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Resumo
As Cadeias de Markov de Alcance Variável com Covariáveis Exógenas são modelos esto-
cásticos inseridos no contexto das Cadeias de Markov de Alcance Variável. Estes modelos
empregam Modelos Lineares Generalizados para calcular as probabilidades de transição,
considerando tanto o histórico de estados quanto as covariáveis exógenas dependentes do
tempo. O algoritmo beta-contexto é utilizado para selecionar um sufixo finito relevante,
ou contexto, para prever o próximo símbolo. Este algoritmo estima modelos flexíveis em
forma de árvore, agregando estados irrelevantes no histórico do processo e permitindo que
o modelo incorpore covariáveis exógenas ao longo do tempo.

Nossa pesquisa amplia o algoritmo beta-contexto com alcance variável para incorporar
tanto covariáveis exógenas dependentes quanto invariantes no tempo, utilizando dados
de múltiplas fontes. Dentro dessa abordagem, temos uma cadeia de Markov distinta para
cada fonte de dados, o que possibilita uma compreensão do comportamento do processo
em diversas situações, como diferentes localizações geográficas. Apesar do uso de dados
provenientes de diferentes fontes, pressupomos que todas as fontes são independentes e
compartilham parâmetros idênticos - exploramos os contextos dentro de cada fonte de
dados e os combinamos para calcular as probabilidades de transição, resultando em uma
árvore unificada. Essa abordagem elimina a necessidade de considerações relacionadas à
dependência espacial dentro do modelo. Além disso, também incorporamos modificações
no procedimento de estimação para lidar com contextos que ocorrem com baixa frequência.

Nossa motivação foi investigar o impacto das taxas anteriores de dengue, condições climá-
ticas e fatores socioeconômicos nas taxas subsequentes da doença em diversos municípios
do Brasil, fornecendo percepções sobre a dinâmica de transmissão da doença.

Palavras-chave: Cadeias de Markov. Regressão logistica. Dengue - Brasil.



Abstract
Variable Length Markov Chains with Exogenous Covariates (VLMCX) are stochastic
models in the framework of Variable Length Markov Chains (VLMC) that use Generalized
Linear Models (GLM) to compute transition probabilities, taking into account the state
history and time-dependent exogenous covariates. The beta-context algorithm is used to
select a relevant finite suffix, or context, for predicting the next symbol. This algorithm
estimates flexible tree-structured models by aggregating irrelevant states in the process
history and enables the model to incorporate exogenous covariates over time.

Our research extends the beta-context model with variable length to incorporate both
time-dependent and time-invariant exogenous covariates, using data from multiple sources.
Within this approach, we have a distinct Markov chain for every data source, allowing for
a comprehensive understanding of the process behavior across multiple situations, such as
different geographic locations. Despite the use of data from different sources, we assume
that all sources are independent and share identical parameters - we explore contexts within
each data source and combine them to compute transition probabilities, deriving a unified
tree. This approach eliminates the necessity for spatial-dependent structural considerations
within the model. Furthermore, we incorporate modifications in the estimation procedure
to address contexts that appear with low frequency.

Our motivation was to investigate the impact of previous dengue rates, weather conditions,
and socioeconomic factors on subsequent dengue rates across various municipalities in
Brazil, providing insights into dengue transmission dynamics.

Keywords: Markov Chains. Logistic regression. Dengue - Brazil.
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Introduction

Stochastic chains with variable-length memory constitute an economic class of
high-order Markov chains. These chains were introduced by Rissanen (1983) as a data
compression tool, capable of efficiently compressing long strings without prior source
knowledge. To accomplish this, the Context Algorithm was proposed to estimate adaptable
tree-structured models by lumping together irrelevant states within the historical context
of the process. Rissanen (1983) demonstrated that when the tree’s order is bounded,
regardless of the sample size, this algorithm consistently estimates both the context length
and the corresponding transition probabilities.

Subsequently, Bühlmann e Wyner (1999) expanded upon these chains from a
statistical perspective, leading to substantial theoretical advancements in both classical
Markov chain techniques and their variable-length variants. They demonstrated that the
context algorithm remains consistent even when the order of the chain is permitted to
increase with the sample size.

In addition to full Markov chains with a finite order being one of the most
comprehensive models for a stationary process, the statistical interest in Variable Length
Markov Chains (VLMC) arises to address two challenges of full Markov chains that limit
their suitability from an estimation perspective:

• Problem 1: The class of all finite-order Markov chains lacks structural richness,
resulting in abrupt dimensionality increases as the order grows. This makes it difficult
to achieve an effective trade-off between bias (minimized with numerous parameters)
and variance (minimized with fewer parameters) for a predictor.

• Problem 2: The curse of dimensionality is particularly problematic when dealing
with high-order models, as the dimensionality expands exponentially with the order.

Both of these issues can be resolved by allowing the memory of a stationary
Markov chain to have variable length, which implies that some transition probabilities of
the Markov chain are lumped together if they are equal.

Nonetheless, these methods often do not incorporate available time-dependent
covariates, which can substantially influence transition probabilities. Numerous studies
have explored Markov chains with exogenous covariates (for instance, MacRae (1977),
Muenz e Rubinstein (1985), Azzalini (1994), López, Fernández e Velasco (1995), Cook
e Ng (1997), Vermunt, Langeheine e Bockenholt (1999), Aalen, Borgan e Fekjær (2001),
Heagerty (2002), Fokianos e Kedem (2003), Islam e Chowdhury (2006), Paroli e Spezia



Introduction 18

(2007), Browning e Carro (2010), Meligkotsidou e Dellaportas (2011), Gao et al. (2017),
Rubin et al. (2017), Sirdari e Islam (2018), Bray (2019), Liu et al. (2021), among others),
but formal inference on Markov chains with variable length and exogenous covariates was
a relatively unexplored area until the study conducted by Zambom, Kim e Garcia (2022),
introducing the concept of Variable Length Markov Chains with Exogenous Covariates
(VLMCX) and the beta-context algorithm.

VLMCX represents an extension of VLMC where the transition probabilities
are influenced by the state history and exogenous covariates and are modeled using
a Generalized Linear Model (GLM). The primary objective of VLMCX is not just to
estimate the context of the process, which comprises the relevant historical information for
predicting the next state, but also to estimate the coefficients associated with significant
exogenous variables. Zambom, Kim e Garcia (2022) demonstrate the method’s consistency,
meaning that as the sample size increases, the probability of the estimated context and
coefficients matching the true data-generating mechanism tends to 1.

The beta-context algorithm offers a solution selecting a relevant finite suffix, or
context, for predicting the next symbol. This algorithm estimates flexible tree-structured
models by aggregating irrelevant states in the process history and enables the model to
incorporate exogenous covariates over time.

The primary goal of this study was to extend the beta-context algorithm to
accommodate not only time-dependent but also time-invariant exogenous covariates, along
with data collected from different sources. Despite utilizing historical data from multiple
sources, our approach assumes that all sources share identical parameter estimates and
we do not currently impose a spatial-dependent structure on the model. In addition to
the adaptations for integrating time-invariant exogenous covariates and data from various
sources, we encountered challenges in handling rare events and limited data during certain
simulations. To address these issues, we introduced modifications to accommodate scenarios
with limited data that may not be suitable for asymptotic parametric methods.

Our methodology was motivated by analysing a real dataset focused on monthly
dengue cases across multiple municipalities in Brazil. Time-dependent covariates include
temperature and precipitation levels of these regions, while time-invariant covariates
include fixed attributes of municipalities, such as poverty rates and urban population
percentages. Our primary aim is to investigate the impact of previous dengue rates -
segmented into four distinct categories to establish a finite alphabet for the Markov chain
-, weather conditions, and socioeconomic factors on subsequent dengue rates across various
municipalities, providing insights into dengue transmission dynamics. This is crucial given
the significant global threat posed by dengue fever, recognized by the World Health
Organization (WHO), with an estimated 390 million dengue virus infections annually and
its endemic status in over 100 countries.
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1 Context Algorithm

The Context Algorithm was introduced by Rissanen (1983) as a data compres-
sion tool, capable of efficiently compressing long strings without prior source knowledge,
and subsequently improved in the works of Rissanen (1986) and Furlan (1990). It focuses
on capturing contexts, which are relevant subsets of the past string, along with the corre-
sponding counts of conditional occurrences. Since all methods related to stochastic chains
with variable-length memory rely on the Context Algorithm, we explore it in detail in this
chapter.

To identify these relevant contexts, the algorithm integrates a parameter
that assesses past symbols’ influence on determining symbol values. In general, better
data compression results from larger contexts, which increases both their quantity and
the model’s complexity. However, adding each new context carries a cost, which must
be balanced against the additional compression gain it provides. Consequently, with a
reasonable selection of the parameter, the model’s complexity does not exceed that of the
original data source.

The following is a detailed explanation of the algorithm for the binary case, as
presented in Rissanen (1983):

Consider a permutation i Ñ ti of natural numbers, where for any string
s “ yp1q...ypt ´ 1q, we define another string σpsq “ ypt ´ t1q...ypt ´ tt´1q. In this discussion,
we will consider only the identity permutation, where ti “ i, implying that σpsq is essentially
the same as the sequence s but written in reverse order.

The next step involves the creation of two binary trees. One tree represents
the scenario where the current symbol yptq, denoted as u, equals 0, and the other tree
represents the case where it equals 1:

1. Start with the initial context tree for the first symbol yp1q in the string. This tree,
denoted as T p0q, consists of a single leaf, which serves as the root. This root node is
associated with a count pair of pcp0, κq, cp1, κqq “ p1, 1q, where κ represents a empty
string.

2. As you progress through the string, recursively build the subsequent trees. If T pt ´ 1q

is the most recently constructed tree, and you observe the next symbol u “ yptq,
create the next tree T ptq as follows:

• Traverse the tree T pt ´ 1q, starting at the root. For each symbol in the past
sequence σpyp1q...ypt ´ 1qq “ ypt ´ 1q...yp1q “ z1z2...zt´1, take the left branch
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for 0 and the right branch for 1.

• While visiting each node z, increase the count cpu, zq by one, and continue until
you reach a node w where cpu, wq “ 1 before the update.

3. When you encounter node w, consider the following scenarios:

• If w is an internal node with two successors, w0 on the left and w1 on the right,
increase the component counts cpu, w0q and cpu, w1q by one. This adjustment
defines the resulting tree as T ptq.

• If w is a leaf node, expand the tree by creating two new leaves, w0 and w1.
Assign identical counts to both new leaves: cpu, w0q “ cpu, w1q “ 1, and set
cpu1, w0q “ cpu1, w1q “ 0, where u1 represents the opposite symbol to u. The
modified tree is named T ptq.

For instance, let’s examine the binary string 10001. Employing the identity
permutation, we can depict the trees as illustrated in Figure 1.

The algorithm constructs a tree that accumulates significant contexts and their
associated symbol statistics as the string length grows. However, which node should serve
as the context for yptq?

The algorithm addresses this by assigning a cost to each context. Let Z denote
the set of leaves defining a complete subtree. A context is accepted into the set Z only if
its impact on reducing conditional entropy exceeds its cost. This determination involves
computing the change in conditional entropy that results from merging two elements, z0

and z1 into a parent node z. The new set created through this merging is termed Z 1.

The increase in conditional entropy is given by:

∆pt, zq “ HpU | Z 1
q ´ HpU | Zq “ P pzqHpU ; zq ´ P pz0qHpU ; z0q ´ P pz1qHpU ; z1q (1.1)

where P pzq “ cpzq{cpκq, with cpκq representing the root count and

P pu | zq “

$

&

%

cpu, zq{cpzq, if cpu, zq ą 0

1{pcpzq ` 1q, if cpu, zq “ 0,
(1.2)

HpU ; zq “ ´p logppq ´ p1 ´ pq logp1 ´ pq, p “ P p0 | zq. (1.3)

The context selection rule is as follows: the context z˚
ptq for the symbol yptq is

determined as the node in T pt ´ 1q with the longest length |z| along the path defined by
the past sequence z1, z2, ..., satisfying the condition that:

∆pt, zq ą p1{tq logptq, (1.4)
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Figure 1 – Trees for the string 10001 using Context Algorithm

while
|z| ď β logptq, (1.5)

and
mintcpz0q, cpz1qu ě 2αt{

a

logptq, (1.6)

or, if no such node exists, take z to be the root node. Here, α and β are positive numbers
chosen to determine a suitable range for searching nodes in a finite string. However, for
infinite strings, any values assigned to them will do. This selection rule will minimize
locally the combined cost

HpU{Zq ` p|Z| logptqq{t, (1.7)
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where |Z| denotes the number of elements in Z.

For a more comprehensive understanding of this selection rule, the rationale
behind assigning a cost of plogptqq{t to each context, and the proof demonstrating that
the algorithm will find asymptotically any stationary ergodic finitely generated source
from its samples, consult Rissanen (1983). When the tree’s order is bounded, irrespective
of the sample size, this algorithm consistently estimates both the context length and the
corresponding transition probabilities.



23

2 Variable Length Markov Chain: a statistical
perspective

Before exploring the description of VLMC by Bühlmann e Wyner (1999), it is
essential to establish some fundamental definitions to comprehend VLMC, VLMCX, and
the modified version proposed in this study. To achieve this, we will provide definitions in
the broader scenario, considering exogenous time-dependent and time-invariant covariates,
as well as multiple independent sources. The definitions for VLMC and VLMCX are
specific cases derived from these broader scenarios.

2.1 Essential definitions to comprehend VLMC and VLMCX
Let Y “ t1, ..., pu represent the finite set of possible state spaces and S “

t1, ..., qu denote the finite set of potential sources. For each independent source 1, s P S ,
consider a stochastic process pYtpsqqtPZ with values in the finite state space Y . Denote by
yj

i “ yj, yj´1, ..., yi pi ă j, i, j P Z Y t´8, 8u, yj P Y q the string that represents the states
visited by the process from time i to time j. Notice that it is written in reverse order.

Suppose that the transition probabilities of the process depends on the previous
states through a set of parameters, d time-varying exogenous covariates and m time-
invariant exogenous covariates (fixed characteristics). For each source, s P S , denote
the b-th time-varying covariate value at time t by xtbpsq, b “ 1, ..., d, and let xtpsq “

pxt1psq, ..., xtdpsqq. Also, denote the v-th time-invariant covariate value by zvpsq, v “ 1, ..., m,
and let zpsq “ pz1psq, ..., zmpsqq.

Further, define

xj
i psq “ p1, xjpsq, xj´1psq, ..., xipsqq

as the vector of time-varying covariates for source s from time i to time j. In order to
estimate the intercept of the regression we need to include the number one. Notice that
we are considering all the covariates to be deterministic.

The proposed model (given by 2.1) writes the transition probabilities into the p

states by a multinomial linear regression with parameters that can depend on the previous
history.

1 In our motivating example, where we aim to predict dengue rates in Brazil, the sources refer to different
geographic locations, specifically municipalities.
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Definition 1 (Context). For each independent source, s P S , let pYtpsqqtPZ be a stationary
process with values Ytpsq P Y , pxtpsqqtPZ a d-dimensional vector of deterministic time-
varying exogenous covariates and pzpsqq a m-dimensional vector of deterministic time-

invariant exogenous covariates, both in a compact set. Denote by c : Y 8
Ñ

8
ď

l“0
Y l a

(projection) function which maps c : y0
´8 Ñ y0

´l`1, where l is defined by

l “ lpy0
´8q “ mintk;

q
ź

s“1
P rY1psq “ y1 | Y 0

´8psq “ y0
´8, x0

´8psq, zpsqs

“

q
ź

s“1
P rY1psq “ y1 | Y 0

´k`1psq “ y0
´k`1, x0

´k`1psq, zpsqs

for all x0
´8psq, zpsq and for all y1 P Y u,

where l ” 0 corresponds to independence.

Letting u :“ y0
´l`1 and πj :“ PθpY1 “ j | Y 0

´l`1 “ u, x0
´l`1, zq, where x0

´l`1 and
z will represent the values of the covariates according to each source,

π “ gpX⊺θu
q, (2.1)

where

X “

»

—

—

—

—

—

–

px0
´l`1, zq

⊺ 0 . . . 0
0 px0

´l`1, zq
⊺ . . . 0

... ... . . . ...
0 0 . . . px0

´l`1, zq
⊺

fi

ffi

ffi

ffi

ffi

ffi

fl

, θu
“

»

—

—

–

θu
1
...

θu
p

fi

ffi

ffi

fl

,

π “ pπ1, ..., πpq. Note that X⊺ is a p by p1 ` dl ` mqp matrix and θu is a p1 ` dl ` mqp

dimensional vector. The link function g is a one-to-one mapping from a p-dimensional
region D Ă Rp to the set tpπ1, ..., πpq

⊺, πj ą 0,
ÿ

πj “ 1u. We denote by θ :“ θu
“

pθu
1 , ..., θu

pq
⊺, with θu

j “ pαu
j , βu

j,0, ..., βu
j,p´l`1q, γu

j q
⊺, the vector of coefficients associated with

the past states u “ y0
´l`1 for transitioning into state j P Y , where βu

j,t “ pβu
j,t1, ..., βu

j,tdq
⊺

is the vector of coefficients corresponding to the d time-varying covariates at time t “

0, ..., ´l ` 1 and γu
j “ pγu

j,1, ..., γu
j,mq

⊺ is the vector of coefficients corresponding to the m

time-invariant covariates.

Then cp¨q is called the beta-context function, and cpy0
´8q is called the beta-

context for the transition at time 1 with associated parameter vector θu.

Remark 1. If the link function g is chosen to be multinomial logistic (softmax function),
then

πj :“ PθpY1 “ j | Y 0
´l`1 “ u, x0

´l`1, zq

“
exppαu

j `
ř0

t“´l`1
řd

b“1 xtbβ
u
j,tb `

řm
v“1 zvγu

j,vq
řp

i“1 exppαu
i `

ř0
t“´l`1

řd
b“1 xtbβu

i,tb `
řm

v“1 zrγu
j,vq

for all j P Y .
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Definition 2 (Order of the time-varying covariate parameters). Consider a parameter
vector βu

j , j “ 1, ..., p associated with a beta-context u. The length of βu
j , which represents

the number of steps where covariate values have a significant contribution to the model, is
defined as

h :“ hu “
∣∣∣βu

j

∣∣∣ “ 1 ´ min
k“0,...,´l`1

tk : βu
j,k ‰ 0u, j “ 1, ..., p.

If βu
j,0 “ ... “ βu

j,p´l`1q “ 0, then
∣∣∣βu

j

∣∣∣ “ 0.

The proposed model accommodates situations where h ď l, including cases
where h ă l, that is, the transition probability may rely on a more extended history of
state transitions and time-invariant covariates while considering only the more recent
history of time-varying covariates.

Definition 3 (Order of the state transitions and time-invariant covariates). For each
independent source, s P S , let pYtpsqqtPZ, pxtpsqqtPZ, zpsq, cp¨q and lp¨q be defined as in
Definition 1. Let 0 ď η ă 8 be the smallest integer such that∣∣∣cpy0

´8q
∣∣∣ “ lpy0

´8q ď η, for all y0
´8 P Y 8.

Then cp¨q is called a beta-context function of order η and we have a beta-context model of
order η.

Definition 4 (Beta-context tree). Let cp¨q be a beta-context function of a beta-context
model of order η. The (|Y | ´ ary) beta-context rooted tree τ is defined as

τ :“ τc “ tu : u “ cpy0
´η`1q, y0

´η`1 P Y η
u

with an associated parameter tree

τθ “ tpu, θu
q : u P τu

where θu is defined in Definition 1.

Besides the definitions above, to understand the statistical perspective of
the context algorithm and the beta-context algorithm, it is essential to have a clear
understanding of the terms siblings, children, and parents used in this text, which are
defined as follows.

Definition 5 (Siblings, children and parents). Let u1 “ uw P τ and u2 “ uw1
P τ , for w,

w1
P Y and u P Y 8, be two contexts differing only by the last nodes. Then u1 and u2 are

called siblings in τ and this relationship is denoted by u1 ≀ u2. In addition, u is called the
parent of u1 and u2 and u1 and u2 are called the children of u.
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2.2 Variable Length Markov Chain
Consider a stationary Markov chain pYtqtPZ of finite order η with values in a

finite categorical space Y . Thus,

P rY1 “ y1 | Y 0
´8 “ y0

´8s “ P rY1 “ y1 | Y 0
´k`1 “ y0

´k`1s for all y1
´8 P Y 8. (2.2)

A variable length memory allows us to lump together irrelevant states in the
history y0

´k`1 in 2.2. In that regard, only some values from the history are relevant and
can be considered a context for Y1. These contexts are defined similarly to Definition 1,
but without time-varying and time-invariant covariates and with only one source, meaning
S “ 1. Therefore:

l “ lpy0
´8q “ mintk; P rY1 “ y1 | Y 0

´8 “ y0
´8s

“ P rY1 “ y1 | Y 0
´k`1 “ y0

´k`1s for all y1 P Y u. (2.3)

Here, cp¨q is referred to as a context function, and for any t P Z, cpyt´1
´8q is

considered a context for the variable yt.

The order of the VLMC is defined similarly to Definition 3. Consequently, cp¨q

is called a context function of order η, and if η ă 8, we have a VLMC of order η.

As a solution to Problem 1, mentioned earlier in the Introduction, the class
of context functions with order η is structurally diverse enough to include a wide range
of Markov chains. Moreover, in addressing Problem 2, certain context functions cpηq

significantly reduce the number of states compared to a full Markov chain of the same
order. When the context function cpηq of order η corresponds to the complete projection
y0

´8 Ñ y0
´k`1 for all y0

´8, the VLMC is essentially a full Markov chain of order η.

2.2.1 Tree representation of minimal state space

VLMCs are commonly characterized by their probability distribution Pc on
Y Z and, due to stationarity, can be entirely specified by their transition probabilities,

PPcrY1 “ y1 | Y 0
´8 “ y0

´8s “ ppy1 | cpy0
´8qq, y0

´8 P Y 8. (2.4)

The states that determine these transition probabilities are represented by
the context function’s values cp¨q. To facilitate this representation, it is convenient to
visualize these states using a tree structure, where the (Y -ary) context tree τ can be
defined similarly to Definition 4 and terminal node context tree τT is defined as

τT
“ τT

c “ tw; w P τc and wu R τc for all u P Y u. (2.5)

Trees are built following the steps:
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1. Start with a root node positioned at the top of the tree.

2. The branches will grow downward from this root node so that each internal node
has at most |Y | children.

3. Each value of a context function cp¨q : Y ´8
Ñ Y η can be represented as a branch

(or terminal node) on the tree.

4. The context w “ cpy0
´8q is represented by a branch, where each branch level

represents a different part of the context. The topmost subbranch corresponds to
y0, the next subbranch to y´1 and so on. The terminal subbranch corresponds to
y´lpy0

´8
q`1. Context trees do not have to be complete, meaning that not every internal

node must have precisely |Y | children nodes.

Note that only the terminal nodes within the tree τ are recognized as elements
in the terminal node context tree τT . The states w P τc are not required to be terminal
nodes in τc. However, it is possible to reconstruct the context function cp¨q from either τc

or τT
c .

The context tree τc essentially serves as the minimal state space for the VLMC
Pc. An internal node with b ă N “ |Y | children nodes implicitly lumps the non-present
children nodes N ´ b together into a single new terminal node. This terminal node, in
turn, represents a single state within τc.

The following example is drawn from Bühlmann e Wyner (1999).

Example 1. Y “ t0, 1, 2, 3u, η “ 2. The function,

cpy0
´8q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if y0 “ 0, y´1
´8 arbitrary,

1, if y0 “ 1, y´1
´8 arbitrary,

2, if y0 “ 2, y´1
´8 arbitrary,

3, if y0 “ 3, y´1 P t0, 1, 2u, y´2
´8 arbitrary,

3, 3, if y0 “ 3, y´1 “ 3, y´2
´8 arbitrary

can be represented by the tree τc on Figure 2. The round-edge rectangle, which is typically
omitted, represents the missing nodes 0, 1 and 2 at a depth of 2. This can be seen as a
way of completing the tree by lumping nodes together. In terms of transition probabilities,
it means that ppy | 3zq, y P Y , is the same for all z P t0, 1, 2u. The terminal nodes context
tree is τT

c “ t0, 1, 2, 33u, whereas the context tree is τc “ t0, 1, 2, 3, 33u.
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Figure 2 – Tree representation of the context function in Example 1

Source: Bühlmann e Wyner (1999)

2.2.2 Context algorithm from a statistical perspective

Let
Npwq “

n
ÿ

t“1
1

rY
t |̀w|´1

t “ws
, w P

8
ď

m“1
Y m, (2.6)

denote the number of occurrences of the string w in the sequence Y n
1 and

P̂ pwq “
Npwq

n
, P̂ py | wq “

Npywq

Npwq
, y, w P

8
ď

m“1
Y m. (2.7)

Based on the methodology presented in Bühlmann e Wyner (1999), the context
algorithm operates according to the following steps:

1. Step 1 - Finding Maximal Context Tree:

• Given Y -valued data Y1, ..., Yn, fit a maximal context tree, that is, search for
the context function cmaxp¨q with terminal node context tree representation
τT

max.

• τT
max is the bigest tree such that every element (terminal node) w in it must have

been observed at least twice in the data (Npwq ě 2). Additionally, for any other
tree τT , where w P τT implies Npwq ě 2, τT is a sub-tree of τT

max (τT ĺ τT
max,

which means that w P τT
ñ wu P τT

max for some u P Y
8
m“0Y

m
pY 0

“ ∅q). This
maximal tree may not necessarily be full, meaning that the final nodes’ contexts
may have varying lengths.

• Set τp0q as τmax.

2. Step 2 - Pruning the Tree:
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• Examine if each element (terminal node) of τT
p0q with a context function cp¨q

can be pruned (the order of examining is irrelevant).

• Let
wu “ y0

´l`1 “ cpy0
´8q, u “ y´l`1, w “ y0

´l`2,

where wu is an element (terminal node) of τp0q. Prune wu to w (if l “ 1, the
pruned version is the empty branch ∅, that is, the root node) if

∆wu “
ÿ

yPY

P̂ py | wuq log
˜

P̂ py | wuq

P̂ py | wq

¸

Npwuq ă K,

with K “ Kn „ C logpnq, C ą 2|Y | ` 4 a cutoff to be chosen by the user and
P̂ p¨ | ¨q as defined in 2.7.

• The outcome of this step is a potentially smaller tree, τp1q ĺ τT
p0q. Construct

the terminal node context tree τT
p1q. Note that the context tree do not have to

be complete, that is, every internal node does not need to have exactly |Y |
offspring.

3. Step 3 - Iterative Pruning:

• Repeat the pruning process from Step 2 with τpiq, τT
piq instead of τT

pi´1q pi “, 2, ...q.

• Continue this iterative pruning until no more elements can be pruned.

• Denote this maximal pruned context tree by τ̂ “ τĉ and its corresponding
context function by ĉp¨q.

4. Step 4 - Probability Estimation:

• If interested in probability distributions, estimate the transition probabilities
ppy1 | cpy0

´8qq by P̂ py1 | ĉpy0
´8q, where P̂ p¨ | ¨q is defined as in 2.7.

The decision to prune in Step 2 is similar to a likelihood ratio test:

• Denote the estimated likelihood function (conditioned on the first η states), based
on the context function cp¨q by

P̂cpY
n

1 q “

n
ź

t“η`1
P̂ pYt | cpY t´1

´8 qq, (2.8)

where η is the order of cp¨q and P̂ pYt | cpY t´1
´8 qq in defined in 2.7.

• Now, we have the context function cp¨q of the unpruned context tree and c1
p¨q of

the subtree after pruning a single terminal node wu “ y0
´l`1 to its parent node

w “ y0
´l`2.
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• In the likelihood ratio test, which is essentially the pruning criterion, many terms in
the likelihood function cancel out due to its multiplicative structure. What remains
is a term specifically associated with the node under consideration for pruning:

∆wu “ log P̂cpY
n

1 q

P̂c1pY n
1 q

. (2.9)

In essence, the pruning criterion, as described in the 2.9, is fundamentally a
likelihood ratio test. The algorithm effectively conducts numerous likelihood ratio tests to
determine which nodes should be pruned.

Still in Step 2, the choice of the cutoff value Kn „ C logpnq is determined
through an asymptotic perspective. It is important to note that small cutoff values would
lead to the construction of large context trees, increasing the risk of overfitting the data.
The estimation of this cutoff value is elaborated in detail in a related work by Bühlmann
(2000).

It is worth highlighting that the algorithm imposes no a priori length restrictions
on contexts. This contrasts with approaches like the one proposed by Weinberger, Rissanen
e Feder (1995), which used context lengths limited by logpnq{ logp|Y |q. Such restrictions
can be quite limiting in practical applications.

For more detailed information and proofs regarding the algorithm’s consistency
when dimensionality increases, refer to Bühlmann e Wyner (1999). Two important results
are presented: the first demonstrates the consistency in discovering the minimal state
spaces, while the second outlines properties of the estimated probability distributions.

2.3 Variable Length Markov Chains with Exogenous Covariates
(VLMCX)

Let pYtqtPZ be a stochastic process taking values in the finite state space
Y “ t1, ..., pu. Suppose that the transition probabilities of the process may depend on
the previous states through a set of parameters and d time-variant exogenous covariates.
Therefore, VLMCX extends VLMC by incorporating the influence of both state history
and exogenous covariates on transition probabilities.

VLMCX was introduced by Zambom, Kim e Garcia (2022) through the beta-
context algorithm. This algorithm constructs a context model and generates a context
tree, where each branch represents a history of response states and is associated with
parameters defining transition probabilities within a Generalized Linear Model (GLM).
The term beta in beta-context refers to the parameters in the GLM.
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Beta-context algorithm uses the concepts defined in Definition 1, Definition 2,
Definition 3, and Definition 4, with the exception of time-invariant covariate parameters
and considering only one source, denoted as S “ 1. Note that VLMCX accommodates
situations where h ď l, including cases in which the transition probability may rely on
a more extended history of state transitions while considering only the recent history of
covariates. If all coefficients βu

j , j “ 1, ..., p, are set to zero, the model essentially becomes
a VLMC.

2.3.1 The Beta-Context Algorithm

In this section we will outline the process of identifying the underlying beta-
context function cp¨q and the transition probability parameters θu based on the methodology
presented in Zambom, Kim e Garcia (2022).

The beta-context algorithm is a backward elimination procedure based on
previous approaches such as Bühlmann e Wyner (1999) and Rissanen (1983). It iteratively
prunes the final nodes based not only on the significance of the context but also on the
potential influence of exogenous covariates as determined by the coefficients β.

The likelihood of the data Y n
1 , conditioning upon knowing yη

1 and xη
1, based on

Definition 1 under a beta-context tree of order η is

Lpτθ; Y n
1 “ yn

1 , xn
1 q “ P pY n

1 “ yn
1 | Y η

1 “ yη
1 , xη

1, τθq

“ P pYη`1 “ yη`1 | Y η
1 “ yη

1 , xη
1, τθq ... P pYn “ yn | Y n´1

1 “ yn´1
1 , xn´1

1 , τθq,
(2.10)

where each probability follows from 2.12. For each context u “ y0
´k`1 “ y0, y´1, ..., y´k`1

with k steps into the past there are p1 ` dkq parameters to estimate for each j “ 1, ..., p ´ 1.
This includes one parameter corresponding to αu

j and dk parameters associated with the
d exogenous covariates at each of the k steps. To ensure the likelihood ratio test in the
algorithm performs effectively, a minimum of f ě 1 observations per parameter must
be available. Therefore, the algorithm needs a total of fp1 ` dkqpp ´ 1q observations to
estimate the p1 ` dkqpp ´ 1q parameters for each context u.

Given data (Y n
1 , xn

1 ), the algorithm follows these steps:

1. Step 1 - Finding Maximal Context Tree:

• Similarly to Step 1 of context algorithm by Bühlmann e Wyner (1999), start by
fitting the largest possible beta-context tree, denoted as τmax. However, in this
case, every element u P τmax must be observed a minimum of fp1 ` dkqpp ´ 1q

2 A correction has been made to 2.10 in comparison to the original formulation presented in Zambom,
Kim e Garcia (2022).
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times. To define this tree, identify the beta-context function cp¨q such that its
corresponding context tree τmax is formed as follows:

τmax “ tu “ y0
´k`1 : Npuq ě fp1 ` dkqpp ´ 1qu,

where Npuq is defined in 2.6.

• Set the initial beta-context tree as τ p0q
“ τmax. Let r denote the order of this

context tree. This initial tree τ p0q may not necessarily be full, meaning that the
final nodes’ contexts may have varying lengths.

• Compute τ̂
p0q

θ , which is the associated estimated parameter tree. The parameters
in this tree are estimated by maximizing the likelihood function Lpτ

p0q

θ | yn
1 , xn

1 q.

2. Step 2 - Pruning the Tree (Influence of the exogenous covariates):

• For each context u in the initial tree τ p0q with length r, apply a likelihood
ratio test to examine the significance of the parameter vector associated with
past covariates from the node p´r ` 1q to any of the outcomes (excluding the
baseline). This test is expressed as:

Hu
0 : βu

j,p´r`1q “ 0, j “ 1, ..., p ´ 1.

• Compute the deviance statistic λu
´r`1 for testing Hu

0 :

λu
´r`1 “ ´2rlogLpτ̃u

θ | yn
1 , xn

1 q ´ logLpτ̂
p0q

θ | yn
1 , xn

1 qs (2.11)

where Lp¨q represents the likelihood function as defined in 2.10.

• Calculate estimators

τ̃u
θ “ tpw, θ̃

w
q : w P τ p0q, w ‰ uu

Y tpu, pα̃u
j , β̃

u

j,0, β̃
u

j,´1, ..., β̃
u

j,p´r`2q, 0qq, j “ 1, ..., p ´ 1u
(2.12)

by maximizing the likelihood under the null hypothesis Hu
0 .

• Compute the p-value πu
´r`1 “ 1 ´ Ψdpp´1qpλ

u
´r`1q, where Ψdpp´1qp¨q is the cumu-

lative distribution function of a χ2 random variable with dpp ´ 1q degrees of
freedom.

• If πu
´r`1 ą δn, where δn is a chosen significance level, update the estimated

parameter tree τ̂
p0q

θ with τ̃u
θ .

3. Step 3 - Pruning the Tree (Influence of the context): Concerning the tests
performed in Step 2:

a) Substep 3.1 - If no Huk
0 , k “ 1, ..., p, for u1, ..., up siblings in τp0q, was rejected:
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• Calculate the test statistic

λu1...p “ ´2rlogLpτ̃
u1...p

θ | yn
1 , xn

1 q ´ logLpτ̂
p0q

θ | yn
1 , xn

1 qs, (2.13)

where τ̃
u1...p

θ “ tpw, θ̃
w

q : w P τ p0q, w ‰ u1, ..., upu Y tpu, θ̃
w

q : u is parent of
u1, ..., upu is estimated under the null hypothesis that the sibling nodes are
all replaced by their parent, reducing the parameters. The parameters in vec-
tors θu1 , ..., θup , which have been together reduced to size Rp1`dpr´1qqppp´1q

in Step 2, are merged into parameters θu of size Rp1`dpr´1qqpp´1q.
• Compute the p-value πu1...p “ 1 ´ Ψp1`dpr´1qqpp´1q2pλu1...pq. If πu1...p ě δn,

replace sibling nodes u1, ..., up with their parent node u. Update both τ p0q

and τ̂
p0q

θ with τ̃
u1...p

θ .

b) Substep 3.2 - If at least one of Huk
0 , k “ 1, ..., p, for u1, ..., up siblings in τ p0q,

was rejected:

• The nodes corresponding to the rejected tests are retained in the model.
• Test if the nodes corresponding to tests that were not rejected in Step 2

can be lumped together. Use the test statistic defined in 2.13 to do this.
• Lastly, sequentially test to prune the past most parameters in βuk (for

k “ 1, ..., p) which had its hypothesis not rejected in Step 2 up to the root.
Consider k “ 1, u1 “ y0

´r`2 so that βu1
j “ pβu1

j,0, ..., βu1
j,p´r`2q

q, j “ 1, ..., p´1.
– Test the null hypothesis Hu1

0m : βu1
j,m “ 0 for all j “ 1, ..., p ´ 1, where

m “ ´r ` 2 is the past most index of βu1
j . Calculate the corresponding

test statistic λu1
´r`2 using 2.11.

– Compute the p-value πu1
´r`2 “ 1 ´ Ψdpλu1

´r`2q. If πu1
´r`2 ě δn, prune the

past most parameters from βu1
j and set m “ ´r ` 3. Continue this

process for parameters m “ ´r ` 2, ..., 0 or until the parameters are
reduced to zero, keeping all parameters that do not meet the criteria.

– Repeat the above process for βuk with k “ 2, ..., p.

At the end of Step 3, the tree structure and parameters are possibly pruned based on
the significance of context and covariate influence, leading to a potentially smaller
context tree τ p1q

Ď τ p0q and its updated parameter tree τ̂
p1q

θ at level r.

4. Step 4 - Iterative Pruning:

• Repeat Steps 2 and 3 for contexts of lengths r ´ 1, r ´ 2, ..., 1, using the updated
trees τ p1q and τ̂

p1q

θ .

• If u1, ..., up are siblings and at least one of them has children, no context pruning
is performed (both nodes are retained). As in Step 3, the pruning of covariate
parameters is executed sequentially, working from the most distant past to the
root.
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Denote this pruned beta-context tree by τ̂n with associated parameter tree τ̂θ

and corresponding beta-context function ĉp¨q.

The pruning approach in Step 3 differs from that of Bühlmann e Wyner (1999).
In their method, each terminal node wuj, j “ 1, ..., p, for u1, u2, ..., up siblings in the
respective tree, is individually compared with its pruned version w “ y0

´l`2, where l

represents the context length. This involves comparing the probability P̂ py | wujq with
P̂ py | wq for each terminal node wuj, j “ 1, ..., p. In this case, the procedure never
leaves only one terminal node in a branch. To illustrate this, consider a scenario with
three terminal nodes: wu1, wu2, and wu3. If it happens that P̂ py | wu1q “ P̂ py | wq and
P̂ py | wu2q “ P̂ py | wq, it logically follows that P̂ py | wu3q “ P̂ py | wq.

In contrast, in the approach presented in Zambom, Kim e Garcia (2022), we
test whether all terminal nodes that had a parameter β cut in the previous step can
be merged together. To achieve this, consider three terminal nodes, wu1, wu2 and wu3,
where only wu1 and wu2 had their beta values cut in the previous step. In this case,
we compare the probability P̂ py | wu1q with P̂ py | wu2q. Consequently, node merging
occurs when there is no rejection of the hypothesis that P̂ py | wu1q “ P̂ py | wu2q, even
if P̂ py | wu1q ‰ P̂ py | wq and P̂ py | wu2q ‰ P̂ py | wq. After merging nodes wu1 and wu2,
we need to estimate parameters for the combined node, considering the scenarios where
either u1 or u2 precede w.

2.3.2 Consistency of the Beta-Context Algorithm

Zambom, Kim e Garcia (2022) demonstrated that the beta-context algorithm
ensures strong consistency in estimating the beta-context tree, regression parameters, and
transition probabilities (Theorem 1) under conditions C1-C3 and A1-A4:

C1: δn Ñ 0 such that nδn “ op1q

C2: δn Ñ 0 such that p1{nqlogp1{δnq “ op1q

C3: The order of the initial maximal tree τmax is r “ Oplogpnqq

Condition C3 ensures that the size of the estimated initial maximal tree does
not grow too rapidly with the sample size, preventing the number of test statistics that
are under the null hypothesis to go to infinity faster than the significance level δn, which
is required in condition C1. Condition C2 ensures that the test statistics under alternative
hypotheses remain larger than the increasing boundary of the rejection region, determined
by the decreasing significance level δn.

Besides conditions C1-C3, it is necessary a lower bound for the test statistic
corresponding to the regression parameter under the alternative hypothesis, which will be
given in Lemma 1.
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Lemma 1. Assume the following conditions:

A1: The parameter vectors tθu, u P τu are in the (open) admissible set B.

A2: The link function g is two times continuously differentiable.

A3: The possible values x0
´h`1 lie in a compact set C such that X⊺θu lies within

the domain of g, for all x0
´h`1 P C, tθu, u P τu P B.

A4: For any h ď l, the smallest eigenvalue of
n

ÿ

t“h

xt
t´h`1pxt

t´h`1q
⊺ diverges.

Let λu
´r`1 be the test statistic defined as in 2.11 for the hypothesis Hu

0 :
βu

j,p´r`1q “ 0, for all j P t1, ..., pu vs Hu
a : βu

j,p´r`1q ‰ 0, for at least one j P t1, ..., pu. Then
under the alternative Hu

a

λu
´r`1 ě Oppnq.

Let τ̂n and τ̂θn be the estimated beta-context tree and its associated parameter
tree. Theorem 1 establishes that τ̂n converges almost surely to the the true data generating
mechanism denoted by the tree τ and that τ̂θn is strongly consistent for τθ.

Theorem 1. Assume the beta-context tree τ has finite order. Then, under conditions
C1-C3 and A1-A4, there exists an integer-valued variable N with P pN ă 8q “ 1 such that

a) τ̂n “ τ @n ě N with probability 1,

b) | θ̂
u

n |“| θu
| @u P τ, @n ě N with probability 1,

c) θ̂
u

n Ñ θu
@u P τ , as n Ñ 8 with probability 1.

The proof for Theorem 1 is available in Zambom, Kim e Garcia (2022). As for
the proof of Lemma 1, it relies on arguments similar to those presented in Fahrmeir (1987)
and Fahrmeir e Kaufmann (1987).

Through simulation results, Zambom, Kim e Garcia (2022) demonstrated the
superior performance of the proposed beta-context algorithm compared to the VLMC
in the presence of exogenous covariates. Even in the case that there are no exogenous
covariates, it presents competitive results when compared to VLMC, with improving
performance as the sample size grows. In contrast, the VLMC frequently underestimates
the true tree by failing to recognize the impact of covariates on transition probabilities.
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2.4 Variable Length Markov Chains with Time-Varying and Time-
Invariant Exogenous Covariates

In this section, we introduce modifications to the beta-context algorithm to
accommodate time-dependent and time-invariant exogenous covariates, considering data
collected from multiple independent sources. Our approach assumes that all sources
share identical parameter estimates, and we do not currently impose a spatial-dependent
structure on the model. Additionally, we adapt the algorithm to handle scenarios with
limited data that may not be suitable for asymptotic parametric methods.

Given that the concepts of contexts, order of the time-varying covariate param-
eter, order of the state transitions and time-invariant covariates, the beta-context tree and
the terms siblings, children, and parents were already defined in Definition 1, Definition 2,
Definition 3, Definition 4, and Definition 5, respectively, we will now proceed to define the
algorithm itself, skipping the repetition of the model definitions.

2.4.1 The Modified Beta-Context Algorithm

The likelihood of the data Y n
1 , conditioning upon knowing yη

1 , xη
1 and z, based

on Definition 1 under a beta-context tree of order η is

Lpτθ; Y n
1 “ yn

1 , xn
1 , zq “ P pY n

1 “ yn
1 | Y η

1 “ yη
1 , xn

1 , z, τθq

“ P pYη`1 “ yη`1 | Y η
1 “ yη

1 , xη
1, z, τθq ... P pYn “ yn | Y n´1

n´η “ yn´1
n´η, xn´1

n´η, z, τθq,
(2.14)

where each probability follows from 2.1. For each context u “ y0
´k`1 “ y0, y´1, ..., y´k`1 with

k steps into the past there are p1 ` dk ` mq parameters to estimate for each j “ 1, ..., p ´ 1.
This includes one parameter corresponding to αu

j , dk parameters associated with the d

time-varying exogenous covariates at each of the k steps and m parameters associated
with the m time-invariant exogenous covariates.

Given data (Y n
1 psq, xn

1 psq, zpsq) for each independent source s “ 1, ..., q, the
algorithm follows these steps:

1. Step 1 - Finding Maximal Context Tree:

• Similar to Step 1 of beta-context algorithm proposed by Zambom, Kim e Garcia
(2022), initiate the construction of the largest possible beta-context tree, denoted
as τmax. However, in this case, the tree includes all contexts u P τmax that have
been observed at least fpp ´ 1q times. Define the beta-context function cp¨q to
form the corresponding context tree τmax:

τmax “ tu “ y0
´k`1 : Npuq ě fpp ´ 1qu.
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Note that, given the presence of multiple sources, Npuq now represents the sum
of occurrences of the sequence u in each Y n

1 psq, s “ 1, ..., q:

Npuq “

q
ÿ

s“1

n |́u|`1
ÿ

t“1
IpY

t |̀u|´1
t psq “ uq, u P Y 8.

• Set the initial beta-context tree as τ p0q
“ τmax. Similar to Step 1 of beta-context

algorithm, the variable r denotes the order of this context tree and the initial
tree τ p0q may not be complete.

• Compute τ̂
p0q

θ , the associated estimated parameter tree. Unlike the beta-context
algorithm, we allow for the possibility that some parameters may not be
estimated. For each context u, proceed as follows:

– If Npujq ě fp1 ` d|u| ` mq @j P Y , calculate all the parameters (αu
j ,

d|u| parameters associated with the d time-varying exogenous covariates
at each of the |u| steps, and m parameters associated with the m time-
invariant exogenous covariates). Estimate the parameters by maximizing

the likelihood function
q

ź

s“1
Lpτ

p0q

θ | yn
1 psq, xn

1 psq, zpsqq.

– If Npujq ě fp1 ` mq @j P Y and Npujq ă fp1 ` d|u| ` mq for some j P Y ,
calculate only αu

j and m parameters associated with the m time-invariant
exogenous covariates. Estimate the parameters by maximizing the likelihood

function
q

ź

s“1
Lpτ

p0q

θ | yn
1 psq, zpsqq.

– If 0 ă Npujq ă fp1 ` mq for some j P Y , calculate only αu
j . Estimate the

parameters by maximizing the likelihood function
q

ź

s“1
Lpτ

p0q

θ | yn
1 psqq.

– If Npujq “ 0 for some j P Y , calculate only αu
j . Estimate the parameters

by maximizing the likelihood function
q

ź

s“1
Lpτ

p0q

θ | yn
1 psqq using a single-

hidden-layer neural network with a softmax function. In a neural network,
we initialize estimates with random values and iteratively adjust them to
approximate the real ones. This allows us to estimate parameters even for
events that never occur, resulting in estimates for very low probabilities.
This differs from traditional Generalized Linear Models (GLMs), which
cannot estimate parameters for events that never happen. For a more
comprehensive understanding, please refer to Venables e Ripley (2002).

• It is worth noting that while the initial tree τ p0q may not be complete, all
terminal nodes must possess all possible children. This constraint is imposed
because, in the presence of children, we refrain from estimating parameters
for the parent node. Consequently, without this constraint, there might be
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insufficient occurrences for a child node to be represented in the tree, leading
to a lack of parameter estimates for that particular node.

2. Step 2 - Pruning the Tree (Influence of time-dependent exogenous covari-
ates):

• For each context u in the initial tree τ p0q with length r, where parameters
associated with the d time-varying exogenous covariates have been estimated,
apply a likelihood ratio test to examine the significance of the parameter vector
associated with past covariates from the node p´r ` 1q to any of the outcomes
(excluding the baseline). This test is performed similar to Step 2 of beta-context
algorithm, with the deviance statistic λu

´r`1 defined as:

λu
´r`1 “ ´ 2

q
ÿ

s“1
rlogLpτ̃u

θ | yn
1 psq, xn

1 psq, zpsqq

´ logLpτ̂
p0q

θ | yn
1 psq, xn

1 psq, zpsqqs

(2.15)

where Lp¨q represents the likelihood function as defined in 2.14.

3. Step 3 - Pruning the Tree (Influence of the context and time-independent
exogenous covariates):

Concerning the tests performed in Step 2:

a) Substep 3.1 - If at least two Huk
0 (k “ 1, ..., p) for u1, ..., up siblings in τp0q

were not rejected in Step 2, or if they did not have parameters associated with
the d time-varying exogenous covariates estimated in Step 1, and any children
in this node were not lumped together yet:

• The nodes corresponding to the rejected tests are retained in the model.
• Calculate the test statistic for each pair of siblings pui, ujq (i, j P t1, ..., pu),

where Hui
0 and H

uj

0 were not rejected in Step 2, or ui and uj did not
have parameters associated with the d time-varying exogenous covariates
estimated in Step 1:

– If Npuiaq ě f and Npujaq ě f , @a P Y and f defined in Step 1,

λui,uj “ ´2
q

ÿ

s“1
rlogLpτ̃ ũ

θ | yn
1 psq, xn

1 psq, zpsqq´

logLpτ̂
p0q

θ | yn
1 psq, xn

1 psq, zpsqqs,

(2.16)

where τ̃ ũ
θ “ tpw, θ̃

w
q : w P τ p0q, w ‰ ui, uju Y tpũ, θ̃

w
q : ũ “ pui Y

ujqu, u is parent of u1, ..., upu is estimated under the null hypothesis
that the sibling nodes ui and uj are lumped together, reducing the
parameters. The parameters in vectors θui and θuj , which have been
together reduced to size R2p1`dpr´1q`mqpp´1q in Step 2, are merged into
parameters θũ of size Rp1`dpr´1qqpp´1q.
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– If (Npuiaq ă f and Npujaq ě f) or (Npujaq ă f and Npuiaq ě f),
for some a P Y , and one of the nodes ui or uj has estimates for the
exogenous covariates parameters, then the corresponding exact test
statistic for the likelihood ratio test is the Cochran-Mantel-Haenszel
statistic (for additional details refer to Agresti (2012)). To compute
this statistic, for the node that lacks covariate estimates, sum the event
occurrences across all sources. For the other node, segregate event
occurrences for each source. Subsequently, each contingency table will
represent a source, and the row of the node without exogenous covariate
estimates will be consistent across all contingency tables.

– If Npuiaq ă f and Npujaq ă f , for some a P Y , the corresponding
exact test statistic for the likelihood ratio test is the Fisher statistic
(for additional details refer to Agresti (2012)). To compute the Fisher
statistic, aggregate the event occurrences across all sources for both
nodes, resulting in a single contingency table. Each row in this table
corresponds to a node.

• For the smallest λui,uj , compute the p-value πpui,ujq. If Npuiaq ě f and
Npujaq ě f , @a P Y , πpui,ujq

“ 1 ´ Ψp1`dpr´1qqpp´1qpλ
pui,ujq

q. If πpui,ujq
ě δn,

lump siblings nodes pui, ujq together in ũ. Update both τ p0q and τ̂
p0q

θ with
τ̃ ũ

θ .

b) Substep 3.2 - If any two children were lumped together in Substep 3.1 and
still have at least one of Huk

0 pk “ 1, ..., pq not rejected in Step 2, where uk were
not lumped together in ũ and u1, ..., up siblings:

• The nodes corresponding to the rejected tests are retained in the model.
• Calculate the test statistic λuk,ũ (following the guidelines provided in

Substep 3.1) for each uk pk “ 1, ..., pq which had not been lumped together
in ũ and had Huk

0 not rejected in Step 2.
• For the smallest λuk,ũ compute the p-value πpuk,ũq (following the guidelines

provided in Substep 3.1). If πpuk,ũq
ě δn, lump node uk together in ũ.

Update both τ p0q and τ̂
p0q

θ .
• Repeat Substep 3.2 until no more uk pk “ 1, ..., pq can be lumped together

in ũ.

c) Substep 3.3 Lastly, sequentially test to prune the past most parameters in
βuk (k “ 1, ..., p) which had its hypothesis not rejected in Step 2 up to the root,
similar to Substep 3.2 of beta-context algorithm. Calculate the corresponding
test statistic λu1

´r`2 using 2.15.

At the end of Step 3, the tree structure and parameters are possibly pruned based on
the significance of context and covariate influence, leading to a potentially smaller
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context tree τ p1q
Ď τ p0q and its updated parameter tree τ̂

p1q

θ at level r.

4. Step 4 - Iterative Pruning:

• Repeat Steps 2 and 3 for contexts of lengths r ´ 1, r ´ 2, ..., 1, using the updated
trees τ p1q and τ̂

p1q

θ .

• However, if u1, ..., up are siblings and at least one of them has children, no
context pruning is performed (both nodes are retained). But, as in Step 3, the
pruning of covariate parameters is executed sequentially, proceeding from the
most distant past to the root.

Denote this pruned beta-context tree by τ̂n with associated parameter tree τ̂θ

and corresponding beta-context function ĉp¨q.

2.4.2 Highlighting modifications in Beta-Context Algorithm

1. Time-invariant exogenous covariates: Time-fixed parameters (γu
j ) for time-

invariant exogenous covariates were introduced for each terminal node. Here, u

denotes a terminal node, and j “ 1, ..., p represents the transition to state j. Note
that during the tree-pruning process, the time-fixed parameter (γu

j ) is pruned simul-
taneously with the intercept (αu

j ) when nodes are lumped together.

2. Observations from various independent sources: This aspect involves integrat-
ing data from diverse sources, allowing for a comprehensive understanding of the
process behavior across multiple situations, such as different geographic locations. In
this context, time-invariant exogenous covariates may vary for each source, providing
a more nuanced representation of fixed conditions. Despite these variations, model
parameters are assumed to be the same across sources, enhancing the predictive
capabilities of the model. The current model does not incorporate a spatial-dependent
structure, assuming sources are independent.

3. Rare events: To ensure the model’s robustness in handling rare events, particularly
in scenarios with finite observations, we have implemented several strategies:

• Minimum observation requirement: Each category within every terminal
node is subjected to a minimum observation threshold, ensuring a sufficient
number of occurrences for reliable parameter estimation.

• Partial parameter estimation: Terminal nodes have the flexibility to possess
incomplete sets of parameter estimates. If the available observations are not
enough for estimating all parameters, only a subset is computed. The intercept
remains a consistently estimated parameter.
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• Intercept Estimation with Neural Network: In cases where a specific
event never occurs for a terminal node, the intercept can be estimated using a
single-hidden-layer neural network (Venables e Ripley (2002)).

• Exact Tests for Rare Events: The model incorporates exact tests, such as
the Fisher and Cochran-Mantel-Haenszel tests, which are particularly useful in
situations involving rare events.

These measures collectively increase the model’s adaptability to scenarios character-
ized by infrequent events and a limited number of observations.

An alternative approach considered was to set a fixed probability for the rare
event while estimating all parameters for the other possible categories. However,
challenges arose in determining how to calculate estimates with the bound on the
fixed probability. Additionally, complications emerged when the rare event served as
the baseline for other branches.

4. Terminal node completeness requirement for initial tree: Although the initial
tree τ p0q may lack completeness, a crucial constraint is imposed on all terminal nodes

— they must have all possible children. This constraint is imposed because, in the
presence of children, we refrain from estimating parameters for the parent node.
Consequently, without this constraint, there might be insufficient occurrences for a
child node to be represented in the tree, leading to a lack of parameter estimates for
that particular node.

2.4.3 Consistency of the Modified Beta-Context Algorithm

It can be shown, following a methodology similar to Zambom, Kim e Garcia
(2022), that the modified beta-context algorithm ensures strong consistency in estimating
the beta-context tree, regression parameters, and transition probabilities (Theorem 1).

The conditions C1-C3, as previously described, remain unchanged but with n “

q
ÿ

s“1
ns.

Lemma 1 requires some adjustments, outlined in Lemma 2:

Lemma 2. Assume the following conditions:

A1: The parameter vectors tθu, u P τu are in the (open) admissible set B.

A2: The link function g is two times continuously differentiable.

A3: The possible values px0
´h`1, zq lie in a compact set C such that X⊺θu lies

within the domain of g, for all px0
´h`1, zq P C, tθu, u P τu P B.

A4: For any h ď l and s “ 1, ..., q, the smallest eigenvalue of
ns
ÿ

t“h

xt
t´h`1psqpxt

t´h`1psqq
⊺
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diverges.

Let λu
´r`1 be the test statistic defined as in Equation 2.15 for the hypothesis

Hu
0 : βu

j,p´r`1q “ 0, for all j P t1, ..., pu vs Hu
a : βu

j,p´r`1q ‰ 0, for at least one j P t1, ..., pu.
Then under the alternative Hu

a

λu
´r`1 ě Oppnq.

The proofs for Theorem 1 in this case follow a similar demonstration as provided

in Zambom, Kim e Garcia (2022), with n “

q
ÿ

s“1
ns.
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3 Simulations

In this chapter, we evaluate the performance of the proposed modified beta-
context algorithm (referred to as modified-beta-VLMC in the tables) across various scenarios,
including some adapted from Zambom, Kim e Garcia (2022). The generated data follows
models derived from context trees of orders 2, 3, and 4, with varying lengths of the
univariate time-varying covariate parameter vector βu. Additionally, we explore models
with and without a univariate time-invariant covariate, considering scenarios with one or
more sources. For comparative analysis, in cases where the simulation involves a single
source and lacks time-invariant exogenous covariates, we present results obtained using
the beta-context algorithm introduced by Zambom, Kim e Garcia (2022) (referred to as
beta-VLMC in the tables).

In all scenarios, the values of the tuning parameters δn and f were selected
to minimize the BIC criterion. Consequently, the same model may have different tuning
parameters for the original and the modified version of the beta-context algorithm. Since
tuning parameters directly affect tree length, discrepancies in tree lengths between algo-
rithms can arise from either the algorithm itself or the tuning parameter values. However,
we considered this approach better than fixing the same tuning parameters for both
algorithms, as they have different constructions.

Various metrics were employed to evaluate the performance of the methods
in estimating the context function. These metrics include the average values of several
measures over 100 simulations: BIC, AIC, log-likelihood, the number of parameters α̂u

and γ̂u (number of final nodes u in τ̂), the number of parameters β̂
u (total number of

coefficients estimated different from 0 in all vectors β̂
u, @u), the order of the τ̂ tree, the

order of the time-varying exogenous covariate (maximum length of β̂
u, @u), the number

of missing nodes in τ̂ , the number of extra nodes in τ̂ , whether the τ tree is identified
exactly (no missing and no extra nodes in τ̂), and whether the τθ tree is identified exactly
(no longer nor shorter estimated parameter vector βu, @u).

Furthermore, to assess the methods’ performance in estimating the coefficient
vector, the mean difference between real and estimated values was calculated over 100
simulations for all parameters when the context was correctly identified.

Additional simulations can be found in Appendix A, where all exogenous
covariates parameters were set to zero.
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3.1 Simulations with a single source and without time-invariant
exogenous covariates

The simulations presented in this section were generated for a single source,
and no time-invariant covariates were taken into account.

Figure 3 provides details on Model 1, where time-varying exogenous variables
were generated from both a standard Normal distribution (N(0, 1)) and, to evaluate
performance under heavy-tailed distributions, a t-Student distribution with 2 degrees of
freedom (t(2)). Samples of n “ 1000 and n “ 2000 state transitions were considered.
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Figure 3 – Context tree τ and associated parameters θ for Model 1 (numbers in parenthesis
represent the values of αu for each context u).

Performance metrics for both the proposed modified beta-context algorithm and
the beta-context algorithm are presented in detail in Table 1. To enhance the clarity of the
estimated trees, the frequency of occurrences for each context tree across 100 simulations
are presented in Table 2, Table 3, Table 4, and Table 5. Each table delineates potential
context trees in the first column, followed by the respective number of contexts within
each tree. The last two columns indicate the frequency of occurrence for each context tree,
distinguished between modified and original beta-VLMC models. Bolded lines indicate
trees that were precisely estimated.

In cases where n “ 1000, the modifications, which require a larger number
of observations to estimate exogenous covariate parameters, lead to smaller estimated
trees in the proposed method compared to the real ones. Furthermore, for trees generated
with exogenous time-varying covariates following a normal distribution with mean 0 and
standard deviation 1, the modified version achieves a higher percentage of identical τ trees
compared to the original version. However, it is important to note that both methods
exhibit low accuracy.

For n “ 2000, the modified version achieved 72% and 83% of identical τ trees
for covariates following N(0,1) and t(2) distributions, respectively, while the original version
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attained 57% and 79%. However, the original beta-context algorithm achieved a higher
percentage of identical τθ, potentially because the modified version requires a larger number
of observations to estimate covariate parameters. It is noteworthy that, in general, the
original version of the beta-context algorithm generates larger trees. Both methods exhibit
improved accuracy in identifying the exact same nodes as τ for n “ 2000, supporting the
consistency theory of the estimators.

Note that even when the correct identification of τθ is relatively low, τ̂ can
be correctly estimated for both methods. Yet, when the covariates are generated with a
heavy-tailed t(2) distribution, the performance of both methods is not significantly affected
- in fact, the accuracy of recovering τθ is improved.

Table 1 – Simulation results for Model 1 with time-varying exogenous covariates generated
from N(0,1) and t(2) distributions (average over 100 simulations).

Model 1 (n = 1000, N(0, 1) distr.) Model 1 (n = 1000, t(2) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 1154.46 1153.34 1083.69 1079.17
AIC 1099.74 1090.62 1031.69 1016.86
LogLik -538.72 -532.53 -505.25 -495.73
# par. α̂u 5.05 5.54 4.64 5.19
# par. β̂

u 6.10 7.24 5.96 7.50
order τ̂ 3.35 3.74 3.25 3.74
order-Cov 2.94 3.10 2.94 3.37
# Missing τ̂ 2.20 1.95 2.77 2.02
# Extra τ̂ 0.30 0.43 0.04 0.30
Identical τ 0.16 0.06 0.15 0.18
Identical τθ 0.00 0.01 0.00 0.07

Model 1 (n = 2000, N(0, 1) distr.) Model 1 (n = 2000, t(2) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 2252.61 2260.75 2079.33 2073.82
AIC 2176.88 2159.99 1998.40 1985.44
LogLik -1074.92 -1062.0 -984.75 -976.94
# par. α̂u 5.95 7.15 6.04 6.39
# par. β̂

u 7.57 10.84 8.41 9.39
order τ̂ 3.85 4.63 3.97 4.17
order-Cov 3.57 4.07 3.85 3.89
# Missing τ̂ 0.46 0.10 0.20 0.10
# Extra τ̂ 0.36 2.17 0.28 0.78
Identical τ 0.72 0.57 0.83 0.79
Identical τθ 0.17 0.30 0.49 0.63

To evaluate the performance of the proposed method in estimating the vector of
coefficients, Table 6 presents the mean differences between real and estimated parameters
for both the modified and original beta-context algorithms when the context is correctly
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Table 2 – Estimated τ trees for Model 1, with n = 1000 and N(0, 1) distribution (frequency
of occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 0 - 0 1 1 - 1 4 28 13
0 0 - 0 1 0 - 0 1 1 - 0 1 1 0 - 1 5 0 15
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 40 20
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 7 6
0 0 - 0 1 0 - 0 1 1 - 0 1 1 0 - 0 1 1 0 1 - 1 6 0 1
0 0 - 0 1 0 - 0 1 1 - 0 1 1 0 - 1 0 - 1 1 6 0 27
0 0 - 0 1 0 - 0 1 1 - 1 0 0 - 1 0 1 - 1 1 6 1 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 16 6
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 - 1 0 - 1 1 6 1 0
ě 7 contexts ě 7 7 11

Table 3 – Estimated τ trees for Model 1, with n = 1000 and t(2) distribution (frequency
of occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 0 - 0 1 1 - 1 4 53 19
0 0 - 0 1 0 - 0 1 1 - 0 1 1 0 - 1 5 0 3
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 20 13
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 9 34
0 0 - 0 1 0 - 0 1 1 - 0 1 1 0 - 1 0 - 1 1 6 0 2
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 0 1 - 0 1 1 1 - 1 6 0 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 15 18
0 0 - 0 1 0 - 0 1 1 0 0 - 0 1 1 0 1 - 0 1 1 1 - 1 6 0 1
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 0 - 0 1 1 1 - 1 6 0 1
0 0 0 - 0 0 1 - 0 1 0 - 0 1 1 - 1 0 - 1 1 6 1 1
0 0 0 - 0 0 1 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 6 1 1
ě 7 contexts 7 0 5

Table 4 – Estimated τ trees for Model 1, with n = 2000 and N(0, 1) distribution (frequency
of occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 22 3
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 72 57
ě 7 contexts ě 7 6 40

Table 5 – Estimated τ trees for Model 1, with n = 2000 and t(2) distribution (frequency
of occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 6 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 4 3
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 83 79
ě 7 contexts ě 7 7 17

identified. For parameters corresponding to short contexts, such as u “ p0, 0q, estimation
accuracy is high for both methods. However, larger contexts like (0,1,1,0) and (0,1,1,1)
were infrequent in the data generated by Model 1, especially for n “ 1000, leading to
insufficient observations for accurate estimation of these six parameters. Generally, when
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the context is present in the final tree, the modified version provides better estimates.

Table 6 – Differences between real and estimated values for Model 1 (average over 100
simulations).

Model 1 (n = 1000, N(0, 1) distr.) Model 1 (n = 1000, t(2) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α00 0.14 0.14 0.14 0.14
α010 0.14 0.14 0.18 1.18
α0110 0.68 1.34 2.11 1.83
α0111 0.81 0.81 1.07 4.16
α10 0.08 0.08 0.09 0.09
α11 0.13 0.13 0.14 0.15
β00 (0.26, 0) (0.26, 0) (0.26, 0) (0.25, 0)
β010 (0.16, 0.22, 0) (0.16, 0.22, 0) (0.18, 0.18, 0) (0.18, 0.18, 0)
β0110 (1.50, 2.00, 0, 0) (1.10, 1.53, 0, 0) (1.50, 2.00, 0, 0) (4.65, 4.88, 1.17, 0)
β0111 (2.10, 1.88, 1.38, 1.42) (2.89, 2.40, 1.51, 1.54) (9.14, 7.82, 5.11, 2.49) (7.39, 5.82, 3.87, 2.27)
β10 (0, 0) (0, 0) (0, 0) (0, 0)
β11 (0, 0) (0, 0) (0,0) (0, 0)

Model 1 (n = 2000, N(0, 1) distr.) Model 1 (n = 2000, t(2) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α00 0.10 0.10 0.09 0.09
α010 0.10 0.10 0.12 0.12
α0110 0.28 0.27 0.38 0.37
α0111 0.66 1.14 0.69 1.03
α10 0.06 0.06 0.06 0.06
α11 0.08 0.08 0.09 0.09
β00 (0.16, 0) (0.16, 0) (0.16, 0) (0.15, 0)
β010 (0.13, 0.12, 0) (0.13, 0.12, 0) (0.13, 0.15, 0) (0.13, 0.15, 0)
β0110 (0.10, 1.28, 0, 0) (0.63, 1.36, 0.32, 0.31) (0.82, 1.09, 0, 0) (0.82, 1.32, 0, 0)
β0111 (0.75, 0.58, 0.47, 0.63) (0.76, 0.56, 0.45, 0.71) (0.98, 0.72, 0.49, 0.41) (0.96, 0.70, 0.48, 0.44)
β10 (0, 0) (0, 0) (0, 0) (0, 0)
β11 (0, 0) (0, 0) (0, 0) (0, 0)

Model 2 is described in Figure 4 and involves generating time-varying exogenous
covariates from a N(0, 1) distribution. We create samples with n “ 1000 and n “ 2000
state transitions.
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Figure 4 – Context tree τ and associated parameters θ for Model 2 (numbers in parenthesis
represent the values of αu for each context u).

The performance metrics for the estimated context function in Model 2 are
detailed in Table 7. To aid in the visualization of the estimated trees, Table 8 and Table 9
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provide the count of estimated occurrences for each context. In both instances with
n “ 1000 and n “ 2000, the modified beta-VLMC algorithm demonstrated a superior
percentage of identical τ trees and exact covariate vectors τθ when compared to the original
algorithm introduced by Zambom, Kim e Garcia (2022). It is noteworthy that, overall, the
original algorithm tends to produce larger trees. Both methods fits better Model 2 than
Model 1, either by under or overfitting, probably because it has a larger sample size when
compared to the number of parameters to be estimated.

Table 7 – Simulation results for Model 2 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 2 (n = 1000, N(0, 1) distr.) Model 2 (n = 2000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 1160.27 1183.37 2261.52 2264.89
AIC 1108.0 1118.47 2185.40 2183.90
logLik -543.35 -545.31 -1079.03 -1077.49
# par. α̂u 4.77 5.89 5.50 5.76
# par. β̂

u 5.88 7.37 8.09 8.70
order τ̂ 2.79 3.64 3.37 3.49
order-Cov 2.76 3.53 3.32 3.23
# Missing τ̂ 0.50 0.44 0 0
# Extra τ̂ 0.04 2.09 1.00 1.40
Identical τ 0.76 0.58 0.87 0.76
Identical τθ 0.35 0.29 0.86 0.76

Table 8 – Estimated τ trees for Model 2, with n = 1000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 1 3 1 1
0 0 - 0 1 - 1 0 - 1 1 4 21 16
0 0 0 - 0 0 1 - 0 1 - 1 4 1 1
0 0 0 - 0 0 1 - 0 1 - 1 0 - 1 1 5 76 58
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 1 0
>= 7 contexts 7 0 24

Table 9 – Estimated τ trees for Model 2, with n = 2000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 0 - 0 0 1 - 0 1 - 1 0 - 1 1 5 87 76
0 0 0 0 - 0 0 0 1 - 0 0 1 - 0 1 - 1 0 - 1 1 6 0 2
>= 7 contexts 7 13 22

Table 10 shows the mean differences between real and estimated parameters
for both the modified and original beta-context algorithms when the context is correctly
identified. Overall, both methods yield comparable results.
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Table 10 – Differences between real and estimated values for Model 2 (average over 100
simulations).

Model 2 (n = 1000, N(0, 1) distr.) Model 2 (n = 2000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α000 0.57 0.56 0.28 0.28
α001 0.19 0.19 0.15 0.15
α01 0.17 0.17 0.11 0.10
α10 0.12 0.12 0.08 0.08
α11 0.09 0.09 0.06 0.06
β000 (1.02, 0.66, 0.84) (1.04, 0.67, 0.87) (0.54, 0.27, 0.37) (0.53, 0.26, 0.36)
β001 (0.66, 0, 0) (0.65, 0, 0) (0.17, 0, 0) (0.16, 0, 0)
β01 (0.17, 0.21) (0.18, 0.22) (0.10, 0.15) (0.10, 0.15)
β10 (0.15, 0) (0.16, 0) (0.10, 0) (0.10, 0)
β11 (0,0) (0,0) (0,0) (0,0)

In Model 3, as outlined in Figure 5, we assess the effectiveness of the proposed
algorithm when data is generated from a full tree of fixed order. Time-varying exogenous
variables were generated from a N(0,1) distribution. We generate samples with n “ 1000
and n “ 2000 state transitions.
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Figure 5 – Context tree τ and associated parameters θ for Model 3 (numbers in parenthesis
represent the values of αu for each context u).

The performance metrics for the estimated context function in Model 3 are
outlined in Table 11. To aid in the visualization of the estimated trees, Table 12 and
Table 13 provide the count of estimated occurrences for each context. For n “ 1000, the
original beta-context algorithm demonstrated superior results, achieving 100% identical
τ trees, while the modified beta-context algorithm produced larger trees than the real
ones. For n “ 2000, improved outcomes were observed with the modified beta-context
algorithm. Interestingly, in this case, the original beta-context algorithm generated larger
trees than the real ones - 23 trees with more than seven contexts when the real tree has
only 4 contexts.

The mean discrepancies between real and estimated parameters, when the
context were correctly identified, are showed in Table 14 for both the proposed modified
beta-context algorithm and the beta-context algorithm. Both methods exhibit comparable
results in this scenario.
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Table 11 – Simulation results for Model 3 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 3 (n = 1000, N(0, 1) distr.) Model 3 (n = 2000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 1123.18 1120.03 2184.90 2195.48
AIC 1065.71 1066.29 2116.06 2115.72
logLik -521.15 -522.19 -1045.74 -1043.62
# par. α̂u 4.25 4.00 4.36 4.99
# par. β̂

u 7.46 6.95 7.93 9.25
order τ̂ 2.25 2.00 2.36 2.93
order-Cov 2.23 2.00 2.25 2.56
# Missing τ̂ 0 0 0 0
# Extra τ̂ 0.50 0 0.72 1.78
Identical τ 0.90 1.00 0.86 0.71
Identical τθ 0 0 0.13 0.11

Table 12 – Estimated τ trees for Model 3, with n = 1000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 90 100
0 0 - 0 1 - 1 0 - 1 1 0 - 1 1 1 5 1 0
0 0 - 0 1 - 1 0 0 - 1 0 1 0 - 1 0 1 1 - 1 1 6 1 0
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 - 1 0 - 1 1 6 1 0
0 0 0 0 - 0 0 0 1 - 0 0 1 - 0 1 - 1 0 - 1 1 6 1 0
>= 7 contexts 7 6 0

Table 13 – Estimated τ trees for Model 3, with n = 2000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 86 71
0 0 - 0 1 - 1 0 0 - 1 0 1 - 1 1 5 2 1
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 1 1
0 0 - 0 1 - 1 0 - 1 1 0 0 - 1 1 0 1 - 1 1 1 6 1 1
0 0 - 0 1 - 1 0 0 - 1 0 1 0 - 1 0 1 1 - 1 1 6 1 3
0 0 - 0 1 - 1 0 0 0 - 1 0 0 1 - 1 0 1 - 1 1 6 1 0
>= 7 contexts 7 8 23

In Model 4, as outlined in Figure 6, we evaluate the effectiveness of the proposed
algorithm in situations where the state space is not binary. Time-varying exogenous
variables were generated from a N(0,1) distribution. Given its larger number of parameters
to be estimated, we generate samples with n “ 4000 and n “ 8000 state transitions.

The performance metrics for the estimated context function in Model 4 are
detailed in Table 15. To aid in the visualization of the estimated trees, Table 16 and
Table 17 provide the count of estimated occurrences for each context. For n “ 4000,
both algorithms yielded similar results, with the original beta-context algorithm having
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Table 14 – Differences between real and estimated values for Model 3 (average over 100
simulations).

Model 3 (n = 1000, N(0, 1) distr.) Model 3 (n = 2000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α00 0.13 0.13 0.10 0.10
α01 0.13 0.14 0.09 0.09
α10 0.18 0.18 0.13 0.13
α11 0.11 0.11 0.07 0.07
β00 (0.15, 0.3) (0.16, 0.3) (0.13, 0.27) (0.14, 0.27)
β01 (0.15, 0.15) (0.15, 0.17) (0.10, 0.11) (0.10, 0.11)
β10 (0.23, 0.26) (0.23, 0.25) (0.15, 0.15) (0.15, 0.15)
β11 (0.10, 0.11) (0.10, 0.12) (0.07, 0.08) (0.06, 0.08)
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Figure 6 – Context tree τ and associated parameters θ for Model 4. Numbers in parenthesis
represent the values of pαu

1 , αu
2q from each context u and βu

1 and βu
2 are the

coefficient vectors of the covariates. β1˚ means the context is 1 preceded by
other state that is not 1.

a higher percentage of identical τ trees (98% compared to 95% for the modified beta-
context algorithm) but a lower percentage of exact covariate vectors (24% compared to
38% for the modified beta-context algorithm). For n “ 8000, the modified beta-context
algorithm demonstrated superior results, achieving 100% and 76% identical τ trees and
exact covariate vectors, respectively. Both methods showed better results in achieving
exact covariate vectors with n “ 8000. In general, the original beta-context algorithm
resulted in larger trees.

The mean discrepancies between real and estimated parameters, when the
context were correctly identified, are showed in Table 18. Both methods exhibit comparable
results in this scenario.

Model 5, described in Figure 7, shares similarities with Model 3 but includes



Chapter 3. Simulations 52

Table 15 – Simulation results for Model 4 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 4 (n = 4000, N(0, 1) distr.) Model 4 (n = 8000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 7661.21 7658.67 15160.71 15189.83
AIC 7526.39 7527.75 15010.34 15008.16
logLik -3741.78 -3743.08 -7483.65 -7478.08
# par. α̂u 12.32 12.14 12 14.04
# par. β̂

u 9.10 8.66 9.52 11.96
order τ̂ 2.14 2.06 2 2.67
order-Cov 2.05 2.05 2 2.4
# Missing τ̂ 0 0 0 0
# Extra τ̂ 0.18 0.07 0 1.08
Identical τ 0.95 0.98 1 0.79
Identical τθ 0.38 0.24 0.76 0.70

Table 16 – Estimated τ trees for Model 4, with n = 4000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 95 98
0 0 - 0 0 2 - 0 0 2 0 - 0 1 - 0 2 - 1 - 1 0 - 2 8 1 0
0 0 - 0 1 - 0 1 1 - 0 1 1 1 - 0 2 - 1 - 1 0 - 2 8 1 0
0 0 - 0 0 1 - 0 0 1 1 - 0 0 1 1 2 - 0 1 - 0 2 - 1 - 1 0 - 2 9 0 1
ě 10 contexts 10 3 1

Table 17 – Estimated τ trees for Model 4, with n = 8000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 100 79
0 0 - 0 0 0 - 0 0 0 1 - 0 0 0 1 2 - 0 1 - 0 2 - 1 - 1 0 - 2 9 0 1
0 0 - 0 0 1 - 0 0 1 1 - 0 0 1 1 2 - 0 1 - 0 2 - 1 - 1 0 - 2 9 0 1
0 0 - 0 0 2 - 0 0 2 1 - 0 0 2 1 0 - 0 1 - 0 2 - 1 - 1 0 - 2 9 0 1
0 0 - 0 1 - 0 1 1 - 0 1 1 2 - 0 1 1 2 0 - 0 2 - 1 - 1 0 - 2 9 0 2
0 0 - 0 1 - 0 1 1 - 0 1 1 2 - 0 1 1 2 1 - 0 2 - 1 - 1 0 - 2 9 0 1
0 0 - 0 1 - 0 1 2 - 0 1 2 1 - 0 1 2 1 0 - 0 2 - 1 - 1 0 - 2 9 0 1
0 0 - 0 1 - 0 2 - 0 2 1 - 0 2 1 1 - 0 2 1 1 1 - 1 - 1 0 - 2 9 0 1
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 - 2 0 - 2 0 0 - 2 0 0 2 9 0 1
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 - 2 0 - 2 0 1 - 2 0 1 0 9 0 1
ě 10 contexts 10 0 11

α00
“ 4 and β00

“ p0, 0q
1 to simulate scenarios with rare events. We generate samples with

n “ 1000 and n “ 2000 state transitions for a single source.

The performance metrics for the estimated context function in Model 5 are
detailed in Table 19. To aid in the visualization of the estimated trees, Table 20 and
Table 21 provide the count of estimated occurrences for each context. For both n “ 1000 and
n “ 2000, the modified beta-context algorithm demonstrated superior results, achieving
99% and 94% identical τ trees and exact covariate vectors, respectively, along with lower
values of BIC and AIC. In general, the original beta-context algorithm results in larger
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Table 18 – Differences between real and estimated values for Model 4 (average over 100
simulations).

Model 4 (n = 4000, N(0, 1) distr.) Model 4 (n = 8000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

(α00
1 , α00

2 ) (0.09, 0.08) (0.09, 0.08) (0.09, 0.07) (0.09, 0.07)
(α01

1 , α01
2 ) (0.09, 0.09) (0.09, 0.09) (0.06, 0.05) (0.07, 0.05)

(α02
1 , α02

2 ) (0.15, 0.20) (0.15, 0.20) (0.10, 0.13) (0.10, 0.13)
(α10

1 , α10
2 ) (0.13, 0.11) (0.13, 0.11) (0.09, 0.07) (0.09, 0.07)

(α1˚
1 , α1˚

2 ) (0.05, 0.06) (0.06, 0.06) (0.04, 0.04) (0.04, 0.04)
(α2

1, α2
2) (0.06, 0.09) (0.06, 0.09) (0.04, 0.06) (0.04, 0.07)

β00
1

β00
2

(0.29, 0)
(0.28, 0)

(0.34, 0)
(0.34, 0)

(0.16, 0)
(0.15, 0)

(0.12, 0)
(0.11, 0)

β01
1

β01
2

(0.10, 0)
(0.09, 0)

(0.10, 0)
(0.09, 0)

(0.08, 0)
(0.07, 0)

(0.08, 0)
(0.07, 0)

β02
1

β02
2

(0.19, 0.22)
(0.19, 0.20)

(0.19, 0.22)
(0.19, 0.19)

(0.13, 0.19)
(0.14, 0.15)

(0.13, 0.18)
(0.13, 0.15)

β10
1

β10
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β1˚
1

β1˚
2

(0.06)
(0.07)

(0.06)
(0.07)

(0.04)
(0.05)

(0.04)
(0.05)

β2
1

β2
2

(0)
(0)

(0)
(0)

(0)
(0)

(0)
(0)

y

0

0(4.0) 1(0.25)

1

0(1.0) 1(0.8)

β00
“ p0, 0q

1

β01
“ p´1, 1q

1

β10
“ p1.5, ´2q

1

β11
“ p´0.2, ´0.9q

1

Figure 7 – Context tree τ and associated parameters θ for Model 5 (numbers in parenthesis
represent the values of αu for each context u).

trees.

The differences between the real and estimated parameters, when the context
were correctly identified, are shown in Table 22 for both the proposed modified beta-context
algorithm and the original beta-context algorithm. Both methods generally provide similar
results for most parameters, except for α00. This discrepancy arises because, in cases with
insufficient observations, the original beta-context algorithm tends to estimate α00

“ 0,
implying equal probabilities for events ’0’ and ’1’ after the context ’00’. In reality, event
’0’ is a rare occurrence following this context. The modified version can estimate α00,
but it may yield higher values. This leads to a larger difference observed in Table 22.
However, opting for higher values is preferable as it maintains the behavior of the rare
event, contrasting with the original algorithm, which assigns the same probability to both
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Table 19 – Simulation results for Model 5 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 5 (n = 1000, N(0, 1) distr.) Model 5 (n = 2000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 991.98 1029.64 1941.36 1965.18
AIC 942.51 968.39 1881.32 1901.55
logLik -461.18 -471.72 -929.94 -939.41
# par. α̂u 4.03 5.15 4.23 5.54
# par. β̂

u 6.05 7.33 6.49 6.82
order τ̂ 2.03 3.08 2.23 2.55
order-Cov 2.03 2.84 2.23 2.42
# Missing τ̂ 0 0 0 0
# Extra τ̂ 0.06 2.09 0.46 0.99
Identical τ 0.99 0.79 0.94 0.88
Identical τθ 0.99 0.79 0.94 0.88

Table 20 – Estimated τ trees for Model 5, with n = 1000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 99 79
0 0 - 0 1 0 0 - 0 1 0 1 0 - 0 1 0 1 1 - 0 1 1 - 1 0 - 1 1 7 1 0
>= 8 contexts 8 0 21

Table 21 – Estimated τ trees for Model 5, with n = 2000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 94 88
0 0 - 0 1 - 1 0 0 - 1 0 1 0 - 1 0 1 1 - 1 1 6 1 0
>= 8 contexts 8 5 12

events in such situations.

Table 22 – Differences between real and estimated values for Model 5 (average over 100
simulations).

Model 5 (n = 1000, N(0, 1) distr.) Model 5 (n = 2000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α00 6.79 0.96 5.34 0.58
α01 0.12 0.13 0.10 0.10
α10 0.17 0.17 0.13 0.13
α11 0.10 0.10 0.07 0.07
β00 (0, 0) (0, 0) (0, 0) (0, 0)
β01 (0.14, 0.14) (0.14, 0.14) (0.09, 0.10) (0.10, 0.10)
β10 (0.23, 0.26) (0.23, 0.27) (0.17, 0.17) (0.17, 0.17)
β11 (0.09, 0.11) (0.09, 0.11) (0.06, 0.07) (0.06, 0.07)

Model 6, described in Figure 8, shares similarities with Model 4 but includes
α00

“ p4, 3.5q, β00
1 “ p0, 0q

1 and β00
2 “ p0, 0q

1 to simulate scenarios with rare events. We
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generate samples with n “ 4000 and n “ 8000 state transitions for a single source.

y

0

0(4;3.5) 1(-0.5;-0.5) 2(-0.35;-1.0)

1(0.2;-0.2)

0(-0.2;0.7)

2(1.0;-1.3)

β00
1 “ p0, 0q

1

β01
1 “ p0.9, 0q

1

β02
1 “ p1.5, ´2q

1

β10
1 “ p0, 0q

1

β1˚
1 “ p´0.4q

1

β2
1 “ p0q

1

β00
2 “ p0, 0q

1

β01
2 “ p0.3, 0q

1

β02
2 “ p0.5, ´0.85q

1

β10
2 “ p0, 0q

1

β1˚
2 “ p0.6q

1

β2
2 “ p0q

1

Figure 8 – Context tree τ and associated parameters θ for Model 6. Numbers in parenthesis
represent the values of pαu

1 , αu
2q from each context u and βu

1 and βu
2 are the

coefficient vectors of the covariates. β1˚ means the context is 1 preceded by
other state that is not 1.

The performance metrics for the estimated context function in Model 6 are
outlined in Table 23. To aid in the visualization of the estimated trees, Table 24 and
Table 25 provide the count of estimated occurrences for each context. For both n “ 4000
and n “ 8000, the modified beta-context algorithm exhibited superior results, achieving
100% identical τ trees and exact covariates vectors and lower values of BIC and AIC. In
general, the original beta-context algorithm resulted in larger trees, with an average of
0.56 and 1.13 extra nodes, respectively, for n “ 4000 and n “ 8000.

Table 23 – Simulation results for Model 6 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 6 (n = 4000, N(0, 1) distr.) Model 6 (n = 8000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 7452.25 7465.61 14757.67 14792.52
AIC 7326.37 7326.51 14617.92 14619.93
logLik -3643.18 -3641.15 -7288.96 -7285.27
# par. α̂u 12.00 13.04 12.00 14.18
# par. β̂

u 8.00 9.06 8.00 10.52
order τ̂ 2.00 2.40 2.00 2.79
order-Cov 2.00 2.29 2.00 2.55
# Missing τ̂ 0 0 0 0
# Extra τ̂ 0 0.56 0 1.13
Identical τ 1.00 0.89 1.00 0.74
Identical τθ 1.00 0.89 1.00 0.74
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Table 24 – Estimated τ trees for Model 6, with n = 4000 (frequency of occurrences over
100 simulations).

contexts # contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 100 89
0 0 - 0 1 - 0 2 - 1 - 1 0 - 1 0 1 - 1 0 1 1 - 1 0 1 1 2 - 2 9 0 2
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 - 2 0 - 2 0 2 - 2 0 2 1 9 0 1
>= 10 contexts 10 0 8

Table 25 – Estimated τ trees for Model 6, with n = 8000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 100 74
0 0 - 0 1 - 0 2 - 0 2 2 - 1 - 1 0 - 2 7 0 1
0 0 - 0 0 1 - 0 0 1 0 - 0 1 - 0 2 - 1 - 1 0 - 2 8 0 1
0 0 - 0 0 1 - 0 0 1 1 - 0 1 - 0 2 - 1 - 1 0 - 2 8 0 1
0 0 - 0 1 - 0 2 - 1 - 1 0 - 1 0 2 - 1 0 2 0 - 2 8 0 1
>= 9 contexts 9 0 22

The differences between the real and estimated parameters, when the context
were correctly identified, are presented in Table 26 for both the proposed modified beta-
context algorithm and the original beta-context algorithm. Both methods yield similar
results for all parameters. Since we have a larger number of observations, we do not
encounter the issue explained earlier for Model 5, where insufficient observations could
impede the estimation of rare events.

3.2 Simulations with multiple independent sources and time-invariant
exogenous covariates

Model 7, outlined in Figure 9, involve multiple independent sources and time-
invariant exogenous covariates. Consequently, only the modified version of the beta-context
algorithm was employed, as it includes adaptations to accommodate these characteristics.
It was considered univariate time-varying and time-invariant exogenous covariates, both
generated by a N(0, 1) distribution.

Model 7 shares similarities with Model 1 (Figure 3), incorporating a univari-
ate time-invariant exogenous covariate and multiple sources. Different simulations were
conducted for Model 7, varying sample sizes and considering sources with both equal and
varying numbers of observations. Additionally, scenarios were simulated with an identical
overall sample size, but with varying sizes for each source. This approach enables an
evaluation of the algorithm’s performance as sample sizes increase across all sources or
only for specific ones. Furthermore, it allows an assessment of cases where there is a high
total number of observations but fewer observations per source, reflecting situations with
numerous sources, each contributing a limited number of observations.
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Table 26 – Differences between real and estimated values for Model 6 (average over 100
simulations).

Model 6 (n = 4000, N(0, 1) distr.) Model 6 (n = 8000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

(α00
1 , α00

2 ) (0.48, 0.49) (0.48, 0.49) (0.31, 0.32) (0.36, 0.36)
(α01

1 , α01
2 ) (0.09, 0.09) (0.09, 0.09) (0.07, 0.06) (0.07, 0.06)

(α02
1 , α02

2 ) (0.16, 0.19) (0.16, 0.19) (0.10, 0.14) (0.10, 0.14)
(α10

1 , α10
2 ) (0.10, 0.09) (0.10, 0.09) (0.08, 0.07) (0.08, 0.07)

(α1˚
1 , α1˚

2 ) (0.05, 0.06) (0.05, 0.06) (0.04, 0.04) (0.04, 0.04)
(α2

1, α2
2) (0.05, 0.12) (0.05, 0.12) (0.04, 0.07) (0.04, 0.07)

β00
1

β00
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β01
1

β01
2

(0.11, 0)
(0.09, 0)

(0.11, 0)
(0.09, 0)

(0.07, 0)
(0.07, 0)

(0.07, 0)
(0.07, 0)

β02
1

β02
2

(0.18, 0.21)
(0.20, 0.20)

(0.18, 0.21)
(0.20, 0.20)

(0.15, 0.16)
(0.14, 0.15)

(0.14, 0.17)
(0.14, 0.15)

β10
1

β10
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β1˚
1

β1˚
2

(0.06)
(0.05)

(0.06)
(0.06)

(0.04)
(0.05)

(0.04)
(0.05)

β2
1

β2
2

(0)
(0)

(0)
(0)

(0)
(0)

(0)
(0)

We chose a model similar to Model 1 because it exhibited worse estimation
results, and we aimed to assess the accuracy of the model with multiple independent
sources and time-invariant exogenous covariates in challenging scenarios.

y
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0(0.1) 1

0(0.25) 1

0(0.8) 1(2.0)

1

0(-0.2) 1(-1.0)

β00
“ p2, 0q

1

β010
“ p´1, 1, 0q

1

β0111
“ p1.5, 2, 0, 0q

1

β0110
“ p4, 3, 2, 1q

1

β10
“ p0, 0q

1

β11
“ p0, 0q

1

γ00
“ 3

γ010
“ 1.5

γ0111
“ 1

γ0110
“ 0.5

γ10
“ ´2

γ11
“ ´1

Figure 9 – Context tree τ and associated parameters θ for Model 7 (numbers in parenthesis
represent the values of αu for each context u).

The performance metrics for the estimated context function in Model 7 are
outlined in Table 27. To aid in the visualization of the estimated trees, Table 28, Table 29,
Table 30, Table 31, Table 32 and Table 33 provide the count of estimated occurrences
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for each context. As the overall sample size increases, there is an improvement in the
percentage of identical τ trees and exact covariate vectors τθ. When comparing balanced
and imbalanced sample sizes with the same overall size, a higher percentage of exact
covariate vectors τθ is observed in the balanced sample. This might occur because in
sources with small samples, we cannot obtain a large number of large contexts, thus
lacking sufficient data in only one source to estimate all the parameters of the larger
contexts. Additionally, the variances observed could also arise from differences in the
samples themselves. It is worth noting that for n1 “ 4000 and n2 “ 4000, not only do we
achieve better results, but we also obtain larger trees. This is expected because now we
have larger contexts with enough data to enter the initial tree (maximal tree), but not
enough data to comprehensively understand the behavior within these contexts.

Table 27 – Simulation results for Model 7 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 7 (N(0, 1) distr.)
n1 “ 500
n2 “ 500

n1 “ 1000
n2 “ 1000

n1 “ 1000
n2 “ 2000

n1 “ 2000
n2 “ 2000

n1 “ 200
n2 “ 3800

n1 “ 4000
n2 “ 4000

BIC 937.74 1783.47 2657.37 3431.95 3359.24 6752.52
AIC 875.65 1696.38 2554.49 3304.05 3254.51 6581.69
logLik -425.20 -832.60 -1260.10 -1631.70 -1610.60 -1639.79
# par. α̂u 5.04 5.43 5.77 7.34 5.48 7.42
# par. β̂

u 3.60 5.18 5.81 7.06 5.85 9.92
order τ̂ 3.18 3.47 3.93 4.25 3.66 4.77
order-Cov 2.01 2.46 2.51 3.14 2.70 3.98
# Missing τ̂ 3.10 2.33 1.79 1.27 1.69 0.51
# Extra τ̂ 1.50 1.22 1.34 3.96 0.72 3.36
Identical τ 0.02 0.11 0.36 0.41 0.42 0.57
Identical τθ 0.00 0.00 0.00 0.15 0.05 0.46

Table 28 – Estimated τ trees for Model 7, with n1 “ 500 and n2 “ 500 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 3 17
0 0 - 0 1 - 1 0 - 1 1 4 4
0 0 - 0 1 0 - 0 1 1 - 1 4 21
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 34
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 2
0 0 0 - 0 0 1 - 0 1 - 1 0 - 1 1 5 1
0 0 0 0 - 0 0 0 1 - 0 0 1 - 0 1 - 1 5 2
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 2
0 0 - 0 1 0 0 0 - 0 1 0 0 1 - 0 1 0 1 - 0 1 1 - 1 6 1
ě 7 contexts 7 16

The disparities between the real and estimated parameters, when the context
was correctly identified, are presented in Table 34. An interesting finding is that for samples
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Table 29 – Estimated τ trees for Model 7, with n1 “ 1000 and n2 “ 1000 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 3 1
0 0 - 0 1 - 1 0 - 1 1 4 1
0 0 - 0 1 0 - 0 1 1 - 1 4 26
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 43
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 4
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 11
ě 7 contexts 7 14

Table 30 – Estimated τ trees for Model 7, with n1 “ 1000 and n2 “ 2000 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 1
0 0 - 0 1 0 - 0 1 1 - 1 4 23
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 18
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 8
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 36
ě 7 contexts 7 14

Table 31 – Estimated τ trees for Model 7, with n1 “ 2000 and n2 “ 2000 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 3 1
0 0 - 0 1 0 - 0 1 1 - 1 4 13
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 14
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 6
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 41
ě 7 contexts 7 25

Table 32 – Estimated τ trees for Model 7, with n1 “ 200 and n2 “ 3800 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 3
0 0 - 0 1 0 - 0 1 1 - 1 4 24
0 0 - 0 1 0 - 0 1 1 - 1 0 - 1 1 5 13
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 9
0 0 - 0 1 - 1 0 0 0 - 1 0 0 1 - 1 0 1 - 1 1 6 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 42
0 0 0 - 0 0 1 0 - 0 0 1 1 - 0 1 - 1 0 - 1 1 6 1
ě 7 contexts 7 7

with an overall sample size of 4000, imbalanced samples yield poorer results for parameter
estimation, particularly for parameters related to time-invariant exogenous covariates.



Chapter 3. Simulations 60

Table 33 – Estimated τ trees for Model 7, with n1 “ 4000 and n2 “ 4000 (frequency of
occurrences over 100 simulations).

Contexts # Contexts modified-beta-VLMC
0 0 - 0 1 - 1 0 - 1 1 4 1
0 0 - 0 1 0 - 0 1 1 - 1 4 3
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 14
0 0 0 - 0 0 1 - 0 1 0 - 0 1 1 - 1 5 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 0 - 1 1 6 57
ě 7 contexts 7 24

Better results are achieved for balanced data with a larger sample size.

Table 34 – Differences between real and estimated values for Model 7 (average over 100
simulations).

Model 7 (N(0, 1) distr.)
n1 “ 500
n2 “ 500

n1 “ 1000
n2 “ 1000

n1 “ 1000
n2 “ 2000

n1 “ 2000
n2 “ 2000

n1 “ 200
n2 “ 3800

n1 “ 4000
n2 “ 4000

α00 0.67 0.76 0.53 0.35 0.76 0.36
α010 0.76 0.94 0.84 0.34 0.79 0.55
α0110 1.04 0.98 0.47 1.19 0.80 0.67
α0111 0.22 0.87 1.93 0.72 1.82 1.00
α10 0.66 0.43 3.96 0.22 0.28 0.31
α11 0.63 0.32 0.42 0.15 0.60 0.17
γ00 1.37 0.97 0.72 0.52 1.23 0.88
γ010 1.56 1.18 1.18 0.61 1.34 1.16
γ0110 8.97 2.47 1.09 1.47 2.77 1.48
γ0111 1.00 1.67 1.73 0.99 4.89 2.48
γ10 1.27 0.62 3.94 0.37 0.91 0.55
γ11 1.53 0.40 0.66 0.29 0.76 0.40
β00 (0.38, 0) (0.24, 0) (0.16, 0) (0.11, 0) (0.16, 0) (0.09, 0)
β010 (0.38, 0.46, 0) (0.24, 0.30, 0) (0.26, 0.28, 0) (0.12, 0.14, 0) (0.33, 0.36, 0) (0.09, 0.09, 0)
β0110 (1.54, 1.67, 1.20, 1.00) (0.80, 0.50, 0.75, 0.96) (0.63, 0.50, 0.41, 1.00) (0.63, 0.53,0.38, 0.71) (0.51, 0.44, 0.34, 0.89) (0.46, 0.37, 0.26, 0.38)
β0111 (1.50, 2.00, 0, 0) (0.86, 1.28, 0, 0) (1.22, 1.98, 0, 0) (0.53, 0.71, 0, 0) (0.46, 0.56, 0, 0) (0.31, 0.37, 0, 0)
β10 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
β11 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
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4 Application: Predicting Dengue outbreaks

4.1 Dengue: an overview of the disease and its global impact
Dengue is an urban arboviral disease 1 transmitted by infected female mosquitoes

of the genus Aedes 2, primarily Aedes aegypti. Once infected, a female mosquito becomes a
permanent disease vector, with 30 to 40% chance of transmitting the virus to its offspring
(Rita, Freitas e Nogueira (2016)). These mosquitoes, known for their strictly urban be-
havior, lay eggs just above clean water surfaces in containers like cans, bottles, and tires,
which hatch within minutes upon contact with rising water levels. On that account, the
mosquito density is higher in the summer, when the periods of elevated rainfall increase the
number of breeding sites. Additionally, higher temperatures during the summer accelerate
the mosquito’s development through the egg-larva-adult stages.

According to the World Health Organization (WHO) 3, besides transmission
between humans involving mosquito vectors, there is also evidence of the possibility of
maternal transmission from a pregnant mother to her baby. However, vertical transmission
rates appear to be low, with the risk seemingly linked to the timing of the dengue infection
during pregnancy - in cases where a mother has dengue infection while pregnant, babies
may suffer from preterm birth, low birth weight, and fetal distress.

Since dengue is primarily transmitted amongst humans through mosquito
vectors, preventing the spread of Aedes aegypti is essential. This is most effective during
the insect aquatic phase, focusing on larvae and pupa removal or covering potential
breeding sites (Rita, Freitas e Nogueira (2016)). As such, public awareness and continuous
home monitoring are crucial stances to keep the disease rates under control, and both
are heavily dependent on forethought public policies and institutional actions designed to
create an effective sanitary culture.

Regarding global impact, dengue’s incidence has grown dramatically in recent
decades, with an estimated 390 million dengue virus infections annually, out of which
96 million manifest clinically (Brady et al. (2012)). According to the WHO, prior to the
COVID-19 pandemic in 2020, dengue fever was ranked amongst the top ten global health
threats. 4. The disease is now endemic in over 100 countries in Regions of Africa, the
Americas, the Eastern Mediterranean, South-East Asia, and the Western Pacific. The most
1 Arboviral diseases are caused by viruses transmitted by mosquitoes. The most common arboviral

diseases in urban environments are: Dengue, Chikungunya and Zika.
2 These mosquitoes can be infected with four different serotypes of the Dengue virus: DENV-1, DENV-2,

DENV-3, and DENV-4.
3 https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
4 https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
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severely affected regions are the Americas, South-East Asia, and the Western Pacific, with
Asia contributing to approximately 70% of the global disease burden. Notably, dengue is
extending its reach to new areas, including Europe, leading to explosive outbreaks. In 2010,
local transmission was reported for the first time in France and Croatia, and imported
cases were detected in three other European countries 5.

4.2 Dengue as an endemic disease in Brazil
The incidence of dengue in Brazil follows endemic and epidemic cycles, with

explosive outbreaks occurring approximately every 4 to 5 years. Since the introduction of
the virus in the country (1981), more than seven million cases have been reported.

In the last two years (2022 and 2023), Brazil faced its highest recorded dengue-
related deaths: at least 1016 6 and 1079 7 fatalities, respectively, as reported by the
Notifiable Diseases Information System (Sistema de Informação de Agravos de Notificação
- SINAN) 8. Climate change, as noted by the Butantan Institute 9, has allowed the disease
vector to adapt and spread to regions where it was not previously common.

According to National Institute of Meteorology (Instituto Nacional de Metere-
ologia - INMET), temperatures in Brazil have consistently exceeded historical averages
since the 1990s. This warming climate provides favorable conditions for the adaptation
and proliferation of the dengue-transmitting mosquito. In the southern part of the country,
increased rainfall and higher average temperatures led the region to be ranked second in
2022’s dengue incidence rates, according to the Epidemiological Bulletin of the Ministry of
Health 10 — until mid-2015, the presence of dengue in the region was variable and not
very significant, as shown by Vecchia, Beltrame e D’Agostini (2018).

4.3 Dengue as a Neglected Tropical Diseases (NTDs)
Dengue is classified by the World Health Organization (WHO) as a Neglected

Tropical Disease (NTD) – a diverse group of infirmities that gathers 20 conditions 11, often
5 https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
6 https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/

edicoes/2023/boletim-epidemiologico-volume-54-no-01/
7 https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-

arboviroses
8 http://portalsinan.saude.gov.br/dengue
9 https://butantan.gov.br/noticias/aumento-historico-de-temperatura-leva-a-disseminacao-da-dengue-

em-todo-o-brasil
10 https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos
11 NTDs include: Buruli ulcer, Chagas disease, dengue and chikungunya, dracunculiasis (Guinea-worm

disease), echinococcosis, foodborne trematodiases, human African trypanosomiasis (sleeping sickness),
leishmaniasis, leprosy (Hansen’s disease), lymphatic filariasis, mycetoma, chromoblastomycosis and
other deep mycoses, onchocerciasis (river blindness), podoconiosis, rabies, scabies and other ectopara-
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linked to environmental factors – and is responsible for approximately 20000 avoidable
annual deaths. NTDs are usually vector-borne, involving animal reservoirs and exhibiting
complex life cycles, which leads to challenges in their spread control. Predominantly,
this category of disease affects impoverished communities in tropical and subtropical
regions, with a disproportionate impact on women and children. Those NTDs have already
affected over a billion people around the world, inflicting significant health, social, and
economic challenges to the people, and often resulting in consequences such as disability,
stigmatization, social exclusion, discrimination, plus the imposition of substantial financial
burdens on patients and their families.

Horstick, Tozan e Wilder-Smith (2015) summarizes NTD definitions with key
features:

• Poverty-related;

• Endemic to the tropics and subtropics;

• Lacking public health attention;

• Poor research funding and shortcomings in research and development (R&D);

• Usually associated with high morbidity but low mortality;

• Often having no specific treatment available.

They discuss dengue’s classification as an NTD, since it does not meet some
of the requirements listed above - although its prevalence is larger in countries with less
economic power, it does not affect only the poor, and recently, dengue has been attracting
public health attention and research funding, particularly for vaccine development. On the
other hand, dengue epidemics are on the rise both in occurrence and severity and there
is currently no specific treatment or widely accessible highly effective vaccine. Moreover,
effective methods for surveillance and vector control remain elusive. Therefore, it is
important that dengue be considered an NTD. For further details, Horstick, Tozan e
Wilder-Smith (2015) provide an in-depth discussion on the classification of dengue as a
NTD.

4.4 Reviewing forecasting models for dengue incidence
In addition to efforts in dengue vaccine development and combating Aedes

aegypti, another strategy for dengue-endemic countries is the development of forecasting
models for outbreak prediction - this way, public health systems can be prepared in terms

sitoses, schistosomiasis, soil-transmitted helminthiases, snakebite envenoming, taeniasis/cysticercosis,
trachoma, and yaws and other endemic treponematoses.
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of resource and protocols to the high influx of patients. WHO supports this strategy by
providing financial assistance for innovative surveillance systems, enhancing prevention,
control, and forecasting efficiency (Organization et al. (2012)). Stanaway et al. (2016)
conducted a literature review, summarizing researchers’ efforts to gather and analyze data,
improving understanding of the relational factors influencing disease spread. The review
also emphasizes the evolution of various predictive modeling methods, including statistical
and mathematical analyses as well as machine learning techniques.

In this section, we will rely on the literature review conducted by Stanaway
et al. (2016) to offer a brief overview of common relational factors used by researchers in
dengue forecast modeling and the predictive modeling methods they employ.

4.4.1 Factors correlated to the number of dengue cases

There are direct and indirect factors that can be correlated to the number of
dengue cases. Direct factors are the ones that directly affect the mosquitoes’ live cycle.
Indirect factors are those that do not have a direct impact on the number of mosquito
larvae, but may be associated with the occurrence of a dengue epidemic.

Below, the direct and indirect factors mentioned are based on the enumeration
by Stanaway et al. (2016), derived from their literature review on dengue forecast modeling.

• Direct factors:

1. Climate: Rainfall significantly impacts the incubation period of mosquitoes,
as they require still or standing water to complete their life cycle (Buczak
et al. (2012)). This way, unusual weather conditions, such as drought and
higher temperatures associated with phenomena like El Niño, adversely affect
mosquito breeding habitats and populations. Interestingly, some studies suggest
that excessive rainfall can lead to a decline in dengue epidemics. This may be
attributed to the disruptive effects of fast-moving water flows on larvae survival
and growth, as well as a reduction in the larval population (Hsu, Wen e Yu
(2013), Thammapalo et al. (2005), Arcari, Tapper e Pfueller (2007)).

2. Mosquito density: Several researchers have used mosquito populations infor-
mation through a mosquito larvae density index - the percentage of houses in
an area infested with larvae, the percentage of water-holding containers infested
with larvae, the number of positive containers per 100 houses inspected and
the number of pupae per 100 houses inspected.

3. Dengue virus serotypes: Limkittikul, Brett e L’Azou (2014) found that
the distribution of dengue serotypes varies seasonally and geographically. This
variation impacts dengue incidence given that anyone infected with one serotype
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will gain lifelong immunity to that virus serotype, but only partial or temporary
protection against other serotypes. Fluctuating serotype incidence can lead to
periods of no immunity and continual infections, correlating with the density of
the dengue virus in the region (Veeraseatakul, Saosathan e Chutipongvivate
(2014)).

4. Bite rate: Different severity levels of the epidemic depend significantly on the
biting rate of the mosquitoes, which is one of the factors significantly associated
with disease outbreaks and is a factor that could be used in the prediction
of outbreaks. The bite rate of mosquitoes will vary from season to season
and depends on weather and other climatic conditions, and mosquito density
(Chompoosri et al. (2012)).

• Indirect factors:

1. Geography: Topography plays a crucial role in providing an appropriate envi-
ronment for mosquito growth, reproduction, and virus transmission. According
to a study by the Center for Disease Control and Prevention (Control, (CDC
et al. (2007)), border areas are identified as having a higher risk for dengue
outbreaks compared to other regions. Additionally, rural areas in developing
countries have experienced the rapid spread of dengue infections, possibly due
to insufficient public health resources.

2. Spatial and spatial-temporal information: There are many works in the
literature that study the need to incorporate spatial analysis in to the modeling
of outbreaks of dengue specially in terms of prediction. For example, Yu et
al. (2014) proposed a spatial-temporal model incorporating population density,
environmental conditions, and infrastructure factors. However, Costa et al.
(2015) argued that relying solely on spatial information may not be sufficient,
as Ae. aegypti is strongly influenced by local climate triggers. Thiruchelvam et
al. (2018) found that dengue incidences were localized, and feedback models
tailored to specific regions did not benefit from data from neighboring areas.

3. Population movement Population movements and migration significantly
contribute to the spread of dengue epidemics, whether for tourism, work, or
other reasons. Additionally, international trade plays an indirect role in dengue
outbreaks. Hawley et al. (1987) highlighted the spread of dengue from Asia
to North America and Europe through the international trade of items like
used tires and bamboo home decorative items, which serve as habitats for Ae.
albopictus. Additionally, Jr, Stoddard e Scott (2014) found that specific dates
such as religious holidays or festivities where there is great mobility of family
members, tended to be associated with dengue outbreaks.
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4. Environment: The majority of dengue outbreaks are observed in communities
with unhygienic housing conditions and malnourished populations, contributing
to lower immunity and an increased risk of disease infection (Organization et al.
(2014)). Additionally, urban growth creates numerous breeding areas for dengue
vectors - mosquitoes adapt well to this environment as they have a preference
for feeding on humans over animals. Moreover, the ability of mosquitoes to fly
within a range of 100-500 meters to find food and breeding sites increases the
risk of mosquito-borne infections in urban areas, as houses fall within this flight
range.

5. Immunology: Some researchers found that patients with dengue virus infection
are often have poor nutrition, as nutritional deficiency negatively impacts the
body’s immune response to the dengue virus (Halstead, Nimmannitya e Cohen
(1970), Waidab, Suphapeetiporn et al. (2008), Thisyakorn e Nimmannitya
(1993)). Additionally, individuals with low levels of antibodies against the
dengue virus, such as children when first exposed to it, are more likely to
recurrent dengue virus infections. Oki e Yamamoto (2012) discovered that a
decline in population immunity correlates with an increase in the severity of
dengue outbreaks.

4.4.2 Common forecasting methods for dengue incidence

In their survey, Stanaway et al. (2016) identified common methods employed
for detecting dengue outbreaks, forecasting future dengue cases and determining critical
regions. They reported a total of 966 models created for the analysis of dengue epidemics,
with 545 using regression methods, 220 using temporal series, 76 using neural networks, 50
using decision trees, 23 using suppot cector machine, 20 using k-means, 17 using association
rules, 9 using lattice models and 6 using K-Nearest Neighbor. Some of these models are
mentioned below:

• Decision trees: Decision trees have been employed both as a classifier for dengue
cases (Tanner et al. (2008)) and to determine the choice between inpatient and
outpatient treatment regimens for dengue infection (Lee et al. (2009)).

• Regression analysis: Regression models were employed for various purposes:
predicting the duration of government intervention to control dengue epidemics and
prevent further public health damage (Hii et al. (2012), Xu et al. (2014)), identifying
and correlating factors contributing to dengue disease (Siriyasatien et al. (2016)),
determining the relationship between dengue outbreaks and variables such as weather
and dengue cases (Sang et al. (2014)), and predicting the age of dengue virus-infected
mosquitoes (Hugo et al. (2014)).
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• Artificial Neural Network: ANN, specifically Multilayer Feed-forward Neural
Network, was utilized to identify individuals at risk of dengue outbreaks through
Bio-electrical Impedance Analysis (Ibrahim et al. (2010)). Additionally, Ibrahim et
al. (2005) created a system for predicting the peak day of dengue-induced fever in a
patient, a crucial point associated with a higher risk of shock.

• Support Vector Machine: Support Vector Machine was used in conjunction with
the Radial Basis Function for predicting the human mortality rate of dengue infection
(Kesorn et al. (2015)).

• K-Nearest Neighbor: Spatial information on the risk areas of dengue infection
was analyzed using the Nearest Neighbor Index, focusing on dengue hemorrhagic
data from 1998 to 2004. The study revealed dengue movement patterns from rural
to urban communities in Trinidad (Sharma et al. (2014)).

• K-means: K-means clustering is employed to classify distinct groups of genes,
analyzing the relationship between the genetics of the virus in Ae. aegypti and the
virus in patients (Chauhan et al. (2012)). Additionally, K-means identifies hotspots
and localized regions of high dengue incidences in Malaysia (Mathur et al. (2015)).
The K-medoids algorithm, related to K-means, diagnoses dengue outbreaks in India
using mosquito species data, predicting the number and age groups of potential
dengue patients (Manivannan e Isakki (2017)).

• Time series analysis: Time series methods, such as those mentioned by Hii et al.
(2012), Johansson et al. (2016), Gharbi et al. (2011), Bhatnagar et al. (2012), Ho e
Ting (2015), Lal et al. (2013), Lin et al. (2012), Siregar, Makmur e Saprin (2018),
are widely employed for dengue prediction. These methods utilize data collected
periodically over time, such as the number of patients each month over several years.

• Association rules: Buczak et al. (2014) utilized Fuzzy Association Rule Mining,
a method to extract rules that relate variables like economic, social and weather
conditions to develop predictive models for dengue epidemics.

• Lattice models: A lattice model enable researchers to explore the transmission
dynamics of vector-borne diseases, considering both human mobility and vector
movement in space and time. Botari, Alves e Leonel (2011) used vector movement to
model registered dengue cases in Rio de Janeiro, Brazil, from 2006 to 2008, effectively
explaining the unusually high number of cases in 2008. Barmak et al. (2011), Barmak,
Dorso e Otero (2016) investigated the mobility patterns of human populations for
dengue epidemic prediction.

An important limitation of the existing works is that they provide little or no
explanations for the predictions, especially in the case of more complex models, as noted
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by Stanaway et al. (2016). Another challenge is how to compare different methods since
they use distinct metrics, and different datasets, often unavailable or hard to obtain.

Addressing these limitations, Aleixo et al. (2022) utilized a so-called explainable
boosted decision tree model - CatBoost (Prokhorenkova et al. (2018)) for dengue outbreak
detection in Rio de Janeiro, Brazil. This approach allows practitioners to comprehend how
the model uses available information for predictions. Importantly, not only they made
all data and code publicly available, but also evaluated the model using multiple error
metrics for regression and classification, and a detailed analysis per district, month of the
year, and prediction span.

Aligned with the goal of providing an explainable and comparable model for
dengue outbreak detection, the following section details both the results of applying the
proposed modified VLMCX to predict dengue outbreaks and the comparison of these
results with those presented by Aleixo et al. (2022).

4.5 Applying the VLMC with time-varying and time-invariant ex-
ogenous covariates for dengue outbreak prediction

We applied the proposed modified VLMCX model in two distinct scenarios:

1. National Analysis - Brazil (January 2008 to July 2023):

• Dataset: Monthly dengue cases across multiple municipalities in Brazil.

• Covariates: Time-dependent climate factors and time-invariant socioeconomic
and demographic attributes.

• Objective: Investigate the influence of previous dengue rates, weather con-
ditions, and socioeconomic factors on subsequent dengue rates across diverse
municipalities, providing insights into dengue transmission dynamics.

• Limitations: The current model does not incorporate a spatial-dependent
structure. However, considering that mosquitoes can fly over a range of 100-500
meters (Siriyasatien et al. (2018)), municipalities are assumed to be independent.

2. City-Level Analysis - Rio de Janeiro, Brazil (January 2012 to September
2020):

• Dataset: Historical data series of monthly dengue cases for each district in the
city of Rio de Janeiro, Brazil. The dataset utilized in this analysis is the same
as the one used by them 12.

12 https://gitlab.com/interscity/health/dengue-prediction
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• Covariates: Time-dependent variables like temperature, precipitation, air
humidity, the number of Chikungunya and Zika cases and the Aedes aegypti
infestation index. Time-invariant covariates include fixed attributes of districts,
such as the sum of dengue cases in neighboring districts, demographic density,
and the number of health facilities.

• Objective: Compare results with those presented in Aleixo et al. (2022).

• Limitations: The current model does not incorporate a spatial-dependent
structure. To address this limitation, the sum of dengue cases in neighboring
districts in the past months is incorporated as an exogenous covariate in the
model.

4.5.1 Scenario 1: National Analysis - Brazil (January 2008 to July 2023)

To explore the analysis of dengue transmission across multiple municipalities
in Brazil, we collected the following variables for each municipality, based on the early
literature review of main factors correlated with the number of dengue cases:

• Dengue Incidence:

– Dengue Cases: Monthly dengue notifications recorded in the Notifiable Dis-
eases Information System (Sistema de Informação de Agravos de Notificação -
SINAN) 13 from January 2008 to July 2023.

• Climate factors:

– Temperature: Monthly average temperature (ºC).

– Rainfall: Monthly rainfall (mm).

– Days of Rainfall: Monthly total days of rainfall.
Climate factors were collected from National Institute of Meteorology (Instituto
Nacional de Meteorologia - INMET) 14 from automatic weather stations from
January 2008 to July 2023.

• Socioeconomic factors:

– Low-Income Population: Percentage of the population in a low-income
situation (< 1/2 minimum wage).

– Gross Domestic Product (GDP) per Capita: GDP per capita.
13 https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
14 https://portal.inmet.gov.br/dadoshistoricos
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– Population with Sewage System: Percentage of the population with ac-
cess to a sewage system. Socioeconomic factors were collected from national
demographic census from 2010 15

• Demographic factors:

– Population in Urban Area: Percentage of the population living in urban
areas according to the national demographic census from 2010 15.

– Municipality Area: Area of the municipality (km2) according to IBGE 16.

– Total Population: Total population of the municipality according to the
national demographic census from 2010 15 and 2022 17.

First, we considered only municipalities with complete information on dengue
incidence from 2008 to 2023, totaling 1179 municipalities. Out of these, only 280 had
identified automatic weather stations and were considered in the sample.

For these 280 automatic weather stations, we applied a moving average approach
for each year and station to address missing values in temperature and rainfall data.
This was done exclusively for automatic weather stations with at least seven months of
complete information in the corresponding year. Additionally, to obtain complete historical
information for each municipality, years with more than four months without information
(incomplete years) were managed by considering weather information either before the
minimum incomplete year or after the maximum incomplete year, depending on which
situation would yield more data for that municipality. At the end of this approach, we
had 237 municipalities. Finally, we included only municipalities with at least 36 months of
weather information, totaling 126 municipalities from all regions of Brazil.

Based on the descriptive analysis (Appendix B) and literature review, we
decided to include the following exogenous covariates in the model fitting:

• Time-varying exogenous covariates: Average monthly temperature and monthly
days of precipitation.

• Time-invariant exogenous covariates: Percentage of population in low-income
situation (2010) divided by 10 and percentage of population living in urban areas
(2010) divided by 10 and 18.

15 https://sidra.ibge.gov.br/pesquisa/censo-demografico/demografico-2010/inicial
16 https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-

municipios.html
17 https://sidra.ibge.gov.br/pesquisa/censo-demografico/demografico-2022/inicial
18 We divided these covariates by 10 to standardize their scale and ensure that the exogenous variables

are more comparable.
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The choice of using days of precipitation instead of total precipitation stems
from the fact that mosquitoes require stagnant water to complete their life cycle (Buczak
et al. (2012)). Therefore, it is not only about the volume of rain but also the constancy
of rainfall over time, allowing for the presence of standing water after warm periods.
Additionally, the decision to use the percentage of the population in a low-income situation
instead of the percentage of the population with a sewage system or GDP (R$) per capita
is based on the belief that it provides a better representation of municipal poverty and
social inequalities. GDP (R$) per capita can be influenced by individuals with incomes
well above the average, while having or lacking a sewage system is not always indicative of
high or low-income situations in contemporary settings. Moreover, the percentage of the
population in a low-income situation shows stronger correlation with the other two social
factors (Figure 10).
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Figure 10 – Correlation matrix between socioeconomic factors

The monthly dengue cases were categorized based on their distribution (Ta-
ble 35) and on the Ministry of Health’s classification of dengue incidence (cases per 100,000
inhabitants):

• Category 1 - Up to 5 cases per 100,000 inhabitants,

• Category 2 - 5 to 25 cases per 100,000 inhabitants,

• Category 3 - 25 to 75 cases per 100,000 inhabitants, and

• Category 4 - Over 75 cases per 100,000 inhabitants.

To prepare the data for modeling, we excluded the most recent 12 months of
data from each municipality, reserving them for prediction. For this fitting, we chose to
employ multinomial logistic regression for parameter estimation in each context. Although
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Table 35 – Distribution of dengue cases for all the 126 municipalities
Situation Minimun 1st Quartile Median Mean 3st Quartile Maximun

Epidemic 0 3.86 17.57 98.31 71.84 4478.30
Non-epidemic 0 0 0.89 2.93 3.53 56.76

we also experimented with ordinal logistic regression and found similar forecasting results,
we opted to present the results for multinomial logistic regression fitting, as we believe it
provides clearer estimations.

For tuning parameters (δ and f), we selected values that minimized the Bayesian
Information Criterion (BIC), resulting in δ “ 0.000001 and f “ 4. Additionally, we
constrained the initial tree to have a maximum depth of 6, with Category 1 assumed as
the baseline.

The estimated beta-context is depicted in Figure 11, where αu
“ pαu

2 , αu
3 , αu

4q.
Contexts 1* (1* means the context is 1 preceded by other state that is not 1), 11, and
41 lacked sufficient observations to estimate exogenous covariate parameters. Across
all contexts, only time-varying exogenous covariates of the last month demonstrated a
significant effect, with estimates for previous months being equal to zero.

The estimated context tree provides valuable insights into the trend of dengue
incidence. According to the tree, when there are less than 5 cases per 100,000 inhabitants
in the previous month, the next month’s dengue incidence appears to be independent of the
rest of the history, except when there are also fewer than 5 cases per 100,000 inhabitants in
the history. In other words, when examining the preceding month, if there are fewer than 5
cases per 100,000 inhabitants, it is necessary to consider an additional previous month. If
there are still fewer than 5 cases per 100,000 inhabitants, it becomes necessary to look back
three steps in the past. Conversely, if there are more than 5 cases per 100,000 inhabitants,
there is no need to look further back than one month ago. This observation suggests that
having less than 5 cases per 100,000 inhabitants generally indicates a decreasing trend,
and the specific events preceding that period may not significantly impact the subsequent
month’s incidence, except when there is a continued low incidence.

Similarly, when there are 25 to 75 cases per 100,000 inhabitants in the previous
months, dengue incidence is independent of the remaining history unless there were less
than 25 cases per 100,000 inhabitants in the month before last. This pattern could be
explained by the likelihood that, when there are already 25 to 75 cases per 100,000
inhabitants in the previous months, the probability is higher that cases are decreasing.
However, if there were fewer than 25 cases per 100,000 inhabitants, there might be a
chance of the cases increasing.

Regarding time-varying exogenous covariates, it can be observed that, in general,
increases in temperature and rainfall correspond to a higher probability of experiencing
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Figure 11 – Final tree and estimated parameters for dengue incidence in Brazilian munic-
ipalities

higher dengue cases. However, concerning time-invariant exogenous covariates, the estimates
are notably low, suggesting that there may be no significant impact on dengue incidence.
This observation aligns with the discussion by Horstick, Tozan e Wilder-Smith (2015),
who argue that although dengue predominantly affects resource-limited countries, it does
not exclusively target the poor.

All available observations from previous months were used to forecast each of
the 12 months, as the model relies on covariates from previous months. Figure 12 and
Figure 13 display the confusion matrices of forecast results, both in total and broken down
by the month of the year.
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Figure 12 – Confusion matrix for prediction results (using all available observations from
previous months) - Brazil municipalities
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Figure 13 – Confusion matrix for prediction results by month (using all available observa-
tions from previous months) - Brazil municipalities

The model demonstrated satisfactory performance in predicting dengue inci-
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dence above 75 monthly cases/100,000 inhabitants, accurately identifying high incidence
in 77% of the cases. It also showed the ability to recognize situations where the actual
incidence may be lower than predicted, with 69% of cases falling within or below the
predicted range of 25 to 75 cases/100,000 inhabitants. However, caution is advised when
dengue incidence may be higher than initially predicted (31% for Category 3, 28% for
Category 2 and 26% for Category 1).

Recognizing that dengue incidence data may not always be available for the
previous month due to the time it takes for consolidation and availability, we also explored
predicting using previously predicted dengue incidence instead of real values. In this
approach, for the second month of prediction, we utilized the predicted values from the
first month and continued this process consecutively. Therefore, to predict 12 months
ahead, we used dengue incidence predictions for the previous 11 months instead of the
actual dengue incidence in those months. Notice that we compared predictions using k,
k “ 1, . . . , 11, months of predicted values and true values for further past. Figure 14 and
Figure 15 present the confusion matrices of forecast results, both in total and broken
down by the time ahead forecasted. As municipalities may have a different number of
months, the time ahead may not always correspond to the same month of the year in
each municipality. It is important to note that for time-varying exogenous covariates, we
utilized only real values.
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Figure 14 – Confusion matrix for prediction results (using previously predicted dengue
incidence instead of real values) - Brazil municipalities

The model exhibited satisfactory performance in predicting dengue incidence up
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Figure 15 – Confusion matrix for prediction results by time ahead (using previously
predicted dengue incidence instead of real values) - Brazil municipalities

to 2 months ahead but started to deviate more for predictions beyond 2 months, especially
for intermediary categories. However, the model demonstrated satisfactory performance
in predicting dengue incidence above 75 monthly cases per 100,000 inhabitants, even for
more than 4 months ahead.

4.5.2 Scenario 2: City-Level Analysis - Rio de Janeiro, Brazil (January 2011
to September 2020)

For this study, we utilized the dataset provided by Aleixo et al. (2022), which
is publicly accessible on GitLab 19. Table 36 shows the full list of features.

As the purpose of this scenario is to compare results, variable selection was not
required, as the same set of variables was used. Therefore, a descriptive analysis of the
variables was not necessary.

Additionally, since there was no need to specify how far back to look, we
included the number of dengue, Zika and Chikungunya cases, Aedes aegypti infestation
index, total precipitation (mm), mean temperature (ºC) and mean air humidity (%) for
all previous months. This approach allowed the model to automatically determine the
relevant time lag for each variable.
19 https://gitlab.com/interscity/health/dengue-prediction
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Table 36 – Features used as input to the model - Rio de Janeiro, Brazil (January 2012 to
October 2020)

Feature Description
cases-n Past number of dengue cases, where n = 1, 2, 3 is the number of months in the past (per district)

dengue_prevalence Sum of dengue cases in the past, normalized to the 0 to 1 range (per district)
neighbor_cases Sum of dengue cases in neighboring districts (per district)

precipitation (mm) Total precipitation in the last month (per district)
temperature (ºC) Mean temperature in the last month (per district)
air_humidity (%) Mean air humidity in the last month (per district)

liraa Aedes aegypti infestation index (for the city)
chikungunya Number of chikungunya cases last month (per district)

zika Number of zika cases last month (per district)
demographic density Demographic density (per district)
num_health_unit Number of health facilities (per district)

Source: Aleixo et al. (2022)

So, in summary, for each district, the modeling setup is as follows:

• Response variable: Number of dengue cases, categorized following Aleixo et al.
(2022):

– Severe outbreak: when the number of cases in a district in a given month is
above 99% of all measurements in the training set.

– Mild outbreak: when the number of cases in a district in a given month is
above 95% of all measurements in the training set.

– No oubreak: when the number of cases in a district in a given month is below
or equal 95% of all measurements in the training set.

• Time-varying exogenous covariates: Total precipitation (mm), mean temper-
ature (ºC), mean air humidity (%), sum of dengue cases in neighboring districts,
number of Zika cases, number of Chikungunya cases, and Aedes aegypti infestation
index.

• Time-invariant exogenous covariates: Demographic density, number of health
facilities and sum of dengue cases in the past (normalized to the 0 to 1 range).

In their study, Aleixo et al. (2022) employed a boosted tree regression method
(CatBoost) and compared its results with a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model, using individual time series for each district. For CatBoost,
they conducted grid search to define tuning parameters, using 2015 as validation data and
2012 to 2014 as training data. In the case of SARIMA, tuning parameters were defined
fitting the model to data from 2012 to 2015.

Regarding predictions, individual predictions were made for each district and
month in the period 2016 to 2020. For CatBoost, they established a distinct model for



Chapter 4. Application: Predicting Dengue outbreaks 78

each year, employing a 5-fold cross-validation approach. This involved using a single year
as the test set and four years as the training set. For instance, when predicting the number
of cases in 2017, the training data consisted of the years 2016, 2018, 2019, and 2020. In
the case of the SARIMA model, they also created separate models for each year (2016 to
2020), using the previous four years as training data, as SARIMA requires a contiguous
time series to extract trend and seasonality features.

To ensure comparability with Aleixo et al. (2022), we also created a separate
model for each year (2016 to 2020). However, due to the requirement of a contiguous
time series for Markov Chains, we used the previous four years as training data. For
example, to predict the number of cases in 2016, we utilized data from 2015, 2014, 2013,
and 2012 as training data. Additionally, Chikungunya and Zika cases, as well as the Aedes
aegypti infestation index, were not used for the models predicting cases in 2016, 2017, and
2018, as these covariates lacked values before 2015. The tuning parameter δ was selected
to minimize BIC in two training sets: 2012-2015 for models used to predict years 2016,
2017, and 2019, and 2015-2018 for models used to predict years 2019 and 2020, resulting
in δ “ 0.00001 for both. The tuning parameter f was fixed at f “ 2 to allow for the
estimation of more parameters in long contexts.

Figure 16 display prediction results for our model and the ones fitted in Aleixo
et al. (2022). The predictions were made one month ahead, and all available observations
from previous months were used to forecast each of the 12 months, as the model relies on
covariates from previous months. Our model shows better prediction results for extreme
categories, but it performs less well for intermediary categories. In terms of the worst-case
scenario where the model predicts no outbreak while there is an outbreak, our model and
SARIMA have similar results for this situation in the mild category. Specifically, our model
predicted no outbreak for 52% of the real values equal to mild, while this percentage is
57% for the SARIMA model.

The current categorization of dengue cases may be influencing predictions, as
it does not take into account the population size of each district and changes for each
year being predicted. Additionally, since the categorization is based on the training set
used for Catboost fitting, future years are being utilized to categorize cases, potentially
introducing biases into the predictions.

Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21 present the estimated
beta-contexts for each year. It is noticeable that the covariates with the most influence on
future dengue cases are mean temperature (ºC), mean air humidity (%), total precipitation
(mm), Aedes aegypti infestation index, and the sum of dengue cases in the past (normalized
to the 0 to 1 range). Additionally, in general, only two previous months are needed to
predict the next one. Larger contexts occur when there is a history of months with low
incidence (category 1). These findings align with those presented in Aleixo et al. (2022),
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Figure 16 – Confusion matrix for prediction results - Rio de Janeiro districts

where the most relevant features for the CatBoost model were the number of cases in
the previous month (cases m ´ 1), followed by the dengue prevalence of the district,
precipitation, neighbor cases, and temperature.

One advantage of our model over CatBoost (presented by Aleixo et al. (2022))
is that, while CatBoost allows the evaluation of the importance of variables in model
predictions, our model provides the exact values of parameter estimates. This enables
us to precisely understand how each covariate impacts dengue transmission in various
scenarios of past dengue incidence. Furthermore, our model allows flexibility in examining
the variable length of the past, providing precise insights into how past events influence
future dengue transmission.



Chapter 4. Application: Predicting Dengue outbreaks 80

y

1

1

1

1

1

2

2

1 2 3

3

3

α̂1˚
“ p´3.08, ´5.22q

α̂11˚
“ p´3.94, ´37.32q

α̂111˚
“ p´3.78, ´36.21q

α̂1111˚
“ p´3.72, ´5.8q

α̂11111
“ p´3.37, ´5.64q

α̂2˚
“ p´18.11, ´59.74q

α̂221
“ p´106.82, ´164.7q

α̂222
“ p´1.9, ´2.84q

α̂223
“ p´1.73, ´11.42q

α̂3˚
“ p2.56, 4.65q

α̂33˚
“ p´9.52, ´52.91q

β̂
2˚

2,1 “ p0.11, 0.67, 0.01, 0q
1

β̂
221
2,1 “ p3.14, 9.62, 5.27, 0q

1

β̂
221
2,2 “ p2.74, ´7.98, ´0.71, ´0.03q

1

β̂
221
2,3 “ p2.03, ´6.7, ´2.22, 0.06q

1

β̂
33˚

2,1 “ p´0.21, ´0.48, 0.01, 0q
1

β̂
33˚

2,2 “ p0.03, 0.38, 0.17, 0q
1

β̂
2˚

3,1 “ p0.11, 1.78, 0.18, 0q
1

β̂
221
3,1 “ p2.91, 10.2, 4.61, 0q

1

β̂
221
3,2 “ p2.74, ´6.81, ´0.44, ´0.02q

1

β̂2213,3 “ p2.02, ´6.57, ´1.65, 0.03q
1

β̂
33˚

3,1 “ p´0.11, 0.37, 0.2, 0q
1

β̂
33˚

3,2 “ p´0.03, 1.08, 0.04, 0q
1

γ̂11111
2 “ p0.01, 0, 3.37q

1

γ̂2˚
2 “ p0.01, ´0.01, 4.4q

1

γ̂221
2 “ p´0.01, 0.03, 145.09q

1

γ̂222
2 “ p0.05, 0.01, 2.74q

1

γ̂33˚
2 “ p0, 0, 0.05q

1

γ̂11111
3 “ p´0.04, 0, 5.42q

1

γ̂2˚
3 “ p0.02, 0.01, 8.22q

1

γ̂221
3 “ p0.02, 0.06, 138.42q

1

γ̂222
3 “ p0.07, 0.02, 1.46q

1

γ̂33˚
3 “ p0.03, 0, 7.12q

1

Figure 17 – Final tree and estimated parameters for dengue incidence in Rio de Janeiro
districts (fitted for years 2012-2015)
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Figure 18 – Final tree and estimated parameters for dengue incidence in Rio de Janeiro
districts (fitted for years 2013-2016)
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Figure 19 – Final tree and estimated parameters for dengue incidence in Rio de Janeiro
districts (fitted for years 2014-2017)



Chapter 4. Application: Predicting Dengue outbreaks 82

y

1

1

1

2

3

3

α̂1˚
“ p´2.92, ´5.23q

α̂11˚
“ p´3.4, ´17.44q

α̂111
“ p´4, ´6.92q

α̂2˚
“ p´19.94, ´53.96q

α̂23
“ p´0.81, ´13.02q

α̂3
“ p0.95, 0.57q

β̂
2˚

2,1 “ p0.03, 0.26, 0.12, 0, 0, ´0.01, 4.56q
1 β̂

2˚

3,1 “ p0.12, 0.67, 0.3, 0, 0, 0.01, 9.58q
1

γ̂2˚
2 “ p0.01, 0, 2.56q

1

γ̂3
2 “ p0.02, 0.05, ´1.64q

1

γ̂2˚
3 “ p0.01, ´0.03, 6.81q

1

γ̂3
3 “ p0.02, 0.04, 1.03q

1

Figure 20 – Final tree and estimated parameters for dengue incidence in Rio de Janeiro
districts (fitted for years 2015-2018)

y

1 2 3

α̂1
“ p´3.92, ´7.44q

α̂2
“ p´39.13, ´90.22q

α̂3
“ p1.73, 1.76q

β̂
2
2,1 “ p0.08, 0.6, 0.34, 0, 0, 0, ´4.04q

1 β̂
2
3,1 “ p0.17, 1.64, 0.55, 0.01, 0, 0.01, ´1.59q

1

γ̂2
2 “ p0.02, ´0.01, 3.64q

1 γ̂2
3 “ p0.05, ´0.05, 10.35q

1

Figure 21 – Final tree and estimated parameters for dengue incidence in Rio de Janeiro
districts (fitted for years 2016-2019)
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5 Conclusion and future work

This study has successfully expanded the capabilities of the beta-context
algorithm, integrating both time-dependent and time-invariant exogenous covariates from
multiple independent sources and addressing challenges related to rare events and limited
data, providing a more versatile modeling framework. Our approach assumed identical
parameter estimates for all sources.

The simulations conducted without time-invariant exogenous covariates and
with only one source demonstrated that the modified algorithm outperforms the original
version, particularly in situations with limited data. This was evident in the recovery of
more accurate tree structures and covariate vectors. For simulations with time-invariant
exogenous covariates and multiple independent sources, improvements were observed in
the percentage of identical trees and exact covariate vectors with increasing sample size.

Our motivation comes from analyzing a real dataset focused on monthly
dengue cases across multiple municipalities in Brazil. The inclusion of time-dependent
covariates - temperature and precipitation levels, along with time-invariant covariates -
poverty rates and urban population percentages, allowed us to investigate the complex
dynamics of dengue transmission. The model demonstrated satisfactory performance in
predicting dengue incidence, especially for high-incidence cases, showing its potential for
early detection and proactive management of outbreaks. This is particularly significant
given the alarming global threat of dengue fever, with an estimated 390 million infections
annually, as recognized by the World Health Organization.

Looking forward, our future work includes incorporating additional model
possibilities, including non-parametric methods and spatial correlation to account for
non-independent multiple sources. Besides that, we aim to develop mechanisms to: handle
missing values in exogenous covariates, address the challenge of impossible contexts, test
the significance of time-invariant exogenous covariates and enable estimation of exogenous
covariates parameters when not all categories/states for a specific context are available. In
relation to dengue outbreaks prediction, we aim to conduct a more detailed study on how
covariates influence dengue cases, exploring non-linear effects and interactions between
factors. The overarching objective is to continually enhance the model’s flexibility, accuracy,
and applicability across diverse settings. Additionally, plans involve the publication of
the algorithm implementation as a package on The Comprehensive R Archive Network
(CRAN), further contributing to the broader scientific community.
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APPENDIX A – Extra simulations

Model 8 is similar to Model 2 but with all exogenous covariate parameters
equal to zero (βu

“ 0 @u), in order to evaluate the performance of the proposed algorithm
in absence of additional information about the transition probability.
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Figure 22 – Context tree τ and associated parameters θ for Model 8 (numbers in paren-
thesis represent the values of αu for each context u).

The performance metrics for the estimated context function in Model 8 are
outlined in Table 37. To aid in the visualization of the estimated trees, Table 38 and
Table 39 provide the count of estimated occurrences for each context. For both instances
with n “ 1000 and n “ 2000, neither method achieved any identical tree τ . In the case of
n “ 1000, both methods exhibited suboptimal estimates, with a notable number of missing
and extra nodes. Moreover, both methods consistently pruned nodes ‘000’and ‘001’and
the original version struggled to prune other branches. The pruning of nodes ‘000’and
‘001’is attributed to the closely situated values of parameters α000 and α001, necessitating
a larger number of observations to discern the difference. Both methods failure to capture
the significant nodes.

The average differences between real and estimated parameters for both the
proposed modified beta-context algorithm and the beta-context algorithm are illustrated
in Table 40. Larger differences are observed for nodes ‘000’and ‘001’, which are consistently
pruned in the modified version of the algorithm.

Model 9, outlined in Figure 23, is similar to Model 5, except that all exogenous
covariate parameters are set to zero (βu

“ 0, @u).

The performance metrics for the estimated context function in Model 9 are
detailed in Table 41. To aid in the visualization of the estimated trees, Table 42 and
Table 43 provide the count of estimated occurrences for each context. For both n “ 1000
and n “ 2000, neither of the algorithms achieved an identical τ tree. This is because the
values of α10

“ 1.00 and α11
“ 0.80 are too close to each other, requiring a large number of
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Table 37 – Simulation results for Model 8 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 8 (n = 1000, N(0, 1) distr.) Model 8 (n = 2000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 1313.51 1329.89 2612.51 2615.62
AIC 1297.95 1294.45 2589.15 2589.19
logLik -645.81 -640.01 -1290.41 -1289.87
# par. α̂u 2.96 5.16 3.55 3.99
# par. β̂

u 0.21 2.06 0.62 0.73
order τ̂ 1.93 3.56 2.44 2.81
order-Cov 0.21 1.69 0.60 0.69
# Missing τ̂ 3.53 3.11 2.91 2.92
# Extra τ̂ 0.40 3.62 0.90 1.57
Identical τ 0 0 0 0
Identical τθ 0 0 0 0

Table 38 – Estimated τ trees for Model 8, with n = 1000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 1 2 27 13
0 - 1 0 - 1 1 3 62 38
0 - 1 0 0 - 1 0 1 - 1 1 4 1 0
0 0 - 0 1 - 1 0 - 1 1 4 3 1
0 - 1 0 - 1 1 0 - 1 1 1 0 - 1 1 1 1 5 1 1
0 - 1 0 - 1 1 0 0 - 1 1 0 1 - 1 1 1 5 1 1
0 - 1 0 0 0 - 1 0 0 1 - 1 0 1 - 1 1 5 1 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 - 1 5 1 1
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 - 1 5 1 1
0 0 0 - 0 0 0 1 - 0 0 1 - 0 1 - 1 5 0 1
0 0 0 - 0 0 1 0 - 0 0 1 1 - 0 1 - 1 5 0 1
0 - 1 0 - 1 1 0 0 - 1 1 0 0 1 - 1 1 0 1 - 1 1 1 6 0 1
0 - 1 0 0 - 1 0 1 0 - 1 0 1 1 0 - 1 0 1 1 1 - 1 1 6 1 1
0 - 1 0 0 - 1 0 1 0 0 - 1 0 1 0 1 - 1 0 1 1 - 1 1 6 0 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 0 1 - 0 1 1 1 - 1 6 0 1
0 0 - 0 1 0 - 0 1 1 0 - 0 1 1 1 0 - 0 1 1 1 1 - 1 6 0 1
0 0 0 0 - 0 0 0 1 - 0 0 1 - 0 1 - 1 0 - 1 1 6 0 1
>= 7 contexts 7 1 35

observations to distinguish these nodes. Besides that, the modified beta-context algorithm
seems to have better performance, with lower values of AIC and BIC and fewer extra
nodes estimated. In general, the original beta-context algorithm results in larger trees.

The differences between the real and estimated parameters, when the context
were correctly identified, are shown in Table 44 for both the proposed modified beta-context
algorithm and the original beta-context algorithm. Both methods generally provide similar
results for most parameters, except for α00. This discrepancy arises for the same reason as
explained before for Model 5. For n “ 2000, the modified version of the algorithm did not
estimate trees with nodes ‘10’and ‘11’due to the proximity of parameters α10 and α11.
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Table 39 – Estimated τ trees for Model 8, with n = 2000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 1 2 1 5
0 - 1 0 - 1 1 3 78 72
0 0 - 0 1 - 1 0 - 1 1 4 7 4
0 - 1 0 - 1 1 0 0 - 1 1 0 1 - 1 1 1 5 1 0
0 - 1 0 0 - 1 0 1 0 - 1 0 1 1 - 1 1 5 1 0
0 - 1 0 - 1 1 0 - 1 1 1 0 0 - 1 1 1 0 1 - 1 1 1 1 6 1 0
0 - 1 0 - 1 1 0 0 - 1 1 0 1 0 - 1 1 0 1 1 - 1 1 1 6 1 0
0 - 1 0 0 - 1 0 1 0 - 1 0 1 1 0 - 1 0 1 1 1 - 1 1 6 1 0
0 - 1 0 0 - 1 0 1 0 0 - 1 0 1 0 1 - 1 0 1 1 - 1 1 6 1 0
0 - 1 0 0 0 - 1 0 0 1 0 - 1 0 0 1 1 - 1 0 1 - 1 1 6 1 0
0 0 - 0 1 - 1 0 0 0 - 1 0 0 1 - 1 0 1 - 1 1 6 1 0
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 - 1 0 - 1 1 6 1 0
>= 7 contexts 7 5 19

Table 40 – Differences between real and estimated values for Model 8 (average over 100
simulations).

Model 8 (n = 1000, N(0, 1) distr.) Model 8 (n = 2000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α000 - 0.12 - 0.37
α001 - 0.16 - -
α01 0.06 0.15 0.12 0.09
α10 0.09 0.09 0.06 0.06
α11 0.08 0.09 0.07 0.06
β000 - (0, 0, 0) - (0, 0, 0)
β001 - (0, 0, 0) - -
β01 (0, 0) (0, 0) (0, 0) (0, 0)
β10 (0, 0) (0, 0) (0, 0) (0, 0)
β11 (0,0) (0,0) (0,0) (0,0)

Model 10, outlined in Figure 24, is similar to Model 6, except that all exogenous
covariate parameters are set to zero (βu

“ 0@u).

The performance metrics for the estimated context function in Model 10 are
detailed in Table 45. To aid in the visualization of the estimated trees, Table 46 and
Table 47 provide the count of estimated occurrences for each context. For both n “ 4000
and n “ 8000, neither of the algorithms achieved more than 30% identical τ trees. This
is due to the values of α01

“ p´0.5, ´0.5q and α02
“ p´0.35, ´1q being too close to each

other, requiring a large number of observations to distinguish these nodes. Additionally,
for n “ 8000, the modified beta-context algorithm seems to have better performance, with
fewer missing and extra nodes estimated.

The disparities between the real and estimated parameters, when the con-
text were correctly identified, are displayed in Table 48 for both the proposed modified
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Figure 23 – Context tree τ and associated parameters θ for Model 9 (numbers in paren-
thesis represent the values of αu for each context u).

Table 41 – Simulation results for Model 9 with time-varying exogenous covariates generated
from a N(0, 1) distribution (average over 100 simulations).

Model 9 (n = 1000, N(0, 1) distr.) Model 9 (n = 2000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 1170.71 1201.43 2331.50 2372.92
AIC 1155.30 1174.34 2314.70 2325.48
logLik -574.51 -581.65 -1154.35 -1154.30
# par. α̂u 3.05 4.24 3.00 5.72
# par. β̂

u 0.09 1.28 0 2.75
order τ̂ 2.04 3.00 2.00 4.04
order-Cov 0.09 1.08 0 2.31
# Missing τ̂ 1.98 2.00 2.00 1.64
# Extra τ̂ 0.08 2.26 0 4.51
Identical τ 0 0 0 0
Identical τθ 0 0 0 0

Table 42 – Estimated τ trees for Model 9, with n = 1000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 1 2 0 14
0 0 - 0 1 - 1 3 98 64
0 0 - 0 1 0 0 - 0 1 0 1 - 0 1 1 - 1 5 1 1
0 0 - 0 1 - 1 0 - 1 1 0 0 - 1 1 0 1 - 1 1 1 6 1 0
>= 7 contexts 7 0 21

Table 43 – Estimated τ trees for Model 9, with n = 2000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 1 2 0 4
0 0 - 0 1 - 1 3 100 57
0 0 - 0 0 1 0 - 0 0 1 1 0 - 0 0 1 1 1 - 0 1 - 1 6 0 2
>= 7 contexts 7 0 37

beta-context algorithm and the original beta-context algorithm. Both methods exhibit
comparable results for all parameters.
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Table 44 – Differences between real and estimated values for Model 9 (average over 100
simulations).

Model 9 (n = 1000, N(0, 1) distr.) Model 9 (n = 2000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

α00 8.34 0.54 5.57 0.53
α01 0.10 0.10 0.08 0.08
α10 0.09 0.12 - 0.09
α11 - 0.04 - 0.07
β00 (0, 0) (0, 0) (0, 0) (0, 0)
β01 (0, 0) (0, 0) (0, 0) (0, 0)
β10 (0, 0) (0, 0) (0, -) (0, 0)
β11 - (0, 0) - (0, 0)

y

0

0(4;3.5) 1(-0.5;-0.5) 2(-0.35;-1.0)

1(0.2;-0.2)

0(-0.2;0.7)

2(1.0;-1.3)

β00
1 “ p0, 0q

1
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1 “ p0, 0q

1

β02
1 “ p0, 0q

1

β10
1 “ p0, 0q

1

β1˚
1 “ p0q

1

β2
1 “ p0q

1

β00
2 “ p0, 0q

1

β01
2 “ p0, 0q

1

β02
2 “ p0, 0q

1

β10
2 “ p0, 0q

1

β1˚
2 “ p0q

1

β2
2 “ p0q

1

Figure 24 – Context tree τ and associated parameters θ for Model 10. Numbers in
parenthesis represent the values of pαu

1 , αu
2q from each context u and βu

1 and
βu

2 are the coefficient vectors of the covariates. β1˚ means the context is 1
preceded by other state that is not 0.
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Table 45 – Simulation results for Model 10 with time-varying exogenous covariates gener-
ated from a N(0, 1) distribution (average over 100 simulations).

Model 10 (n = 4000, N(0, 1) distr.) Model 10 (n = 8000, N(0, 1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

BIC 7793.40 7798.41 15491.46 15496.14
AIC 7730.21 7709.54 15416.28 15414.25
logLik -3855.06 -3840.65 -7697.38 -7695.40
# par. α̂u 10.04 12.40 10.66 12.92
# par. β̂

u 0 1.72 0.10 0.80
order τ̂ 2.00 2.60 2.03 2.23
order-Cov 0 0.83 0.05 0.36
# Missing τ̂ 1.96 1.44 1.42 1.60
# Extra τ̂ 0 1.01 0.05 0.26
Identical τ 0.02 0.16 0.29 0.18
Identical τθ 0.02 0.15 0.29 0.18

Table 46 – Estimated τ trees for Model 10, with n = 4000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 0 0 - 1 - 1 0 - 2 5 92 53
0 - 0 1 - 1 - 1 0 - 2 5 6 0
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 2 16
>= 7 contexts 7 0 31

Table 47 – Estimated τ trees for Model 10, with n = 8000 (frequency of occurrences over
100 simulations).

Contexts # Contexts modified-beta-VLMC beta-VLMC
0 - 0 0 - 1 - 1 0 - 2 5 69 75
0 - 0 1 - 1 - 1 0 - 2 5 1 0
0 0 - 0 1 - 0 2 - 1 - 1 0 - 2 6 29 18
>= 8 contexts 8 1 7
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Table 48 – Differences between real and estimated values for Model 10 (average over 100
simulations).

Model 10 (n = 4000, N(0, 1) distr.) Model 10 (n = 8000, N(0,1) distr.)
modified-beta-VLMC beta-VLMC modified-beta-VLMC beta-VLMC

(α00
1 , α00

2 ) (0.31, 0.32) (0.37, 0.38) (0.28, 0.27) (0.34, 0.33)
(α01

1 , α01
2 ) (0.06, 0.06) (0.09, 0.09) (0.05, 0.06) (0.05, 0.06)

(α02
1 , α02

2 ) (0.19, 0.26) (0.12, 0.16) (0.08, 0.11) (0.08, 0.10)
(α10

1 , α10
2 ) (0.05, 0.05) (0.05, 0.05) (0.04, 0.04) (0.04, 0.04)

(α1˚
1 , α1˚

2 ) (0.10, 0.09) (0.11, 0.09) (0.08, 0.06) (0.08, 0.06)
(α2

1, α2
2) (0.05, 0.11) (0.06, 0.11) (0.04, 0.08) (0.04, 0.08)

β00
1

β00
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β01
1

β01
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β02
1

β02
2

(0, 0)
(0, 0)

(0.01, 0)
(0.02, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β10
1

β10
2

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

β1˚
1

β1˚
2

(0)
(0)

(0)
(0)

(0)
(0)

(0)
(0)

β2
1

β2
2

(0)
(0)

(0)
(0)

(0)
(0)

(0)
(0)
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APPENDIX B – Descriptive analysis -
dengue incidence in Brazilian municipalities

To decide which exogenous variable to include in the model and understand
the behavior of dengue cases in Brazil over the months, we conducted some descriptive
analyses, as outlined below:

Dengue incidence

Figure 25 presents the average monthly dengue cases per 100,000 inhabitants
from January 2008 to July 2023 for selected municipalities. These municipalities are
categorized based on the Brazilian Ministry of Health’s epidemic definition, where a year
is considered epidemic if it exceeds 100 cases per 100,000 inhabitants. The graph reveals a
pattern of high dengue incidence in the first semester of the year, followed by a decrease in
the subsequent months. Notably, the years 2013, 2015, 2016, 2019, 2022, and 2023 stand
out with elevated dengue incidence. It’s worth considering that reported dengue cases may
have been underreported during the COVID-19 pandemic (2020 and 2021) due to social
isolation and healthcare systems grappling with COVID-19 cases.

To provide information about the representation of the sample, Table 49
presents the distribution of municipalities in each category of epidemic and non-epidemic
situations.

Table 49 – Number of municipalities per year categorized as epidemic and non-epidemic
Municipality 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Epidemic 50 55 87 64 59 85 52 70 71 25 25 61 43 27 41 48
Non-epidemic 50 49 20 46 28 17 42 17 11 46 53 16 26 36 18 19

Temperature

Figure 26 presents the arithmetic mean of monthly average temperatures from
January 2008 to July 2023 for selected municipalities, categorized into epidemic and non-
epidemic years. The graph indicates that, in the majority of years, the average monthly
temperatures tends to be higher for municipalities in epidemic years.

In Figure 27, we attempt to discern whether there is a correlation between
higher yearly average temperatures and an increased number of dengue cases in the
year. However, the graph suggests that dengue occurs in municipalities with an average
temperature above 20ºC, and beyond this threshold, there is no apparent association
between higher temperatures and increased case numbers.

Rainfall
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Figure 25 – Comparison of average monthly dengue cases per 100,000 inhabitants in
municipalities during dengue epidemic and non-epidemic years (2008 to 2023)

Figure 28 presents a comparison of monthly rainfall averages (mm) among
municipalities during dengue epidemic and non-epidemic years. The figure illustrates that,
despite higher rainfall in months with increased dengue incidence (typically in the first
months of the year), there is no big difference between municipalities in epidemic years
and those in non-epidemic years. Interestingly, in some years, the monthly rainfall average
(mm) is higher for municipalities in a non-epidemic situation. On the other hand, months
with higher precipitation present higher number of cases.

Days of rainfall

When examining the days of rainfall instead of total rainfall (mm) (Figure 29),
the results remain consistent with those observed in Figure 28.

Low-income population

Figure 30 illustrates the relationship between the percentage of the population
in low-income situations and yearly dengue cases in municipalities during epidemic years.
The analysis suggests no direct association between the two factors. This observation may
be related to the potential underreporting of cases in areas with a low-income situation
due to limited access to health centers or with the findings highlighted by Horstick, Tozan
e Wilder-Smith (2015) - while dengue predominantly affects resource-limited countries, it
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Figure 26 – Comparison of average monthly temperature (ºC) in municipalities during
dengue epidemic and non-epidemic years (2008 to 2023)

does not exclusively target the poor.

Figure 31 shows the distribution of yearly dengue cases based on the percentage
of the population in low-income situations in municipalities during epidemic years. It is
interesting to note that the years with higher dengue incidence for municipalities with less
than 20% of the population in low-income situations are the same years with high dengue
incidence in the country, as observed in Figure 25. For other years, the incidence is higher
in municipalities with more than 20% of the population in low-income situations.

To provide information about the representation of the sample used, Table 50
presents the distribution of the percentage of population in low-income situations for all
the 126 municipalities.

Table 50 – Distribution of the percentage of population in low-income situations for all
the 126 municipalities
Minimun 1st Quartile Median Mean 3st Quartile Maximun

7.49 19.05 27.81 31.37 41.63 75.75

Gross Domestic Product (GDP) per capita

Figure 32 illustrates the correlation between Gross National Product (GDP)
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Figure 27 – Association between average yearly temperature (ºC) and yearly dengue cases
per 100,000 inhabitants in municipalities during epidemic and non-epidemic
years (2008 to 2023)

(R$) and yearly dengue cases per 100,000 inhabitants for municipalities during epidemic
years. It indicates that, in general, municipalities with a high incidence of dengue tend
to have a GDP below R$ 25,000. However, within this range, there is no clear direct
association between the two factors.

Figure 33 shows the distribution of yearly dengue cases based on GDP per
capita (R$) in municipalities during epidemic years. Similar to the observation for the
low-income population factor, it is noteworthy that the years with higher dengue incidence
for municipalities with GDP per capita higher than R$ 25,000 align with some of the years
with high dengue incidence in the country, as observed in Figure 25. Conversely, for other
years, the incidence is higher in municipalities with less than R$ 25,000 of GDP per capita.

To provide information about the representation of the sample used, Table 51
presents the distribution of GDP per capita (R$) for all the 126 municipalities.

Table 51 – Distribution of GDP per capita (R$) for all the 126 municipalities

Minimun 1st Quartile Median Mean 3st Quartile Maximun
3643 10963 16035 20046 25004 83428

Population with sewage system
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Figure 28 – Comparison of monthly rainfall (mm) averages in municipalities during dengue
epidemic and non-epidemic years (2008 to 2023)

Figure 34 illustrates the relationship between the percentage of the population
with sewage system and yearly dengue cases in municipalities during epidemic years. The
analysis suggests no direct association between the two factors.

Figure 35 illustrates the distribution of yearly dengue cases based on the
percentage of the population with a sewage system in municipalities during epidemic years.
Similar conclusions can be drawn as those presented for the low-income population and
GDP per capita factors.

To provide information about the representation of the sample used, Table 52
presents the distribution of the percentage of population with sewage system for all the
126 municipalities.

Table 52 – Distribution of the percentage of population with sewage system for all the 126
municipalities
Minimun 1st Quartile Median Mean 3st Quartile Maximun

0.06 30.70 66.81 56.30 85.97 97.58

Population in urban area

Figure 36 illustrates the relationship between the percentage of the population
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Figure 29 – Comparison of monthly rainfall (days) averages in municipalities during dengue
epidemic and non-epidemic years (2008 to 2023)

living in urban areas and yearly dengue cases in municipalities during epidemic years. The
graph suggests a correlation between the percentage of the population in urban areas and
the number of dengue cases, with higher cases in municipalities where a larger proportion
of the population lives in urban areas.

Figure 37 illustrates the distribution of yearly dengue cases based on the
percentage of the population with a sewage system in municipalities during epidemic years.
Except for the years 2021 and 2018, conclusions are similar to the ones presented for
Figure 36.

To provide information about the representation of the sample used, Table 53
presents the distribution of the percentage of population living in urban areas for all the
126 municipalities.

Table 53 – Distribution of the percentage of population living in urban areas for all the
126 municipalities
Minimun 1st Quartile Median Mean 3st Quartile Maximun

34.16 81.82 93.01 88.32 97.70 100.00

Demographic density
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Figure 30 – Association between the percentage of population in low-income situations
and yearly dengue cases per 100,000 inhabitants for municipalities during
epidemic years (2008 to 2023)

To address the high variation in values for demographic density, as indicated
in Table 54, we opted to present only the boxplot visualization, as shown in Figure 38.
This format allows for a clearer visualization of the varying behaviors observed in different
years.

Table 54 – Distribution of the demographic density for all the 126 municipalities
Minimun 1st Quartile Median Mean 3st Quartile Maximun

0.19 16.98 77.32 588.82 299.15 7771.649
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Figure 31 – Distribution of yearly dengue cases per 100,000 inhabitants based on percentage
of population in low-income situations in municipalities during epidemic years
(2008 to 2023)
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Figure 32 – Association between GDP per capita in Brazilian Real (R$) and yearly dengue
cases per 100,000 inhabitants for municipalities in epidemic years (2008 to
2023)



APPENDIX B. Descriptive analysis - dengue incidence in Brazilian municipalities 108

0

2500

5000

7500

10000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

A
nn

ua
l c

as
es

 p
er

 1
00

,0
00

 in
ha

bi
ta

nt
s

Gross Domestic Product (GDP) per capita (thousand reais) 0 a 10 10 a 15 15 a 20 20 a 25 > 25

Figure 33 – Distribution of yearly dengue cases per 100,000 inhabitants based on GDP
per capita (R$) in municipalities during epidemic years (2008 to 2023)
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Figure 34 – Association between the percentage of population with sewage system and
yearly dengue cases per 100,000 inhabitants for municipalities during epidemic
years (2008 to 2023)
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Figure 35 – Distribution of yearly dengue cases per 100,000 inhabitants based on percentage
of population with sewage system in municipalities during epidemic years
(2008 to 2023)
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Figure 36 – Association between the percentage of population living in urban areas and
yearly dengue cases per 100,000 inhabitants for municipalities during epidemic
years (2008 to 2023)
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Figure 37 – Distribution of yearly dengue cases per 100,000 inhabitants based on percentage
of population living in urban areas in municipalities during epidemic years
(2008 to 2023)
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Figure 38 – Distribution of yearly dengue cases per 100,000 inhabitants based on demo-
graphic density in municipalities during epidemic years (2008 to 2023)
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