additional pdata to define biological conditions and 

execute the statistical workflow. 

- DIA-NN: DIA-NN exports the "main output," which contains a comprehensive 

description of the assay and rdata. During the import process, OmicScope filters 

reverse proteins and contaminants and selects the abundance based on 'MaxLFQ.' 

Similar to MaxQuant, additional pdata is required to define biological conditions 

and perform the statistical workflow. 

- PatternLab V: PatternLab exports an Excel file that contains assay, pdata, and 

rdata. The assay is extracted from the "Proteins" sheet, which includes XIC-based 

protein quantitation. OmicScope normalizes protein abundance based on 

information provided in the PatternLab output and filters out identified reverses 

 
210 Cox and Mann, “MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range 
Mass Accuracies and Proteome-Wide Protein Quantification”; Tyanova and Cox, “Perseus”; Demichev et 
al., “DIA-NN”; Santos et al., “Simple, Efficient and Thorough Shotgun Proteomic Analysis with PatternLab 
V.” 
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and contaminants. Finally, rdata consists of additional information about proteins 

presented in the "Proteins" sheet, and pdata is constructed based on the "Class 

Description" sheet. 

- Snapshot: The Snapshot method is a simplified version of other methods and 

comprises an Excel spreadsheet containing information about the studied 

conditions and four additional columns (accession, gene name, log2-transformed 

fold-change, and p-value), as shown in Supplementary Figure 8. Optionally, users 

can also add a "TotalMean" column containing the abundance mean for each 

protein. 

- General: General is an OmicScope method that enables the analysis of data 

generated from other sources. Users are required to construct an Excel file 

containing three sheets: assay, rdata, and pdata (Supplementary Figure 9). 

1. Assay: This represents the abundance matrix. The assay columns must be 

named according to the samples described in pdata, and the number of rows 

must match the number in rdata. 

2. Rdata: Rdata contains information about proteins/genes. Users must 

ensure the existence of two columns: "Accession" and "Description." 

"Accession" contains the protein identifier, while "Description" contains 

protein FASTA header. Optionally, users can add other protein features, 

including differential proteomics results, which must be labeled naming 

columns with "pvalue" or "pAdjusted". The number of rows in rdata must 

match the rows in the assay.  

3. Pdata:  Pdata contains information about the samples evaluated in the 

study. Users must ensure the existence of three columns: "Sample", 

"Condition", and "Biological". The "Sample" column should contain names 

that match with assay data, "Condition" specifies the conditions to be 

compared (e.g. "Control" and "Treatment"), and "Biological" refers to the 

number labeling biological replicates among samples. 

For longitudinal experimental design, additional columns can be included to 

facilitate statistical analysis (Supplementary Figure 10). It is mandatory to 

insert the "TimeCourse" column to annotate the respective sample time-point. 

In cases where related sampling is performed, such as when the same 
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individual is sampled over time, an "Individual" column must be added to 

pdata. Noteworthy, in longitudinal experiments, "Biological" considers an 

individual at a specific time-point. 

During data import, users can specify various parameters to fine-tune the 

OmicScope functions, such as control group selection, experimental design, p-value and 

fold-change cutoffs, log2-transformation, nominal or adjusted p-values to define 

differentially regulated proteins, and degrees of freedom (exclusive for longitudinal 

analysis). Furthermore, OmicScope allows users to filter out contaminants from the 

analysis using the Frankenfield 2022 list of the most commonly found protein 

contaminants211. 

3.6.2 Differential Proteomics Analysis 

In the OmicScope differential proteomics workflow, users have the option to 

import previous statistical results or execute the OmicScope statistical pipeline. When 

importing previous results, OmicScope searches in rdata for columns that may represent 

statistical analysis, such as "pvalue," "qvalue," and "p-Adjusted" columns. If OmicScope 

identifies any of these terms, the algorithm utilizes the previous statistical analysis to 

define result data, known as quantitative data, or "quant_data." Subsequently, 

OmicScope determines differentially regulated proteins based on the filtering 

parameters specified by users. 

While performing statistical workflow, OmicScope considers the pdata matrix 

and/or user-defined parameters to perform the appropriate experimental design. 

Initially, the algorithm calculates the mean abundance level among biological replicates 

for each protein. This is followed by a filtering stage where proteins are selected if they 

are detected in at least one sample for each analyzed condition. Users also can disable 

log2-transformation to perform statistical analysis. 

OmicScope provides two workflows for statistical analysis: static and 

longitudinal (Supplementary Figure 11). For static analysis, OmicScope assumes a 

normal distribution between groups, homogeneity of variances, and group 

independence. Based on these assumptions, OmicScope performs an independent T-test 

or Analysis of Variance (ANOVA) for two or more groups, respectively. Alternatively, 

 
211 Frankenfield et al., “Protein Contaminants Matter.” 
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based on user-input parameters, users can perform a paired t-test, assuming related 

observations, independence of differences, and a normal distribution. Additionally, for 

ANOVA analysis, post-hoc tests have been implemented, in which proteins with 

pAdjusted values less than a specified threshold undergo a Tukey-HSD test for pair-

wise comparison between groups. It is important to note that due to the pair-wise 

comparison, the Tukey-HSD test may take some time to complete the analysis. 

In the longitudinal workflow, OmicScope assesses whether protein abundance 

varies over time. To achieve this, the workflow adapts the method suggested by Storey 

in 2005212, in which gene expression is modulated according to a natural cubic spline in 

a generalized linear model. The Storey method takes into account differential 

proteomics considering within- and between-group analysis, defining differentially 

related proteins based on expression over time or through a comparison between 

groups. 

Once nominal p-values have been calculated for either longitudinal or static 

approaches, OmicScope performs a multiple hypothesis correction according to the 

Benjamini-Hochberg method213. OmicScope then calculates the fold change for each 

protein among groups, performs log2-transformation on fold change and p-value, and 

finally generates quantitative data results for plotting figures and performing 

enrichment analysis.  

3.6.3 Figures toolset 

OmicScope offers a comprehensive set of data visualization tools that have 

been specifically designed to emphasize key data results. Moreover, OmicScope, 

EnrichmentScope, and Nebula provide unique setups for figures that can be plotted, and 

all available figure options can be saved in scalable vector graphics (SVG) or PNG 

formats. For functions involving graphs, OmicScope exports a graphML file that can be 

imported into other specialized software, such as Cytoscape214 or Gephi215. 

 
212 Storey et al., “Significance Analysis of Time Course Microarray Experiments.” 
213 Benjamini and Hochberg, “Controlling the False Discovery Rate.” 
214 Shannon et al., “Cytoscape.” 
215 Bastian, Heymann, and Jacomy, “Gephi.” 
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3.6.3.1 OmicScope-class figures  

Within the OmicScope class, figures can be categorized into three distinct 

types: overview, clustering, and protein-specific. 

In the overview category, data can be visualized in terms of protein 

abundances, fold changes, and statistical significance. OmicScope offers volcano, MA, 

and dynamic range plots to visualize data normalization and distribution. The volcano 

plot presents both fold changes (x-axis) and statistical significance (y-axis) in log-scale. 

The MA plot displays protein fold change (y-axis) against its average (x-axis), and the 

dynamic range plot focuses on proteome coverage, showing ranked proteins (x-axis) 

and their respective abundance (y-axis). When conducting multiple group comparisons, 

the volcano plot and MA plot present only positive axes for fold changes and include a 

legend showing the respective comparisons, addressing the data's multidimensionality. 

In the clustering category, OmicScope implements three clustering algorithms 

to demonstrate how proteins can be used to group conditions: hierarchical clustering, 

Principal Component Analysis (PCA), and K-means. Hierarchical clustering is employed 

alongside a heatmap and can be used to visualize pair-wise correlations between 

samples or protein regulation throughout the samples. PCA is used to illustrate how 

samples from different conditions can be grouped based on protein abundance. The K-

means algorithm is also implemented to depict sample clustering, which is particularly 

useful for longitudinal statistical analysis. As the K-means algorithm requires a specific 

K-value for clustering analysis, OmicScope automatically applies the Kneedle algorithm 

to determine the optimal K-value216. Alternatively, users can pre-specify the best K-

value based on data characteristics. 

The last category of OmicScope plots is protein-specific. This category allows 

users to evaluate target proteins using boxplots, barplots, and protein-protein 

interaction (PPI) networks. Boxplots and barplots compare the abundance of target 

proteins across groups, while the PPI function uses the STRING API to retrieve known 

protein-protein interactions, including functional or physical interactions 217 . The 

 
216 Ville Satopaa et al., “Finding a ‘Kneedle’ in a Haystack: Detecting Knee Points in System Behavior,” in 
2011 31st International Conference on Distributed Computing Systems Workshops (2011 31st International 
Conference on Distributed Computing Systems Workshops (ICDCS Workshops), Minneapolis, MN, USA: 
IEEE, 2011), 166–71, https://doi.org/10.1109/ICDCSW.2011.20. 
217 Szklarczyk et al., “The STRING Database in 2021.” 
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PPInteractions function enables users to set the evidence score to consider protein-

protein interactions (default to 0.6), search for communities based on the Louvain 

algorithm, and choose between physical or functional interactions. Notably, the 

STRING API can search up to 2000 proteins to retrieve PPIs. In cases data presents more 

than 2000 differentially regulated proteins, OmicScope will filter the top proteins based 

on p-values. 

3.6.3.2 EnrichmentScope figures 

In the EnrichmentScope class, figures have been designed to emphasize 

enrichment results and include quantitative values reported by OmicScope. These plots 

can be categorized into three main types: dot plots, heatmaps, and graphs. 

Dot plots serve two primary purposes. They are used to evaluate enrichment 

statistical results and depict overall protein deregulation. In the first case, the dot plot 

associates enriched terms (y-axis) with statistical significance (x-axis). In the latter case, 

for each enriched term (y-axis), EnrichmentScope splits and counts the number of up-

regulated and down-regulated proteins and plots the data with dot size proportional to 

the number of proteins. 

The heatmap category showcases proteins associated with each enriched term. 

During Over-Representation Analysis (ORA) or Gene Set Enrichment Analysis 

(GSEA)218 users can generate heatmaps in which proteins are colored based on the 

enrichment-adjusted p-value or protein fold change. For GSEA, users also have the 

option to color the proteins based on the Normalized Enrichment Score (NES) associated 

with the respective term. 

For graph visualization, EnrichmentScope provides two distinct functions: 

enrichment network and enrichment map. In the enrichment network, enriched terms 

are linked to the proteins, making it easier to visualize proteins associated with multiple 

terms. On the other hand, the enrichment map is implemented like the approach 

proposed by Merico in 2010219, in which terms are connected and weighted according 

to the Jaccard similarity index. This index calculates the similarity between two 

enriched terms as the ratio between overlap and the union among both datasets. Since 

 
218 Subramanian et al., “Gene Set Enrichment Analysis,” October 25, 2005. 
219  “Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and 
Interpretation | PLOS ONE.” 
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the overlap of genes in the pathways evaluated increases as the index increases, 

EnrichmentScope considers links when the similarity index is higher than 0.25 (by 

default). Additionally, EnrichmentScope performs community detection within the 

enrichment map using the Louvain algorithm to define modules and label the central 

node in each community. This labeling is done by selecting the node with the highest 

degree within the target community. In cases where more than one node shares the 

maximum degree, the node with the highest adjusted p-value is selected. 

3.6.3.3 Nebula figures 

Nebula figures have been implemented to facilitate the visual comparison of 

independent studies or groups. These figures include bar plots, dot plots, upset plots, 

circular plots, and graphs (Supplementary Figure 5). Some of these plots also perform 

statistical analysis to identify similarities between groups. 

To initially assess the differences between groups, Nebula offers bar plots and 

dot plots for protein- and enrichment-level data. In the protein approach, the bar plot 

displays the number of entities quantified and differentially regulated across all studies, 

while the dot plot counts the number of up- and down-regulated entities, providing 

insights into the differential regulation of data. On the enrichment level, Nebula offers 

a dot plot that sorts enriched terms according to adjusted p-values in each study, 

followed by filtering stage based on the N top terms. All filtered terms are then 

combined into a unified list, which serves as a template for filtering terms across all 

studies, offering information about terms that are highly relevant to one group and 

potentially relevant to others. 

Additionally, upset plot has been implemented to visualize intersections 

between groups220. It takes into consideration entities that are differentially regulated 

and enriched terms. The upset plot displays the intersection of groups in a dot frame, 

highlighting the studies being compared. On the left/right side of the dot frame, a bar 

plot indicates the number of proteins related to each study. Above the dot frame, a 

second bar plot shows the number of proteins that are shared only in the studies 

highlighted in the dot frame. 

 
220 Lex et al., “UpSet.” 
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To consolidate features derived from differential proteomics and enrichment 

analysis, Nebula includes two circular plots inspired by Circos 221  and circlize 222 

approaches. In the first circular plot, differentially regulated proteins in each group are 

displayed alongside a heatmap, showing the respective protein fold changes. Proteins 

that are shared between studies connect the respective studies, providing a visual 

representation of the regulation of overlapping proteins. Users can also add enrichment 

links to the plot, suggesting an amount of shared enrichment terms among groups. In 

the circlize approach, users select a term to filter all enriched terms that contain the 

searched word. Nebula retrieves all proteins associated with those terms and links them 

with the respective groups. 

The last set of figures in Nebula includes network analysis to compare the 

independent studies. Firstly, users can plot all groups linked to their respective proteins, 

providing a similar figure proposed by EnrichmentScope.  Alternatively, users can also 

perform more quantitative comparison using two approaches: similarity analysis and 

Fisher’s exact test. 

The similarity analysis calculates a similarity index between groups. By default, 

Nebula employs a pairwise Jaccard similarity algorithm to provide the similarity index. 

Users can optionally apply other similarity algorithms, such as Pearson's and Euclidean 

measures, taking into consideration the fold change of proteins to provide the similarity 

index. 

On the other hand, Fisher's exact test is offered as an "Enrichment-like" 

approach. Nebula assesses the chance of pair-wise overlap occurring randomly 

compared to the whole set of proteins imported as background, considering all files. 

Optionally, users can specify the background size to be compared, such as the entire 

Human proteome, which comprises over 20,000 reviewed and annotated proteins in 

Uniprot database.  

After performing similarity or Fisher's exact test, the data is available in a visual 

format as a heatmap and can also be represented as a network, in which nodes represent 

groups and links display the similarity index or log10(p-value). 

 
221 Martin Krzywinski et al., “Circos: An Information Aesthetic for Comparative Genomics,” Genome 
Research 19, no. 9 (January 9, 2009): 1639–45, https://doi.org/10.1101/gr.092759.109. 
222 Zuguang Gu et al., “Circlize Implements and Enhances Circular Visualization in R,” Bioinformatics 30, 
no. 19 (October 1, 2014): 2811–12, https://doi.org/10.1093/bioinformatics/btu393. 
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3.6.4 OmicScope App 

The OmicScope App is a user-friendly interface developed using the Streamlit 

framework. The application consists of three main pages: Home, OmicScope, and 

Nebula. Each page serves a specific purpose and provides an easy-to-navigate 

environment for users to interact with the OmicScope platform. Below is a detailed 

description of each page within the OmicScope App: 

Home Page (Supplementary Figure 12): The Home page serves as an 

introduction to the OmicScope platform. It provides a brief description of the 

OmicScope architecture and functionalities, along with figures that are also presented 

in this manuscript. Users can get an overview of the capabilities of OmicScope by 

exploring this page. 

OmicScope Page (Supplementary Figure 13): The OmicScope page is where 

users can access the core OmicScope and EnrichmentScope modules. This page is 

divided into different sections and present several features: 

1. Sidebar: The sidebar is where users can upload their quantitative data file,  

select the appropriate import method, and define statistical parameters and 

filtering stages to run the OmicScope pipeline. Here are some key features in 

the sidebar: 

File Upload: upload quantitative data files. 

Input Method Selection: Users can choose the appropriate input method that 

matches the uploaded file. This step is crucial for accurate data processing. 

Additional Parameters: Users can modify various parameters related to data 

analysis, including defining a control group, customizing statistical 

parameters, and enabling protein-protein interaction (PPI) searching through 

the STRING API. 

Enrichment Analysis: Users can opt to run the EnrichmentScope module by 

selecting a checkbox. This allows for additional fine-tuning of enrichment 

parameters, such as selecting the target database, type of enrichment analysis, 

organism, or pAdjusted cutoff related to enrichment analysis. 

2. Main Page: The main page displays tables and interactive figures generated 

based on the uploaded data and user-defined parameters. These figures can 

be easily exported as PNG or SVG files. Each figure also comes with its set of 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  100 
 
 

 

adjustable parameters, allowing users to fine-tune various aspects of the 

visualization. Additionally, at the end of the page, users can download all the 

raw data used to generate the figures and GraphML file, which contains the 

information required to plot graphs in third-party software. This approach 

allows the integration of OmicScope data with other tools and workflows. 

Nebula Page (Supplementary Figure 14): The Nebula page is dedicated to our 

integrative module, which allows users to compare multiple independent studies or 

groups. This page is organized as follows: 

1. Sidebar: In the sidebar, users are required to upload a zip file containing all 

the omics files to be analyzed together. It's important to note that in 

OmicScope package, Nebula imports omics files from a conventional folder 

structure. After successful data import, Nebula reports the number of studies, 

groups, and the quantity of enrichment results imported. 

2. Main Page: The main page displays the generated figures. While most 

figures are interactive, the circular plots are static images. To enhance 

interactivity, each figure comes with parameters that allow users to fine-tune 

specific features, such as colors and sizes. Finally, at the end of the page, users 

can find a downloadable button that provides access to files that can be used 

in third-party software and workflows, enabling seamless integration with 

other analysis tools. 

The OmicScope App, with its user-friendly interface and easy access to 

OmicScope, EnrichmentScope, and Nebula modules, simplifies the process of importing 

data, performing analyses, and visualizing results. It offers a comprehensive set of 

features for bioinformatic analysis in a user-friendly and accessible manner. 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  101 
 
 

 

3.7 SUPPLEMENTARY FIGURES 

 
Supplementary Figure 3-1 OmicScope Figure Toolset. The OmicScope figure toolset comprises three 
subcategories of plots: overview, clustering, and protein-specific. Overview figures include volcano plots, 
MA plots, and dynamic range plots. The clustering category features Principal Component Analysis 
(PCA), hierarchical clustering, and K-means. The protein-specific set encompasses bar plots, boxplots, 
and protein-protein interaction networks. 

 
Supplementary Figure 3-2 Benchmark Dataset. This dataset comprises two concentrations of Yeast digest spiked 
into Hela digest and subsequently analyzed using DIA-NN and OmicScope. A) The study identified a total of 12,000 
proteins, among which 3059 exhibit differential abundance between 45ng and 15ng Yeast digest concentrations. B) 
The MA plot illustrates the two distinct patterns of expression, wherein the red proteins indicate the up-regulation 
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of yeast proteins log2(45ng/15ng). C - D) Enrichment analysis was conducted utilizing the KEGG Yeast database. The 
results are presented using network and dot plot functions to visualize enriched pathways and their associated 
proteins.  

 
Supplementary Figure 3-3 EnrichmentScope Figure Toolset. The EnrichmentScope toolset offers dotplots, 
heatmaps, and graphs to visualize enrichment results and relationships between enrichment results and 
target proteins.  

 
Supplementary Figure 3-4 Reactome Enrichment Map. Hierarchical databases, such as Reactome and Gene 
Ontology, often contain redundant terms, making data representation and interpretation complex during 
data analysis. EnrichmentScope performs modularity analysis to identify highly connected regions, 
followed by the selection of nodes that present higher degree and Adjusted P-value, respectively. These 
steps help reduce redundancy without omitting data. 
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Supplementary Figure 3-5 Nebula Figure Toolset. The Nebula workflow allows the import of multiple omics 
files for simultaneous analysis. Once imported into Nebula, the algorithm facilitates the comparison of 
groups using bar plots, dot plots, heatmaps, circular plots, and graphs. 

 
Supplementary Figure 3-6 Overlap Between 6 Sets Using Venn Diagram and Upset Plot. This figure displays 
the overlap between six sets using both Venn Diagram (top) and Upset Plot (bottom) representations.   
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Supplementary Figure 3-7 OmicScope Structure. In OmicScope, data is organized into three categories: 
assay, rdata, and pdata. Assay corresponds to protein abundance, rdata contains protein features, and 
pdata includes phenotype data associated with each sample.  

 
Supplementary Figure 3-8 "Snapshot" Method. This figure illustrates the data structure used to import data 
into OmicScope using the "Snapshot" method.  

        

                              

     
     

     
          

    
  

  
 



Chapter 2: OmicScope: from differential proteomics to systems 
Biology  105 
 
 

 

 
Supplementary Figure 3-9 Data Structure to Import Data into OmicScope Using the "General" Method. For 
the "General" method, OmicScope uses Excel spreadsheet, which should contain three sheets: assay, rdata, 
and pdata.  

 
Supplementary Figure 3-10 Example of pdata structure. To import pdata into OmicScope, the Excel 
spreadsheet must include "Sample," "Condition," and "Biological" columns. When performing 
longitudinal analysis, pdata must also contain a "TimeCourse" column to specify the sample time points. 
Users can optionally add an "Individual" column to assign whether related data sampling was performed. 
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Supplementary Figure 3-11 OmicScope statistical pipeline. The OmicScope statistical workflow includes 
both static and longitudinal experiments. Depending on the number of groups analyzed, the algorithm 
selects appropriate statistical tests and multiple hypothesis corrections. 

 
Supplementary Figure 3-12 OmicScope App Home Page. The home page provides a concise description of 
the OmicScope architecture and features.  
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Supplementary Figure 3-13 OmicScope and EnrichmentScope modules on the Web Application.  The 
OmicScope and EnrichmentScope modules operate on the same page, with Enrichment being an optional 
analysis. Users can access global parameters and customize figures based on individual parameters. In 
the end of page, users can download all the files used to generate the figures. 
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Supplementary Figure 3-14 Nebula module on the Web Application. To import data into Nebula, users are 
required to place all omics files into a zip file and then import it via the web application. Subsequently, 
several interactive figures are generated, and users can download raw data for use in further analyses. 

  



 
 

Supplementary Table 3-1 Comparison between software 

 

ProteomicsPlatforms Generic Formats Two-Groups Multiple-Groups Within-Group Between-Groups

DEP R package with Shiny App
 MaxQuant, 

IsobarQuant

Barplots, volcano, heatmap, 

boxplots, density plot, 

cummulative sum plot, PCA, 

correlation, coverage, pvalue 

histogram,

 
Perform using EnrichR 

API
barplot open source

InfernoRDN (and DAnTE) Desktop Application .csv files

Histograms, Boxplot, Correlation 

Diagrams,MA Plot, PCA, PLS, 

Heatmaps, protein rollup

open source

InfernoRDN 

supersedes all 

previous DAnTE (Data 

Analysis Tool 

Extension), DanteR, 

and Inferno versions.

MSstats (also Included in 

Skyline)
R package

 DIA-Umpire, 

MaxQuant, OpenMS, 

OpenSwath, 

Proteome discoverer, 

Skyline, Progenesis, 

DIA-NN, Spectronaut

Profile, QC, Condition Plots, 

Heatmap, Volcano, Comparison 

Plot

open source

PatternLab V Desktop Application MS raw files T-TEST pair-wise t-test

volcano (tfold), heatmap, venn 

Diagrams, histogram, k-means 

(TrendQuest), PCA (Buzios)

Export several file 

format for 

quantitative analysis. 

Exports png/svg 

format for plots and 

the raw data for each 

plot.

not public (open 

access)

PatternLab V presents 

algorithms for protein 

identification and 

quantitation and some 

downstream analysis. 

Perseus Desktop Application MaxQuant .txt file T-TEST ANOVA

User can dynamically change de 

parameters and axis of basic plots: 

3D plot, Histogram, Multi scatter 

plot, Profile plot, Scatter plot

Fisher Exact text (user 

must download target 

databases)

User can dynamically 

change de parameters 

and axis of basic plots: 

3D plot, Histogram, 

Multi scatter plot, 

Profile plot, Scatter 

plot

Coupled to R 

enviroment, Perseus 

perform DE analysis 

and can compare pair-

wise omics 

experiments using '2D 

annotation 

enrichment'

Perseus export all 

matrix as text files and 

figures in several 

formats.

not public (open 

access)

Perseus is the most 

comprehensive 

desktop application 

for proteomcis 

experiments. 

However, the  tool 

requires a lot of clicks 

to perform data 

handling. Due to its 

complexity, the 

developers suggests 

courses and book 

chapters to facilitate 

the learning process.

Progenesis Qi for 

Proteomics
Desktop Application MS raw files T-TEST ANOVA ANOVA

PCA, barplots, boxplots (for 

general analysis and protein 

abundance in each sample)

-
.csv files and png 

figures

not public (requires 

license)

Progenesis is a 

platform to perform 

protein quantitation. 

While coupled to PLGS 

(Waters), it also 

performs protein 

identification. 

MSPypeline Python package with GUI MaxQuant

volcano, venn diagram, boxplots, 

heatmap, barplots, pca, 

histogram, Dynamic range

Enrichment Analysiss 

using a summarized 

version of GO, 

Hallmarks, and 

Biocarta 

barplots and dotplots open source

AlphaPeptStat
Python package, web application, 

desktop application

 DIA-NN, MaxQuant, 

Spectronaut,FragPipe
mzTab T-TEST ANOVA, ANCOVA

PCA, UMAP, tSNE, Volcano, 

Clustermap, dendogram

Enrichment Analysis 

with Gene Ontology

figures can be saved in 

svg and data can be 

manually copied and 

paste on excel

open source

OmicScope (This paper)
Python package and web 

application

Progenesis, DIA-NN, 

PatternLabV, and 

MaxQuant

General, Snapshot 

(excel files)
T-TEST ANOVA

GLM (natural cubic 

spline, Storey 2005)

GLM (natural cubic 

spline, Storey 2005)

volcano plot with density plot, 

heatmap, MA-plot, Dynamic 

Range plot, bar plot, box plot, PPI 

networks, K-means, and PCA

Perform using EnrichR 

API GSEAPY

Perform using EnrichR 

API via GSEAPY

dot plots, heatmaps, 

enrichment map, term-

protein network

Import methods 

include generical 

methods that allow 

transcriptomics 

evaluation. Nebula 

module totally design 

to meta-analysis. 

Including specific 

plots and network 

analysis to explore 

multiple studies at 

once

graphml, dataframe open source

Use R package Limma to perform differential expression -  empirical Bayes statistics			

Software User Interface
Input

Differential Expression

Static Longitudinal

Periodicity Analysis (cosine fitting)

Use R package Limma to perform differential expression -  empirical Bayes statistics			

linear mixed-effects model

Longitudinal analysis is performed using 

Kmeans algorithm in TrendQuest module

ANOVA

Source CodeMeta analysis Export Observations
Figures

Enrichment Analysis

ORA GSEA Figures



 
 

Supplementary Table 3-3 OmicScope input method features 

Feature General PatternLab Progenesis MaxQuant DIA-NN Snapshot

Extension .xlsx/.xls .xlsx/.xls .csv/.xls/.xlsx .txt .txt .xlsx/.xls

Require pdata No No No Yes Yes No

Accept pdata Yes Yes Yes Yes Yes No

Contaminant Filtering Yes Yes Yes Yes Yes No

Reverse Filtering No Yes No Yes Yes No

NA based filtering Yes Yes Yes Yes Yes No

Import statistics Optional No Yes No No Yes

Perform statistics Optional Yes Optional Yes Yes No

Identification Yes Yes Yes Yes Yes Yes

Dynamic range Yes Yes Yes Yes Yes No

Volcano Yes Yes Yes Yes Yes Yes

MA plot Yes Yes Yes Yes Yes Yes

Barplot Yes Yes Yes Yes Yes No

Boxplot Yes Yes Yes Yes Yes No

Heatmap Yes Yes Yes Yes Yes No

Correlation Yes Yes Yes Yes Yes No

PCA Yes Yes Yes Yes Yes No

Bigtrend Yes Yes Yes Yes Yes No

PPI Yes Yes Yes Yes Yes Yes

ORA algorithm Yes Yes Yes Yes Yes Yes

GSEA algorithm Yes Yes Yes Yes Yes No

Dotplot Yes Yes Yes Yes Yes Yes

Heatmap Yes Yes Yes Yes Yes Yes

number_deps Yes Yes Yes Yes Yes Yes

enrichment_network Yes Yes Yes Yes Yes Yes

enrichment_map Yes Yes Yes Yes Yes Yes

Barplot Yes Yes Yes Yes Yes Yes

dotplot_enrichment Yes Yes Yes Yes Yes Yes

diff_reg Yes Yes Yes Yes Yes Yes

protein_overlap Yes Yes Yes Yes Yes Yes

enrichment_overlap Yes Yes Yes Yes Yes Yes

similarity_heatmap Yes Yes Yes Yes Yes Yes

similarity_network Yes Yes Yes Yes Yes Yes

fisher_heatmap Yes Yes Yes Yes Yes Yes

fisher_network Yes Yes Yes Yes Yes Yes

whole_network Yes Yes Yes Yes Yes Yes

circular_path Yes Yes Yes Yes Yes Yes

circos_plot Yes Yes Yes Yes Yes Yes

OmicScope

EnrichmentScope

Nebula

Input

Statistical Analysis



 
 

 

4 CHAPTER 3: DIVING INTO THE PROTEOMIC ATLAS OF 

SARS-COV-2 INFECTED CELLS: INSIGHTS OF VIRAL 

INFECTION IN DIFFERENT CELL TYPES 

 

4.1 THESIS CONSIDERATIONS 

This chapter is a full article currently in revision process. Here, we analyzed 

the proteome of nine in vitro cellular models infected with SARS-CoV-2 and compared 

them with respective Mock controls. These models can be divided into four categories, 

according to their ontologies: central nervous systems cells, immune cells, 

gastroenterological cells and adipocytes. As occurred in Chapter 1, we used the bottom-

up approach for all cell types and performed MS analysis in a Q-TOF with HDMSE 

acquisition mode (DIA), followed by protein identification, quantitation and differential 

proteomics in Progenesis Qi for Proteomics (Non-Linear, Waters). However, in this 

article, the OmicScope was in development, and it was responsible for more than 70% 

of figures generated and used to discuss our results. Moreover, all the tools used for data 

analysis were freely available as a python package or a web application, which did not 

pose any issue for data analysis reproducibility.  

Compared to Chapter 1, the whole data analysis process took some months to 

be carried out and submitted for publication. Indeed, most of the time between data 

generation and submission was dedicated to writing the manuscript and discussing the 

results with the literature.  

Regarding visualization features, figures 2-5 also present a template, which 

comprises: Venn Diagram, heatmap (or boxplot in figure 2), dot plot of enrichment 

results, and circular diagram. Heatmaps and boxplots were used to visualize protein 

fold-changes of proteins across the evaluated cell types, showcasing the comparison of 

groups in protein abundance level. The dot plot figure was used to compare the cellular 

response to SARS-CoV-2 in an enrichment level, highlighting unique or overlapped 

enriched terms. Joining fold-change attribute and enrichment outcomes, we also 

compared the cellular response using the circular diagram strategy. These strategies 

adopted allowed us to discuss and evaluate the changes triggered by SARS-CoV-2 in a 
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more comprehensive manner, integrating data from differential proteomics and 

enrichment analysis.  

Finally, this chapter shows how OmicScope can be used to improve the data 

analysis process, joining quantitative proteomics with enrichment results using meta-

analysis approach. 

4.2 ABSTRACT 

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 

strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple 

tissues throughout the human body, leading to a wide range of symptoms in patients. 

To better understand how SARS-CoV-2 affects the proteome from cells with different 

ontologies, this work generated an infectome atlas of 9 cell models, including cells from 

brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 

infection mainly triggers dysregulations on proteins related to cellular structure and 

energy metabolism. Despite these pivotal processes, heterogeneity of infection was also 

observed, highlighting many proteins and pathways uniquely dysregulated in one cell 

type or ontological group. These data have been made searchable online via a tool that 

will permit future submissions of proteomic data 

(https://reisdeoliveira.shinyapps.io/Infectome_App/) to enrich and expand this 

knowledgebase. 

4.3 INTRODUCTION 

The COVID-19 pandemic, caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has been responsible for more than 649·8 million 

confirmed cases and 6·6 million deaths as of December 2022223, drastically affecting the 

global economy and social behavior. COVID-19 is manifested by pulmonary infection 

and a cytokine storm in more severe stages of the disease. However, a growing number 

of studies have also proven the presence of SARS-CoV-2 in various other tissues and 

 
223  “COVID-19 Cases | WHO COVID-19 Dashboard,” datadot, accessed January 11, 2024, 
https://data.who.int/dashboards/covid19/cases. 
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biofluids, such as cardiac muscle tissue, the central nervous system (CNS), the kidneys, 

the gastrointestinal system, and adipose tissue224. 

SARS-CoV-2 is able to infect human cells and tissues mainly through their 

expression of angiotensin-converting enzyme 2 (ACE2), the main port of entry for the 

virus225, however, other receptors have been described as secondary for viral infection, 

such as TPMRS22, NPR1, and BSG/CD147226. Once inside the cell, SARS-CoV-2 then 

alters cell function at the proteomic level at minimum, often resulting in tissue 

dysfunction and damage.  

Xiu et al., 2021 performed a broad proteomic analysis in distinct post-mortem 

tissues from several organs obtained from patients who died of COVID-19227, in which 

they discovered distinct patterns of protein expression for each infected organ. To 

complement this study, an easily searchable compilation of general and tissue-specific 

molecular mechanisms that are triggered by the virus in different cell types is relevant. 

With this in mind, we analyzed proteomic data from several distinct SARS-CoV-2-

infected cell types: neural stem cell (NSC)-derived astrocytes and neurons228; SH-SY5Y 

(human neuroblastoma cells) and CACO-2 (intestinal epithelial cells) cultured cells; T-

 
224 Xin Zou et al., “Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the 
Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection,” Frontiers of Medicine 14, 
no. 2 (April 2020): 185–92, https://doi.org/10.1007/s11684-020-0754-0; Aravinthan Varatharaj et al., 
“Neurological and Neuropsychiatric Complications of COVID-19 in 153 Patients: A UK-Wide Surveillance 
Study,” The Lancet. Psychiatry 7, no. 10 (October 2020): 875–82, https://doi.org/10.1016/S2215-
0366(20)30287-X; Lu Lin et al., “Gastrointestinal Symptoms of 95 Cases with SARS-CoV-2 Infection,” Gut 
69, no. 6 (June 2020): 997–1001, https://doi.org/10.1136/gutjnl-2020-321013; Yassine Yachou et al., 
“Neuroinvasion, Neurotropic, and Neuroinflammatory Events of SARS-CoV-2: Understanding the 
Neurological Manifestations in COVID-19 Patients,” Neurological Sciences: Official Journal of the Italian 
Neurological Society and of the Italian Society of Clinical Neurophysiology 41, no. 10 (October 2020): 2657–
69, https://doi.org/10.1007/s10072-020-04575-3; Aakriti Gupta et al., “Extrapulmonary Manifestations of 
COVID-19,” Nature Medicine 26, no. 7 (July 2020): 1017–32, https://doi.org/10.1038/s41591-020-0968-3. 
225 Zou et al., “Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential 
Risk of Different Human Organs Vulnerable to 2019-nCoV Infection”; Li Yang et al., “COVID-19: 
Immunopathogenesis and Immunotherapeutics,” Signal Transduction and Targeted Therapy 5, no. 1 (July 
25, 2020): 128, https://doi.org/10.1038/s41392-020-00243-2; Nie et al., “Multi-Organ Proteomic Landscape 
of COVID-19 Autopsies.” 
226 Titilola D. Kalejaiye et al., “SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect 
Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes,” Frontiers in Cell and Developmental 
Biology 10 (2022): 855340, https://doi.org/10.3389/fcell.2022.855340; Markus Hoffmann et al., “SARS-CoV-
2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor,” 
Cell 181, no. 2 (April 16, 2020): 271-280.e8, https://doi.org/10.1016/j.cell.2020.02.052. 
227 Nie et al., “Multi-Organ Proteomic Landscape of COVID-19 Autopsies.” 
228 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients.” 
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cells and monocytes isolated from human blood229, hepatocytes; and adipocytes isolated 

from visceral and subcutaneous tissue230.  

This information brings new insight into how the virus disturbs biochemical 

processes and can therefore be used to generate new integrated therapeutic targets, 

which may be useful to treat COVID-19 systemically and in a tissue-specific manner. 

Moreover, with the creation of the online SARS-Cov-2 infectome, a new tool to research 

proteins of interest will become available for public browsing, also including how SARS-

CoV-2 can affect these proteins in each cell type and which biological mechanisms are 

altered by the infection. 

4.4 RESULTS 

Before any subsequent analyses, a viral kinetics analysis at three time points 

indicated that all cells analyzed here were indeed infected by SARS-CoV-2. Data 

regarding T-cells, monocytes, adipocytes, and astrocytes were included in their 

originally published articles231. Despite being able to replicate within CNS cells, the 

virus was not able to secrete viral particles into the medium; all other cell types showed 

signs of both viral replication and secretion (Supplementary Figure 1). 

Proteomic analyses of SARS-CoV-2-infected cells were used to build what we 

will hereby refer to as the SARS-CoV-2 infectome, a compilation of differentially 

regulated proteins in cells in response to SARS-CoV-2 infection (Figure 1A, and 

Supplementary Table 1). Among all analyses, a total of 3098 proteins were quantified, 

of which 1652 were found differentially regulated (p-value < 0·05, Figure 1B). Pair-wise 

Pearson's correlation analysis, followed by hierarchical clustering, showed that almost 

all cell types clustered as expected by their ontology at the whole-proteome level, a 

 
229 Natalia S. Brunetti et al., “SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes,” eLife 12 (July 31, 
2023): e84790, https://doi.org/10.7554/eLife.84790. 
230  Tatiana Dandolini Saccon et al., “SARS-CoV-2 Infects Adipose Tissue in a Fat Depot- and Viral 
Lineage-Dependent Manner,” Nature Communications 13, no. 1 (September 29, 2022): 5722, 
https://doi.org/10.1038/s41467-022-33218-8. 
231 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients”; 
Brunetti et al., “SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes”; Saccon et al., “SARS-CoV-2 
Infects Adipose Tissue in a Fat Depot- and Viral Lineage-Dependent Manner”; Ana Campos Codo et al., 
“Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-
1α/Glycolysis-Dependent Axis,” Cell Metabolism 32, no. 3 (September 1, 2020): 437-446.e5, 
https://doi.org/10.1016/j.cmet.2020.07.007. 
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pattern that was markedly distinct while considering only differentially regulated 

proteins (Supplementary Figure 2). These differences may be explained by the high 

diversity effects elicited by SARS-CoV-2 in each cell type, which can vary in the number 

of differentially regulated proteins as well as their regulation direction (Figure 1C). 

Interestingly, neuronal cell models were unique in that they presented more 

upregulated proteins in their infectome. Additionally, we observed that 551 proteins 

were dysregulated in more than one cell type; however, none were found differentially 

regulated in all cell types (Figure 1D, Supplementary Figure 3). 

A pathway enrichment analysis for each infectome identified 151 biological 

pathways associated with SARS-CoV-2 infection, with the neuronal infectome being the 

largest contributor (Supplementary Figure 4). When filtering for pathways enriched in 

at least 50% of infectomes, SARS-CoV-2 modulated the protein related to energy 

metabolism (mainly glycolysis), infectious diseases, protein metabolism (both synthesis 

and degradation processes), signaling/homeostatic pathways, and potential 

comorbidities (Figure 1E) in nearly all cells, in line with expected responses to viral 

infection and viral particle production. Six cellular infectomes (neurons, astrocytes, 

monocytes, hepatocytes, and both types of adipocytes) also enriched for Coronavirus 

disease, highlighting the canonical infection pathways in several cell types outside of 

the respiratory system. The absence of these results in SH-SY5Y cells and T-cells 

suggests other avenues for viral infection and proliferation. 
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Figure 4-1 SARS-CoV-2 infects cells from different tissues and elicits changes in protein abundance. A) Cell 
lines from distinct tissues and biological systems were infected with SARS-CoV-2 in vitro and the 
infectomes (proteins differentially regulated due to viral response) were obtained by shotgun proteomics. 
B) Total number of identified proteins (gray) and differentially regulated proteins (colored) in each cell 
type. C) Proteins differentially regulated in the respective infectomes separated by direction of regulation. 
Bubble size indicates the number of differentially regulated proteins (DRPs). D) Overview of SARS-CoV-
2 infectome in all cell types (outer circle), showing proteins that are shared among groups as well as their 
respective regulation in the heatmap (inner circle). E) Sankey plot of pathways enriched in at least 50% 
of infectomes. 

Given the variety of cellular functions and complexity of the respective 

infectomes of each cell type, we categorized differential protein expression by ontology: 

CNS cells (neurons, differentiated SH-SY5Y neuron-like cells, and astrocytes), 

gastroenterological cells (CACO-2, hepatocytes), white blood cells (monocytes and T-

cells), and adipose tissue (differentiated visceral and subcutaneous adipocytes). This 

allowed an evaluation of similarity among cellular infectomes within ontological 

groups, useful in increasing our understanding about changes triggered by SARS-CoV-

2 to better predict body response to infection.  
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All results and findings derived from these proteomic analyses were compiled 

and published in a unique database, forming the SARS-CoV-2 Infectome Atlas. This 

atlas, being the first of its kind, details the proteomic dysregulations elicited by SARS-

CoV-2 in nine cellular infectomes, groupable by their tissue ontology. Individual 

proteins are searchable, providing information about normalized fold change 

differences, as well as altered pathways and their constituent proteins. This allows for 

targeted searching of proteins and pathways of interest within a SARS-CoV-2 context 

(https://reisdeoliveira.shinyapps.io/Infectome_App/).  

4.5 SARS-COV-2 INFECTION MODULATES CNS CELL PROTEOMES 

The infectome of CNS cells was composed of 810 differentially regulated 

proteins, with astrocytes presenting the fewest dysregulations (Figure 2A). Nine 

differentially regulated proteins were observed in all cell types, primarily associated 

with translation machinery (RPL29, RPL22, PABPC1, RPL12) and energy metabolism 

(TKT, PHGDH). Interestingly, however, these proteins presented a distinct regulation 

profile in each CNS cell, despite similarities in function and role.  

In energy metabolism, for instance, PHGDH, a pivotal protein throughout 

neurodevelopment, was upregulated in all infected cell types; whereas TKT was 

upregulated in both neuronal cell types but downregulated in astrocytes (Figure 2B). 

Astrocytic marker vimentin (VIM), also present in excitatory neurons, was 

downregulated in infected astrocytes, and upregulated in both infected neuronal cell 

types (Figure 2B). This divergent regulation pattern indicates that, even when cells share 

proximal ontological characteristics, SARS-CoV-2 can induce different and even 

divergent protein-level responses. 

To understand how SARS-CoV-2 can potentially affect these in vitro CNS 

models at the functional level, the Kyoto Encyclopedia for Genes and Genomes (KEGG) 

was used for in silico enrichment analyses232. Performing a pair-wise comparison of the 

top ten pathways enriched for each cellular model (Figure 2C), the NPC-derived neuron 

infectome was the only CNS cell type seen to incorporate all the top ten terms found in 

 
232 M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research 
28, no. 1 (January 1, 2000): 27–30, https://doi.org/10.1093/nar/28.1.27. 
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the other CNS cell types. When both neuronal infectomes were compared, differentiated 

SH-SY5Y cells enriched 67% fewer terms than NPC-derived neurons, highlighting that 

SARS-CoV-2 response can differ by cell model, even of the same cell type 

(Supplementary Figure 4). Nevertheless, at the pathway level, these cellular infectomes 

still shared several enriched pathways, such as glycolysis, pentose phosphate pathway, 

and proteasomes (Figure 2C).  

 

Figure 4-2 SARS-CoV-2 induces changes in the proteomes of CNS cell types. A) Venn diagram showing 
differentially regulated proteins among NPC-derived astrocytes and neurons and differentiated SH-SY5Y 
neurons. B) Normalized abundance of the differentially regulated proteins associated with energy 
metabolism (PHGDH, TKT) and cellular marker (VIM) for CNS cells. Gray bars represent the abundance 
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in uninfected cells. C) Pathway enrichment analyses for each CNS infectome. The top 10 pathways were 
selected for each cellular model, and then a pair-wise comparison was performed to visualize enrichment 
in other cell types. Bubble size indicates adjusted p-value on a -log10 scale. D) Upregulated (red) and 
downregulated (blue) proteins associated with glycolysis in different CNS cell types. Proteins in bold and 
italic are pivotal in glycolysis and lactate generation, respectively. 

Since glycolysis was found enriched among the top ten enriched terms of all 

CNS infectomes (p-adj. < 1·0e-6), we highlighted the proteins differentially regulated in 

this pathway in each cell type (Figure 2D). Most of the proteins (66%) associated with 

glycolysis were upregulated. In neuronal models, the proteins that play pivotal roles in 

glycolytic regulation (hexokinase [HK1], phosphofructokinase [PFKP/PFKL], and 

pyruvate kinase [PKM]) were upregulated after infection (Figure 2D, bold); while in 

NSC-derived cells, lactate dehydrogenase-associated LDHAL6B was down-regulated. 

Additionally, PGM2 and PGM4 were upregulated in SH-SY5Y cells and NSC-derived 

astrocytes, both of which are essential in 5'-phosphopentose metabolism and nucleotide 

synthesis.  

4.6 SARS-COV-2 INFECTION MODULATES GASTROENTEROLOGICAL CELL 

PROTEOMES 

Proteome changes were evaluated in intestinal epithelial cells (CACO-2 cell 

line) and hepatoma cells (HepG2 cell line), both of which derive from cancer patients 

and present epithelial-like morphology. Infected CACO-2 cells presented 332 

deregulated proteins while HepG2 cells presented 343 deregulated proteins; 38 proteins 

were deregulated in both cell lines (Figure 3A). These overlapping proteins are related 

to vesicle-mediated transport (import into the nucleus, endocytosis, and exocytosis) and 

cellular metabolic processes (Figure 3B).  

Of the terms obtained from KEGG enrichment, 11 pathways were shared 

between both gastroenterological cell lines (Figure 3C). Among the enriched terms, we 

found bacterial invasion of epithelial cells, Salmonella infection, and pathogenic E. coli 

infection. These processes could be associated with the diarrhea induced by SARS-CoV-

2 infection through a mechanism similar to previously documented bacterial invasion 

processes in the gut. Among the proteins associated with these pathways, only CDC42, 

ANXA2 and ARF1 were differentially regulated in both cell types; nevertheless, protein 
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families (such as tubulin or MAPK), are shared in both cell types (Figure 3D), which 

could lead to similar effects on epithelial homeostasis. 

 

Figure 4-3 SARS-CoV-2 induces changes in the proteomes of gastroenterological cell types. A) Venn diagram 
showing differentially regulated proteins in HepG2 and CACO-2 cells. B) Heatmap of fold changes for 
each protein found in both gastroenterological cell types. C) Pathway enrichment analyses for 
hepatocytes and CACO-2 cells. Bubble size indicates adjusted p-value on a -log10 scale. D) Upregulated 
(red) and downregulated (blue) proteins related to bacterial invasion of epithelial cells. Proteins 
highlighted in bold are from the MAPK and tubulin families. 
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4.7 SARS-COV-2 INFECTION MODULATES IMMUNE CELL PROTEOMES 

The immunological cells analyzed in our current datasets consist of SARS-CoV-

2-infected primary monocytes and T lymphocytes. By testing these two cell types, both 

myeloid and lymphoid lineages can be tested, covering the innate immune response 

with monocytes and the adaptive response with the lymphocytes. Our quantitative 

analysis found 139 proteins dysregulated in T-cells and 463 in monocytes, with 35 

proteins dysregulated in both cell types (Figure 4A). These proteins are associated with 

cellular metabolic processes; though the heatmap shows that fold change – and 

therefore likely the cellular response as well – can vary between myeloid and lymphoid 

cells (Figure 4B). 

Pathways enriched by the monocyte and lymphocyte infectomes (Figure 4C) 

presented a large overlap between cell types, of which several terms were associated 

with immune system responses (such as infections and diseases). Among these terms, 

we highlight FcγR-mediated phagocytosis, a signaling pathway that interplays adaptive 

and innate immune responses mediated by antibodies. We also noticed that, within this 

pathway, lymphocytes presented only upregulated proteins, while monocytes were 

more diverse in their response (Figure 4D). Only the monocyte infectome was enriched 

for COVID-19 disease, suggesting that these myeloid cells may play a pivotal role in the 

canonically activated pathways during the course of SARS-CoV-2 infection. 



Chapter 3: Diving into the proteomic atlas of SARS-CoV-2 infected 
cells: insights of viral infection in different cell types 
 122 
 
 

 

 

Figure 4-4 SARS-CoV-2 induces changes in the proteomes of immunological cells. A) Venn diagram showing 
differentially regulated proteins in monocytes and lymphocytes. B) Heatmap of fold changes for proteins 
found in both immune cells. C) Pair-wise comparison of top pathways enriched against the KEGG 
database. Bubble size indicates adjusted p-value on a -log10 scale. D) Upregulated (red) and 
downregulated (blue) proteins involved in Fc gamma R-mediated phagocytosis. 
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4.8 SARS-COV-2 INFECTION MODULATES VISCERAL AND SUBCUTANEOUS 

ADIPOCYTE PROTEOMES 

Since visceral and subcutaneous adipocytes are known targets for SARS-CoV-

2 infection and storage233 we investigated the proteomic modulations that occur in these 

cell types. 242 (visceral) and 175 (subcutaneous) proteins were found to be deregulated 

after SARS-CoV-2 infection. While nearly 60% of identified proteins were observed in 

both cell types, 44 proteins were dysregulated in both (Figure 5A), most of which were 

in the same direction. No pathways were found to be enriched, despite the presence of 

many glucose metabolism proteins (Figure 5B). 

When comparing the top enriched pathways from both adipocyte types, only 

proteasome processes were unique to visceral adipocytes; subcutaneous adipocytes 

presented more unique processes, namely protein processing in the endoplasmic 

reticulum, central carbon metabolism in cancer, glucagon signaling pathway, and 

necroptosis (Figure 5C). Despite these differences, TCA cycle proteins were found 

downregulated in both types, indicating dysregulated NAD+ and FAD reduction, 

culminating in lowered ATP production (Figure 5D).  

 
233 Paul MacDaragh Ryan and Noel M. Caplice, “Is Adipose Tissue a Reservoir for Viral Spread, Immune 
Activation, and Cytokine Amplification in Coronavirus Disease 2019?,” Obesity (Silver Spring, Md.) 28, 
no. 7 (July 2020): 1191–94, https://doi.org/10.1002/oby.22843; Ilja L. Kruglikov and Philipp E. Scherer, “The 
Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections,” Obesity (Silver 
Spring, Md.) 28, no. 7 (July 2020): 1187–90, https://doi.org/10.1002/oby.22856. 
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Figure 4-5 SARS-CoV-2 induces changes in the proteome of adipocytes. A) Venn diagram showing 
differentially regulated proteins in visceral and subcutaneous adipocytes. B) Heatmap of fold changes for 
proteins found in both adipocyte types. C) Pair-wise comparison of top pathways enriched against KEGG 
database. Bubble size indicates adjusted p-value on a -log10 scale. D) Upregulated (red) and 
downregulated (blue) proteins involved in the citrate (TCA) cycle. 

4.9 DISCUSSION  

COVID-19 was initially classified as a respiratory disease; however, many 

studies have since proven that SARS-CoV-2 has the capacity to infect several other cell 

types and tissues. It has since been classified as a systemic disease with effects including 
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kidney failure, permanent liver damage, diarrhea, and neurological symptoms and 

sequelae. An increasing necessity to better understand the molecular and biochemical 

mechanisms triggered by SARS-CoV-2 infection throughout the human body led us to 

create the SARS-CoV-2 Infectome Atlas, in which several human cell types infected by 

SARS-CoV-2 were analyzed. 

SARS-CoV-2 has been found in human brain tissue collected postmortem and 

has also been shown to infect CNS models such as organoids and hamster brains234. 

Nonetheless, there is still no consensus as to if the brain alterations are directly related 

to the viral infection or if it is a secondary effect. Moreover, the mechanisms utilized by 

the virus to infect these cells and which changes are triggered or provoked by its 

replication are still a matter of discussion. This work reinforces the ability of SARS-

CoV-2 to infect different CNS cell types and subsequently trigger proteomic changes. 

NPC-derived neurons exhibited the most affected model by the size of its infectome. 

Around 25% of the total identified proteomes from NSC-derived astrocytes, neurons, 

and differentiated SH-SY5Y neuroblastoma cells were deregulated after infection. 

Neurons or astrocytes have been hypothesized to be some of the first affected cells 

within the CNS due to their proximity to the blood-brain barrier (BBB), which would 

act as the port of entry of the virus into the CNS. Another noncompeting hypothesis is 

that axonal projections that reach the olfactory bulb may carry the virus into the CNS, 

thereby bypassing the BBB235. 

Furthermore, infection of the CNS increases IL-6 levels, primarily as a response 

by astrocytes and microglia, potentially reducing the integrity of the BBB and 

promoting further viral invasion into the CNS236. This increase in IL-6 levels has been 

 
234 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients”; 
Fadi Jacob et al., “Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-
CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium,” Cell Stem Cell 27, no. 6 (December 3, 
2020): 937-950.e9, https://doi.org/10.1016/j.stem.2020.09.016. 
235 Yachou et al., “Neuroinvasion, Neurotropic, and Neuroinflammatory Events of SARS-CoV-2”; Iván 
Alquisiras-Burgos et al., “Neurological Complications Associated with the Blood-Brain Barrier Damage 
Induced by the Inflammatory Response During SARS-CoV-2 Infection,” Molecular Neurobiology 58, no. 2 
(February 2021): 520–35, https://doi.org/10.1007/s12035-020-02134-7. 
236 Orkide O. Koyuncu, Ian B. Hogue, and Lynn W. Enquist, “Virus Infections in the Nervous System,” 
Cell Host & Microbe 13, no. 4 (April 17, 2013): 379–93, https://doi.org/10.1016/j.chom.2013.03.010; María 
Erta, Albert Quintana, and Juan Hidalgo, “Interleukin-6, a Major Cytokine in the Central Nervous 
System,” International Journal of Biological Sciences 8, no. 9 (2012): 1254–66, 
https://doi.org/10.7150/ijbs.4679. 



Chapter 3: Diving into the proteomic atlas of SARS-CoV-2 infected 
cells: insights of viral infection in different cell types 
 126 
 
 

 

observed in the cerebrospinal fluid of patients with COVID-19237. In this study, the 

astrocyte infectome enriched for biological pathways involved in other chronic 

inflammatory diseases and responses to infectious agents, suggesting that these cells 

may be involved in the primary response to SARS-CoV-2 infection.  

Within brain tissue, SARS-CoV-2 presence is concentrated in astrocytes despite 

a more accentuated proteomic change in neurons238. While comparing results from the 

enrichment analysis, NPC-derived neurons and differentiated SH-5YSY cells had a 

higher overlap of enriched pathways than with astrocytes, likely due to ontological 

similarity. Many of the enriched pathways were associated with neurodegenerative 

disease, glucose energy metabolism, COVID-19 disease, and ribosomal translational 

functions. The enrichment for neurodegenerative diseases could potentially be 

explained by increases in cell death and apoptosis.  

Energy metabolism was affected in all CNS cells analyzed in this study, making 

it a pathway of interest for further study. Proteins belonging to glycolytic pathways 

were generally upregulated in neurons and SH-5YSY cells, while in astrocytes they were 

downregulated. Calmodulin-dependent protein kinase (CAMK2D) was found 

upregulated in astrocytes, a protein that plays an important role in glutamatergic 

synapses through the post NMDA receptor activation events, possibly representing a 

higher uptake of glutamate from the extracellular medium. 

In all cell types, PHGDH was found upregulated (Figure 2B), a protein which 

catalyzes the synthesis of L-serine, the precursor to D-serine, which is essential for 

NMDA receptor function throughout neurodevelopment. The upregulation of PHGDH 

in these cells could be related to an increased consumption of glutamate by the infected 

CNS cells to offset the increased energy demands resulting from the replication of viral 

particles. Crunfli et al. showed an imbalance in the glutamate/glutamine interplay 

 
237 Keith D. Rochfort et al., “Downregulation of Blood-Brain Barrier Phenotype by Proinflammatory 
Cytokines Involves NADPH Oxidase-Dependent ROS Generation: Consequences for Interendothelial 
Adherens and Tight Junctions,” PloS One 9, no. 7 (2014): e101815, 
https://doi.org/10.1371/journal.pone.0101815; Jiyong Zhang et al., “Anti-IL-6 Neutralizing Antibody 
Modulates Blood-Brain Barrier Function in the Ovine Fetus,” FASEB Journal: Official Publication of the 
Federation of American Societies for Experimental Biology 29, no. 5 (May 2015): 1739–53, 
https://doi.org/10.1096/fj.14-258822. 
238 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients.” 
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between SARS-CoV-2 infected astrocytes and neurons239 and proposed that the higher 

mortality observed in neurons and SH-5YSY cells after being exposed to medium 

conditioned with infected astrocytes is due to a disruption of this feedback system 

between astrocytes and neurons. 

More than half of COVID-19 patients report gastrointestinal symptoms, most 

commonly diarrhea, but also including anorexia, nausea, vomiting, abdominal pain and 

gastrointestinal bleeding240. ACE2 is abundantly expressed in the intestinal epithelial 

cell cytoplasm 241 , enabling SARS-CoV-2 to directly target gastrointestinal cells, 

specifically gastric and intestinal epithelial cells242. Based on this evidence and the 

various gastroenterological symptoms, we chose to investigate the cellular response to 

infection in epithelial intestinal cells (CACO-2) and hepatocytes when creating our 

SARS-CoV-2 infection proteome map. The pathway analysis from the 332 proteins in 

the CACO-2 infectome mainly enriched for pathways related to chronic inflammatory 

diseases, energy metabolism, and biosynthesis of amino acids, highlighting the 

necessity of SARS-CoV-2 to induce changes in energy and protein metabolism to 

quickly replicate and create new viral particles. 

Bojkova et al. used the same cell line labelled with stable isotopic amino acids 

(SILAC) to study the proteomic profile after SARS-CoV-2 infection243, discovering 459 

proteins dysregulated by viral infection, enriching for glycolysis and nucleotide 

metabolism pathways. They also tested inhibitors of protein translation, RNA splicing, 

glycolysis, and nucleotide synthesis at non-toxic concentrations, which, in line with our 

findings, inhibited viral replication. Another study raised the hypothesis that, upon the 

ACE2-mediated entry of SARS-CoV-2 into the gastrointestinal tract via the small 

 
239 Crunfli et al. 
240  Han-Yu Lei et al., “Potential Effects of SARS-CoV-2 on the Gastrointestinal Tract and Liver,” 
Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 133 (January 2021): 111064, 
https://doi.org/10.1016/j.biopha.2020.111064. 
241 Lulin Zhou et al., “SARS-CoV-2 Targets by the pscRNA Profiling of ACE2, TMPRSS2 and Furin 
Proteases,” iScience 23, no. 11 (November 20, 2020): 101744, https://doi.org/10.1016/j.isci.2020.101744. 
242 Fei Xiao et al., “Evidence for Gastrointestinal Infection of SARS-CoV-2,” Gastroenterology 158, no. 6 
(May 2020): 1831-1833.e3, https://doi.org/10.1053/j.gastro.2020.02.055. 
243 Denisa Bojkova et al., “Proteomics of SARS-CoV-2-Infected Host Cells Reveals Therapy Targets,” 
Nature 583, no. 7816 (July 2020): 469–72, https://doi.org/10.1038/s41586-020-2332-7. 
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intestine, viral invasion and expansion occur, triggering gastrointestinal inflammation 

and potentially evolving into a strong cytokine response244.  

Within the gastroenterological system, the liver is the organ that is considered 

to be most impacted by COVID-19, with approximately 58-75% of patients presenting 

hepatic injury and/or increased levels of transaminases245. While patients with COVID-

19 generally present only moderate liver damage, more severe cases have been 

reported246. Wang and colleagues were the first to provide evidence of cytopathy in 

hepatocytes caused by SARS-CoV-2 infection that could cause liver impairment in the 

infected host247. Our analysis indeed shows that SARS-CoV-2 elicits proteomic changes 

in the HepG2 cell line, affecting proteins related to energy metabolism, the proteasome, 

amino acid biosynthesis, and pyruvate metabolism. When filtering for proteins 

associated with carbon metabolism in hepatocytes, there was an increase in proteins 

involved in pyruvate production, indicating once again that glucose metabolism is 

crucial during viral replication. 

Adipose tissue has also been associated with SARS-CoV-2 infection and the 

subsequent inflammatory response248. Since the entry of SARS-CoV-2 into the digestive 

 
244  Hui Zhang et al., “Specific ACE2 Expression in Small Intestinal Enterocytes May Cause 
Gastrointestinal Symptoms and Injury after 2019-nCoV Infection,” International Journal of Infectious 
Diseases: IJID: Official Publication of the International Society for Infectious Diseases 96 (July 2020): 19–24, 
https://doi.org/10.1016/j.ijid.2020.04.027. 
245 Chaolin Huang et al., “Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, 
China,” Lancet (London, England) 395, no. 10223 (February 15, 2020): 497–506, 
https://doi.org/10.1016/S0140-6736(20)30183-5; Nanshan Chen et al., “Epidemiological and Clinical 
Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive 
Study,” Lancet (London, England) 395, no. 10223 (February 15, 2020): 507–13, 
https://doi.org/10.1016/S0140-6736(20)30211-7; Mansoor N. Bangash, Jaimin Patel, and Dhruv Parekh, 
“COVID-19 and the Liver: Little Cause for Concern,” The Lancet. Gastroenterology & Hepatology 5, no. 6 
(June 2020): 529–30, https://doi.org/10.1016/S2468-1253(20)30084-4; Yijin Wang et al., “SARS-CoV-2 
Infection of the Liver Directly Contributes to Hepatic Impairment in Patients with COVID-19,” Journal 
of Hepatology 73, no. 4 (October 2020): 807–16, https://doi.org/10.1016/j.jhep.2020.05.002. 
246 Chen et al., “Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus 
Pneumonia in Wuhan, China”; Bangash, Patel, and Parekh, “COVID-19 and the Liver.” 
247 Wang et al., “SARS-CoV-2 Infection of the Liver Directly Contributes to Hepatic Impairment in 
Patients with COVID-19.” 
248 Kruglikov and Scherer, “The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-
19 Infections”; Aaron J. Wilk et al., “Multi-Omic Profiling Reveals Widespread Dysregulation of Innate 
Immunity and Hematopoiesis in COVID-19,” The Journal of Experimental Medicine 218, no. 8 (August 2, 
2021): e20210582, https://doi.org/10.1084/jem.20210582; Martin Zickler et al., “Replication of SARS-CoV-
2 in Adipose Tissue Determines Organ and Systemic Lipid Metabolism in Hamsters and Humans,” Cell 
Metabolism 34, no. 1 (January 4, 2022): 1–2, https://doi.org/10.1016/j.cmet.2021.12.002; A. Basolo et al., 
“Adipose Tissue in COVID-19: Detection of SARS-CoV-2 in Adipocytes and Activation of the Interferon-
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system, obesity, and high quantities of adipose tissue are risk factors and indicators of 

poor prognosis for severe COVID-19 and its evolution249, we evaluated infectomes of 

primary stromal-vascular cells isolated from subcutaneous (abdomen) or visceral 

(omentum) adipose tissues. Subcutaneous and visceral adipose tissue cells presented 

different responses to infection, with only 44 proteins in common. A pathway 

enrichment analysis highlighted changes in pyruvate metabolism, carbon metabolism, 

glycolysis/gluconeogenesis, and the TCA cycle in both cell types. 

These dysregulations could be associated with the hyperglycemia that is often 

reported in acute COVID-19 patients and other metabolic dysfunctions that is seen in 

this disease250. Hospitalized COVID-19 patients with hyperglycemia also presented a 

higher prevalence of insulin resistance when compared to ARDS (acute respiratory 

distress syndrome)-positive and ARDS-negative controls, due to changes in adipokine 

levels (adiponectin and leptin), instead of beta-cell function251. This was also observed 

in other studies that analyzed adipokine levels in infected hamsters252. The energy 

metabolism dysfunctions seen in both adipocyte infectomes could be disrupting the 

proper functioning of these cells, inducing changes in adipokine secretion. When 

epithelial intestinal cells (CACO-2), hepatocytes (HepG2), and both subcutaneous and 

visceral adipose tissue were compared, only MDH2 (malate dehydrogenase 2) was found 

in all infectomes, being upregulated in CACO-2 cells, and downregulated in all other 

cell types (Supplementary Figure 5).  

The immune response that is mounted upon SARS-CoV-2 infection is against 

the spike and nucleocapsid viral components and seeks to eliminate the virus from the 

 
Alpha Response,” Journal of Endocrinological Investigation 45, no. 5 (May 2022): 1021–29, 
https://doi.org/10.1007/s40618-022-01742-5. 
249 Norbert Stefan et al., “Obesity and Impaired Metabolic Health in Patients with COVID-19,” Nature 
Reviews. Endocrinology 16, no. 7 (July 2020): 341–42, https://doi.org/10.1038/s41574-020-0364-6. 
250 Moritz Reiterer et al., “Hyperglycemia in Acute COVID-19 Is Characterized by Insulin Resistance and 
Adipose Tissue Infectivity by SARS-CoV-2,” Cell Metabolism 33, no. 11 (November 2, 2021): 2174-2188.e5, 
https://doi.org/10.1016/j.cmet.2021.09.009. 
251 Reiterer et al. 
252  Jasper Fuk-Woo Chan et al., “Simulation of the Clinical and Pathological Manifestations of 
Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease 
Pathogenesis and Transmissibility,” Clinical Infectious Diseases: An Official Publication of the Infectious 
Diseases Society of America 71, no. 9 (December 3, 2020): 2428–46, https://doi.org/10.1093/cid/ciaa325; Sin 
Fun Sia et al., “Pathogenesis and Transmission of SARS-CoV-2 in Golden Hamsters,” Nature 583, no. 7818 
(July 2020): 834–38, https://doi.org/10.1038/s41586-020-2342-5. 
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host253. Lower levels of neutralizing antibodies in circulation and a progression to severe 

COVID-19 are strongly associated with an exacerbated inflammatory response, 

alterations in the immune system response characterized by protein synthesis 

reduction, a “cytokine storm”, lymphocytopenia, and T-cell exhaustion254 . Immune 

responses occur through two different mechanisms: the innate immune response, 

mediated by macrophages, dendritic cells, and natural killer cells, and/or the adaptive 

immune response, mediated by T-cells and B-cells.  

To cover as many of the proteomic changes brought about by SARS-CoV-2 

infection as possible, we used human primary T-cells and monocytes as infection 

models, thereby screening both innate and adaptive responses255. The resulting pathway 

analyses showed a high similarity between the T-cells and monocytes, enriching for 

several pathways related to response to infection, phagocytosis, neutrophil cellular trap 

formation, and, once again, energy metabolism. Ribosomal changes and coronavirus 

disease were identified only in monocytes, likely since monocytes are responsible for 

the activation of macrophages and produce the initial immune response. In agreement 

with this hypothesis, chemokine signaling activation and leukocyte trans-endothelial 

migration were both enriched exclusively in monocytes. The T-cell infectome also 

exclusively enriched for certain biological pathways, which included apoptotic and 

necroptotic pathways, supporting a study that saw a decrease in CD4+ T-cell viability 

after SARS-CoV-2 infection256. As SARS-CoV-2 replication is dependent on the presence 

of glucose, this highlights the many pathways involved in glucose metabolism that were 

enriched in both cell types. Moreover, this suggests that energy production 

 
253 Xiaonan Zhang et al., “Viral and Host Factors Related to the Clinical Outcome of COVID-19,” Nature 
583, no. 7816 (July 2020): 437–40, https://doi.org/10.1038/s41586-020-2355-0. 
254 Prabhu S. Arunachalam et al., “Systems Biological Assessment of Immunity to Mild versus Severe 
COVID-19 Infection in Humans,” Science (New York, N.Y.) 369, no. 6508 (September 4, 2020): 1210–20, 
https://doi.org/10.1126/science.abc6261; Davide F. Robbiani et al., “Convergent Antibody Responses to 
SARS-CoV-2 in Convalescent Individuals,” Nature 584, no. 7821 (August 2020): 437–42, 
https://doi.org/10.1038/s41586-020-2456-9. 
255 Nie et al., “Multi-Organ Proteomic Landscape of COVID-19 Autopsies”; Brunetti et al., “SARS-CoV-2 
Uses CD4 to Infect T Helper Lymphocytes”; Codo et al., “Elevated Glucose Levels Favor SARS-CoV-2 
Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis.” 
256 Brunetti et al., “SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes.” 
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dysfunctions could be directly related to an exacerbated immune response and resulting 

cytokine storm257.  

When all cell types were compared together, a large overlap was observed in 

identified proteins; however, when only dysregulated proteins were considered, this 

overlap vanished (Supplementary Figure 3). Nie et al. observed a similar trend in their 

proteomic analysis of seven tissue types from patients who died from COVID-19258. 

They showed that only 39 proteins were commonly dysregulated of a total of 11394 

identified proteins, representing less than 0.004% of identifications. Despite the lack of 

overlap of individual proteins, energy metabolism was affected in every infectome 

(Supplementary Figure 6), which strongly supports the hypothesis that glucose 

metabolism is a key factor for SARS-CoV-2 replication inside the host cell. This 

hypothesis is further supported by several studies that have reported disturbances in 

energy production in tissues and cells infected by SARS-CoV-2259.  

To facilitate the future investigation of all the data collected and analyzed in 

this work, we have constructed an open-source tool to facilitate the search for proteins 

found to be dysregulated in each cell type and tissue type. Other data include their 

relative abundance in comparison to controls and the biological pathways they enrich, 

all of which is freely available at https://reisdeoliveira.shinyapps.io/Infectome_App/. 

Future proteomic analyses can then be submitted to this database to expand this SARS-

CoV-2 Infectome Atlas.  

4.10 DATA SHARING STATEMENT 

The mass spectrometry proteomic data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository60,61 with dataset 

identifiers 10·6019/PXD023781, PXD030910, PXD0269521, PXD020967. The unique 

primary cells and biopsies used in this study can only be shared upon approval by the 

local ethics committee and donor consent. 

 
257 Codo et al., “Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a 
HIF-1α/Glycolysis-Dependent Axis.” 
258 Nie et al., “Multi-Organ Proteomic Landscape of COVID-19 Autopsies.” 
259 Nie et al.; Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 
Patients”; Codo et al., “Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response 
through a HIF-1α/Glycolysis-Dependent Axis.” 

https://www.zotero.org/google-docs/?sVqf3p
https://www.ebi.ac.uk/pride/archive/projects/PXD030910/private
https://www.ebi.ac.uk/pride/archive/projects/PXD020967/private
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4.11 METHODS 

4.11.1 Generation of human astrocytes (hES-derived)  

Differentiation of glial progenitor cells was performed from neural stem cells 

(NSC) derived from pluripotent human embryonic stem cells (hES, BR-1 cell line, 

RRID:CVCL_C062),260 according to the method published by Trindade et al.261 NSCs 

were cultured on plates coated with Geltrex Matrix (Thermo Fisher Scientific, MA, USA) 

using 1:1 Neurobasal™:advanced DMEM/F12 medium and 2% neural induction 

supplement. Upon reaching 50% confluence, the medium was changed to DMEM/F12 

(Dulbecco’s modified Eagle medium/F12), 1% N2 supplement, 1% fetal bovine serum 

(FBS), and 1% penicillin-streptomycin and cells were maintained at 37°C in humidified 

air with 5% atmospheric CO2 for 21 days. At this stage, cells were considered glial 

progenitor cells (GPC).  

Subsequently, GPCs were plated at low density (30-40% confluence) on 

Geltrex-coated plates with DMEM/F12 medium, 1% GlutaMAX Supplement, 10% FBS 

and 1% penicillin-streptomycin. The differentiation medium was replaced every 2-3 

days. After 4 weeks of differentiation, the cells were considered mature astrocytes. 

These cells were plated on Geltrex-coated coverslips at a density of 4x104 cells for 

immunostaining assays (24-well plates) or 2·5x105 cells for viral load, proteomic, and 

metabolomic analysis (6-well plates).  

All products used for cell culture are from Thermo Fisher Scientific, MA, USA. 

The characterization of the BR-1 lineage as astrocyte cells has been previously described 

elsewhere262. We generated eight batches of human astrocytes from BR-1-derived NSCs. 

 
260 Ana M. Fraga et al., “Establishment of a Brazilian Line of Human Embryonic Stem Cells in Defined 
Medium: Implications for Cell Therapy in an Ethnically Diverse Population,” Cell Transplantation 20, no. 
3 (2011): 431–40, https://doi.org/10.3727/096368910X522261. 
261 Pablo Trindade et al., “Short and Long TNF-Alpha Exposure Recapitulates Canonical Astrogliosis 
Events in Human-Induced Pluripotent Stem Cells-Derived Astrocytes,” Glia 68, no. 7 (July 2020): 1396–
1409, https://doi.org/10.1002/glia.23786. 
262 Fraga et al., “Establishment of a Brazilian Line of Human Embryonic Stem Cells in Defined Medium”; 
Trindade et al., “Short and Long TNF-Alpha Exposure Recapitulates Canonical Astrogliosis Events in 
Human-Induced Pluripotent Stem Cells-Derived Astrocytes”; Pítia Flores Ledur et al., “Zika Virus 
Infection Leads to Mitochondrial Failure, Oxidative Stress and DNA Damage in Human iPSC-Derived 
Astrocytes,” Scientific Reports 10, no. 1 (January 27, 2020): 1218, https://doi.org/10.1038/s41598-020-57914-
x; Yiping Yan et al., “Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of 
Brain Subtype Neurons from Human Pluripotent Stem Cells,” Stem Cells Translational Medicine 2, no. 11 
(November 2013): 862–70, https://doi.org/10.5966/sctm.2013-0080. 
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The NSCs were of different passages and were used as biological replicates in 

independent experiments. Our internal control showed that approximately 97% of the 

neural stem cell-derived astrocytes in culture expressed GFAP, 80·4% expressed 

vimentin, and 12·9% expressed SOX-2 (markers of progenitor cells). The neural stem 

cell-derived astrocyte culture expressed more astrocytic markers than progenitor cell 

markers, indicating an excellent effectiveness of human astrocyte generation. Method 

described in our previous work263. 

4.11.2 Differentiation of the SH-SY5Y human neuroblastoma cell line 

The SH-SY5Y cell line (SH-SY5Y ATCC-CRL-2266, RRID:CVCL_0019), kindly 

donated by Prof. Dr. Gustavo J. S. Pereira (Federal University of São Paulo, UNIFESP), 

was cultivated using a previously documented neuronal differentiation protocol 264 

using DMEM/F12 medium, 10% FBS and 1% penicillin-streptomycin at 37°C in 

humidified air with 5% atmospheric CO2. The SH-SY5Y cells were plated and, upon 

reaching 25-30% confluency, the medium was changed to neuronal differentiation 

medium consisting of DMEM/F12 with 1% FBS and 10 µM retinoic acid (Sigma Aldrich). 

The differentiation medium was replaced every 2-3 days over the course of 2 weeks. 

These differentiated SH-SY5Y cells are known to more closely relate to adrenergic 

neurons, but they also express dopaminergic markers265.  

4.11.3 NSC differentiation into neurons  

Human NSC-derived neurons were cultivated following the protocol described 

by Thermo Fisher Scientific 266 . NSCs were plated on Geltrex-coated plates and 

 
263 Crunfli et al., “Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients.” 
264 Jane Kovalevich and Dianne Langford, “Considerations for the Use of SH-SY5Y Neuroblastoma Cells 
in Neurobiology,” Methods in Molecular Biology (Clifton, N.J.) 1078 (2013): 9–21, 
https://doi.org/10.1007/978-1-62703-640-5_2; Mackenzie M. Shipley, Colleen A. Mangold, and Moriah L. 
Szpara, “Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line,” Journal of Visualized 
Experiments: JoVE, no. 108 (February 17, 2016): 53193, https://doi.org/10.3791/53193; Helena Xicoy, Bé 
Wieringa, and Gerard J. M. Martens, “The SH-SY5Y Cell Line in Parkinson’s Disease Research: A 
Systematic Review,” Molecular Neurodegeneration 12, no. 1 (January 24, 2017): 10, 
https://doi.org/10.1186/s13024-017-0149-0. 
265  Kovalevich and Langford, “Considerations for the Use of SH-SY5Y Neuroblastoma Cells in 
Neurobiology.” 
266 G. J. Brewer, “Serum-Free B27/Neurobasal Medium Supports Differentiated Growth of Neurons from 
the Striatum, Substantia Nigra, Septum, Cerebral Cortex, Cerebellum, and Dentate Gyrus,” Journal of 
Neuroscience Research 42, no. 5 (December 1995): 674–83, https://doi.org/10.1002/jnr.490420510; Y. 
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maintained with NEM medium at 37°C in humidified air with 5% atmospheric CO2. Upon 

reaching 40% confluency, the medium was changed to neuronal differentiation medium 

consisting of 1:1 DMEM/F12:neurobasal medium with 1% B27 supplement (Thermo 

Fisher Scientific, Carlsbad, CA, USA) and 1% GlutaMAX (Thermo Fisher Scientific, 

Carlsbad, CA, USA). The medium was renewed every four days over the course of 20 

days by removing half of the volume and replacing the same volume with fresh medium. 

Medium renewal was performed in this manner since factors secreted by the 

differentiating cells are important for successful differentiation. Two control cell lines 

were used: GM23279A, obtained from a female subject (available at Coriell; 

RRID:CVCL_F178) and BR-1 (RRID:CVCL_C062) 267 . Both cell lines were cultivated 

following previously published protocols268 and have been extensively characterized 

elsewhere269. We also used FACS to analyze cellular markers and found a bona fide 

neuronal phenotype with the expression of the neuronal markers synaptophysin (75·9% 

of cells), MAP2 (99·9%), and β-tubulin (99%), as well as astrocytic marker GFAP (8·1%).  

4.11.4 Human adipose tissue mesenchymal stem cell isolation, culture, and adipocyte 

differentiation 

Patients, samples collection and adipocyte differentiation were previous 

described in our work 270 . For this work it was used the same samples but with 

 
Elkabetz and L. Studer, “Human ESC-Derived Neural Rosettes and Neural Stem Cell Progression,” Cold 
Spring Harbor Symposia on Quantitative Biology 73 (2008): 377–87, https://doi.org/10.1101/sqb.2008.73.052; 
Cleber A. Trujillo et al., “Novel Perspectives of Neural Stem Cell Differentiation: From Neurotransmitters 
to Therapeutics,” Cytometry. Part A: The Journal of the International Society for Analytical Cytology 75, 
no. 1 (January 2009): 38–53, https://doi.org/10.1002/cyto.a.20666. 
267 Fraga et al., “Establishment of a Brazilian Line of Human Embryonic Stem Cells in Defined Medium.” 
268 Ledur et al., “Zika Virus Infection Leads to Mitochondrial Failure, Oxidative Stress and DNA Damage 
in Human iPSC-Derived Astrocytes”; Bárbara S. Casas et al., “hiPSC-Derived Neural Stem Cells from 
Patients with Schizophrenia Induce an Impaired Angiogenesis,” Translational Psychiatry 8, no. 1 
(February 22, 2018): 48, https://doi.org/10.1038/s41398-018-0095-9; Livia Goto-Silva et al., “Computational 
Fluid Dynamic Analysis of Physical Forces Playing a Role in Brain Organoid Cultures in Two Different 
Multiplex Platforms,” BMC Developmental Biology 19, no. 1 (March 7, 2019): 3, 
https://doi.org/10.1186/s12861-019-0183-y; Joseph A. White et al., “Excess Rab4 Rescues Synaptic and 
Behavioral Dysfunction Caused by Defective HTT-Rab4 Axonal Transport in Huntington’s Disease,” Acta 
Neuropathologica Communications 8, no. 1 (July 1, 2020): 97, https://doi.org/10.1186/s40478-020-00964-z. 
269 Brewer, “Serum-Free B27/Neurobasal Medium Supports Differentiated Growth of Neurons from the 
Striatum, Substantia Nigra, Septum, Cerebral Cortex, Cerebellum, and Dentate Gyrus”; Elkabetz and 
Studer, “Human ESC-Derived Neural Rosettes and Neural Stem Cell Progression”; Trujillo et al., “Novel 
Perspectives of Neural Stem Cell Differentiation.” 
270 Saccon et al., “SARS-CoV-2 Infects Adipose Tissue in a Fat Depot- and Viral Lineage-Dependent 
Manner.” 
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independent runs in the LC-MS/MS system. Briefly, human adipose tissue-derived 

mesenchymal stem cells (hADSCs) were isolated from abdominal subcutaneous adipose 

tissue and visceral omental adipose tissue of three individuals who underwent 

abdominal surgery (i.e., bariatric surgery or cholecystectomy) at the Clinical Hospital 

of the University of Campinas, Campinas, SP, Brazil. These cells were isolated prior to 

the COVID-19 pandemic and hence the donors were not infected with SARS-CoV-2. The 

subjects received written and oral information before providing written informed 

consent for the collection of the biopsy and use of the tissues. All material used in the 

procedure was sterile. Biopsies were collected during surgery and transported to the 

laboratory within 30 minutes in sealed, sterile falcon tubes for initiation of the 

procedure of stromal-vascular fraction isolation. The tissue was weighed, cut into small 

pieces on a petri dish, and digested with 25-30 mL of lysis buffer (1 mg/mL collagenase 

in HBSS containing 2% BSA, filtered through a 0·22 μm filter) at 37°C for 30-50 min with 

slight agitation, until homogeneous. The homogenate was filtered through a 250 μm 

filter and collected in a sterile falcon tube. After a brief rest period (approximately 5 

minutes), the infranatant containing the stromal-vascular fraction was collected using 

a Pasteur pipette and centrifuged for 5 min at 200 x g and 4°C. The supernatant was 

discarded, and the cell pellet was washed with HBSS. The centrifugation and washing 

steps were repeated twice. The pellet was then resuspended in BM-1 medium (ZenBio) 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (penicillin 10,000 

units/mL, streptomycin 10 mg/mL).  

Cells were cultured at 37°C and 5% atmospheric CO2 until semi-confluent (80-

90%). They were then trypsinized and frozen in freezing medium (10% DMSO, 50% FBS, 

and 40% basal culture medium) and stored in a liquid nitrogen biorepository for further 

assays (e.g., adipocyte differentiation followed by exposure with agents, lipid 

quantification, determination of cell viability, gene expression analysis, proteomics, 

immunodetection of proteins, quantification of cell secretion products, and metabolic 

analysis).   

hADSCs were thawed in BM-1 medium supplemented with 10% FBS, 1% 

penicillin/streptomycin, 17 ng/mL bFGF, and 15 ng/mL BMP4, and cultured at 37°C and 

5% atmospheric CO2. Cells were expanded (i.e., split 1-3 times) and then seeded onto 24-
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well plates at a density of 40,000 cells/cm2for adipocyte differentiation. When cells 

reached 100% confluency (day 0), the medium was replaced with BM-1 supplemented 

with 3% FBS, 1% penicillin/streptomycin, 0·1 µM dexamethasone, 500 µM 3-isobutyl-1 

methylxanthine (IBMX), 20 nM insulin, 5 nM triiodothyronine (T3) and 10 ng/mL BMP4. 

Cells were cultured for 7 days, and the medium was changed every 2-3 days. On day 7, 

the medium was replaced with BM-1 supplemented with 3% FBS, 1% 

penicillin/streptomycin, 0·1 µM dexamethasone, 20 nM insulin, 5 nM T3 and 10 ng/mL 

BMP4 until the cells were fully differentiated (day 10). Cells were then cultured for an 

additional 3 days with BM-1 supplemented with 3% FBS and 1% penicillin/streptomycin 

before being subjected to the assays described below.  

4.11.5 Virus strain 

The HIAE-02-SARS-CoV-2/SP02/human/2020/BRA (GenBank accession 

number MT126808·1) virus strain was used for all in vitro experiments. The virus was 

isolated from the first confirmed case of COVID-19 in Brazil and kindly donated by Prof. 

Dr. Edison Durigon (ICB-USP). VSV-eGFP-SARS-CoV-2 was engineered and donated by 

Prof. Dr. Sean P.J. Whelan (Department of Medicine, Washington University School of 

Medicine, St. Louis, MO, USA) for SARS-CoV-2 entry experiments271. Viral stock was 

propagated in Vero CCL-81 cells (ATCC, RRID:CVCL_0059), cultivated in DMEM 

supplemented with 10% heat-inactivated FBS and 1% penicillin and streptomycin (Gibco, 

Walthmam, MA, USA), and incubated at 37°C with 5% atmospheric CO2. Viral titer was 

determined by the plaque-forming assay using Vero cells. The Brazilian ZIKV strain 

(BeH823339, 589; GenBank accession KU729217) was used for proteomic experiments. 

4.11.6 Human lymphocyte isolation and mixed lymphocyte reaction 

PBMCs isolated from buffy coats from healthy volunteers were incubated at 

37°C and 5% atmospheric CO2 for 2 h to allow monocyte adherence to the plate surface. 

Non-adherent cells in suspension were collected and stained with carboxyfluorescein 

succinimidyl ester (Cell-Trace CFSE). Cells were incubated with CFSE diluted in pre-

warmed PBS to the desired concentrations at 37°C for 15 min, resuspended in fresh, pre-

 
271  James Brett Case et al., “Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-
Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2,” Cell Host & Microbe 28, no. 3 
(September 9, 2020): 475-485.e5, https://doi.org/10.1016/j.chom.2020.06.021. 
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warmed medium for 30 min, and then washed with PBS, according to the 

manufacturer’s recommendations. Is this work it was reanalalyzed the proteomic data 

obtained by our previous work. Patients steatments and ethical issues are also described 

at Codo et al272.   

4.11.7 Human colon cancer cell line (CACO-2) culture 

Human colon cancer cell line CACO-2 (RRID:CVCL_0025) was obtained from 

the American Type Culture Collection (ATCC). Cells were maintained in Dulbecco's 

modified Eagle medium (Gibco) supplemented with 20% fetal bovine serum (FBS) and 

1% penicillin-streptomycin at 37°C and 5% atmospheric CO2. CACO-2 cells were 

exposed to SARS-CoV-2 for 1 h at an MOI of 0·1 (P3 21/05/20 - 104 UFF/mL) under gentle 

agitation at room temperature. After viral adsorption, cells were washed twice with 

phosphate-buffered saline (PBS) and incubated with DMEM supplemented with 20% FBS 

and 1% penicillin and streptomycin for 24 h at 37°C and 5% atmospheric CO2. 

4.11.8 Human liver carcinoma cell line (HepG2) culture 

HepG2 cells (human liver carcinoma cell line HepG2/CD81++) were cultured 

for 3 days in Dulbecco's modified Eagle medium (DMEM; Vitrocell, Campinas, SP, 

Brazil), enriched with 10% (v/v) fetal bovine serum, under a humidified conditions with 

5% atmospheric CO2 at 37°C. After reaching 80% confluence, the cells underwent viral 

infection of 0·1 MOI, prior to preparation for proteomic analyses, as described below. 

4.11.9 Blood sample collection and lymphocyte separation  

Each COVID-19 patient had heparin and plain blood tubes collected. Whole 

blood, serum, and plasma samples were separated. Peripheral blood mononuclear cells 

(PBMCs) from patients and buffy coats were obtained via Histopaque-1077 density 

gradient (Sigma-Aldrich). Samples were diluted in Hanks balanced salt solution (1:1) 

and gently poured into 15- or 50-mL conical tubes containing 3 or 10 mL of Histopaque, 

respectively. Samples were centrifuged at 1400 rpm for 30 min at 4°C without 

acceleration or braking. After the PBMC layer was transferred to new tube, lymphocytes 

were sorted and incubated overnight with RPMI 1640 (Gibco) containing 10% fetal 

 
272 Codo et al., “Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a 
HIF-1α/Glycolysis-Dependent Axis.” 
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bovine serum (FBS) and 1% penicillin-streptomycin (P/S), at 37°C with 5% atmospheric 

CO2.  Is this work it was reanalysed the proteomic data obtained by our previous work. 

Patients statements and ethical issues are also described at Davanzo GG, et al 202012 

4.11.10 In vitro astrocyte infection 

Astrocytes were infected with SARS-CoV-2 for 1 h (MOI of 0·1 for proteomic, 

viral load, and bioenergetic assays) under gentle agitation at room temperature. After 

viral adsorption, cells were washed twice with phosphate-buffered saline (PBS) and 

incubated with DMEM/F12 supplemented with 10% FBS, 1% GlutaMAX, and 1% 

penicillin and streptomycin for 24 h at 37ºC and 5% atmospheric CO2. 

4.11.11 LC-MS/MS sample preparation, analyses, and data processing 

All cellular experiments underwent the same preparation process, as follows. 

Cells were lysed chemically with lysis buffer (100 mM Tris-HCl, 1 mM EDTA, 150 mM 

NaCl, 1% Triton-X, and protease and phosphatase inhibitors) then mechanically with an 

ultrasonication probe during three cycles of 20 s with 90% frequency, on ice. The total 

protein extract was quantified by Pierce BCA protein assay (Thermo Fisher Scientific, 

MA, USA) according to the manufacturer’s instructions. 30 µg of total protein extract 

from each sample was transferred to a Microcon-10 centrifugal filter with a 10 kDa 

cutoff for FASP protein digestion 273 . In brief, proteins were reduced (10 mM 

dithiothreitol) at 56°C for 40 min, alkylated (50 mM iodoacetamide) at room temperature 

for 20 min in the dark, and digested overnight with trypsin at 37°C in 50 mM ammonium 

bicarbonate (AmBic), pH 8·0. Peptides were recovered from the filter in 50 mM AmBic 

and trypsin activity was quenched by adding formic acid (FA) to a final concentration 

of 1% (v/v), whereupon the peptides were desiccated in a SpeedVac vacuum 

concentrator and stored at -80°C until analysis. 

Digested peptides were resuspended in 0·1% FA. LC-MS/MS analyses were 

performed in an ACQUITY UPLC M-Class System (Waters Corporation, Milford, MA) 

coupled online to a Synapt G2-Si mass spectrometer (Waters Corporation, Milford, MA). 

1 μg of peptides were loaded onto a trapping column (Symmetry C18 5 μm, 180 μm × 20 

 
273 Ute Distler et al., “Label-Free Quantification in Ion Mobility-Enhanced Data-Independent Acquisition 
Proteomics,” Nature Protocols 11, no. 4 (April 2016): 795–812, https://doi.org/10.1038/nprot.2016.042. 

https://www.zotero.org/google-docs/?3LE8jM
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mm, Waters Corporation, Milford, MA) and subsequently separated in the analytical 

column (HSS T3 C18 1·8 μm, 75 μm × 150 mm; Waters Corporation, Milford, MA). For 

gradient elution, 0·1% FA was used as eluent A and acetonitrile-FA (99·9% ACN:0·1% 

FA) as eluent B. A reversed phase gradient was carried out over a 120-minute method, 

with a linear gradient running from 3 - 60% eluent B over 90 min at 300 nL/min. In the 

Synapt G2-Si, the peptide spectra were acquired by ion mobility-enhanced data-

independent acquisition (HDMSE). Mass spectrometry analysis was performed in 

Resolution Mode, switching between low (4 eV) and high (25 to 60 eV) collision energies, 

using a scan time of 1·0 s per function over 50 to 2000 m/z. The wave velocity for ion 

mobility separation was 1000 m/s and the transfer wave velocity was 175 m/s. A human 

[Glu1]-Fibrinopeptide B standard (Waters Corporation, Milford, MA) was used as the 

reference lock-mass compound. Each sample was acquired in at least duplicate.  

The raw data from each experiment were processed in Progenesis QI for 

Proteomics, version 4·0·x (Waters Corporation, Milford, MA). Tandem mass spectra 

were searched against a reviewed Homo sapiens proteome (UNIPROT, release 2020-04), 

using tolerance parameters of 20 ppm for precursor ions and 10 ppm for product ions. 

For peptide identification, carbamidomethylation of cysteine was set as a fixed 

modification and oxidation of methionine as a variable modification, up to two missed 

cleavages were permitted and the false discovery rate (FDR) was limited to 1%. Protein 

identification was performed using a minimum of one fragment ion per peptide, three 

fragment ions per protein, and one peptide per protein. Sample acquisition until this 

point was performed by experimenter blind to group assignment and outcome 

assessment. Analyses after this point were performed with predefined algorithms and 

cutoffs, reducing the possibility of experimenter-induced bias.  

The label-free quantitative analysis was carried out using the relative 

abundance intensity of all peptides of a protein with at least one unique peptide after 

normalisation by all peptide intensities. The expression analysis was performed 

considering the technical replicates for each experimental condition, following the 

hypothesis that each group is independent. Proteins with ANOVA (p) ≤ 0·05 between 

groups were considered differentially regulated. Data integration and visualization was 
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carried out in OmicScope package62 (v.1.2.2), using Progenesis Method and default 

parameters. 

4.11.12 RNA extraction and viral load  

Total RNA extraction was performed using TRI Reagent (Sigma, St Louis, USA) 

according to the manufacturer’s instructions. RNA concentration was determined by a 

DeNovix spectrophotometer and RNA integrity was assessed by visualisation of 28S and 

18S ribosomal RNA on a 1% agarose gel. Reverse transcription was performed with 0·5 

µg of RNA using a GoScript reverse transcriptase kit (Promega, Madison, WI, USA) 

according to the manufacturer’s instructions. qPCR was performed using astrocyte 

cDNA diluted 1:10 and the qPCR SybrGreen Supermix (Qiagen, Valencia, CA, USA) 

containing forward and reverse primers in RNAse-free water. All reactions were 

performed in a CFX384 Touch real-time PCR detection system (Biorad, Hercules, CA, 

USA) and cycling conditions were set as follows: 50°C for 2 min; 95°C for 10 min; (95°C 

for 15 s; 60°C for 1 min) x 40 cycles. To evaluate primer specificity, a melting curve 

analysis was performed by heating samples from 65 to 99°C (1°C increment changes at 

5 s intervals). All sample measurements were performed in duplicate. Primers were 

designed with PrimerBlast and used at a concentration of 200 nM. Data were normalised 

to the expression of 18S (Fwd 5’ CCCAACTTCTTAGAGGGACAAG 3’; Rev 5’ 

CATCTAAGGGCATCACAGACC 3’) and the relative quantification value of each 

target gene was determined using a comparative CT method274. For virus detection, 

SARS-CoV-2 nucleocapsid N1 primers (Fwd 5’ CAATGCTGCAATCGTGCTAC 3’; Rev 

5’ GTTGCGACTACGTGATGAGG 3’) were used as previously described275. Data were 

expressed as mean ± SEM. Statistical significance was calculated by a two-tailed 

unpaired Student’s t-test. All analyses were performed using GraphPad Prism 8·0 (San 

Diego, CA, USA) and a significance level of p ≤ 0·05 was adopted. 

 
274 Thomas D. Schmittgen and Kenneth J. Livak, “Analyzing Real-Time PCR Data by the Comparative 
C(T) Method,” Nature Protocols 3, no. 6 (2008): 1101–8, https://doi.org/10.1038/nprot.2008.73. 
275 Codo et al., “Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a 
HIF-1α/Glycolysis-Dependent Axis”; Joungha Won et al., “Development of a Laboratory-Safe and Low-
Cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19),” Experimental 
Neurobiology 29, no. 2 (April 30, 2020): 107–19, https://doi.org/10.5607/en20009. 
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4.11.13 Role of the funding source 

Funding sources had no influence on the study design; collection, analysis or 

interpretation of data; writing of the report; or decision to submit. 

4.12 SUPPLEMENTARY INFORMATION 

 
Supplementary Figure 4-1 A) Viral kinetic analysis in SH-SY5Y cell line. B) Viral kinetic analysis in NSC-
derived neurons. 

 
Supplementary Figure 4-2 Hierarchical clustering for pair-wise Pearson correlation among A) whole 
proteomes and B) infectomes. 

A) B)
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Supplementary Figure 4-3 Number of unique proteins differentially regulated in each infectome. Although 
no protein was found in all infectomes, 551 proteins were differentially regulated in more than one cell type. 
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Supplementary Figure 4-4 Upset plot showing the number of overlapping pathways among infectomes. 
Vertical bars indicate the number of proteins found exclusively in groups marked by the respective 
connected dots. Horizontal bars indicate the total number of pathways found in each infectome. 

 
Supplementary Figure 4-5 Boxplot of MDH2 abundance for control (CTRL) and SARS-CoV-2-infected cells 
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Supplementary Figure 4-6 Proteins found in all SARS-CoV-2 infectomes that are related to energy 
metabolism. Red indicates upregulation; blue indicates downregulation. 



 
 

5 CONCLUSION 

 

This thesis presented OmicScope, a novel and integrative package for 

proteomics data analysis, focusing on processes downstream to protein identification 

and quantitation. OmicScope is designed to interface with existing proteomics software 

and to bridge proteomics with other omics technologies and systems biology. Our tool 

is available as a Python package and a web application 

(https://omicscope.ib.unicamp.br) and enables differential proteomics analysis, 

enrichment analysis, and meta-analysis. OmicScope’s integrative workflow allows users 

to perform differential proteomics analyses with complex experimental designs and to 

prompt link them with enrichment analyses, integrating quantitative and enrichment 

results. Moreover, the Nebula module compares independent studies using data from 

differential proteomics and enrichment analysis, even from third-party sources. 

Critically, OmicScope has some limitations, such as restricted input format 

options, limited flexibility in some normalization and filtering steps, and reliance on the 

Enrichr API for enrichment analysis. However, these limitations are expected to be 

overcome with our ongoing efforts and our open-source approach. This approach also 

encourages community developers to add new features and improvements to the tool. 

Our group, known for applying shotgun proteomics to reveal biochemical 

mechanisms related to brain disorders and SARS-CoV-2 infection, has incorporated 

OmicScope into our data analysis workflow. Chapters one and three of this thesis 

illustrate the benefits triggered by the development and usage of our computational 

tool. Additionally, our software is currently supporting several projects in our lab, 

helping users to efficiently analyse data and generate valuable biological insights. 

OmicScope was developed based on the experimental designs used by our group and 

has been applied to projects that assess proteome changes caused by drugs and diseases, 

including those involving time-course treatments or neurodevelopmental processes. 

The web application, which enables real-time discussion and brainstorming of results 

during lab meetings, has been instrumental in enhancing decision-making and guiding 

hypothesis validation. As a future outlook, we expect OmicScope to be adopted by the 

scientific community with similar acceptance as it has been in our group, contributing 

to the widespread use of proteomics and facilitating novel discoveries.
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