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Abstract: Applications of deep learning (DL) in autonomous vehicle (AV) projects have gained

increasing interest from both researchers and companies. This has caused a rapid expansion of scien-

tific production on DL-AV in recent years, encouraging researchers to conduct systematic literature

reviews (SLRs) to organize knowledge on the topic. However, a critical analysis of the existing

SLRs on DL-AV reveals some methodological gaps, particularly regarding the use of bibliometric

software, which are powerful tools for analyzing large amounts of data and for providing a holistic

understanding on the structure of knowledge of a particular field. This study aims to identify the

strategic themes and trends in DL-AV research using the Science Mapping Analysis Tool (SciMAT)

and content analysis. Strategic diagrams and cluster networks were developed using SciMAT, al-

lowing the identification of motor themes and research opportunities. The content analysis allowed

categorization of the contribution of the academic literature on DL applications in AV project design;

neural networks and AI models used in AVs; and transdisciplinary themes in DL-AV research, in-

cluding energy, legislation, ethics, and cybersecurity. Potential research avenues are discussed for

each of these categories. The findings presented in this study can benefit both experienced scholars

who can gain access to condensed information about the literature on DL-AV and new researchers

who may be attracted to topics related to technological development and other issues with social and

environmental impacts.

Keywords: artificial intelligence; deep learning; autonomous vehicles; autonomous driving;

systematic review; research agenda

1. Introduction

Given the massive increase in vehicle traffic worldwide, issues such as road safety,
traffic congestion, CO2 emissions, and sustainability are becoming critical [1]. Concerning
safety, according to the World Health Organization [2], every year road traffic accidents
cause 1.35 million deaths worldwide; additionally, 20 to 50 million people experience
non-fatal injuries. Furthermore, the negative impact of traffic congestion on pollution,
greenhouse gas emissions, and people’s health is well documented [3,4].

In this context, autonomous vehicles (AVs) have grown in importance as a potential
solution to these challenges, boosted by the rapid expansion of artificial intelligence (AI)
applications in this area [1,5]. Both safety and sustainability factors contribute to this
increased interest. In terms of safety, critical reasons for car crashes were estimated to
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be more than 90% related to human errors, whereas vehicle failures were responsible for
2% [6]. Furthermore, AVs can help with fuel economy, reduced pollution, car sharing, and
improved traffic flow [5].

Given the rapid increase in scientific production of AVs and AI, this topic has become
conducive to conducting systematic literature reviews (SLRs) to organize knowledge on
the topic. For instance, Nascimento et al. [1] conducted a SLR to investigate how AI-based
systems impact AV safety, and Parekh et al. [7] looked into the current state of research and
development in environment detection, pedestrian detection, path planning, motion control,
and vehicle cybersecurity for AVs. Some authors have been expanding the discussions
on AVs to address topics of paramount importance to society; for instance, Kostrzewski
et al. [8] discussed the Internet of Vehicles (IoV) and sustainability, specifically focusing on
issues related to Environmental, Social, and Corporate Governance (ESG). From another
perspective, some authors have focused on particular aspects; Jebamikyous and Kashef [9]
focused on AV perception related to Semantic Segmentation and Object Detection; Pavel
et al. [10] on RGB camera vision; and Fayyad et al. [11] on sensor fusion algorithms for
perception, localization, and mapping. Other studies have concentrated on specific area of
AI, such as deep learning (DL). Mozaffari [12] reviewed research on DL-based approaches
for vehicle behavior prediction, whereas Cui et al. [13] studied DL applications for data
fusion approaches that leverage both image and point cloud.

A critical analysis of the existing SLRs on AI and AVs reveals some methodological
similarities, including the absence of quantitative methods and the use of traditional
approaches such as content analysis to examine a limited number of documents. Thus,
using quantitative approaches to investigate the academic production regarding AI and AVs
can be of great value, especially when bibliometric software are used, which are powerful
tools for analyzing large amounts of data and for providing a holistic understanding on
strategic themes of a particular field of knowledge [14].

To address this gap, the objective of this paper is to identify the strategic themes and
trends in DL-AV research. To accomplish this, it employs the Science Mapping Analysis
Tool (SciMAT) and content-centric analysis to identify how DL has been applied in AV
projects, as well as the main techniques, models, and datasets. Based on that, two research
questions guided this study:

• RQ1: What are the strategic themes of DL and AVs?
• RQ2: What are the trends and opportunities related to DL-AV for researchers and

practitioners?

The remainder of this paper is organized as follows. Section 2 describes the method-
ological procedures to conduct scientific mapping and contributions of the SciMAT appli-
cation. Section 3 presents the results and discussion based on the strategic diagrams and
cluster networks generated by SciMAT, in addition to the outcomes of content analysis.
Finally, Section 4 presents the conclusions, limitations, and suggestions for future studies.

2. Materials and Methods

2.1. Research Protocol

The databases chosen for this research were Scopus and Web of Science (WoS) due to a
combination of important features, including their wide global and regional coverage of
scientific journals [15], which encompasses journals from other relevant databases such as
Emerald and IEEE; its high-quality peer-reviewed journals in the areas of interest when
compared to EBSCO, Google Scholar, or others [15]; and the availability of compatible
metadata for bibliometric analysis software [16].

Prior SLRs, e.g., [1,8,11], were used as a basis for developing the search string, which
was defined as follows: (“artificial intelligence” OR “deep learning”) AND (“autonomous
vehicle*” OR “autonomous driv*” OR “self-driv*”). The following criteria were used as
filters: only journal articles and reviews; publications from 2017 to 2022; document available
in English; and search terms appear in the title, abstract, or keywords.
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3.4. Research Agenda Proposal and Future Perspectives

Based on the insights from the strategic diagrams and cluster networks generated by
SciMAT and the content analysis of the selected articles, a research agenda was developed.
Table 1 presents the research questions and suggested references.

Table 1. Research agenda for DL-AV.

Topics Research Questions References

DL application in AV
project design

• How can DL techniques be applied to optimize the design and
performance of AV projects?

[66,67]

• What are the key challenges and considerations in integrating DL
algorithms into AV design processes?

[6,68,69]

• How can DL contribute to enhancing safety, efficiency, and user
experience in AVs?

[9,12,70]

Neural networks and AI
models used in AVs

• How can specific neural network architectures, including CNNs
and RNNs, be used in innovative ways in AVs for tasks such as
object recognition, path planning, and decision making?

[71,72]

• What specific training and fine-tuning approaches can be employed
to optimize the performance of neural networks in enhancing object
recognition, path planning, and decision-making capabilities
in AVs?

[73]

• What are the limitations and potential risks associated with neural
network-based techniques in AV applications?

[74,75]

• What cutting-edge AI models are tailored for AVs, and how do they
enhance functionalities like adaptive decision making and real-time
environment perception?

[74,76,77]

• How do dataset availability and quality impact the performance
and reliability of AI models in AVs, and how can dataset limitations
be addressed to improve model robustness and generalization?

[78,79]

• What are the ethical challenges in using AI models and datasets in
AV research, specifically regarding biases in decision making,
privacy concerns, and societal impact? How can these challenges be
mitigated to ensure responsible deployment of AI in AVs?

[80–82]

Transdisciplinary themes
in DL-AV

• What DL approaches can be used to address energy efficiency
challenges in AVs, such as optimizing power consumption,
maximizing battery life, and minimizing energy waste
during operations?

[83]

• What are the legal and regulatory challenges of integrating DL
algorithms into AVs, including liability, safety regulations, and
compliance with transportation laws? How can these challenges be
addressed to facilitate the widespread adoption of DL technologies
in AVs?

[84–86]

• What ethical and cybersecurity challenges arise from using DL in
AVs, specifically in terms of privacy, data integrity, adversarial
attacks, and system vulnerabilities? How can these challenges be
effectively addressed to ensure safe and secure operations while
maintaining ethical standards and protecting user privacy?

[79,87]



Mach. Learn. Knowl. Extr. 2023, 5 775

Several potential research avenues emerge when considering DL applications in AV
project design. The exploration of DL techniques has the potential to revolutionize the
design and performance of AV projects. By leveraging DL algorithms, researchers can
delve into unexplored territories and uncover new possibilities for optimizing the overall
functionality, efficiency, and safety of AVs. This includes developing advanced perception
systems, adaptive decision-making algorithms, and intelligent control strategies that can
significantly enhance the capabilities of AVs, leading to a paradigm shift in the field [66,67].
Furthermore, integrating DL algorithms into AV design presents a complex landscape
with various challenges and considerations. Researchers must navigate issues such as
computational resource requirements, algorithmic complexity, model interpretability, and
real-time constraints. Moreover, ensuring seamless integration with existing components
and systems, addressing hardware limitations, and designing robust validation and testing
frameworks are crucial aspects to overcome in order to successfully harness the power of DL
in AV design [6,68,69]. In addition, the potential of DL in enhancing safety, efficiency, and
user experience in the realm of AVs is substantial. DL techniques enable more accurate and
reliable perception of the environment, allowing AVs to make better-informed decisions and
react swiftly to changing situations. Additionally, DL can optimize energy consumption,
improve route planning, and enhance the overall comfort and convenience for passengers,
revolutionizing the way we perceive and interact with AVs [9,12,70].

The future perspectives of DL applications in AV project design are promising. By
leveraging the power of DL algorithms, researchers can unlock new frontiers in enhancing
the capabilities and performance of AVs [35,77]. This includes advancements in perception
systems, decision-making algorithms, and control strategies, enabling autonomous vehicles
to navigate complex environments with improved efficiency and safety [1,88]. Additionally,
DL can drive innovation in areas such as advanced sensor fusion, real-time object detection
and recognition, and adaptive path planning, leading to the development of more robust
and reliable AVs [7].

Regarding neural network techniques used in AVs, the revolutionary utilization of spe-
cific neural network architectures, such as CNNs and RNNs, has the potential to transform
AVs. By leveraging CNNs, researchers can achieve state-of-the-art performance in object
recognition, enabling AVs to accurately identify and track objects in their surroundings.
RNNs, on the other hand, offer the capability of modeling sequential data and making
informed predictions, facilitating tasks like path planning and decision making in complex
and dynamic environments [71,72]. The full potential of neural networks can be unlocked
by employing advanced training and fine-tuning approaches. Through techniques like
transfer learning, data augmentation, and ensemble methods, researchers can enhance the
object recognition, path planning, and decision-making capabilities of AVs. By leveraging
large-scale datasets and adopting sophisticated training strategies, neural networks can
achieve higher accuracy, robustness, and adaptability, leading to more reliable and efficient
AV systems [73]. Moreover, neural network-based techniques in AV applications come
with limitations and potential risks that need to be carefully investigated. These include
issues such as interpretability, potential biases in decision making, robustness to adversarial
attacks, and safety concerns. Researchers must delve into these challenges, striving to
develop methods that provide transparency, fairness, and resilience to ensure the safe and
reliable operation of AVs in real-world scenarios [74,75].

Embracing cutting-edge AI models tailored for AVs opens up new possibilities for
enhancing functionalities such as adaptive decision making and real-time environment
perception. State-of-the-art AI models, including reinforcement learning algorithms, gener-
ative adversarial networks, and transformer models, can revolutionize how AVs perceive,
analyze, and interact with their environment. These models enable advanced cognitive
abilities, adaptability, and intelligent responses, significantly elevating the capabilities of
AVs [74,76,77]. Dataset availability and quality play a crucial role in the performance and
reliability of AI models in AVs. Researchers need to illuminate the impact of datasets on
model performance, ensuring that the data used for training and testing is representative,
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diverse, and accurately annotated. Moreover, addressing limitations such as data scarcity,
domain shifts, and biases is essential to improve the robustness and generalization of AI
models, enabling more reliable and trustworthy AV systems [78,79]. From another per-
spective, navigating the ethical challenges in using AI models and datasets in AV research
requires careful consideration to ensure responsible AI deployment. Mitigating biases
in decision-making algorithms is essential to avoid unfair or discriminatory outcomes.
Privacy concerns related to data collection and usage must be addressed to protect the
personal information of users and maintain their trust. Moreover, considering the societal
impact of AVs is crucial to ensure that they align with ethical principles and contribute
positively to communities, fostering equitable access and social well-being [80–82].

The integration of neural networks and AI models in AVs holds immense potential for
shaping the future of transportation. Neural networks enable AVs to process vast amounts
of data, learn from them, and make intelligent decisions in real time [89]. With the ad-
vancement of AI models, autonomous vehicles can exhibit enhanced capabilities in various
aspects, including perception, decision making, and behavior prediction. This opens up
avenues for improving the overall performance, reliability, and safety of AVs, paving the
way for widespread adoption and acceptance of this transformative technology [86].

Finally, transdisciplinary themes in DL-AV have high potential to advance knowledge
and practice in the field. Pioneering DL approaches is essential to overcome energy
efficiency challenges in AVs. Optimizing power consumption and maximizing battery life
are critical factors in extending the range and endurance of AVs. DL techniques can be
utilized to develop innovative algorithms that minimize energy waste during operation,
leading to more sustainable and environmentally friendly AV systems. By harnessing the
power of DL, researchers can drive advancements in energy-efficient technologies and pave
the way for a greener future of transportation [83]. Tackling the legal and regulatory hurdles
associated with integrating DL algorithms into AVs is paramount for their widespread
adoption. Ensuring liability and safety compliance are crucial aspects to build public trust
and confidence in autonomous systems. Navigating transportation laws and regulations is
necessary to address challenges related to accountability, responsibility, and potential legal
implications. Collaboration between researchers, policymakers, and industry stakeholders
is essential to establish a comprehensive legal framework that promotes the safe and
lawful integration of DL technologies into AVs [84–86]. Lastly, addressing the ethical
and cybersecurity challenges posed by DL in AVs is imperative to ensure safe and secure
operations. Safeguarding privacy and data integrity is crucial to protect the personal
information collected by AVs from unauthorized access or misuse. Mitigating the risk
of adversarial attacks, where malicious actors manipulate sensor inputs to deceive the
system, is vital for maintaining the integrity and reliability of AVs. Implementing robust
cybersecurity measures, such as encryption and intrusion detection systems, is essential to
safeguard against potential vulnerabilities and maintain the trust of users in the security of
autonomous systems [79,87].

The transdisciplinary themes that emerge from the intersection of DL and AVs offer
exciting possibilities for the future. DL techniques can be applied not only to enhance
the technical aspects of AVs but also to address broader societal and ethical considera-
tions [8]. For example, research can explore how DL can improve the interpretability and
transparency of autonomous systems, enabling better human–machine collaboration and
trust [88]. Furthermore, investigations into the socio-economic impacts, legal frameworks,
and ethical implications of deep learning in autonomous vehicles can shape the develop-
ment and deployment of this technology in a responsible and inclusive manner [82]. By
embracing a transdisciplinary approach, researchers can unlock new insights and drive
paradigmatic advancements in the field of DL-AV, as well as in science and engineering
more broadly [90].
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4. Conclusions

In a scenario of rapid increase in scientific production on topics related to AVs and AI,
the systematization of knowledge is of great value so that discoveries are enhanced and
new projects are created.

The integrated bibliometric and content analysis approach enabled the identification of
strategic themes (RQ1) and trends (RQ2) in DL-AV research. The findings presented in this
study can benefit both experienced scholars who can gain access to condensed information
about the literature on DL-AV and new researchers who may be attracted to topics related
to technological development and other issues with social and environmental impacts (e.g.,
safety and sustainability).

Identification of motor themes and research opportunities can fuel collaboration
among researchers from all areas of knowledge, integrating concepts, theories, and methods
primarily from computing, environmental, and social sciences for enhancing debates on
themes such as energy, legislation, ethics, and cybersecurity in the context of AVs. Another
significant contribution of this study was the proposal of a research agenda and future
perspectives regarding three topics: DL application in AV project design; neural networks
and AI models used in Avs; and transdisciplinary themes in DL-AV. It is expected that
research will advance in these areas and provide valuable contributions to individuals,
organizations, and society as a whole.

It is important to state the limitations of this study. The methodology’s shortcomings
involve the focus on the Scopus and WoS databases considering publications from 2017
to June 2023. Despite the fact that these are high-quality, representative bases of global
scientific production, it is important that future research include other recognized databases
and increase the sample analyzed. Another methodological limitation is the use of only
one type of software, SciMAT. This tool has proven suitable for the intended objective, but
it would be of great value to have studies that complement and compare the results with
other extensively used software, such as VOSviewer, while also leveraging its additional
benefits, such as bibliometric data on authorship and research collaboration. Regarding
the scope of the analyzed documents, this study primarily focuses on journal articles. It is
crucial for future studies to incorporate recent contributions published in other scientific
dissemination channels. More comprehensive approaches can be adopted, including grey
literature. Finally, the methodology used in this study was centered on examining the
structures of networks of motor themes with the highest degrees of density and centrality,
which opens up several avenues for future research to expand the analysis of transversal,
highly developed, and/or new emerging themes.
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