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On Complete Digraphs Which Are
Associated to Spheres

Davide C. Demaria and J. Carlos S. Kiihl

Abstract: In this paper we characterize some complete digraphs having
the associated polyhedron homeomorphic to a unit sphere.

1. Introduction

It is known that one can also construct a homotopy theory for categories
of spaces having a structure weaker than a topology. For example. one can
take the category of prespaces or Cech closure spaces.

To every digraph D one can associate, in a natural way, two finite pres-
paces P(D) and P*(D); and vice versa, to every finite prespace one can
associate two digraphs G and G*, dually oriented. Hence one can identify
the category of the digraphs with that of the finite prespaces. Therefore
a homotopy theory can be defined for digraphs, by setting the regular ho-
motopy group @.(D) of D to be the homotopy group =,.(P(D)) of the
associated prespace (see [4]).

In [2] Burzio and Demaria have proved that the groups Q,(D) are iso-
morphic to the classical homotopy groups 7,(|Kp|), where |Kp| is the poly-

AMS Subject Classification (1980) — 55Q99, 06C20.



hedron of a suitable simplicial complex K associated with the digraph D.

To see the construction of the simplicial complex Kp, the reader is re-
ferred to [2].

In [4] we have characterized the complete digraphs C' which are simply
disconnected, that is Q,(C) = x,(S"). In the present paper, we study the
complete digraphs C such that the associated polyhedron |K¢| is homeo-
morphic to a sphere.

We recall (see [3]) that in the case of the complete digraphs C, the asso-
ciated simplicial complex K¢ has as 0-simplexes the vertices of C and the
other simplexes are obtained by the transitive subtournaments contained in
C.

In section 3, we define the notion of j—antisymmetric complete digraphs
and we prove the following theorem, which motivates the definition of the
spheric complete digraph of order n.

Theorem 3.6: Let C, (with n > 3) be a complete digraph. The polyhe-
dron |Kg,| is (homeomorphic to) the unit sphere $™~? if and only if

(i) Cn is n—antisymmetric;

(ii) the oriented subdigraph O(C,), formed by the simple arcs of C,
and their vertices, is an n—cycle.

In section 4, we introduce the concept of erpansion of polyhedra and
we prove the following result for unit spheres:

Theorem 4.4 and 4.5: Let h > 2. If we have h unit spheres
$™ F™ ..., 8™ of dimension ny,ng,...,n,, respectively, then their ex-
pansion is given by

S™ £ S x-S = gttt

In section 5, using the results from the previous sections we prove the
following conclusive theorem:

Theorem 5.7: Let C, (with n > 3) be a complete digraph. If the following
conditions hold:

(i) Cp is k—antisymmetric, with k > n;

(ii) O(C,) contains h pairwise disjoint maximal cy-



cles M I'® ... T® of order n,ny,...,ns, respectively, and such that
ny+neg+---+n, =n,;

(iii) every complete subdigraph, determined by the maximal cycles I'(*
fori =1,2,...,hA, is spheric.

Then |Kc, | is homeomorphic to the unit sphere $=*-1,

2. Some Definitions and Notations

Definition 2.1. Let VV be a finite non-empty set and E a set of ordered
pairs (u,v) € V x V, such that u # v. We call the pair D = (V,E) a
directed graph or digraph. The elements of V are called the vertices of D,
the cardinality of V the order of D and the elements of E the arcs of D.
Moreover, we write u — v instead of (u,v), and we call u a predecessor of v
and v a successor of u.

Remark. Given two distinct vertices u and v, we have a priori four possi-
bilities, and then four types of arcs:

(1) There is no oriented arc between u and v, and then we shall denote
the null arc by u|v; :

(2) there is the oriented arc (u,v), but not the arc (v,u), and then we
shall denote the simple arc by u — v;

(3) there is the oriented arc (v, u), but not the arc (u,v), and then we
shall denote the simple arc by u + v;

(4) there are both oriented arcs (u,v) and (v, u), and then we shall de-
note the double arc by u < v. A double arc is also called a symmetric pair.

Definition 2.2. A digraph is called oriented if between two distinct ver-
tices there is at most one ordered arc, that is, the possible arcs are either
simple arcs or null arcs. A digraph is called a non oriented graph if between
two distinct vertices there is either a double arc or a null arc. A digraph is
called complete if between two distinct vertices there is at least one ordered
arc, the possible arcs in this case are either simple or double arcs.

Definition 2.3. A digraph T is called a tournament if between every pair
of distinct vertices there is one and only one arc. A digraph D is called



hamiltonian if it contains a spanning cycle, i.e., a cycle passing through all
the vertices of D. '

Definition 2.4.: A tournament T is said to be transitive if it contains
4 — w, whenever it contains ¥ — v and v — w. We denote by T'rp, the
transitive tournament of m vertices vy,v,,..., v, such that v; — v; when-
ever i < j.

Remark. Let D be a digraph. We shall denote by A — B, if every vertex
in A is a predecessor of every vertex in B and no vertex of B is a prede-
cessor of a vertex of A. We shall denote by A & B, if we have double arcs
u + v, whenever u € A and v € B. We shall denote by A|B, if we have u|v
whenever u € A and v € B. If A is a subset of vertices or a cycle in D, we
shall denote by < A > the induced subdigraph in D.

Definition 2.5: The vertices of a subdigraph A of D, are called equiv-
alent if, for any v € D, — A, either v — A, or A = v, or v & A,
or v|A. If the vertices of D, are partitioned into disjoint subdigraphs
S §@ 8 of equivalent vertices and Q,, denotes the digraph on
m vertices wy,Ws,...,Wn, in which w; — w;, or w; & w;, or wijw;, if
and enly if S® — §U) or S6) « SU) or S®|SU) then D, is called the
composition D, = Qn(SM,8® ... 8™) of the m subdigraphs S, for
i =1,2,...,m with the digraph Q,,. Q.. is called the quotient digraph of
D, and the S©) are called the components of D,.

Definition 2.6: We say a digraph is simple if the composition D, =
Qm(SM, 8@ .. 8(m))implies that m = 1 or m = n; that is, if the quotient
Q. or all the components S coincide with the trivial digraph of order 1.

Remark. We recall that every digraph has a unique simple quotient.

3. The Spheric Complete Digraphs

Let C, be a complete digraph of order n. Then C, has n(n —1)/2 arcs.
If all these arcs are double arcs, then we just have a (non—oriented) graph.



If all these arcs are simple arcs, then we have a tournament. In order to
distinguish the intermediary cases, we need to introduce the following defi-
nitions.

Definition 3.1: Let C, be a complete digraph of order n. C, is said to
be k-symmetric if it contains exactly k symmetric pairs (or equivalently,
k double arcs). On the other hand, C, is said to be j-antisymmetric if
it contains exactly j simple arcs. We shall denote by O(C,,) the oriented
subdigraph formed by these simple arcs and their vertices.

Lemma 3.2: Let C, (with n > 2) be a complete digraph and v any ver-
tex in C,. |K¢,| is a cone with vertex v if and only if v is a predecessor
(or a successor) of all the other vertices (that is, either v € O(C,) or, if
v € O(C,), then v — u or u — v for all u in O(C,)).

Proof: It is obvious. O

Lemma 3.3: Let C, (with n > 2) be a complete digraph. |Kc¢,| is the
(n —1)—cell E,_, if and only if the subdigraph O(C,) does not contain any
cycle.

Proof: In fact, |K¢,| is the (n — 1)—cell if and only if C, contains a transi-
tive subtournament of order n. O

Theorem 3.4: Let C, (with n > 2j be a j-antisymmetric complete di-
graph. If we have 0 < j < n — 1, then |K¢,| is a cone, and hence all the
homotopy groups @,(C,) are all trivial.

Proof: If n = 2, the result is obvious. Let’s suppose n > 2. At each vertex
of C, we have n — 1 arcs. If a vertex v does not cone all the others, then we
must have at least two simple arcs in v, such that u — v — w. Now since
we have n vertices, and at each vertex we have at least two simple arcs, then
we must have at least n simple arcs in C,,. But that is impossible, since by
hypothesis C,, is j-antisymmetric with j < n — 1.0

Theorem 3.5: Let C, (with n > 3) be an n-antisymmetric complete di-



graph. If we have a vertex v € O(C,,) such that:

(i) at v we have at least three simple arcs;

(ii) for every vertex of C, we have exactly two simple arcs, and v is the
predecessor or successor of two vertices in. O(C,);
then |K¢,| is a cone.

Proof: In fact, in the first case there must exist another vertex u which is
the extreme of at most one simple arc, and so |K¢,| is a cone of vertex u.
In the second case, | K¢, | is obviously a cone having as vertex v itself. O

It remains to consider the case of an n-antisymmetric complete digraph
C,, such that each vertex v € C, is the predecessor in a unique simple arc
and, at the same time, the successor in another unique simple arc. In this
case the subdigraph O(C,) admits a decomposition in h disjoint cycles.

If @(C,) is a unique n—cycle, we have the following theorem.

Theorem 3.6: Let C, (with n > 3) be a complete digraph. The polyhe-
dron (K¢, | is (homeomorphic to) $™~2 if and only if

(i) C, is n—antisymmetric;

(ii) the oriented subdigraph O(C,) is an n—cycle.

Proof: Let’s suppose by absurd that C, does not satisfy the conditions.
Then we have three cases to be considered:

(1) If O(C,) does not contain any cycle, then by lemma 3.3 we have
that |K¢,| is the (n — 1)—cell E,_;.

(2) If O(C,,) contains an h—cycle I';, with A < n, then there is a subdi-
graph of order n—1 which contains I'y. Thus we have that the corresponding
{n — 2)-simplex does not belong to |Kc,|.

(3) If O(C,) contains an n—cycle, and if it has an extra oriented arc,
then this extra arc determines in O(C,) a k—cycle I';, with k¥ < n. Hence
we get the case (2).

Therefore in any case we don’t have the unit sphere $™~2.

Conversely, let’s suppose (i) and (ii) hold, then by Lemma 3.3 we have
that | K¢, | can not be the (n — 1)—cell E,_,, since C, contains an n—cycle.
Consider any vertex v € C,, and let D,_; be the subdigraph C, —{v}. Then



D,_, is (n — 2) — antisymmetric and it does not contain any cycle. Hence
by lemma 3.3 |Kp,_,| is the (n — 1)—cell. Therefore |K¢, | is homeomorphic
to $™~2, since it is the union of the maximal faces of the (n — 1)—cell. O

Remark: The triangulation of the unit sphere $"~? which was used here
it is its minimal triangulation by n cells of dimension n — 2.

Definition 3.7: A complete digraph of order n > 3 satisfying the condi-
tions of the previous theorem it is called the spheric complete digraph of
order n, and it will be denote by .

4. Expansion of Polyhedra

Before we can study the case in which O(C,) is the disjoint union of
two or more cycles, we need to introduce some definitions.

Definition 4.1: Let H and K be two disjoint simplicial complexes, and let
H?* and K% be their augmented simplicial complexes (see [7]). We call the
expansion of H and K the simplicial complex H * K, which has as vertices
the union of the vertices of H and K, and as simplexes the ones which are
obtained in the following way:

If o = (29...2,) is an r-simplex in H* and 7 = (yo...y,) is an s-
simplex in K, then or = (29...2,y0...¥s) 15 an (r + s + 1)-simplex in

(H + K)*.

We observe that H = K is obviously a simplicial complex, and that H x K
is equal to K * H, for we just have to change the order of the vertices.

Remark: If dim H = p and dim K = ¢, then dim H* K =p+¢+1. In
the case H is a point v, then v * K is just the cone of vertex v and base K.

Definition 4.2: Let P and Q be two disjoint polyhedra. Let H be a tri-
angulation of P and K be a triangulation of ). The ezpansion of P and
@, P *Q is the polyhedron |H * K|, obtained by the expansion of H and K.



Remark: We observe that P % QQ is well-defined, that is, it is independent
of the chosen triangulations, for P * Q can be considered as the polyhedron
obtained by joining each point in P to each point in Q by a line segment.

Definition 4.3: Let K,,..., K, be s pairwise disjoint simplicial complexes.
We can define the ezpansion of them, K; * K; * - -- *+ K,, by considering as
it vertices the union of all the vertices, and the other simplexes are ob-
tained as 010 ...0,, where 0; € K},j = 1,...3. Now given s polyhedra
Py, P,...,P,, as before we define the ezpansion P, * Py - --* P, by taking
the expansion K; * K, *-- - * K,, where K is a triangulation of the polyhe-
dron FP;.

Remark: We observe that the expansion is a commutative and associative
operation.

Theorem 4.4: Let $™ and $™ be the unit spheres of dimension m and n,
respectively. Then $™ x " = Fm+nt1,

Proof: If m = 0 or n = 0, then we just have the suspension of a sphere,
and hence the result holds.

Let’s suppose that m,n > 1. If we consider the unit sphere ™ as the
boundary of the (m 4 1)-cell, |(zoZ; ... Zm41)|, and 3™ as the boundary of
the (n + 1)—cell, |(yo¥1 - - - Ynt1)|, then we can take their minimal triangula-
tions

S™ = {2123 ... 2ms1 IV Hzo22 . .. Zmga JU - 2 U [(2o®a o -2}l

with m + 2 closed m—simplexes; and

S™ = (312 Yns1)| U (o2 - - - Yng2)| U - == U [(wor - - - ¥n)l,

with n + 2 closed n-simplexes.

For the expansion $™ * $™ we consider the triangulation given
by the union of the (m + 2)(n + 2) closed (m + n + 1)-simplexes
(zoZ1...Zi...Zm41Y0Y1---Uj - - - Ynt1)|, Where we delete z; and y; for all
choicesof 1 and j, with0 <i<m+land0<;<n+ 1

Now the unit sphere $™*"*! can be considered as the dissection in two




(m 4+ n + 1)-cells: one given by the upper hemisphere, and the other given
by the lower hemisphere. If the upper hemisphere is identified with the
face |(z1Z3 ... Zm41%1Y2 - - - Yns1)|T, the result is true if we can show that the
face |(2172 ... Tm+1¥1Y2 - - - Yns1)|”, which is identified with the lower hemi-
sphere, admits as a triangulation the union of all the faces that are different
of |(z123. .. Tms11¥2- .- Yns1)l-

To see this we consider the two points 2, and yp in a convenient position
in the interior of |(z1Z3...Zm+1¥1¥2 - - - Ynt1)| . For example, the point zo
can be chosen to be the barycenter of |[(z1z2 ... Zm+1¥1¥2 - - - Yns1)|” and the
point y, is chosen to be the barycenter of the (m + 1)—cell |(zoz; ... Zm41)].

By using the first point zo we have an initial triangulation given by the
union of the following (m + n + 2) cells

m+1
Kz122. . Tmyathy2-- - Vo)l = U (Zoxr ... Zi .. Zmarth¥a - - - Yni1 )|
=1

n+1
U( U (zo21 ... Tmsrthya - - ;- 'yﬁ-l)l)'
i=1

Now by using the second point yo, we have forevery 1 < j <n+1

I(zoZ1 - - - Zmiata¥z--- G- - yn+:)| =

= U I(ﬂ:o-..ii...xm.‘.ly{)yl L4 'ﬁj"'yﬂ'fl)lﬂ

that is, the first (m +n + 1)-cell is the union of exactly (m + 2) other cells.
Then we have exactly [(m+ 2)(n+2) —1)] cells. Hence we get the result. O



In the case m =n = 1.

¥

| xgxy¥375) |
xq *2

k"o"zfﬂz”

lx %y 7y )

XXy ¥l

iy gyl Iy xpy oy )l
Hxgxa¥ oy y )l
x % ¥oyy
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In the case we have more than two spheres, the following theorem holds:

Theorem 4.5: If we have h unit spheres $™ 8™, ..., 5™ of dimension
ni, nNa,..., Ny, respectively, then

8™ 4 &™ 4 ... 4 G = gmtmt-mth-1

Proof: By induction on h. If A = 2, the result holds by the previous the-
orem. Let’s suppose the result is true for A > 2. Now if in the expansion
B % . .x T x ™41 we associate the first h unit spheres, that is, if we take
(&™ - . .« F™)xF™+1 and we take as triangulation for F7+- - -+F™ the min-
imal triangulation of the unit sphere $™* +™*+A=1 then by the previous
theorem we get the unit sphere of dimension (ny+---+np+h—1)+n4p4, +1
which is equal to ny + - + np41 + (A + 1) — 1. And hence the theorem is
true. O

5. The Case O(C,) Splits in Cycles

Now we shall study the case in which the oriented subdigraph O(C,)
admits a decomposition in h pairwise disjoint cycles, with A > 2.

First of all, let’s consider the case of a complete digraph C, having a
decomposition in two disjoint subdigraphs A and B. We have the following
theorem.

Theorem 5.1: If C, = A & B, then
Ke, = K4+ Kp.

Proof: If o' is an i-simplex of K} and 77 is a j-simplex of K}, then o'7’
belongs to K¢_. Infact, the subdigraph < ¢* >, which is determined by the
vertices of o', must contain a transitive subtournament of order i + 1, and
similarly < ¢ > must contain a transitive subtournament of order j + 1.
Since we have double arcs from A to B, then < o7/ > contains a transitive
subtournament of order i + j + 2. Hence K4 * K C K¢,.

Conversely, given an m-simplex p of K¢ _, we let y’ be the set of vertices
of u which are contained in A, and let u” be the set of vertices of u which
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are contained in B. Let us suppose that u’ and u” have h and k elements,
respectively, with A + k + 1 = m. Since < g > contains a transitive sub-
tournament of order m + 1 in C,, then we have that < u' >C A contains a
transitive subtournament of order h + 1; and similarly < u” >C B contains
a transitive subtournament of order k + 1. That is, g is a simplex in K}
and x” is a simplex in K. Therefore K} C K, * Kp, and thence the
result holds. O

Corollary 5.2: If C, is a complete digraph such that C, = A — B, with
A and B being two disjoint subdigraphs, then K¢, = K4 * Kg. O

Remark: The two previous results actually hold for digraphs in general,
not only for complete ones.

Corollary 5.3: If T, is a tournament such that T, = A — B, with A and
B being two disjoint subtournaments, then K, = K4 * Kg. O

Theorem 5.4: Let C, be an n-antisymmetric complete digraph such that
O(C,) is the disjoint union of two cycles I'") and I'? (with r + s = n),
then the polyhedron |K¢,| is the unit sphere $™~3.

Proof: By theorem 3.6, we have that [Ko)| = $7% and |K @] = 7.
By Theorem 4.4, we have that $7~? * $*~2 = S™**~3. Hence the result is
true. O

Theorem 5.5: Let C, be an n—antisymmetric complete digraph such that
O(C,) is the union of h pairwise disjoint cycles ') T® . . '™ of order
n1,N3,..., N4, respectively. Then we have that |K¢,| is the unit sphere
ot

Proof: It is obvious by theorem 4.5. O
Remark: The complete digraph C,, we have just considered is unique (up

to isomorphim) and it depends only of the order n,,n,,...,n; of the h cy-
cles, and not of the particular ordering they are considered.
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So far we have determined some “maximal” complete digraphs such
that their associated polyhedra are spheres (see Theorems 3.6, 4.4 and 4.5).
The “maximality” here is to be understood in the sense that if we add to
the digraph an extra double arc then the result is not true anylonger (see
Theorem 3.4).

We would like now to consider some “minimal” complete digraphs such
that their associated polyhedra are spheres. The “minimality” here is to
be understood in the sense that if we omit a double arc, then the property
does not hold anylonger.

Theorem 5.6: Let C, be the composition C, = T,, (XM, 5@ ... TH) of
h spheric complete subdigraphs ) of order n;, with the transitive tourna-
ment of order h. Then |Kc,| is homeomorphic to the unit sphere $7~"~".

Proof: By Corollary 5.2, we have that K¢, = Kgo) * Kga) *- - Ky
Since for every i we have that |Ky)| is $~~2%, then by Theorem 4.5 we get
the result. O

Remark. (1) If we remove from C, a double arc, then this double arc
must have been removed from one of the £(). Hence by Theorem 3.6 the
corresponding | Ky, | can not be the sphere of dimension n; — 2. Therefore
|K¢,| can no longer be a sphere.

(2) The complete digraph C, is not unique since it depends also on the
ordering we consider the cycles and not only on the order ny, na,...n of
them. Actually the number of these “minimal” complete digraphs is ex-
actly h!/(hy!...h,!), where h; is the number of the distinct cycles having
the same order, and hy + hy + --- + hy, = h.

Finally, from the previous results we can state the conclusive theorem.

Theorem 5.7: Let C, (with n > 3) be a complete digraph. If the following
conditions hold:

(i) C, is k—antysimmetric, with k > n;

(ii) O(C,) contains k pairwise disjoint maximal cycles TV, '? .. T*
of order ny,ny,...,ny, respectively, and such that ny + ny +--- +ny = n;

13



(iii) every complete subdigraph < I') >, for i = 1,2,..., A, is spheric.
Then |K¢,| is homeomorphic to the unit sphere $™~*-1,

Proof: If k = n then the result follows from the theorems 3.6 and 5.5.

Let k > n, and consider the r = k — n simple arcs a;, ay, ..., a, which
are not in the ',

If we replace the simple arcs a; by double arcs we get the “maximal”
complete digraph M,, which contains C, as a subdigraph. Clearly the sim-
plicial complex K is contained in Ky, .

On the other hand there is a “minimal” complete digraph N, which is
contained in Cy, so that Ky, is contained in K¢,. Since Ky, = Kum,, the
theorem is true if we exibit this digraph N,.

First of all, we observe that every arc a; must go from a vertex in a
< T® > to a vertex in a < T'® >, with s # {. We also observe that all the
other eventual arcs a; between < I'® > and < I'® > must all go in the
same direction as o; does. Thus we can replace all the eventual double arcs
between < I'® > and < I'® > by simple arcs in such manner to obtain
<I'® >5<T >,

If we follow this process for all a;, with 1 < i < n, at the end we get
the composition P, = Qx(< ™ >, <T@ > ... < T® >),

Then we have two possibilities: either Q) is a tournament or it is not a
tournament.

In the case @} is a tournament, then Q) is transitive. For otherwise it
would contain a 3—cycle, and hence we would not have the maximality of
the components I'"). Therefore, P, is the digraph N, we are looking for.

In the case Q) is not a tournament, then we have < I'? > < T0) >
for some ¢ # j. Then we replace the double arcs in @, by simple arcs in
such a way that we avoid 3—cycles among the components < I'¥) >. And
then we are back to the previous case, and we obtain N,. O

Corollary 5.8: Let T, be a tournament of order n. If n = 3h (with A > 1)
and T, is the composition of A 3—cycles V) T'® .. .,'™ by a transitive
tournament (that is, T, = T, (T, r® ... I'™)). Then |K7,| is homeo-
morphic to the unit sphere $2*-1. O

Remark: The tournament T, = T,,(I'",I'®,...,I'™) given above is

14



unique (up to isomorphism).

Up to this point we have found some sufficient conditions for a com-
plete digraph to have the associated polyhedron being a unit sphere. We
conjecture that these conditions are also necessary, and we hope to prove
this in a future paper.
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F- Quotients and Envelope of F-Holomorphy — Luiza A. Moraes, Otilia
W. Paques and M. Carmelina F. Zaime.

S-Rationally Convex Domains and The Approximation of Silva-
Holomorphic Functions by S—Rational Functions — Otilia W. Pagues and
M. Carmelina F. Zaine.

Linearization of Holomorphic Mappings On Locally Convex Spaces —
Jorge Mujica and Leopoldo Nachbin.

On Kummer Expansions — E. Capelas de Olivesra.

On the Convergence of SOR and JOR Type Methods for Convex Linear
Complementarity Probleme — Alvaro R. De Pierro and Alfredo N. Iusem.

A Curvilinear Search Using Tridiagonal Secant Updates for Uncon-
strained Optimization — J. E. Dennis Jr., N. Echebest, M. T. Guardaruccy,
J. M. Martinez, H. D. Scolnik and C. Vacchino.

The Hypebolic Model of the Mean x Standard Deviation “Plane” —
Sueli I. R. Costa and Sandra A. Santos.

A Condition for Positivity of Curvature — A. Derdzinski and A. Rigas

On Generating Functions — E. Capelas de Oliveira.

An Introduction to the Conceptual Difficulties in the Foundations of
Quantum Mechanics a Personal View — V. Buonomano.

Quasi-Invariance of product measures Under Lie Group Perturbations:
Fisher Information And L?-Differentiability — Mauro S. de F. Marques and
Luiz San Martin.

On Cyclic Quartic Extensions with Normal Basis — Miguel Ferrero,
Antonio Paques and Andrzej Solecks.

Semilinear Elliptic Equations with the Primitive of the Nonlinearity
Away from the Spectrum — Djairo G. de Figueiredo and Olimpio H. Miya-
gaks.

On a Conjugate Orbit of Gg — Lucas M. Chaves and A. Rigas.
Convergence Properties of Iterative Methods for Symmetric Positive

Semidefinite Linear Complementarity Problems — Alvaro R. de Pierro and
Alfredo N. Iusem.
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19/90
20/90
21/990
22/90
23/90
24/90
25/90

26/90
27/90

The Status of the Principle of Relativity — W. A. Rodrigues Jr. and Q. A.
Gomes de Souza.

Geracao de Gerenciadores de Sistemas Reativos — Antonio G. Figueiredo
Filho e Hans K. E. Liesenberg.

Um Modelo Linear Geral Multivariado Nao—Paramétrico — Belmer Garcia
Negrillo.

A Method to Solve Matricial Equations of the Type J_1 A A;XB;=C —
Vera Liicia Rocha Lopes and José Vitorio Zago.

X,-Fixed Sets of Stationary Point Free X -Actions — Claudina Izepe
Rodrigues.

The m-Ordered Real Free Pro—2-Group Cohomological Characteriza-

tions — Antonio José Engler.

On Open Arrays and Variable Number of Parameters — Claudio Sergio
Da Rés de Carvalho and Tomasz Kowaltowski.

Bordism Ring of Complex Involutions — J. Carlos 5. Kiihl.

Approximation of Continuous Convex—Cone-Valued Functions by
Monotone Operators — Jodo B. Prolla.
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