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Abstract
MARQUIONI, V.M. Applications of the finite Derrida-Higgs model to popula-
tion dynamics. 2024. 210p. Thesis (Doctor of Science) - Institute of Physics Gleb
Wataghin, University of Campinas, Campinas, 2024.

Sympatric speciation is a process where species emerge in a community in the presence of
gene flow. Although already proposed by Darwin in 1859, it remains a very contentious
diversification process to which strong evidence is not easy to find. Notwithstanding,
in 1991, Derrida and Higgs showed that haploid individuals evolving in sympatry could
form reproductively isolated groups under neutral evolutionary forces. Their model con-
siders the evolution of a panmictic finite population, with sexual reproduction and a fixed
mutation rate, in which individuals are described by binary sequences representing their
genomes. In the limit of infinitely large genomes, a transition between low and high diver-
sity regimes can be observed if mating restrictions based on genetic similarity are included.
However, the same transition shows a different behavior when the genome is finite. This
thesis presents a theoretical analysis of the distinct regimes of the finite Derrida-Higgs
model displays, i.e., the low and high diversity regimes, including a heuristic approxima-
tion of the transition between the two. Furthermore, applications of the model and the
theory are subsequently presented. The Princepe-Aguiar model for mitochondrial and
nuclear genetic material coevolution is analyzed for the case of sympatric communities
and our results corroborate the author’s conclusions, stating that the barcode property of
the mitochondrial DNA does not emerge in the absence of spatial structures. We finish
this text with a model of viral evolution during epidemics in which we have studied the
genetic variability in a neutral spread for different contact networks, and also the effects
of quarantine regimes in such outbreaks spreading over scalefree networks. We, therefore,
have introduced the first complete theory for the Derrida-Higgs dynamics which, albeit in-
cluding heuristic approximations, can be extended to other studies (e.g. the mito-nuclear
DNA coevolution model). Moreover, we advocate that our epidemic model provides a gen-
eral framework to study the evolutionary patterns of a pathogen if the contact network
structure is considered.



Resumo
MARQUIONI, V.M. Aplicações do modelo de Derrida-Higgs finito em dinâmica
de populações. 2024. 210p. Tese (Doutor em Ciências) - Instituto de Física Gleb
Wataghin, Universidade Estadual de Campinas, Campinas, 2024.

Especiação simpátrica é o processo no qual espécies emergem em uma comunidade na pre-
sença de fluxo gênico. Embora tendo sido descrito por Darwin já em 1859, esse processo
de diversificação continua bastante controverso, para o qual evidências robustas não são
fáceis de encontrar. Apesar disso, em 1991, Derrida e Higgs mostraram que indivíduos
haploides evoluindo em simpatria sob forças neutras de evolução poderiam formar grupos
reprodutivamente isolados. O modelo dos autores considera a evolução de uma população
finita em panmixia, com reprodução sexuada e taxa de mutação fixa, na qual os indivíduos
são descritos por meio de sequências binárias, que representam o seu genoma. No limite de
genomas indefinidamente grandes, pode ser observada uma transição entre regimes de alta
e baixa diversidade caso restrições à reprodução, baseadas na similaridade genética entre
indivíduos, seja incluída no modelo. Contudo, a mesma transição possui comportamento
diferente quando o genoma é finito. Essa tese apresenta a análise teórica dos diferentes
regimes que o modelo de Derrida-Higgs finito apresenta, i.e., os regimes de alta e baixa
diversidade, incluindo uma aproximação heurística para a transição entre os dois. Não ob-
stante, apresentamos algumas aplicações tanto do modelo quanto da teoria apresentada.
O modelo de Princepe-Aguiar para coevolução entre os materiais genéticos mitocondrial
e nuclear é analisado no caso de comunidades em simpatria e os nossos resultados cor-
roboram as conclusões dos autores originais do modelo, estabelecendo que a propriedade
de barcode do DNA mitocondrial não emerge na ausência de estruturas espaciais. Final-
izamos o presente trabalho com a introdução de um modelo de evolução viral durante uma
epidemia, no qual estudamos a variabilidade genética em um espalhamento sobre redes de
contato livres de escala. Assim, introduzimos a primeira teoria completa para a dinâmica
de Derrida-Higgs a qual, embora contendo aproximações heurísticas, pode ser estendida
para outros estudos (e.g. o modelo de coevolução mito-nuclear). Além disso, defendemos
que o nosso modelo epidemiológico oferece uma ferramenta bastante geral para estudar
os padrões evolutivos de um patógeno se a rede de contatos for considerada.
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Chapter 1

Introduction

1.1 Initial words and on the aims of this thesis
This work started to be developed in 2019, almost a year before the COVID-19 pan-

demic changed many rules of our daily lives. The project has began as a well-defined
mathematical question in a model of species formation but it has suddenly branched and
we found ourselves also working on epidemiology, giving our contribution to the enour-
mous mass of scientists that were trying to somehow help with the ongoing outbreak of
the new coronavirus SARS-CoV-2. But this should not be understood as a complete de-
tour: mathematical, computational, and probabilistic modeling and biological evolution
have always been the backbone of this Ph.D. research. This is why it can all be combined
in a single manuscript without lack of continuity.

By the end of a Ph.D., writing a thesis seems to be only a formality, a well-posed
ending delimiter of a degree. But I have never wished it to be like this. The text in
a thesis can be very technical, intricate, and very niche-specific and this is exactly how
I do not want it to be. I cannot let the formalism go away from these pages, but I
intend it to have meaningful content for the general reader. Although some background
in mathematics is required, I hope it to be a textbook for anyone who would like to learn
about agent-based modeling, probability theory, and biological evolution (altogether).

I want the knowledge I acquired in the course of the last five years to be well described
in this text, and that is what all the effort I have put into these pages is about. Let our dif-
ference at the end of this text be our experience on the matter, not any hidden knowledge.
Along these pages, some calculations can be tedious, but the algebraic manipulations can
also be very instructive.

This manuscript talks about three different agent-based models (ABM) to which math-
ematical results are achieved. They are all placed in a biological evolution background
in which binary chains are used as a proxy for the genetic material. We start with the
Derrida-Higgs model of sympatric species formation, pass through the Princepe-Aguiar
model of mito-nuclear coevolution, and end up with a model in epidemiology. My goal
is to build a not so much rigid work line that can teach the reader instead of simply
exposing the results of a research. In the following sections, a summary of what is ahead
is presented.
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1.2 A bit of Evolution
Biological evolution is one of the most successful theories in science. It constitutes a

set of many evidences and fruitful explanations connecting them altogether concerning the
origins and patterns of diversity of living organisms. However, what is seen nowadays as
a solid and well accepted scientific theory, has once been thought of as very contentious.
In the 19th century, Charles Robert Darwin and Alfred Russel Wallace independently
proposed that the environment selects different characters, thus small variations along
generations of the same species would be responsible for the emergence of different species
in different environments. The long-lasting problem was a theory for variability along
generations. Where is it coming from? Why do the offspring can be different from its
parents? How much different? The lack of answers to these questions made the so-called
evolution theory very controversial [1, 2].

Some years later, Gregor J. Mendel published his work on trait heritage, grounding
the basis of genetics, which were believed to be incompatible with the Darwinian theory[1,
3]. Only in the 20th century, both theories were reconciled, mainly due to the works of
Ronald A. Fisher (1930) [4], J. B. S. Haldane (1932) [5], and Sewall Wright (1931) [6],
who showed that they are not only compatible but that the Mendelian Genetics is indeed
necessary for the evolutionary theory introduced by Darwin and Wallace. The synthesis of
both theories is known as Neo-Darwianism, Synthetic Theory of Evolution, or the Modern
Synthesis [7, 1].

The synthetic theory set the framework for studying diversity as a process of variation
from one generation to another and fixation of the variants according to environmen-
tal conditions. Nowadays, biomolecular processes involving the genetic material and its
modifications are rather understood [8] and the theory of evolution is known to act in
all different life scales, from single cell bacteria to complex vertebrate systems, passing
through the strange archaea and the very well adapted viral world [9, 10, 11, 12].

One of the most striking conclusions of evolution is that the origin of all observed
(and possibly the non-observed) diversity is a single ancestor, the Last Universal Common
Ancestor (LUCA) [13, 14]. All life forms emerged from this unique “creature” billions of
years ago [14], and a very significant evidence of this conclusion is the universality of the
genetic code [15, 16]. Living beings are governed by chemical reactions. Many of these
reactions are catalyzed by proteins called enzymes [8]. Proteins are biomolecules formed
by sequences of smaller units, the amino acids. The amino acid sequence determines the
protein spatial structure which is crucial for its function, which can also be structural,
responsible for signaling and cell binding besides the enzymatic function.

Behind this protein world [17], there are the nucleic acids: the RNA (ribonucleic
acid) and the DNA (deoxyribonucleic acid). These two molecules can be described as
long chains of four letters (“A, U, C and G” for the RNA and “A, T, C and G” for the
DNA) representing their smallest units, the nucleotides, and each triple of nucleotide is
a code for a different amino acid. The genetic material, i.e., the set of nucleic acids in
a given life form, acts like a “cookbook”. A sequence of amino acids is formed from the
“recipe” contained in the DNA (RNA) and therefore the proteins in a given living being1.
The remarkable finding is that which triple corresponds to which amino acid is the same
for every organism studied so far, and therefore this genetic code is universal. A sequence
of nucleotides that codifies a given protein is called a gene [8].

1This is a very simplistic metaphor; for instance, due to a molecular mechanism called
alternative splicing [18], the same “recipe” could result in different “dishes”.
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DNA and RNA are related to each other, in the language of the code letters, U and
T are interchangeable, and then RNA and DNA are “the same” at this level. Some life
forms have their information all stored in RNA molecules, and others in DNA molecules,
but the genetic code is still the same. Thus, “genetic material” and “DNA” are going to
be general expressions to designate both molecules in this text, and we are going to make
it clear which one it is if needed.

The universal property of the genetic code is not needed if different species emerged
from different life forms. All the diversity observed so far shares this same set of rules to
build their proteins, which are indispensable for their existence [17]. But where does the
variability come from? Small errors in this process (e.g. from the gene to the protein)
can lead to different structures, which can be functional or not. If the mutant type is
more adapted to the environment than others, then a mutant can fixate [1]. Being able
to explain adaptation is a great hallmark of the evolutionary theory. Mutations occur
randomly across generations, they are not “good or bad”, but those that can lead to
a greater survival rate of the individual tend to exist for a longer time, therefore more
adapted individuals are naturally selected.

Different species can emerge in this context: the increase of variability due to mu-
tations can end up in so different individuals that one cannot recognize them as being
representative of a single “group” [2]. I must admit that this text has taken a great jump
now, grouping individuals is not an easy task and the concept of species is also contentious
[19], but this is maybe the high point of the evolution theory: individuals that we classify
as different “groups” (in some sense2) are the result of evolution acting on a previous
single group [1]. To give a simple example, thousands of years ago, a lineage of wolves
started to become different from the others, living closer to humans, being domesticated
and, after years of accumulating changes, they are now recognized as dogs [20].

How exactly this intense diversification happens and what defines different species is
going to be more discussed later in this text, but we have reached our first milestone:
much of this work is about a biological process that gives rise to different species, which
is known as speciation.

1.3 Agent-based modeling
Much of science is about raising hypotheses that can explain observed patterns. Good

hypotheses not only explain but are also able to predict non-observed patterns, and are
thereafter tested. The way someone joins different hypotheses and/or develops a sequence
of reasonable arguments to show a specific pattern is what we call a model. Different
models for the same observation can be proposed; they can be very complex, contain
many steps, a long list of hypotheses, and a very intricate set of rules (in many cases
these are mathematical rules – equations). But models can also be very simple, aimed to
describe some general aspect of an observed phenomenon, or they even can be grounded
on a unique rule that “magically” works with astonishing precision.

In population dynamics [21], models are intended to describe the variations in the
number of individuals and their ages over time. For instance, suppose that in a certain
farm, there are rabbits and foxes. The foxes predate the rabbits. If there are no rabbits,
the fox population decreases, because they die from starvation, and then the rabbits can
reproduce without being predated. Once the number of rabbits increases, there are going

2To classify individuals into different groups is the task of a field called Taxonomy.
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to be many prey for the foxes and then their population can also increase, hence reducing
the number of rabbits, restarting, this way, the cycle. This ecological system, known as a
predator-prey model [22], can be written as a set of ordinary differential equations, which
were first introduced by Alfred J. Lotka and Vito Volterra in 1920 and 1926 [23, 24].
These equations do not name the individuals in the community, they only describe what
is observed at the population level.

Population level descriptions like this follow a long tradition from the physics of ther-
modynamics. The amount of molecules that are present in a gas is so huge that it is not
only unfeasible to solve all the equations of motion, but it is also useless. State equations,
describing the relations among macroscopic quantities (like temperature, pressure and
volume) are much more significant. The field of statistical mechanics, developed in the
mid 19th century, has set the mathematical background of the thermodynamic results,
and later, with stochastic analysis, has created the basis for the reaction networks the-
ory [25, 26]. In a given system, a set of compounds reacts forming some products; the
concentration of the reactants changes as the products are being formed. Many systems
can be described in this way; in the predator-prey dynamics, for instance, a predator “re-
acts” with a prey and the product is more predators. Ecological systems, epidemiology,
evolutionary systems, chemical reactions, and gene expression schemes, are all well suited
to be described as reaction networks, and this makes population level descriptions a very
powerful and general way of modeling [27].

But a direct consequence of this picture is that there is no individual tracking of
organisms. As said before, it can be useless, but there is no reason for it to not be required
in some cases. In evolutionary systems, for instance, mutations appear at the level of the
individual, and can or not be fixated in a way to affect the population in an average way.
This is the second problem of this type of modeling: they assume well-mixed populations,
thus the behavior of a given reactant is the same as the average of the population of the
same reactant. For this reason, these models are also called mean-field models and are
not representative of every system in its simplest versions [28]. Also, mean-field models
can become highly non-linear, hindering their analysis the more realistic they attempt to
be. As a way out, one can consider models at the individual level in order to introduce
heterogeneities.

Individual-based models (IBM) describe the behaviors of each smallest (and autonomous)
constituents of a system [29]. For instance, it would describe each one of the rabbits and
each one of the foxes; one would know if Bugs Bunny has survived the foxes attacks,
grew old, and had kids, or if it has lost for Vulpix and his gang. Since they can be very
general, these models are also called agent-based models (ABM), because individuals can
be genes, animals, market agents, and so on. The interactions between agents are defined
as rules, which can be very simple, like “when a blue agent encounters a red one, they
both become blue”, but (in this case) the important aspect is that the color of every agent
is well defined, not only the proportions or the total amount of blues and reds.

Agent-based modeling is our second milestone. The diversification processes we are
going to introduce occur at the level of the individuals, not of the population. This
way, heterogeneities are easily introduced, although the mathematical tractability gets
harder. As mean-field models have very standard techniques, grounded on dynamical
systems mathematics, when dealing with ABMs, each model can be a completely new
system, making it a challenge to find analytical results. ABMs are in general introduced
as computational models, to which specific algorithms are written in order to look for
strong results. On the other hand, the specificity of the codes and the (often) long list
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of individual rules make them hard to be scientifically described in papers, utilized in
different contexts, and even reproduced in different works.

The difficulties concerning ABMs led a group of scientists to propose a standard pro-
tocol for writing about such models, the ODD Protocol, which states for Overview, Design
concepts and Details [30]. Despite its “best-practice” purpose, we follow the original pub-
lications on the models we deal with and do not believe the set of rules within them is
big enough to hinder its usage and reproducibility.

1.4 What follows
This thesis is divided into three parts. In this first one, I have introduced the upcoming

content and within the following chapters, three different theoretical tools are going to
set the mathematical framework on which we are going to work. Chapter 2 introduces
the probability toolkit we are going to need to develop our goals. We will start with the
axiomatic probability theory, showing the properties of a probability measure and reach
the concept of conditional probability, which is definitely the main tool one can find in
this text. This chapter finishes with an introduction to Markovian processes and some of
their properties.

Chapter 3 discusses biological evolution in more detail. We are going to talk about
evolutionary forces, of some models of evolution, and introduce the concept of species and
speciation processes. Our main goal is to place the reader in this world of different con-
cepts; this is not a biology text, so many theoretical questions might be not approached,
but we hope it to be enough for the full comprehension of the present work.

Chapter 4 introduces important concepts in network theory, which is also a language
that is going to be spread all around this text. It could be easily placed as a section
somewhere else in this introduction, but as a matter of organization, we make it a separate
chapter, finishing this way our theoretical background.

The second and third part of this thesis regards different agent-based evolutionary
models. In Part 2, a model of sympatric species formation is presented: the Derrida-
Higgs model. Its introduction and analytical theory are developed in Chapter 5. This
model presents an interesting transition between low and high diversity regimes, and
a heuristic theory for this transition is presented in Chapter 6. A model for the high
diversity regime appears in Chapter 7.

The Derrida-Higgs model is easily adapted to different evolutionary scenarios. In 2020,
a follow-up version to study the coevolution between the Mitochondrial and Nuclear DNA
was proposed by Princepe and Aguiar. We present and study this model in Chapter 8,
thus finishing Part 2.

Part 3 is devoted to a third evolutionary agent-based model, which uses the same
guidelines as in the previous models, but in the context of epidemiology. The model is
introduced in Chapter 10 and two different results are presented and discussed in Chapters
11 and 12. These two chapters integrally display the Results, Discussion, and Conclusion
parts of two already published works. This part is concluded in Chapter 13.

Brief final words are left for the end of the text. Some appendixes can also be found at
the end of the text. Appendix A supplements the Derrida-Higgs theory, while appendixes
B, C, and D, supplement the epidemics model.
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Chapter 2

A probabilistic background

This chapter closely follows the notations and definitions from the book on probability and
random variables of M. N. Magalhães [31].

The idea behind probability theory dates from the Renaissance, when, in the 16th
century, Girolamo Cardano first studied the mathematics of gambling [32]. His work
“Book on Games of Chance” was only published a hundred years later, posthumously
[33]. As the previous sentence may sugest, probability regards chances, it measures how
likely events can be. Such chances may be related to some trust in a given outcome;
different gamblers could have different trusts in how likely an ace is to show up in a
certain poker round. Nowadays, it might seem obvious that the probability of drawing
any card from a deck should not depend on the players, but this has not always been a
straightforward argument.

A lot has been developed since the works of Cardano [34], and despite a quite subjective
way of defining what probability is, an axiomatic theory appeared in 1933, due to Andrey
Kolmogorov [35], allowing these quantities to be calculated unambiguously [36, 37]. And
this is where we start the following section.

2.1 The Kolmogorov axioms
Suppose a game is played by throwing a dice and checking its upper face. The set of

all possible results of this game is Ω = {1, 2, 3, 4, 5, 6} for a common cubic dice. Ω is called
the sample space. But sometimes we are not exactly interested in single elements of the
sample space; one may ask if the result is even or odd, or higher than 1, or a multiple of
3. “Combinations” of possible “types” of outcomes, i.e., any subset of the sample space,
may be of interest to the one who is playing the game.

This observation leads us to introduce a second concept: the 𝜎-algebra (also called
𝜎-field). Let ℱ be a class of subsets of Ω. ℱ is a 𝜎-algebra of Ω if it satisfies

1. Ω ∈ ℱ ;

2. Let 𝐴 ⊂ Ω. It 𝐴 ∈ ℱ , then 𝐴𝑐 ∈ ℱ , where 𝐴𝑐 denotes the complement of 𝐴;

3. If 𝐴𝑖 ∈ ℱ , 𝑖 ≥ 1, then
∞⋃︀

𝑖=1
𝐴𝑖 ∈ ℱ .
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In simple words, a 𝜎-algebra is a set of subsets of the sample space that gives meaning
to “groups” of results. First, the whole sample set should be one of these groups. Second,
if a given group is considered, this group can also be not considered. Finally, if many
groups are considered, unions of these groups should also be considered. For instance,
think about the game of throwing a dice. Suppose we are interested in knowing whether
it is even (𝐴even = {2, 4, 6}) or odd (𝐴odd = {1, 3, 5}). Notice that (𝐴even)𝑐 = 𝐴odd. Also,
any face can be shown up after throwing the dice, thus 𝐴all = {1, 2, 3, 4, 5, 6} should also
be a set of interest. Moreover, 𝐴even ∪ 𝐴odd = 𝐴all (which is a set of interest). Take
the sample space Ω = 𝐴all. Hence, the set ℱ = {𝐴even, 𝐴odd, 𝐴all,∅} is a 𝜎-algebra of Ω
(where the empty set ∅ = Ω𝑐).

Now, we are able to ask how likely one particular type of outcome to appear is. In
the previous example, one can ask about the chances of the dice to showing up as an
even or an odd number. Observe that this question directly regards the elements of the
𝜎-algebra, not exactly of the sample space Ω. Hence, we define the probability 𝒫(𝐴) of
an event 𝐴 ∈ ℱ as a function 𝒫 : ℱ → [0, 1] satisfying

1. 𝒫(Ω) = 1;

2. 𝒫(𝐴) ≥ 0 for every 𝐴 ∈ ℱ ;

3. For every sequence 𝐴1, 𝐴2, . . . ∈ ℱ , with 𝐴𝑖 ∩ 𝐴𝑗 = 0 for 𝑖 ̸= 𝑗,

𝒫
(︃ ∞⋃︁

𝑖=1
𝐴𝑖

)︃
=

∞∑︁
𝑖=1

𝒫(𝐴𝑖). (2.1.1)

These axioms are known as the Kolmogorov’s axioms.
A probability space is the triple (Ω, ℱ , 𝒫). Problems involving the calculation of prob-

ability can be subjective because all the elements of the constructed probability space
should be well defined, but once they are given, the calculations are straightforward,
without ambiguity.

2.1.1 Properties of a probability
From the Kolmogorov’s axioms, the following properties can be proved [31]. Given

the probability space (Ω, ℱ , 𝒫), we have
1.

𝒫(𝐴𝑐) = 1 − 𝒫(𝐴). (2.1.2)

2. Let 𝐴 and 𝐵 be two events. Then,

𝒫(𝐵) = 𝒫(𝐵 ∩ 𝐴) + 𝒫(𝐵 ∩ 𝐴𝑐); (2.1.3)

3. If 𝐴 ⊂ 𝐵, then
𝒫(𝐴) ≤ 𝒫(𝐵); (2.1.4)

4. For the event 𝐴 ∪ 𝐵,

𝒫(𝐴 ∪ 𝐵) = 𝒫(𝐴) + 𝒫(𝐵) − 𝒫(𝐴 ∩ 𝐵); (2.1.5)
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5. For any events 𝐴1, 𝐴2, . . .

𝒫
(︃ ∞⋃︁

𝑖=1
𝐴𝑖

)︃
≤

∞∑︁
𝑖=1

𝒫 (𝐴𝑖) . (2.1.6)

Proofs [31]
1. This property follows from the fact that 𝐴 ∩ 𝐴𝑐 = ∅. Then, from the third axiom,

𝒫(Ω) = 𝒫(𝐴 ∪ 𝐴𝑐) = 𝒫(𝐴) + 𝒫(𝐴𝑐) = 1 ⇒ 𝒫(𝐴𝑐) = 1 − 𝒫(𝐴).

2. By noticing that 𝐵 = (𝐵 ∩ 𝐴) ∪ (𝐵 ∩ 𝐴𝑐) and that (𝐵 ∩ 𝐴) ∩ (𝐵 ∩ 𝐴𝑐) = ∅, then

𝒫(𝐵) = 𝒫((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ 𝐴𝑐)) = 𝒫(𝐵 ∩ 𝐴) + 𝒫(𝐵 ∩ 𝐴𝑐).

3. With the same reasoning, we can write

𝐵 = (𝐵 ∩ 𝐴) ∪ (𝐵 ∩ 𝐴𝑐) = 𝐴 ∪ (𝐵 ∩ 𝐴𝑐)

in which the second equality comes from 𝐴 ⊂ 𝐵. Now, from the third axiom,

𝒫(𝐵) = 𝒫(𝐴) + 𝒫(𝐵 ∩ 𝐴𝑐) ≥ 𝒫(𝐴).

4. Write 𝐴 ∪ 𝐵 as
𝐴 ∪ 𝐵 = (𝐴 ∩ 𝐵𝑐) ∪ (𝐴 ∩ 𝐵) ∪ (𝐴𝑐 ∩ 𝐵),

and notice that these sets are mutually disjointed. Thus,

𝒫(𝐴 ∪ 𝐵) = 𝒫(𝐴 ∩ 𝐵𝑐) + 𝒫(𝐴 ∩ 𝐵) + 𝒫(𝐴𝑐 ∩ 𝐵).

From the second property

𝒫(𝐴) = 𝒫(𝐴 ∩ 𝐵) + 𝒫(𝐴 ∩ 𝐵𝑐),
𝒫(𝐵) = 𝒫(𝐵 ∩ 𝐴) + 𝒫(𝐵 ∩ 𝐴𝑐),

we find that
𝒫(𝐴 ∪ 𝐵) = 𝒫(𝐴) + 𝒫(𝐵) − 𝒫(𝐴 ∩ 𝐵).

5. By writing
∞⋃︀

𝑖=1
𝐴𝑖 as the union of a sequence of disjoint sets

∞⋃︁
𝑖=1

𝐴𝑖 = 𝐴1 ∪ (𝐴𝑐
1 ∩ 𝐴2) ∪ (𝐴𝑐

1 ∩ 𝐴𝑐
2 ∩ 𝐴3) ∪ . . .



2.2. CONDITIONAL PROBABILITY AND INDEPENDENCE 24

and then from axiom 3,

𝒫
(︃ ∞⋃︁

𝑖=1
𝐴𝑖

)︃
= 𝒫(𝐴1) + 𝒫(𝐴𝑐

1 ∩ 𝐴2) + 𝒫(𝐴𝑐
1 ∩ 𝐴𝑐

2 ∩ 𝐴3) + . . . .

For every 𝑗,
𝐴𝑐

1 ∩ . . . ∩ 𝐴𝑐
𝑗−1 ∩ 𝐴𝑗 ⊂ 𝐴𝑗,

and then, from property 3,

𝒫
(︃ ∞⋃︁

𝑖=1
𝐴𝑖

)︃
≤ 𝒫(𝐴1) + 𝒫(𝐴2) + . . . .

2.2 Conditional probability and independence
Many questions on probabilities emerge when previous information is considered. For

instance, after throwing a cubic dice, what is the probability of getting a 3 given that it
has shown up an odd number? Conditioning an event to another event is the concept we
introduce now.

Let us suppose that we know that the result of a given experiment is a point 𝜔 ∈ 𝐵, and
𝐵 is an event of a 𝜎-algebra ℱ of a probability space (Ω, ℱ , 𝒫). Then, if one is interested
in the occurrence of an event 𝐴, then 𝜔 must also belong to 𝐴. Hence, 𝜔 ∈ 𝐴 ∩ 𝐵. Let
𝒫(𝐴) denote the probability of 𝐴 when it is restricted to the occurrence of 𝐵, thus

𝒫(𝐴) ∼ 𝒫(𝐴 ∩ 𝐵).

To satisfy the Kolmogorov axioms, 𝒫(𝐴) is a probability if the proportionality constant
is chosen to be 1/𝒫(𝐵) 1. This new probability is known as a conditional probability, and
it is written as 𝒫(𝐴|𝐵),

𝒫(𝐴|𝐵) = 𝒫(𝐴 ∩ 𝐵)
𝒫(𝐵) , (2.2.1)

whenever 𝒫(𝐵) > 0, and it is read as “the probability of 𝐴 conditioned to (or given) 𝐵”.
Notice that 𝒫(𝐴|Ω) = 𝒫(𝐴).

2.2.1 Multiplication rule
Events that mutually happen are generally described as an “and”: 𝐴 and 𝐵 happen.

This is the same as saying that the event 𝐴 ∩ 𝐵 happens. This event has probability

𝒫(𝐴 ∩ 𝐵) = 𝒫(𝐴|𝐵)𝒫(𝐵) = 𝒫(𝐵|𝐴)𝒫(𝐴). (2.2.2)
1This new probability is defined over a 𝜎-algebra ℱ𝐵 defined as the set of all events

𝐵 ∩ 𝐶 for any 𝐶 ∈ ℱ . ℱ𝐵 is called a restriction of ℱ to the sample space 𝐵.
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Suppose now a sequence of events 𝐴1, 𝐴2, . . . , 𝐴𝑛, with no empty intersection. What is
the probability of all events to happen, i.e., what is the probability 𝒫

(︂
𝑛⋂︀

𝑖=1
𝐴𝑖

)︂
> 0?

From (2.2.2),
𝒫(𝐴1 ∩ 𝐴2) = 𝒫(𝐴1)𝒫(𝐴2|𝐴1). (2.2.3)

Now, rename 𝐴1 → 𝐴1 ∩ 𝐴2 and 𝐴2 → 𝐴3. Then,

𝒫(𝐴1 ∩ 𝐴2 ∩ 𝐴3) = 𝒫(𝐴1 ∩ 𝐴2)𝒫(𝐴3|𝐴1 ∩ 𝐴2). (2.2.4)

But from (2.2.3),

𝒫(𝐴1 ∩ 𝐴2 ∩ 𝐴3) = 𝒫(𝐴1)𝒫(𝐴2|𝐴1)𝒫(𝐴3|𝐴1 ∩ 𝐴2). (2.2.5)

Then, by induction,

𝒫
(︃

𝑛⋂︁
𝑖=1

𝐴𝑖

)︃
= 𝒫(𝐴1)𝒫(𝐴2|𝐴1)𝒫(𝐴3|𝐴1 ∩ 𝐴2) . . . 𝒫(𝐴𝑛|𝐴1 ∩ . . . ∩ 𝐴𝑛−1). (2.2.6)

2.2.2 Total probability law
This is a very important result, which is going to be used a lot in this text. Suppose

someone wishes to know the probability of a given event 𝐴, e.g., the probability of a dice
showing up a 6. Given the probabilities of a 6, when given that the showed face is a
multiple of 2 and when it is not a multiple of 2, is it possible to know the probability
of showing the 6? Notice that “being a multiple of 2” (thus 2, 4 and 6) and “not being
a multiple of 2” (thus 1, 3, and 5) are complementary events, say it 𝑀2 = {2, 4, 6} and
𝑀 𝑐

2 = {1, 3, 5}. 𝑀2 ∪ 𝑀 𝑐
2 = Ω ≡ {1, 2, 3, 4, 5, 6}.

Let 𝑀6 be the event of the dice showing a 6. 𝑀6 = (𝑀6 ∩ 𝑀2) ∪ (𝑀6 ∩ 𝑀 𝑐
2). Hence,

𝒫(𝑀6) =𝒫(𝑀6 ∩ 𝑀2) + 𝒫(𝑀6 ∩ 𝑀 𝑐
2)

=𝒫(𝑀6|𝑀2)𝒫(𝑀2) + 𝒫(𝑀6|𝑀 𝑐
2)𝒫(𝑀 𝑐

2). (2.2.7)

Suppose 𝑀2 = 𝑀 𝑐
2 = 1/2 and that the 6 appears half of the time when the result is even,

thus 𝒫(𝑀6|𝑀2) = 1/2, (obviously 𝒫(𝑀6|𝑀 𝑐
2) = 0). Then, 𝒫(𝑀6) = 1/4 and anyone can

believe that there is something weird with the dice2. Albeit the information about the
number 6 was given in terms of being an even or odd face, it was still possible to know
its probability, and the reason was because being even or odd are complementary sets.
This result (expressed in equation (2.2.7)) can be extended to what is known as the total
probability law.

A partition 𝑃 = {𝐶1, . . . , 𝐶𝑚} of 𝐹 is defined as a set of non-empty subsets (𝐶𝑖 ̸= ∅)
of 𝐹 , such that they are all pairwise disjoint, (𝐶𝑖∩𝐶𝑗 = ∅) for 𝑖 ̸= 𝑗 and their union equals
𝐹 , (

𝑚⋃︀
𝑖=1

𝐶𝑖 = 𝐹 ). Given a probability space (Ω, ℱ , 𝒫) and a partition 𝑃 = {𝐶1, . . . , 𝐶𝑚}

2We have assumed that the reader is familiar with the idea of equiprobability of the
state space, i.e., every face of the dice has the same chance to appear, 1/6.
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of Ω,

𝒫(𝐴) =
𝑚∑︁

𝑖=1
𝒫(𝐴|𝐶𝑖)𝒫(𝐶𝑖). (2.2.8)

Proof:

𝑚∑︁
𝑖=1

𝒫(𝐴|𝐶𝑖)𝒫(𝐶𝑖) =
𝑚∑︁

𝑖=1
𝒫(𝐴 ∩ 𝐶𝑖) = 𝒫

(︃
𝑚⋃︁

𝑖=1
𝐴 ∩ 𝐶𝑖

)︃
= 𝒫

(︃
𝐴 ∩

𝑚⋃︁
𝑖=1

𝐶𝑖

)︃
= 𝒫(𝐴) (2.2.9)

in which in the first equality we used the definition of a conditional probability; in the
second, the fact that 𝐶𝑖 are pairwise disjoint; and in the last, that they cover Ω.

2.2.3 Bayes’ theorem
The Bayes’ appeared in 1764 [38] and it is used to calculate probabilities of an event

based on previous knowledge [39]. It is given by the formula

𝒫(𝐴|𝐵) = 𝒫(𝐵|𝐴)𝒫(𝐴)
𝒫(𝐵) . (2.2.10)

which updates prior probabilities 𝒫(𝐴) given that experiments resulted in 𝐵.
The Bayes’ theorem is the basis of Bayesian statistics (which opposes the so-called

frequentist approach [39]) and can be easily shown from equation (2.2.2). Also, if 𝑃 =
{𝐶1, . . . , 𝐶𝑚} is a partition of Ω, the Bayes’ theorem can be written as

𝒫(𝐶𝑖|𝐵) = 𝒫(𝐵|𝐶𝑖)𝒫(𝐶𝑖)∑︀𝑚
𝑗=1 𝒫(𝐵|𝐶𝑗)𝒫(𝐶𝑗)

. (2.2.11)

2.2.4 Independent events
Asking the probability of an event 𝐴 given that another event 𝐵 has happened raises

the question what if 𝐵 does not interfere at all on the occurrence of 𝐴? This brings the
concept of independence between events. Two events 𝐴 and 𝐵 in (Ω, ℱ , 𝒫) are independent
if and only if

𝒫(𝐴 ∩ 𝐵) = 𝒫(𝐴)𝒫(𝐵). (2.2.12)

Equivalently,
𝒫(𝐴|𝐵) = 𝒫(𝐴), (2.2.13)

i.e., the occurrence of 𝐵 does not change the probability of 𝐴.
In some cases, two events are independent only if they are conditioned to the occur-

rence of a third event. This is called conditional independence, and it is going to be used
in key points of this thesis. It reads as 𝐴 and 𝐵 are conditionally independent given 𝐶 if
and only if

𝒫(𝐴 ∩ 𝐵|𝐶) = 𝒫(𝐴|𝐶)𝒫(𝐵|𝐶). (2.2.14)
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For completeness, suppose now a sequence of events 𝐴1, . . . , 𝐴𝑛. In order to define
independence among these many events, pairwise independence is not enough, i.e., 𝒫(𝐴𝑖 ∩
𝐴𝑗) = 𝒫(𝐴𝑖)𝒫(𝐴𝑗) for every 𝑖 ̸= 𝑗 is not sufficient (albeit necessary). Thus, we define the
events 𝐴𝑖 to be independent if and only if for every colection of indexes 1 ≤ 𝑖1 < 𝑖2 <
. . . < 𝑖𝑘 ≤ 𝑛, with 2 ≤ 𝑘 ≤ 𝑛,

𝒫(𝐴𝑖1 ∩ . . . ∩ 𝐴𝑖𝑘
) = 𝒫(𝐴𝑖1) . . . 𝒫(𝐴𝑖𝑘

) (2.2.15)

is satisfied.

2.3 Random variables
The theory introduced so far is very rich and still leads to many other interesting

results, but now we are switching to a new definition, which is very rich itself and would
deserve its own chapter in more specific texts. It is very useful to describe events as
numbers. As an example, if an experiment is to throw a coin, one could assign the
number 0 to heads and 1 to tails. This simple idea gets a deeper meaning and formal
definition as random variables.

Let (Ω, ℱ , 𝒫) be a probability space. The random variable 𝑋 : Ω → R is a real-valued
function defined on the sample space Ω such that

𝑋−1(𝐼) = {𝜔 ∈ Ω : 𝑋(𝜔) ∈ 𝐼} ∈ ℱ , (2.3.1)

for every 𝐼 ⊂ R. Thus, 𝑋 is a random variable if for any set 𝐼 ⊂ R, its inverse image
belongs to the 𝜎-algebra ℱ . Since it is guaranteed that 𝑋−1(𝐼) is an event (i.e., belongs
to the 𝜎-algebra), it is possible to assign probabilities to random variables. The usual
notation is capital letters for the function and small letters to its value, 𝑋(𝜔) = 𝑥.

Despite its technical definition, using random variables makes the calculus of proba-
bilities something very natural. The next concept regards the probabilities when dealing
with random variables.

2.3.1 Probability distribution
Consider a random variable 𝑋. If 𝑋 assumes only a countable number of values, then

it is defined as a discrete random variable. The probability distribution function (PDF) of
a discrete random variable is a function that assigns probabilities to the values of 𝑋. If
𝑋 can have the values 𝑥1, 𝑥2, . . . , then the probability distribution function 𝑝 : R → [0, 1]
is

𝑝(𝑥𝑖) = 𝒫(𝑋 = 𝑥𝑖) (2.3.2)

where 𝑋 = 𝑥𝑖 is the short notation for the set {𝜔 ∈ Ω : 𝑋(𝜔) = 𝑥𝑖}. Albeit the notation
may look “easy to get”, always keep in mind that a probability is assigned to an event
(i.e., a set), while the PDF is assigned to a real number.

Two important properties of 𝑝 are [31]
1.

0 ≤ 𝑝(𝑥𝑖) ≤ 1, for every 𝑖; (2.3.3)
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2. ∑︁
𝑖

𝑝(𝑥𝑖) = 1. (2.3.4)

The first property regards the non-negative values of a probability and the second property
is the normalization property, i.e., it reflects that 𝒫(Ω) = 1.

The PDF emerges quite naturally in this theory, but it is possible to define an even
more general quantity: the cumulative distribution function (CDF). The cumulative dis-
tribution function of a random variable 𝑋 in (Ω, ℱ , 𝒫) is defined by

𝐹𝑋(𝑥) = 𝒫(𝑋 ∈ (−∞, 𝑥]), (2.3.5)

with 𝑋 ∈ R. The event 𝑋 ∈ (−∞, 𝑥] is commonly written as 𝑋 ≤ 𝑥. It worths mentioning
that different authors give different names to the above defined functions,3 but we follow
here the usual nomenclature used by physicists.

The CDF [31] satisfies the following properties (which we are not going to prove)

1.
lim

𝑥→−∞
𝐹 (𝑥) = 0 and lim

𝑥→+∞
𝐹 (𝑥) = 1; (2.3.6)

2. 𝐹 is a right-continuous function;

3. 𝐹 is non-decreasing, i.e., 𝐹 (𝑥) ≤ 𝐹 (𝑦) whenever 𝑥 ≤ 𝑦 for any real numbers 𝑥 and
𝑦.

Moreover, for a discrete random variable, the CDF is given by

𝐹 (𝑥) =
∑︁

𝑥𝑖≤𝑥

𝑝(𝑥𝑖), (2.3.7)

and
𝑝(𝑥𝑖) = 𝐹 (𝑥𝑖) − 𝐹 (𝑥−

𝑖 ), (2.3.8)

where 𝐹 (𝑥−
𝑖 ) ≡ lim𝑥→𝑥−

𝑖
𝐹 (𝑥), (lim𝑥→𝑥−

𝑖
denotes the left-sided limit as 𝑥 approaches 𝑥𝑖).

Continuous random variables

Although much of this text is going to consider discrete random variables, another
important case is when the CDF, instead of being written as a sum (Eq.(2.3.7)), is given
by

𝐹𝑋(𝑥) =
∫︁ 𝑥

−∞
𝑓(𝜔)𝑑𝜔, for any 𝑥 ∈ R, (2.3.9)

for a random variable 𝑋 in (Ω, ℱ , 𝒫), where 𝑓 : R → R is a non-negative function. 𝑓 is
called the probability density function. This function satisfies

1.
𝑓(𝑥) ≥ 0, for any 𝑥 ∈ R; (2.3.10)

3In many cases, the CDF is simply called the probability function, which can cause a
lot of confusion regarding the names of these quantities.
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2. ∫︁ +∞

−∞
𝑓(𝜔)𝑑𝜔 = 1; (2.3.11)

which is the normalization property.

Analogously to the equation (2.3.8), we can also show that, for continuous random
variables,

𝒫(𝑎 < 𝑋 ≤ 𝑏) =
∫︁ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎), (2.3.12)

where we have used our simplified notation for the event 𝑋 ∈ (𝑎, 𝑏]. It is very interesting
to notice that for continuous random variables, the probability of a point is zero, given
the definition of the CDF as the integral of a density [31]. In physics texts, it is common
to write that the probability of a random variable to be within the interval (𝑥, 𝑥 + 𝑑𝑥) is
equal to 𝑓(𝑥)𝑑𝑥 [40].

2.3.2 Expected value and moments of a random variable
When performing any experiment, e.g., to calculate the light velocity, the air dielectric

constant, or the Young modulus of some solid, there is no way of knowing what is the
exact result of the experiment. One may repeat the experiment many times and find
very numerically close results, but after some decimal places, the numbers diverge in a
non-predictable way. This is because there are many errors involved in the experiment
and there can be no way to control some of them. Thus, the result of an experiment might
be described as a random variable, but it does not mean that its non-exact predictability
forbids learning from experiments.

For instance, distribution probability functions can be peaked around some number,
and this fact provides important information concerning what someone may expect from
an experiment. And that is where we find the concept of mathematical expectation or
mean of a random variable.

Let 𝑋 be a random variable in (Ω, ℱ , Ω). If 𝑋 is discrete and takes the values 𝑥𝑖

for 𝑖 ∈ 𝐼, then the expectation of 𝑋 (or the mean value of the distribution of 𝑋, or its
expected value) is defined as

E(𝑋) = 𝜇𝑋 =
∑︁
𝑖∈𝐼

𝑥𝑖𝑝𝑋(𝑥𝑖), (2.3.13)

where 𝑝𝑋 is the PDF of 𝑋 (if the sum is determined). If 𝑋 is continuous, then

E(𝑋) = 𝜇𝑋 =
∫︁ +∞

−∞
𝑥𝑓(𝑥)𝑑𝑥, (2.3.14)

where 𝑓𝑋 is the density probability function of 𝑋 (if the integral exists).
The expected value of 𝑋 is connected to the statistical average of the results of an

experiment. On the other hand, it can also happen that this value is not so meaningful.
Suppose an experiment is to throw an honest cubic dice. The showing face is the random
variable we are interested in, which can result in 𝑥𝑖 = 𝑖 for 𝑖 = 1, . . . , 6. Since the dice is
cubic and honest, 𝑝𝑋(𝑥𝑖) = 1/6. From Eq.(2.3.13), E(𝑋) = 3.5, and this value has almost
no meaning to the player.
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It is possible to define functions of random variables. These functions are also random
variables with different associated probability distributions. Then, concerning this new
PDF, one can also calculate the expected value of a function. We define the 𝑘−th order
moment of a random variable 𝑋, as

E(𝑋𝑘) =
∑︁
𝑖∈𝐼

(𝑥𝑖)𝑘𝑝𝑋(𝑥𝑖), (2.3.15)

for 𝑋 discrete, or
E(𝑋𝑘) =

∫︁ +∞

−∞
𝑥𝑘𝑓(𝑥)𝑑𝑥, (2.3.16)

for 𝑋 continuous (if these operations are determined).
These quantities can provide other information about the distribution, e.g. if it is

symmetric around some point or if it decays fast enough [41]. It is useful to redefine the
moments by discounting the mean value from the random variable: 𝑋 − 𝜇𝑋 . Hence, the
𝑘-th order central moment is defined as

E((𝑋 − 𝜇𝑋)𝑘) =
∑︁
𝑖∈𝐼

(𝑥𝑖 − 𝜇)𝑘𝑝𝑋(𝑥𝑖), (2.3.17)

for the discrete case and analogous for the continuous case.

Variance of 𝑋

For instance, the second central moment of a random variable 𝑋 is called its variance

Var(𝑋) = 𝜎2 = E((𝑋 − 𝜇𝑋)2). (2.3.18)

It is easy to show that 𝜎2 = E(𝑋2) − E(𝑋)2. The variance of a distribution gives infor-
mation about how much someone can expect that a value of an experiment deviates from
the expected value. For the honest cubic dice mentioned before, 𝜎2 ≈ 2.9. The square
root of the variance is called the standard deviation.

The next important step of this introduction would be to define random vectors [31],
which are indeed used in the following parts of this thesis, but in order to keep it gentle, we
are going to skip it. As a hint, a random vector can be taught as a multidimensional real
function, in which each coordinate is given by a different random variable. Probability
distribution functions in this case are called joint distributions and they represent the
probability of the intersection of the events that happen in each vector coordinate. All
the theory is developed in an analogous way to what we have done so far and the number
of formal references to the matter is very large [31, 36, 42].

2.4 Markov chains
The subject of this section would deserve its own chapter, but we are not planning to

exhaust its details, instead, we are only going to introduce what is sufficient to understand
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and develop the theory of Chapter 7. Notwithstanding, a Markovian process is a very
important concept when modeling biological systems and it can be very fruitful to delve
deeper into it. Many references can be suggested [37, 43, 44].

Previously, we talked about single experiments, e.g., to throw a dice once. But what
if someone is interested in throwing a dice many times and the specific sequence of results
is important? For instance, a gambler needs a specific sequence of results in order to not
lose all of his money. Suppose he bets all his money on the occurrence of a 6 and that
he does this procedure repeatedly. If the dice shows first a 6, then a 6 again, and then a
4, then he loses all his money in the third round. However, if it shows a 6 and then a 4,
then he loses his money in the second round. The order of the results matters! And the
results in every round can be modeled as random variables.

We define a stochastic process as a family of random variables {𝑋𝑡} indexed on 𝑡 ∈ 𝐼 ⊂
[0, +∞). If 𝑡 assumes only integer values, then it is a discrete-time stochastic process; if 𝑡
can assume any non-negative real values, then it is a continuous-time stochastic process.
This is a very powerful tool, which is able to describe many different dynamical systems.
The sequence of dice was just a very simple example. The price of an asset in the stock
market is very well described as a stochastic process [45]; the motion of pollen grains in
water [46], the electrical current in a noisy circuit [47], the number of predators and prey
in a given environment [48], the human population on Earth [49], they are all described
as sequences of random variables indexed on time. Even deterministic systems can be
accommodate in this definition with suitably chosen probability distributions (Dirac delta
functions).

For a discrete-time stochastic process on integer indexes {0, 1, 2, . . .}, up to time 𝑡, the
process is completely described by

{𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡}, (2.4.1)

for any sequence of real values 𝑥0, 𝑥1, . . . , 𝑥𝑡 ∈ 𝑆 ⊂ R that can be assumed by the random
variables. Suppose now that given the description of the process up to time 𝑡, someone
wants to calculate the probability of the next random variable

𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡).

The Markovian property is defined by

𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡) = 𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡), (2.4.2)

i.e., the probability of the next value of the process, given all its history, depends only on
its last value. Such system is called a Markov chain4, and the space 𝑆 is called the state
space while the values 𝑥 ∈ 𝑆 are the states of the system. 𝑆 can be finite or infinite.

4Higher order Markov chains (of order 𝑘) can also be defined by considering that
𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡) = 𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡, . . . , 𝑋𝑡 =
𝑥𝑡−𝑘+1) [44].
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Thus, for a Markov chain

𝒫(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡, 𝑋𝑡+1 = 𝑥𝑡+1)
= 𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡)𝒫(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡)
= 𝒫(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡)𝒫(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡) (2.4.3)

and then (and simplifying the notation),

𝒫(𝑥0, 𝑥1, . . . , 𝑥𝑡) = 𝒫(𝑥𝑡|𝑥𝑡−1)𝒫(𝑥𝑡−1|𝑥𝑡−2) . . . 𝒫(𝑥1|𝑥0)𝒫(𝑥0). (2.4.4)

A Markov chain is then completely defined by the transition probabilities

𝑃𝑖𝑗 = 𝒫(𝑥𝑖|𝑥𝑗), (2.4.5)

which corresponds to the probability of transition from the state 𝑗 to the state 𝑖.
From the total probability law (Eq.(2.2.8)),

𝒫(𝑋𝑡+1 = 𝑥𝑖) =
∑︁

𝑗

𝑃 (𝑥𝑖|𝑥𝑗)𝒫(𝑋𝑡 = 𝑥𝑗). (2.4.6)

If 𝑃 (𝑥𝑖|𝑥𝑗) is a function not only of 𝑥𝑗, but of 𝒫(𝑋𝑡 = 𝑥𝑗), then this system is called a
non-linear Markov chain [50]. We may simplify now the notation as 𝒫(𝑋𝑡 = 𝑥𝑗) → 𝒫𝑡(𝑥𝑗).

2.4.1 Perron-Frobenius theorem
Consider the state space to be the finite set {𝑛1, 𝑛2, . . . , 𝑛𝑚}. Thus, equation (2.4.6)

defines a matrix equation. Consider 𝒫𝑡 = (𝒫𝑡(𝑛1), 𝒫𝑡(𝑛2), . . . , 𝒫𝑡(𝑛𝑚)) and the transition
matrix P, whose elements are (P)𝑖𝑗 = 𝑃𝑖𝑗. Then,

𝒫𝑡 = P𝒫𝑡−1, (2.4.7)

and for a non time-dependent transition matrix,

𝒫𝑡 = (P)𝑡𝒫0. (2.4.8)

The transition matrix has two important properties [44]

𝑚∑︁
𝑖=1

(P)𝑖𝑗 = 1 and (P)𝑖𝑗 ≥ 0,

which defines a (left) stochastic matrix.
Given a stochastic matrix P, it is called irreducible if, given 𝑖 and 𝑗, there is a positive

integer 𝐿(𝑖, 𝑗) such that P𝐿 > 0. In other words, it means that after a finite number of
steps, there is a positive probability to occupy a state 𝑖 given that the system started on
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𝑗. Moreover, if there is an integer 𝐿 such that for every 𝑖 and 𝑗, P𝐿 > 0, then the matrix
is called regular [44].

Important properties of a stochastic matrix P are [44]:

1. P has at least one eigenvalue 𝜆 = 1.

2. Any eigenvalue of P satisfies |𝜆|≤ 1.

3. The eigenvector of the eigenvalue 𝜆 = 1 (which can be degenerate) corresponds to
a vector with no negative components.

4. The Perron-Frobenius theorem. If P is irreducible, then the eigenvalue of 𝜆 = 1
is non-degenerate. Also, the eigenvector has all components strictly positive. Non
regular matrices can also have other eigenvalues such that |𝜆|= 1.

5. For a regular matrice, all eigenvalues except for the 𝜆 = 1 satisfy |𝜆|< 1.

6. Let 𝒫 be the eigenvector of the eigenvalue 𝜆 = 1 of a regular matrix. Then, for
𝑡 → ∞, P𝑡 converges, and all its columns equal 𝒫 .

Therefore, for a regular stochastic matrix, equation (2.4.8) has a unique stationary so-
lution, (for 𝑡 → ∞) regardless of the initial condition 𝒫0, and it is equal to the eigenvector
of eigenvalue 𝜆 = 1 of the transition matrix,

𝒫 = P𝒫 . (2.4.9)

We shall finish now our introduction to Markov chains. Much more can be studied, but
what we have presented should be enough for the developments in Chapter 7. Now, let
us move on to another important subject of this thesis: the evolution theory and species
formation.
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Chapter 3

A bit more of Evolution

The word “evolution” has gotten its place in our daily vocabulary; people talk about
the evolution of cars, of medicine, of technology, and none of these pose the actual meaning
of what we call biological evolution. In biology, evolution means “descent with modifica-
tion” [1]. It is a very straightforward definition but it opens a vast world of implications.
To start with, evolution does not mean individuals are getting better, or improving, it
only means they change over generations (descents). What makes individuals change is
now known to be molecular processes, variations occurring at the gene expression level,
mutations appearing during the cell replication steps, the horizontal transference of pieces
of genetic material, or the recombination of parental DNA [8]. Nonetheless, what keeps
these modifications in a population, or drives them away, thus shaping diversity, together
with what produces them, are known as evolutionary forces.

When the evolution theory was conceived, the biomolecular origins of diversity were
not known. After the rediscovery of Mendelian genetics at the beginning of the 20th
century [51], the theory introduced by Wallace and Darwin [52] was perfected by Fisher,
Haldane, Wright, and others, and is now called the Synthetic Theory of Evolution [1,
7]. On the other hand, even in Darwin’s time, it already made sense that, since variants
were introduced, there would be mechanisms for them to remain, to accumulate, and to
give rise to so distinct organisms that a whole diverse set of life forms would be observed.
That is about such sense and the mechanisms behind, it that we aim to talk about in this
very short introduction, reaching, in the end, the concept of species and speciation.

3.1 Evolutionary forces
When an organism different from its ancestors (let us call it a mutant) appears in a

population, it can give rise to new individuals that are similar to it. Think about a red
bacteria that, due to a mutation, appears in amid a blue bacteria population. If it gets
to replicate, then more red bacteria would emerge, and, in an environment with limited
availability of nutrients, there could be fewer blue bacteria than in a previous generation.
Imagine then that, suddenly, a purple bacteria appears within the red population and
starts to replicate; the red population starts to decrease while the blue remains constant.
These changes in frequency appear, are sustained, or are carried away by the evolutionary
forces that act on the system and, particularly, on each trait (blue, red, and purple, in
the example).
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There are four different evolutionary forces, which can act in different organism scales
and account for different effects in the composition of a community:

• Mutations are the primary source of diversity;

• Gene flow sustains the genetic diversity;

• Random genetic drift decreases diversity;

• Selection accounts for adaptation and it increases or decreases diversity, depending
on the system.

Let us say a few words about each of these concepts.

3.1.1 Mutations
A mutation is a difference that appears in the genetic material when it is compared

with the previous generation. They thus can affect the gene expression of important
proteins, usually resulting in the cell’s death. They can happen naturally (molecular
decay), due to errors in the molecular processes behind replication or can also be induced
by radiation or mutagenic chemicals. In sexually reproducing individuals, when mutations
affect reproductive cells, they can be passed to the next generation. On the other hand,
somatic cells do not pass mutations forward, although a whole lineage of somatic cells is
going to be affected [8, 53, 54, 55].

Suppose that, in a given community, no mechanism can keep different organisms alive,
and every mutant dies after one generation. Thus, the only way to sustain diversity is to
keep a constant mutation rate: every couple of generations a new variant appears. This
is the role of mutations: it sustains genetic variability, thus being the ultimate source of
diversity [54, 55].

Different types of mutations can be identified. When happening within a sequence,
from one generation to the other, nucleotides can be inserted or deleted, which can affect
the expression of many genes; they can also be substituted for a different base, or sub-
sequent bases can be inverted. Moreover, another type of mutation may occur in larger
groups of genes called chromosomes. The Down Syndrome [56], for instance, is a human
condition resulting from the existence of three copies of the chromosome number 21 (in
non-mutant cells, there are only two copies).

An important feature of mutations is their random aspect. Mutants are not pre-
dictable, i.e., there is no way to know when or what is going to happen, and that is where
probability theory and population genetics come to the stage.

3.1.2 Gene flow
The exchange of genes among populations is called gene flow [57]. Individuals can

interchange genes horizontally [58], e.g. bacteria can perform what is known as conjugation
[59], acquiring small fragments of genetic material dispersed in the cytoplasm of different
cells; sexual reproduction mixes the genetic material of different individuals within the
offspring, which can homogenize different populations since it allows them to evolve – to
change – in correlated ways.
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Some individuals have multiple copies of the same set of genes. Diploid species have
two: one copy coming from the mother and the other from the father. The copies may
be different, having different alleles of a given gene. However, some alleles may show
dominance behaviors over others, thus governing the gene expression regardless of the
other copy, the recessive allele. Hence mating is not always going to result in diverse
phenotypic populations, but it can silently spread genes out, sustaining genetic diversity.

Mobility is an important factor for gene flow, as well as dispersal and migration [60].
Constant gene flow within a community correlates the evolution of the individuals, pro-
viding a major hurdle to diversification in larger scales (species formation).

3.1.3 Genetic drift
While mutations are a source of variability and gene flow is a way of spreading it out,

the random genetic drift is a sink of diversity [61]. As the name points out, this is a
random process, through which genes can be lost. Suppose only one individual carries
a mutant allele of a gene. If this individual dies before reproducing, then this allele is
going to be lost. Indeed, if only a few individuals carry a given allele, it is easier for it to
be lost due to their death. On the other hand, if these individuals reproduce more than
the average, they can randomly drive other alleles to extinction. This random frequency
change of genetic material is called random genetic drift.

It strongly affects small populations, since they are more susceptible to random events
than bigger ones. As an example, suppose you toss a coin three times. The probability
of getting only heads is 1/8. If you toss it 5 times, it decreases to 1/64, and it keeps
decreasing for larger numbers of tosses. This is the same reasoning behind the fixation of
a gene through random drift: the chance of all individuals that carry a given allele to die
without any offspring decreases as the population size increases1.

Mutations are then balanced by genetic drift. As soon as a mutant appears, it needs
to “win” over random death events to pass this variation on. In an infinite population,
any allele with positive frequency is conserved as long as it does not display disadvantages
for survival when compared to other alleles.

3.1.4 Selection
As the reader may have noticed, the sink and the source of variability are governed by

random events: mutations appear randomly and genes can be lost randomly. Selection is
what gives some direction to randomness. If a given trait increases the survival rate of
an individual, then its reproduction rate may increase as well as its frequency. It is like
tossing a biased coin, in which it is more likely to get “all heads” than “all tails”. A trait
that survives under this mechanism is said to be positively selected, while if it decreases
the rates of reproduction, it is said to be negatively selected. A trait that evolves without
any selection is called neutral [1].

1In probability theory, this correlates with first passage problems, which is usually
exemplified with the gambler’s ruin: once a gene is lost, it is lost (although nothing
forbids it from appearing again because of a mutation), like a gambler when it runs out
of money (although nothing forbids it from receiving more money from another person).
This effect is also related to absorbing states of Markov chains [62, 63].
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Selection can be natural, as pointed out by Darwin in On the Origin of Species [64]. He
noticed that finches have different beak types in different Galapagos islands, but they were
all well adapted to the existent food type. Natural selection explains adaptability. Bacteria
that are resistant to a given antibiotic are not better than the non-resistant, but they are
well adapted, i.e., they can survive and successfully replicate, in an environment containing
that chemical [65]. Every living system is subjected to natural selection. The frequency
of adults able to digest lactose – a sugar present in milk and its derivatives – is higher
in regions where the society developed around dairy farming. Mammals stop digesting
lactose after a certain age, at which they stop to breastfeed, but humans developed the
ability to digest it at older ages, giving them the possibility to survive in communities
where diet was based on milk derivatives. This ability is tracked back to a mutation that
happened only a few thousand years ago, which was positively selected by the local food
availability [66].

But selection can also be artificial. Scientists are constantly choosing in laboratory
different strains of plants with higher resistance to certain environmental conditions [67].
A certain corn variety could be better to resist in dry weather than in rainy one. Thus
it may not be feasible to harvest it in a tropical region, but after carefully separating it
in lab cultures, they could be exported to dry countries. More docile lineages of animals
are favored for farming over aggressive ones; plants are selected concerning their “food
quality” over their natural survival.

Selection is also classified according to its effects. If it keeps diversity as it is, eliminat-
ing very different traits and favoring the common ones, it is known as stabilizing selection.
When it constantly moves the common trait to a different one, it is a directional selection.
Selection can also divide the population into different traits, favoring extreme characters
over the common ones, which is known as disruptive selection [1].

Other types of selection can be identified, such as sexual selection [68] and kin selection
[69]. Some traits do not confer survival benefits but even so, increase the reproduction
rates of individuals. Some of them are correlated to good survival genes, despite being
very inefficient, like the beautiful and big tails of peacocks [70, 71]. Sexual selection
acts in favor of these traits, making individuals to preferentially mate with those that
pose a specific character over the others. Individuals also get benefits from genealogically
closer individuals than from farther ones. This is called kin selection. An extreme case
is infanticide practices documented in many species [72, 69, 73]. In non-human primates,
for instance, males kill the offspring of a female and are then able to reproduce with her.
This keeps the community with close related genetics, diminishing the gene flow between
far lineages.

3.2 Quantitative models of evolution
It is possible to model a system subjected to evolution by including the evolutionary

forces one by one. Let us briefly study, as an introduction to the mathematical journey
we are going to engage in the next part of this thesis, three different models, which show
the quantitative descriptions of the concepts introduced so far.
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3.2.1 The Hardy-Weinberg equilibrium
We must now introduce other concepts of genetics. The set of all genetic material

contained in an individual is called its genotype. The genes are expressed as proteins
whose “sum” ends up in observable traits, which describe the phenotype of the individual.
Different genotypes can be related to the same phenotype. For communities evolving
under sexual reproduction, there are specific cells that are combined to generate the
offspring, the gametes. Gametes are formed through a cell division named meiosis, which
give rise to four daughter cells. In diploid individuals, each daughter cell contains only
one copy of the genetic material: two with the paternal copy and the other two with the
maternal copy [1].

In such a system, a trait is hence given by the combination of the genes coming from
its parents. The different forms a gene can assume are called its alleles. Suppose a given
gene has two alleles, i.e., it is biallelic. An important observation in genetics is that genes
show dominance patterns, in which one of the alleles (the dominant) can suppress the
effect of the other, the recessive. Let us call them 𝐴 for the dominant and 𝑎 for the
recessive. Whenever 𝐴 is present, the effect of the recessive is not shown. Therefore, an
individual can have 3 different genotypes regarding this gene:

𝐴𝐴; 𝐴𝑎; 𝑎𝑎

and two different phenotypes: 𝐴𝐴 and 𝐴𝑎 expresses the same observable trait (e.g. eye
colors) while 𝑎𝑎 express a different one. If the two copies of a gene in an individual have
the same allele, it is called an homozygote, and when they have different alleles, it is an
heterozygote [1].

A very natural question that arises concerns the frequencies of genotypes and pheno-
types in a population. Given the number of individuals of a given genotype, what can
someone expect concerning the next generation? The answer to this question was given
first by W. Weinberg in 1908 and, later and independently, in the same year, by G. H.
Hardy [74, 75].

Suppose an indefinitely large population with three different genotypes and propor-
tions:

AA Aa aa
P Q R

Therefore, the proportions of the gametes (given the rules of meiosis) are given by:
A a

𝑝 = P + (1/2)Q 𝑞 = R + (1/2)Q
Thus, in the next generation (represented with a prime ’), if all alleles are equally

likely to reproduce, the genotype proportions are going to be:
AA Aa aa

P′ = 𝑝2 Q′ = 2𝑝𝑞 R′ = 𝑞2

with 𝑝 + 𝑞 = 1. Observe that, in the following generation,

P′′ = (P′ + (1/2)Q′)2 = 𝑝2 ⇒ P′′ = P′,

Q′′ = 2(P′ + (1/2)Q′)(R′ + (1/2)Q′) = 2𝑝𝑞 ⇒ Q′′ = Q′,

R′′ = (R′ + (1/2)Q′)2 = 𝑞2 ⇒ R′′ = R′,
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and thus the genotypic proportions are conserved from the first to the second generation.
This is called the Hardy-Weinberg equilibrium, which is achieved after one reproduction
step and is therefore a stable equilibrium. The Hardy-Weinberg’s law starts the field of
population genetics and it is the starting point for quantifying the effect of other evolu-
tionary forces on a given system [75].

3.2.2 The effect of selection
The previous model considers a situation in which all individuals have the same chances

of reproduction, called a panmictic population. Because its size is considered to be in-
definitely large, there is no random drift; also, mutants are not introduced in the system.
Therefore, the only evolutionary force considered is the gene flow. We shall now consider
a case in which the dominant allele is positively selected. To quantify the selection, we
introduce the concept of fitness, which is a measure of adaptation. The greater the fitness
of an individual, the greater its reproductive success, i.e., its chance of reproduction [1].

Let the selection coefficient 𝑠 be a decrease in the fertility rate of the recessive ho-
mozygote, and let the phenotype proportions be:

Genotype: AA Aa aa
Proportions: P Q R

Fitness: 1 1 1-s

Hence, in the next generation,

P′ = 𝑁(P + (1/2)Q)2 = 𝑁𝑝2,

Q′ = 𝑁2(P + (1/2)Q)(R + (1/2)Q) = 𝑁2𝑝𝑞,

R′ = 𝑁(1 − 𝑠)(R + (1/2)Q)2 = 𝑁(1 − 𝑠)𝑞2,

where 𝑁 is a normalization factor calculated with P′ +Q′ +R′ = 1, hence 𝑁 = 1/(1−𝑠𝑞2).
These frequencies are no longer in equilibrium, as can be seen by the new frequency 𝑝′ of
the dominant allele 𝐴,

𝑝′ = P′ + (1/2)Q′ = 𝑝

1 − 𝑠𝑞2 ,

which increases by an amount

Δ𝑝 = 𝑝′ − 𝑝 = 𝑝
𝑠𝑞2

1 − 𝑠𝑞2 . (3.2.1)

Therefore, selection is able to fixate a gene in the population, by increasing its fre-
quency in the course of generations. This model is due to Haldane [75] and we can easily
include an effect of mutations between both alleles. Suppose 𝐴 is converted into 𝑎 with
mutation rate 𝜇. Then, if the system is found to be in equilibrium,

Δ𝑝selection = −Δ𝑝mutation
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where Δ𝑝mutation = −𝜇𝑝. This way, for small selection 𝑠,

𝑞 =
√︁

𝜇/𝑠 (3.2.2)

and thus the selection-mutation ratio is easily calculated as the square of the recessive
allele frequency [75].

3.2.3 The effect of genetic drift
The Hardy-Weinberg equilibrium is satisfied in the absence of genetic drift. When

populations are finite, there is a non zero chance of losing genes due to random fluctua-
tions. If the nutrients are limited, an environment can support only a certain number of
individuals, which gives rise to variations in the number of genes from one generation to
the next by pure chance. Eventually, one gene disappears and the other is fixated (in the
absence of mutations).

(Here we follow the discussion in M. Ridley, 2006 [1]).

Suppose a population of 𝑁 diploid individuals with a biallelic gene; there are thus
2𝑁 genes. In the Hardy-Weinberg equilibrium, the homozygous frequency is kept the
same. How does it change for a finite population? Suppose that a gamete with an allele
𝑎 finds another gamete with allele 𝑎 coming from the same progenitor, in a process called
self-fertilization. This happens with probability 1/2𝑁 .2 But a gamete can also combine
with another gamete, containing the same allele, coming from different progenitors. The
chance of such case is 1 − 1/2𝑁 .

Now, suppose that, in the parental generation, the frequency of the allele 𝐴 is 𝑝, and
𝑎 is 𝑞 = 1 − 𝑝. Thus, the chance of forming a homozygote with two independent gametes
is (𝑝2 + 𝑞2)(1 − 1/2𝑁). But 𝑝2 + 𝑞2 = 𝑓 is the homozygose frequency in the parental
generation3. Combining this result with the self-fertilization probability, we find that

𝑓 ′ = 1
2𝑁

+
(︂

1 − 1
2𝑁

)︂
𝑓 (3.2.3)

is how the homozygous frequency changes from one generation to the next. Notice that
𝑓 = 1 is a stable equilibrium of the system, and thus one gene is going to disappear due
to the random genetic drift.

Including mutations

If we add a mutation chance 𝜇 for each gene, with which an allele is changed to the
other, then the chance of non-mutation is 1 − 𝜇, and the homozygosity changes according

2The picture here is a population whose individuals release their gametes in the envi-
ronment, and the gametes find each other. The number of gametes per individual is very
large and it is considered to preserve the parental frequencies

3Notice that this quantity is given at the gametes level. A population composed of only
𝐴𝐴 and 𝑎𝑎 has only homozygotes, but 𝑓 equals 1/2. Nonetheless, it equals the fraction
of homozygote individuals in the Hardy-Weinberg equilibrium.
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to
𝑓 ′ =

(︂ 1
2𝑁

+
(︂

1 − 1
2𝑁

)︂
𝑓
)︂

(1 − 𝜇)2, (3.2.4)

whose equilibrium 𝑓 ′ = 𝑓 = 𝑓𝑒𝑞 is now given by

𝑓𝑒𝑞 ≈ 1
1 + 4𝜇𝑁

< 1, (3.2.5)

where the approximation holds for 𝜇 ≪ 1, and we then see that mutation can balance the
effects of diversity loss [1]. The result in equation (3.2.5) is going to appear again in this
text, but for a system with many loci, thus being a quite remarkable result.

The Wright-Fisher model

For completeness, we shall mention the Wright-Fisher model, in which a haploid,
asexual finite population evolves in non-overlapping generations. It was introduced by
Sewall Wright (1931) [6] and Ronald Fisher (1930) [4]. In the model, individuals carry
the allele 𝑎 or the allele 𝐴. If an individual reproduces, it is going to generate offspring
carrying the same gene. Given a fixed population size 𝑁 , and the number 𝑋𝑡 of individuals
that carry the gene 𝑎 at generation 𝑡, we can ask what the number of individuals carrying
𝑎 in the next time step 𝑡+1 is. Hence, the system defines a Markov chain, with transition
probabilities [76]

𝑃𝑖𝑗 =
(︃

𝑁

𝑖

)︃(︂
𝑗

𝑁

)︂𝑖 (︂
1 − 𝑗

𝑁

)︂𝑁−𝑖

, (3.2.6)

to move from state 𝑋𝑡 = 𝑗 to 𝑋𝑡+1 = 𝑖. In other words, this model is like an urn with
two colors of balls, from which someone samples sequences of balls with replacement.

We can see that the states 𝑗 = 0 and 𝑗 = 𝑁 are absorbing states, i.e., once the system
reaches 𝑋𝑡 = 0 or 𝑋𝑡 = 𝑁 , it is going to remain there with probability 1. These states
correspond, respectively, to the fixation of the allele 𝐴 and the allele 𝑎.

We are going to use the same type of modeling when talking about abundance distri-
butions in Chapter 7.

3.3 What are Species?
The pinnacle of diversity is to be able to distinguish between types of individuals. To

claim that an organism is not the same as another is where daily observations come to
place and the idea of biodiversity makes sense to the common knowledge: a cat is not
the same as a dog, an eagle is not a falcon, a bee is not ant, or a palm tree is not a pine
tree. These different types of living beings are known as species, the thinnest division of
life forms. But what does separate them? What does differentiate a Panthera leo (lion)
from a Panthera tigris (tiger)?

Another important question is whether the concept of a species, i.e., the idea of di-
viding types of living beings into groups, is something natural or artificial [77]. The
discussion is not fruitless but still unsolved; it regards the types of communities and the
reproduction types they have. We hence stick to the fact that life can be shown in differ-
ent forms, from mosquitoes to bears, from bacteria to plants, and then there are different
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“things”, units that we can recognize. These units are the species and then we take them
as real entities, not mere artifacts of science. However, what defines the boundaries of
closely related species is still a contentious problem [78]. In practice, taxonomists have
no problems in differentiating lions from tigers (not even a child would have this problem,
I must say), but what if a tiger gives birth to tigers that have a very different pattern of
lines? Do they belong to the same species?

In order to easily state how far this subject can dive, we observe that there are more
than 30 different concepts of species4 [19, 79]. Two important concepts are:

• Biological concept: “interbreeding natural populations reproductively isolated from
other such groups;” [19]

• Ecological concept: “a lineage (or a closely related set of lineages) which occupies
an adaptive zone minimally different from that of any other lineage in its range and
which evolves separately from all lineages outside its range.” [19, 80]

The biological species concept was introduced by Dobzhanski (1935) and restated in
many ways, being very advocated by Ernst Mayr (1942), who detains a lot of its credits
[81]. This concept defines a species as groups of individuals that can interbreed, i.e., mate
and produce fertile offspring. Reproduction leads to closely related individuals, who share
large sets of genes and hence have many characters in common. Therefore it well suits the
works of taxonomists but does not exhaust it 5. The reproductive isolation, for instance, is
not easy to determine – indeed not possible in the fossil record. We shall emphasize that
isolation here regards the existence of reproductive barriers, which are characters that
evolved and led to the hindering of reproduction. We thus exclude geographical barriers
from this definition.

If a given species inhabits two different geographical places, there is no breeding be-
tween the two populations, thus they do not naturally reproduce, but it does not mean
they are not the same species, there is just no easy way to test their breeding behav-
ior. Reproductive isolation can be distinguished between pre-zygotic and post-zygotic. In
pre-zygotic isolation, individuals do not copulate due to some mechanism: body incom-
patibilities, non-matching of fertile periods, sexual selection, etc, but it does imply that,
if they mate, they cannot produce a fertile offspring. Post-zygotic isolation means that
the different species can mate and the zygote is formed, but this is non-viable or sterile
[1].

The borders of a biological species can therefore be ill-defined since reproductive iso-
lation is not straightforwardly testable. The other concept listed here, in contrast, is the
ecological species concept, which decides between species according to their niche occu-
pation. The niche is the habitat and the resources consumed by the individuals, which
therefore define a species. Adapting to an environment can lead to reproductive isola-
tion to some extent. For instance, reproduction between different ecological species can
decrease the fitness of the offspring, who could be poorly adapted to any of the parental
niches. Ecological adaptations can thus produce a biological species with no need for
intricate arguments, but this is not valid for every case [1].

The species problem is indeed a subject for theoretical biology, not an exactly great
issue for species identification. Citing Orr (2022), “taxonomists have been describing

4As stressed by Wilkins [2], the concept is actually only one: species, which has many
different conceptions or definitions.

5Taxonomists classify species according to morphology and other observable and mea-
surable traits [1].
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species for centuries (Costello 2022), so a universally accepted definition for species is
clearly not a prerequisite for taxonomic research.”[82].

3.4 Species formation processes
The mutability of species was not a problem for pre-Darwinian beliefs; the bible itself

does not request the constancy of living beings and even Christian thinkers, such as Saint
Agostine, accepted that old species could give rise to new ones [2]. Linneaus intervened in
the name of the species-fixism in 1735, when he came up with his classification system [83].
Evolution puts this idea in check, by successfully explaining diversity and (importantly)
adaptation. The forces involved in the diversification process have already been presented,
but its utmost effect is the emergence of new species, which we address in this section
now.

By species, we mean the biological concept. New species are then formed when indi-
viduals evolve to reproductively isolated groups. Natural selection is an important force
in this process, which is called speciation. When individuals are separated and there is
no gene flow between different groups, evolution in each subgroup becomes uncorrelated,
and different selection pressures can drive different adaptations. What is surprising (but
well documented) is that ecological adaptations are followed by reproductive isolation.
In an experiment by Diane Dodd (1984, 1989), different populations of flies (Drosophila
pseudoobscura) grew in different media (one starch-based and one maltose-based) [84, 85].
After getting adapted they were shown to be under (pre-zygotic) reproductive isolation.

Geographical modes of speciation

In Dodd’s experiment [84, 85], it is noteworthy that the gene flow was interrupted
between the populations. This situation is called allopatry and hence the emergence of
reproductively isolated species without gene flow is called allopatric speciation. This is
a non-contentious process, with lots of evidence, ranging from natural observation to lab
experiments [77]. The strife arises when gene flow is not completely absent from popula-
tions. When individuals still mate, regardless of their place of birth [86], the community
is sympatric and when species emerge in such a case, it is known as sympatric speciation.
These different modes of speciation directly correlate with the communities’ spatial struc-
ture, thus they are called geographical modes of speciation [77]. Geographical barriers,
like rivers and mountains put populations in allopatric conditions, while the coexistence
in a lake, for instance, is likely to put the aquatic life in sympatry. Intermediate cases,
with non-complete gene flow, are called parapatric.

The sympatry problem

The effects of divergent selection in a sympatric community were already considered
by Darwin as an important process of diversification and species origin, but as Mayr
(1963) showed inconsistencies between theory and observations, a lot of work was devoted
to show that this mode of speciation, although not the norm, could be reproduced in the
laboratory as also found in the field [77].

It is rather counterintuitive that different species can be formed within a community
in the presence of gene flow. Recombination is taught to balance mutations and thus
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selection should play a major role if species are in fact emerging in such a situation [87].
On the other hand, there is some evidence of this process [88], but the definition of what
a sympatric speciation really means should be under debate [89]. Gavrilets [86] points out
the need for a more generical definition (the one we used here), for modeling purposes, as
a way of diminishing the number of parameters. But an “easier to take” is the emergence
of species within the cruising range (which is similar to the one given by Mayr, 1942 [77,
86])6.

C. H. Martin calls [89] the definition above as easy , and argues that the “truly elu-
sive beast, that original sought-after Lernean Hydra, is empirical evidence in nature for
sympatric speciation under the population genetic definition (Richards et al. 2019).” [89]
For the easy case, Coyne and Orr established four criteria of analysis [77]:

1. Species should be found in sympatry;

2. Species should be under reproductive isolation;

3. Sympatric taxa must be sister groups7 and not resulting from hybridization processes;

4. Evolution and geography should make the existence of an allopatric phase very un-
likely.

Martin then includes a fifth challenge, that any secondary gene flow (coming from other
species) should be proven to not contribute to reproductive isolation [89].

But apart from the defiances enlighted by genomic data, there are examples of (what
can be a case of) sympatric speciation. Perhaps the most elusive are the cichlid fishes,
a family of fishes (Cichlidae) that can be found in the whole African continent, Central
and South America, as well as other smaller locations. A study with two sister species
in Lake Victoria8 shows that they are in reproductive isolation due to sexual selection
[90]. The males of the species Pundamilia nyererei and Pundamilia pundamilia, which
are sympatric and sister species inhabiting the lake, have different color patterns. Under
white light, the females mate with their own species. However, under monochromatic
light, when the colors are indistinguishable, there is interspecific breeding.

Another example of cichlids comes from the lake Apoyo, in Nicaragua, where the two
species Amphilophus citrinellus (midas cichlid) and Amphilophus zaliosus (arrow cichlid)
live in sympatry [91]. The authors show lots of evidence for the sympatric speciation
process from which A. zaliosus evolved from A. citrinellus, including that the Midas
cichlid was seeded only once by an ancestral in the lake. Another study [92] also shows
strong evidence, even regarding secondary gene flow, for sympatric speciation of other
species of midas fish on different other crater lakes in Nicaragua, close to Lake Apoyo.

Sympatric speciation, albeit still contentious, does seem to play an important role
in natural communities. Different definitions of what it is and which are its constraints

6This definition is mentioned here because it directly defines the processes we discuss
in Part II as sympatric processes. Notwithstanding, the process also falls into Gavrilets’
definition [86], but because of its absence of spatial structure, there is no sense in the
expression place of birth.

7It means the species are the closest relatives they have, descending from the same
node in a genetic tree.

8One of the African Great Lakes, in East Africa, with its area extending through
Tanzania, Uganda and Kenya.
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entangle with the challenges in defining a universal concept of species. In speciation re-
search, Gavrilets [86] points out the necessity of general analytical results, as models have
been developed to account for specific cases in numerical ways, being hardly reproducible
and reused in different contexts – he seems to outline the same general issues concerning
agent-based modeling. But it is important to highlight that research in evolution did not
stop and neither on speciation. The genomic revolution is still one step more towards the
end of the debates and the controversies concerning diversity origins, but it is still not the
last one (in the case there is a last one).

We have now finished this very brief introduction to the theory of evolution. A lot is
still missing, but in the case I have put some curiosity pill into the reader’s mind, there are
many specific and complete books on the field [1, 93, 77]. We aimed to reach speciation
and its counterintuitive sympatric case, to which we hope to make some contribution.
Nonetheless, it is going to be even more curious that the model we present in Part II,
introduced by Derrida and Higgs in 1991 [94], resembles the sympatric species formation
but without differential fitness: thus in the absence of disruptive selection. But let us
take baby steps and introduce now (in an even more compact way) the next and last tool
of this manuscript: the network theory.
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Chapter 4

Network theory in a nutshell

This chapter is as brief as it can be, acting much more as a glossary than a proper
introduction to the field of complex networks. This field is a very rich world, with appli-
cations ranging from social sciences to electrical power grid systems, and here are only
presented the necessary concepts that are used later in the text. The reader is then
referred to specific literature for further readings [95, 96, 97].

4.1 What are networks?
Complex systems are those whose behavior cannot be directly explained by the sum of

the behavior of its smaller components [98]. Emergent properties appear in such systems,
in spite of the involved rules do not directly describe the observed behavior. A beautiful
example is the flock of birds, or fish schools [99], in which interactions are modeled as
being short-distance but their movement shows long-distance correlation lengths [100].
The actual description of such systems passes through depicting which animal interacts
with whom. For instance, by numbering them, we could say that the bird number 52
interacts with the 51 and the 53. The interaction network is then the set of birds and the
set that describes who interacts with whom.

Metabolites in a cell can also be described in the same way , with their connections
defined as chemical reactions taking from one compound to another. Actors who worked
together in a movie can also define a network as scientists who have coauthored papers
[101, 102, 103]. Hence, a network is a list of the smallest components (called nodes) of a
system and the connections between them (called links).

The mathematical theory that deals with networks is the graph theory [104], in which
nodes are called vertices and links are called edges. A graph 𝒢 is an abstract mathematical
formulation of a network and it is defined as the pair of sets (𝒱 , ℰ), where the set 𝒱 =
{𝑣1, . . . , 𝑣𝑁} denotes the vertices and the set ℰ = {𝑒1, . . . , 𝑒𝑀} denotes the edges. The
words “Graph” and “network” in this text are then used interchangeably.

4.1.1 Definitions and characterization
There are important definitions in graph theory, as well as features of networks that

distinguish them. Let us introduce now some of the important concepts, which are going
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to be used further in the text [96, 97].

• Network size. The size 𝑁 of a network is the number of its nodes, i.e., the
cardinality of the set 𝒱 : 𝑁 = #(𝒱).

• Directed and undirected graphs. The connections between nodes can be directed
or undirected. For instance, a paper 𝐴 may cite a paper 𝐵, however, 𝐵 does not cite
𝐴. On the other hand, if Alice publishes a paper with Bob, then Bob has published
a paper with Alice. Hence direction can be a feature of links or not. When all links
are directed, then the network is directed. If all nodes are undirected (as for the
networks that are going to appear in the following chapters), then the network is
said to be undirected.

• The adjacency matrix. A network is defined by its nodes and links. A link does
not need to be named: it can be given according to its initial and final nodes, e.g.,
the link (𝑖, 𝑗) connects node 𝑖 to node 𝑗. Therefore, a network can be fully described
by a square 𝑁 × 𝑁 matrix A, with elements

𝐴𝑖𝑗 = 1, if there is a link between nodes 𝑖 and 𝑗;
𝐴𝑖𝑗 = 0, otherwise.

The matrix A is called the adjacency matrix. If A is symmetric, 𝐴𝑖𝑗 = 𝐴𝑗𝑖, then
the network is undirected. Notice that if 𝐴𝑖𝑖 = 1 for some 𝑖, then the node 𝑖 is
connected to itself, which is defined as a loop.

• Complete network. If every node is connected to all other nodes (without loops),
then the network is called complete. For a complete network, 𝐴𝑖𝑗 = 1 for every 𝑖 ̸= 𝑗
and 𝐴𝑖𝑖 = 0 for every 𝑖.

• Path between nodes. If one can follow the links in a network (respecting their
directions), from a node 𝑖 to another node 𝑗, then there is a path between nodes 𝑖
and 𝑗. A path is then a sequence of nodes that are connected by links.

• Connected nodes. Two nodes 𝑖 and 𝑗 are then connected if there is a path between
them. If all pairs of nodes of a network are connected, then the network is also
called connected. An irreducible matrix (section 2.4.1) is thus a stochastic matrix
that describes a connected network.

• Components of a network. In a network, some subsets of nodes might be not
connected to the others. A connected subset of nodes of a network is called a
component whenever the addition of another node to this set makes it not connected.

• Degree of a node. The number of other nodes 𝑗 that a node 𝑖 is connected to in
an undirected network is called the degree 𝑘𝑖 of the node 𝑖. For instance, the degree
of any node in a complete network of size 𝑁 is 𝑘𝑖 = 𝑁 −1. In terms of the adjacency
matrix, the degree is given by

𝑘𝑖 =
∑︁

𝑖

𝐴𝑖𝑗. (4.1.1)

• Degree distribution. When drawing a random node 𝑖 of a network, its degree
follows a probability distribution 𝑝𝑘 = 𝒫(𝑘𝑖 = 𝑘), called the degree distribution.
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For a given network, the degree distribution is given by the histogram 𝑝𝑘 = 𝑁𝑘/𝑁 ,
where 𝑁𝑘 is the number of nodes with degree 𝑘. The mathematical form of such dis-
tribution has been shown to play an important role in dynamic behaviors displayed
by networks. For instance, the epidemic size of a given disease outbreak1 changes
if the population is connected as a Poissonian or as a power-law degree distribution
[105, 106].

4.2 Random networks
When modeling real systems as networks, deciding which links are connected to each

other is a very important step. For instance, it may be obvious from road maps how to
describe the cities in a given region as a network, but if one is interested in obtaining gen-
eral traffic properties of a non-specific place, “prototypical” networks should be designed.
Suppose the following procedure: start with a set of 𝑁 nodes; then connect each pair of
nodes with probability 𝑝. The resulting graph is called a random network.

The random network model first appeared in 1951, in a paper by R. Solomonoff and
A. Rapoport [107], who proved the existence of a transition in this scheme2. Around
a decade later, in a series of papers, P. Erdös3 and A. Rényi consistently studied the
properties of this network, which is now also known as Erdös-Rényi network [97, 111].

4.2.1 Degree distribution
What are the properties of a random graph? For every node, there can be 𝑁 −1 links,

and each of them exists or not with the same probability 𝑝. This is the same as asking
how many times a biased coin shows up a head in a total of 𝑁 − 1 tosses. If the success
(tossing a head) is given with probability 𝑝, the probability of tossing head 𝑘 times is
given by the binomial distribution

𝑝𝑘 =
(︃

𝑁 − 1
𝑘

)︃
𝑝𝑘(1 − 𝑝)𝑁−1−𝑘, (4.2.1)

and this is the degree distribution of a random network with parameter 𝑝. Thus the
average degree, i.e., the average number of links of a node, is

⟨𝑘⟩ =
𝑁−1∑︁
𝑘=0

𝑘𝑝𝑘 = 𝑝(𝑁 − 1), (4.2.2)

1The epidemic size is the number of infected individuals by the end of the outbreak.
2It is remarkable that the authors were interested in mathematical biology and that

they provided, in the text, examples in neuroscience, epidemiology, and genetics [107].
3Paul Erdös was a very prolific Hungarian mathematician, with contributions to many

different fields. His large network of collaborations motivated the definition of the Erdös
number : the smallest number of links (path length) on the papers coauthoring network
a scientist has between itself and Paul Erdös [108]. Mine is 5. You can check yours at
https://mathscinet.ams.org/mathscinet/freetools/collab-dist [109]. A related
definition is the Bacon number [110], which connects artists with the actor Kevin Bacon.

https://mathscinet.ams.org/mathscinet/freetools/collab-dist
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and thus the probability of connection 𝑝 can be measured as a function of the average
number of links, 𝑝 = ⟨𝑘⟩/(𝑁 − 1) [96].

When constructing a random network, different structures can be observed as a func-
tion of 𝑝. As 𝑝 = 0, no node is connected to each other, but when 𝑝 = 1, every node is
connected to all other nodes. Thus the system must pass through a transition. It can be
shown that when ⟨𝑘⟩ = 1, there is the emergence of a giant component, i.e., the size 𝑁𝐺 of
the largest component in the network is macroscopic when compared to the network size
𝑁 , (𝑁𝐺/𝑁 > 0) as 𝑁 → ∞. It can also be shown that the random network still passes
through another transition, for ⟨𝑘⟩ = ln 𝑁 , above which the network becomes connected
[96].

4.3 Scalefree networks
However, real networks display features that are not obtained in the random network

model. In 1967, Stanley Milgram showed that social networks are more “connected” than
we would expect from random networks: people are much closer than that [112]. In
social sciences, Milgram’s result became known as the “six degrees of separation”, and
the concept of small world appeared. In 1998, Watts and Strogatz published their work
on collective dynamics over a model of networks that would resemble the properties of
Milgram’s small world [113].

In 1998 and 1999, Albert-Laszlo Barabasi and Reka Albert found that the internet
webpages network shows a power-law degree distribution, as also the wires of a computer
chip, a power grid, and the Hollywood actors [96, 102, 114]. Real networks hence show
more complex structures than pure random graphs, and that is why they are called complex
networks.

Power-law degree distributions have the form

𝑝𝑘 ∼ 𝑘−𝛾 (4.3.1)

for 𝑘 ≫ 1 and such networks are called scalefree when 𝛾 ≤ 3. Scalefree distributions
with 𝛾 > 2 have finite mean but a divergent second moment. They are called sparse
because the number of links 𝐿 it has is 𝐿 ∼ 𝑂(𝑁). For instance, we can compare it with
a random network. In such a graph, each one of the possible 𝑁(𝑁 − 1)/2 links exists
with probability 𝑝. Thus ⟨𝐿⟩ = 𝑝𝑁(𝑁 − 1)/2 ∼ 𝑂(𝑁2). Networks with 𝐿 ∼ 𝑂(𝑁𝛼) with
𝛼 > 1 are said to be dense. Scalefree networks with 𝛾 ≤ 2 are also dense [96].

4.3.1 Barabasi-Albert network
It is remarkable that power-law degree distributions were appearing in so different sys-

tems (from computer chips to Hollywood actors), and this fact got the eyes of Barabasi and
Albert. They asked which mechanism could reproduce a power-law degree distribution.
The answer came in June 1999 as a combination of growth and preferential attachment
[96].

Growth means that networks are not constant in size: there is a continuous increase in
the number of nodes and links. Preferential attachment means that new nodes are more
likely to connect to already highly connected nodes than to not-so-connected ones. This
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idea has actually been introduced before Barabasi and Albert, in a paper by Derek de
Solla Price in 1976, where Price modeled citation networks [97, 115].

To raise a scalefree network, Barabasi and Albert proposed the following algorithm
[102]:

1. Start with 𝑚0 nodes;

2. Add one new node with 𝑚 ≤ 𝑚0 links which connect the new node to the 𝑚 old
nodes;

3. The new vertice connects to the old node 𝑖 with probability 𝒫(𝑖) = 𝑘𝑖/
∑︀

𝑗 𝑘𝑗.

4. Repeat from step 2.

The resulting network is known as a Barabasi-Albert network and it shows a scalefree
property, with degree distribution [95, 116]

𝑝𝑘 = 2𝑚(𝑚 + 1)
𝑘(𝑘 + 1)(𝑘 + 2) ∼ 𝑘−3 for 𝑘 ≫ 1. (4.3.2)

These networks also show node degree correlations, i.e., nodes with different degrees
are correlated, which does not happen in random networks. They also display hubs,
nodes connected much more than the average degree [117]. This kind of heterogeneity
can change dynamical behaviors over such structures, like speeding up epidemic spreads
[105, 106].

Network science comprises a large set of works and results [95]. The number of real
systems that can be modeled by its framework seems to be unlimited and there is still
a lot to explore. I do not dare to say that this chapter has even scratched the skin of
the large body network theory has become, but we should have started somewhere. The
theory in the following chapters makes use of the concepts introduced here. Nonetheless,
we have used network theory as a very convenient language, but it is much more than
that: it is a tool that has evolved by itself, strongly grounded on abstract graph theory
but solidly attached to concrete problems.
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Part II

The Derrida-Higgs Model
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Chapter 5

The Derrida-Higgs model

5.1 About the model
In 1991, Bernard Derrida and Paul G. Higgs introduced a model of population dy-

namics able to mimic the species formation in a sympatric community [94]. In this model,
individuals are described by binary sequences, representing their genomes, and, accord-
ing to a given mating rule, new generations are created. There is no spatial structure,
thus geographical distance does not impose any restriction to mating, characterizing a
sympatric community. This way, the population is represented by a set of points in the
genetic space (defined by the binary sequences) that diffuse over time as mutations and
recombination take place.

When restrictions to the reproduction based on the genetic distance between individ-
uals are included, the individuals can cluster in the genetic space, forming reproductively
isolated groups, which we recognize as different species. The emergence of these clusters
depends on the parameter values, and we recognize the existence of two different phases:
a low diversity phase, in which although there is genetic variability, it is not enough to
produce more than a single species, and a high diversity phase, in which more than one
species is observed.

There is no analytical description for the threshold parameter values between these
two phases. In the limit of an infinite genome, Derrida and Higgs conjectured a very
simple solution [94], which fails, as shown by de Aguiar in 2017 [118], when the genome
is finite. The present Part of this thesis aims to describe the theory we developed on
the model and to present the approximated heuristic solution to the low-high threshold
that we are able to introduce. Although approximated, this solution is a remarkable new
result on this very interesting model.

In what follows, we first define the model, then we show the original theory introduced
in 1991, followed by the analytical theory we developed. After stating the problem, the
heuristic solution and its ansatz are presented and compared to the simulation results.
A theory for the stationary state of the system is also discussed. Finishing this part, we
study an extension of the Derrida-Higgs model aimed at understanding the emergence of
the barcode property of the mitochondrial DNA [119], based on the work of Princepe and
de Aguiar [120], in which we carefully analyze its sympatric case, which is not discussed
in their original work.
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5.1.1 The Model
We consider a population of 𝑁 individuals, each one with its own genome, described

by a binary sequence of size 𝐵. The genome of an individual 𝛼 at time 𝑡 is represented
by the string, S𝛼

𝑡 =
(︁
𝑠𝛼

1,𝑡, . . . , 𝑠𝛼
𝐵,𝑡

)︁
where the alleles 𝑠𝑖 are 𝑠𝛼

𝑖,𝑡 = ±1 [94].
Now, it is possible to compare how close two individuals 𝛼 and 𝛽 are from each other

by simply counting the number of alleles they have in common (or not). We define the
genetic distance 𝑑𝛼𝛽 between 𝛼 and 𝛽 as the Hamming distance between the sequences
S𝛼

𝑡 and S𝛽
𝑡

𝑑𝛼𝛽 = 1
2

𝐵∑︁
𝑖=1

|𝑠𝛼
𝑖 − 𝑠𝛽

𝑖 |, (5.1.1)

(in which we are not showing the time index), i.e., the genetic distance counts how many
distinct alleles exist between two individuals. If 𝑑𝛼𝛽 = 0, the individuals are identical.

Another measure of proximity one can define is the genetic similarity,

𝑞𝛼𝛽 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛽

𝑖 , (5.1.2)

with −1 ≤ 𝑞𝛼𝛽 ≤ +1 and 𝑞𝛼𝛽 = 1 for identical individuals. It is possible to prove that
these measures are equivalent,

𝑑𝛼𝛽 =1
2

𝐵∑︁
𝑖=1

|𝑠𝛼
𝑖 − 𝑠𝛽

𝑖 |

=1
4

𝐵∑︁
𝑖=1

(︁
𝑠𝛼

𝑖 − 𝑠𝛽
𝑖

)︁2

=1
4

𝐵∑︁
𝑖=1

(︁
(𝑠𝛼

𝑖 )2 − 2𝑠𝛼
𝑖 𝑠𝛽

𝑖 + (𝑠𝛽
𝑖 )2
)︁

=1
4
(︁
2𝐵 − 2𝐵𝑞𝛼𝛽

)︁
= 𝐵

2
(︁
1 − 𝑞𝛼𝛽

)︁
,

therefore existing a biunivocal relation between 𝑞𝛼𝛽 and 𝑑𝛼𝛽

𝑞𝛼𝛽 = 1 − 2
𝐵

𝑑𝛼𝛽. (5.1.3)

The Derrida-Higgs dynamics starts with a population of 𝑁 identical hermaphrodite
(no sexual differences) individuals. At time 𝑡, two individuals 𝛼 and 𝛽 are randomly
chosen to be the parents of an individual 𝛾 from the next generation. The reproduction
is sexual and then the genome S𝛾

𝑡+1 is a combination of the parents’ genomes. Each allele
𝑠𝛾

𝑖,𝑡+1 from the offspring 𝛾 has probability 1/2 of being equal to 𝑠𝛼
𝑖,𝑡 of 𝛼 and probability

1/2 of being equal to 𝑠𝛽
𝑖,𝑡 of 𝛽. Nonetheless, every allele of 𝛾 can mutate with a given

mutation probability 𝑟.
This process is repeated 𝑁 times, in such a way that the generation at time 𝑡 + 1 is

completely generated from the population at time 𝑡 [94].
The probability 𝑟 is calculated by considering a mutation rate 𝜇, which defines the
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master equations:1

𝑑𝜌(+)

𝑑𝑡
=𝜇

(︁
𝜌(−) − 𝜌(+)

)︁
,

𝑑𝜌(−)

𝑑𝑡
=𝜇

(︁
𝜌(+) − 𝜌(−)

)︁
,

with 𝜌(±)(𝑡) being the probability that at time 𝑡 a given allele has value ±1. Its solution
can be found with 𝜒 = 𝜌(+) − 𝜌(−) and 𝜌(+) + 𝜌(−) = 1,

𝑑𝜒

𝑑𝑡
= −2𝜇𝜒 ⇒ 𝜒(𝑡) = 𝜒(𝑡0)𝑒−2𝜇(𝑡−𝑡0). (5.1.4)

As there are no generation overlap, every generation is an initial time 𝑡0 in respect to
the next generation, at time 𝑡0 + 1. At 𝑡0, every allele has a given value, in such a way
that the probability distribution is a Kronecker delta. Let the allele be 𝜎 (𝜎 = ±1), thus
𝜌(𝜎)(𝑡0) = 1 and 𝜌(−𝜎)(𝑡0) = 0. We aim to find the probability 𝑟 ≡ 𝜌(−𝜎)(𝑡0 + 1). From the
previous equations,

𝜌(−𝜎)(𝑡0 + 1) = 𝜌(+𝜎)(𝑡0 + 1) − 𝑒−2𝜇,

𝜌(+𝜎)(𝑡0 + 1) = 1 − 𝜌(−𝜎)(𝑡0 + 1),

and then

𝑟 ≡ 𝜌(−𝜎)(𝑡0 + 1) = 1
2
(︁
1 − 𝑒−2𝜇

)︁
, (5.1.5)

and for 𝜇 ≪ 1, 𝑟 ≈ 𝜇.
So far, each individual has been described as a point in the genetic space {−1, 1}𝐵.

A cloud of points thus describes a population. Due to mutation, this cloud spreads from
one generation to another. On the other hand, genetic drift (due to the finite population
size) decreases the genetic variability and controls the broadness of this cloud.

However, the absence of any restriction to reproduction is very non-realistic. Thus,
we shall consider the inclusion of an assortative parameter, so that in order to reproduce,
two individuals must have a minimum genetic similarity 𝑞𝑚𝑖𝑛. This restriction means that
points very far from each other in the genetic space, according to their Hamming distance,
cannot be “combined” to generate an offspring, i.e., they should be sufficiently close.

In this case, reproduction works as follows: a focal individual 𝛼 from generation 𝑡
is randomly chosen. Then, its partner 𝛽 is randomly chosen from the set of individuals
𝛾 such that 𝑞𝛼𝛾 ≥ 𝑞𝑚𝑖𝑛 (and therefore, if there is at least one compatible individual, 𝛼
will succeed in reproducing). Fig. 5.1 shows the reproduction mechanism. An important
observation is that this way of choosing the mating pair, i.e., by considering first a focal
individual and then its partner, is different from choosing the whole pair at once.

In a nutshell: the model is a population dynamics of haploid and hermaphrodite
individuals, evolving under sexual and assortative reproduction and subjected to mutation

1A master equation describes the rate of change of the probability of a given state, but
when the time flow is continuous and the state space is discrete. [43]
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+

𝜇

𝐵

𝛼

𝛽

𝑞𝛼𝛽 ≥ 𝑞𝑚𝑖𝑛

Figure 5.1: The Derrida-Higgs model. The figure shows the mechanism of reproduc-
tion in the model. At a time 𝑡, there is a population of 𝑁 individuals (blue dots). A focal
individual 𝛼 is chosen and then its mating pair is chosen such that 𝑞𝛼𝛽 ≥ 𝑞𝑚𝑖𝑛. Their
genomes (of size 𝐵) are then combined to generate the genome of their offspring, which
can also have mutations with a rate 𝜇. For instance, in the figure, the yellow allele has
mutated, changing from +1 to −1.
Source: Figure produced by the author.

and random genetic drift, with no generational overlap.
The following section presents the first results obtained in this model.

5.1.2 The Derrida-Higgs theory
Once the reproduction threshold is defined considering the similarity between indi-

viduals, it is natural to study the distribution of similarities within the population. In
the original 1991 paper [94], Derrida and Higgs calculated the similarity between two
individuals 𝛼 and 𝛽 at generation 𝑡 + 1

𝑞𝛼𝛽 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛽

𝑖

in terms of their parents at generation 𝑡. Let 𝑝1 and 𝑝2 be the parents of 𝛼 and 𝑝′
1 and 𝑝′

2
the parents of 𝛽. If 𝛼 gets the allele 𝑖 from 𝑝1, then its mean value is 𝑠𝛼

𝑖 = (1−𝑟)𝑠𝑝1
𝑖 −𝑟𝑠𝑝1

𝑖 .
But as there is also a chance of getting it from 𝑝2, with probability 1/2, then

𝑠𝛼
𝑖 = 1

2(1 − 𝑟) (𝑠𝑝1
𝑖 + 𝑠𝑝2

𝑖 ) − 1
2𝑟 (𝑠𝑝1

𝑖 + 𝑠𝑝2
𝑖 ) = 𝑒−2𝜇

2 (𝑠𝑝1
𝑖 + 𝑠𝑝2

𝑖 )
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The same calculation can be performed for 𝛽, and thus the similarity is given by

𝑞𝛼𝛽
𝑡+1 =𝑒−4𝜇

4𝐵

𝐵∑︁
𝑖=1

(𝑠𝑝1
𝑖 + 𝑠𝑝2

𝑖 )(𝑠𝑝′
1

𝑖 + 𝑠
𝑝′

2
𝑖 )

=𝑒−4𝜇

4
(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁
, (5.1.6)

which is exact if 𝐵 → ∞.
This expression defines an algorithm for calculating the evolution of the similarity

distribution. Starting with a matrix 𝑞𝛼𝛽
𝑡 , we draw 𝑁 pairs 𝑝1 and 𝑝2, following the

assortativity rule and by first choosing the focal 𝑝1 and then its mate 𝑝2. With the 𝑁
chosen pairs, and the equation (5.1.6), the matrix 𝑞𝛼𝛽

𝑡+1 can be calculated.
To get more information from the previous equation, we calculate the average similarity

over the population
⟨𝑞𝛼𝛽

𝑡+1⟩𝑃 = 1
𝑁(𝑁 − 1)

∑︁
𝛼 ̸=𝛽

𝑞𝛼𝛽
𝑡+1, (5.1.7)

since there are 𝑁(𝑁 − 1) pairs of individuals with 𝛼 ̸= 𝛽. This sum can be written in
terms of the pairs of parents (𝑝1, 𝑝2) and (𝑝′

1, 𝑝′
2)

∑︁
𝛼 ̸=𝛽

𝑞𝛼𝛽
𝑡+1 =

∑︁
(𝑝1,𝑝2 )̸=(𝑝′

1,𝑝′
2)

𝑒−4𝜇

4
(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁
.

Now, each term within parenthesis can be shown to be the same under indexes permuta-
tion, thus ∑︁

𝛼 ̸=𝛽

𝑞𝛼𝛽
𝑡+1 = 𝑒−4𝜇

∑︁
(𝑝1,𝑝2 )̸=(𝑝′

1,𝑝′
2)

𝑞
𝑝1𝑝′

1
𝑡 .

Whenever 𝑝′
1 equals 𝑝1, the similarity equals 1. Performing first the sum on (𝑝′

1, 𝑝′
2), 𝑝1

is given, and thus there is a chance 1/𝑁 of 𝑝′
1 = 𝑝1, and since there are 𝑁 −1 pairs (𝑝′

1, 𝑝′
2)

such that (𝑝′
1, 𝑝′

2) ̸= (𝑝1, 𝑝2), there are (on average) (𝑁 − 1)/𝑁 cases in which 𝑝1 = 𝑝′
1 and

(𝑁 − 1) − (𝑁 − 1)/𝑁 cases in which they are different. In these cases, we can consider
𝑞

𝑝1𝑝′
1

𝑡 = ⟨𝑞𝛼𝛽
𝑡 ⟩𝑃 . This way,

⟨𝑞𝛼𝛽
𝑡+1⟩𝑃 = 𝑒−4𝜇

𝑁(𝑁 − 1)
∑︁

(𝑝1,𝑝2)

(︃
(𝑁 − 1)

𝑁
+
(︃

(𝑁 − 1) − (𝑁 − 1)
𝑁

)︃
⟨𝑞𝛼𝛽

𝑡 ⟩𝑃

)︃
,

and since there are 𝑁 pairs (𝑝1, 𝑝2),

⟨𝑞𝛼𝛽
𝑡+1⟩𝑃 = 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩𝑃

]︂
, (5.1.8)

which is a recurrence equation for the average similarity in the case of infinite genome.
Imposing ⟨𝑞𝛼𝛽

𝑡+1⟩𝑃 = ⟨𝑞𝛼𝛽
𝑡 ⟩𝑃 = 𝑞𝑒𝑞 in equation (5.1.8), we can find an equilibrium

solution,
𝑞𝑒𝑞 = 1

𝑁𝑒4𝜇 − (𝑁 − 1) ≈ 1
1 + 4𝜇𝑁

, (5.1.9)
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Figure 5.2: The Derrida-Higgs model with 𝐵 → ∞. The first column shows the
evolution of the distribution of similarities of a population subjected to the Derrida-Higgs
model without mating restrictions (in the absence of 𝑞𝑚𝑖𝑛) across the generations. The
bottom panel presents the mean similarity evolution (in blue) showing that it reaches
an equilibrium value. The middle column shows the model with 𝑞𝑚𝑖𝑛 < 𝑞𝑒𝑞 and the last
column the model with 𝑞𝑚𝑖𝑛 > 𝑞𝑒𝑞, in which we observe that the distribution of similarities
no longer achieves stationarity. In all panels, the black dashed curve is the theoretical
evolution of the mean similarity without mating restrictions, the red line shows the value
of 𝑞𝑚𝑖𝑛 and the green line the value of 𝑞𝑒𝑞. The three simulations (each column) in the
figure considered 𝑁 = 50 and 𝜇 = 0.004.
Source: Figure produced by the author.

in which the approximation holds for 𝜇 ≪ 1. Its stability is easily shown by considering
any perturbation ⟨𝑞𝛼𝛽

𝑡 ⟩𝑃 = 𝑞𝑒𝑞 + 𝛿𝑞𝑡 on the equilibrium value,

⟨𝑞𝛼𝛽
𝑡+1⟩𝑃 = 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
(𝑞𝑒𝑞 + 𝛿𝑞𝑡)

]︂
= 𝑞𝑒𝑞 + 𝛿𝑞𝑡+1,
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with
𝛿𝑞𝑡+1 = 𝑒−4𝜇

(︂
1 − 1

𝑁

)︂
𝛿𝑞𝑡 → 𝛿𝑞𝑡+𝑘 = 𝑒−4𝜇𝑘

(︂
1 − 1

𝑁

)︂𝑘

𝛿𝑞𝑡, (5.1.10)

and thus any perturbation on the equilibrium value exponentially decreases over the
generations. Of course, equation (5.1.8) can then be solved to

⟨𝑞𝛼𝛽
𝑡 ⟩𝑃 = 𝑞𝑒𝑞 + (𝑞0 − 𝑞𝑒𝑞)

[︂(︂
1 − 1

𝑁

)︂
𝑒−4𝜇

]︂𝑡

. (5.1.11)

Therefore, the similarity distribution evolves along the generations toward the equilibrium,
as can be seen in the first column of Figure 5.2. In this figure, an identical population
evolves according to the Derrida-Higgs model without restrictions to mating (absence of
𝑞𝑚𝑖𝑛) and the distribution of similarities is presented as a histogram. It is possible to
see that this histogram gets broader over the generations and reaches a stationary state
around 𝑞𝑒𝑞. The bottom panel shows the evolution of the mean similarity (in blue) which
follows Eq.(5.1.11) (in black), with 𝑞0 = 1.

However, the recurrence (5.1.8) does not consider the reproduction threshold 𝑞𝑚𝑖𝑛.
Due to the infinite genome size, we may consider the similarity distribution to be very
narrow. Suppose now that this distribution is moving towards the equilibrium value and
that 𝑞𝑚𝑖𝑛 < 𝑞𝑒𝑞. Thus, when the system reaches its equilibrium value, it remains there
without being affected by the threshold, and the system does equilibrate, as shown in the
middle column of Fig.5.2. On the other hand, if 𝑞𝑚𝑖𝑛 > 𝑞𝑒𝑞, then the distribution reaches
the threshold before finding its natural equilibrium 𝑞𝑒𝑞, and suddenly many individuals
are not allowed to mate. In this case, the system should display a new behavior, as it can
be seen in the last column of Fig.5.2.

The multiple peaks in the last column of Fig.5.2 can be well explained with the aid of
network theory and they are indeed characteristic of the formation of species. Let us now
introduce the definition of species in the model and how it relates to network theory.

5.1.3 The definition of a species
Species are defined in the model as a group of individuals which, according to their

similarity, are able to reproduce. Indeed, if two individuals can mate, they belong to the
same species, and if two individuals do not belong to the same species, then they cannot
mate. However, two individuals that cannot mate also belong to the same species if there
is a gene flow between them, e.g., if there is a third individual that can mate with both.
This way, we define species according to the existence of gene flow between individuals,
even if it is not direct. Let us define it now in mathematical terms.

Let the set 𝒩𝑡 = {1, . . . , 𝑁} be the population at time 𝑡. We define a path Γ𝑡 in 𝒩𝑡

as the subset Γ𝑡 =
{︁
𝛼1, . . . , 𝛼𝑛|𝛼𝑖 ∈ 𝒩𝑡; 𝑞

𝛼𝑗𝛼𝑗+1
𝑡 ≥ 𝑞𝑚𝑖𝑛, ∀𝑗 ∈ [1, 𝑛 − 1]

}︁
. A species is an

application ℰ : 𝒩𝑡 → ℐ ⊂ N, which has the following properties:

1. For any 𝛼 ̸= 𝛽 ∈ 𝒩𝑡 𝑡, if 𝑞𝛼𝛽 ≥ 𝑞𝑚𝑖𝑛 then ℰ(𝛼) = ℰ(𝛽);

2. For 𝛼, 𝛽, 𝛾 ∈ 𝒩𝑡 distinct, if ℰ(𝛼) = ℰ(𝛽) and ℰ(𝛽) = ℰ(𝛾), then ℰ(𝛼) = ℰ(𝛾);

3. If there is no path Γ𝑡 such that 𝛼 ̸= 𝛽 ∈ 𝒩𝑡 belong both to it, then ℰ(𝛼) ̸= ℰ(𝛽).
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Figure 5.3: The Derrida-Higgs model and network theory. The upper plot shows
the evolution of the similarity distribution, which evolves towards smaller values (the red
arrow shows the evolution direction). Different blue shades show different generations,
(time passing from the light to the darkest shade). The corresponding networks are shown
below, starting with a complete network and reaching a state with many components. In
the figure, the simulation parameters are 𝑁 = 25, 𝜇 = 0.008, 𝑞𝑚𝑖𝑛 = 0.75 and 𝐵 → ∞.
Source: Figure produced by the author.

These properties, although written in a mathematical way, only express what was said
before. Property 1. means that if two individuals can reproduce, then they belong to
the same species. Property 2. is a transitivity property, i.e., if two individuals cannot
reproduce, but there is a third one that can reproduce with both, then they all belong
to the same species, resulting in a definition of a species concerning the existence of gene
flow. As a corollary of 1. and 2., all elements of a path Γ𝑡 are of the same species. Finally,
property 3. defines different species: if there is no path connecting two individuals, then
they belong to different species.

Finally, the system is said to have passed through a speciation process if it is possible
to find 𝛼 ̸= 𝛽 ∈ 𝒩𝑡 such that ℰ(𝛼) ̸= ℰ(𝛽).

5.1.4 The network description
The Derrida-Higgs model is easily visualized with the help of network theory. Let the

individuals be the vertices of an undirected network. Two vertices are connected if and



5.2. THE FINITE GENOME PROBLEM 60

only if the similarity between them is greater than the minimum value 𝑞𝑚𝑖𝑛, i.e., if they
can mate. Thus, if we start the process with a clonal population, at the beginning there is
a complete network, and at every time step a new network is constructed, in which some
links may have been erased.

If there is a path connecting two vertices, then they belong to the same species,
otherwise they do not. Indeed, species are defined as connected components of this
network, and different components define different species.

Figure 5.3 shows the Derrida-Higgs model evolving as networks. The system starts
with a clonal population. Then the similarity distribution starts to get broader while
moving towards the equilibrium, which is smaller than 𝑞𝑚𝑖𝑛. When it reaches 𝑞𝑚𝑖𝑛, many
connections are erased from the network, and after that, the network breaks up into
different components. Each component is identified as a different species.

5.2 The finite genome problem
The appearance or not of more than one species defines if a given set of parameters

leads to speciation or not, naturally raising the question for which parameters can one
observe speciation in the system? Let the number of species at a time 𝑡 be given by 𝒮𝑡

and let it be a function of the parameters of the model 𝒮𝑡 = 𝒮𝑡(𝐵, 𝜇, 𝑞𝑚𝑖𝑛). The family
{𝒮𝑡; 𝑡 = 0, 1, . . .} defines a stochastic process, and due to the simulations, we may consider
it reaches an stationary state with

⟨𝒮𝑡→∞(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛)⟩ = 𝒮(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛) (5.2.1)

where ⟨·⟩ is the ensemble average (we are also going to assume ergodicity for sufficiently
long time scales). We then pose the question as for which set of values 𝐵, 𝑁 , 𝜇 and
𝑞𝑚𝑖𝑛, we can observe 𝒮(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛) > 1?

Derrida and Higgs conjectured that when the genome size is infinite, speciation occurs
if and only if [94],

𝑞𝑚𝑖𝑛 > 𝑞𝑒𝑞. (5.2.2)

On the other hand, in 2017 [118], de Aguiar showed that when the genome is finite,
this relation is not satisfied: the similarity distribution reaches an stationary state ap-
proximately centered around 𝑞𝑚𝑖𝑛 and the system does not undergo speciation unless the
genome is very large [118]. However, how large is large is not known. We then parameter-
ize the low-high diversity transition as a function of the genome size, defining the critical
genome size 𝐵𝑐 as

𝐵 ≥ 𝐵𝑐 = 𝐵𝑐(𝑁, 𝜇, 𝑞𝑚𝑖𝑛) ⇔ 𝑆(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛) > 1 (5.2.3)

i.e., 𝐵𝑐 is the smallest genome size that allows species formation when the other parameters
𝑁 , 𝜇 and 𝑞𝑚𝑖𝑛 are given.

To find an expression for 𝐵𝑐(𝑁, 𝜇, 𝑞𝑚𝑖𝑛) is our goal.
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5.3 Analytical Theory
As we have seen, the similarity distribution has a complex structure and its behavior

on time changes when there is or not speciation. To understand its evolution is a pivotal
point if one wants to describe the species formation in this model. Therefore, our next
step is to introduce a complete formalism to deal with this distribution and to calculate
the evolution of its moments.

We start by first constructing the probability distribution for the similarity between
two individuals from generation 𝑡 + 1, given the similarities in the previous generation.
From this distribution, we may be able to calculate the evolution of the mean similarity
and its variance. These results are remarkably new. On the other hand, the underlying
network structure turns out to be very complicated to treat, hindering a way to find an
analytical description of the low-high diversity transition.

Nevertheless, when the system is treated in the absence of a similarity threshold 𝑞𝑚𝑖𝑛,
we can find exact evolution equations for the first and second moments and these last
results are essential to the heuristic solution we are going to introduce in the next chapter.

5.3.1 A Brief Summary
We are just about to start a hard and long mathematical endeavor to find the results

we promised.o make it easier for you, reader, here is a summary of the results of this
section, so if you would like to, you can skip the following lengthy calculations and go
directly to the next section.

Notation

Given a population of 𝑁 individuals, for every 𝛼 ̸= 𝛽, if 𝑞𝛼𝛽
𝑡 ≥ 𝑞𝑚𝑖𝑛, 𝐴𝛼𝛽 = 1 and 0

otherwise; 𝑁𝛼 = ∑︀
𝛽 𝐴𝛼𝛽, i.e., the matrix A with elements (A)𝛼𝛽 = 𝐴𝛼𝛽 is the adjacency

matrix of the underlying network and 𝑁𝛼 is the degree of the vertice 𝛼. The individuals
𝛼, 𝛽, 𝛾 and 𝛿 are different individuals of generation 𝑡 + 1, whose parents are respectively
(𝑝1, 𝑝2), (𝑝′

1, 𝑝′
2), (𝑝′′

1, 𝑝′′
2) and (𝑝′′′

1 , 𝑝′′′
2 ). The genome size is 𝐵 and the mutation rate 𝜇.

Also, the total number of pairs in the population is given by 𝑁 = 𝑁(𝑁 − 1)/2

Results

1. Similarity Distribution. The probability distribution of a similarity 𝑞𝛼𝛽
𝑡+1 is

given by

𝒫(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2

∑︁
S𝛼,S𝛽

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝐴𝑝1𝑝2𝐴𝑝′

1𝑝′
2

𝑁𝑝1𝑁𝑝′
1

×

×
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃ ⎡⎣1
2 +

𝑠𝛽
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠

𝑝′
1

𝑖,𝑡 + 𝑠
𝑝′

2
𝑖,𝑡

)︁⎤⎦ (5.3.1)
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2. Expected Similarity. Given the similarity values at a time 𝑡, the expected
similarity at the next generation is given by

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁
, (5.3.2)

and when there is no restriction to mating

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩
]︂

.

3. The second moment of the similarity distribution. The expected value
of the second moment of the similarity distribution 𝒫(𝑞𝛼𝛽

𝑡+1) is given by

E((𝑞𝛼𝛽
𝑡+1)2) = 1

𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

[︃
1
𝐵

+ 𝑒−8𝜇

16
[︁
(𝑞𝑝1𝑝′

1
𝑡 + 𝑞

𝑝1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′

1
𝑡 + 𝑞

𝑝2𝑝′
2

𝑡 )
]︁2

−𝑒−8𝜇

4𝐵

(︁
1 + 𝑞𝑝1𝑝2

𝑡 + 𝑞
𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

)︁]︃
, (5.3.3)

where the second order overlap is defined by

𝑞𝛼𝛽𝛾𝛿 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛽

𝑖 𝑠𝛾
𝑖 𝑠𝛿

𝑖 . (5.3.4)

4. The second order overlap. Once we have defined the second order overlap,
we can calculate its expected value,

E(𝑞𝛼𝛽𝛾𝛿
𝑡+1 ) = 𝑒−8𝜇

16𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

×
(︁
𝑞

𝑝1𝑝′
1𝑝′′

1 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

1𝑝′′
1 𝑝′′′

2
𝑡 + 𝑞

𝑝1𝑝′
1𝑝′′

2 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

1𝑝′′
2 𝑝′′′

2
𝑡 + 𝑞

𝑝1𝑝′
2𝑝′′

1 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

2𝑝′′
1 𝑝′′′

2
𝑡

+ 𝑞
𝑝1𝑝′

2𝑝′′
2 𝑝′′′

1
𝑡 + 𝑞

𝑝1𝑝′
2𝑝′′

2 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

1𝑝′′
1 𝑝′′′

1
𝑡 + 𝑞

𝑝2𝑝′
1𝑝′′

1 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

1𝑝′′
2 𝑝′′′

1
𝑡

+𝑞
𝑝2𝑝′

1𝑝′′
2 𝑝′′′

2
𝑡 + 𝑞

𝑝2𝑝′
2𝑝′′

1 𝑝′′′
1

𝑡 + 𝑞
𝑝2𝑝′

2𝑝′′
1 𝑝′′′

2
𝑡 + 𝑞

𝑝2𝑝′
1𝑝′′

2 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

2𝑝′′
2 𝑝′′′

2
𝑡

)︁
, (5.3.5)

and in the absence of restrictions to mating,

⟨𝑞𝛼𝛽𝛾𝛿
𝑡+1 ⟩ = 𝑒−8𝜇

𝑁3

[︁
(3𝑁 − 2) + (𝑁 − 1)(6𝑁 − 8)⟨𝑞𝛼𝛽

𝑡 ⟩ + (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)⟨𝑞𝛼𝛽𝛾𝛿
𝑡 ⟩

]︁
.

(5.3.6)

5. The variance evolution. If there are no mating restrictions, the variance of
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the similarity distribution evolves according to

Var(𝑞𝛼𝛽
𝑡+1)

= 1
𝐵

− 𝑒−8𝜇

4𝐵

[︃(︃
1 + 2

𝑁(𝑁 − 1)

)︃
+
(︃

2 + 4(𝑁 − 2)
𝑁(𝑁 − 1)

)︃
⟨𝑞𝛼𝛽

𝑡 ⟩ + (𝑁 − 2)(𝑁 − 3)
𝑁(𝑁 − 1) ⟨𝑞𝛼𝛽𝛾𝛿

𝑡 ⟩
]︃

+ 𝑒−8𝜇(𝑁 − 2)2

4𝑁2(𝑁 − 1)

[︂(︁
1 − ⟨𝑞𝛼𝛽

𝑡 ⟩
)︁2

+
(︂

𝑁 + 2 − 2
𝑁

)︂(︂
1 − 1

𝑁

)︂
Var(𝑞𝛼𝛽

𝑡 )

+ 2
(︂

𝑁 − 6 + 4
𝑁

)︂(︂
1 − 1

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾

]︂
, (5.3.7)

in which we have also defined the covariance

Cov(𝑡)𝛼𝛽𝛾 = Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛽𝛾

𝑡 ). (5.3.8)

6. The covariance evolution with a common individual. The covariance be-
tween two similarities with one individual in common, Cov(𝑡)𝛼𝛽𝛾, in the absence
of mating restrictions, evolves as

Cov(𝑡 + 1)𝛼𝛽𝛾 = 𝑒−4𝜇

𝐵

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩
]︂

− 𝑒−8𝜇

2𝐵

[︂ 2
𝑁2 + 1

𝑁
+
(︂

1 + 4
𝑁

− 8
𝑁2

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩ +
(︂

1 − 2
𝑁

)︂(︂
1 − 3

𝑁

)︂
⟨𝑞𝛼𝛽𝛾𝛿

𝑡 ⟩
]︂

+ 𝑒−8𝜇(𝑁 − 2)2

2𝑁3

(︂
1 − 1

𝑁

)︂ [︁
Var(𝑞𝛼𝛽

𝑡 ) + (𝑁 − 4)Cov(𝑡)𝛼𝛽𝛾
]︁

.

(5.3.9)

7. The covariance with no common individual. The covariance between
similarities that do not share any common individual is zero,

Cov(𝑡)𝛼𝛽𝛾𝛿 = E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛿
𝑡+1) − E(𝑞𝛼𝛽

𝑡+1)E(𝑞𝛾𝛿
𝑡+1) = 0. (5.3.10)

It is important to emphasize that all these results are new and we compare them to
simulations in Fig. 5.4. The evolution of the mean similarity without mating restrictions,
although the same as found by Derrida and Higgs in 1991, was now calculated without
considering an infinite number of alleles, thus extending the previously known results.
Next, we present the mean, variance and covariance without the similarity threshold 𝑞𝑚𝑖𝑛

at the important limit 𝐵 → ∞ and 𝑁 ≫ 1, which simplifies the complete solutions.

Results in the limit 𝐵 → ∞ and 𝑁 ≫ 1
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1. Expected Similarity. In this limit, the result does not change,

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩
]︂

.

2. The second order overlap.

⟨𝑞𝛼𝛽𝛾𝛿
𝑡+1 ⟩ = 𝑒−8𝜇

[︂ 6
𝑁

⟨𝑞𝛼𝛽
𝑡 ⟩ +

(︂
1 − 6

𝑁

)︂
⟨𝑞𝛼𝛽𝛾𝛿

𝑡 ⟩
]︂

. (5.3.11)

3. The variance evolution.

Var(𝑞𝛼𝛽
𝑡+1) = 𝑒−8𝜇

4

[︂ 1
𝑁

(︁
1 − ⟨𝑞𝛼𝛽

𝑡 ⟩
)︁2

+
(︂

1 − 1
𝑁

)︂
Var(𝑞𝛼𝛽

𝑡 ) + 2
(︂

1 − 9
𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾

]︂
.

(5.3.12)

4. The covariance evolution with a common individual.

Cov(𝑡 + 1)𝛼𝛽𝛾 = 𝑒−8𝜇

2

[︂ 1
𝑁

Var(𝑞𝛼𝛽
𝑡 ) +

(︂
1 − 8

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾

]︂
. (5.3.13)

5.3.2 The similarity distribution
Many of our calculations are going to follow the same route, even the calculations in

Chapter 8. Thus, we summarized the procedure in the figure 5.5. Consider two individuals
𝛼 and 𝛽 from time 𝑡 + 1, whose parents are (𝑝1, 𝑝2) and (𝑝′

1, 𝑝′
2), respectively. Assuming

that 𝛼 got its allele 𝑖 from 𝑝1, then the probability of its allele 𝑖 to be equal to 𝜎 = ±1 is

𝒫
(︁
𝑠𝛼

𝑖,𝑡+1 = 𝜎|𝑝1
)︁

= 1
2
[︁
1 + (2𝑟𝑐 − 1)𝜎𝑠𝑝1

𝑖,𝑡

]︁
, (5.3.14)

in which 𝑟𝑐 is the probability of not mutating, 𝑟𝑐 = 1 − 𝑟 = 1
2(1 + 𝑒−2𝜇). However, if

the parent from which the allele came from is not known, since the probability is 1/2 of
coming from each one,

𝒫
(︁
𝑠𝛼

𝑖,𝑡+1 = 𝜎|(𝑝1, 𝑝2)
)︁

= 1
4
[︁
1 + (2𝑟𝑐 − 1)𝜎𝑠𝑝1

𝑖,𝑡

]︁
+ 1

4
[︁
1 + (2𝑟𝑐 − 1)𝜎𝑠𝑝2

𝑖,𝑡

]︁
= 1

2 + 𝜎𝑒−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁
. (5.3.15)

Therefore, given the parents’ genomes, the probability that 𝛼 has genome S𝛼
𝑡+1 is

𝒫
(︁
S𝛼

𝑡+1|(𝑝1, 𝑝2)
)︁

=
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃
, (5.3.16)
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Figure 5.4: Simulations and theory in the absence of assortative reproduc-
tion. The panels show the evolution of the average similarity ⟨𝑞𝛼𝛽

𝑡 ⟩, variance Var(𝑞𝛼𝛽
𝑡 ) =

⟨(𝑞𝛼𝛽
𝑡 )2⟩ − ⟨𝑞𝛼𝛽

𝑡 ⟩2, covariance Cov(𝑡)𝛼𝛽 = ⟨𝑞𝛼𝛽
𝑡 𝑞𝛽𝛾

𝑡 ⟩ − ⟨𝑞𝛼𝛽
𝑡 ⟩2 and the average second order

overlap ⟨𝑞𝛼𝛽𝛾𝛿
𝑡 ⟩ for different values of genome size 𝐵 in the absence of 𝑞𝑚𝑖𝑛. The light

curves in the background are the evolution of 10 different simulations, the darker continu-
ous curve is the average of these curves and the dashed curve is the theoretical prediction.
The average second order overlap was calculated from the simulations by considering a
random sample of size 𝑁2 from the set of all second order overlaps, which has size ∼ 𝑁4.
In the figure, the simulation parameters are 𝑁 = 100 and 𝜇 = 0.0025.
Source: Figure produced by the author.

because the alleles are independent. An analogous equation can be calculated for 𝛽, whose
parents are 𝑝′

1 and 𝑝′
2.

Now, given the genomes of 𝛼 and 𝛽, the probability distribution for the similarity
between them is

𝒫(𝑞𝛼𝛽
𝑡+1|S𝛼

𝑡+1, S𝛽
𝑡+1) = 𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼

𝑡+1 · S𝛽
𝑡+1

𝐵

)︃
, (5.3.17)

because the similarity is uniquely defined by their genomes. From the law of total prob-
ability,

𝒫(𝑞𝛼𝛽) =
∑︁

S𝛼,S𝛽

𝒫(𝑞𝛼𝛽|S𝛼, S𝛽)𝒫(S𝛼, S𝛽) (5.3.18)

in which we are not showing the time index. 𝒫(S𝛼, S𝛽) is the probability of two individuals
𝛼 and 𝛽 to have simultaneously the genomes S𝛼 and S𝛽, respectively. Let us now calculate
this term by noticing that, if one knows their parents, there is a conditional independence
between the genomes,

𝒫(S𝛼, S𝛽) =
∑︁

(𝑝1,𝑝2)

∑︁
(𝑝′

1,𝑝′
2)

𝒫(S𝛼, S𝛽|(𝑝1, 𝑝2), (𝑝′
1, 𝑝′

2))𝒫((𝑝1, 𝑝2), (𝑝′
1, 𝑝′

2)). (5.3.19)
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Figure 5.5: Calculation Scheme. In order to find analytical results, we follow the
calculations as summarized in these panels.
Source: Figure produced by the author.

In this equation, the probability 𝒫(S𝛼, S𝛽) has been conditioned to the parents of 𝛼 and
𝛽. 𝒫((𝑝1, 𝑝2), (𝑝′

1, 𝑝′
2)) is the probability of a given set of pairs of parents. However, under

these conditions, the genomes 𝛼 and 𝛽 are independent,

𝒫(S𝛼, S𝛽|(𝑝1, 𝑝2), (𝑝′
1, 𝑝′

2)) = 𝒫(S𝛼|(𝑝1, 𝑝2))𝒫(S𝛽|(𝑝′
1, 𝑝′

2)) (5.3.20)

and once the pairs of parents are drawn independently,

𝒫((𝑝1, 𝑝2), (𝑝′
1, 𝑝′

2)) = 𝒫((𝑝1, 𝑝2))𝒫((𝑝′
1, 𝑝′

2)). (5.3.21)

The probabilities 𝒫(S𝛼|(𝑝1, 𝑝2)) and 𝒫(S𝛽|(𝑝′
1, 𝑝′

2)) have already been calculated (Eq.(5.3.16)
and analogous for 𝛽). We shall now calculate 𝒫((𝑝1, 𝑝2)) and 𝒫((𝑝′

1, 𝑝′
2)). Let 𝑝1 be the

focal individual. Thus, it is drawn at random from the entire population (of size 𝑁), with
probability 1/𝑁 . Now, 𝑝2 must be drawn among the compatible individuals. Let N𝑝1 the
set of these individuals. Then, for 𝑝2 ∈ N𝑝1 , since the draw is uniform, it may be chosen
with probability 1/𝑁𝑝1 , where 𝑁𝑝1 = #(N𝑝1) is the cardinality of the set N𝑝1 , i.e., the
number of individuals which are connected to 𝑝1. For an individual 𝑝2 not connected to
𝑝1, the probability of being drawn is zero.
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This way, we are able to calculate 𝒫((𝑝1, 𝑝2)) as

𝒫((𝑝1, 𝑝2)) =𝒫((𝑝1, 𝑝2)|𝑝1 is focal)𝒫(𝑝1 is focal) + 𝒫((𝑝1, 𝑝2)|𝑝2 is focal)𝒫(𝑝2 is focal)

=𝐴𝑝1𝑝2

𝑁𝑝1

1
𝑁

+ 𝐴𝑝1𝑝2

𝑁𝑝2

1
𝑁

=𝐴𝑝1𝑝2

𝑁

(︃
1

𝑁𝑝1

+ 1
𝑁𝑝2

)︃
, (5.3.22)

in which 𝐴𝑝1𝑝2 is the element 𝑝1, 𝑝2 of the adjacency matrix of the network defined by the
similarities at time 𝑡, A𝑡 ∈ M𝑁×𝑁 . 𝐴𝑝1𝑝2 is equal to 1 if 𝑝1 and 𝑝2 are connected and 0
otherwise.

Joining all these results together,

𝒫(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2

∑︁
S𝛼,S𝛽

∑︁
(𝑝1,𝑝2)

∑︁
(𝑝′

1,𝑝′
2)

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝐴𝑝1𝑝2𝐴𝑝′

1𝑝′
2

(︃
1

𝑁𝑝1

+ 1
𝑁𝑝2

)︃(︃
1

𝑁𝑝′
1

+ 1
𝑁𝑝′

2

)︃
×

×
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃ ⎡⎣1
2 +

𝑠𝛽
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠

𝑝′
1

𝑖,𝑡 + 𝑠
𝑝′

2
𝑖,𝑡

)︁⎤⎦ . (5.3.23)

Notice that in this equation, the sums regarding the parents are performed over the pairs
of individuals, not over the individuals themselves. We can change it by noticing that the
sums are the same if one interchanges 𝑝1 by 𝑝2,

∑︁
(𝑝1,𝑝2)

−→ 1
2
∑︁

𝑝1,𝑝2

.

The case 𝑝1 = 𝑝2 could be a problem, but it is automatically solved once 𝐴𝑝1𝑝2 is zero
when 𝑝1 = 𝑝2. Obviously, the same works for the sums over (𝑝′

1, 𝑝′
2). Moreover,

∑︁
𝑝1,𝑝2

𝐴𝑝1𝑝2

𝑁𝑝2

𝐵∏︁
𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃

=
∑︁

𝑝2,𝑝1

𝐴𝑝2𝑝1

𝑁𝑝2

𝐵∏︁
𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝2

𝑖,𝑡 + 𝑠𝑝1
𝑖,𝑡

)︁]︃

=
∑︁

𝑝1,𝑝2

𝐴𝑝1𝑝2

𝑁𝑝1

𝐵∏︁
𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃

in which in the second line, we have inverted the order of the sums and used that 𝐴𝑝1𝑝2 =
𝐴𝑝2𝑝1 , while in the third line, we have changed the index names, 𝑝1 → 𝑝2 and 𝑝2 → 𝑝1.
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Thus,

∑︁
𝑝1,𝑝2

𝐴𝑝1𝑝2

(︃
1

𝑁𝑝1

+ 1
𝑁𝑝2

)︃
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃

=2
∑︁

𝑝1,𝑝2

𝐴𝑝1𝑝2

𝑁𝑝1

𝐵∏︁
𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃

in such a way that 𝒫(𝑞𝛼𝛽
𝑡+1) can be written as

𝒫(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2

∑︁
S𝛼,S𝛽

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝐴𝑝1𝑝2𝐴𝑝′

1𝑝′
2

𝑁𝑝1𝑁𝑝′
1

×

×
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑠𝛼
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑝1

𝑖,𝑡 + 𝑠𝑝2
𝑖,𝑡

)︁]︃ ⎡⎣1
2 +

𝑠𝛽
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠

𝑝′
1

𝑖,𝑡 + 𝑠
𝑝′

2
𝑖,𝑡

)︁⎤⎦ (5.3.24)

This equation allows us now to calculate the similarity probability distribution at time
𝑡 + 1 given all the genetic information about the system at time 𝑡. The time index will
not appear in the text sometimes, but we must keep in mind that everything regarding 𝛼
and 𝛽 is calculated (or observed) at time 𝑡 + 1 while everything that regards their parents
𝑝1, 𝑝2 and 𝑝′

1, 𝑝′
2, is observed at time 𝑡.

5.3.3 The evolution of the Mean Similarity
Once we have calculated the similarity distribution, we can calculate its moments. Let

us start by calculating the expected value of 𝑞𝛼𝛽
𝑡+1, given by

E(𝑞𝛼𝛽
𝑡+1) =

∑︁
𝑞

𝑞𝒫(𝑞𝛼𝛽
𝑡+1 = 𝑞).

Because of the 𝛿 function, the sum over 𝑞 is easy to perform and the term 𝑞𝛿(𝑞, S𝛼 ·S𝛽/𝐵)
changes to S𝛼 · S𝛽/𝐵, decoupling the sums over S𝛼 and S𝛽 from the others,

E(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2
1
𝐵

∑︁
S𝛼,S𝛽

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐵∑︁
𝑗=1

𝑠𝛼
𝑗 𝑠𝛽

𝑗

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)

where we have defined

𝐹𝑖,𝑡(𝛾, 𝑎, 𝑏) ≡ 1
2 +

𝑠𝛾
𝑖,𝑡+1𝑒

−2𝜇

4
(︁
𝑠𝑎

𝑖,𝑡 + 𝑠𝑏
𝑖,𝑡

)︁
= 𝒫(𝑠𝛾

𝑖,𝑡+1|(𝑎, 𝑏)) (5.3.25)
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the probability of the allele 𝑠𝛾
𝑖,𝑡+1 of 𝛾 given the alleles of its parents 𝑎 and 𝑏. Rearranging

the sums,

E(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2
1
𝐵

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

∑︁
𝑗

(︃∑︁
S𝛼

𝑠𝛼
𝑗

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)
)︃⎛⎝∑︁

S𝛽

𝑠𝛽
𝑗

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)
⎞⎠

The terms in parenthesis can be calculated as follows,

∑︁
S𝛼

𝑠𝛼
𝑗

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2) =
∑︁

𝑠𝛼
1 ,...,𝑠𝛼

𝐵

𝑠𝛼
𝑗

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)

=
∑︁

𝑠𝛼
1 ,...,𝑠𝛼

𝐵

𝐹1,𝑡 . . . 𝐹𝑗−1,𝑡𝑠
𝛼
𝑗,𝑡𝐹𝑗,𝑡𝐹𝑗+1,𝑡 . . . 𝐹𝐵,𝑡

=
⎛⎝∑︁

𝑠𝛼
1

𝐹1,𝑡

⎞⎠ . . .

⎛⎜⎝∑︁
𝑠𝛼

𝑗

𝑠𝛼
𝑗 𝐹𝑗,𝑡

⎞⎟⎠ . . .

⎛⎝∑︁
𝑠𝐵,𝑡

𝐹𝐵,𝑡

⎞⎠

These last terms are easily calculated,

∑︁
𝑠𝛼

𝑘

𝐹𝑘,𝑡 =
∑︁

𝑠𝛼
𝑘

=±1
𝐹𝑘,𝑡 = 1

and

∑︁
𝑠𝛼

𝑘

𝑠𝛼
𝑘 𝐹𝑘,𝑡 =

∑︁
𝑠𝛼

𝑘
=±1

𝑠𝛼
𝑘 𝐹𝑘,𝑡 = 𝑒−2𝜇

2 (𝑠𝑝1
𝑘 + 𝑠𝑝2

𝑘 ).

Thus,

∑︁
S𝛼

𝑠𝛼
𝑗

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2) = 𝑒−2𝜇

2 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 ). (5.3.26)

Now, the expected value is given by

E(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2
1
𝐵

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝐵∑︁
𝑗=1

𝑒−4𝜇

4 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 ),

and remembering that the terms relative to the parents are calculated at time 𝑡, we end
up with

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁
. (5.3.27)

In Appendix A.1, we show that this equation can be written with an interesting matrix
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notation.

5.3.4 The mean without assortative reproduction
In the general case, equation (5.3.27) is not easy to deal with, but in the absence of

assortative reproduction, i.e., without 𝑞𝑚𝑖𝑛 (or 𝑞𝑚𝑖𝑛 = −1), this equation is quite simple.
Since there are no limitations to the reproduction, any individual can mate with any other
and then this case is equivalent to a complete network without loops: 𝐴𝑝1𝑝2 = 𝐴𝑝′

1𝑝′
2

= 1
for any 𝑝1 ̸= 𝑝2 and 𝑝′

1 ̸= 𝑝′
2, and 𝑁𝑝1 = 𝑁𝑝′

1
= 𝑁 − 1. Thus,

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑁2(𝑁 − 1)2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁

And now, by changing the order and indexes names,

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

𝑁2(𝑁 − 1)2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′
1

𝑡

= 𝑒−4𝜇

𝑁2(𝑁 − 1)2

∑︁
𝑝1,𝑝′

1

(︃∑︁
𝑝2

𝐴𝑝1𝑝2

)︃⎛⎝∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2

⎞⎠ 𝑞
𝑝1𝑝′

1
𝑡

= 𝑒−4𝜇

𝑁2

∑︁
𝑝1,𝑝′

1

𝑞
𝑝1𝑝′

1
𝑡 (5.3.28)

once ∑︀𝑗 𝐴𝑖𝑗 = 𝑁𝑗 = 𝑁 − 1. The expression above calculates the expected value of the
similarity distribution at time 𝑡 + 1 given the similarity values at time 𝑡 and can be
simplified as

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

𝑁2

∑︁
𝑝1,𝑝′

1

𝑞
𝑝1𝑝′

1
𝑡

= 𝑒−4𝜇

𝑁2

⎛⎝𝑁 +
∑︁

𝑝1 ̸=𝑝′
1

𝑞
𝑝1𝑝′

1
𝑡

⎞⎠ .

In this equation, we can recognize the average similarity within the population, given
by ⟨𝑞𝛼𝛽

𝑡 ⟩𝑃 = 1
𝑁(𝑁−1)

∑︀
𝑝1 ̸=𝑝′

1
𝑞

𝑝1𝑝′
1

𝑡 , then

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

𝑁2

(︁
𝑁 + 𝑁(𝑁 − 1)⟨𝑞𝛼𝛽

𝑡 ⟩𝑃

)︁
= 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩𝑃

]︂
. (5.3.29)

This equation is interesting because it relates the expected value for the similarity between
a pair of individuals in the next step with the observed average similarity of the present
population. On the other hand, this is not a recurrence equation. In order to find it, one
can take the ensemble average of both sides by averaging over all the possible trajectories
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𝒯𝑡 up to time 𝑡, and once the equation is linear, it is possible to write

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝛼𝛽

𝑡 ⟩
]︂

. (5.3.30)

This last equation is identical to Eq.(5.1.8), (although there we wrote it as population
averages, instead of ensemble averages) showing that the evolution of the mean similarity
in the case 𝐵 < ∞ and in the absence of assortative reproduction is the same as the
evolution in the case 𝐵 → ∞, therefore showing the same equilibrium point, Eq.(5.1.9).

5.3.5 The evolution of the variance
Now, in order to calculate the variance of the distribution,

Var(𝑞𝛼𝛽
𝑡+1) = E((𝑞𝛼𝛽

𝑡+1)2) − E(𝑞𝛼𝛽
𝑡+1)2 (5.3.31)

we must calculate the second moment

E((𝑞𝛼𝛽
𝑡+1)2) =

∑︁
𝑞

𝑞2𝒫(𝑞𝛼𝛽
𝑡+1 = 𝑞) (5.3.32)

to which we have

E((𝑞𝛼𝛽
𝑡+1)2) = 1

𝑁2

∑︁
S𝛼,S𝛽

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

(︃
S𝛼 · S𝛽

𝐵

)︃2 𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)

= 1
𝑁2𝐵2

∑︁
S𝛼,S𝛽

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

⎛⎝∑︁
𝑗,𝑘

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛼
𝑘 𝑠𝛽

𝑘

⎞⎠ 𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)

= 1
𝑁2𝐵2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

×
∑︁

S𝛼,S𝛽

⎛⎝ 𝐵∑︁
𝑗=1

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛼
𝑗 𝑠𝛽

𝑗 +
∑︁
𝑗 ̸=𝑘

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛼
𝑘 𝑠𝛽

𝑘

⎞⎠ 𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)

= 1
𝑁2𝐵2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

×
∑︁

S𝛼,S𝛽

⎡⎣𝐵
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼)𝐹𝑖,𝑡(𝛽) +

∑︁
𝑗 ̸=𝑘

(︃
𝑠𝛼

𝑗 𝑠𝛼
𝑘

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼)
)︃(︃

𝑠𝛽
𝑗 𝑠𝛽

𝑘

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛽)
)︃⎤⎦

(5.3.33)

In the expression above, the first term in brackets, after summing on S𝛼 and S𝛽, equals
to 𝐵 (as we have already calculated). The second term is also easy to calculate if we follow
the same procedure for the expected value E(𝑞𝛼𝛽

𝑡+1), the difference now is that two terms
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in the product do not equal to 1, instead of only one,

∑︁
S𝛼,S𝛽

∑︁
𝑗 ̸=𝑘

(︃
𝑠𝛼

𝑗 𝑠𝛼
𝑘

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼)
)︃(︃

𝑠𝛽
𝑗 𝑠𝛽

𝑘

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛽)
)︃

=
∑︁
𝑗 ̸=𝑘

𝑒−8𝜇

16 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )(𝑠𝑝1

𝑘 + 𝑠𝑝2
𝑘 )(𝑠𝑝′

1
𝑘 + 𝑠

𝑝′
2

𝑘 )

= 𝑒−8𝜇

16

𝐵∑︁
𝑗=1

(𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )

𝐵∑︁
𝑘=1,𝑘 ̸=𝑗

(𝑠𝑝1
𝑘 + 𝑠𝑝2

𝑘 )(𝑠𝑝′
1

𝑘 + 𝑠
𝑝′

2
𝑘 )

= 𝑒−8𝜇

16

𝐵∑︁
𝑗=1

(𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )
[︃
−(𝑠𝑝1

𝑗 + 𝑠𝑝2
𝑗 )(𝑠𝑝′

1
𝑗 + 𝑠

𝑝′
2

𝑗 ) +
𝐵∑︁

𝑘=1
(𝑠𝑝1

𝑘 + 𝑠𝑝2
𝑘 )(𝑠𝑝′

1
𝑘 + 𝑠

𝑝′
2

𝑘 )
]︃

= 𝑒−8𝜇

16

⎡⎣𝐵2(𝑞𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡 )2 −

𝐵∑︁
𝑗=1

(𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )2(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )2

⎤⎦
= 𝑒−8𝜇

16
[︁
𝐵(𝑞𝑝1𝑝′

1
𝑡 + 𝑞

𝑝1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′

1
𝑡 + 𝑞

𝑝2𝑝′
2

𝑡 )
]︁2

− 𝑒−8𝜇

4

⎡⎣𝐵 + 𝐵𝑞𝑝1𝑝2
𝑡 + 𝐵𝑞

𝑝′
1𝑝′

2
𝑡 +

𝐵∑︁
𝑗=1

𝑠𝑝1
𝑗 𝑠𝑝2

𝑗 𝑠
𝑝′

1
𝑗 𝑠

𝑝′
2

𝑗

⎤⎦ .

(5.3.34)

Defining the second order overlap among individuals 𝛼, 𝛽, 𝛾 and 𝛿 as

𝑞𝛼𝛽𝛾𝛿 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛽

𝑖 𝑠𝛾
𝑖 𝑠𝛿

𝑖 (5.3.35)

we can write,

E((𝑞𝛼𝛽
𝑡+1)2) = 1

𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

[︃
1
𝐵

+ 𝑒−8𝜇

16
[︁
(𝑞𝑝1𝑝′

1
𝑡 + 𝑞

𝑝1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′

1
𝑡 + 𝑞

𝑝2𝑝′
2

𝑡 )
]︁2

−𝑒−8𝜇

4𝐵

(︁
1 + 𝑞𝑝1𝑝2

𝑡 + 𝑞
𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

)︁]︃
. (5.3.36)

5.3.6 The variance without assortative reproduction
As for the mean similarity, the equation for the variance is not easy to treat in the

general case, but when there is no 𝑞𝑚𝑖𝑛, due to the network structure, it is possible to
calculate it. However, it is not simple as the mean and we must treat the sums very
carefully,

E((𝑞𝛼𝛽
𝑡+1)2) = 1

𝐵
− 𝑒−8𝜇

4𝐵

⎛⎝1 + 2
𝑁

∑︁
𝑝1,𝑝2

𝐴𝑝1𝑝2

(𝑁 − 1)𝑞𝑝1𝑝2
𝑡 + 1

𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

⎞⎠
+ 𝑒−8𝜇

16𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2

(︁
(𝑞𝑝1𝑝′

1
𝑡 )2 + (𝑞𝑝1𝑝′

2
𝑡 )2 + (𝑞𝑝2𝑝′

1
𝑡 )2 + (𝑞𝑝2𝑝′

2
𝑡 )2

+2𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 + 2𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
1

𝑡 + 2𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 + 2𝑞
𝑝1𝑝′

2
𝑡 𝑞

𝑝2𝑝′
1

𝑡 + 2𝑞
𝑝1𝑝′

2
𝑡 𝑞

𝑝2𝑝′
2

𝑡 + 2𝑞
𝑝2𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡

)︁
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= 1
𝐵

− 𝑒−8𝜇

4𝐵

⎛⎝1 + 2
𝑁

∑︁
𝑝1,𝑝2

𝐴𝑝1𝑝2

(𝑁 − 1)𝑞𝑝1𝑝2
𝑡 + 1

𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

⎞⎠
+ 𝑒−8𝜇

4𝑁2

⎛⎝∑︁
𝑝1,𝑝′

1

(𝑞𝑝1𝑝′
1

𝑡 )2 + 2
∑︁
𝑝1

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝′
1𝑝′

2

(𝑁 − 1)𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 +
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2 𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡

⎞⎠ .

(5.3.37)

The double sums are easy to calculate,

E((𝑞𝛼𝛽
𝑡+1)2) = 1

𝐵
− 𝑒−8𝜇

4𝐵

⎛⎝1 + 2⟨𝑞𝑝1𝑝2
𝑡 ⟩𝑃 + 1

𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

⎞⎠
+ 𝑒−8𝜇

4𝑁2

⎛⎝𝑁 + 𝑁(𝑁 − 1)⟨(𝑞𝑝1𝑝′
1

𝑡 )2⟩𝑃 + 2
∑︁
𝑝1

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝′
1𝑝′

2

(𝑁 − 1)𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡

+
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

(𝑁 − 1)2 𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡

⎞⎠ , (5.3.38)

where we have used that ∑︀𝑝1,𝑝2 𝐴𝑝1𝑝2𝑞𝑝1𝑝2
𝑡 = 𝑁(𝑁 − 1)⟨𝑞𝑝1𝑝2

𝑡 ⟩𝑃 and ∑︀
𝑝1,𝑝′

1
(𝑞𝑝1𝑝2

𝑡 )2 = 𝑁 +
𝑁(𝑁 − 1)⟨(𝑞𝑝1𝑝2

𝑡 )2⟩𝑃 . However, the sums over 3 and 4 indexes are not so simple. The
best way to deal with them is to open the sums in all possible combinations of indexes.
The complete expressions for these “opened sums” are presented in Appendix A.2 and
the final forms for each sum equal to

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝2𝑝′
1𝑝′

2
𝑡 = 2𝑁(𝑁 − 1) + 4𝑁(𝑁 − 1)(𝑁 − 2)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃

+ 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝2𝑝′
1𝑝′

2
𝑡 ⟩𝑃 (5.3.39)

∑︁
𝑝1

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′
1

𝑡 𝑞
𝑝1𝑝′

2
𝑡 = 2𝑁(𝑁 − 1)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + 𝑁(𝑁 − 1)(𝑁 − 2)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 ⟩𝑃 (5.3.40)

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′
1

𝑡 𝑞
𝑝2𝑝′

2
𝑡 = 𝑁(𝑁 − 1) + 𝑁(𝑁 − 1)⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃

+ 2𝑁(𝑁 − 1)(𝑁 − 2)
(︁
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + ⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 ⟩𝑃

)︁
+ 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 ⟩𝑃 , (5.3.41)

where expressions for the population averages we have identified are shown in Appendix
A.3. We emphasize that, in our notation, whenever a similarity (or second order overlap)
is between angular brackets (i.e., averaged), different indexes are in fact different. Also,
the final result expressed in equation (5.3.39) considers some simple properties of the
second order overlap quantity which are going to be treated in the following section.
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With these expressions,

E((𝑞𝛼𝛽
𝑡+1)2)

= 1
𝐵

− 𝑒−8𝜇

4𝐵

[︃(︃
1 + 2

𝑁(𝑁 − 1)

)︃
+
(︃

2 + 4(𝑁 − 2)
𝑁(𝑁 − 1)

)︃
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + (𝑁 − 2)(𝑁 − 3)

𝑁(𝑁 − 1) ⟨𝑞𝑝1𝑝2𝑝′
1𝑝′

2
𝑡 ⟩𝑃

]︃

+ 𝑒−8𝜇

4𝑁

[︃
𝑁

(𝑁 − 1) + (6𝑁 − 8)
(𝑁 − 1) ⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 +

(︂
𝑁 − 1 + 1

𝑁 − 1

)︂
⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃

+ 2𝑁(𝑁 − 2)
(𝑁 − 1) ⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 ⟩𝑃 + (𝑁 − 2)(𝑁 − 3)
(𝑁 − 1) ⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 ⟩𝑃

]︃
. (5.3.42)

In order to finish the calculation for the variance, we should subtract E[𝑞𝛼𝛽
𝑡+1]2. From

equation (5.3.28),

E(𝑞𝛼𝛽
𝑡+1)2 =

⎛⎝𝑒−4𝜇

𝑁2

∑︁
𝑝1,𝑝′

1

𝑞
𝑝1𝑝′

1
𝑡

⎞⎠2

= 𝑒−8𝜇

𝑁4

∑︁
𝑝1,𝑝′

1

∑︁
𝑝2,𝑝′

2

𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 (5.3.43)

and using the expansions in Appendix A.2,

E(𝑞𝛼𝛽
𝑡+1)2 = 𝑒−8𝜇

𝑁3

[︁
𝑁 + 2𝑁(𝑁 − 1)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩ + 2(𝑁 − 1)⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩

+4(𝑁 − 1)(𝑁 − 2)⟨𝑞𝑝1𝑝′
1

𝑡 𝑞
𝑝1𝑝′

2
𝑡 ⟩ + (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 ⟩
]︁

. (5.3.44)

Hence,

Var(𝑞𝛼𝛽
𝑡+1)

= 1
𝐵

− 𝑒−8𝜇

4𝐵

[︃(︃
1 + 2

𝑁(𝑁 − 1)

)︃
+
(︃

2 + 4(𝑁 − 2)
𝑁(𝑁 − 1)

)︃
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + (𝑁 − 2)(𝑁 − 3)

𝑁(𝑁 − 1) ⟨𝑞𝑝1𝑝2𝑝′
1𝑝′

2
𝑡 ⟩𝑃

]︃

+ 𝑒−8𝜇(𝑁 − 2)2

4𝑁2(𝑁 − 1)

[︂
1 − 2⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 +

(︂
𝑁 + 2 − 2

𝑁

)︂
⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃

+ 2
(︂

𝑁 − 6 + 4
𝑁

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 ⟩𝑃 − (𝑁 − 3)
(︂

3 − 2
𝑁

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 ⟩𝑃

]︂
(5.3.45)

Now, let us consider

Var(𝑞𝛼𝛽
𝑡 )𝑃 =

(︃
𝑁

𝑁 − 1

)︃(︁
⟨(𝑞𝛼𝛽

𝑡 )2⟩𝑃 − ⟨𝑞𝛼𝛽
𝑡 ⟩2

𝑃

)︁
⇒ ⟨(𝑞𝛼𝛽

𝑡 )2⟩𝑃 =
(︂

1 − 1
𝑁

)︂
Var(𝑞𝛼𝛽

𝑡 )𝑃 + ⟨𝑞𝛼𝛽
𝑡 ⟩2

𝑃

(5.3.46)

Cov(𝑡)𝛼𝛽𝛾
𝑃 =

(︃
𝑁

𝑁 − 1

)︃(︁
⟨𝑞𝛼𝛽

𝑡 𝑞𝛼𝛾
𝑡 ⟩𝑃 − ⟨𝑞𝛼𝛽

𝑡 ⟩2
𝑃

)︁
⇒ ⟨𝑞𝛼𝛽

𝑡 𝑞𝛼𝛾
𝑡 ⟩𝑃 =

(︂
1 − 1

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾

𝑃 +⟨𝑞𝛼𝛽
𝑡 ⟩2

𝑃

(5.3.47)

Cov(𝑡)𝛼𝛽𝛾𝛿
𝑃 =

(︃
𝑁

𝑁 − 1

)︃(︁
⟨𝑞𝛼𝛽

𝑡 𝑞𝛾𝛿
𝑡 ⟩𝑃 − ⟨𝑞𝛼𝛽

𝑡 ⟩2
𝑃

)︁
⇒ ⟨𝑞𝛼𝛽

𝑡 𝑞𝛾𝛿
𝑡 ⟩𝑃 =

(︂
1 − 1

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾𝛿

𝑃 +⟨𝑞𝛼𝛽
𝑡 ⟩2

𝑃

(5.3.48)
with 𝑁 = 𝑁(𝑁 − 1)/2 the number of pairs. We have just introduced the covariance
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Cov(𝑡)𝛼𝛽𝛾
𝑃 between similarities sharing one individual in common and Cov(𝑡)𝛼𝛽𝛾𝛿

𝑃 between
similarities sharing no individual in common, calculated over the populations. Including
these definitions in equation (5.3.45),

Var(𝑞𝛼𝛽
𝑡+1)

= 1
𝐵

− 𝑒−8𝜇

4𝐵

[︃(︃
1 + 2

𝑁(𝑁 − 1)

)︃
+
(︃

2 + 4(𝑁 − 2)
𝑁(𝑁 − 1)

)︃
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + (𝑁 − 2)(𝑁 − 3)

𝑁(𝑁 − 1) ⟨𝑞𝑝1𝑝2𝑝′
1𝑝′

2
𝑡 ⟩𝑃

]︃

+ 𝑒−8𝜇(𝑁 − 2)2

4𝑁2(𝑁 − 1)

[︂(︁
1 − ⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃

)︁2
+
(︂

𝑁 + 2 − 2
𝑁

)︂(︂
1 − 1

𝑁

)︂
Var(𝑞𝛼𝛽

𝑡 )

+ 2
(︂

𝑁 − 6 + 4
𝑁

)︂(︂
1 − 1

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾 − (𝑁 − 3)

(︂
3 − 2

𝑁

)︂(︂
1 − 1

𝑁

)︂
Cov(𝑡)𝛼𝛽𝛾𝛿

]︂
(5.3.49)

In this expression, considering the population quantities as good estimators for the the-
oretical values, we finally have a recurrence equation for the evolution of the variance of
the similarity distribution in the absence of mating restrictions. The recurrence equation
then takes the form presented in the beginning of this section (there we have also consid-
ered the result Cov(𝑡)𝛼𝛽𝛾𝛿 = 0). Now, we shall calculate the covariances Cov(𝑡)𝛼𝛽𝛾𝛿 and
Cov(𝑡)𝛼𝛽𝛾 as also the mean second order overlap E(𝑞𝛼𝛽𝛾𝛿

𝑡 ).

5.3.7 The Second Order Overlap
When calculating the variance of the similarity distribution, we defined the second

order overlap 𝑞𝛼𝛽𝛾𝛿 between the individuals 𝛼, 𝛽, 𝛾 and 𝛿,

𝑞𝛼𝛽𝛾𝛿
𝑡 = 1

𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖,𝑡𝑠

𝛽
𝑖,𝑡𝑠

𝛾
𝑖,𝑡𝑠

𝛿
𝑖,𝑡. (5.3.50)

We aim now to study its properties and evolution.
First, it is easy to see that when two individuals are the same, the second order overlap

equals the first order overlap (i.e., the similarity) between the remaining two individuals,

𝑞𝛼𝛼𝛾𝛿 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛼

𝑖 𝑠𝛾
𝑖 𝑠𝛿

𝑖 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛾
𝑖 𝑠𝛿

𝑖 = 𝑞𝛾𝛿. (5.3.51)

Also, when there are two pairs of common individuals, the second overlap equals 1,

𝑞𝛼𝛼𝛾𝛾 = 1
𝐵

𝐵∑︁
𝑖=1

𝑠𝛼
𝑖 𝑠𝛼

𝑖 𝑠𝛾
𝑖 𝑠𝛾

𝑖 = 1
𝐵

𝐵∑︁
𝑖=1

1 = 1. (5.3.52)

These properties tell us that the interesting case to be considered is when the 4 indi-
viduals are different. Then, when writing any average of 𝑞𝛼𝛽𝛾𝛿

𝑡 we are gonna be referring
to this case of interest.

To calculate the expected value E(𝑞𝛼𝛽𝛾𝛿
𝑡+1 ), we must know the distribution 𝒫(𝑞𝛼𝛽𝛾𝛿

𝑡+1 ),
which is easily calculated once we remember that the genomes of different individuals
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are independent once we know their parents, as we have done for the mean. Thus, the
distribution is completely analogous to the one we have found for 𝑞𝛼𝛽

𝑡+1, and is given by

𝒫(𝑞𝛼𝛽𝛾𝛿
𝑡+1 ) = 1

𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

×
∑︁

S𝛼,S𝛽 ,S𝛾 ,S𝛿

𝛿

⎛⎝𝑞𝛼𝛽𝛾𝛿
𝑡+1 ,

1
𝐵

𝐵∑︁
𝑗=1

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛾
𝑗 𝑠𝛿

𝑗

⎞⎠
×

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)𝐹𝑖,𝑡(𝛾, 𝑝′′
1, 𝑝′′

2)𝐹𝑖,𝑡(𝛿, 𝑝′′′
1 , 𝑝′′′

2 ) (5.3.53)

where we have introduced the parents (𝑝′′
1, 𝑝′′

2) and (𝑝′′′
1 , 𝑝′′′

2 ) of 𝛾 and 𝛿, respectively. Once
all individuals are different, the expected value is easily obtained as

E(𝑞𝛼𝛽𝛾𝛿
𝑡+1 )

=
∑︁

𝑞

𝑞𝒫(𝑞𝛼𝛽𝛾𝛿
𝑡+1 = 𝑞)

= 𝑒−8𝜇

16𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

× 1
𝐵

𝐵∑︁
𝑗=1

(𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )(𝑠𝑝′′

1
𝑗 + 𝑠

𝑝′′
2

𝑗 )(𝑠𝑝′′′
1

𝑗 + 𝑠
𝑝′′′

2
𝑗 )

= 𝑒−8𝜇

16𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

×
(︁
𝑞

𝑝1𝑝′
1𝑝′′

1 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

1𝑝′′
1 𝑝′′′

2
𝑡 + 𝑞

𝑝1𝑝′
1𝑝′′

2 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

1𝑝′′
2 𝑝′′′

2
𝑡 + 𝑞

𝑝1𝑝′
2𝑝′′

1 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

2𝑝′′
1 𝑝′′′

2
𝑡 + 𝑞

𝑝1𝑝′
2𝑝′′

2 𝑝′′′
1

𝑡 + 𝑞
𝑝1𝑝′

2𝑝′′
2 𝑝′′′

2
𝑡

+ 𝑞
𝑝2𝑝′

1𝑝′′
1 𝑝′′′

1
𝑡 + 𝑞

𝑝2𝑝′
1𝑝′′

1 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

1𝑝′′
2 𝑝′′′

1
𝑡 + 𝑞

𝑝2𝑝′
1𝑝′′

2 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

2𝑝′′
1 𝑝′′′

1
𝑡 + 𝑞

𝑝2𝑝′
2𝑝′′

1 𝑝′′′
2

𝑡 + 𝑞
𝑝2𝑝′

1𝑝′′
2 𝑝′′′

2
𝑡 + 𝑞

𝑝2𝑝′
2𝑝′′

2 𝑝′′′
2

𝑡

)︁
(5.3.54)

which in the absence of assortative reproduction reduces to

E(𝑞𝛼𝛽𝛾𝛿
𝑡+1 ) = 𝑒−8𝜇

𝑁4

∑︁
𝑝1,𝑝′

1,𝑝′′
1 ,𝑝′′′

1

𝑞
𝑝1𝑝′

1𝑝′′
1 𝑝′′′

1
𝑡 . (5.3.55)

Again, to deal with the four indexes sum, we use the result in Appendix A.2 and find

E(𝑞𝛼𝛽𝛾𝛿
𝑡+1 ) = 𝑒−8𝜇

𝑁3

[︁
(3𝑁 − 2) + (𝑁 − 1)(6𝑁 − 8)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝′

1𝑝′′
1 𝑝′′′

1
𝑡 ⟩𝑃

]︁
(5.3.56)

≈ 𝑒−8𝜇
[︂ 6
𝑁

⟨𝑞𝑝1𝑝′
1

𝑡 ⟩𝑃 +
(︂

1 − 6
𝑁

)︂
⟨𝑞𝑝1𝑝′

1𝑝′′
1 𝑝′′′

1
𝑡 ⟩𝑃

]︂
(5.3.57)

in which the approximation holds for 𝑁 ≫ 1. The factor 6/𝑁 is the probability that two
of the parents 𝑝1, 𝑝′

1, 𝑝′′
1 and 𝑝′′′

1 are actually the same individual.
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5.3.8 The similarity covariance
The covariance appeared when we were calculating the expected value of (𝑞𝛼𝛽

𝑡+1). And
it is, indeed, a very important calculation. When changing from the genetic description of
the individuals to the similarity description of the population, we are neglecting individual
genome values and considering only a measure of their pairwise distance. Although it is
a very natural change of description, once the dynamical constraint is given in terms of
the genetic similarity, the probability of genomes of different individuals are independent
of each other (as it can be shown with equations (5.3.19), (5.3.20) and (5.3.21)), while
genetic similarities between different pairs of individuals may not be.

So let us start by defining the covariance between 𝑞𝛼𝛽
𝑡 and 𝑞𝛾𝛿

𝑡 , with 𝛼 ̸= 𝛽 and 𝛾 ̸= 𝛿
is defined as

Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛾𝛿

𝑡 ) = E
[︁
(𝑞𝛼𝛽

𝑡 − E(𝑞𝛼𝛽
𝑡 ))(𝑞𝛾𝛿

𝑡 − E(𝑞𝛾𝛿
𝑡 ))

]︁
= E(𝑞𝛼𝛽

𝑡 𝑞𝛾𝛿
𝑡 ) − E(𝑞𝛼𝛽

𝑡 )E(𝑞𝛾𝛿
𝑡 )

= E(𝑞𝛼𝛽
𝑡 𝑞𝛾𝛿

𝑡 ) − E(𝑞𝛼𝛽
𝑡 )2. (5.3.58)

When both pairs of individuals are the same, (𝛼, 𝛽) = (𝛾, 𝛿), the covariance equals the
variance of that quantity,

Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛼𝛽

𝑡 ) = Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛽𝛼

𝑡 ) = Var(𝑞𝛼𝛽
𝑡 ) (5.3.59)

and we have already performed this calculation. So now we are going to consider cases
with all distinct individuals and with only one in common,

Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛾𝛿

𝑡 ) = Cov(𝑡)𝛼𝛽𝛾𝛿 (5.3.60)

Cov(𝑞𝛼𝛽
𝑡 , 𝑞𝛾𝛽

𝑡 ) = Cov(𝑡)𝛼𝛽𝛾 (5.3.61)

in which 𝛼, 𝛽, 𝛾 and 𝛿 are all different.

Second Moment with one individual in common

Let us start with the calculation of E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛽
𝑡+1) = ∑︀

𝑞𝛼𝛽
𝑡+1,𝑞𝛾𝛽

𝑡+1
𝑞𝛼𝛽

𝑡+1𝑞
𝛾𝛽
𝑡+1𝒫(𝑞𝛼𝛽

𝑡+1, 𝑞𝛾𝛽
𝑡+1), what

introduces the task of calculating the joint distribution 𝒫(𝑞𝛼𝛽
𝑡+1, 𝑞𝛾𝛽

𝑡+1). Following the same
procedure of section 5.3.2, once we learned that the genomes from different individuals
can be treated as independent when conditioned to the individuals’ parents, it is not
difficult to see that this distribution can be written as

𝒫(𝑞𝛼𝛽
𝑡+1, 𝑞𝛾𝛽

𝑡+1) = 1
𝑁3

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1

∑︁
S𝛼,S𝛽 ,S𝛾

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝛿

(︃
𝑞𝛾𝛽

𝑡+1,
S𝛾 · S𝛽

𝐵

)︃

×
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2) (5.3.62)



5.3. ANALYTICAL THEORY 78

where we introduced the parents (𝑝′′
1, 𝑝′′

2) of the individual 𝛾. Then,

E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛽
𝑡+1) =

∑︁
𝑞𝛼𝛽

𝑡+1,𝑞𝛾𝛽
𝑡+1

𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛽
𝑡+1𝒫(𝑞𝛼𝛽

𝑡+1, 𝑞𝛾𝛽
𝑡+1)

= 1
𝑁3

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1

∑︁
S𝛼,S𝛽 ,S𝛾

(︃
S𝛼 · S𝛽

𝐵

)︃(︃
S𝛾 · S𝛽

𝐵

)︃

×
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2)

= 1
𝑁3𝐵2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1

∑︁
S𝛼,S𝛽 ,S𝛾

⎛⎝∑︁
𝑗,𝑘

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛾
𝑘𝑠𝛽

𝑘

⎞⎠
×

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)𝐹𝑖,𝑡(𝛾, 𝑝′′
1, 𝑝′′

2)

= 1
𝑁3𝐵2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1

×
∑︁

S𝛼,S𝛽 ,S𝛾

𝐵∑︁
𝑗=1

⎛⎝𝑠𝛼
𝑗 𝑠𝛾

𝑗 +
∑︁
𝑘 ̸=𝑗

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛾
𝑘𝑠𝛽

𝑘

⎞⎠ 𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼)𝐹𝑖,𝑡(𝛽)𝐹𝑖,𝑡(𝛾). (5.3.63)

The last line of this equation is calculated with the same technique as before,

∑︁
S𝛼,S𝛽 ,S𝛾

𝐵∑︁
𝑗=1

⎛⎝𝑠𝛼
𝑗 𝑠𝛾

𝑗 +
∑︁
𝑘 ̸=𝑗

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛾
𝑘𝑠𝛽

𝑘

⎞⎠ 𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼)𝐹𝑖,𝑡(𝛽)𝐹𝑖,𝑡(𝛾)

=
𝐵∑︁

𝑗=1

𝑒−4𝜇

4 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′′
1

𝑗 + 𝑠
𝑝′′

2
𝑗 ) +

𝐵∑︁
𝑗=1

∑︁
𝑘 ̸=𝑗

𝑒−8𝜇

16 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )(𝑠𝑝′′

1
𝑘 + 𝑠

𝑝′′
2

𝑘 )(𝑠𝑝′
1

𝑘 + 𝑠
𝑝′

2
𝑘 )

=
𝐵∑︁

𝑗=1

𝑒−4𝜇

4 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′′
1

𝑗 + 𝑠
𝑝′′

2
𝑗 ) +

𝐵∑︁
𝑗=1

𝑒−8𝜇

16 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )

𝐵∑︁
𝑘=1

(𝑠𝑝′′
1

𝑘 + 𝑠
𝑝′′

2
𝑘 )(𝑠𝑝′

1
𝑘 + 𝑠

𝑝′
2

𝑘 )

−
𝐵∑︁

𝑗=1

𝑒−8𝜇

16 (𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )(𝑠𝑝′′

1
𝑗 + 𝑠

𝑝′′
2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )

= 𝐵
𝑒−4𝜇

4 (𝑞𝑝1𝑝′′
1

𝑡 + 𝑞
𝑝1𝑝′′

2
𝑡 + 𝑞

𝑝2𝑝′′
1

𝑡 + 𝑞
𝑝2𝑝′′

2
𝑡 )

+ 𝐵2 𝑒−8𝜇

16 (𝑞𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡 )(𝑞𝑝′′

1 𝑝′
1

𝑡 + 𝑞
𝑝′′

1 𝑝′
2

𝑡 + 𝑞
𝑝′′

2 𝑝′
1

𝑡 + 𝑞
𝑝′′

2 𝑝′
2

𝑡 )

− 𝐵
𝑒−8𝜇

8
[︁
(𝑞𝑝1𝑝′′

1
𝑡 + 𝑞

𝑝1𝑝′′
2

𝑡 + 𝑞
𝑝2𝑝′′

1
𝑡 + 𝑞

𝑝2𝑝′′
2

𝑡 ) + (𝑞𝑝1𝑝′′
1 𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝1𝑝′′

2 𝑝′
1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′′
1 𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′′

2 𝑝′
1𝑝′

2
𝑡 )

]︁
.

(5.3.64)

Now, we can write

E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛽
𝑡+1) = 1

𝑁3

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
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×
{︃

𝑒−8𝜇

16 (𝑞𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡 )(𝑞𝑝′′

1 𝑝′
1

𝑡 + 𝑞
𝑝′′

1 𝑝′
2

𝑡 + 𝑞
𝑝′′

2 𝑝′
1

𝑡 + 𝑞
𝑝′′

2 𝑝′
2

𝑡 )

+ 1
𝐵

[︃
𝑒−4𝜇

4 − 𝑒−8𝜇

8

]︃
(𝑞𝑝1𝑝′′

1
𝑡 + 𝑞

𝑝1𝑝′′
2

𝑡 + 𝑞
𝑝2𝑝′′

1
𝑡 + 𝑞

𝑝2𝑝′′
2

𝑡 )

−𝑒−8𝜇

8𝐵
(𝑞𝑝1𝑝′′

1 𝑝′
1𝑝′

2
𝑡 + 𝑞

𝑝1𝑝′′
2 𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′′

1 𝑝′
1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′′
2 𝑝′

1𝑝′
2

𝑡 )
}︃

. (5.3.65)

Covariance with one individual in common and no assortative reproduction

As we did for the variance, we shall now consider the case without assortative repro-
duction. Although in this case there is a sum over six indexes, a maximum of only four
indexes appear in each term,

E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛽
𝑡+1) = 1

𝑁3(𝑁 − 1)3

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

×
{︃

𝑒−8𝜇

2 (𝑞𝑝1𝑝′
1

𝑡 𝑞
𝑝′

1𝑝′′
1

𝑡 + 𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝′
2𝑝′′

2
𝑡 ) + 1

𝐵

[︃
𝑒−4𝜇 − 𝑒−8𝜇

2

]︃
𝑞

𝑝1𝑝′′
1

𝑡 −𝑒−8𝜇

2𝐵
𝑞

𝑝1𝑝′′
1 𝑝′

1𝑝′
2

𝑡

}︃

= 1
𝐵

[︃
𝑒−4𝜇 − 𝑒−8𝜇

2

]︃ [︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝑝1𝑝′′

1
𝑡 ⟩𝑃

]︂

+ 𝑒−8𝜇

2𝑁3

∑︁
𝑝1,𝑝′

1,𝑝′′
1

𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝′
1𝑝′′

1
𝑡 + 𝑒−8𝜇

2𝑁3(𝑁 − 1)
∑︁

𝑝1,𝑝′
1,𝑝′

2,𝑝′′
1

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′
1

𝑡 𝑞
𝑝′

2𝑝′′
1

𝑡

− 𝑒−8𝜇

2𝐵𝑁3(𝑁 − 1)
∑︁

𝑝1,𝑝′
1,𝑝′

2,𝑝′′
1

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′′
1 𝑝′

1𝑝′
2

𝑡 (5.3.66)

and using the expansions in Appendix A.2 we find, for the sums,

∑︁
𝑝1,𝑝′

1,𝑝′′
1

𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝′
1𝑝′′

1
𝑡 = 𝑁(𝑁 − 1)

[︂ 1
𝑁 − 1 + 2⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + ⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃 + (𝑁 − 2)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝′
1𝑝′′

1
𝑡 ⟩𝑃

]︂
(5.3.67)

∑︁
𝑝1,𝑝′

1,𝑝′
2,𝑝′′

1

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′
1

𝑡 𝑞
𝑝′

2𝑝′′
1

𝑡 = 𝑁(𝑁 − 1)
[︁
1 + 2(𝑁 − 1)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + ⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃

+ (𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝′
1

𝑡 𝑞
𝑝2𝑝′

2
𝑡 ⟩𝑃 + 3(𝑁 − 2)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝′
1𝑝′′

1
𝑡 ⟩𝑃

]︁
(5.3.68)

∑︁
𝑝1,𝑝′

1,𝑝′
2,𝑝′′

1

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1𝑝′′
1 𝑝′

1𝑝′
2

𝑡 = 𝑁(𝑁 − 1)
[︁
2 + (5𝑁 − 8)⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 + (𝑁 − 2)(𝑁 − 3)⟨𝑞𝑝1𝑝2𝑝′

1𝑝′
2

𝑡 ⟩𝑃

]︁
(5.3.69)
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and joining all these results together, and subtracting E(𝑞𝛼𝛽
𝑡+1)2 (given by Eq.(5.3.44)) we

get

Cov(𝑡 + 1)𝛼𝛽𝛾 = 𝑒−4𝜇

𝐵

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃

]︂
− 𝑒−8𝜇

2𝐵

[︂ 2
𝑁2 + 1

𝑁
+
(︂

1 + 4
𝑁

− 8
𝑁2

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 +

(︂
1 − 2

𝑁

)︂(︂
1 − 3

𝑁

)︂
⟨𝑞𝑝1𝑝2𝑝′

1𝑝′
2

𝑡 ⟩𝑃

]︂
+ 𝑒−8𝜇(𝑛 − 2)2

2𝑁3

[︁
⟨(𝑞𝑝1𝑝′

1
𝑡 )2⟩𝑃 + (𝑁 − 4)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 ⟩2
𝑃 − (𝑁 − 3)⟨𝑞𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 ⟩𝑃

]︁
= 𝑒−4𝜇

𝐵

[︂ 1
𝑁

+
(︂

1 − 1
𝑁

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃

]︂
− 𝑒−8𝜇

2𝐵

[︂ 2
𝑁2 + 1

𝑁
+
(︂

1 + 4
𝑁

− 8
𝑁2

)︂
⟨𝑞𝑝1𝑝′

1
𝑡 ⟩𝑃 +

(︂
1 − 2

𝑁

)︂(︂
1 − 3

𝑁

)︂
⟨𝑞𝑝1𝑝2𝑝′

1𝑝′
2

𝑡 ⟩𝑃

]︂
+ 𝑒−8𝜇(𝑛 − 2)2

2𝑁3

(︂
1 − 1

𝑁

)︂ [︁
Var(𝑞𝑝1𝑝′

1
𝑡 ) + (𝑁 − 4)Cov(𝑡)𝛼𝛽𝛾 − (𝑁 − 3)Cov(𝑡)𝛼𝛽𝛾𝛿

]︁
.

(5.3.70)

Considering again that the population values are good estimators for the theoretical val-
ues, we find the recurrence equation presented at the beginning of the section.

Covariance with no individual in common

Calculating this moment requires the joint distribution 𝒫(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛿
𝑡+1), which can be

calculated analogously as before, being easy to see that

𝒫(𝑞𝛼𝛽
𝑡+1, 𝑞𝛾𝛿

𝑡+1) = 1
𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

×
∑︁

S𝛼,S𝛽 ,S𝛾 ,S𝛿

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝛿

(︃
𝑞𝛾𝛿

𝑡+1,
S𝛾 · S𝛿

𝐵

)︃

×
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2)𝐹𝑖,𝑡(𝛿, 𝑝′′′

1 , 𝑝′′′
2 ), (5.3.71)

where we introduced the parents (𝑝′′′
1 , 𝑝′′′

2 ) of the individual 𝛿. Then,

E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛿
𝑡+1) =

∑︁
𝑞𝛼𝛽

𝑡+1,𝑞𝛾𝛿
𝑡+1

𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛿
𝑡+1𝒫(𝑞𝛼𝛽

𝑡+1, 𝑞𝛾𝛽
𝑡+1)

= 1
𝑁4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1
𝑁𝑝′′′

1

∑︁
S𝛼,S𝛽 ,S𝛾 ,S𝛿

(︃
S𝛼 · S𝛽

𝐵

)︃(︃
S𝛾 · S𝛿

𝐵

)︃

×
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2)𝐹𝑖,𝑡(𝛿, 𝑝′′′

1 , 𝑝′′′
2 )

= 1
𝑁2

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

∑︁
S𝛼,S𝛽

(︃
S𝛼 · S𝛽

𝐵

)︃
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)
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× 1
𝑁2

∑︁
𝑝′′

1 ,𝑝′′
2

∑︁
𝑝′′′

1 ,𝑝′′′
2

𝐴𝑝′′
1 𝑝′′

2
𝐴𝑝′′′

1 𝑝′′′
2

𝑁𝑝′′
1
𝑁𝑝′′′

1

∑︁
S𝛾 ,S𝛿

(︃
S𝛾 · S𝛿

𝐵

)︃
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2)𝐹𝑖,𝑡(𝛿, 𝑝′′′

1 , 𝑝′′′
2 )

= E(𝑞𝛼𝛽
𝑡+1)E(𝑞𝛾𝛿

𝑡+1). (5.3.72)

This result shows that the covariance of similarities that do not share common indi-
viduals is zero,

Cov(𝑡)𝛼𝛽𝛾𝛿 = E(𝑞𝛼𝛽
𝑡+1𝑞

𝛾𝛿
𝑡+1) − E(𝑞𝛼𝛽

𝑡+1)E(𝑞𝛾𝛿
𝑡+1) = 0. (5.3.73)

5.4 On higher-order overlaps
The Derrida-Higgs model, as we are trying to describe, can be understood as an

indexed family of random vectors 𝑄𝑡 defined as

𝑄𝑡 ≡ {𝑞12
𝑡 , 𝑞13

𝑡 , . . . , 𝑞1𝑁
𝑡 , 𝑞23

𝑡 , 𝑞24
𝑡 , . . . , 𝑞2𝑁

𝑡 , . . . , 𝑞𝑁−1,𝑁
𝑡 } = {𝑞𝑖𝑗

𝑡 |1 ≤ 𝑖 < 𝑗 ≤ 𝑁} (5.4.1)

i.e., the upper triangle of the similarity matrix Q𝑡, whose entries follow a distribution
with mean and covariance which we have calculated in the previous section. In fact,
the probability distributions we have calculated so far are marginals of the distribution
𝒫(𝑄𝑡+1). For instance,

𝒫(𝑞𝛼𝛽
𝑡+1) =

∑︁
𝑞12

𝑡+1

· · ·
∑︁
𝑞𝛼1

𝑡+1

· · ·
∑︁

𝑞𝛼,𝛽−1
𝑡+1

∑︁
𝑞𝛼,𝛽+1

𝑡+1

· · ·
∑︁

𝑞𝑁−1,𝑁
𝑡+1

𝒫(𝑄𝑡+1) (5.4.2)

with the property of being the same regardless of 𝛼 and 𝛽 (with 𝛼 ̸= 𝛽). Taking into
account the procedure we have introduced in order to calculate 𝒫(𝑞𝛼𝛽

𝑡+1), it is not hard
to calculate 𝒫(𝑄𝑡+1). Let 𝑝1(𝛼𝑖) be the focal parent of the individual 𝛼𝑖, and 𝑝2(𝛼𝑖) its
second parent (𝑝1 and 𝑝2 are taken from the generation 𝑡 while 𝛼𝑖 is from generation 𝑡+1).
Then 𝒫(𝑄𝑡+1) takes the form

𝒫(𝑄𝑡+1) = 1
𝑁𝑁

∑︁
𝑝1(𝛼1),𝑝2(𝛼1)

· · ·
∑︁

𝑝1(𝛼𝑁 ),𝑝2(𝛼𝑁 )

(︃
𝑁∏︁

𝑖=1

𝐴𝑝1(𝛼𝑖)𝑝2(𝛼𝑖)

𝑁𝑝1(𝛼𝑖)

)︃

×
∑︁
S1

· · ·
∑︁
S𝑁

⎡⎢⎣ ∏︁
{𝑞𝑖𝑗

𝑡+1|1≤𝑖<𝑗≤𝑁}

𝛿

(︃
𝑞𝑖𝑗

𝑡+1,
S𝑖 · S𝑗

𝐵

)︃⎤⎥⎦ [︃ 𝐵∏︁
𝑘=1

(︃
𝑁∏︁

𝑙=1
𝐹𝑘,𝑡(𝛼𝑙, 𝑝1(𝛼𝑙), 𝑝2(𝛼𝑙))

)︃]︃
.

(5.4.3)

On the other hand, as we have seen, second moments of 𝒫(𝑄𝑡+1) also depend on the
second order overlap, and it is not hard to see that a third moment of this distribution
would also depend on the third order overlap, and so on. For instance, let us consider the
third moment E(𝑞𝛼𝛽

𝑡+1𝑞
𝛾𝛽
𝑡+1𝑞

𝛾𝛼
𝑡+1), whose involved probability is

𝒫(𝑞𝛼𝛽
𝑡+1, 𝑞𝛾𝛽

𝑡+1, 𝑞𝛾𝛼
𝑡+1)
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= 1
𝑁3

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

∑︁
𝑝′′

1 ,𝑝′′
2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2
𝐴𝑝′′

1 𝑝′′
2

𝑁𝑝1𝑁𝑝′
1
𝑁𝑝′′

1

∑︁
S𝛼,S𝛽 ,S𝛾

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼 · S𝛽

𝐵

)︃
𝛿

(︃
𝑞𝛾𝛽

𝑡+1,
S𝛾 · S𝛽

𝐵

)︃
𝛿
(︂

𝑞𝛾𝛼
𝑡+1,

S𝛾 · S𝛼

𝐵

)︂

×
𝐵∏︁

𝑖=1
𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′

1, 𝑝′
2)𝐹𝑖,𝑡(𝛾, 𝑝′′

1, 𝑝′′
2), (5.4.4)

and thus, when calculating the moment, we find the term

1
𝐵3

∑︁
S𝛼,S𝛽 ,S𝛾

∑︁
𝑗,𝑘,𝑙

𝑠𝛼
𝑗 𝑠𝛽

𝑗 𝑠𝛽
𝑘𝑠𝛾

𝑘𝑠𝛾
𝑙 𝑠𝛼

𝑙

𝐵∏︁
𝑖=1

𝐹𝑖,𝑡(𝛼, 𝑝1, 𝑝2)𝐹𝑖,𝑡(𝛽, 𝑝′
1, 𝑝′

2)𝐹𝑖,𝑡(𝛾, 𝑝′′
1, 𝑝′′

2)

= 1
𝐵3

(︃
𝑒−2𝜇

2

)︃6 ∑︁
𝑗,𝑘,𝑙

(𝑠𝑝1
𝑗 + 𝑠𝑝2

𝑗 )(𝑠𝑝′
1

𝑗 + 𝑠
𝑝′

2
𝑗 )(𝑠𝑝′

1
𝑘 + 𝑠

𝑝′
2

𝑘 )(𝑠𝑝′′
1

𝑘 + 𝑠
𝑝′′

2
𝑘 )(𝑠𝑝′′

1
𝑙 + 𝑠

𝑝′′
2

𝑙 )(𝑠𝑝1
𝑙 + 𝑠𝑝2

𝑙 )

= 1
𝐵3

(︃
𝑒−2𝜇

2

)︃6 [︃
. . . + 8

∑︁
𝑘

𝑠𝑝1
𝑘 𝑠𝑝2

𝑘 𝑠
𝑝′

1
𝑘 𝑠

𝑝′
2

𝑘 𝑠
𝑝′′

1
𝑘 𝑠

𝑝′′
2

𝑘

]︃
, (5.4.5)

where we can recognize the third order overlap,

𝑞𝑝1𝑝2𝑝′
1𝑝′

2𝑝′′
1 𝑝′′

2 ≡ 1
𝐵

∑︁
𝑘

𝑠𝑝1
𝑘 𝑠𝑝2

𝑘 𝑠
𝑝′

1
𝑘 𝑠

𝑝′
2

𝑘 𝑠
𝑝′′

1
𝑘 𝑠

𝑝′′
2

𝑘 . (5.4.6)

Thus, it is not possible to completely change from the genome description to only the
first order overlap description, once the evolution of its distribution depends on higher
order overlaps.

5.4.1 The definition
For completeness, let us introduce a general definition for the overlap. Let 𝑛 individuals

{𝛼1, 𝛼2, . . . , 𝛼𝑛} all with their own genome {𝑠𝛼𝑘
1 , . . . , 𝑠𝛼𝑘

𝐵 }. The 𝑗−order overlap of the 2𝑗
individuals {𝛼𝑖1 , . . . , 𝛼𝑖2𝑗

} with {𝑖1, . . . , 𝑖2𝑗} ⊂ {1, . . . , 𝑛} is defined by

𝑞(𝑗)(𝑖1, . . . , 𝑖2𝑗) ≡ 1
𝐵

𝐵∑︁
𝑘=1

𝑠
𝛼𝑖1
𝑘 𝑠

𝛼𝑖2
𝑘 . . . 𝑠

𝛼𝑖2𝑗

𝑘 . (5.4.7)

Notice that we have changed the notation from what we have used so far, since carrying
the individuals as upper indexes can be quite messy for higher order overlaps.

5.4.2 Properties
Let us now introduce some of its properties.



5.4. ON HIGHER-ORDER OVERLAPS 83

Identity property

If all individuals have the same genome, then the overlap (of any order) equals 1,

𝑞(𝑗)(𝑖1, . . . , 𝑖2𝑗) = 1
𝐵

𝐵∑︁
𝑘=1

𝑠
𝛼𝑖1
𝑘 𝑠

𝛼𝑖2
𝑘 . . . 𝑠

𝛼𝑖2𝑗

𝑘 = 1
𝐵

𝐵∑︁
𝑘=1

1 = 1. (5.4.8)

Permutation symmetry

The overlap (of any order) does not change under permutations of individuals,

𝑞(𝑗)(. . . 𝛼𝑙, . . . , 𝛼𝑚 . . .) = 1
𝐵

𝐵∑︁
𝑘=1

. . . 𝑠𝛼𝑙
𝑘 . . . 𝑠𝛼𝑚

𝑘 . . .

= 1
𝐵

𝐵∑︁
𝑘=1

. . . 𝑠𝛼𝑚
𝑘 . . . 𝑠𝛼𝑙

𝑘 . . .

= 𝑞(𝑗)(. . . 𝛼𝑚, . . . , 𝛼𝑙 . . .). (5.4.9)

The reduced order property

If two individuals of the set {𝛼𝑖1 , . . . , 𝛼𝑖2𝑗
} are the same, then the 𝑗−order overlap

equals the (𝑗 − 1)−order overlap of the same set without these two individuals. Suppose
𝛼𝑙 = 𝛼𝑚. Then,

𝑞(𝑗)(. . . , 𝛼𝑙−1, 𝛼𝑙, 𝛼𝑙+1, . . . 𝛼𝑚−1, 𝛼𝑚, 𝛼𝑙+1 . . .) = 1
𝐵

𝐵∑︁
𝑘=1

. . . 𝑠
𝛼𝑙−1
𝑘 𝑠𝛼𝑙

𝑘 𝑠
𝛼𝑙+1
𝑘 . . . 𝑠

𝛼𝑚−1
𝑘 𝑠𝛼𝑚

𝑘 𝑠
𝛼𝑚+1
𝑘 . . .

= 1
𝐵

𝐵∑︁
𝑘=1

(︁
. . . 𝑠

𝛼𝑙−1
𝑘 𝑠

𝛼𝑙+1
𝑘 . . . 𝑠

𝛼𝑚−1
𝑘 𝑠

𝛼𝑚+1
𝑘 . . .

)︁
𝑠𝛼𝑙

𝑘 𝑠𝛼𝑚
𝑘

= 1
𝐵

𝐵∑︁
𝑘=1

(︁
. . . 𝑠

𝛼𝑙−1
𝑘 𝑠

𝛼𝑙+1
𝑘 . . . 𝑠

𝛼𝑚−1
𝑘 𝑠

𝛼𝑚+1
𝑘 . . .

)︁
= 𝑞(𝑗−1)(. . . , 𝛼𝑙−1, 𝛼𝑙+1, . . . 𝛼𝑚−1, 𝛼𝑙+1 . . .).

(5.4.10)

Indeed, if {𝛼𝑖1 , . . . , 𝛼𝑖2𝑗
} has 𝑚 pairs of equal individuals, then its 𝑗−order overlap equals

the (𝑗 − 𝑚)−order of the same set excluding the 𝑚 pairs.

First order mean evolution

In the absence of 𝑞𝑚𝑖𝑛, we can approximate the evolution of the 𝑗−order overlap as
follows. Considering {𝛼1, . . . , 𝛼2𝑗} of 2𝑗 different individuals in a population of size 𝑁 ,
and extending the result of equation (5.3.55), we can write

E(𝑞(𝑗)(𝛼1, . . . , 𝛼2𝑗)) = 𝑒−4𝑗𝜇
(︂ 1

𝑁

)︂2𝑗 ∑︁
𝑝1(𝛼1),...,𝑝1(𝛼2𝑗)

𝑞(𝑗)(𝑝1(𝛼1), . . . , 𝑝1(𝛼2𝑗)). (5.4.11)
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We can approximate the last two factors of this expression if we remember that two indi-
viduals of the set can be the same {(𝑝1(𝛼1), . . . , 𝑝1(𝛼2𝑗)} and then use the reduced order
property. If one is going to form a set of entries, there can be a pair of the same individual
on 2𝑗(2𝑗 − 1)/2! different positions. Choosing the entries at random (individuals) from a
total of 𝑁 , given an individual, the chance of choosing another one equal to the first is
1/𝑁 . Then,

E(𝑞(𝑗)
𝑡+1) ≈ 𝑒−4𝑗𝜇

[︃
𝑗(2𝑗 − 1)

𝑁
⟨𝑞(𝑗−1)

𝑡 ⟩𝑃 +
(︃

1 − 𝑗(2𝑗 − 1)
𝑁

)︃
⟨𝑞(𝑗)

𝑡 ⟩𝑃

]︃
, (5.4.12)

which approximates the evolution up to order 1/𝑁 .

5.5 The one-parent model
In 1991, Derrida and Higgs also worked on what they called the one-parent model [94,

121], which considers an asexual version of what we have done so far. We include it here
for completeness, since a similar process appears in the next chapters. The mitochondrion
is an organelle in eukaryotic cells that has its own genetic material, and it is transmitted
without recombination from the mother to the offspring [122], which is similar to an
asexual replication process, and we work on this model in Chapter 8. Also, the epidemic
model with viral evolution we introduce in Chapter 10 poses a similar mechanism.

In the one-parent model, a finite size population of 𝑁 individuals evolve under asexual
reproduction and has no generational overlap. A focal individual is chosen at random,
with uniform probability 1/𝑁 and its offspring is going to be a part of the next generation.
The genome of every individual 𝛼 is, as before, a binary sequence S𝛼 of 𝐵 alleles 𝑠𝛼

𝑖 = ±1.
Whenever an individual replicates, its offspring heirs the same alleles as its parents, plus
mutations at rate 𝜇. As the reader can see, besides the absence of genome recombination,
there are no further differences in the description of the model, despite its results being
interestingly not the same.

As the recombination mixes the genetic material of the individuals, its absence creates
genetic lineages that may randomly be conserved or not due to random genetic drift.
Suppose a population with 𝑁 = 2 individuals and with genetic similarity 𝑞𝑡. If they both
reproduce, the genetic similarity in the next step would be close to 𝑞𝑡+1 ≈ 𝑞𝑡(1 − 4𝜇). On
the other hand, if only one of the individuals reproduces twice, the similarity would be
𝑞𝑡+1 ≈ 1 − 4𝜇. Since there is no recombination, the effect of random drift can be much
more drastic and large deviations from the mean are much more frequent. Hence the
expected similarity evolution is not representative of any given realization of the process.
We call such property as non self-averaging [121].

Another way to understand the non-triviality of this process is to think about two
different lineages evolving in a population. Every descent of a lineage has high similarity
with each other, but they have low similarity with respect to individuals of the other
lineage. What would happen if randomly one lineage disappear? The similarity would
increase! This would not happen in a sexual population because two different lineages
recombine, they are not isolated. The similarity distribution for the asexual case would
show different peaks for each lineage and a third one for the similarity between both
lineages. As soon as a lineage disappears, there would remain only one peak in the
distribution, which would break into other peaks as time passes by and the genetic drift
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acts. The picture displayed by the one-parent model is very similar to the dynamics at
the species level in the high diversity phase of the Derrida-Higgs model (Chapter 5), and
this map could result in a very interesting theory, although we follow a different route in
the following chapters.

Notwithstanding, it is still possible to follow the same math procedure we have intro-
duced to describe the ensemble similarity probability distribution in this case.

5.5.1 The similarity distribution
Because there is no recombination, every individual 𝛾 at time 𝑡 + 1 comes from only

one parent 𝑝1 from time 𝑡. Hence, the probability of a genome S𝛾
𝑡+1 is

𝒫(S𝛾
𝑡+1) =

∑︁
𝑝1

𝒫(S𝛾
𝑡+1|𝑝1)𝒫(𝑝1)

= 1
𝑁

∑︁
𝑝1

𝐵∏︁
𝑖=1

[︂1
2(1 + 𝑒−2𝜇𝑠𝛾

𝑖,𝑡+1𝑠
𝑝1
𝑖,𝑡)
]︂

, (5.5.1)

where we have used equation (5.3.14) and that 𝒫(𝑝1) = 1/𝑁 . Now, using equations
(5.3.17) to (5.3.20), but considering that individuals have only one parent, 𝑝1 for 𝛼 and
𝑝′

1 for 𝛽, for the similarity distribution between 𝛼 and 𝛽 we find:

𝒫(𝑞𝛼𝛽
𝑡+1) = 1

𝑁2

∑︁
𝑝1,𝑝′

1

𝛿

(︃
𝑞𝛼𝛽

𝑡+1,
S𝛼

𝑡+1 · S𝛽
𝑡+1

𝐵

)︃
𝐵∏︁

𝑖=1

[︂1
2(1 + 𝑒−2𝜇𝑠𝛼

𝑖,𝑡+1𝑠
𝑝1
𝑖,𝑡)
]︂ [︂1

2(1 + 𝑒−2𝜇𝑠𝛽
𝑖,𝑡+1𝑠

𝑝′
1

𝑖,𝑡)
]︂

.

(5.5.2)
A similar result is going to appear in Chapter 8 for the similarity between mitochondrial
genetic material.

The moments of the distribution are calculated analogously as before. For instance,
the first moment is given by

E(𝑞𝛼𝛽
𝑡+1) =

∑︁
𝑞

𝑞𝒫(𝑞𝛼𝛽
𝑡+1 = 𝑞)

= 𝑒−4𝜇

𝑁2

∑︁
𝑝1,𝑝′

1

𝑞
𝑝1,𝑝′

1
𝑡 , (5.5.3)

which is the same result for the sexual case in the absence of assortative reproduction,
but it worths to emphasize that now it is valid only for the ensemble average.
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Chapter 6

The Heuristic Approximation to the

Transition

6.1 Some clues from simulations
As we have learned from the previous chapter, the Derrida-Higgs model cannot be

described only by its similarity distribution: higher moments of the first order overlap
distribution (i.e., the genetic similarity) involve higher order overlaps. Thus, we first
performed a large number of simulations in order to get some information about the
system. With this information, we shall propose a heuristic formula for the transition
between the regimes of single and multiple species.

Although approximate, as we will show, the behavior of this formula makes the heuris-
tic solution important for computational reasons. Since the Derrida-Higgs model is a
model for species formation, knowing that species can be formed after a given transition
curve (which is a characteristic of this solution) helps to guide simulations by making sure
that many species are going to be formed.

6.1.1 Before and after the transition
An important aspect of the simulations is that, starting with a clonal population, when

the similarity distribution is still far from the similarity threshold 𝑞𝑚𝑖𝑛, its dynamics still
behaves as if the threshold did not exist. It happens because since the distribution is
narrow and still moving towards smaller similarity values, no pair of individuals has simi-
larity smaller than 𝑞𝑚𝑖𝑛 and the underlying network is still complete, i.e., every individual
can mate with any other individual.

However, things change when the distribution reaches 𝑞𝑚𝑖𝑛. Many individuals are not
able to mate anymore, but the system may still reach some stability (discussed in the
following subsection). On the other hand, if the system does not find any stability around
𝑞𝑚𝑖𝑛, after passing through a transient behaviour, many peaks appear in the similarity
distribution although its average moves again towards the equilibrium 𝑞𝑒𝑞. In Fig. 6.1,
the evolution of the system for 3 different values of genome size 𝐵 is shown. When the
genome is small enough, the similarity distribution is stationary when it reaches 𝑞𝑚𝑖𝑛,
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Figure 6.1: The similarity distribution for different genome sizes. The big left
panel shows the similarity distribution at a given generation (𝑡 = 95) for three different
genome sizes. For a small enough 𝐵, the distribution becomes stationary and no species
are formed, unless for small fluctuations. When 𝐵 is large enough, many peaks appear,
which is characteristic of the species formation and the average similarity keeps evolving
towards 𝑞𝑒𝑞. The top right panel shows the average (continuous darker curves) of 10
simulations (shown as lighter curves at the background). The dashed line shows the
theoretical value in the case without 𝑞𝑚𝑖𝑛. The bottom right panel shows the species
formation for the same set of simulations as the upper panel. In the figure, the simulation
parameters are 𝑁 = 1000, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8.
Source: Figure produced by the author.

while it shows a complex structure when the genome is much larger and species are
formed.

Multiple peaks in the similarity distribution are a signature of the species emergence in
the system. The intraspecific similarity tends to be high, while the interspecific similarity
decreases towards zero, since the species evolve uncorrelatedly. Notwithstanding, species
are appearing and disappearing constantly from the system, and this turnover dynamics
prevents the similarity distribution from reaching stationarity, as shown in Fig. 6.2.

6.1.2 Two equilibrium values
Another important aspect of the dynamics is that, when the genome size is not large

enough to break the population into different species, the similarity distribution becomes
stationary around 𝑞𝑚𝑖𝑛. The system then shows the existence of a new mean similarity
equilibrium value, which is approximately 𝑞𝑚𝑖𝑛, as it can be seen in the left panels of
Fig.6.3. In this situation, not all the pairs of individuals are able to reproduce, but the
remaining pairs, i.e., the remaining network structure, is enough to generate a new popula-



6.1. SOME CLUES FROM SIMULATIONS 88

Figure 6.2: The non-stationarity of the similarity distribution. The figure shows
the similarity distribution in a case with species formation for many generations, showing
how the distribution does not reach stationarity along its evolution. In the figure, the
simulation parameters are 𝑁 = 500, 𝐵 = 5000, 𝜇 = 0.01 and 𝑞𝑚𝑖𝑛 = 0.8 and the histogram
is smoothed out and normalized to 1.
Source: Figure produced by the author.

tion which has the same structure. One could also raise questions about the metastability
of this state, but simulations for small enough genome sizes do indicate that this can be
a stable equilibrium.

As the genome size increases, this equilibrium starts to become unstable, and more
than one species starts to emerge in the system. The right panel of Fig.6.3 shows the
evolution of the number of species as a function of the genome size, the greater the value
of 𝐵, the faster is the species formation.

6.1.3 Important scales
We here define two important scales of the system, which are useful to guide simula-

tions. The first scale is the time up to 𝑞𝑚𝑖𝑛. Starting the system with a clonal population,
as we have seen, as long as the distribution has not reached the similarity threshold,
the system behaves as a complete network, therefore we can estimate the time 𝜏 the
distribution takes to reach 𝑞𝑚𝑖𝑛 with equation (5.1.11),

𝜏 =
ln
[︁

𝑞𝑚𝑖𝑛−𝑞𝑒𝑞

1−𝑞𝑒𝑞

]︁
ln
[︁(︁

1 − 1
𝑁

)︁
𝑒−4𝜇

]︁ , (6.1.1)
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Figure 6.3: Speciation as a function of 𝐵. The top left panel shows the evolution of
the average similarity for many values of 𝐵. Each curve is the average of 10 simulations
and the interval around them corresponds to the standard deviation. The black dashed
line is the theoretical evolution in the absence of 𝑞𝑚𝑖𝑛. The bottom left panel zooms
into the upper plot around 𝑞𝑚𝑖𝑛, showing how the evolution finds equilibrium for small
values of 𝐵. The right panel shows the corresponding evolution of the number of species
that are formed in each case, and the black dashed line shows the value of 𝑆𝑒 calculated
as Eq.(6.1.3). In the figure, the simulation parameters are 𝑁 = 1000, 𝜇 = 0.0025 and
𝑞𝑚𝑖𝑛 = 0.8.
Source: Figure produced by the author.

in which we have considered 𝑞0 = 1.
The second scale is the number of species that the system would have (when species

appear). A simple estimative is to consider that new species may find its equilibrium
similarity distribution centered on 𝑞𝑚𝑖𝑛, which introduces a characteristic species size 𝑁*,

𝑞𝑚𝑖𝑛 = 𝑞𝑒𝑞 = 1
𝑁*𝑒4𝜇 − (𝑁* − 1) ⇒ 𝑁* = 1

𝑒4𝜇 − 1

(︃
1

𝑞𝑚𝑖𝑛

− 1
)︃

, (6.1.2)

and then, an estimative for the number of species 𝑆𝑒 can be given by

𝑆𝑒 = 𝑁

𝑁* = 𝑁(𝑒4𝜇 − 1)
(︃

1
𝑞𝑚𝑖𝑛

− 1
)︃−1

. (6.1.3)

However, the simulations have shown more species than this number, which can be
simply understood as an effect of the distribution of abundances being asymetrical, i.e., the
species have different sizes (called their abundance) and there can be more rare species
than highly abundant ones. On the other hand, this is a nice scale for the number of
species, once even when the species formation is slow, we can expect the system to reach
at least 𝑆𝑒, if given enough time. In the right panel of Fig.6.3, the value 𝑆𝑒 is shown in
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comparison to the number of species in the system.

6.1.4 Attractive region
Given all the observations so far, now we mention the main ingredient for the solu-

tion we are about to propose for the low-high diversity transition. We observe that the
region around 𝑞𝑚𝑖𝑛, regarding the evolution of the mean similarity, always slows down the
dynamics, even for very large genome sizes, and as we have described before, for small
genome sizes, the distribution finds stationarity there. Therefore, since after the transi-
tion the average similarity keeps evolving as if without 𝑞𝑚𝑖𝑛 (Section 6.1.1), we propose
the existence of an attractive region around 𝑞𝑚𝑖𝑛.

Since the dynamics is discrete, it is possible that in a given time step, the distribution
gets trapped inside this region. The size of this region must then decrease as the genome
size increases, making it easier for the distribution to jump over it. When it happens,
there is species formation.

In the bottom left panel of Fig.6.3, a region around 𝑞𝑚𝑖𝑛 is zoomed in, and we can see
the evolutions of the average similarity stopping as close to 𝑞𝑚𝑖𝑛 as 𝐵 increases, indicating
that this attractive region decreases its size for larger values of 𝐵, up to a value it cannot
keep the system within it, where species start to be formed.

6.2 The ansatz and the solution
The results of the previous section allow us to describe a heuristic approximation to

find the critical genome size 𝐵𝑐. Let the attractive region around 𝑞𝑚𝑖𝑛 have size Δ. As we
have described, the species formation would happen when the mean similarity evolution
jumps over this region. Thus, we want the temporal variation of the average to be greater
than Δ,

|⟨𝑞𝛼𝛽
𝑡+1⟩ − ⟨𝑞𝛼𝛽

𝑡 ⟩|> Δ, (6.2.1)

when ⟨𝑞𝛼𝛽
𝑡 ⟩ ≈ 𝑞𝑚𝑖𝑛 + Δ. Once that before and after the transition, the mean similarity

approximately behaves as a complete network, we can use equation (5.3.30) to find ⟨𝑞𝛼𝛽
𝑡+1⟩.

Hence,
Δ <

𝑞𝑚𝑖𝑛/𝑞𝑒𝑞 − 1
𝑁 − 1 ≡ 𝛿𝑞, (6.2.2)

in order to have speciation.

6.2.1 The size Δ
Equation (6.2.2) is in the correct form of what we would expect according to our

observations: if the attractive region is small enough, there should exist species formation.
Now, we must only find an expression for the size Δ. As an ansatz, we propose

Δ =
√︁

𝜎2
𝐵 − lim

𝐵→∞

√︁
𝜎2

𝐵, (6.2.3)
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where
𝜎2

𝐵 = Var(𝑞𝛼𝛽
𝜏 ), (6.2.4)

i.e., the variance of the similarity distribution, considering a complete network, calculated
when ⟨𝑞𝛼𝛽

𝑡 ⟩ = 𝑞𝑚𝑖𝑛.
The first important aspect of this ansatz is that when 𝐵 → ∞, Δ → 0 and then Eq.

(6.2.2) gives 𝑞𝑚𝑖𝑛 > 𝑞𝑒𝑞, which is the speciation condition conjectured by Derrida and
Higgs in this limit.

The recurrence equation for the variance takes the form

Var(𝑞𝑡+1) = 𝑎1

𝐵
+ 𝑎2Var(𝑞𝑡),

with 𝑎1 and 𝑎2 constants, which leads to

𝜎2
𝐵 = Λ1 + Λ2

𝐵
, (6.2.5)

where Λ1 and Λ2 do not depend on 𝐵. In this notation,

Δ =
√︃

Λ1 + Λ2

𝐵
−
√︁

Λ1

and therefore, with Eq. (6.2.3),

𝐵 >
Λ2

𝛿𝑞2 + 2𝛿𝑞
√

Λ1
,

which defines the critical genome size

𝐵𝑐 = Λ2

𝛿𝑞2 + 2𝛿𝑞
√

Λ1
, (6.2.6)

in which 𝛿𝑞 has been defined in equation (6.2.2) and Λ1 and Λ2 are given by solving
equation (5.3.49) up to time 𝜏 . In the results we are going to present, we solve the
system considering ⌊𝜏⌋ (Floor function, i.e., the largest integer smaller or equal to 𝜏)
and ⌈𝜏⌉ (Ceiling function, i.e., the smallest integer larger or equal to 𝜏). This is not a
hard computational task, but to find it analytically is not so simple. In order to find the
variance, we must solve the system of recurrence equations

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑓1(⟨𝑞𝛼𝛽

𝑡 ⟩),
⟨𝑞𝛼𝛽𝛾𝛿

𝑡+1 ⟩ = 𝑓2(⟨𝑞𝛼𝛽
𝑡 ⟩, ⟨𝑞𝛼𝛽𝛾𝛿

𝑡+1 ⟩),
Var(𝑞𝛼𝛽

𝑡+1) = 𝑓3(⟨𝑞𝛼𝛽
𝑡 ⟩, ⟨𝑞𝛼𝛽𝛾𝛿

𝑡+1 ⟩, Var(𝑞𝛼𝛽
𝑡 ), Cov(𝑡)𝛼𝛽𝛾),

Cov(𝑡 + 1)𝛼𝛽𝛾 = 𝑓4(⟨𝑞𝛼𝛽
𝑡 ⟩, ⟨𝑞𝛼𝛽𝛾𝛿

𝑡+1 ⟩, Var(𝑞𝛼𝛽
𝑡 ), Cov(𝑡)𝛼𝛽𝛾),

which, although analytically solvable (once linear), it is sufficiently messy to hinder an
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Figure 6.4: Heuristic critical genome size 𝐵𝑐. The figure shows the value of 𝐵𝑐

given by Eq.(6.2.6) for different parameter values. In the left panel, 𝐵𝑐 is calculated as a
function of 𝜇 for fixed 𝑁 and different 𝑞𝑚𝑖𝑛 values, and in the right panel, 𝐵𝑐 is given as
a function of 𝑁 , with fixed 𝑞𝑚𝑖𝑛 and different 𝜇 values. When calculating the solution up
to time 𝜏 (Eq.(6.1.1)), 𝜏 can be considered ⌊𝜏⌋ (Floor function) or ⌈𝜏⌉ (Ceiling function)
and the results for 𝐵𝑐 can be different. This difference is shown as bars instead of points
in the plots, the top of the bar corresponding to the ceiling result and its bottom to the
floor result.
Source: Figure produced by the author.

easy mathematical form for 𝐵𝑐 as a function of the parameters 𝑁 , 𝜇 and 𝑞𝑚𝑖𝑛. Fig. 6.4
shows 𝐵𝑐 numerically calculated in different regions of the parameter space. In the next
section, we compare this solution with simulations.

6.2.2 Comparison with simulation
To compare this solution with simulations is not an easy task. First, remember that

the 𝐵𝑐 is defined when the expected number of species at time 𝑡 → ∞ is greater than
one. However, since this is a heuristic approximation, we do not have a characteristic
time-scale to be sure that we have simulated the system for a sufficiently long time. Of
course, we can expect to observe many species after a very small transient time if 𝐵 ≫ 𝐵𝑐

or only one species when 𝐵 ≪ 𝐵𝑐. But close to the transition, many species may be
formed very slowly or not be formed at all. Thus, simulations must be consistently run
up to a well chosen time horizon. On the other hand, the simulations can take a long
time to finish, since we calculate the similarity of every pair of individuals, the simulation
time scales at least with 𝑁2.

We chose the number of generations as 3𝜏 (with 𝜏 calculated here as ⌈𝜏⌉). The first
𝜏 generations account for reaching the threshold; the following 𝜏 generations account for
a transient behavior which we try to avoid. We calculate the average number of species
⟨𝑆⟩𝜏 over the last 𝜏 generations. Of course, the more generations we simulate, the more
precise the result we get is, but the computational time is an important limiting factor.
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𝑞𝑚𝑖𝑛 = 0.8;𝑁 = 1000

𝑞𝑚𝑖𝑛 = 0.8; 𝜇 = 0.0025

𝜇 = 0.0025;𝑁 = 1000

Figure 6.5: Heuristic solution and simulations. The figure shows the heuristic so-
lution (green circles; calculations with ⌊𝜏⌋ (light green) and ⌈𝜏⌉ (dark green)) and the
result from simulations, shown as a heatmap for different regions of the parameter set.
The colors show the normalized number of species ⟨𝑆⟩𝜏 /𝑆𝑒 calculated as described in the
present section, ranging from 0 to 1 (whenever the normalized number of species is greater
than 1, it is still plotted as 1). Thus, the purple region shows no species formation, while
in the red region species have appeared beyond the subestimated value 𝑆𝑒. The black
region was not simulated.
Source: Figure produced by the author.

The other important factor is to understand the meaning of many species. In order to
do that, we compare the average number of species ⟨𝑆⟩𝜏 that we find with the estimated
value 𝑆𝑒. Thus, for ⟨𝑆⟩𝜏 /𝑆𝑒 greater or close to 1, we can say that the system has really gone
through speciation. But when this value is close to zero (≈ 1/𝑆𝑒), then the system did
not form species. Values between 1/𝑆𝑒 and 1 are characteristic of the transient behavior
when the equilibrium richness value is still being reached.

We plot the value ⟨𝑆⟩𝜏 /𝑆𝑒 as a color code in the heatmaps of Fig. 6.5, over which
we also plot the solution 𝐵𝑐. We see that for large values of 𝑞𝑚𝑖𝑛, our solution seems to
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Figure 6.6: Another way of visualizing the solution. In the figure, the quantity 𝑑Δ
is calculated as a function of 𝑁 and 𝐵. For small 𝐵, it is always negative, thus there
is no species formation for no value of 𝑁 . But as 𝐵 increases, it is possible to see a
positive region, in which speciation is possible. The bandwidth in each curve is due to
the differences of ⌊𝜏⌋ (upper value) and ⌈𝜏⌉ (lower value). In the figure, the simulation
parameters are 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8.
Source: Figure produced by the author.

agree very well with the transition region, thus being a quite good approximation for the
critical genome size. The actual critical genome size, as we defined it, is smaller than the
heuristic approximation, since it should be at the beginning of the transition region, not
over or after it. In this sense, the heuristic approximation seems a good upper bound for
the critical genome size. For smaller values of 𝑞𝑚𝑖𝑛, this interpretation still holds, since
it overestimates the transition region. Therefore, although approximate, this solution is
very useful for computational reasons.

6.2.3 Visualizing the solution
An interesting way to visualize the heuristic solution is to analyze the difference 𝑑Δ ≡

𝛿𝑞 − Δ as a function of the population size. Whenever this quantity is positive, the
parameters enable species formation. Fig. 6.6 shows this curve as a function of 𝑁 for
different parameters. Suppose a population with a large size 𝑁0 has 𝑑Δ(𝑁0) < 0. Then,
according to the heuristic solution, it would not form different species. However, because
the system is stochastic, it may happen that this population breaks into two species, each
one with a different size, e.g., 𝑁1 and 𝑁2 (𝑁1 + 𝑁2 = 𝑁0), which are of course smaller
than 𝑁0. Because of the shape of the 𝑑Δ(𝑁) curve, it may happen that 𝑑Δ(𝑁1) or 𝑑Δ(𝑁2)
is positive, meaning that the new species may speciate again, driving the system to the
high diversity phase. This example shows how the metastability close to the transition
can originate from fluctuations in the population size.
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Chapter 7

The high-diversity phase

7.1 Introducing the challenge
So far, we have worked on the development of an analytical description of the transition

from the low diversity phase to the high diversity phase of the Derrida-Higgs model.
We ran into the problem of having a non-complete description of the genetic similarity
distribution in terms of only its values, being necessary to know the higher order overlap
values. We then developed a heuristic solution for the transition which works in good
agreement with the simulation when the similarity threshold is high. The low diversity
phase, before the non-trivial equilibrium (or when 𝑞𝑒𝑞 > 𝑞𝑚𝑖𝑛) is very well understood and
we were even able to calculate the evolution of the first moments of the first order overlap
distribution. However, nothing has been said concerning the high-diversity phase, and
this is the aim of the present chapter.

We introduced the finite genome problem as the question “when does the num-
ber of species 𝑆(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛) is greater than 1?” without asking the actual value of
𝑆(𝐵, 𝑁, 𝜇, 𝑞𝑚𝑖𝑛). In other words, what is the species richness of the system? An-
other interesting biological question concerns the distribution of species sizes, i.e., how
many species have a given number of individuals (in the network description, it is the
same as asking the number of nodes in each component). We then address the question
what is the species abundance distribution of the system?

7.1.1 Species abundance distribution and species richness
The abundance of a species is the number of individuals it has in a given community.

The same species can have different abundances in different communities, as a result of
different ecological interactions [123]. On the other hand, an interesting ecological pattern
whose shape does not seem to change among different communities is the species abun-
dance distribution (SAD) which counts the number of species (in a specific community)
with a given abundance [124]. This curve (displayed as a histogram) typically shows a
large number of rare species and a small number of very abundant ones, and this pattern
has been observed in many communities studied so far [124, 125]. A richer variety of
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shapes only appears when the distribution is displayed in a log-scale1 [124].
Because the data in a SAD is not labeled, it is possible to compare SADs coming

from different communities even if they do not have species in common, making it a
powerful measure in ecology [124]. Theoretically, this curve can be calculated in many
different ways [124], from purely statistical models [128] to mechanistic ones [129], all of
them showing the same pattern of a few large species and many rare ones. Despite this
enormous mathematical toolkit, there is no systematic agreement of a model to different
data favoring a description over another [124].

In what follows, we are going to work with the relative abundance distribution (RAD),
which is the SAD normalized by the number of species, written as 𝒫𝑅(𝑛), meaning the
proportion of species in a community that have abundance 𝑛. In the Derrida-Higgs model,
the community is easily defined by the whole population at a given instant of time. We
are interested in the long-time limit, in which the number of species has reached an
equilibrium average value (that is why we neglect time indexes now).

Of course,
∞∑︁

𝑛=1
𝒫𝑅(𝑛) = 1, (7.1.1)

and calling the number of species 𝒮 = 𝒮(𝐵, 𝜇, 𝑁, 𝑞𝑚𝑖𝑛), we have

𝑆
∞∑︁

𝑛=1
𝑛𝒫𝑅(𝑛) = 𝑁, (7.1.2)

and thus, the equilibrium average Species Richness is given by

𝒮 = 𝑁

⟨𝑛⟩
, (7.1.3)

where we defined ⟨𝑛⟩ = ∑︀
𝑛 𝑛𝒫𝑅(𝑛).

Therefore, if we were able to calculate the Species Abundance Distribution that
emerges from the Derrida-Higgs dynamics, we would also be able to calculate the av-
erage equilibrium species richness. We will see that our formulation of the problem also
leads to the proportion of zero size species 𝒫𝑅(𝑛 = 0), i.e., the proportion of species of
the previous generation that went extinct in the next generation.

7.1.2 The equilibrium general rules
The observed equilibrium in the Derrida-Higgs model in the high-diversity phase re-

gards the observed species, i.e., the clusters in the genome space, not the genome values
or its pairwise distances. In other words, we neglect the genetic dynamics and focus only
on the network structure.

According to the Derrida-Higgs rules, the dynamics of the high-diversity phase is
described as follows:

1To display species abundance distributions in log-scale is not a trivial procedure. Dif-
ferent binning methods may lead to different histograms which would better be adjusted
to different curves [126, 127].
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1. At a given time 𝑡, there are 𝒮 species, of sizes {𝑚1, 𝑚2, . . . , 𝑚𝒮}, with ∑︀𝑖 𝑚𝑖 = 𝑁 ;

2. 𝑁 individuals are drawn with replacement from the population, and each one gen-
erates an offspring. Thus, in the absence of speciation events (i.e., no network
component breaks into different components), the probability that a species of size
𝑚 ≥ 2 at time 𝑡 has size 𝑛 at time 𝑡 + 1, is given by a binomial distribution

𝒫(𝑛) =
(︃

𝑁

𝑛

)︃(︂
𝑚

𝑁

)︂𝑛 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

. (7.1.4)

3. However, the offspring of a given species at time 𝑡 may belong to different species
at time 𝑡 + 1. When it happens, we consider that there was a speciation event. The
probability of a species of size 𝑚 having its offspring split into different species is
𝑝𝑠(𝑚), named probability of speciation.
This is a simplification, since it should also depend on the lifetime of a given species.
However, at the equilibrium, an effective value that would incorporate this timescale
should emerge and this is what we are considering here.

4. Also, when a speciation event occurs, the size 𝑛 and the number 𝑟 of new species
are given by the probabilities 𝜌𝑛(𝑛|𝑚, 𝑛) and 𝜌𝑟(𝑟|𝑚, 𝑛), where 𝑛 is the number of
offspring of the ancestral species.

5. Since the Derrida-Higgs model evolves through sexual reproduction, species of size
1 go extinct in the next time step.

This set of rules defines an algorithm. Starting with a single species of abundance 𝑁 ,
we can recursively apply these rules and check the existence of a stationary abundance
distribution. Of course, we must know a priori the probabilities 𝑝𝑠(𝑚), 𝜌𝑛(𝑛|𝑚, 𝑛) and
𝜌𝑟(𝑟|𝑚, 𝑛), but once known, it is possible to write the above rules as a Markov chain
process and to find an analytical description of the stationary SAD, which is our goal in
the following sections.

7.2 Estimating the probabilities
The probabilities we introduced in the previous section are very important quantities

to the dynamics and defining them properly is our goal now.

7.2.1 Numerical investigations
In order to get some information from the simulations, we used the following algorithm.

1. We start with the 𝑁−dimensional vectors 𝑣𝑐𝑜𝑢𝑛𝑡𝑠 = {0, . . . , 0} and 𝑣𝑒𝑣𝑒𝑛𝑡𝑠 = {{}, . . . , {}}.

2. For every species of size 𝑚 that exists at time 𝑡 we update 𝑣𝑐𝑜𝑢𝑛𝑡𝑠(𝑚) = 𝑣𝑐𝑜𝑢𝑛𝑡𝑠(𝑚)+1.

3. If a species of size 𝑚 breaks into 𝑟 new species of sizes {𝑛1, . . . , 𝑛𝑟} we save this
information as

𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚) = AppendTo [𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚), {𝑛1, . . . , 𝑛𝑟}] .



7.2. ESTIMATING THE PROBABILITIES 98

4. We repeat these steps for the whole simulation after the equilibration time and for
many simulations, updating always the same vectors 𝑣𝑐𝑜𝑢𝑛𝑡𝑠 and 𝑣𝑎𝑏𝑢𝑛𝑑.

These two vectors contain all the information we need to try to infer the probabilities
we are looking for. First, 𝑣𝑐𝑜𝑢𝑛𝑡𝑠(𝑚) gives the number of times a species of size 𝑚 has been
observed in the simulation. Then, the number of lists contained within every 𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚)
counts the number of times a species of size 𝑚 has undergone speciation. From this, we
can infer the probability of speciation as

𝑝𝑠(𝑚) = Lenght [𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚)]
𝑣𝑐𝑜𝑢𝑛𝑡𝑠(𝑚) . (7.2.1)

The distribution of sizes of each list {𝑛1, . . . , 𝑛𝑟} within 𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚) infers the distribution
𝜌𝑟(𝑟|𝑚, 𝑛) where the 𝑛 is simply the sum 𝑛1 + . . . + 𝑛𝑟. Also, the distribution of all 𝑛𝑖

within each list infers the distribution 𝜌𝑛(𝑛|𝑚, 𝑛).
For instance, suppose that for a given 𝑚* we find 𝑣𝑐𝑜𝑢𝑛𝑡𝑠(𝑚*) = 100 and 𝑣𝑒𝑣𝑒𝑛𝑡𝑠(𝑚*) =

{{𝑛
(1)
1 , 𝑛

(1)
2 , 𝑛

(1)
3 }, {𝑛

(2)
1 , 𝑛

(2)
2 }, {𝑛

(3)
1 , 𝑛

(3)
2 }, {𝑛

(4)
1 , 𝑛

(4)
2 , 𝑛

(4)
3 }, {𝑛

(5)
1 , 𝑛

(5)
2 , 𝑛

(5)
3 , 𝑛

(5)
4 }}. Suppose

also that in each case, 𝑛
(𝑖)
1 + . . . + 𝑛(𝑖)

𝑟 = 𝑛 has the same value. Thus, species of size
𝑚* has undergone speciation 5 times. In this case, the probability of speciation is inferred
as 𝑝𝑠(𝑚*) = 1/20 and we have 𝜌𝑟(2|𝑚*, 𝑛) = 𝜌𝑟(3|𝑚*, 𝑛) = 2/5 and 𝜌𝑟(4|𝑚*, 𝑛) = 1/5.
The distribution 𝜌𝑛(𝑛|𝑚*, 𝑛) is given by the normalized histogram of

{𝑛
(1)
1 , 𝑛

(1)
2 , 𝑛

(1)
3 , 𝑛

(2)
1 , 𝑛

(2)
2 , 𝑛

(3)
1 , 𝑛

(3)
2 , 𝑛

(4)
1 , 𝑛

(4)
2 , 𝑛

(4)
3 , 𝑛

(5)
1 , 𝑛

(5)
2 , 𝑛

(5)
3 , 𝑛

(5)
4 }

Since this algorithm does not separate any time scale, it should capture the effective
probability of speciation. However, in order to find good inferred values for these proba-
bilities for all values of 𝑚 in a given range, we must run the simulations for 𝑁 ≫ 𝑚, once
after the radiation period, large species (𝑚 ∼ 𝑁) are extremely rare.

Notwithstanding, 𝑁* (Eq.(6.1.2)) is a good scale for the species size in the Derrida-
Higgs dynamics, and since it does not depend on the population size, increasing 𝑁 in
order to calculate 𝑝𝑠(𝑚) for large 𝑚 is also not a good approach because the only effect
would be to increase the number of species, not their sizes. Thus, although simple, this
algorithm does not provide a fast way to extract these probabilities from the simulations.

The numerical results of this algorithm are going to be discussed in the following
sections together with the theoretical propositions.

7.2.2 The size and number of new species
When a species of 𝑚 individuals and 𝑛 offspring breaks into different species, there is a

distribution 𝜌𝑟(𝑟|𝑚, 𝑛) of how many 𝑟 new species appear as also a distribution 𝜌𝑛(𝑛|𝑚, 𝑛)
for their abundances 𝑛.

Numerical investigations (left panel of Fig. 7.1) show that the majority of all speciation
events results in only two species and thus we consider

𝜌𝑟(𝑟|𝑚, 𝑛) = 𝛿𝑟,2, (7.2.2)

and neglect the other events in which 𝑟 > 2.
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Figure 7.1: Numerical investigations on speciation events. The left panel shows the
distribution of how many species 𝑟 appear after a speciation event for different genome
sizes. Around 90% of the speciation events result in only 2 new species. When analyzing
the sizes of these two species, we find the panel at right, which shows the distribution of
𝑛/𝑛, i.e., the ratio between the sizes of the new species and the number of offspring of the
ancestral species. The gray curve is a null model in which 𝑛 is uniformly chosen from the
set {1, . . . , 𝑛}. We see that although there is a small asymmetry in this distribution, it
decreases for greater genome values and it can be fairly approximated by the null model.
In the figure, the simulation parameters are 𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8. More
information about this data can be found in Appendix A.4.
Source: Figure produced by the author.

Now, since we are going to consider only speciation events with 𝑟 = 2, we look for a
probability 𝜌𝑛(𝑛|𝑚, 𝑛) that is symmetric around 𝑛/2. With some generality, let us suppose
that this probability does not depend on the initial size 𝑚 of the ancestral species. Again,
numerical investigations (right panel of Fig. 7.1) show that it is not a bad approximation
to consider a uniform probability distribution, mainly for larger values of genome size,

𝜌𝑛(𝑛|𝑚, 𝑛) = 𝜌𝑛(𝑛|𝑛) = 1
𝑛 − 1 , (7.2.3)

where the normalization is given by ∑︀𝑛−1
𝑛=1 𝜌𝑛(𝑛|𝑚, 𝑛) = 1 (if there is speciation, the final

size cannot be exactly the same as the number of offsprings, 𝜌𝑛(𝑛 = 𝑛|𝑚, 𝑛) = 0).

7.2.3 The probability of speciation
The probability of speciation 𝑝𝑠(𝑚) of a species of size 𝑚 is not easy to calculate,

and we lack of an expression for it. We are going to propose an expression that lies on
the heuristic solution to the transition, but as we see from numerical investigations, it
does not describe the true value of 𝑝𝑠(𝑚). On the other hand, this proposition ends in a
very interesting relative abundance distribution, since it is not so distant from the RADs
observed in the Derrida-Higgs model.

From the heuristic solution, the quantity 𝑑Δ = 𝛿𝑞 − Δ (defined in Section 6.2.3) can
be a good way of measuring how likely a species is to undergo speciation, and thus one
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Figure 7.2: The probability of speciation. The left panel shows the proposition of
equation (7.2.5) for the probability of speciation for different values of genome size. 𝑝𝑠

is calculated as the average obtained by using ⌊𝜏⌋ and ⌈𝜏⌉. The right panel shows the
probability inferred with the algorithm of Section 7.2.1. In the figure, the simulation
parameters are 𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8. The set of simulations is the same
as those from Fig.7.1 and more information can be found in in Appendix A.4.
Source: Figure produced by the author.

may consider
𝑝𝑠(𝑚) ∼ 𝛿𝑞 − Δ, (7.2.4)

and once the probability should be maximum when 𝐵 → ∞ (when Δ = 0),

𝑝𝑠(𝑚) = max
(︃

0, 1 − Δ
𝛿𝑞

)︃
, (7.2.5)

where 𝛿𝑞 and Δ are calculated with 𝑁 = 𝑚.
Fig. 7.2 shows at left our proposition for 𝑝𝑠(𝑚) as a function of the species size 𝑚 in

comparison with the one inferred from simulations (with the algorithm of section 7.2.1).
It is possible to see how different they are, and because of that, we also use the data
obtained from simulations to calculate the SAD in this process. In order to do that, we
found that a quadratic curve 𝑎𝑚2 adjusts very well the results. The coefficient 𝑎 was
found by adjusting the curve over points that are statistically significant. We consider
it significant if it was inferred by more than 0.05% of the data. Figure 7.3 displays this
procedure, by showing the data cutoff and the inferred probability, which we consider as

𝑝𝑠(𝑚) = min
(︁
1, 𝑎𝑚2

)︁
. (7.2.6)

As we are going to see, the SADs resulting from this expression are in good agreement
with the simulations, showing that the assumptions on 𝜌𝑟 and 𝜌𝑛 are good assumptions
and that the probability of speciation is of greater importance in the present theory.
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Figure 7.3: Probability of speciation from simulations. The upper left panel shows
the probability of speciation inferred from simulations in a log-log scale. Below it, the
normalized number of data used to inferr the probability. In black, the cutoff of 5 × 10−4

and the vertical dashed lines show the cutoff on the data. The points at left of these
lines were used to adjust a quadratic curve, shown in the right panel. In the figure, the
simulation parameters are 𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8. The set of simulations is
the same as those from Fig.7.1 and more information can be found in in Appendix A.4.
Source: Figure produced by the author.

7.3 A Markov chain model
So far we have described the high-diversity phase in an algorithmic way. We aim now

to give an analytical description of this process. As we are going to see, it can be easily
described as a Markov chain, since given the Derrida-Higgs rules, the system at time 𝑡
completely determines the system at time 𝑡 + 1. Although the whole process has proven
to be very hard to describe analytically, with the rules of section 7.1.2, it is not hard
to describe it if we consider the system as an occupation of abundance states, i.e., the
states are the possible abundance sizes of a species and how many species are in each
state describes the system.

Let us start with the probability of finding a species of size 𝑛 at time 𝑡 + 1, which is
given by

𝒫𝑡+1(𝑛) =
𝑁∑︁

𝑚=1
P(𝑚 → 𝑛)𝒫𝑡(𝑚) (7.3.1)

where P(𝑚 → 𝑛) is the transition probability from a species of size 𝑚 to the size 𝑛. Our
goal now is to calculate the transition probabilities, which can be very tricky due to the
boundary conditions.
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7.3.1 The transition matrix
The probability of changing from one size to another has two components: the random

sampling with replacement and the speciation. We are not considering hybridization
events, i.e., when individuals from different species evolve in a way of being able to mate
again, thus making their species become the same. Although we know hybridizations can
occur in the model [130], we shall see that our description is enough for replicating the
emerging RADs. Hence,

P(𝑚 → 𝑛) = P(𝑚 → 𝑛|no speciation)(1 − 𝑝𝑠(𝑚)) + P(𝑚 → 𝑛|speciation)𝑝𝑠(𝑚). (7.3.2)

When there is no speciation, there is only the random sampling with replacement, which
is given by the binomial distribution of Eq.(7.1.4), which is valid only for 2 ≤ 𝑚 ≤ 𝑁 − 2,

P(𝑚 → 𝑛|no speciation) =
(︃

𝑁

𝑛

)︃(︂
𝑚

𝑁

)︂𝑛 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

, (7.3.3)

because species of size 1 do not reproduce, going extinct in the next time step, which also
sets the complementary boundary condition: if a species has size 𝑁 − 1, it means that
the remaining species are going extinct and then

P(𝑚 = 𝑁 → 𝑛|no speciation) = P(𝑚 = 𝑁 − 1 → 𝑛|no speciation) = 𝛿𝑛,𝑁 , (7.3.4)

and
P(𝑚 = 1 → 𝑛|no speciation) = 𝛿𝑛,0,

which is actually more general

P(𝑚 = 1 → 𝑛) = 𝛿𝑛,0 (7.3.5)

But in the presence of speciation, the probability is more complicates. According to
the dynamics, first, the individuals are sampled from the previous population. Then, the
offspring belong to different species. First, 𝑁 individuals are sampled from the population;
𝑛 are from the specific species one is looking at; then, only 𝑛 individuals (smaller than 𝑛)
compose the next species.

Species with size 𝑚 = 𝑁 − 1 and 𝑚 = 𝑁 are responsible for all the offspring in the
next generation, so it only changes its size to something smaller than 𝑁 due to speciation.
Thus

P(𝑚 = 𝑁 − 1 → 𝑛|speciation) = 𝜌𝑛(𝑛|𝑚 = 𝑁 − 1, 𝑛 = 𝑁) (7.3.6)

and
P(𝑚 = 𝑁 → 𝑛|speciation) = 𝜌𝑛(𝑛|𝑚 = 𝑁, 𝑛 = 𝑁). (7.3.7)

Also, in the presence of speciation,

P(𝑚 = 𝑁 − 1 → 𝑁 |speciation) = P(𝑚 = 𝑁 → 𝑁 |speciation) = 0.
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Actually, the previous equation is more general, also being valid for any value 2 ≤ 𝑚 ≤
𝑁 − 2 and also for 𝑛 = 0:

P(𝑚 → 𝑁 |speciation) = P(𝑚 → 0|speciation) = 0, (7.3.8)

since if a species goes to zero size, it has been extinct and if it goes to the whole population
size, it means that it did not undergo speciation.

For 2 ≤ 𝑚 ≤ 𝑁 − 2 changing to 1 ≤ 𝑛 ≤ 𝑁 − 1, we must consider that 𝑛 > 𝑛
individuals have been drawn from the focal species and then it changes to size 𝑛,

P(𝑚 → 𝑛|speciation) =
𝑁∑︁

𝑛=𝑛+1

(︃
𝑁 − 2
𝑛 − 2

)︃(︂
𝑚

𝑁

)︂𝑛−2 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

𝜌𝑛(𝑛|𝑚, 𝑛), (7.3.9)

where the −2 is due to the fact that if there is speciation, then at least two individuals
of that specific species have already been drawn.

Normalization

Let us show now that the transition matrix defined this way is stochastic, i.e., ∑︀𝑁
𝑛=0 P(𝑚 →

𝑛) = 1 for every 𝑚.

1. For 𝑚 = 1:
According to equation (7.3.5),

𝑁∑︁
𝑛=0

P(1 → 𝑛) =
𝑁∑︁

𝑛=0
𝛿𝑛,0 = 1

q.e.d.

2. For 2 ≤ 𝑚 ≤ 𝑁 − 2:
In this case,

𝑁∑︁
𝑛=0

P(𝑚 → 𝑛) =(1 − 𝑝𝑠(𝑚))
𝑁∑︁

𝑛=0

(︃
𝑁

𝑛

)︃(︂
𝑚

𝑁

)︂𝑛 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

+𝑝𝑠(𝑚)
𝑁−1∑︁
𝑛=1

𝑁∑︁
𝑛=𝑛+1

(︃
𝑁 − 2
𝑛 − 2

)︃(︂
𝑚

𝑁

)︂𝑛−2 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

𝜌𝑛(𝑛|𝑚, 𝑛)

=(1 − 𝑝𝑠(𝑚))

+𝑝𝑠(𝑚)
𝑁∑︁

𝑛=2

𝑛−1∑︁
𝑛=1

(︃
𝑁 − 2
𝑛 − 2

)︃(︂
𝑚

𝑁

)︂𝑛−2 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛

𝜌𝑛(𝑛|𝑚, 𝑛)

=(1 − 𝑝𝑠(𝑚))

+𝑝𝑠(𝑚)
𝑁∑︁

𝑛=2

(︃
𝑁 − 2
𝑛 − 2

)︃(︂
𝑚

𝑁

)︂𝑛−2 (︂
1 − 𝑚

𝑁

)︂𝑁−𝑛 𝑛−1∑︁
𝑛=1

𝜌𝑛(𝑛|𝑚, 𝑛)

=(1 − 𝑝𝑠(𝑚)) + 𝑝𝑠(𝑚) = 1
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q.e.d.

3. For 𝑚 = 𝑁 − 1 and 𝑚 = 𝑁 :
Now,

𝑁∑︁
𝑛=0

P(𝑚 → 𝑛) =(1 − 𝑝𝑠(𝑚))
𝑁∑︁

𝑛=0
𝛿𝑛,𝑁 + 𝑝𝑠(𝑚)

𝑁−1∑︁
𝑛=1

𝜌𝑛(𝑛|𝑁 − 1, 𝑛 = 𝑁)

=(1 − 𝑝𝑠(𝑚)) + 𝑝𝑠(𝑚) = 1

q.e.d.

4. For 𝑚 = 0:
This was the only non discussed case so far, and because it is quite subtle, we discuss
it in the next section.

The case 𝑚=0

It is important to emphasize what this Markov process is describing: a given species of
size 𝑚𝑡 at time 𝑡 is changing its size due to a stochastic process which is a combination of
random sampling followed by something we call speciation (which can also be understood
as a random sampling from the first random sample). Thus, the sequence {𝑚𝑡, 𝑚𝑡+1, . . .}
may eventually reach size zero (extinction) and stop changing. It means P(0 → 𝑛) = 𝛿𝑛,0,
which obviously normalizes the case 𝑚 = 0. However, this introduces an absorbing state
in the system: 𝒫𝑡→∞(𝑛 = 0) = 1 and this does not provide the relative abundance
distribution we are looking for.

Since our aim is to obtain the RAD, when the species we are following reaches size
zero, we can substitute it for any other species from the system and then start to follow
its sequence of sizes. But the species sizes in the system are distributed according to the
RAD at that specific time, then

P(𝑚𝑡 = 0 → 𝑛) = 𝒫𝑡(𝑛) (7.3.10)

and since the RAD is normalized, it completes the proof of normalization and the transi-
tion matrix is therefore stochastic. However, the problem now is more complex since the
transition matrix depends on the current distribution 𝒫𝑡(𝑛), characterizing a non-linear
Markov chain [50]. Indeed, the absorbing state 𝒫(𝑛 = 0) = 1 is a solution of the system,
and then we are interested in the non-trivial solution of the equation

𝒫(𝑛) =
𝑁∑︁

𝑚=0
P∞(𝑚 → 𝑛)𝒫(𝑚)

= 𝒫(𝑛)𝒫(0) +
𝑁∑︁

𝑚=1
P(𝑚 → 𝑛)𝒫(𝑚) (7.3.11)

which we can obtain numerically.
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Figure 7.4: Relative abundance distribution: Numerical results. The figure shows
the RADs resulting from equation (7.3.12) for different values of the genome size 𝐵. The
left panels shows the results when considering 𝑝𝑠(𝑚) as Eq.(7.2.5) and the right panels
the results for 𝑝𝑠(𝑚) as (7.2.6). The bottom panels show the upper ones in log scale. In
the figure, the simulation parameters are 𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8.
Source: Figure produced by the author.

7.3.2 Results
Starting with only one species, 𝒫0(𝑁) = 1, we recursively ran

𝒫𝑡+1(𝑛) = 𝒫𝑡(𝑛)𝒫𝑡(0) +
𝑁∑︁

𝑚=1
P(𝑚 → 𝑛)𝒫𝑡(𝑚) (7.3.12)

for a number 𝑇 of iterations in which |𝒫𝑇 (𝑛) − 𝒫𝑇 −1(𝑛)|< 𝜖𝒫𝑇 −1(𝑛), for every 𝑛 where
𝜖 is a small value (we used 𝜖 = 10−8). Since we are starting the system with only one
species, we considered parameter values such that 𝐵 > 𝐵𝑐. In this way, we can use
the proposed probability of speciation (Eq.(7.2.5)). Moreover, we have also inferred the
probability of speciation (Eq.(7.2.1)) from some simulations and used it in our Markov
chain framework. There are three different results we can analyze: RADs, Richness and
Extinction probability (𝒫(𝑛 = 0)).

Relative species abundance distribution

Figure 7.4 shows the numerical solutions of the RADs for different values of 𝐵, consid-
ering the proposed probability of speciation (left panels) as also the inferred probability of
speciation (right panels). We observe that when using our proposition, different genome
sizes end up in very different RADs, although all the effective supports fall approximately
on the same region of the domain for sufficiently large genome sizes, as also all curves
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Figure 7.5: Relative abundance distribution: Comparing the results. The figure
shows the RAD coming from the Derrida-Higgs evolution (background histogram) and
the numerical solutions of equation (7.3.12) when considering the proposed probability of
speciation (red line) and the inferred probability of speciation (blue line). Different panels
show the results for different genome sizes. In the figure, the simulation parameters are
𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8. For the histogram, the set of simulations is the
same as those from Fig.7.1 and more information can be found in Appendix A.4.
Source: Figure produced by the author.

being unimodal and displaying the same RAD well-known feature: many rare species and
a few common species. When 𝐵 is close to the transition value 𝐵𝑐 (like 𝐵 = 2500, as
it can be seen from Fig. 7.2), the bahavior of the RAD can be a bit different, finding
equilibrium with also a peak close to the population size 𝑁 (as it can be seen from in the
bottom left panel of Fig.7.4).

On the other hand, the RADs resulting from the inferred probability of speciation are
much more close to each other, slightly increasing their peak value as the genome size
increases. The overall behaviors of all these observed RADs directly reflect the variety of
probability of speciation curves displayed in Fig.7.2.

Although consistent, our proposition for 𝑝𝑠(𝑚) (Eq.(7.2.5)) is motivated by the heuris-
tic solution for the transition. It is not concerned with what happens to small species
within a bigger community. Thus, the probability of a population of size 𝑁 to undergo
speciation does not need to be the same of a species of size 𝑚 < 𝑁 to undergo speciation
within a larger community.

Figure 7.5 compares the numerically calculated RADs with the ones found in the
Derrida-Higgs dynamics for different genome sizes. The background histogram comes
from the Derrida-Higgs evolution. The red curve is the numerically calculated RAD
considering the proposed probability of speciation and the blue curve is the RAD when
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considering the inferred probability of speciation. We observe a good agreement between
the data and the RAD when using the inferred probability of speciation. It corroborates
our Markov chain model for the high diversity regime, showing an important dependence
on the probability of speciation.

On the other hand, in the absence of any data, our proposition for 𝑝𝑠(𝑚) is not a bad
starting point, being able to give important insights about the real Derrida-Higgs RAD,
as an estimative of its effective support and the distribution mode.

Species richness and extinction probability

The species richness 𝒮 is calculated with equation (7.1.3) with the RAD given by the
equilibrium of Eq. (7.3.12) renormalized to one after the probability 𝒫(𝑛 = 0) is dropped
out, since extinct species are non-observed. The right panel of Fig. 7.7 shows the results
obtained for richness. The joined dark dots are the results of our proposition for 𝑝𝑠(𝑚),
the opened diamonds are the results of the Markov chain with the inferred probability
of speciation and the opened circles are the results obtained from the Derrida-Higgs
dynamics. Again, the results with the inferred 𝑝𝑠(𝑚) are in remarkable agreement with
the dynamics, while the richness can be overestimated when we consider our proposition
for 𝑝𝑠(𝑚).

In order to infer the probability of extinction from the Derrida-Higgs dynamics, we
consider the following procedure. At a given time 𝑡, there are 𝒮𝑡 species. Then, the
average number of species that will be extinct is given by 𝐸𝑡 = 𝒫(0)𝒮𝑡, with 𝒫(0) the
probability of extinction, which is assumed to be a constant. Thus,

∑︁
𝑡

𝐸𝑡

𝒮𝑡

∼ 𝒫(0)𝑡, (7.3.13)

and the angular coefficient of the line ∑︀𝑡 𝐸𝑡/𝒮𝑡 is the probability we are looking for. This
value can be obtained numerically with linear regression, considering only the generations
after the equilibration time. We take the average value of many simulations. Fig.7.6
shows the obtained lines for a set of 50 simulations with the same parameters.

The results for 𝒫(0) are displayed in the left panel of Fig.7.7. The opened circles are
the results from the Derrida-Higgs model. The joined dark dots are the results from the
Markov chain considering our proposition for 𝑝𝑠(𝑚) and the opened diamonds are the
results considering the inferred 𝑝𝑠(𝑚). In this case, we also find a much better agreement
of the data with the Markov chain with the inferred probability of speciation. However,
now the agreement is not as good as for the richness results. A possible reason can be due
to the necessity of a better adjustment to the curve 𝑝𝑠(𝑚), a fitting able to get with a good
precision a single element of the vector 𝒫(𝑛). Notwithstanding, this is still a remarkable
result.

7.3.3 Concluding remarks
Species Abundance Distributions are important descriptors of real communities [124]

and in the Derrida-Higgs model they are an important outcome, reaching stationarity
despite the constant genetic evolution and species turnover dynamics. A unified theory
for the entire Derrida-Higgs model is still a challenge and finding equations from which
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Figure 7.6: Calculating the probability of extinction. The figure shows the curve∑︀
𝑡 𝐸𝑡/𝒮𝑡 for 50 different simulations of the Derrida-Higgs model (each color represents a

different run) for the same set of parameters. The angular coefficient of each line is an
estimative of the probability of extinction per generation and number of species. We take
the average of all angular coefficients to infer the real value of 𝒫(0).
Source: Figure produced by the author.

we are able to observe the Species Abundance Distribution as an emergent result would
constitute a great achievement. On the other hand, the lack of a complete analytical
description of this process did not prevent us from introducing a quite accurate and
simple mathematical framework to deal with the high-diversity regime.

Using a Markov chain to model this phase is a simple but straightforward strategy and
has shown to be very effective, despite its non-linearity. We did not work on its analytical
properties, which can by itself turn out to be a challenge, hence we have focused on
a simple mathematical investigation, following the same methodology as we have used
for studying the computational Derrida-Higgs model, i.e., starting always with a single
species with abundance equaling the carrying capacity (the population size 𝑁).

Constructing Markov chains introduces the task of calculating the transition matrix,
which in this case has non-trivial boundary conditions due to sexual reproduction. The
probabilities involved in the speciation process are also important inputs of this matrix
and we investigated it carefully. The number of new species after a speciation event as also
the distribution of their sizes have shown to be simple to model and their approximations
did not seem to have greatly affected the results. However, the probability of speciation
is still a gap in the theory. Our first attempt for 𝑝𝑠(𝑚) (Eq.(7.2.5)) ended up being very
different from the values inferred from the data (Eq.(7.2.6)), although the resulting RAD
also shows some reasonable properties, like the mode value and the effective support.
Notwithstanding, when we used the inferred probability of speciation in the transition
matrix, the results were remarkably good.

In this way, we finish our analysis of the Derrida-Higgs model. The use of probability
theory combined with a careful computational investigation ended up in a new and useful
theory for this very interesting population dynamics model. The following chapter works
on an extension of the Derrida-Higgs model in order to incorporate the coevolution of a
second genetic material. We also apply the techniques we developed in the first chapter
of this part of the thesis to try to achieve analytical results.
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Figure 7.7: Results on richness and extinction probability. The left panel shows
the results on the extinction rate and the right panel shows the results on species richness
for different values of genome size. The opened circles are the results obtained from
the Derrida-Higgs dynamics, the error bars are the standard deviation of all the data
collected after the equilibration time for 50 different simulations. The joined dark points
are the results of the Markov chain when the probability of speciation is given by our
proposition (Eq.(7.2.5)), while the opened diamonds, the results when 𝑝𝑠(𝑚) is given by
the inferred probability speciation (Eq.(7.2.6)). In the figure, the simulation parameters
are 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8. For the Derrida-Higgs results, the set of simulations is
the same as those from Fig.7.1 and more information can be found in in Appendix A.4.
Source: Figure produced by the author.
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Chapter 8

The mito-nuclear DNA interaction

model

In eukaryotic individuals, cells pose a specific organelle responsible for cell respiration,
the mitochondrion [131]. This organelle differs from the others while having its own genetic
material, the mitochondrial DNA (mDNA), which contains many genes used during the
cell respiration process [131, 119, 132]. The mDNA is much smaller than the nuclear DNA
(nDNA) (which also has genes for cell respiration) and, while being non-recombinant (it
is of maternal inheritance), it has a higher mutation rate than the nDNA [119].

The coevolution between the nDNA and the mDNA is essential to the cell, since the
different evolutionary rates between these two genetic materials can lead to non compati-
bilities among its genes directed to cell respiration, making this process inefficient. Thus,
mutations in the mDNA must be compensated by changes in the nDNA [132].

The mDNA is also used for species identification [119] and phylogeny reconstruction
[133], since it is possible to recognize a species by a standard sequence fragment of the
mDNA [119, 132]. This is known as the barcode property of the mitochondrial DNA. The
origin of this property was investigated in a model proposed by Princepe and Aguiar in
2021 [120]. They used a spatial version of the Derrida-Higgs model (previously introduced
by Aguiar [134]) as a framework and included a binary sequence posing the same properties
as the mDNA. They concluded that the barcode property emerges as a consequence of
the space structure and conjectured that it would disappear for sympatric communities.

As we have developed a theory for the (sympatric) Derrida-Higgs model, we now
apply the same techniques to the sympatric version of the Princepe-Aguiar model of
mito-nuclear coevolution. We try to find analytical properties of the system and also to
recover numerical results on the barcode property, thus corroborating their conclusions.
In what follows, we present the model and its details, followed by the analytical theory
and numerical results.

8.1 The model
In order to model the coevolution between the mitochondrial and nuclear genetic ma-

terials, and study its effects, Princepe and Aguiar included a second binary string to
represent the mitochondrial DNA [120]. Since the mDNA is of maternal inheritance,
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individuals are divided into males and females, being non hermaphrodites now. The evo-
lution now is non-neutral, and the individual fitness is calculated according to a measure
of similarity between the genetic sequences.

8.1.1 The dynamics
Now, the population is described by 𝑁 individuals, whose sexes are randomly assigned.

An individual 𝛼 has a nuclear genetic material S𝛼 = {𝑛𝛼
1 , . . . , 𝑛𝛼

𝐵} and also a mitochondrial
genetic material S𝛼

𝑀 = {𝑚𝛼
1 , . . . , 𝑚𝛼

𝐵𝑀
}, with 𝑛𝛼

𝑖 = ±1 and 𝑚𝛼
𝑖 = ±1 and 𝐵𝑀 ≤ 𝐵. We

define the nuclear genetic distance between individuals 𝛼 and 𝛽 as

𝑑𝛼𝛽
𝑁 =

𝐵∑︁
𝑘=1

1
2 |𝑛𝛼

𝑘 − 𝑛𝛽
𝑘 |, (8.1.1)

and the mitochondrial genetic distance as

𝑑𝛼𝛽
𝑀 =

𝐵𝑀∑︁
𝑘=1

1
2 |𝑚𝛼

𝑘 − 𝑚𝛽
𝑘 |, (8.1.2)

notwithstanding, we also define the mito-nuclear genetic distance as the fraction of distinct
alleles between the mitochondrial and nuclear DNA

𝑑𝛼𝛽
𝑀𝑁 = 1

𝐵𝑀

𝐵𝑀∑︁
𝑘=1

1
2 |𝑚𝛼

𝑘 − 𝑛𝛽
𝑘 |, (8.1.3)

in such a way that an individual 𝛼 with a full correspondence between its genetic materials
has 𝑑𝛼𝛼

𝑀𝑁 ≡ 𝑑𝛼
𝑀𝑁 = 0.

Since the mitochondrial and nuclear DNAs should match in order to maximize cellular
respiration, we define the fitness of the individual 𝛼 as

𝜔𝛼 = exp
[︁
−(𝑑𝛼

𝑀𝑁)2/2𝜎2
𝜔

]︁
, (8.1.4)

being 𝜎𝜔 the coupling strength parameter between both genetic materials. The smallest
𝜎𝜔 is, the greater is the coupling strength.
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Figure 8.1: The sympatric Princepe-Aguiar model. The figure shows the model
structure. At time 𝑡, a population of 𝑁 individuals is divided in males (blue points)
and females (red points). A focal individual is chosen according to its fitness and its
mating pair is chosen such that their sexes are different and 𝑞𝛼𝛽 ≥ 𝑞𝑚𝑖𝑛. Their nuclear
genomes (of size 𝐵) are combined to generate the nuclear genome of the offspring, but
the mitochondrial genome (of size 𝐵𝑀) is passed directly from the female parent to the
offspring. Different mutation rates act on each genome. The individual fitness 𝜔𝛼 is
calculated according to the mito-nuclear distance 𝑑𝛼

𝑀𝑁 of an individual 𝛼, calculated as
the fraction of different alleles between their genomes (in the first 𝐵𝑀 entries of the nuclear
DNA). This figure is based on Fig. 1 of Princepe and Aguiar [120].
Source: Figure produced by the author.

Two individuals 𝛼 and 𝛽 can mate if and only if their genomes differ by at most 𝐺
alleles, i.e., mating is possible only when 𝑑𝛼𝛽 ≤ 𝐺. This condition is equivalent to that
in the Derrida-Higgs involving the genetic similarity, we only need to use the relation
𝑞𝛼𝛽 = 1 − 2𝑑𝛼𝛽/𝐵 (with 𝑞𝑚𝑖𝑛 = 1 − 2𝐺/𝐵). Also, compatibility now is also defined
by sexual differences: males (females) are only compatible with females (males). The
mating pairs are drawn according to their fitness. The focal individual is chosen with a
probability proportional to its fitness, 𝒫(𝛼 is focal) ∼ 𝜔𝛼, and then, as in the Derrida-
Higgs model, its partner 𝛽 is chosen from the subset N𝛼 of individuals that can mate with
𝛼 also according to its fitness 𝒫(𝛽 is the partner of 𝛼) ∼ 𝐴𝛼𝛽𝜔𝛽, with 𝐴𝛼𝛽 the adjacency
matrix element of the underlying network.

As in the Derrida-Higgs model, the offspring 𝛾 has its nDNA S𝛾 as a combination of
its parents nDNA, i.e., 𝑛𝛾

𝑖 equals 𝑛𝛼
𝑖 or 𝑛𝛽

𝑖 with the same probability 1/2. Then, every
allele can flip its value with rate 𝜇𝑁 . However, the mDNA is of maternal inheritance, and
then it is entirely copied from the female parent to the offspring: 𝑚𝛾

𝑖 = 𝑚Female Parent
𝑖 . As

for the nDNA, every allele of the mDNA can flip with a mutation rate 𝜇𝑀 . The sex of
the offspring is randomly assigned with the same probability for male or female.

The process of choosing mating pairs and generating an offspring is then repeated 𝑁
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times and an entirely new population at time 𝑡+1 is generated from the population at time
𝑡, without generational overlap. The dynamics is repeated this way. Fig.8.1 summarizes
the model.

8.1.2 Identifying species and barcode
In the absence of the mDNA (and the fitness attributed to its coupling with the

nDNA), the model follows exactly as the Derrida-Higgs model. Species (called now as nu-
clear species) are still identified as components of the underlying network: reproductively
isolated groups of individuals. What we aim now is to look for an association between
the species defined by the genetic nuclear distance and their mDNA. Thus, we define
mitochondrial species by constructing a sequence of adjacency matrix with elements

𝐵
(𝑑)
𝛼𝛽 = 𝑈

(︁
𝑑 − 𝑑𝛼𝛽

𝑀

)︁
, (8.1.5)

where 𝑈(𝑥) = 1 if 𝑥 ≥ 0 and 𝑈(𝑥) = 0 otherwise and 𝑑 = 𝐵𝑀 , 𝐵𝑀 − 1, 𝐵𝑀 − 2, . . . is
a mitochondrial distance threshold, a parameter that can vary in order to maximize the
agreement between nuclear and mitochondrial species.

Hence, for a given mitochondrial distance matrix (of elements 𝑑𝛼𝛽
𝑀 ), as 𝑑 decreases,

the number of components of the corresponding network increases. When this number
equals at least the number of nuclear species, we set the mitochondrial distance threshold
𝐺𝑀 ≡ 𝑑 and then define these components as the mitochondrial species.

If all individuals belonging to a given nuclear species belong to the same mitochondrial
species, and this mitochondrial species is not found in any other nuclear species, then
there is a species bijection. We define the ratio of species bijection to the number of
mitochondrial species as the barcode success. If this fraction is close to 1, then we may
say that the barcode property of the mitochondrial DNA has emerged in the system.
Fig.8.2 shows this numerical process of reducing the value 𝑑 in order to find 𝐺𝑀 (𝑞𝑀

𝑚𝑖𝑛 =
1 − 2𝐺𝑀/𝐵𝑀) and to analyze the barcode success.

8.2 The analytical theory
As we have done for the Derrida-Higgs model, we are going to analyze the evolution

of the similarity distributions in this model, also following the calculation path of Fig.5.5.
Now, there is the dependence of the results on the fitness distribution, as we are going
to explicitly see in the analytical results. Although the model was introduced considering
the Hamming distances between the genomes, working with the similarity quantities is
more suitable, since they are normalized, which provides a better comparison among
different parameter sets. We must be careful only with the mito-nuclear distance 𝑑𝛼𝛽

𝑀𝑁

and the corresponding similarity, 𝑐𝛼𝛽. Because 𝑑𝛼𝛽
𝑀𝑁 is defined as a normalized quantity

(Eq.(8.1.3)), the relation between them is given by

𝑐𝛼𝛽 = 1 − 2𝑑𝛼𝛽
𝑀𝑁 , (8.2.1)

.
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𝑑 = 𝑑1

Nuclear Network Mitochondrial Network

𝑑 = 𝑑2 < 𝑑1 𝑑 = 𝑑3 < 𝑑2

Figure 8.2: Mitochondrial and nuclear species. The figure shows the population
network with three nuclear species (three components in the blue network). The red
network shows the mitochondrial networks for different values of the threshold 𝑑. When
the mitochondrial distance threshold 𝑑 is reduced, the number of connections in the red
network also reduces, until the moment we recognize the same number of mitochondrial
species (components in the red network) as the number of nuclear species. If there is a
bijection between the mitochondrial species and the nuclear species (as in the figure for
𝑑 = 𝑑3), then the barcode success is equal to 1.
Source: Figure produced by the author.

Fig.8.3 shows some results of simulations with different coupling coefficients 𝜎𝜔. When
𝜎𝜔 → ∞, the nuclear similarity evolution recovers the sympatric Derrida-Higgs model.

8.2.1 The nuclear similarity distribution
Let us start with the nuclear similarity distribution. We keep the same notation we

have used so far and notice that on what concerns the nDNA, the only difference regards
how to choose the mating pairs. The probability of drawing individual 𝑝1 to be focal now
is given by

P(𝑝1 as focal) = 𝜌𝑝1 ≡ 𝜔𝑝1

𝑍
= 1

𝑍
𝑒−(𝑑𝑝1

𝑀𝑁 )2/2𝜎2
𝜔 , (8.2.2)

where 𝑍 = ∑︀
𝑖 𝜔𝑖 is the normalization. And after choosing 𝑝1, 𝑝2 is chosen with probability

P(𝑝2|𝑝1 is focal) = 𝐴𝑝1𝑝2𝜔𝑝2

𝑍𝑝1

= 𝐴𝑝1𝑝2

𝑍𝑝1

𝑒−(𝑑𝑝1
𝑀𝑁 )2/2𝜎2

𝜔 , (8.2.3)

where 𝑍𝑝1 = ∑︀
𝑝2 𝐴𝑝1𝑝2𝜔𝑝2 is the normalization now. Thus, it is not hard to see that the

probability distribution for a given nuclear similarity at time 𝑡 + 1, 𝒫(𝑞𝛼𝛽
𝑡+1) is given by

𝒫(𝑞𝛼𝛽
𝑡+1) =

∑︁
S𝛼

𝑡+1,S𝛽
𝑡+1

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝛿
(︁
𝑞𝛼𝛽

𝑡+1, S𝛼
𝑡+1 · S𝛽

𝑡+1/𝐵
)︁ 𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍𝑍𝑝1

𝜔𝑝′
1𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍𝑍𝑝′
1
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𝜔

Figure 8.3: Mitochondrial and nuclear similarities evolution. In the figure, the av-
erage similarity (darker curves) over 10 simulations (lighter curves) with different coupling
coefficients is presented. The top left panel shows the evolution of the nuclear similarity
𝑞𝛼𝛽; the top right, the mitochondrial similarity 𝜈𝛼𝛽; the bottom left, the mito-nuclear
distance 𝑑𝛼

𝑀𝑁 and its corresponding similarity at the bottom right 𝑐𝛼. In the figure, the
simulation parameters are 𝑁 = 500, 𝜇 = 0.001, 𝑞𝑚𝑖𝑛 = 0.9, 𝐵 = 7500, 𝐵𝑀 = 250,
𝜇𝑀 = 0.003.
Source: Figure produced by the author.

×
𝐵∏︁

𝑖=1

[︃
1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝1
𝑖,𝑡 + 𝑛𝑝2

𝑖,𝑡)
]︃ [︃

1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝′
1

𝑖,𝑡 + 𝑛
𝑝′

2
𝑖,𝑡)
]︃

, (8.2.4)

where instead of 1/𝑁𝑁𝑝1 appears the term 𝜔𝑝1𝜔𝑝2/𝑍𝑍𝑝1 and instead of 1/𝑁𝑁𝑝′
1
, the term

𝜔𝑝′
1𝜔𝑝′

2/𝑍𝑍𝑝′
1
.

Thus, for the first moment, we find

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑍2

∑︁
𝑝1𝑝2

∑︁
𝑝′

1𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍𝑝1

𝜔𝑝′
1𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍𝑝′
1

(︁
𝑞

𝑝1𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

1
𝑡 + 𝑞

𝑝1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡

)︁
. (8.2.5)

In the absence of the nuclear similarity threshold 𝑞𝑚𝑖𝑛, we can rearrange the indexes
and find

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

∑︁
𝑝1𝑝′

1

𝜔𝑝1𝜔𝑝′
1

𝑍2 𝑞
𝑝1𝑝′

1
𝑡
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= 𝑒−4𝜇
∑︁
𝑝1𝑝′

1

𝜌𝑝1𝜌𝑝′
1
𝑞

𝑝1𝑝′
1

𝑡

= 𝑒−4𝜇
∑︁
𝑝1

⎡⎣𝜌2
𝑝1 +

∑︁
𝑝′

1 ̸=𝑝1

𝜌𝑝1𝜌𝑝′
1
𝑞

𝑝1𝑝′
1

𝑡

⎤⎦
= 𝑒−4𝜇𝑁

[︁
⟨𝜌2

𝑝1⟩𝑃 + (𝑁 − 1)⟨𝜌𝑝1𝜌𝑝′
1
𝑞

𝑝1𝑝′
1

𝑡 ⟩𝑃

]︁
. (8.2.6)

8.2.2 The mitochondrial similarity distribution
For the mitochondrial similarity 𝜈𝛼𝛽,

𝜈𝛼𝛽 = 1
𝐵𝑀

𝐵𝑀∑︁
𝑖=1

𝑚𝛼
𝑖 𝑚𝛽

𝑖 , (8.2.7)

we must remember that the mDNA has maternal inheritance, hence, let us consider that
the parent 𝑝1 of 𝛼 and the parent 𝑝′

1 of 𝛽 are the mothers. Thus, given the mother 𝑝1,
the probability of the allele 𝑖 of the mDNA of 𝛼 of being equal to 𝑚𝛼

𝑖 is

P(𝑚𝛼
𝑖 = ±𝑚𝑝1

𝑖 ) = 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁
, (8.2.8)

and then

𝒫(𝜈𝛼𝛽
𝑡+1) =

∑︁
S𝛼

𝑀,𝑡+1,S𝛽
𝑀,𝑡+1

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝛿
(︁
𝜈𝛼𝛽

𝑡+1, S𝛼
𝑀,𝑡+1 · S𝛽

𝑀,𝑡+1/𝐵𝑀

)︁

×𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

×
𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁
, (8.2.9)

and we emphasize that the indexes 𝑝1 and 𝑝′
1 run over the females only, while 𝑝2 and 𝑝′

2 run
over the males. Because of this difference regarding the indexes, we cannot manipulate
this expression as we did for equation (5.3.23).

We shall now calculate the expected value E(𝜈𝛼𝛽
𝑡+1)

E(𝜈𝛼𝛽
𝑡+1) =

∑︁
𝜈

𝜈𝒫(𝜈𝛼𝛽
𝑡+1 = 𝜈)

=
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

× 1
𝐵𝑀

∑︁
S𝛼

𝑀 ,S𝛽
𝑀

𝐵𝑀∑︁
𝑗=1

𝑚𝛼
𝑗 𝑚𝛽

𝑗

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁

=
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃
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× 1
𝐵𝑀

𝐵𝑀∑︁
𝑗=1

⎛⎝∑︁
S𝛼

𝑀

𝑚𝛼
𝑗

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁⎞⎠
⎛⎜⎝∑︁

S𝛽
𝑀

𝑚𝛽
𝑗

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁⎞⎟⎠ .

(8.2.10)

The last two terms in parenthesis can be calculated as follows. Defining

𝐺𝑖 ≡ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁
, (8.2.11)

we can write

∑︁
S𝛼

𝑀

𝑚𝛼
𝑗

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁
=
⎛⎝ ∑︁

𝑚𝛼
1 =±1

𝐺1

⎞⎠ · · ·

⎛⎜⎝ ∑︁
𝑚𝛼

𝑗 =±1
𝑚𝛼

𝑗 𝐺𝑗

⎞⎟⎠ · · ·

⎛⎜⎝ ∑︁
𝑚𝛼

𝐵𝑀
=±1

𝐺𝐵𝑀

⎞⎟⎠ ,

(8.2.12)

and similar for 𝛽. Now, calculating each sum

∑︁
𝑚𝛼

𝑖 =±1
𝐺𝑖 = 1,

∑︁
𝑚𝛼

𝑖 =±1
𝑚𝛼

𝑖 𝐺𝑖 = 𝑒−2𝜇𝑀 𝑚𝑝1
𝑖 . (8.2.13)

Hence, ∑︁
S𝛼

𝑀

𝑚𝛼
𝑗

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁
= 𝑒−2𝜇𝑀 𝑚𝑝1

𝑖 . (8.2.14)

Thus,

E(𝜈𝛼𝛽
𝑡+1) =

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

× 1
𝐵𝑀

𝐵𝑀∑︁
𝑗=1

𝑒−4𝜇𝑀 𝑚𝑝1
𝑗 𝑚

𝑝′
1

𝑗

= 𝑒−4𝜇𝑀
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃
𝜈

𝑝1𝑝′
1

𝑡

(8.2.15)

= 𝑒−4𝜇𝑀
∑︁

𝑝1,𝑝′
1

𝜌𝑝1𝜌𝑝′
1

(︃
1 +

∑︁
𝑝2

𝐴𝑝1𝑝2𝜔𝑝2

𝑍𝑝2

)︃⎛⎝1 +
∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2
𝜔𝑝′

2

𝑍𝑝′
2

⎞⎠ 𝜈
𝑝1𝑝′

1
𝑡 . (8.2.16)

(8.2.17)

In the absence of assortative reproduction, 𝑍𝑝2 = 𝑍𝑝′
2

≡ 𝑍(𝐹 ) is the normalization
considering all females (because all females are connected to all the males 𝑝2). Also,∑︀

𝑝2 𝐴𝑝1𝑝2𝜔𝑝2 = ∑︀
𝑝′

2
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2 ≡ 𝑍(𝑀) is the normalization considering all males, since any
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male 𝑝2 or 𝑝′
2 can mate with any female 𝑝1 in the system. Then, in this case, the evolution

of the first moment reduces to

E(𝜈𝛼𝛽
𝑡+1) = 𝑒−4𝜇𝑀

∑︁
𝑝1,𝑝′

1

𝜌𝑝1𝜌𝑝′
1

(︃
1 + 𝑍(𝑀)

𝑍(𝐹 )

)︃2

𝜈
𝑝1𝑝′

1
𝑡 , (8.2.18)

and we can assume, for large populations, that 𝑍(𝑀) ≈ 𝑍(𝐹 ) and that half of the population
is male and the other half, female. Then

E(𝜈𝛼𝛽
𝑡+1) = 4𝑒−4𝜇𝑀

∑︁
𝑝1,𝑝′

1

𝜌𝑝1𝜌𝑝′
1
𝜈

𝑝1𝑝′
1

𝑡

= 2𝑒−4𝜇𝑀 𝑁
[︂
⟨𝜌2

𝑝1⟩𝑃 +
(︂

𝑁

2 − 1
)︂

⟨𝜌𝑝1𝜌𝑝′
1
𝜈

𝑝1𝑝′
1

𝑡 ⟩𝑃

]︂
, (8.2.19)

in which the averages over the probabilities 𝜌 can be considered sex-independent.

8.2.3 The mito-nuclear similarity distribution
Now, we introduce the mito-nuclear similarity, which concerns the coupling between

the two genetic sequences,

𝑐𝛼𝛽 = 1
𝐵𝑀

𝐵𝑀∑︁
𝑖=1

𝑛𝛼
𝑖 𝑚𝛽

𝑖 . (8.2.20)

There are two different cases to consider. Let us start with 𝛼 ̸= 𝛽. Combining all the
probabilities we have calculated so far, it is not hard to write the probability distribution
of a given value at time 𝑡 + 1, given the population at time 𝑡, as

𝒫(𝑐𝛼𝛽
𝑡+1) =

∑︁
S𝛼

𝑡+1,S𝛽
𝑀,𝑡+1

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝛿
(︁
𝑐𝛼𝛽

𝑡+1, S𝛼
𝑡+1 · S𝛽

𝑀,𝑡+1/𝐵𝑀

)︁

×𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

×
𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁
, (8.2.21)

where again we consider 𝑝1 and 𝑝′
1 as females and 𝑝2 and 𝑝′

2 as males. Following the
previous calculations, the expected value can be obtained as

E(𝑐𝛼𝛽
𝑡+1) =

∑︁
𝑐

𝑐𝒫(𝑐𝛼𝛽
𝑡+1 = 𝑐)

=
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

× 1
𝐵𝑀

𝐵𝑀∑︁
𝑗=1

𝑛𝛼
𝑗 𝑚𝛽

𝑗

∑︁
S𝛼

𝑡+1,S𝛽
𝑀,𝑡+1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁
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=
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃

× 1
𝐵𝑀

𝐵𝑀∑︁
𝑗=1

𝑒−2𝜇

2 (𝑛𝑝1
𝑗 + 𝑛𝑝2

𝑗 )𝑒−2𝜇𝑀 𝑚
𝑝′

1
𝑗

= 𝑒−4𝜇

2
∑︁

𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
𝜔𝑝′

1
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

𝑍

(︃
1

𝑍𝑝′
1

+ 1
𝑍𝑝′

2

)︃(︁
𝑐

𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡

)︁
,

(8.2.22)

where we have defined

𝜇 ≡ 𝜇 + 𝜇𝑀

2 . (8.2.23)

In the case with no assortative reproduction, let us consider again, for a large pop-
ulation, 𝑍𝑝1 = 𝑍𝑝′

1
= 𝑍(𝑀) and 𝑍𝑝2 = 𝑍𝑝′

2
= 𝑍(𝐹 ) with 𝑍(𝑀) ≈ 𝑍(𝐹 ) ≈ 𝑍/2, (𝑍 =

𝑍(𝑀) + 𝑍(𝐹 )). Thus,

E(𝑐𝛼𝛽
𝑡+1) = 8𝑒−4𝜇

𝑍4

∑︁
𝑝1,𝑝2

∑︁
𝑝′

1,𝑝′
2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2𝜔𝑝′
1
𝐴𝑝′

1𝑝′
2
𝜔𝑝′

2

(︁
𝑐

𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡

)︁

= 2𝑒−4𝜇

𝑍2

⎛⎝∑︁
𝑝1,𝑝′

1

𝜔𝑝1𝜔𝑝′
1
𝑐

𝑝1𝑝′
1

𝑡 +
∑︁

𝑝2,𝑝′
1

𝜔𝑝2𝜔𝑝′
1
𝑐

𝑝2𝑝′
1

𝑡

⎞⎠
= 2𝑒−4𝜇

∑︁
𝑝,𝑝′

1

𝜌𝑝𝜌𝑝′
1
𝑐

𝑝𝑝′
1

𝑡 , (8.2.24)

where the index 𝑝 runs over the entire population (males and females) and then

E(𝑐𝛼𝛽
𝑡+1) = 𝑒−4𝜇𝑁

[︁
(𝑁 − 1)⟨𝜌𝑝𝜌𝑝′

1
𝑐

𝑝𝑝′
1

𝑡 ⟩𝑃 + ⟨𝜌2
𝑝′

1
𝑐

𝑝′
1𝑝′

1
𝑡 ⟩𝑃

]︁
. (8.2.25)

However, for the diagonal terms 𝛼 = 𝛽, the result is different, with

𝒫(𝑐𝛼𝛼
𝑡+1) =

∑︁
S𝛼

𝑡+1,S𝛼
𝑀,𝑡+1

∑︁
𝑝1,𝑝2

𝛿
(︁
𝑐𝛼𝛼

𝑡+1, S𝛼
𝑡+1 · S𝛼

𝑀,𝑡+1/𝐵𝑀

)︁ 𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃

×
𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁
, (8.2.26)

with the expected value given by

E(𝑐𝛼𝛼
𝑡+1) =𝑒−4𝜇

2
∑︁

𝑝1,𝑝2

𝜔𝑝1𝐴𝑝1𝑝2𝜔𝑝2

𝑍

(︃
1

𝑍𝑝1

+ 1
𝑍𝑝2

)︃
(𝑐𝑝1𝑝1 + 𝑐𝑝2𝑝1). (8.2.27)
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Again, in the absence of assortative reproduction, and for a large population, we find

E(𝑐𝛼𝛼
𝑡+1) = 𝑒−4𝜇

2 𝑁 [𝑁⟨𝜌𝑝1𝜌𝑝2𝑐𝑝1𝑝2
𝑡 ⟩𝑃 + ⟨𝜌𝑝1𝑐𝑝1𝑝1

𝑡 ⟩𝑃 ] . (8.2.28)

8.2.4 The average evolutions: Summing up
Let us sum up the previous results considering ensemble averages. To simplify the

indexes, let us consider 𝐹 as female, 𝑀 as male and 𝛼 and 𝛽 as any sex. Thus, we find

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇𝑁

[︁
(𝑁 − 1)⟨𝜌𝛼𝜌𝛽𝑞𝛼𝛽

𝑡 ⟩ + ⟨𝜌2
𝛼⟩
]︁

, (8.2.29)

⟨𝜈𝛼𝛽
𝑡+1⟩ = 2𝑒−4𝜇𝑀 𝑁

[︂(︂
𝑁

2 − 1
)︂

⟨𝜌𝐹1𝜌𝐹2𝜈𝐹1𝐹2
𝑡 ⟩ + ⟨𝜌2

𝛼⟩
]︂

, (8.2.30)

⟨𝑐𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇𝑁

[︁
(𝑁 − 1)⟨𝜌𝛼𝜌𝐹 𝑐𝛼𝐹

𝑡 ⟩ + ⟨𝜌2
𝐹 𝑐𝐹 𝐹

𝑡 ⟩
]︁

, (8.2.31)

⟨𝑐𝛼𝛼
𝑡+1⟩ = 𝑒−4𝜇 𝑁

2
[︁
𝑁⟨𝜌𝑀𝜌𝐹 𝑐𝑀𝐹

𝑡 ⟩ + ⟨𝜌𝐹 𝑐𝐹 𝐹
𝑡 ⟩

]︁
, (8.2.32)

and propose the following simplifications

⟨𝑞𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇𝑁

[︁
(𝑁 − 1)⟨𝜌𝛼⟩2⟨𝑞𝛼𝛽

𝑡 ⟩ + ⟨𝜌2
𝛼⟩
]︁

, (8.2.33)

⟨𝜈𝛼𝛽
𝑡+1⟩ = 2𝑒−4𝜇𝑀 𝑁

[︂(︂
𝑁

2 − 1
)︂

⟨𝜌𝛼⟩2⟨𝜈𝛼𝛽
𝑡 ⟩ + ⟨𝜌2

𝛼⟩
]︂

, (8.2.34)

⟨𝑐𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇𝑁

[︁
(𝑁 − 1)⟨𝜌𝛼⟩2⟨𝑐𝛼𝛽

𝑡 ⟩ + ⟨𝜌2
𝛼𝑐𝛼𝛼

𝑡 ⟩
]︁

, (8.2.35)

⟨𝑐𝛼𝛼
𝑡+1⟩ = 𝑒−4𝜇 𝑁

2
[︁
𝑁⟨𝜌𝛼⟩2⟨𝑐𝛼𝛽

𝑡 ⟩ + ⟨𝜌𝛼𝑐𝛼𝛼
𝑡 ⟩

]︁
, (8.2.36)

in which we also overcame the sex differences due to the fact that, once starting with a
genetically identical population, the evolution equations are the same regardless of the sex
of the individuals. Now, let us present two different results by considering the existence
or not of coupling between the genetic sequences.

8.2.5 Without mito-nuclear coupling (𝜎𝜔 → ∞)
If we consider the system without any coupling between the genetic sequences, i.e.,

𝜎𝜔 → ∞, then the individuals have all the same probability of being chosen as focal,
𝜌𝛼 → 1/𝑁 . In this case, the evolution of the nuclear similarity becomes exactly as in the
Derrida-Higgs model, as expected. Also, for the mito-nuclear similarities we find

⟨𝑐𝛼𝛽
𝑡+1⟩ = 𝑒−4𝜇

[︂(︂
1 − 1

𝑁

)︂
⟨𝑐𝛼𝛽

𝑡 ⟩ + 1
𝑁

⟨𝑐𝛼𝛼
𝑡 ⟩

]︂
, (8.2.37)

⟨𝑐𝛼𝛼
𝑡+1⟩ = 𝑒−4𝜇

2
[︁
⟨𝑐𝛼𝛽

𝑡 ⟩ + ⟨𝑐𝛼𝛼
𝑡 ⟩

]︁
, (8.2.38)
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whose equilibrium solution is

⟨𝑐𝛼𝛽
𝑡→∞⟩ = ⟨𝑐𝛼𝛼

𝑡→∞⟩ = 0, (8.2.39)

thus completely decoupling the genetic sequences, as also expected, once the fitness is
the source of coupling. Fig.8.4 shows the evolution of the system without any coupling
and we can see the system decoupling in the long time limit. A very interesting result
we can see from the simulations is that even when there is species formation (Fig.8.4b),
the average mito-nuclear similarity still follows the prediction for the case without mating
restrictions (the dashed curves in the figure).

8.2.6 With mito-nuclear coupling (𝜎𝜔 < ∞)
Of course, the case of interest is in the presence of coupling, which appears by means

of fitness, resulting in a non-uniform probability distribution 𝜌𝛼. In this case, we cannot
easily treat the terms ⟨𝜌2

𝛼𝑐𝛼𝛼
𝑡 ⟩ and ⟨𝜌𝛼𝑐𝛼𝛼

𝑡 ⟩ which appear in the evolution equations (8.2.35)
and (8.2.36), but a quite simple study can be pursued.

Let us suppose the probabilities 𝜌𝛼 assume the form

𝜌𝛼 = 𝜌𝛼(𝑐𝛼𝛼
𝑡 ) ∼ exp

[︁
− (𝑐𝛼𝛼

𝑡 − 1)2 /2𝜎2
𝜔

]︁
, (8.2.40)

since the fitness is chosen to be a normal function of the mito-nuclear distance. Now, let
us also assume that the distribution of 𝑐𝛼𝛼

𝑡 is also normal, with variance 𝜎2
𝑐 ,

𝒫(𝑐𝛼𝛼
𝑡 ) ∼ exp

[︁
− (𝑐𝛼𝛼

𝑡 − ⟨𝑐𝛼𝛼
𝑡 ⟩)2 /2𝜎2

𝑐

]︁
. (8.2.41)

Hence,

⟨𝜌𝛼𝑐𝛼𝛼
𝑡 ⟩ ∝

∫︁
𝑐𝛼𝛼

𝑡 exp
[︃
−(𝑐𝛼𝛼

𝑡 − 1)2

2𝜎2
𝜔

− (𝑐𝛼𝛼
𝑡 − ⟨𝑐𝛼𝛼

𝑡 ⟩)2

2𝜎2
𝑐

]︃
𝑑𝑐𝛼𝛼

𝑡 , (8.2.42)

in which the exponent in brackets can be written as

−(𝑐𝛼𝛼
𝑡 − 𝑐)2

2𝜎2 − (⟨𝑐𝛼𝛼
𝑡 ⟩ − 1)2

2 (𝜎2
𝜔 + 𝜎2

𝑐 ) ,

with
𝑐 = 𝜎2

𝜔⟨𝑐𝛼𝛼
𝑡 ⟩ + 𝜎2

𝑐

𝜎2
𝜔 + 𝜎2

𝑐

, (8.2.43)

and,

𝜎2 =
[︃

1
𝜎2

𝜔

+ 1
𝜎2

𝑐

]︃−1

. (8.2.44)
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(a) Absence of 𝑞𝑚𝑖𝑛.

(b) 𝑞𝑚𝑖𝑛 = 0.9

Figure 8.4: Evolution of the system in the absence of coupling. In the figure, the
average similarity (darker continuous curves) over 10 simulations (lighter curves) for two
different values of 𝜇𝑀 , 𝜇𝑀 = 0.0015 (red curves) and 𝜇𝑀 = 0.003 (blue curves). The
dashed lines are the numerical results of equations (8.2.33) to (8.2.36). In (a), there are
no restrictions to mating. In (b), 𝑞𝑚𝑖𝑛 = 0.9. In the figure, the simulation parameters are
𝑁 = 400, 𝜇 = 0.001, 𝐵 = 7500 and 𝐵𝑀 = 250.
Source: Figure produced by the author.
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Thus,

⟨𝜌𝛼𝑐𝛼𝛼
𝑡 ⟩ ∝ exp

[︃
−(⟨𝑐𝛼𝛼

𝑡 ⟩ − 1)2

2 (𝜎2
𝜔 + 𝜎2

𝑐 )

]︃ ∫︁
𝑐𝛼𝛼

𝑡 exp
[︃
−(𝑐𝛼𝛼

𝑡 − 𝑐)2

2𝜎2

]︃
𝑑𝑐𝛼𝛼

𝑡

= exp
[︃
−(⟨𝑐𝛼𝛼

𝑡 ⟩ − 1)2

2 (𝜎2
𝜔 + 𝜎2

𝑐 )

]︃(︃
𝜎2

𝜔⟨𝑐𝛼𝛼
𝑡 ⟩ + 𝜎2

𝑐

𝜎2
𝜔 + 𝜎2

𝑐

)︃
. (8.2.45)

The same calculation can be performed for ⟨𝜌2
𝛼𝑐𝛼𝛼

𝑡 ⟩, and the final result can be achieved
by simply changing 𝜎2

𝜔 → 𝜎2
𝜔/2,

⟨𝜌2
𝛼𝑐𝛼𝛼

𝑡 ⟩ ∝ exp
[︃
− (⟨𝑐𝛼𝛼

𝑡 ⟩ − 1)2

2 (𝜎2
𝜔/2 + 𝜎2

𝑐 )

]︃(︃
𝜎2

𝜔/2⟨𝑐𝛼𝛼
𝑡 ⟩ + 𝜎2

𝑐

𝜎2
𝜔/2 + 𝜎2

𝑐

)︃
. (8.2.46)

The interesting results concerning these equations appear when we consider different
limits:

• (i) 𝜎𝜔 ≫ 𝜎𝑐 (weak coupling limit): In this case,

⟨𝜌𝛼𝑐𝛼𝛼
𝑡 ⟩ = 𝐶0⟨𝑐𝛼𝛼

𝑡 ⟩, (8.2.47)
⟨𝜌2

𝛼𝑐𝛼𝛼
𝑡 ⟩ = 𝐶 ′

0⟨𝑐𝛼𝛼
𝑡 ⟩, (8.2.48)

where 𝐶0 and 𝐶 ′
0 are actually functions of ⟨𝑐𝛼𝛼

𝑡 ⟩, which we are going to assume
as constants, neglecting its complexity in order to be able to understand some
general features of the model. Now, considering the evolution equations (8.2.35)
and (8.2.36), the equilibrium solution is still trivial ⟨𝑐𝛼𝛼

∞ ⟩ = 0, being the system still
uncoupled.

• (ii) 𝜎𝜔 comparable to 𝜎𝑐 (strong coupling limit): Now,

⟨𝜌𝛼𝑐𝛼𝛼
𝑡 ⟩ = 𝐶1 + 𝐶2⟨𝑐𝛼𝛼

𝑡 ⟩, (8.2.49)
⟨𝜌2

𝛼𝑐𝛼𝛼
𝑡 ⟩ = 𝐶 ′

1 + 𝐶 ′
2⟨𝑐𝛼𝛼

𝑡 ⟩, (8.2.50)

in which again 𝐶1, 𝐶 ′
1, 𝐶2 and 𝐶 ′

2 are also functions of ⟨𝑐𝛼𝛼
𝑡 ⟩ that we again treat

as constants. However, now equations (8.2.35) and (8.2.36) lead to a non-trivial
equilibrium solution

⟨𝑐𝛼𝛼
∞ ⟩ =

𝐶1 + 𝑁⟨𝜌𝛼⟩2
𝐸𝑞𝐶

′
1

[︁
𝑒4𝜇/𝑁 − (𝑁 − 1)⟨𝜌𝛼⟩2

𝐸𝑞

]︁−1

2𝑒4𝜇/𝑁 − 𝐶2 − 𝑁⟨𝜌𝛼⟩2
𝐸𝑞𝐶

′
2

[︁
𝑒4𝜇/𝑁 − (𝑁 − 1)⟨𝜌𝛼⟩2

𝐸𝑞

]︁−1 , (8.2.51)

showing that in this case, the coupling leads to a dependence between the genetic
sequences.

These were quite strong approximations, but they were able to show us an important
feature of the system: the genetic sequences lose coupling when 𝜎𝜔 ≫ 𝜎𝑐, i.e., when the
coupling strength is much weaker (larger) than the broadness of the mito-nuclear similar-
ity. Of course, the broadness 𝜎𝑐 is also a function of the coupling and this interplay is very
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𝜔

Figure 8.5: Genome size 𝐵𝑀 influence on the mito-nuclear coupling. In the figure,
the average similarity over 10 simulations of each parameter set with different coupling
coefficients is presented. The lighter dashed curves are for 𝐵𝑀 = 250 and the continuous
darker curves for 𝐵𝑀 = 500. The mito-nuclear similarity is always greater (i.e., higher
coupling) for smaller genome sizes. In the figure, the simulation parameters are 𝑁 = 500,
𝜇 = 0.0005, 𝑞𝑚𝑖𝑛 = 0.9, 𝐵 = 17000 and 𝜇𝑀 = 0.0015.
Source: Figure produced by the author.

complex, being this result a qualitative one, with the lack of a more formal quantitative
expression.

In order to numerically test this result, as we learned from the Derrida-Higgs theory,
we know that the 𝜎𝑐 decreases as the genome size increases. Thus, for the same coupling
coefficient 𝜎𝜔, a greater value of 𝐵𝑀 should result in a less coupled system. Fig.8.5 shows
this result. In the following section we work on the variance of the genetic similarities
and construct the algorithm for infinite genome sizes, showing the limiting case of the
previous result, in which no matter the coupling, the system does not remain coupled in
the long-time limit.

8.3 Infinite genome size
An algorithm for an infinite genome size lies on the assumption that in this case, given

the parents of a pair of individuals, the genetic similarities are defined with probability
one, once in this limit the variance should be zero. Let us first calculate the expressions
involved in the algorithm and then show that the variance goes to zero, validating the
algorithm.
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8.3.1 The algorithm for infinite genomes
Every probability distribution of any similarity we have calculated so far has two

parts: (a) the first concerns the network, which itself encodes the sampling process. The
sum over the possible pairs of parents, the adjacency matrix, the fitness factors and the
normalization factors, they are all telling how we should count the possible outcomes
that come from the (b) sexual reproduction process. This part considers that, given the
parents of both individuals (𝛼 and 𝛽, as we have been used), there is a correct way of
mixing their genomes, which is written in the products, and then summed over many
different genome outcomes (S𝛼

𝑡+1 and S𝛽
𝑡+1) and filtered over the ones that give the desired

similarity (by means of the 𝛿 function).
With this observation, we do not need to rewrite the probability distributions in order

to calculate what we want, let us only focus on the reproduction part, once the algorithm
draws the parents of an individual a priori.

Nuclear similarity

Let us start with the Nuclear similarity (which recovers the results from Derrida and
Higgs). Given the parents of 𝛼 and 𝛽, the probability of a given nuclear similarity is given
by (from Eq.(8.2.4)),

𝒫(𝑞𝛼𝛽
𝑡+1|given the parents)

=
∑︁

S𝛼
𝑡+1,S𝛽

𝑡+1

𝛿
(︁
𝑞𝛼𝛽

𝑡+1, S𝛼
𝑡+1 · S𝛽

𝑡+1/𝐵
)︁ 𝐵∏︁

𝑖=1

[︃
1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝1
𝑖,𝑡 + 𝑛𝑝2

𝑖,𝑡)
]︃ [︃

1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝′
1

𝑖,𝑡 + 𝑛
𝑝′

2
𝑖,𝑡)
]︃

,

(8.3.1)

in which 𝑝1 and 𝑝2 are parents of 𝛼 and 𝑝′
1 and 𝑝′

2 are parents of 𝛽. In order to calculate
the expected value, we follow the same procedures used before and find

E(𝑞𝛼𝛽
𝑡+1|given the parents) = 𝑒−4𝜇

4 (𝑞𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡 ). (8.3.2)

Mitochondrial similarity

Now, for the mitochondrial similarity, from (8.2.9)

𝒫(𝜈𝛼𝛽
𝑡+1|given the parents)

=
∑︁

S𝛼
𝑀,𝑡+1,S𝛽

𝑀,𝑡+1

𝛿
(︁
𝜈𝛼𝛽

𝑡+1, S𝛼
𝑀,𝑡+1 · S𝛽

𝑀,𝑡+1/𝐵𝑀

)︁ 𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁
,

(8.3.3)

also keeping the notation that 𝑝1 and 𝑝′
1 are females. For the expected value, one can

easily show
E(𝜈𝛼𝛽

𝑡+1|given the parents) = 𝑒−4𝜇𝑀 𝜈
𝑝1𝑝′

1
𝑡 . (8.3.4)
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Mito-nuclear similarity

Finally, from Eq.(8.2.21)

𝒫(𝑐𝛼𝛽
𝑡+1|given the parents)

=
∑︁

S𝛼
𝑡+1,S𝛽

𝑀,𝑡+1

𝛿
(︁
𝑐𝛼𝛽

𝑡+1, S𝛼
𝑡+1 · S𝛽

𝑀,𝑡+1/𝐵𝑀

)︁ 𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁
,

(8.3.5)

and the expected value

E(𝑐𝛼𝛽
𝑡+1|given the parents) =𝑒−4𝜇

2 (𝑐𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡 ). (8.3.6)

and this equation holds even for 𝛼 = 𝛽.

The algorithm for infinite genomes

As we are going to show, once the parents are given, when the genome sizes are both
infinite, we should be able to write E(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦|given the parents) = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦, once the
variance Var(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) → 0. Hence, for infinite genome sizes, we start with a clonal
population with an equal number of males and females; the matrices 𝑞𝛼𝛽

0 = 1, 𝜈𝛼𝛽
0 = 1

and 𝑐𝛼𝛽
0 = 1. An individual 𝑝𝑓𝑜𝑐𝑎𝑙 is chosen according to its fitness 𝜔𝑝𝑓𝑜𝑐𝑎𝑙

and then its
partner 𝑝𝑝𝑎𝑟𝑡𝑛𝑒𝑟 is chosen, according to its fitness, among the ones that can mate with
𝑝𝑓𝑜𝑐𝑎𝑙, i.e., they should have different sexes and 𝑞𝑝𝑓𝑜𝑐𝑎𝑙𝑝𝑝𝑎𝑟𝑡𝑛𝑒𝑟 ≥ 𝑞𝑚𝑖𝑛. 𝑁 pairs like this are
drawn. The matrices are updated according to

𝑞𝛼𝛽
𝑡+1 = 𝑒−4𝜇

4 (𝑞𝑝1𝑝′
1

𝑡 + 𝑞
𝑝1𝑝′

2
𝑡 + 𝑞

𝑝2𝑝′
1

𝑡 + 𝑞
𝑝2𝑝′

2
𝑡 ), (8.3.7)

𝜈𝛼𝛽
𝑡+1 = 𝑒−4𝜇𝑀 𝜈

𝑝1𝑝′
1

𝑡 , (8.3.8)

𝑐𝛼𝛽
𝑡+1 = 𝑒−4𝜇

2 (𝑐𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡 ), (8.3.9)

in which 𝑝1 and 𝑝2 are respectively the female and male parents of 𝛼 and 𝑝′
1 and 𝑝′

2 are
respectively the female and male parent of 𝛽.

8.3.2 The similarity variance (given the parents)
Following our outline, let us now calculate the variance of the genetic similarities given

the parents.

Nuclear similarity

Starting with the nuclear similarity, we recover the results from the Derrida-Higgs,

E((𝑞𝛼𝛽
𝑡+1)2|given the parents)
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=
∑︁

𝑞

𝑞2𝒫(𝑞𝛼𝛽
𝑡+1 = 𝑞|given the parents)

=
∑︁

S𝛼
𝑡+1,S𝛽

𝑡+1

(𝑞𝛼𝛽
𝑡+1)2

𝐵∏︁
𝑖=1

[︃
1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝1
𝑖,𝑡 + 𝑛𝑝2

𝑖,𝑡)
]︃ [︃

1
2 +

𝑛𝛼
𝑖,𝑡+1𝑒

−2𝜇

4 (𝑛𝑝′
1

𝑖,𝑡 + 𝑛
𝑝′

2
𝑖,𝑡)
]︃

= 1
𝐵

+ 𝑒−8𝜇

16
[︁
(𝑞𝑝1𝑝′

1
𝑡 + 𝑞

𝑝1𝑝′
2

𝑡 + 𝑞
𝑝2𝑝′

1
𝑡 + 𝑞

𝑝2𝑝′
2

𝑡 )
]︁2

− 𝑒−8𝜇

4𝐵

(︁
1 + 𝑞𝑝1𝑝2

𝑡 + 𝑞
𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

)︁
,

(8.3.10)

and then the variance

Var(𝑞𝛼𝛽
𝑡+1|given the parents) = 1

𝐵
− 𝑒−8𝜇

4𝐵

(︁
1 + 𝑞𝑝1𝑝2

𝑡 + 𝑞
𝑝′

1𝑝′
2

𝑡 + 𝑞
𝑝1𝑝2𝑝′

1𝑝′
2

𝑡

)︁
, (8.3.11)

which is zero for 𝐵 → ∞, q.e.d.

Mitochondrial similarity

For the mitochondrial similarity we have

E((𝜈𝛼𝛽
𝑡+1)2|given the parents)

=
∑︁

𝜈

𝜈2𝒫(𝜈𝛼𝛽
𝑡+1 = 𝜈|given the parents)

=
∑︁

S𝛼
𝑡+1,S𝛽

𝑡+1

(𝜈𝛼𝛽
𝑡+1)2

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁

= 1
𝐵2

𝑀

∑︁
S𝛼

𝑡+1,S𝛽
𝑡+1

∑︁
𝑗,𝑘

𝑚𝛼
𝑗 𝑚𝛽

𝑗 𝑚𝛼
𝑘 𝑚𝛽

𝑘

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁

= 1
𝐵2

𝑀

∑︁
𝑗

⎡⎢⎣
⎛⎜⎝ ∑︁

S𝛼
𝑀,𝑡+1

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁⎞⎟⎠
⎛⎜⎝ ∑︁

S𝛽
𝑀,𝑡+1

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁⎞⎟⎠
⎤⎥⎦

+ 1
𝐵2

𝑀

∑︁
𝑘 ̸=𝑗

⎡⎢⎣
⎛⎜⎝ ∑︁

S𝛼
𝑀,𝑡+1

𝑚𝛼
𝑗 𝑚𝛼

𝑘

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁⎞⎟⎠
⎛⎜⎝ ∑︁

S𝛽
𝑀,𝑡+1

𝑚𝛽
𝑗 𝑚𝛽

𝑘

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁⎞⎟⎠
⎤⎥⎦

= 1
𝐵𝑀

+ 1
𝐵2

𝑀

∑︁
𝑘 ̸=𝑗

𝑒−8𝜇𝑀 𝑚𝑝1
𝑗 𝑚𝑝1

𝑘 𝑚
𝑝′

1
𝑗 𝑚

𝑝′
1

𝑘

= 1
𝐵𝑀

+ 𝑒−8𝜇𝑀

𝐵2
𝑀

𝐵𝑀∑︁
𝑗=1

𝑚𝑝1
𝑗 𝑚

𝑝′
1

𝑗

⎛⎝−𝑚𝑝1
𝑗 𝑚

𝑝′
1

𝑗 +
𝐵𝑀∑︁
𝑘=1

𝑚𝑝1
𝑘 𝑚

𝑝′
1

𝑘

⎞⎠
= (1 − 𝑒−8𝜇𝑀 )

𝐵𝑀

+
(︁
𝑒−4𝜇𝑀 𝜈

𝑝1𝑝′
1

𝑡

)︁2
, (8.3.12)

and then the variance

Var(𝜈𝛼𝛽
𝑡+1|given the parents) = (1 − 𝑒−8𝜇𝑀 )

𝐵𝑀

, (8.3.13)
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which is again zero for 𝐵𝑀 → ∞, q.e.d.

Mito-nuclear similarity

Now, for the mito-nuclear similarity,

E((𝑐𝛼𝛽
𝑡+1)2|given the parents)

=
∑︁

𝑐

𝑐2𝒫(𝑐𝛼𝛽
𝑡+1 = 𝑐|given the parents)

=
∑︁

S𝛼
𝑡+1,S𝛽

𝑡+1

(𝑐𝛼𝛽
𝑡+1)2

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛼

𝑖 𝑚𝑝1
𝑖

]︁ 1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁

= 1
𝐵2

𝑀

∑︁
S𝛼

𝑡+1,S𝛽
𝑡+1

∑︁
𝑗,𝑘

𝑛𝛼
𝑗 𝑚𝛽

𝑗 𝑛𝛼
𝑘 𝑚𝛽

𝑘

𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁

= 1
𝐵2

𝑀

∑︁
𝑗

⎡⎢⎣
⎛⎜⎝ ∑︁

S𝛼
𝑀,𝑡+1

𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃⎞⎟⎠

⎛⎜⎝ ∑︁
S𝛽

𝑀,𝑡+1

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁⎞⎟⎠
⎤⎥⎦

+ 1
𝐵2

𝑀

∑︁
𝑘 ̸=𝑗

⎡⎢⎣
⎛⎜⎝ ∑︁

S𝛼
𝑀,𝑡+1

𝑛𝛼
𝑗 𝑛𝛼

𝑘

𝐵𝑀∏︁
𝑖=1

[︃
1
2 + 𝑛𝛼

𝑖 𝑒−2𝜇

4 (𝑛𝑝1
𝑖 + 𝑛𝑝2

𝑖 )
]︃⎞⎟⎠

⎛⎜⎝ ∑︁
S𝛽

𝑀,𝑡+1

𝑚𝛽
𝑗 𝑚𝛽

𝑘

𝐵𝑀∏︁
𝑖=1

1
2
[︁
1 + 𝑒−2𝜇𝑀 𝑚𝛽

𝑖 𝑚
𝑝′

1
𝑖

]︁⎞⎟⎠
⎤⎥⎦

= 1
𝐵𝑀

+ 𝑒−8𝜇

4𝐵2
𝑀

∑︁
𝑘 ̸=𝑗

(𝑛𝑝1
𝑗 + 𝑛𝑝2

𝑗 )(𝑛𝑝1
𝑘 + 𝑛𝑝2

𝑘 )𝑚𝑝′
1

𝑗 𝑚
𝑝′

1
𝑘

= 1
𝐵𝑀

+ 𝑒−8𝜇

4𝐵2
𝑀

𝐵𝑀∑︁
𝑗=1

(𝑛𝑝1
𝑗 𝑚

𝑝′
1

𝑗 + 𝑛𝑝2
𝑗 𝑚

𝑝′
1

𝑗 )
⎛⎝−(𝑛𝑝1

𝑗 𝑚
𝑝′

1
𝑗 + 𝑛𝑝2

𝑗 𝑚
𝑝′

1
𝑗 ) +

𝐵𝑀∑︁
𝑘=1

(𝑛𝑝1
𝑘 𝑚

𝑝′
1

𝑘 + 𝑛𝑝2
𝑘 𝑚

𝑝′
1

𝑘 )
⎞⎠

= 1
𝐵𝑀

+
(︃

𝑒−4𝜇

2 (𝑐𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡 )

)︃2

− 𝑒−8𝜇

2𝐵2
𝑀

𝐵𝑀∑︁
𝑗=1

(1 + 𝑛𝑝1
𝑗 𝑛𝑝2

𝑗 )

= 1
𝐵𝑀

− 𝑒−8𝜇

2𝐵𝑀

(1 + 𝑞𝑝1𝑝2
𝑡 ) +

(︃
𝑒−4𝜇

2 (𝑐𝑝1𝑝′
1

𝑡 + 𝑐
𝑝2𝑝′

1
𝑡 )

)︃2

, (8.3.14)

and the variance reads

Var(𝑐𝛼𝛽
𝑡+1|given the parents) = 1

𝐵𝑀

− 𝑒−8𝜇

2𝐵𝑀

(1 + 𝑞𝑝1𝑝2
𝑡 ), (8.3.15)

equalling zero for 𝐵𝑀 → ∞, q.e.d.
Hence, we have validated the proposed algorithm in the infinite genome case.
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8.4 Barcode computational results
Following Princepe and Aguiar [120], the parameters for our simulations were chosen

as 𝜇𝑀 = 3𝜇, as also 𝜇𝑀 < 1/𝐵𝑀 , thus avoiding the error threshold limit1, in which
the genetic space would be widely occupied, and thus the mitochondrial population frag-
mented into many rare species as a simple consequence of a high mutation rate. Also,
the nuclear genome size must be large enough in order to allow species formation, and
following biological constraints, 𝐵𝑀 < 𝐵.

We remember that the mitochondrial similarity threshold 𝑞𝑀
𝑚𝑖𝑛 is calculated as the

smallest value such that the number of mitochondrial species 𝒮𝑀 is at least the number
of nuclear species 𝒮. The barcode success is then calculated as the ratio of the species’
bijection (biunivocal correspondence between mitochondrial and nuclear species) to the
number of mitochondrial species.

Fig.8.6 shows the results for a given set of parameters. We calculate the barcode
success for every generation for 10 different simulations of each parameter set. We first
notice the dependence on the number of nuclear species to the coupling coefficient. The
greater the coupling (smaller 𝜎𝜔), the smaller the number of species, which is an effect
of the selection induced by the fitness distribution. The smaller the 𝜎𝜔, the narrower the
fitness distribution, intensifying the selection.

In the neutral case (𝜎𝜔 → ∞), there is no emergency of barcode, reaching success
around 0.5. When we increase the coupling, we observe worse results. We check its
consistency by analyzing a single generation (the last one) and we present the results as a
boxplot of all 10 simulations. We also notice that for greater coupling, the mitochondrial
similarity threshold needs to be more restrictive in order to reach at least 𝒮 mitochondrial
species.

Figure 8.7 shows the boxplots for barcode success and corresponding 𝑞𝑀
𝑚𝑖𝑛 over a larger

set of points. They include all the generations from 𝑡 = 200 to 𝑡 = 400 of 10 simulations
of each parameter set. This result regards the same simulations of Fig.8.5, and we observe
the same results of the previous simulations (Fig.8.6): the greater the coupling, the worse
the barcode success.

A small difference can be observed for different genome sizes: the smaller 𝐵𝑀 , the
worse the barcode, which is consistent with the previous results, which says that the
greater the genome size, the smaller the coupling.

This result seems to be very counterintuitive, since we would expect a better barcode
success for a greater coupling, or at least no differences from the neutral case, which is not
what we observe. This is an effect of how we define the barcode success, being a direct
consequence of the number of mitochondrial species 𝒮𝑀 compared to the number of nuclear
species 𝒮. When we analyze the relative difference of these numbers (𝒮𝑀 − 𝒮)/𝒮, shown
in Fig.8.8, we see that this deviation is larger for larger couplings and, as a consequence,
a smaller number of species bijections for larger couplings, resulting in a worse barcode
success.

1For self-replicating systems, high mutation rates can make the genetic sequences ex-
plore the whole configuration space, leading to loss of adaptation. The limiting mutation
rate is known as the error threshold [135].
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𝜔

𝜔

Figure 8.6: Barcode success evolution. (These results are from the same simulations of
Fig.8.3). In the figure, the average result over 10 simulations of each parameter set, with
different coupling coefficients, are presented. The bottom left panel shows the barcode
success calculated over every generation, while the right bottom curve shows a boxplot
representation of the 10 simulations only at the last generation (𝑡 = 150). The dashed
black curve shows the value 0.5, which coincides with the non-interacting case (𝜎𝜔 → ∞).
The top right panel shows a box plot of the results for the similarity threshold calculated
also at the last generation, with the black dashed line showing the nuclear similarity
threshold 𝑞𝑚𝑖𝑛. In the figure, the simulation parameters are 𝑁 = 500, 𝜇 = 0.001, 𝑞𝑚𝑖𝑛 =
0.9, 𝐵 = 7500, 𝐵𝑀 = 250 and 𝜇𝑀 = 0.003.
Source: Figure produced by the author.

8.5 Concluding remarks
The coevolution between the nuclear and mitochondrial genetic materials are funda-

mental for the cell respiration process, maximizing the energy uptake of eukaryotic biota
by means of evolution [132]. When the coupling between both genetic materials is not
good, the expression of genes related to the respiration process is not optimized, thus
reducing the fitness of the individual [136]. As a consequence, the mitochondrial DNA
becomes specific to its species, posing the so-called barcode property, i.e., to analyze the
mitochondrial genome sequence is enough to recognize its species [119, 132].

The Derrida-Higgs model provides a simple framework for modeling this evolutive
system and such an extension was proposed by Princepe and Aguiar in 2021 for allopatric
communities [120]. Their main result was that the barcode property appears as a result
of the population structure in space. The greater the overlap of species in space, the
worse the barcode success, although they did not study the full sympatric case, their
result conjectures what we have finally shown in our result: barcode does not emerge in
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𝜔 𝜔

Figure 8.7: Barcode success and mitochondrial threshold 𝑞𝑀
𝑚𝑖𝑛. (These results are

from the same simulations of Fig.8.5). In the figure, the boxplots show the results for 𝑞𝑀
𝑚𝑖𝑛

and barcode success over the last 200 generations (after richness equilibration). On the
left, the dashed black line shows the nuclear similarity threshold 𝑞𝑚𝑖𝑛, while on the right
it shows the value 0.5, expected for the neutral case. The lighter boxes are for 𝐵𝑀 = 250
and the darker boxes for 𝐵𝑀 = 500. In the figure, the simulation parameters are 𝑁 = 500,
𝜇 = 0.0005, 𝑞𝑚𝑖𝑛 = 0.9, 𝐵 = 17000 and 𝜇𝑀 = 0.0015.
Source: Figure produced by the author.

a sympatric population (and evolving according to the rules of the model).
The results point out an even worse than 50% of success when the coupling increases

from the neutral case. This result is explained by the number of mitochondrial species
that emerge in the system in the best case, which, on average, is greater than the number
of nuclear species, reducing the number of bijections between them.

Despite no barcode in the system, the coupling, which depends not only on the coupling
coefficient 𝜎𝜔 but also on the mitochondrial genome size 𝐵𝑀 , still afects the evolution,
resulting in a smaller richness the greater the coupling, which can be understood as the
equilibrium value of the mito-nuclear similarity: the closer to the unit, the stronger it is
(i.e., this system shows stabilizing selection effect).

Our findings corroborate the results of Princepe and Aguiar [120] as we have also
introduced the analytical theory for the sympatric case. Much of this model can still be
studied, like the species abundance distribution as a function of the coupling coefficient,
species turnover rates [136], closed forms for the fitness distributions or different definitions
for the barcode success, but we believe to have finished this chapter with a substantial
contribution to the general theory of finite genome sympatric Derrida-Higgs models.
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𝜔

Figure 8.8: Relative difference between Mitochondrial and Nuclear species.
(These results are from the same simulations of Fig.8.5). The figure shows the average
relative distance between the number of Mitochondrial 𝒮𝑀 and Nuclear species 𝒮, ⟨(𝒮𝑀 −
𝒮)/𝒮⟩, for all the generations from 𝑡 = 200 to 𝑡 = 400 (after richness equilibration). The
blue circles are for the smaller mDNA (𝐵𝑀 = 250) and the orange circles are for the larger
mDNA (𝐵𝑀 = 500). The plot is in log-log scale. In the figure, the simulation parameters
are 𝑁 = 500, 𝜇 = 0.0005, 𝑞𝑚𝑖𝑛 = 0.9, 𝐵 = 17000 and 𝜇𝑀 = 0.0015.
Source: Figure produced by the author.
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Chapter 9

This part in a nutshell

The nature of the genetic code, its discrete and binary characterization, makes it very
suitable for the design of evolutionary dynamics in computational and mathematical ways
[16]. In 1991, B. Derrida and P. Higgs introduced a population dynamics with infinite
loci that is able to cluster individuals in a way we can recognize different species [94].
The absence of a geographical structure, i.e., it is a sympatric community, makes the
process of speciation a very striking result of the model. On the other hand, it can be
understood as the interplay of two different evolutionary forces: mutations and genetic
drift (the model has no differential fitness and is hence neutral), with one winning over
the other in different regimes: low and high diversity regimes.

The transition parameters for infinite genome size were conjectured in the original 1991
paper, but it was shown by Aguiar in 2017 [118] that when the number of loci is finite, the
Derrida and Higgs condition for speciation is not enough. Furthermore, the system showed
a minimum genome size 𝐵𝑐 to show species formation, but an analytical expression for
𝐵𝑐 were not obtained. In this part, we have developed a theory for the genetic similarity
distribution between the individuals in the population, which is a measure of how diverse
the population is.

A heuristic theory for the transition and an approximated transition curve is obtained,
i.e., we calculate 𝐵𝑐 as a function of the other parameters of the model (the mutation
rate, population size and assortative parameter). In addition, the high diversity phase
is described as a Markov chain, in which the greatest challenge is to find the speciation
probability of a species of a given size.

The Derrida-Higgs model is a very plastic dynamics, and can be adapted to different
contexts and also extended in different directions [134]. In 2021, Princepe and Aguiar in-
troduced a model of mito-nuclear coevolution grounded on the Derrida-Higgs model [120].
The mitochondrial genetic material is responsible for the expression of genes involved in
the cell respiration process [122]. Its coevolution with the nuclear DNA is therefore an
important process in eukaryotic cells [132]. It is also used for species identification due to
its barcode property [119, 132], and this characteristic was studied in the Princepe-Aguiar
model in an allopatric context [120].

We finish the present part by considering the Princepe-Aguiar model in a sympatric
community, applying the formalism we have developed for the Derrida-Higgs dynamics in
the coevolution of mitochondrial and nuclear genetic material. We find different coupling
regimes for the genetic sequences, with numerical investigation that the barcode (as it
is defined in the model) does not emerge in sympatric communities, corroborating the
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conclusions of Princepe and Aguiar.
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Part III

A Model of Viral Evolution
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Chapter 10

Modeling epidemics

10.1 The COVID-19 pandemic in a (tiny) nutshell
At the end of 2019, the world started to face a massive spread of a new virus [137,

138], the SARS-CoV-2, responsible for the respiratory disease COVID-19 [139, 140]. This
new virus was first detected in Wuhan, China, and in only a few months, it could be found
in almost the entire world [139]. On March 11 of 2020, the World Health Organization
(WHO) declared the COVID-19 pandemic [141]. In a glimpse, a worldwide tour de force
was born in order to fight against what became one of the greatest global health prob-
lems of the modern era. Scientists from diverse areas engaged in data analysis forecast
algorithms, epidemiological modeling [142, 143, 144], methods of non-pharmacological in-
tervention [145, 146, 147], vaccine [148, 149, 150] and treatment [140, 151] research, as
they were also trying to work close to governments, advising public health secretaries and
healthcare centers [152].

The consequences of the SARS-CoV-2 pandemic were devastating [153, 154, 155].
Its transmission through the air is difficult to control [140, 156, 157], mainly in highly
populated areas; its “flu-like” symptoms [140] were easily despised and, combined with a
high number of asymptomatic cases [158, 159, 160], a natural reservoir for the virus have
emerged throughout the population. Overcrowded hospitals and the sudden depletion of
medical supplies, as well as the lack of efficient medical treatments [161, 162, 163], urged
the necessity of quarantine and lockdown policies [145, 164].

On the other hand, its effects on countries’ economies turned the COVID-19 pandemic
into a political issue [165]. Right-aligned governments advocated for the reopening of
commercial places and for the end social distancing policies [165, 166]. Misinformation
and wrong information were very disappointing features of this era [167, 168, 169]. The
“efficacy” of (useless) medicines was daily spread through social media, as also the use
of non-pharmacological measures, such as the use of face masks and hand sanitizers,
were ridicularized by those who did not believe in the pandemic. When vaccines finally
appeared by the end of 2020, supported by intense scientific studies [170], anti-vaccine
demonstrations and protests came out [171, 172, 173], embedded in a very political and
denialist speech.

The first vaccine to be approved in Western countries was the Pfizer-BioNTech vaccine,
on December 2 of 2020, in the United Kingdom [174, 175]. A different mathematical
research line was then in vogue: optimal vaccination schemes. The age-dependent effects
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of COVID-19 posed the elderly (and other groups of risk) in the first positions for getting
vaccinated [176, 177]. Many vaccines, of different countries and companies, as also of
different technologies were sold worldwide [170], bringing the first clear path to the end
of the pandemic, albeit highlighting once more the discrepancies between rich and poor
countries [178, 179].

In spite of the international efforts to end the pandemics, biological evolution showed
off its role and many new strains of the SARS-CoV-2 were identified since the end of 2020
(e.g. Beta strain in South Africa [180, 181]). Mutants with different transmission rates
were spreading out and the previously acquired immunity (artificial and natural) was not
enough to block the emergence of new infection waves [180, 182, 183]. Vaccines needed
to be adapted to take into account the new viral strains, and new researches were being
conducted, but at this point, more efficient treatments had already been found and daily
life started to go back to normal.

The World Health Organization decreed the end of the pandemic on May 5 of 2023
[184].

Until October 25, 2023, more than 771 million cases were confirmed and 6.9 million
deaths were registered worldwide [155]. In Brazil, more than 704 thousand deaths were
counted until the same date [155], after an incredibly disorganized and unscientific re-
sponse to the pandemic by the national government [185, 166]. Despite of the hard task,
scientists and science institutions fulfilled their duty to society. The COVID-19 pandemic,
among many consequences, brought to light the importance of science. But not only its
importance per se, but also how it is essential to maintain a comprehensible dialogue with
society, being a trustworthy and perhaps the utmost source of information.

This part of the thesis presents our contributions to the comprehension of epidemic
spreads. During the COVID-19 pandemic, we developed a framework to study the pos-
sible effects of genetic variability on the spread of a virus, which is a characteristic not
included in the most common epidemiological models, i.e., mean-field compartmental mod-
els [22, 186]. These models are focused on the number of infections, which is indeed very
important for epidemiological monitoring, still, multi-strain models [183, 187], such as
ours, can be a source for many insights on how the spread of a disease behaves when it is
genetically diverse. Results on this matter can be beneficial to, for instance, vaccination
strategy research, since the efficacy of a given vaccine can decrease if the pathogen has
many strains [182, 188].

The framework we are about to introduce is a compartmental model on a network, in
which the pathogen (a RNA virus, as the SARS-CoV-2 [137]) is, inspired by the Derrida-
Higgs model [94], described as a binary sequence. The dynamics and details of the model
are going to be discussed in the next chapters, as also the results we have achieved. This
research has already been published in two different scientific papers, Marquioni and de
Aguiar 2020 [189] and Marquioni and de Aguiar 2021 [190].

10.2 On modeling epidemics
The classical way of modeling an epidemic is by means of compartmental models

[186] at the population level, i.e., there is no individual tracking of the disease state and
the epidemic is measured as a number describing the size of each compartment, e.g.,
the number of infected individuals or the number of recovered individuals. This type
of dynamics has been written as sets of ordinary differential equations, subdividing the
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population in many different compartments as also structuring it according to age intervals
[191]. Equations (10.2.1) show a mean-field SEIR model [186], describing the dynamics
of an epidemic among Susceptible (S), Exposed (E), Infected (I) and Recovered (R).

�̇� = −𝛽𝑆𝐼/𝑁,

�̇� = 𝛽𝑆𝐼/𝑁 − 𝜎𝐸,

𝐼 = 𝜎𝐸 − 𝛾𝐼,

�̇� = 𝛾𝐼. (10.2.1)

The parameters 𝛽, 𝜎 and 𝛾 are respectively the rates of transmission, transition from
non-infectious to infectious and recovery.

This type of model is not restricted to epidemiology, and its importance ranges from
chemical reactions [192] to ecology [193]. For instance, the Lotka-Volterra [22] model of
predation divides a population into two compartments, one for predators and one for prey,
and two differential equations describe the evolution of frequencies of each population.

The mathematical formalism is grounded on reaction networks theory [25, 26], in
which the so-called mass-action law [194] sets the rates of change of each compartment.
Everything that goes beyond mass-action law can, a priori, be included as a theory for
the rates coefficients, making this type of model a very general and powerful formalism.
Stochasticity can be added with noise terms [195], or as random couplings between equa-
tions [196], where stochastic analysis [43] is a very valuable tool. On the other hand,
population level models do not include individuals’ evolution, being unable to track the
state of a specific agent in the population, nor it is possible to an measure individual’s
response to external inputs. This is where agent-based models (ABMs, or individual-based
models, IBMs) come to the scene [197, 29].

In the following model, the individuals are still divided into compartments, albeit we
now know in which compartment each individual is. Thus, one can ask if individual 𝑥 is
infected or not. In order to do that, we consider individuals as vertices of a network, with
the edges representing individuals who are in contact to each other. Hence such a network
is called the contact network. We are still going to be interested in population quantities,
but this type of model is also suitable for studying specific behaviors, such as the role
of very connected vertices (local hubs [198]) or the spread in complex heterogeneous
populations [199].

Our interest in an agent-based approach to model an epidemic is reminiscent of the
Derrida-Higgs model, allowing us to describe the viruses infecting the individuals, their
replication and transmission processes. We are not including important features such
as immunity waning [200] and transmission heterogeneities across different viral strains
[181], but as it is going to be clear, it is possible to inferr its effects. Notwithstanding, this
is not a limitation of the framework, it is only our set of assumptions, which can be easily
changed in different studies. We therefore argue that this model can be as general as any
compartmental model can be, relying on computational power and numerical analysis for
obtaining strong results.
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Figure 10.1: Illustration of virus spread on the network. (a) initially only one
individual is infected (red) and all the others susceptible (green); (b) neighbors of infected
might get the virus (yellow); (c) one neighbor did get the virus and become exposed
(orange); (d) neighbors of first infected individual might still get the virus, but the orange
node is still in incubation time; (e) another node gets the virus from the first infected
becoming exposed and the old exposed becomes infected; (f) more nodes might get the
virus (yellow) and; (g) some do become exposed while the first infected becomes recovered.
Source: Figure from Marquioni and de Aguiar, 2020 [190].

10.3 The model
Our model can be split into two parts: the spread and the evolution, which are de-

scribed below.
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10.3.1 The spread
We consider a compartmental model of SEIR type, i.e., individuals are divided in
• Susceptible (S): those that were not infected and non-resistant to infection;

• Exposed (E): individuals who are infected but still not infectious;

• Infected (I): individuals who are infected and infectious;

• Recovered (R): those that were infected but have already recovered from the infec-
tion, being non-susceptible anymore.

Individuals are described as the nodes of a network, in which the edges describe the
contact between the individuals. This contact network is fixed in time for the present
model, and the final state of a spread is dependent on its structure.

An epidemic in the network runs as follows:
1. An infected (I) node can infect any susceptible (S) node to which it is connected

with probability of transmission 𝑝𝐼 in every time step.

2. Whenever an individual gets infected, it remains exposed (E) (i.e., not infectious)
for an incubation time 𝑡𝑖, drawn from a distribution 𝒫(𝑡𝑖).

3. After the incubation time, an exposed individual becomes infectious (I), being also
able to spread the disease to other susceptible nodes.

4. Every infected (and infectious) individual can recover with probability 𝑟 at the end
of the iteration step.

Fig. 10.1 summarizes the spread part of the model.

10.3.2 The evolution
The novelty we address in this work is a microscopic description of the pathogen

evolution in terms of binary sequences. We introduce a suitable agent-based framework
to understand how the contact structure among individuals can affect the evolution of a
RNA-virus that is spreading throughout a community.

A virus is described as a 2𝐵 binary string representing its genetic material, where
𝐵 is the genome size and every pair of bits (𝑏2𝑖−1, 𝑏2𝑖) defines a nucleotide, for instance,
(0, 0) = 𝐴, (0, 1) = 𝑈 , (1, 0) = 𝐶 and (1, 1) = 𝐺. We consider a single sequence as a
proxy for the infection in an individual. This sequence can mutate as long as the individual
remains infected (or exposed), with mutation rate 𝜇 per nucleotide [201]. The evolution
follows as

1. When a transmission event occurs, the binary sequence is copied from the infected
to the infectee;

2. When an individual recovers, its virus cannot mutate anymore and the final virus
is saved;

3. All viruses (within infected and exposed) can mutate in every time step;
Fig. 10.2 sums up this dynamics. In the present study, all viruses are considered equiva-
lent, showing no fitness differences or distinct transmission and death rates. Individuals
also acquire perfect cross-immunity once infected by any strain.
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Figure 10.2: Model dynamics. (a) infected individuals (red) can transmit the virus
to their susceptible first neighbors (green). When transmission is successful the virus is
cloned to the new host, which is now an exposed individual (yellow) and will be able to
mutate only in the next iteration. (b) infected individuals can recover with probability 𝑟.
When an individual recovers (blue), its virus stops mutating and becomes a “final virus.”
(c) viruses on infected (red) or exposed (yellow) individuals can mutate.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

10.3.3 The parameters
The Basic Reproduction Number 𝑅0 measures the number of secondary infections

emerging from a single infection in a completely susceptible population [22, 186]. It can
be estimated by statistical methods and it is an important parameter of an epidemic, and
it has been, for the COVID-19 pandemic, reported in many different studies [202]. A
theoretical way of describing 𝑅0 is

𝑅0 = 𝑝𝐼𝐷𝜏𝑠𝑦𝑚𝑝, (10.3.1)

where 𝑝𝐼 is the transmission prabability, 𝐷 is the average number of contacts of an in-
dividual in the population and 𝜏𝑠𝑦𝑚𝑝 is the average duration of symptoms, (considered
to be the period when individuals remain infectious). From this equation, given 𝑅0, the
transmission probability can be calculated as

𝑝𝐼 = 𝑅0

𝐷𝜏𝑠𝑦𝑚𝑝

. (10.3.2)
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We may also consider a probability of recovery 𝑟 per time unit

𝑟 ≈ 𝜆 = 1/𝜏𝑠𝑦𝑚𝑝, (10.3.3)

with the approximation valid for 𝜆 ≪ 1. (The detailed calculation is shown in App. B.1).
𝐷 is the average degree of the contact network. In the quarantine studies (which are
going to be presented) we considered a scale-free network (Barabasi-Albert) in order to
include heterogeneity.

We have conducted a simple study of the effect of network size and average degree on
the final epidemic size (percentage of the population that was infected at the end of the
epidemic) and on the average time to the infection curve peak. The results are shown in
the App. B.2. From this investigation, to conduct further studies, we set networks with
𝑁 = 2000 nodes and 𝐷 ≈ 98 (nominal 𝐷 = 100).

For the incubation times, we considered the gamma distribution Γ(𝛼, 𝛽) from Wu
[203], with mean on 6.5 days and standard deviation 2.6 days.

The full list of parameters is shown in Table 10.1.
Table 10.1: Simulation parameters. The number of nodes in each simulation is de-
scribed properly [189, 190].

Parameter Value
𝑅0 2.4 [204]

Average Symptoms Duration 𝜏0 14 days [143, 146]
Networks Average Degree 𝐷 * 100

Incubation Time Distribution 𝒫(𝜏) Γ(6.25, 25/26) [205, 203]
Mutation Rate 𝜇 0.001 substitution per base, per year [206, 201]
Genome Size 𝐵 29900 bases [204]

For the Quarantine Results:
Network size 𝑁 2000

Recovery probability 𝑟 1/14 (day−1)

*This is the input average degree for the network construction, but the actual value for
each realization fluctuates. For the communities simulations, this is the parameter for
constructing each isolated network, as also for the control case 𝑝 = 0 [190].

10.4 The analysis
We have investigated epidemiological and evolutionary effects of the spread. During

the COVID-19 pandemic, the lack of efficient treatments and vaccines forced governments
to adopt quarantine and lockdown policies as measures of epidemic control [145, 164],
slowing down the spread and preventing the overload of health systems [162]. We then
studied the effect of quarantines in the course of an epidemic.

We have modeled a quarantine regime as a decreased transmission probability, reducing
it by a factor (1 − 𝑄) in which 𝑄 is the quarantine intensity, varying from 0 to 1. The
quarantine starts in day 𝑡𝑠 and lasts for 𝑡𝑑 days, and we present its results in the next
chapter (Ref. [189]).

The pathogen evolution was also a very important feature during the COVID-19 pan-
demic, since the emergence of new viral strains was responsible for reinfection cases and
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new infection waves [181]. Our goal was to understand how the contact network structure
could shape viral diversity regardless of the effects of viral fitness differences acquired due
to mutations and subsequent selection pressure [190].

We define the genetic distance between two viruses as the Hamming distance between
the binary strings considering the nucleotides, i.e., the number of different nucleotides
between them,

𝑑𝛼𝛽 = 𝐵 −
𝐵∑︁

𝑖=1
(|𝑏𝛼

2𝑖−1 − 𝑏𝛽
2𝑖−1|−1)(|𝑏𝛼

2𝑖 − 𝑏𝛽
2𝑖|−1), (10.4.1)

where 𝛼 and 𝛽 are different viruses and 𝑏𝛾
𝑗 ∈ {0, 1}. The average genetic distance at a

given time between all pairs of viruses (those that are still mutating (which we are going
to call active viruses) and those that are not mutating anymore (inactive viruses)) is our
measure of diversity.

We first study the viral diversity in networks without an explicit modular structure1.
We show how one can analytically describe the evolution of the average genetic distance
and apply our results to data collected in China at the beginning of the epidemic. Then,
we consider modular networks as a simple model of a viral spread throughout different
communities and show how the connectivity between close communities can shape the
genetic variability. These results are also presented in the next chapter.

1A module of a network is a group of nodes with dense connectivity among each other
but sparser connectivity with the other nodes of the network [207]. By networks “without
an explicit modular structure” we mean Erdos-Renyi and Barabasi-Albert networks.
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Chapter 11

Results and discussion: On

quarantine regimes

The results we present in this chapter were published in two different papers [189, 190],
whose “Results and Discussion” sections are being fully reproduced here.

11.1 Results and discussion
From Marquioni and de Aguiar, Chaos, Solitons and Fractals, 2020 [189].

Unlike the mean field SEIR model, Eqs.(10.2.1), the present IBM version on networks
is probabilistic and different outcomes are obtained every time the model is ran with the
same set of parameters. To obtain statistically significant data (while keeping simulation
time reasonable) we have ran the model 25 times for different quarantine duration and
intensities, beginning 𝑡𝑠 = 20, 30, and 40 days after the first infected node appears (at
the beginning of the simulation). The results were divided in two different scenarios,
the best and the worst cases. For each set of parameters, the best scenario consists of
simulations where the infection peak is lower than the average peak of the full set of
simulations, whereas the worst scenario contains the set with higher than average peaks.
This approach is important because in many cases the epidemic response to the quarantine
is not satisfactory, and this might be solely due to stochastic effects, a common feature
of real systems. As an example, Fig. 11.1 shows the evolution curves of infected plus
exposed individuals for all 25 replicas for 𝑄 = 0.9 and 𝑡𝑑 = 10 weeks. Since independent
populations, represented by different Barabási-Albert networks generated with the same
specifications, under the same quarantine parameters might respond drastically different
to quarantine, we also need to know the probability of each outcome.

Figures 11.2, 11.3 and 11.4 show results for average peak height, time of infection
peak and fraction of recovered individuals at the end of the epidemic (i.e., all individuals
that had contact with the virus, as we do not take mortality into account). The results
in each case are separated into best and worst scenarios and we compute the probability
that a best scenario will happen. For example, a specific set of parameters might result
in ending the epidemic, but its probability of occurrence can be too low, excluding it as
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Figure 11.1: Evolution of number of infected plus exposed individuals. Evolution
of number of infected plus exposed individuals for 𝑄 = 0.9, 𝑡𝑠 = 30 days and 𝑡𝑑 = 10
weeks for 25 replicas of the simulation. The blue dashed line shows the average height
of the highest peak of each curve. Red and green dashed lines show the average peak of
worst (8 replicas) and best (17 replicas) scenarios respectively, i. e., the average peak of
the curves in which there is a second peak, after the quarantine, and the average peak
of those in which there is not a second peak. The average of all curves (black thick line)
is not representative of any actual curve. The gray shaded area indicates the quarantine
period.
Source: Figure from Marquioni and de Aguiar, 2020 [189].

a recommended policy. All results are displayed as heat-maps.
Fig. 11.2 shows how peak height varies with quarantine duration, intensity and start

date. This information is complemented by Fig. 11.3, that shows how peak center changes
with quarantine parameters, and Fig. 11.4, displaying the proportion of recovered indi-
viduals at the end of the epidemic. The purple ellipse in Fig. 11.2 marks the parameter
region where quarantine is very intense and lasts for more than 8 weeks, an ideal situation
that works around 90% of the times but is very hard to enforce in practice. In this case
the epidemic stops quickly (blue areas in Fig. 11.3) and less than 10% of the population
is infected (green areas in Fig. 11.4).

The red ellipse in Fig. 11.2 shows a transition zone where the best scenario corresponds
to substantial curve flattening. The center of the red ellipse is at 𝑄 ≈ 0.5 for 𝑡𝑠 = 20 but
shifts to 𝑄 ≈ 0.9 for 𝑡𝑠 = 40, showing the importance of starting quarantine early. For all
values of 𝑡𝑠 the red ellipse is centered at 𝑡𝑑 ≈ 6 weeks, which is a relatively short duration.
Peak center, however, is not delayed in the best case scenarios. Importantly, best case
scenarios are very unlikely in this region, occurring with probability around 20%.
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Figure 11.2: Infection peak height heatmap. Peak height with respect to the average
‘no quarantine’ result, starting 20, 30 or 40 days after the first infection (left, middle and
right columns respectively). Plots in the first and second rows show the best and worst
scenarios. The third row shows the probability that a simulation results in a best scenario.
Quarantine duration is measured in weeks (from 1 to 15) and quarantine intensity goes
from 0 (no quarantine) to 1 (full individual lock-down, 𝑝 = 0). Green, red and purple
ellipses highlight parameter regions of interest. White vertical and horizontal reference
lines mark 𝑄 = 70% and 𝑡𝑑 = 8 weeks.
Source: Figure from Marquioni and de Aguiar, 2020 [189].

Finally, the region surrounded by the green ellipse in Fig. 11.2 corresponds to long
but moderate intensity quarantines. For the three values of 𝑡𝑠 considered peak height
was reduced by about 50% in the best case scenarios, which happens about 50% of the
times. Peak center was not significantly delayed in the best scenarios, but was pushed
forward in the worst scenarios, where peak height was reduced to about 70% with respect
to non-quarantine height. Interestingly, in both scenarios about 70% of the population
was infected at the end of the simulation, showing that herd immunity was achieved
(corresponding to the pink areas in Fig 11.4).

Quarantine can also be implemented in the mean field model, Eqs. 10.2.1.[146] This
is accomplished by integrating the dynamical equations with the infection rate 𝛽0 for
𝑡 ∈ [0, 𝑡𝑠], with the reduced value 𝛽𝑄 = (1−𝑄)𝛽0 during quarantine period 𝑡𝑠 < 𝑡 < 𝑡𝑠+𝑡𝑑

and again with 𝛽0 for 𝑡 > 𝑡𝑠 + 𝑡𝑑. Fig. 11.5 shows how results of mean field model differ
from the IBM simulations. Panel (a) shows the dynamics without quarantine according
to the mean field (thick lines) and 25 simulations with the IBM. Panel (b) shows the
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Figure 11.3: Infection peak time heatmap.Peak center (in days after the first infec-
tion) starting 20, 30 or 40 days after the first infection (left, middle and right columns
respectively) for different quarantine intensities for best and worst scenarios.
Source: Figure from Marquioni and de Aguiar, 2020 [189].

effects of quarantine on the mean field model for 𝑄 = 0.35, 𝑡𝑑 = 10 weeks and several
starting times 𝑡𝑠. According to the mean field model quarantine is effective only if started
later, otherwise the infection curve peaks at high values when the quarantine is over. The
right panels compare IBM simulations (c) and mean field results (d) for 𝑡𝑠 = 30 days and
𝑡𝑑 = 15 weeks for several quarantine intensities 𝑄. The mean field infection curves always
grow to high values when quarantine is over, whereas the IBM simulations show many
examples of low peak values and total epidemic control, with 𝐼 +𝐸 going to zero after the
quarantine period. This highlights the importance of heterogeneous social interactions
represented by the Barabási-Albert network and stochastic dynamics in epidemiological
modeling.

11.2 Conclusions
In this paper we considered the effects of quarantine duration, starting date and in-

tensity in the outcome of epidemic spreading in a population presenting heterogeneous
degrees of connections. The model is stochastic and curves representing numbers of in-
fected individuals vary considerably from one simulation to the other even when all model
parameters are fixed. In order to distinguish between different outcomes we have divided
them into two groups with the best and worst results based on the height of the infection
peak (below or above the average height, respectively).

We have further divided the results into four qualitative classes delimited by the three
ellipses in Fig. 11.2 plus the rest of the diagram. Besides the obvious region indicated
by the purple ellipse where quarantine is very intense and long, we found that short but
not so intense quarantine (red ellipse) does not work, since the probability of an outcome
in the best scenario is very low. Instead, long but average intensity quarantine is both
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Figure 11.4: Epidemic size heatmap. Proportion of recovered individuals at the end
of the epidemic for quarantine starting 20, 30 or 40 days after the first infection (left,
middle and right columns respectively) for different quarantine intensities for best and
worst scenarios.
Source: Figure from Marquioni and de Aguiar, 2020 [189].

likely to work and flattens the infection curve by around 50%, being the best alternative
given the current assumptions. Indeed, the infection peak is considerably delayed in
the region of the green ellipse when it falls into the worst scenario, confirming it as the
best bet for preventing the health system breakdown (Fig. 11.3). The proportion of
the population that had contact with the virus at the end of the epidemic (number of
recovered individuals, Fig. 11.4) leads to more than 60% of the population, very close
to achieving herd immunity. Comparing to the other regions, this seems to be the best
option to control the epidemics under the model assumptions. We note, however, that the
model does not account for deaths. If achieving herd immunity implies high mortality,
the best option would be long and intense quarantine (purple ellipses in Fig. 11.2), the
only way to avoid large number of infections and, therefore. high mortality.

We found that differences between mean field and stochastic models are very signifi-
cant with respect to the effects of quarantine. In many cases the former cannot control the
epidemic, as the infection peak grows again once the quarantine period is over, whereas
the latter can end the epidemic in the best case scenarios. Morris et. al have investigated
the optimal quarantine parameters for the mean field SIR model,[146]. For the strategy
we designed in the present work (𝑄 constant during the quarantine period [𝑡𝑠, 𝑡𝑠 + 𝑡𝑑]),
they show the existence of an optimal value for 𝑡𝑠 and 𝑄 for a given 𝑡𝑑, leading to the
minimization of the infection peak. In cases where the infection curve shows a second
peak, it reaches the height of the first peak, as illustrated by “Day 90” curve in Fig. 11.5
(b). Fig. 11.6 compares this curve with our model under the same quarantine parame-
ters. The heterogeneity of network structure moves the peaks to earlier times, decreasing
considerably the effect of the quarantine. In this case the mean field description is not
a good approximation for the dynamics and the optimal solution[146] is not applicable
without further adjustments.
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Figure 11.5: Comparison between mean-field and network dynamics. (a) dy-
namics without quarantine computed with mean field equations (thick lines) and IBM
simulations (thin lines); (b) mean field results with 𝑄 = 0.35, 𝑡𝑑 = 10 weeks and several
starting dates 𝑡𝑠; (c) 25 IBM simulations and (d) mean field dynamics for 𝑡𝑠 = 30 days,
𝑡𝑑 = 15 weeks and several intensities 𝑄. For the mean field equations, we set 𝑁 = 2000,
𝛽 = 𝑅0𝛾, 𝛾 = 1/14, 𝜎 = 1/⟨𝑡𝑖⟩, and starting with one infected individual.
Source: Figure from Marquioni and de Aguiar, 2020 [189].

We recall that we used uniform decrease in infection rate as a proxy for quarantine.
This is a simplified approach and other methods could be implemented to verify the
robustness of the results. Also, different network topologies might affect the spread of the
epidemics. Random uniform (Erdos-Renyi) [95] networks should produce results similar
to mean field simulations, but small-world [113, 95] or other topologies could speed up or
slow down the spread dynamics.

Our model is particularly suited to study spread between connected cities, that can
be represented by modules of a larger network. We have also kept information about the
virus DNA and its mutations, allowing us to reconstruct the phylogeny and classify its
strains as it propagates. These results will be published in a forthcoming article.
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Figure 11.6: Comparison of quarantine in mean-field and network dynamics.
Comparison between the mean field solution (thick lines) and our model (25 replicas, thin
lines) under the same quarantine parameters (𝑄 = 0.35, 𝑡𝑠 = 90 days and 𝑡𝑑 = 10 weeks).
Colors represent: susceptible (green), infected plus exposed (red) and recovered (blue).
Because most infection curves peak before the 90𝑡ℎ day, quarantine has little effect. In
the mean field model, on the other hand, the infection peak is substantially reduced.
Source: Figure from Marquioni and de Aguiar, 2020 [189].
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Chapter 12

Results and discussion: On viral

diversity

From Marquioni and de Aguiar, PLoS ONE, 2021 [190].

12.1 Analytical description
The analysis presented here to calculate the average genetic distance between all

viruses, living and final, is suitable for compartmental models in general [22]. Although
we develop it to the SEIR model, it can be applied to other models of this type. From
now on we shall abbreviate average genetic distance by average distance for simplicity.

12.1.1 Single initial infection
Here we assume that the epidemic starts with a single infected individual. Our goal is

to compute the average distance 𝑑𝑡+1 at time 𝑡+1 given the average distance 𝑑𝑡 at time 𝑡.
Notice that at the beginning of iteration 𝑡 + 1, there are different kinds of viruses: those
that are already final and have ceased to evolve (whose number is 𝑅𝑡); viruses hosted in
exposed individuals (𝐸𝑡), thus still evolving; and also those hosted in infected individuals
(𝐼𝑡). During the iteration, new infections appear (𝑥𝑡) and some infected individuals recover
(𝑟𝑡), and thus do not evolve at this time step. Then, given 𝑑𝑡, we calculate the new average
distance between each kind of virus which exists at the end of iteration 𝑡 + 1, as well as
the new average distance within each kind of virus.

Given that 𝜇 ≪ 1, we consider that the probability that two mutations happen in the
same nucleotide in the course of the epidemic is negligible. This is a good approximation
if the epidemic duration 𝑇 remains sufficiently small, 𝜇𝑇 ≪ 1. We also consider that
each new infection in the same iteration comes from different hosts, which is valid for
𝑅0/𝜏0 < 1, with 𝜏0 the average duration of symptoms. This means that we do not
expect more than one new infection per infected individual in a single iteration. Highly
connected nodes, however, can break this assumption, giving rise to super-spreaders.
Network heterogeneity, therefore, can show deviations from our estimation. Under these
assumptions, the new average distance (at the end of iteration 𝑡 + 1) among the 𝐸𝑡 is
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𝑑𝑡 + 2𝐵𝜇, once they distanced 𝑑𝑡 at the begging of iteration 𝑡 + 1 and evolved along the
iteration, each virus getting 𝐵𝜇 mutations. The new average distance between the 𝐸𝑡

and the 𝑅𝑡 is 𝑑𝑡 + 𝐵𝜇, since only the 𝐸𝑡 evolved. We emphasize that the approximations
used in this section are only for simplification of the analytical equations; the simulations
in Section 12.3 run as previously described.

Once all average pairwise distances have been calculated, 𝑑𝑡+1 is given by a weighted
average, where the weigths are the number of pairs sharing that distance. For instance,
the number of pairs between exposed and recovered individuals is 𝐸𝑡𝑅𝑡, while the number
of pairs within exposed individuals is 𝐸𝑡(𝐸𝑡 − 1)/2.

All distances are calculated in appendix C.1, and we find the recurrence equation

𝑑𝑡+1 = 1
𝑍𝑡

(𝑑𝑡(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 − 1)

+𝑥𝑡𝑑𝑡

(︂
1 + 2𝐵𝜇

𝑅𝑡

𝐼𝑡 + 𝐸𝑡 + 𝑅𝑡

)︂
(𝑥𝑡 − 3 + 2𝑅𝑡 + 2𝐼𝑡 + 2𝐸𝑡)

+ 2𝐵𝜇(𝐸𝑡 + 𝐼𝑡 − 𝑟𝑡)(𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝑥𝑡 − 1)) (12.1.1)

where 𝑍𝑡 = (𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑥𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑥𝑡 − 1), 𝑟𝑡 = 𝑅𝑡+1 − 𝑅𝑡 and 𝑥𝑡 = (𝐸𝑡+1 −
𝐸𝑡) + (𝐼𝑡+1 − 𝐼𝑡) + (𝑅𝑡+1 − 𝑅𝑡) .

Therefore, given the epidemic curves 𝑆𝑡, 𝐸𝑡, 𝐼𝑡 and 𝑅𝑡, respectively the Susceptible,
Exposed, Infected and Recovered at time 𝑡, we can infer the evolution of average genetic
distances. Taking the limit of continuous time between events we find the approximation,

𝑑 =
2�̇�𝑑

(︁
1 − 𝐵𝜇𝑅

(︁
2 − 3

𝑁−𝑆

)︁)︁
(𝑁 − 𝑆)(𝑁 − 1 − 𝑆) + 2𝐵𝜇

(︂
1 − 𝑅

𝑁 − 𝑆

)︂
(12.1.2)

where 𝑁 − 𝑆 = 𝐼 + 𝑅 + 𝐸 and �̇� = −(�̇� + 𝐼 + �̇�). The derivation of this limit is
described in App. C.1. Since this equation depends only on the continuous curves 𝑆(𝑡)
and 𝑅(𝑡), the initial and final compartment, it can be added to the classic SEIR model
to infer the genetic evolution, or to the SIR model, if the exposed compartment is kept
empty, meaning that all hosts are infectious. This result holds if viral evolution occurs
in the same way in every intermediate compartment and if every virus passes through all
compartments. Adding more compartments with different dynamical behavior or changing
the mutation mechanism through different compartments would change the equations
(12.1.1) and (12.1.2) but the procedure described in the begging of this section to find
𝑑𝑡+1 should remain the same.

12.1.2 Multiple initial infections
Eq.(12.1.1) considers the epidemic starting with a single infected individual. To con-

sider 𝑚 > 1 initial infections, we must include the distance among the 𝑚 different lineages.
Let D𝑡 be the average distance among all viruses at time 𝑡, 𝑑

(𝑖)
𝑡 the average distance among

the viruses of lineage 𝑖 at time 𝑡, 𝑑
(𝑖𝑗)
0 the distance between the initial viruses 𝑖 and 𝑗, and
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𝑑
(𝑖)
𝑟𝑜𝑜𝑡,𝑡 the average distance at time 𝑡 of lineage 𝑖 to the root of lineage 𝑖. Thus,

D𝑡 =
[︃

𝑚∑︁
𝑖=1

𝑑
(𝑖)
𝑡

(︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡

)︁ (︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 − 1

)︁
/2

+
𝑚−1∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

(︁
𝑑

(𝑖𝑗)
0 + 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡 + 𝑑

(𝑗)
𝑟𝑜𝑜𝑡,𝑡

)︁ (︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡

)︁ (︁
𝑅

(𝑗)
𝑡 + 𝐸

(𝑗)
𝑡 + 𝐼

(𝑗)
𝑡

)︁⎤⎦
÷
[︃(︃

𝑚∑︁
𝑖=1

(︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡

)︁)︃(︃ 𝑚∑︁
𝑖=1

(︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡

)︁
− 1

)︃
/2
]︃

(12.1.3)

where 𝑅
(𝑖)
𝑡 , 𝐸

(𝑖)
𝑡 and 𝐼

(𝑖)
𝑡 are, respectively, the number of recovered, exposed and infected

individuals of lineage 𝑖 at time 𝑡. The first sum represents the distances within each lineage
𝑖, while the double sum is due to the distance between each pair of lineages 𝑖 and 𝑗. In
this equation, we assume the 𝜇 ≪ 1 (for coronaviruses, 𝜇 lies in the range ∼ [10−5, 10−2]
per site per year[201]) so that mutations for each virus are unlikely to occur twice at the
same nucleotide.

For each lineage 𝑖, 𝑑
(𝑖)
𝑡 can be calculated from Eq.(12.1.1) or Eq.(12.1.2) and 𝑑

(𝑖𝑗)
0 must

be a given matrix. The distance 𝑑
(𝑖)
𝑟𝑜𝑜𝑡,𝑡 can be calculated similarly as Eq.(12.1.1),

𝑑
(𝑖)
𝑟𝑜𝑜𝑡,𝑡+1 = 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡 + 𝐵𝜇

𝐸
(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 + 𝑅

(𝑖)
𝑡 + 𝑥

(𝑖)
𝑡

⎛⎝𝐸
(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 − 𝑟

(𝑖)
𝑡 + 4𝑥

(𝑖)
𝑡 𝑅

(𝑖)
𝑡 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡

𝐸
(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 + 𝑅

(𝑖)
𝑡

⎞⎠
(12.1.4)

with the continuum limit

𝑑𝑟𝑜𝑜𝑡 = 𝐵𝜇

[︃
1 − 𝑅(𝑖)

𝑅(𝑖) + 𝐼(𝑖) + 𝐸(𝑖)

(︃
1 − 4𝑑𝑟𝑜𝑜𝑡(�̇�(𝑖) + 𝐼(𝑖) + �̇�(𝑖))

𝑅(𝑖) + 𝐼(𝑖) + 𝐸(𝑖)

)︃]︃
(12.1.5)

where 𝑅(𝑖), 𝐼(𝑖) and 𝐸(𝑖) are SEIR variables for lineage (𝑖). The details behind these results
are described in App. Analytical calculations.

12.2 Viral spread throughout communities
As an application of our model and computational framework, we studied the genetic

evolution of a viral spread throughout four weakly and linearly connected communities,
i.e., a network with four modules, representing different cities. The goal is to understand
how the average genetic distance between viruses in distant communities change if the
connectivity between the intermediary communities changes.

We start by generating four independent Barabasi-Albert networks, named 1, 2, 3 and
4. Then, we connect individuals from networks 𝑖 and 𝑖 + 1 with a connection probability
𝑝 in a way they form a line of communities. The Barabasi-Albert network is chosen
in order to include heterogeneity in the contact network [189]. Finally, we analyse the
average genetic distance between viruses from cities 1 and 4 for different values of 𝑝. The
epidemic starts with a single infected individual in city 1 and spreads through the entire
network.
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Although in our model we always consider that individuals acquire perfect cross-
immunity against all strains after being infected the cross-immunity could in principle
be lost if a new infecting virus were too different from the original infection. Thus, if
the distance between viruses from cities 1 and 4 is large, an infected individual from city
4 that travels to city 1 might reinfect an already recovered individual. Although our
simulations do not include this possibility, this is an interesting way to investigate how
the risk of reinfection changes due to changes in the network topology.

12.3 Results and discussion

12.3.1 Single initial infection
We ran our model for random (Erdos-Renyi) and scalefree (Barabasi-Albert) networks

and calculated the average genetic distance. We used networks of 200, 500, 1000 and 4000
nodes, and average degree 𝐷 of 100 nodes, which was the same for all simulations. In the
range of parameters we have used, changing the average degree has two main consequences.
First, for large values (𝐷 ≫ 𝑅0), the deviations around the mean of many simulations
decreases; and secondly, once the probability of infection is proportional to 1/𝐷, increasing
𝐷 delays the peak of infection. We note that the greater the number of connections, the
greater the number of attempts to infect neighbors within a single iteration. Thus, we
have chosen a value of 𝐷 that produces reasonably small deviations around the mean
and, at the same time, enables fast computation. Changing D in the interval 50 to 200
resulted in no qualitative changes. The infection starts with a single infected individual
chosen at random and evolves according to the description in section 10.3. Fig.12.1
shows comparisons between the simulated distance and the average distance calculated
from Eq.(12.1.1) and Eq.(12.1.2). Each subfigure contains two different simulations and
the mean-field solution for that respective set of parameters. We see that Eq.(12.1.2)
approaches Eq.(12.1.1) only for Erdos-Renyi networks, since only this topology mimics
the well-mixed hypothesis considered in mean-field models. Because each genetic evolution
curve is calculated from the corresponding epidemic curves, we cannot average over many
simulations, thus the error bars are simply the standard deviation of the distribution of
distances among all viruses that appeared at that specific simulation time step. Another
important feature of this analytical formulation is that, once it is an average description,
it does not capture the random appearance or extinction of viral lineages, which can
introduce important deviations from our analytical description.

12.3.2 Multiple initial infections
Fig.12.2 shows the evolution of epidemic in two different cities (non-connected net-

works of random and scalefree types), each one starting its infection with a single infected
individual chosen at random. The evolution in each city is calculated with Eq.(12.1.1)
(pink curves), while the distance between cities 1 and 2 is 𝑑

(1,2)
𝑡 = 𝑑

(1,2)
0 + 𝑑

(1)
𝑟𝑜𝑜𝑡,𝑡 + 𝑑

(2)
𝑟𝑜𝑜𝑡,𝑡,

where 𝑑
(𝑖)
𝑟𝑜𝑜𝑡,𝑡 is calculated with Eq.(12.1.4) (red curve) and the total average distance

D𝑡 (green curve) is given by Eq.(12.1.3). The initial distance between the viruses that
infected each city is 𝑑

(1,2)
0 = 0 in panels (a) and (b), and 𝑑

(1,2)
0 = 5 in panels (c) and (d).
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Figure 12.1: Evolution of average genetic distance. Blue lines and dots are, respec-
tively, analytical (Eq.(12.1.1)) and simulation results for different simulations. Different
shades of blue correspond to different simulations for the same set of parameters. The
red line shows the result of mean-field Eq.(12.1.2). Error bars are standard deviation of
the distance distribution in each simulation at each time.
Source: Figure from Marquioni and de Aguiar, 2021 [190].
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Figure 12.2: Evolution of average genetic distance in two isolated cities (sizes
indicated in the panels). In (a) and (b) the initial viruses were identical and in (c)
and (d) they differed by 5 nucleotides. Lines show the average distance within each city
(pink), between cities (red) and total average distance (green).
Source: Figure from Marquioni and de Aguiar, 2021 [190].
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12.3.3 The COVID-19 epidemic in China
Eq.(12.1.1) describes the evolution of average genetic distance between viruses in a

single community and depends only on the epidemic curves. It might, therefore, be used
to estimate the genetic evolution in real cases. The beginning of COVID-19 epidemic
in China is a suitable example, considering the existence of a single patient zero. In any
other country, the epidemic may have started with more than one individual, which would
require the difficult task of tracking the lineages. The same applies to secondary waves
of infection in China.

We obtained Chinese data from the Wolfram Data Repository[208], and corrected it
as in reference [144]. Because of the existence of undetected cases, we estimated the
real number of cases considering references [144, 209]. Because the number of exposed
individuals is not directly available we choose to consider the simpler SIR model in this
case. Notwithstanding, because the cases notification started only in January while the
epidemic started in December, we extrapolated the data to previous dates, in order to
calculate the genetic evolution since patient zero, as we have made in Fig.12.1. All these
data corrections and considerations are described in the supporting information.

To compare the result of Eq.(12.1.1) with the real genetic evolution, we used carefully
selected 55 real genomes sequenced and collected in China, also available in the Wolfram
Data Repository[210]. The Hamming distance between each pair of genomes was obtained
by first aligning every two genomes with the Needleman-Wunsch algorithm with score
matrix +1 for match and −1 for mismatch[211]. Then, we considered the Hamming
distance between a given pair of genomes as the number of mismatches that are not
indels, i.e., we considered only nucleotide substitutions. The algorithm to estimate the
distance evolution is explained in App. C.1, as we also detail the informations of the used
genetic data.

Fig.12.3 shows the result obtained from Eq.(12.1.1) (brown line) and the estimated
genetic evolution (blue dots). The interval around the brown line is an error of ±10%
on the product 𝜇𝐵, which is the only parameter in the equation (12.1.1). Despite all
corrections to the epidemic data and the small number of real genomes we used to infer the
real genetic evolution, except for a few points, all the inferred average genetic distances
between RNA sequences lie in the predicted interval given by our theoretical model.
Because the epidemic in China was readily contained, the average distance 𝑑𝑡 saturated.

12.3.4 Communities and reinfection
In this section, we consider the spread of the epidemic through four communities,

representing cities, connected linearly as in Fig.12.4. The connections within each network
are of Barabasi-Albert type, with 1000 nodes and average degree 100 (following the same
considerations on average degree already mentioned). Every node from network 𝑖 can
be connected to a node in netowrk 𝑖 + 1 with connection probability 𝑝. Once 𝑝 is small
(ranging from 0.0005 to 0.0035) the degree distribution is not considerably distorted from
a scale-free one. Fig.12.4 shows an example of the contact network. From left to right, we
number the communities, or cities, from 1 to 4. The epidemic starts with a single infection
in city 1 and spread through the entire network. Fig.12.4 also shows the Infection curves
obtained from a simulation. The infection peak delay from one city to other is responsible
for the plateau-type curve of total infections.

To analyse the genetic evolution in this system we simulated the dynamic until the epi-
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Figure 12.3: The genetic evolution of SARS-CoV-2 in China. Blue dots are the
genetic distance among SARS-CoV-2 inferred from data collected in China between
12/23/2019 and 03/24/2020. The error bars are standard deviation of pairwise distance
propagated through the equations. The brown line shows the genetic distance estimated
with Eq.(12.1.1) and the Chinese epidemic data. The interval around the brown curve is a
±10% error interval on the value 𝐵𝜇, which we considered to be 𝐵𝜇 = 29900×0.001/365.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

demic was over and calculated the Hamming distance between every pair of final genomes
𝛼 and 𝛽, constructing the distance matrix 𝑑𝛼𝛽 (Fig.12.5). Viruses are ordered according
to their position in the line, i.e., first the genomes from city 1, then those from the city
2, and so on. We calculated the average distances 𝐷𝑖−𝑗 between the final genomes from
cities 𝑖 and 𝑗 and compared with 𝐷𝑖−𝑖, the average distance within city 𝑖.

As a null model, we run the epidemic over a single Barabasi-Albert network wih the
total size of the 4 cities. City 𝑖, in this case, means the i-th quarter of the infected nodes.
We plot the results of the null model as 𝑝 = 0 in Fig.12.6 and Fig.12.7 for comparison.
The single network behaves very differently from the four module network, not showing
the same interesting results we find for the communities.

Fig.12.6 shows the ratio 𝐷4−4/𝐷4−1 as a function of the connection probability 𝑝. The
results are averages over 20 different simulations for 7 different values of 𝑝. When 𝑝 is
small, 𝐷4−4/𝐷4−1 < 1, meaning that the viruses from city 4 are, in average, closer to each
other than they are to the viruses from city 1. When 𝑝 increases, the ratio 𝐷4−4/𝐷4−1
approaches 1, indicating that the viruses from city 4 are so close to each other as they
are to viruses from city 1.
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Figure 12.4: Contact network of four communities on a line and infection curves.
Communities are Barabasi-Albert networks with 1000 nodes. We have kept the average
degree constant and equal to 100 in all simulations. The infection starts with a single
infected individual in the first community (red node indicated with the red arrow). The
epidemic parameters are in Table 10.1.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

In order to understand the origin of this effect we analyse the infection trees in each
case (Fig.12.6, left). Each node in the trees represents a recovered individual and is
connected upwards with whoever infected it. Colors represent cities and it is possible
to count how many initial infections each city had along the epidemic, i.e., how many
lineages has infected each city. When 𝑝 is small, very few lineages were responsible for
infecting city 4 but for higher values of 𝑝, this number increases. This is expected,
since more connected communities should have more infection gates. This result is a
consequence of the founder effect, i.e., only a few individuals, “the founders", give rise to
a new population in the new location[212, 213]. However, the system passes through a
non-trivial bistable point. When 𝑝 = 0.0015, the values of 𝐷4−4/𝐷4−1 accumulate around
two different values, one above 1 and another below 1. In this case the average is not
a good descriptor of the actual system behaviour and there is a competition between
different lineages infecting city 4. In simulations where 𝐷4−4/𝐷4−1 > 1, many lineages
were successful in infecting the city 4, whereas when 𝐷4−4/𝐷4−1 < 1, only a few did so
successfully.

Fig.12.7 shows the values 𝐷4−4 and 𝐷4−1 obtained in each simulation. The average
over simulations of the average distance within the forth city 𝐷4−4 (highlighted blue
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Figure 12.5: Hamming distance between pairs of viruses. The distance matrix is
sorted by the city. Diagonal blocks show the distance between the viruses from a single
city, while the non-diagonal blocks are the distances between the viruses from different
cities.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

circles) does not change considerably with 𝑝 (around 𝐷 ≈ 21 nucleotides). Under a
neutral evolutionary perspective, viruses will belong to different strains if they differ by
more than 𝐺 nucleotides, where 𝐺 is a parameter whose value depends on the virus [214,
118]. If 𝐷 > 𝐺, viruses in city 4 would belong, on average, to different strains when
compared to city 1. As an example, if 𝐺 = 26 new strains would arise, on average, in city
4 for 0 < 𝑝 ≤ 0.0010, allowing a recovered individual from city 1 to be reinfected by an
infected individual from city 4 if they are put in contact with each other (by travelling,
for instance). Therefore, there is an increased risk of reinfection due to low connectivity
among communities. In this sense, pandemics are more likely to originate new strains
than epidemics, as they affect far more distant (therefore less connected) communities.
One confirmed case of reinfection by COVID-19 in Hong-Kong had the virus differing by
24 nucleotides from the first infecting virus[215]. This distance matches a value for 𝐺 for
which the network connectivity would strongly influence the rise of reinfections.



12.4. CONCLUSIONS 161

a)

b)

a)

b)

1 2 3 4Color Code:

Figure 12.6: Ratio between the average distance in city 4 and the average
distance between cities 1 and 4. Right panels show infection trees for the simulations
highlighted with red circles. Open circles show results for individual simulations, the star
is the average over 20 simulations and error bars are standard deviations. 𝑝 = 0 represents
a single Barabasi-Albert network with 4000 nodes (see text). Nodes in infection trees
represent infected individuals, colored according to its city. City 4 (cyan) in panel (a),
where 𝐷4−4/𝐷4−1 < 1, was almost entirely infected by a single viral lineage, while in
panel (b) where 𝐷4−4/𝐷4−1 > 1, it was infected by many different viral lineages.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

12.4 Conclusions
We have introduced an individual based model to describe the genetic evolution of

a RNA-virus epidemic spreading . We used the SEIR model with four compartments
on networks, but the evolutionary dynamics can be implemented in more compartmen-
talized epidemic models. We provided an analytical description that can be generalized
for models with more compartments. An important result of this study is the mean-field
approximation, Eq.(12.1.2), for the evolution of the average genetic distance, which can
be added directly to the mean-field SIR or SEIR models.

Our analytical description of the average genetic distance between viruses is neutral
and depends only on the epidemic curves. This allows us to project the evolutionary
scenario without using the actual genome sequences. Deviations from these predictions
in genetic data could reveal the strength of selection or network effects. We compared
our prediction using only fifty complete genomes sequenced and collected in China and
found good agreement.

We have also analysed the genetic evolution of the epidemic when it spreads over dif-
ferent communities. By changing the connection probability 𝑝 between 4 linearly arranged
communities we investigated how different the viruses infecting city 4 would be from their
ancestors in city 1. Our simulations showed that when 𝑝 is sufficiently small, the genetic
difference between these viruses can be quite large, spanning 30 loci. This could allow an
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Figure 12.7: Average genetic distances within cities 1 and 4. Open blue circles are
average distance between the viruses of city 4 from a single simulation, and the filled blue
circle is average of these values. Light red stars are average distances between viruses from
cities 1 and 4 and the dark red star is the average of these values. We ran 20 simulations
for each value of connection probability.
Source: Figure from Marquioni and de Aguiar, 2021 [190].

infected individual from city 4 to reinfect a recovered individual from city 1. This is a
consequence of the founder’s effect, which is stronger if 𝑝 is small as it decreases the num-
ber of infection gates of a community. Therefore, we expect increased risk of reinfection
from contacts between travelling individuals living in distant territories.

Although the computational framework we described for the viral evolution is neutral,
it can be adapted to including other evolutionary aspects, such as differential fitness for
mutations in certain genome regions or loss of cross-immunity. These and other features
are important topics to be added and studied in future works.
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Chapter 13

This part in a nutshell

The COVID-19 pandemic highlighted on a global scale how the spread of a new
pathogen is a real danger to human life and not only a science fiction plot of a book,
movie, or TV show. In 2014, Katherine F. Smith et. al. analyzed infectious disease out-
breaks from 1980 to 2013, counting more than 12000 outbreaks of more than 200 different
human diseases, having affected millions of people [216]. But it was the COVID-19 that
brought this dramatic reality to the mainstream. Global warming, rapid human growth
and the invasion of natural environments share the responsibility for spillover events and
the consequent spread of new zoonoses [217, 218]. The increase of epidemiological surveil-
lance seems to be needed more than ever.

Biological evolution cannot be stopped and new epidemics caused by unseen pathogens
are going to be faced. The understanding of how societal dynamics, people’s behaviors
and responses, the structure of human communities such as villages, cities and coun-
tries, can shape pathogen diversity and change the spread routes of infections is vital
to implement any future control strategy. The optimization of mitigation strategies and
non-pharmacological measures (which are necessary in the absence of vaccines and treat-
ments) highly depends on how individuals’ lives are connected to each other. Denser
populations can face a higher transmission rate of airborne diseases, for instance, than
not-so-dense communities [219].

In the model we developed, a population is described by the nodes of a network, which
represents their mutual contact. Individuals are divided in compartments regarding their
epidemiological state: susceptible (S), exposed (E), infected (I) and recovered (R). This is
an individual-based version of the mean-field SEIR model. Contact heterogeneity is easily
modeled with different network topologies. Although harder to treat it mathematically
than its deterministic version, this stochastic epidemic model is suitable for evolutionary
studies. Since we can track each individual’s state, we can model the pathogen itself, to
which we considered a binary string as a proxy for its genetic material.

As quarantine regimes were required to slow down the spread of COVID-19, we studied
its effects in a scale-free network as a function of its intensity, duration and starting day.
Due to the stochastic nature of the system, it is possible to observe different outcomes
with different probabilities for each realization, which can be successful or not. Success
in this analysis regards the peak of the infected curve, which policies aim to decrease and
delay. Using COVID-19 parameters, we have identified three regions in the quarantine
parameter space, which highlights the importance of strong and long quarantine regimes
if the extinction of the epidemic is desired. On the other hand, the feasibility of imple-
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menting such intense quarantine regime is very low, given its possible economic effects.
Reducing the infection peak height, without erasing the viral spread, is therefore more
viable, relying on not so intense quarantine states, but still with long duration periods
[189].

But the viral evolution also had a significant impact in the COVID-19 pandemic,
as reinfection cases were rising, evading acquired immunity and starting new infection
waves. When the herd immunity threshold seemed to be achieved and the pandemic
seemed to be under control (due to quarantine, use of masks, and vaccines), new viral
strains were responsible for new cases and for the necessity of maintaining mitigation
strategies. Viruses are under strong selection pressures, evading the immune system,
resisting drugs, and being transmitted through different environmental conditions, and
each one of these pressures affects the viral diversity. We then asked how much the contact
network could shape the variability of a pathogen. Our case of study was the SARS-CoV-2
(the virus responsible for the COVID-19 disease), but our model is also suitable for other
RNA-viruses.

In a neutral framework, including neutral mutations at random as long as a virus
remains active in a host, we mainly found that poorly connected communities can increase
the viral diversity as a result of the founder effect, which consequently increases the risk
of the emergence of new strains and thus of reinfection cases. Our model also suggests
a theory for connecting viral diversity to epidemiological quantities, like the number of
infected and recovered, and despite its simplicity, we were able to describe the viral
evolution in early cases in China (by the end of 2019 and the beginning of 2020) [190].

Albeit we did not investigate it, our model allows the study of reinfection dynamics, as
also the introduction of non-equivalent strains (with different transmission rates, lethality,
etc.). Also, the contact network could be well adjusted to real communities and to find
reliable forecast results would be a matter of a reliable choice of parameters - which is
itself a big challenge.

The model we have introduced resembles the Derrida-Higgs model, studied in the
previous part of this thesis. It does not share the feature of sexual reproduction but
uses a chain of bits to describe the genetic material (as in the one-parent model) and
we advocate here for its power to depict evolutionary processes. In spite of its hard
mathematical tractability, its possible extensions are limitless, relying on computational
power and programming techniques. Epidemiology is indisputably a necessary science
and we hope to have positively contributed to its understanding.



165

Final words

There is not so much more to be said after this intense mathematical journey. Of
course, the work is not finished yet: different routes can be taken now, new extensions of
the models discussed here, other generalizations, and analytical and numerical results can
still be investigated. The Derrida-Higgs model still lacks of complete analytical theory.
Albeit this work has formalized and characterized in detail the genetic similarity distribu-
tion, it has also evidenced how much the underlying network plays a very important and
still not well understood role. If or when this “reproduction network” could share common
features with real populations is for instance a very interesting question one could raise
on the model.

We are not posing as a question the reality of the model: it is indeed not real, and I
am always trying to be careful enough to say that the model “mimics” species formation,
instead of saying it is a model of species formation. The mechanisms of genetics can be
mapped onto binary chains, but the converse is not true. Not every binary chain dynamics
displays all the intricate rules that give origin the complexity of life – nor even I believe
all these rules are already known. Moreover, the Derrida-Higgs model does not even
distinguish between genes and nucleotides or even aminoacids: the real biological scale is
not defined, it simply models at a level in which information can be transmitted through
reproduction. It is therefore unfair – and maybe meaningless – to ask whether the model
as a whole is real or not. Nonetheless, it also does not mean it does not show important
results and insights that can be applied to the interpretation of real evolutionary systems.
We shall never forget George Box’s line “All models are wrong, but some are useful”
(1979) [220], and I argue that the Derrida-Higgs model can be a useful one. However, the
comparison of theory and data is still a task to be done.

We focused here on the mathematical framework only, although having (hopefully)
grounded the models we dealt with on evolutionary biology. There are questions I would
still like to delve into, concerning the model, especially the role of generation overlap
to the species formation and the distinction between pre and post-zygotic reproductive
barriers, but these are left for future work. With some luck, we completed, in this text,
the first theory of the Derrida-Higgs process.

In what concerns our epidemiology investigation, we have introduced a computational
tool that led to some theoretical results on the spread of RNA viruses throughout contact
networks. To frame an outbreak over networks instead of considering mean-field models
is not a new idea, but to have access to the genome sequences during the spread and to
analyze the viral diversity over its many possible configurations is the novelty we address
here.

We have of course not exhausted the possibilities of our epidemic framework, and we
kindly invite the reader to pursue further generalizations on the model – which is not
hard to do! Our study on quarantines quantifies important strategies for the mitigation
of an epidemic, as the study on the viral diversity on modular networks stresses the im-
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portance of taking the connectivity of different communities into account when managing
epidemiological policies. But what someone could conclude after including differential
fitness among strains or the wane of immunity over time is also of great importance to
epidemiology.

My hope is that the reader could get at least familiarized with different concepts in
biomathematics: population dynamics, evolutionary biology, genetics, ecology, stochastic
processes, network theory, numerical simulations, agent-based modeling, epidemiology,
and any other hidden layer of knowledge someone can find. Apart from the contribution
to science, specifically to biomathematics, as the sum up of my research over the last
five years, I hope this text can also be my contribution to education in this beautiful
interdisciplinary field.

With no more to add, I acknowledge the reader for your patience and invaluable curiosity.
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Appendix A

On the Derrida-Higgs model

A.1 The expected similarity value
The expression for the expected similarity value can be simplified if we introduce some

matrices. Let us start by analyzing each term of the expression for the expected value

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑁2
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we can analyze each one of them. Defining the matrices (A𝑛)𝑖𝑗 = 𝐴𝑖𝑗
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𝑡 ,

(i)

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑝′

1

∑︁
𝑝′

2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝑞
𝑝1,𝑝′

1
𝑡 =

∑︁
𝑝1

∑︁
𝑝′

1

𝑞
𝑝1,𝑝′

1
𝑡

𝑁𝑝1𝑁𝑝′
1

(︃∑︁
𝑝2

𝐴𝑝1𝑝2

)︃⎛⎝∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2

⎞⎠
=
∑︁
𝑝1

∑︁
𝑝′

1

𝑞
𝑝1,𝑝′

1
𝑡 =

∑︁
𝑖,𝑗

(Q𝑡)𝑖𝑗 ; (A.1.1)

(ii)

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑝′

1

∑︁
𝑝′

2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝑞
𝑝1,𝑝′

2
𝑡 =

∑︁
𝑝1

∑︁
𝑝′

1

∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2
𝑞

𝑝1,𝑝′
2

𝑡

𝑁𝑝1𝑁𝑝′
1

(︃∑︁
𝑝2

𝐴𝑝1𝑝2

)︃

=
∑︁
𝑝1

∑︁
𝑝′

1

⎛⎝∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2

𝑁𝑝′
1

𝑞
𝑝1,𝑝′

2
𝑡

⎞⎠ =
∑︁
𝑖,𝑗

(A𝑛 × Q𝑡)𝑖𝑗 ; (A.1.2)
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(iii)

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑝′

1

∑︁
𝑝′

2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝑞
𝑝2,𝑝′

1
𝑡 =

∑︁
𝑝1

∑︁
𝑝′

1

∑︁
𝑝2

𝐴𝑝1𝑝2𝑞
𝑝2,𝑝′

1
𝑡

𝑁𝑝1𝑁𝑝′
1

⎛⎝∑︁
𝑝′

2

𝐴𝑝′
1𝑝′

2

⎞⎠
=
∑︁
𝑝1

∑︁
𝑝′

1

(︃∑︁
𝑝2

𝐴𝑝1𝑝2

𝑁𝑝1

𝑞
𝑝2,𝑝′

1
𝑡

)︃
=
∑︁
𝑖,𝑗

(︁
Q𝑡 × A𝑇

𝑛

)︁
𝑖𝑗

;

(A.1.3)

(iv)

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑝′

1

∑︁
𝑝′

2

𝐴𝑝1𝑝2𝐴𝑝′
1𝑝′

2

𝑁𝑝1𝑁𝑝′
1

𝑞
𝑝2,𝑝′

2
𝑡 =

∑︁
𝑝1

∑︁
𝑝′

2

∑︁
𝑝′

1

(︃∑︁
𝑝2

𝐴𝑝1𝑝2

𝑁𝑝1

𝑞
𝑝2,𝑝′

2
𝑡

)︃
𝐴𝑝′

1𝑝′
2

𝑁𝑝′
1

=
∑︁
𝑝1

∑︁
𝑝′

1

⎛⎝∑︁
𝑝′

2

(A𝑛 × Q𝑡)𝑝1𝑝′
2
(A𝑇

𝑛 )𝑝′
2𝑝′

1

⎞⎠
=
∑︁
𝑖,𝑗

(︁
A𝑛 × Q𝑡 × A𝑇

𝑛

)︁
𝑖𝑗

. (A.1.4)

Thus,

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

4𝑁2

∑︁
𝑖,𝑗

(︁
Q𝑡 + A𝑛 × Q𝑡 + Q𝑡 × A𝑇

𝑛 + A𝑛 × Q𝑡 × A𝑇
𝑛

)︁
𝑖𝑗

. (A.1.5)

Now, let I𝑁 be the identity matrix of order 𝑁 and defining the matrix C ≡ (I𝑁 + A𝑛)/2,
one can write

E(𝑞𝛼𝛽
𝑡+1) = 𝑒−4𝜇

𝑁2

∑︁
𝑖,𝑗

(︁
CQ𝑡C𝑇

)︁
𝑖𝑗

. (A.1.6)

A simple property of the defined matrices A𝑛 and C is that they are both stochastic
to the right. To prove it, one needs to notice that each row 𝑖 of A𝑛 is normalized by the
degree of node 𝑖,

𝑁∑︁
𝑗=1

(A𝑛)𝑖𝑗 =
𝑁∑︁

𝑗=1

𝐴𝑖𝑗

𝑁𝑖

= 1
𝑁𝑖

𝑁∑︁
𝑗=1

𝐴𝑖,𝑗 = 1

and now for C,

𝑁∑︁
𝑗=1

(C𝑛)𝑖𝑗 =
𝑁∑︁

𝑗=1

1
2(I𝑁 + A𝑛)𝑖𝑗 = 1

2

⎛⎝ 𝑁∑︁
𝑗=1

(I𝑁)𝑖𝑗 +
𝑁∑︁

𝑗=1
(A𝑛)𝑖𝑗

⎞⎠ = 1.

Although interesting, this notation does not help to better understand the process,
once the operation CQ𝑡C𝑇 is followed by a sum over the whole matrix in order to find an
average value, in such a way that these matrices do not define an evolution that could be
studied, for instance, as a Markov chain.
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A.2 Sums on three and four indexes
A common step during the calculation of the moments of the similarity distribution

of the Derrida-Higgs model is the sum over many indexes. The problem concerning these
sums is that some combinations of indexes may have different outcomes, therefore it is
important to organize these sums over all these possible combinations, and that is what
we show here.

∑︁
𝑝1,𝑝′

1,𝑝′
2

𝑓(𝑝1, 𝑝′
1, 𝑝′

2) =

∑︁
𝑝1

⎡⎣ ∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝′
1=𝑝1

∑︁
𝑝′

2 ̸=𝑝1

+
∑︁

𝑝′
1 ̸=𝑝1

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝′
1 ̸=𝑝1

∑︁
𝑝′

2=𝑝′
1

+
∑︁

𝑝′
1 ̸=𝑝1

∑︁
𝑝′

2 ̸=𝑝1,𝑝′
1

⎤⎦ 𝑓(𝑝1, 𝑝′
1, 𝑝′

2)

(A.2.1)

and

∑︁
𝑝1,𝑝2,𝑝′

1,𝑝′
2

𝑓(𝑝1, 𝑝2, 𝑝′
1, 𝑝′

2) =

∑︁
𝑝1

⎡⎣ ∑︁
𝑝2=𝑝1

∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝2=𝑝1

∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2 ̸=𝑝1

+
∑︁

𝑝2=𝑝1

∑︁
𝑝′

1 ̸=𝑝1

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝2=𝑝1

∑︁
𝑝′

1 ̸=𝑝1

∑︁
𝑝′

2=𝑝′
1

+
∑︁

𝑝2=𝑝1

∑︁
𝑝′

1 ̸=𝑝1

∑︁
𝑝′

2 ̸=𝑝1,𝑝′
1

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2=𝑝2

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝1

∑︁
𝑝′

2 ̸=𝑝1,𝑝2

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝2

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝2

∑︁
𝑝′

2=𝑝2

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1=𝑝2

∑︁
𝑝′

2 ̸=𝑝1,𝑝2

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2=𝑝1

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2=𝑝2

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2=𝑝′
1

+
∑︁

𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2 ̸=𝑝1,𝑝2,𝑝′
1

⎤⎦ 𝑓(𝑝1, 𝑝2, 𝑝′
1, 𝑝′

2).

(A.2.2)

A simple check on these expansions is to consider the 𝑓 functions to be 𝑓 = 1 and perform
the sums, term by term

∑︁
𝑝1,𝑝′

1,𝑝′
2

1 = 𝑁3

= 𝑁 [1 + (𝑁 − 1) + (𝑁 − 1) + (𝑁 − 1) + (𝑁 − 1)(𝑁 − 2)] = 𝑁3 , q.e.d.



A.3. POPULATION AVERAGES 188

and

∑︁
𝑝1,𝑝2,𝑝′

1,𝑝′
2

1 = 𝑁4

= 𝑁 [1 + (𝑁 − 1) + (𝑁 − 1) + (𝑁 − 1)
+ (𝑁 − 1)(𝑁 − 2) + (𝑁 − 1) + (𝑁 − 1) + (𝑁 − 1)(𝑁 − 2)
+ (𝑁 − 1) + (𝑁 − 1) + (𝑁 − 1)(𝑁 − 2) + (𝑁 − 1)(𝑁 − 2)
+ (𝑁 − 1)(𝑁 − 2) + (𝑁 − 1)(𝑁 − 2) + (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)] = 𝑁4 , q.e.d.

A.3 Population averages
Many population averages have been identified during the calculations. We summarize

them here.

⟨𝑞𝑖𝑗
𝑡 ⟩𝑃 = 1

𝑁(𝑁 − 1)
∑︁
𝑝1

∑︁
𝑝′

1 ̸=𝑝1

𝑞
𝑝1𝑝′

1
𝑡 , (A.3.1)

⟨(𝑞𝑖𝑗
𝑡 )2⟩𝑃 = 1

𝑁(𝑁 − 1)
∑︁
𝑝1

∑︁
𝑝′

1 ̸=𝑝1

(𝑞𝑝1𝑝′
1

𝑡 )2, (A.3.2)

⟨𝑞𝑖𝑗
𝑡 𝑞𝑘𝑗

𝑡 ⟩𝑃 = 1
𝑁(𝑁 − 1)(𝑁 − 2)

∑︁
𝑝1

∑︁
𝑝′

1 ̸=𝑝1

∑︁
𝑝′

2 ̸=𝑝1,𝑝′
1

𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝1𝑝′
2

𝑡 , (A.3.3)

⟨𝑞𝑖𝑗
𝑡 𝑞𝑘𝑙

𝑡 ⟩𝑃 = 1
𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

∑︁
𝑝1

∑︁
𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2 ̸=𝑝1,𝑝2,𝑝′
1

𝑞
𝑝1𝑝′

1
𝑡 𝑞

𝑝2𝑝′
2

𝑡 , (A.3.4)

⟨𝑞𝑖𝑗𝑘𝑙
𝑡 ⟩𝑃 = 1

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
∑︁
𝑝1

∑︁
𝑝2 ̸=𝑝1

∑︁
𝑝′

1 ̸=𝑝1,𝑝2

∑︁
𝑝′

2 ̸=𝑝1,𝑝2,𝑝′
1

𝑞
𝑝1𝑝′

1𝑝2𝑝′
2

𝑡 . (A.3.5)

A.4 Simulations
The set of simulations behind this numerical investigation comprises 50 different runs,

up to, approximately, generation 500. In order to calculate the probability distributions
shown in figures 7.1, 7.2 and 7.7, all generations in a range 𝑡𝑖𝑛𝑖 to 𝑡𝑒𝑛𝑑 were used. 𝑡𝑖𝑛𝑖

corresponds to a chosen generation after the equilibration time. Table A.1 shows these
values for the different values of genome size 𝐵. It also shows how many speciation events
were counted over this time range and across all the simulations and the inferred parameter
𝑎 of Eq. (7.2.6). The richness in each case was calculated over all the generations in this
range.

In order to make it faster, the histograms of Fig. 7.5 were made by considering a
reduced number of generations. We calculated the autocorrelation function

𝜌𝑋(𝜏) = ⟨𝑋𝑡𝑋𝑡+𝜏 ⟩ − ⟨𝑋𝑡⟩⟨𝑋𝑡+𝜏 ⟩
𝜎𝑡𝜎𝑡+𝜏

(A.4.1)

of the number of species 𝒮 in each simulation and considered the time lag 𝜏 when it first
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Table A.1: Equilibrium intervals and other parameters. The other parameters of
this set of simulations are 𝑁 = 400, 𝜇 = 0.0025 and 𝑞𝑚𝑖𝑛 = 0.8.

Genome Size 𝐵 𝑡𝑖𝑛𝑖 𝑡𝑒𝑛𝑑 # Speciation Events 𝑎 (×10−5)
2500 100 500 9519 3.00 ± 0.04
5000 80 500 10735 3.73 ± 0.04
7500 70 470 10536 4.22 ± 0.05
∞ 80 500 11721 4.55 ± 0.05

happens that
𝜌𝒮(𝜏) < 𝜖 (A.4.2)

with 𝜖 = 1/
√

1 + 𝑡𝑒𝑛𝑑 − 𝑡𝑖𝑛𝑖. Then we sampled the distribution of abundances after every
𝜏 generations. This is a simple methodology to reduce the amount of data and still have
enough unbiased data without the need to run many different uncorrelated simulations.
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Appendix B

On the epidemics model

B.1 Recovery probability
Suppose that whenever an individual gets infected, after the onset of symptoms, it is

going to remain sick for a period of time 𝜏 , distributed according to 𝒫(𝜏). Hence, in a
simulation, this period may be chosen according to 𝒫 for every infected individual, or, at
the end of every simulation step, the individual recovers with probability 𝑟(𝑡), where 𝑡 is
the time elapsed since the onset of symptoms.

In order to calculate 𝑟(𝑡) given 𝒫 , we consider that an individual is still infected up
to time 𝑡. Then, the probability of the symptoms to continue after that time is given by

1 − 𝑟(𝑡) = 𝒫(𝜏 > 𝑡|𝜏 > 𝑡 − 1) = 𝒫(𝜏 > 𝑡, 𝜏 > 𝑡 − 1)
𝒫(𝜏 > 𝑡 − 1) = 𝒫(𝜏 > 𝑡)

𝒫(𝜏 > 𝑡 − 1) (B.1.1)

.
If we choose 𝒫 as an exponential distribution, we get

𝒫(𝜏) = 𝜆𝑒−𝜆𝜏 , (B.1.2)

which leads to
𝒫(𝜏 > 𝑠) = 𝑒−𝜆𝑠. (B.1.3)

Therefore,

1 − 𝑟(𝑡) = 𝑒−𝜆𝑡

𝑒−𝜆(𝑡−1) = 𝑒−𝜆 = 𝒫(𝜏 > 1), (B.1.4)

which is a constant, as expected due to the memoryless property of the exponential dis-
tribution function.

Notwithstanding, the mean value of 𝜏 equals 1/𝜆. Supposing 𝜆 ∼ 10 days,

1 − 𝑟(𝑡) ≈ 1 − 𝜆,

and then
𝑟(𝑡) = 𝜆, (B.1.5)
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Figure B.1: Outbreak dependence on network size and average degree. The
figure shows epidemic features for different Barabasi-Albert network parameters (network
size and average degree). In purple, the different shades are for different average degrees,
while in blue, different shades or for different network sizes. Each point is an average of
20 runs. The simulation parameters are displayed in Table 10.1. The
Source: Figure produced by the author and partially used in close correspondence with
the referees of Marquioni and de Aguiar, 2020 [189].

which is what is considered in the model.

B.2 Network size and degree
Whenever the studies we conducted includes an average degree or population size

variability, we kept these parameters fixed and equal to 𝑁 = 2000 and 𝐷 = 100, based on
a preliminary investigation, whose results (for the spread over Barabasi-Albert networks)
are shown in Fig.B.1. In purple shades, different curves have different average degree,
while in blue shades, different curves have different population size. We observe that the
population size does not significantly affect when the infection has its peak, or the infection
size (proportionally to the total population). However, when the peak of infection happens
is delayed for greater average degrees.

A reason why the infection peak time is not significantly affected by the population
size is due to its rapid (exponential) initial spread, which accounts for many nodes in the
network. Notwithstanding, it seems to be counterintuitive that the greater the average
degree, the greater is the infection peak time, because in this case, also the number of
possible infections from a single infected individual increases, then the spread seems to be
faster. But this would happen if the probability of infection would be kept the same, which
is not true, since this value is changed to keep 𝑅0 constant across different parameters.
Moreover, the more connections a node has, the slower the simulation gets.
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Therefore, we chose 𝑁 = 2000 and 𝐷 = 100 because it maintains the simulation
times feasible while keeping a proportionally large population (considering the range of
parameters we have investigated), not changing in a meaningful way general features of
the spread.
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Appendix C

On viral diversity

From Marquioni and de Aguiar (Supplemental Material), PLoS ONE, 2021 [190].

C.1 Analytical calculations
Our goal is to derive a recurrence equation for the average genetic distance, i.e., given

the distance 𝑑𝑡 at time 𝑡, we aim to calculate the distance 𝑑𝑡+1 at time 𝑡 + 1. The idea is
to calculate 𝑑𝑡+1 as a weighted average, where the weights are the number of pairs that
are distanced by a certain amount. In a SEIR model, every iteration starts with a given
number of recovered (𝑅𝑡), infected (𝐼𝑡) and exposed (𝐸𝑡) individuals. When an individual
recovers, its infecting virus stops to spread and to evolve, and we call it a final virus.
There are 𝑅𝑡 final viruses at the beginning of a given iteration. Viruses infecting Exposed
individuals can mutate during this iteration. However, viruses in Infected individuals
can either evolve and mutate in this time step or not, since their hosts might recover.
The latter become final and are counted as 𝑟𝑡. Infected individuals can also spread the
virus, which replicate before evolving or becoming final. Such offspring (𝑥𝑡) increase the
number of viruses in Exposed individuals in the next iteration, when they will be allowed
to evolve.

At the beginning of iteration 𝑡 + 1, there are (𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 − 1)/2 pairs
of viruses sharing an average distance equal to 𝑑𝑡, but along the iteration some of the
distances may increase by a certain amount to be calculated, as also new viruses may
arise. Therefore,

𝑑𝑡+1 = 1
𝑍 ′

𝑡

(︃
𝑑𝑡

(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 − 1)
2 + Increases + Offspring

)︃
, (C.1.1)

where 𝑍 ′
𝑡 is a normalization factor, which counts the total number of pairs at the end of

iteration 𝑡 + 1,
𝑍 ′

𝑡 = (𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑥𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑥𝑡 − 1)
2 . (C.1.2)

If the mutation rate is zero and no new infections occur (𝑥𝑡 = 0) the “Increases” term
and the “Offspring” term are equal to zero, and 𝑑𝑡+1 = 𝑑𝑡, as expected.
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In the following two subsections, we shall calculate the “Increases” term and the
“Offspring” term, which accounts for the evolution and for the spread, respectively.

C.1.1 Increases
Genetic distances between evolving viruses increase over time. In order to calculate

how much these distances increase we first consider that mutations occurring in the same
locus of different genomes are unlikely, as well as more than one mutation per locus on
a single genome. This approximation holds as long as the epidemic duration 𝑇 remains
sufficiently small, 𝜇𝑇 ≪ 1. Thus, after one time step, an evolving genome acquires, on
average, 𝐵𝜇 mutations. The distance between two evolving genomes will increase, on
average, by 2𝐵𝜇 nucleotides after one time step. The distance between viruses in exposed
individuals, for example, increases by 2𝐵𝜇 and because there are 𝐸𝑡(𝐸𝑡 − 1)/2 pairs of
exposed individuals, their evolution along the iteration 𝑡+1 contributes 2𝐵𝜇𝐸𝑡(𝐸𝑡 −1)/2
to the Increases term. On the other hand, the distance between viruses in an exposed and
a recovered individual, or an infected individual that recovers, is only 𝐵𝜇, because the
latter two do not evolve. There are 𝐸𝑡(𝑅𝑡 + 𝑟𝑡) pairs among these viruses, and thus their
contribution to Increases is 𝐸𝑡(𝑅𝑡 +𝑟𝑡)𝐵𝜇. We recall that the updates in our model occur
in the order “Transmission", “Attempt to Recovery" and lastly, “Genome Evolution".
Thus, if an infected individual recovers its virus does not have the chance to mutate.

Therefore, in order to compute the Increases term, we must calculate the average
increase in distance between all pairs of viruses and how many pairs of these viruses exist.
Table C.1 summarizes this information. We obtain

Increases =𝐸𝑡𝑅𝑡𝐵𝜇 + 𝐸𝑡𝑟𝑡𝐵𝜇 + (𝐼𝑡 − 𝑟𝑡)𝑟𝑡𝐵𝜇 + (𝐼𝑡 − 𝑟𝑡)𝑅𝑡𝐵𝜇 + (𝐼𝑡 − 𝑟𝑡)𝐸𝑡2𝐵𝜇

+𝐸𝑡(𝐸𝑡 − 1)
2 2𝐵𝜇 + (𝐼𝑡 − 𝑟𝑡)(𝐼𝑡 − 𝑟𝑡 − 1)

2 2𝐵𝜇. (C.1.3)

Table C.1: Increases in average distance and number of pairs of viruses. From
Marquioni and de Aguiar, (Supplemental Material), 2021 [190].

Viruses Number of Pairs Average Distance Increase
(𝐸𝑡) and (𝑅𝑡) 𝐸𝑡𝑅𝑡 𝐵𝜇
(𝐸𝑡) and (𝑟𝑡) 𝐸𝑡𝑟𝑡 𝐵𝜇

(𝐼𝑡 − 𝑟𝑡) and (𝑟𝑡) (𝐼𝑡 − 𝑟𝑡)𝑟𝑡 𝐵𝜇
(𝐼𝑡 − 𝑟𝑡) and (𝑅𝑡) (𝐼𝑡 − 𝑟𝑡)𝑅𝑡 𝐵𝜇
(𝐼𝑡 − 𝑟𝑡) and (𝐸𝑡) (𝐼𝑡 − 𝑟𝑡)𝐸𝑡 2𝐵𝜇

(𝐸𝑡) and (𝐸𝑡) 𝐸𝑡(𝐸𝑡 − 1)/2 2𝐵𝜇
(𝐼𝑡 − 𝑟𝑡) and (𝐼𝑡 − 𝑟𝑡) (𝐼𝑡 − 𝑟𝑡)(𝐼𝑡 − 𝑟𝑡 − 1)/2 2𝐵𝜇

(𝑅𝑡) and (𝑅𝑡) 𝑅𝑡(𝑅𝑡 − 1)/2 0
(𝑟𝑡) and (𝑟𝑡) 𝑟𝑡(𝑟𝑡 − 1)/2 0
(𝑟𝑡) and (𝑅𝑡) 𝑟𝑡𝑅𝑡 0
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C.1.2 Offspring
The contribution of the new infections to the average distance 𝑑𝑡+1, the Offspring term,

is more tricky. To simplify matters we will assume that an infected individual infects only
one susceptible per time step, which is a good assumption if the basic reproduction number
𝑅0 is small compared to the average duration of symptoms. Thus, 𝑥𝑡 is also the number
of individuals who infected a susceptible within the time step 𝑡 + 1, which will be called
ancestors from now on. Let 𝐷1 be the average distance between ancestors and the other
viruses at time 𝑡, and 𝐷2, the distance between the exposed and the other viruses. Note
that an ancestor may recover and, therefore, not mutate in this time step. The Offspring
term is a sum of different contributions between offspring and the other viruses in the
population, as explained in detail below.

1. Genetic distance between offspring and recovered. The number of pairs is 𝑥𝑡𝑅𝑡.
Because offspring do not evolve in the time step they appear, their average distance
is 𝐷1. Then, its contribution to the Offspring term is 𝑥𝑡𝑅𝑡𝐷1.

2. Genetic distance between offspring and exposed. The number of pairs is 𝑥𝑡𝐸𝑡. Be-
cause the exposed evolve, these pairs contribute with 𝑥𝑡𝐸𝑡(𝐷2 + 𝐵𝜇) to the Off-
spring term.

3. Genetic Distance between offspring of an infected (ancestor) that does not recover
(there are (𝐼𝑡 − 𝑟𝑡) of these individuals) and infected:

(a) The distance between an offspring and its ancestor is 𝐵𝜇, since the ancestor
evolves. There are 𝑥𝑡(𝐼𝑡 − 𝑟𝑡)/𝐼𝑡 new infections of this type, contributing with
𝑥𝑡((𝐼𝑡 − 𝑟𝑡)/𝐼𝑡)𝐵𝜇 to the distance.

(b) For each offspring there are 𝐼𝑡 − 𝑟𝑡 − 1 infected individuals that did not recover
and are not its ancestral. The distance between the offspring and these indi-
viduals is (𝐷1 + 𝐵𝜇), adding 𝑥𝑡((𝐼𝑡 − 𝑟𝑡)/𝐼𝑡)(𝐼𝑡 − 𝑟𝑡 − 1)(𝐷1 + 𝐵𝜇) to the
Offspring term.

(c) The distance between the offspring and individuals that recover is 𝐷1, because
neither of these viruses evolve in this time step. There are 𝑥𝑡((𝐼𝑡 − 𝑟𝑡)/𝐼𝑡)𝑟𝑡

pairs of these viruses, adding 𝑥𝑡((𝐼𝑡 − 𝑟𝑡)/𝐼𝑡)𝑟𝑡𝐷1 to the Offspring term.

4. Genetic distance between offspring of infected (ancestor) that recover in this iteration
(there are 𝑟𝑡 of these individuals) and infected:

(a) The distance between offspring and its ancestor is zero, because none of them
evolve.

(b) The distance between the offspring and the other viruses of type is 𝐷1. There
are 𝑥𝑡𝑟𝑡/𝐼𝑡 new infections of this type, contributing (𝑥𝑡𝑟𝑡/𝐼𝑡)(𝑟𝑡 − 1)𝐷1 to
the Offspring term.

(c) The distance between offspring and the other infected individuals is (𝑥𝑡𝑟𝑡/𝐼𝑡)(𝐼𝑡−
𝑟𝑡)(𝐷1 + 𝐵𝜇), since the other infected viruses evolve..

5. Genetic distance between offspring. Because each ancestor gives rise to only one new
infection, this distance equals 𝐷1, and once there are 𝑥𝑡(𝑥𝑡 − 1)/2 pairs of offspring,
this contribution is (𝑥𝑡(𝑥𝑡 − 1)/2)𝐷1.
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6. By summing everything up, we get

Offspring = 𝑥𝑡𝑅𝑡𝐷1 + 𝑥𝑡𝐸𝑡(𝐷2 + 𝐵𝜇)

+ 𝑥
(𝐼𝑡 − 𝑟𝑡)

𝐼𝑡

𝐵𝜇 + 𝑥𝑡
(𝐼𝑡 − 𝑟𝑡)

𝐼𝑡

(𝐼𝑡 − 𝑟𝑡 − 1)(𝐷1 + 𝐵𝜇) + 𝑥𝑡
(𝐼𝑡 − 𝑟𝑡)

𝐼𝑡

𝑟𝑡𝐷1

+ 𝑥𝑡
𝑟𝑡

𝐼𝑡

0 + 𝑥𝑡
𝑟𝑡

𝐼𝑡

(𝑟𝑡 − 1)𝐷1 + 𝑥𝑡
𝑟𝑡

𝐼𝑡

(𝐼𝑡 − 𝑟𝑡)(𝐷1 + 𝐵𝜇)

+ 𝑥𝑡(𝑥𝑡 − 1)
2 𝐷1. (C.1.4)

Putting all these terms together and defining 𝑍𝑡 ≡ 2𝑍 ′
𝑡 we obtain

𝑑𝑡+1 = 1
𝑍𝑡

(𝑑𝑡(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡)(𝑅𝑡 + 𝐸𝑡 + 𝐼𝑡 − 1)

+𝑥𝑡𝐷1(𝑥𝑡 − 3 + 2𝑅𝑡 + 2𝐼𝑡 + 2𝐸𝑡𝐷2/𝐷1)
+ 2𝐵𝜇(𝐸𝑡 + 𝐼𝑡 − 𝑟𝑡)(𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝑥𝑡 − 1)) . (C.1.5)

The reason for assigning the distance 𝐷1 between infected and other viruses, instead
of 𝑑𝑡, is that infected individuals represent only a fraction of the viruses in the population,
and the distance between them and other viruses grows over time, therefore being above
the average 𝑑𝑡. The same holds for the exposed individuals.

Although we were not able to analytically find an expression for 𝐷1 and 𝐷2, we can
approximate them as follows. First we assume that 𝐷2 ≈ 𝐷1. When the epidemic begins,
all viruses are infected, so that 𝐷1 = 𝑑𝑡. However, the ratio between infected and recovered
individuals decreases to zero along the epidemic, making 𝐷1 larger than 𝑑𝑡. Thus, to first
order, it is possible to approximate 𝐷1 ≈ 𝑑𝑡(1 + 𝜖), with 𝜖 a function of the number of
recovered individuals, 𝑅𝑡/(𝐼𝑡 + 𝐸𝑡 + 𝑅𝑡) and the average number of mutations 𝐵𝜇. Our
simulations showed that the linear function 𝐷1 = 𝑑𝑡(1+2𝐵𝜇𝑅𝑡/(𝐼𝑡 +𝐸𝑡 +𝑅𝑡)) works well
(considering the parameters in Appendix A), leading to the theoretical result expressed
by Eq.(12.1.1) from the main text.

C.1.3 Continuum Limit
To achieve the continuum limit we start by substituting 𝑟𝑡 = 𝑅𝑡+1 − 𝑅𝑡 and 𝑥𝑡 =

𝐸𝑡+1 − 𝐸𝑡 + 𝐼𝑡+1 − 𝐼𝑡 + 𝑅𝑡+1 − 𝑅𝑡 in Eq.(12.1.1) from the main text and subtracting 𝑑𝑡

from both sides of this equation:

𝑑𝑡+1 − 𝑑𝑡 = 1
𝑍𝑡

{2𝑑𝑡 (𝐸𝑡+1 − 𝐸𝑡 + 𝐼𝑡+1 − 𝐼𝑡 + 𝑅𝑡+1 − 𝑅𝑡) ×

×
[︂
−1 + 𝐵𝜇

𝑅𝑡

𝐼𝑡 + 𝐸𝑡 + 𝑅𝑡

(𝑅𝑡+1 + 𝑅𝑡 + 𝐼𝑡+1 + 𝐼𝑡 + 𝐸𝑡+1 + 𝐸𝑡 − 3)
]︂

+ 2𝐵𝜇 (𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 − 𝑅𝑡+1) (𝐸𝑡+1 + 𝐼𝑡+1 + 𝑅𝑡+1 − 1)} (C.1.6)
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with

𝑍𝑡 = (𝐸𝑡+1 + 𝐼𝑡+1 + 𝑅𝑡+1)(𝐸𝑡+1 + 𝐼𝑡+1 + 𝑅𝑡+1 − 1). (C.1.7)

Then, we consider the first order approximations

𝑓𝑡 ≈ 𝑓(𝑡)
𝑓𝑡+1 ≈ 𝑓(𝑡) + 𝑓(𝑡)Δ𝑡,

and once 𝐵𝜇 in the last line of Eq.(C.1.6) is the number of mutations per time step, we
replace it by 𝐵𝜇Δ𝑡

𝑑(𝑡)Δ𝑡 = (C.1.8)
1
𝑍𝑡

{︁
2𝑑(𝑡)Δ𝑡

(︁
�̇�(𝑡) + 𝐼(𝑡) + �̇�(𝑡)

)︁
×

×
[︃
−1 + 𝐵𝜇

𝑅(𝑡)
𝐼(𝑡) + 𝐸(𝑡) + 𝑅(𝑡)

(︁
2𝑅(𝑡) + 2𝐼(𝑡) + 2𝐸(𝑡) + Δ𝑡(�̇�(𝑡) + 𝐼(𝑡) + �̇�(𝑡)) − 3

)︁]︃
+ 2𝐵Δ𝑡𝜇

(︁
𝐸(𝑡) + 𝐼(𝑡) − �̇�(𝑡)Δ(𝑡)

)︁ (︁
𝑅(𝑡) + 𝐼(𝑡) + 𝐸(𝑡) + Δ𝑡(�̇�(𝑡) + 𝐼(𝑡) + �̇�(𝑡)) − 1

)︁}︁
(C.1.9)

with

𝑍𝑡 = (𝑅(𝑡) + 𝐼(𝑡) + 𝐸(𝑡) + Δ𝑡(�̇�(𝑡) + 𝐼(𝑡) + �̇�(𝑡)))×
× (𝑅(𝑡) + 𝐼(𝑡) + 𝐸(𝑡) + Δ𝑡(�̇�(𝑡) + 𝐼(𝑡) + �̇�(𝑡)) − 1). (C.1.10)

Finally, by taking the limit Δ𝑡 → 0 we obtain the continuous time equation.

C.1.4 Multiple Infections
The average distance 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡 between viruses from a lineage and its root is calculated

using the same technique discussed above, however it is much simpler, once we only need
to calculate the average distance from a kind of virus and the root (a single virus which
does not evolve). Using the same notation, but now with a super-index to denote the
lineage, we obtain

𝑑
(𝑖)
𝑟𝑜𝑜𝑡,𝑡+1 = 1

𝑍𝑡

[︁(︁
𝑅

(𝑖)
𝑡 + 𝐸

(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡

)︁
𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡 + 𝐸

(𝑖)
𝑡 𝐵𝜇 +

(︁
𝐼

(𝑖)
𝑡 − 𝑟

(𝑖)
𝑡

)︁
𝐵𝜇 + 𝑥

(𝑖)
𝑡 𝐷

(𝑖)
1,𝑟𝑜𝑜𝑡

]︁
(C.1.11)
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with 𝑍𝑡 = (𝐸(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 +𝑅

(𝑖)
𝑡 +𝑥

(𝑖)
𝑡 ) and 𝐷

(𝑖)
1,𝑟𝑜𝑜𝑡 being the average distance between infected

and the root, which is given (similarly to 𝐷1) by

𝐷
(𝑖)
1,𝑟𝑜𝑜𝑡 = 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡

⎛⎝1 + 4𝐵𝜇
𝑅

(𝑖)
𝑡

𝐸
(𝑖)
𝑡 + 𝐼

(𝑖)
𝑡 + 𝑅

(𝑖)
𝑡

⎞⎠ .

The factor 4 is a fit from numerical investigations. The continuum limit is obtained
by subtracting 𝑑

(𝑖)
𝑟𝑜𝑜𝑡,𝑡 from both sides of Eq.(12.1.5) from the main text, applying the

continuous approximation for each epidemic curve and taking the limit Δ𝑡 → 0.

C.2 Real genetic evolution algorithm
In order to estimate the real (from genetic data) genetic evolution, we used 55 com-

plete genome sequences collected in China[210]. First, these sequences were ordered and
numbered by its collection date and a matrix of genetic distances 𝑑𝑖𝑗 between genomes 𝑖
and 𝑗 has been constructed. Each pair of sequences were alligned with the Needleman-
Wunsch algorithm, with score +1 for match and −1 for mismatch[211]. Then, the distance
between two genomes was computed counting the number of substitutions between the
sequences, neglecting indels.

We defined a time window 𝜏𝑊 = 14 = 𝜏0 days. Thus, every genome collected within 𝜏𝑊

are considered infected, and the genomes collected before this time window are considered
recovered. Now, we calculate the average distance among the infected 𝑑𝐼,𝑡, recovered 𝑑𝑅,𝑡

and among infected and recovered 𝑑𝐼𝑅,𝑡 at the time 𝑡. Fig.C.1 shows an example of a
distance matrix with a specific time window. Finally, the average distance at time 𝑡 can
be computed as

𝑑𝑡 = 𝑑𝐼,𝑡𝐼𝑡(𝐼𝑡 − 1) + 2𝑑𝐼𝑅,𝑡𝐼𝑡𝑅𝑡 + 𝑑𝑅,𝑡𝑅𝑡(𝑅𝑡 − 1)
(𝑅𝑡 + 𝐼𝑡)(𝑅𝑡 + 𝐼𝑡 − 1) (C.2.1)

where 𝐼𝑡 and 𝑅𝑡 are respectively given by 𝐼(𝑡) and 𝑅(𝑡) described evaluated in the sup-
plemental material.

With this algorithm, we obtained 20 non-overlapping sets of infected genomes. One of
these sets contained only one sequence and was not usable; a second set was too far from
all other data and was also discarded. Thus, we were able to calculate 18 points (that
appear in Fig.12.3 from the main text) with error bars given by the standard deviation
of each set of distances (between infected, recovered and between infected and recovered)
at each time 𝑡.
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Figure C.1: Example of distance matrix to illustrate the algorithm to infer the
genetic evolution. Every genome collected within a time window 𝜏𝑊 is considered to
belong to an infected individual. The red block shows distances between these viruses.
The blue block shows viruses that appeared before the present time window, whose in-
dividuals are considered to have recovered. Green blocks are distances between infected
and recovered individuals. The remaining entries are distances from viruses that have
not appeared yet at that considered time, i.e., they appeared after the considered time
window.
Source: Figure from Marquioni and de Aguiar, (Supplemental Material), 2021 [190].

C.3 The COVID-19 data from China
We got the Chinese epidemic data from the dataset “Epidemic Data for Novel Coron-

avirus COVID-19" from Wolfram data repository[208]. Unfortunately, this dataset starts
on 22 January (going up to 18 August by the date of our analysis), lacking the previous
data. Another concern is about the change in the notification protocols adopted by the
Chinese government. On 13 February, the Hubei province started to report not only the
positive laboratory tests, but also the clinically diagnosed cases as infected too, appearing
a sudden increase in infected curve[144]. We also need to correct the data by including
undetected cases.

Firstly, in order to correct the notification problem, we smoothly distribute the sud-
den increase number of cases among the previous dates. Following reference [144], the
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Infected

Recovered

Figure C.2: Chinese epidemic curves after corrections. The left chart shows the
cumulative number of infections in China. The blue curve is the reported number of cases
before the smoothness procedure of Eq.(C.3.1) and the orange curve is the result of this
procedure. The right charts are the recovered and infected curves 𝑅(𝑡) and 𝐼(𝑡).
Source: Figure from Marquioni and de Aguiar, (Supplemental Material), 2021 [190].

corrected accumulated number of cases 𝐼𝑎,𝑐(𝑡) is given by

𝐼𝑎,𝑐(𝑡) = 𝐼𝑎(𝑡) + 15133
∑︀𝑡

𝑖=22 Jan 𝐼𝑎(𝑡)∑︀13 Feb
𝑖=22 Jan 𝐼𝑎(𝑡)

(C.3.1)

for 𝑡 ∈ {22 Jan, . . . , 12 Feb}, where 𝐼𝑐(𝑡) is the accumulated number of cases at date 𝑡,
and 15133 = 𝐼𝑎(13 Feb) − 𝐼𝑎(12 Feb) is the sudden increase due to the changes in the
notification protocol.

Now, the undetected cases in China were estimated in reference [209], and also follow-
ing reference [144], we get

𝐼𝑎,𝑐′(𝑡) = 𝐼𝑎,𝑐(𝑡)
1 − 𝜃(𝑡) (C.3.2)

for the estimated total number of cases at time 𝑡, where 𝜃 is the undetected fraction,

𝜃(𝑡) =

⎧⎪⎨⎪⎩
0.86, for 𝑡 ≤ 24 Jan
𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, for 24 Jan ≤ 𝑡 ≤ 08 Feb
0.31, for 𝑡 ≥ 08 Feb

(C.3.3)

This correction is also applied to the recovered curve. However, the Wolfram data
distincts recovered 𝑅𝑒𝑐(𝑡) from deaths 𝐷𝑒𝑎(𝑡), while our theory does not differentiates
these numbers. Thus, the number of recovered individuals we must consider is

𝑅(𝑡) = 𝑅𝑒𝑐(𝑡) + 𝐷𝑒𝑎𝑑(𝑡)
1 − 𝜃(𝑡) (C.3.4)
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and the infected curve is now given as

𝐼(𝑡) = 𝐼𝑎,𝑐′(𝑡) − 𝑅(𝑡) (C.3.5)

Fig.C.2 shows the curves after these corrections. Once we do no have directly access
to exposed data, we did not consider exposed individuals, meaning, at this point, that we
are dealing with a SIR model without any prejudice to the present theory. However, bad
data is an important source of error.

Finally, we fit an exponential curve to a few initial data points of 𝐼(𝑡) and 𝑅(𝑡) and
extrapolate it to previous dates. For the 𝐼-curve, we have adjusted the exponential 𝑒𝑎(𝑡−𝑡0),
with fit parameters 𝑎 and 𝑡0, on the first 𝑛𝐼 = 10 data points and extrapolated it up to
the first case 𝑡0 days before. With this approach, we found 𝑡0 = 11 Dec, which is close
to the first case reported by WHO, 08 Dec [221]. For the 𝑅(𝑡)-curve, we have used the
first 𝑛𝑅 = 13 data points. The numbers 𝑛𝐼 and 𝑛𝑅 were chosen in order to make the
exponential extrapolation makes sense according to WHO estimates of the first case, as
also to make 𝑅(𝑡) < 𝐼(𝑡) in a plausible way.

Now, the curves 𝑅(𝑡) and 𝐼(𝑡) can be implemented in the recurrence equation and the
distance evolution can be estimated, with the first distance 𝑑0 equalling zero.
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Appendix D

Genome Data

From Marquioni and de Aguiar (Supplemental Material), PLoS ONE, 2021 [190].
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D.1 Data table 1
D.1 Table. All Chinese genome sequences. All genomes registered in Wolfram Repository “Genetic Sequences for the SARS-CoV-2
Coronavirus” with complete NucleotideStatus and human Host from China (data accessed 19/08/2020). From Marquioni and de Aguiar,
(Supplemental Material), 2021 [190].

Accession Number Collection Date Length Geographic Location Included? Justification
MN908947 26 Dec 2019* 29903 Wuhan, Hubei** Y
MN938384 10 Jan 2020 29838 Shenzen, Guangdong Y
MN975262 11 Jan 2020 29891 Wuhan, Hubei** Y
MN988668 02 Jan 2020 29881 Wuhan, Hubei** Y
MN988669 02 Jan 2020 29881 Wuhan, Hubei** Y
MN996527 30 Dec 2019 29825 Wuhan, Hubei Y
MN996528 30 Dec 2019 29891 Wuhan, Hubei Y
MN996529 30 Dec 2019 29852 Wuhan, Hubei Y
MN996530 30 Dec 2019 29854 Wuhan, Hubei Y
MN996531 30 Dec 2019 29857 Wuhan, Hubei Y
MT019529 23 Dec 2019 29899 Wuhan, Hubei Y
MT019530 30 Dec 2019 29889 Wuhan, Hubei N MT19530 to MT19532:
MT019531 30 Dec 2019 29899 Wuhan, Hubei N Might be biased with no
MT019532 30 Dec 2019 29890 Wuhan, Hubei N other informations data

(sequences from the same
researchers, collected
at the same day and with
uite the same length,
up to the date we have
made the analysis).*
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MT019533 01 Jan 2020 29883 Wuhan, Hubei Y
MT034054 03 Jan 2020 29885 Beijing Y
MT039873 20 Jan 2020 29833 Hangzhou, Zhejiang Y
MT039874 22 Jan 2020 29858 Hangzhou, Zhejiang** Y
MT049951 17 Jan 2020 29903 Kunming,† Yunnan Y
MT079843 22 Jan 2020 29915 Wuhan, Hubei** Y MT079843 to MT079854:
MT079844 22 Jan 2020 29910 Wuhan, Hubei** N Might be biased data
MT079845 22 Jan 2020 29955 Wuhan, Hubei** N (probable nosocomial
MT079846 22 Jan 2020 29903 Wuhan, Hubei** N transmission).**
MT079847 22 Jan 2020 29872 Wuhan, Hubei** N Then we have included
MT079848 22 Jan 2020 29880 Wuhan, Hubei** N only one genome.
MT079849 22 Jan 2020 29904 Wuhan, Hubei** N
MT079850 22 Jan 2020 29885 Wuhan, Hubei** N
MT079851 22 Jan 2020 30018 Wuhan, Hubei** N
MT079852 22 Jan 2020 29891 Wuhan, Hubei** N
MT079853 22 Jan 2020 29766 Wuhan, Hubei** N
MT079854 22 Jan 2020 29897 Wuhan, Hubei** N
MT093631 08 Jan 2020 29860 Beijing† N No detailed geographic

information available.
MT121215 02 Feb 2020 29945 Shanghai Y
MT123290 05 Feb 2020 29891 Guangzhou, Guangdong Y
MT123291 29 Jan 2020 29882 Guangzhou, Guangdong Y
MT123292 27 Jan 2020 29923 Guangzhou, Guangdong Y
MT123293 29 Jan 2020 29871 Guangzhou, Guangdong Y
MT135041 26 Jan 2020 29903 Beijing N MT135041 to MT135044:
MT135042 28 Jan 2020 29903 Beijing N Might be biased data
MT135043 28 Jan 2020 29903 Beijing N (the lengths are all
MT135044 28 Jan 2020 29903 Beijing Y the same). Then we

have included only
one genome.

MT226610 20 Jan 2020 29899 Kunming, Yunnan† N No detailed geographic
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information available.
MT253696 23 Jan 2020 29781 Hangzhou, Zhejiang N MT253696 to MT253710:
MT253697 23 Jan 2020 29781 Hangzhou, Zhejiang N Might be biased data
MT253698 23 Jan 2020 29781 Hangzhou, Zhejiang N (cluster of cases*;
MT253699 24 Jan 2020 29781 Hangzhou, Zhejiang N also they all have
MT253700 25 Jan 2020 29781 Hangzhou, Zhejiang N the same length).
MT253701 21 Jan 2020 29781 Hangzhou, Zhejiang N Then we have included
MT253702 21 Jan 2020 29781 Hangzhou, Zhejiang N only one genome.
MT253703 25 Jan 2020 29781 Hangzhou, Zhejiang N
MT253704 25 Jan 2020 29781 Hangzhou, Zhejiang N
MT253705 22 Jan 2020 29781 Hangzhou, Zhejiang N
MT253706 22 Jan 2020 29781 Hangzhou, Zhejiang N
MT253707 25 Jan 2020 29781 Hangzhou, Zhejiang N
MT253708 21 Jan 2020 29781 Hangzhou, Zhejiang N
MT253709 21 Jan 2020 29781 Hangzhou, Zhejiang N
MT253710 21 Jan 2020 29781 Hangzhou, Zhejiang Y
MT259226 10 Jan 2020 29868 Wuhan, Hubei Y
MT259227 26 Jan 2020 29863 Wuhan, Hubei Y
MT259228 26 Jan 2020 29861 Wuhan, Hubei Y
MT259229 26 Jan 2020 29864 Wuhan, Hubei Y
MT259230 25 Jan 2020 29866 Wuhan, Hubei Y
MT259231 25 Jan 2020 29865 Wuhan, Hubei Y
MT281577 10 Mar 2020 29903 Fujyang, Anhui Y
MT291826 30 Dec 2019 29807 Wuhan, Hubei Y
MT291827 30 Dec 2019 29858 Wuhan, Hubei Y
MT291828 30 Dec 2019 29858 Wuhan, Hubei Y
MT291829 30 Dec 2019 29774 Wuhan, Hubei Y
MT291830 30 Dec 2019 29807 Wuhan, Hubei Y
MT291831 24 Jan 2020 29872 Beijing Y
MT291832 25 Jan 2020 29828 Beijing Y
MT291833 28 Jan 2020 29821 Beijing Y
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MT291834 28 Jan 2020 29865 Beijing Y
MT291835 27 Jan 2020 29834 Beijing Y
MT291836 29 Jan 2020 29860 Beijing Y
MT407649 22 Jan 2020 29833 Hangzhou,† Zhejiang Y
MT407650 22 Jan 2020 29821 Hangzhou,† Zhejiang Y
MT407651 22 Jan 2020 29822 Hangzhou,† Zhejiang Y
MT407652 26 Jan 2020 29835 Hangzhou,† Zhejiang Y
MT407653 26 Jan 2020 29835 Hangzhou,† Zhejiang Y
MT407654 24 Mar 2020 29817 Hangzhou,† Zhejiang Y
MT407655 24 Mar 2020 29817 Hangzhou,† Zhejiang Y
MT407656 24 Mar 2020 29835 Hangzhou,† Zhejiang Y
MT407657 24 Mar 2020 29776 Hangzhou,† Zhejiang Y
MT407658 24 Mar 2020 29770 Hangzhou,† Zhejiang Y
MT407659 24 Mar 2020 29828 Hangzhou,† Zhejiang Y
MT412134 24 Feb 2020 29867 Zhengzhou, Henan† N No detailed geographic

information available.
MT446312 05 Feb 2020 29879 Guangzhou, Guangdong Y
MT510727 15 Feb 2020 29903 Meizhou, Guangdong† N MT510727 and MT510728:
MT510728 13 Feb 2020 29903 Meizhou, Guangdong† N Might be biased data

(data from familial
cluster*). There is also
no detailed geographic
information available.

MT534630 26 Jan 2020 29845 Changzhou,Jiangsu Y
MT568634 25 Feb 2020 29861 Guangzhou, Guangdong N MT568634 to MT568641:
MT568635 25 Feb 2020 29854 Guangzhou, Guangdong N data from a work
MT568636 27 Feb 2020 29858 Guangzhou, Guangdong N presenting different
MT568637 25 Feb 2020 29860 Guangzhou, Guangdong N approaches for genome
MT568638 25 Feb 2020 29854 Guangzhou, Guangdong N sequencing.** Then,
MT568639 25 Feb 2020 29861 Guangzhou, Guangdong N this data might have
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MT568640 25 Feb 2020 29858 Guangzhou, Guangdong N more errors than the
MT568641 25 Feb 2020 29868 Guangzhou, Guangdong N others.
MT622319 23 Jan 2020 29889 Shanghai† N No detailed geographic

information available.
MT627325 28 Feb 2020 29859 Shanghai† N No detailed geographic

information available.
NC045512 Dec 2019 29903 Wuhan, Hubei** N Identical to MN908947.*

*GenBank information.
**Publication Information.
† Laboratory address.
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D.2 Data table 2
D.2 Table. Included sequences sorted by Collection Date. All informations
according to D.1 Table. From Marquioni and de Aguiar, (Supplemental Material), 2021
[190].

Number Accession Number Collection Date Length Geographic Location
#1 MT019529 23 Dec 2019 29899 Wuhan, Hubei
#2 MN908947 26 Dec 2019 29903 Wuhan, Hubei
#3 MT291829 30 Dec 2019 29774 Wuhan, Hubei
#4 MT291826 30 Dec 2019 29807 Wuhan, Hubei
#5 MT291830 30 Dec 2019 29807 Wuhan, Hubei
#6 MN996527 30 Dec 2019 29825 Wuhan, Hubei
#7 MN996529 30 Dec 2019 29852 Wuhan, Hubei
#8 MN996530 30 Dec 2019 29854 Wuhan, Hubei
#9 MN996531 30 Dec 2019 29857 Wuhan, Hubei
#10 MT291827 30 Dec 2019 29858 Wuhan, Hubei
#11 MT291828 30 Dec 2019 29858 Wuhan, Hubei
#12 MN996528 30 Dec 2019 29891 Wuhan, Hubei
#13 MT019533 01 Jan 2020 29883 Wuhan, Hubei
#14 MN988668 02 Jan 2020 29881 Wuhan, Hubei
#15 MN988669 02 Jan 2020 29881 Wuhan, Hubei
#16 MT034054 03 Jan 2020 29885 Beijing
#17 MN938384 10 Jan 2020 29838 Shenzhen, Guangdong
#18 MT259226 10 Jan 2020 29868 Wuhan, Hubei
#19 MN975262 11 Jan 2020 29891 Wuhan, Hubei
#20 MT049951 17 Jan 2020 29903 Yunnan
#21 MT039873 20 Jan 2020 29833 Hangzhou, Zhejiang
#22 MT253710 21 Jan 2020 29781 Hangzhou, Zhejiang
#23 MT407650 22 Jan 2020 29821 Zhejiang
#24 MT407651 22 Jan 2020 29822 Zhejiang
#25 MT407649 22 Jan 2020 29833 Zhejiang
#26 MT039874 22 Jan 2020 29858 Hangzhou, Zhejiang
#27 MT079843 22 Jan 2020 29915 Wuhan, Hubei
#28 MT291831 24 Jan 2020 29872 Beijing
#29 MT291832 25 Jan 2020 29828 Beijing
#30 MT259231 25 Jan 2020 29865 Wuhan, Hubei
#31 MT259230 25 Jan 2020 29866 Wuhan, Hubei
#32 MT407652 26 Jan 2020 29835 Zhejiang
#33 MT407653 26 Jan 2020 29835 Zhejiang
#34 MT534630 26 Jan 2020 29845 Changzhou, Jiangsu
#35 MT259228 26 Jan 2020 29861 Wuhan, Hubei
#36 MT259227 26 Jan 2020 29863 Wuhan, Hubei
#37 MT259229 26 Jan 2020 29864 Wuhan, Hubei
#38 MT291835 27 Jan 2020 29834 Beijing
#39 MT123292 27 Jan 2020 29923 Guangzhou, Guangdong
#40 MT291833 28 Jan 2020 29821 Beijing
#41 MT291834 28 Jan 2020 29865 Beijing
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#42 MT135044 28 Jan 2020 29903 Beijing
#43 MT291836 29 Jan 2020 29860 Beijing
#44 MT123293 29 Jan 2020 29871 Guangzhou, Guangdong
#45 MT123291 29 Jan 2020 29882 Guangzhou, Guangdong
#46 MT121215 02 Feb 2020 29945 Shanghai
#47 MT446312 05 Feb 2020 29879 Guangzhou, Guangdong
#48 MT123290 05 Feb 2020 29891 Guangzhou, Guangdong
#49 MT281577 10 Mar 2020 29903 Fuyang, Anhui
#50 MT407658 24 Mar 2020 29770 Zhejiang
#51 MT407657 24 Mar 2020 29776 Zhejiang
#52 MT407654 24 Mar 2020 29817 Zhejiang
#53 MT407655 24 Mar 2020 29817 Zhejiang
#54 MT407659 24 Mar 2020 29828 Zhejiang
#55 MT407656 24 Mar 2020 29835 Zhejiang
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D.3 Data table 3
D.3 Table. Genome information used to calculate points in Fig.12.3. We have
used a 14 days time window, i.e., every sequenced genome within an interval of 14 days
were considered as infected ones, while the previous were considered to be recovered.
From Marquioni and de Aguiar, (Supplemental Material), 2021 [190].

Point Infected Recovered Date Interval
Number* Genomes Genomes

#1 #03 → #19 #1 → #02 30 Dec 2019 → 12 Jan 2020
#2 #13 → #19 #1 → #12 01 Jan 2020 → 14 Jan 2020
#3 #14 → #19 #1 → #13 02 Jan 2019 → 15 Jan 2020
#4 #16 → #19 #1 → #15 03 Jan 2019 → 16 Jan 2020
#5 #17 → #27 #1 → #16 10 Jan 2019 → 23 Jan 2020
#6 #19 → #28 #1 → #18 11 Jan 2019 → 24 Jan 2020
#7 #20 → #45 #1 → #19 17 Jan 2019 → 30 Jan 2020
#8 #21 → #46 #1 → #20 20 Jan 2019 → 02 Feb 2020
#9 #22 → #46 #1 → #21 21 Jan 2019 → 03 Feb 2020
#10 #23 → #46 #1 → #22 22 Jan 2019 → 04 Feb 2020
#11 #28 → #48 #1 → #27 24 Jan 2019 → 06 Feb 2020
#12 #29 → #48 #1 → #28 25 Jan 2019 → 07 Feb 2020
#13 #32 → #48 #1 → #31 26 Jan 2019 → 08 Feb 2020
#14 #38 → #48 #1 → #37 27 Jan 2019 → 09 Feb 2020
#15 #40 → #48 #1 → #39 28 Jan 2019 → 10 Feb 2020
#16 #43 → #48 #1 → #42 29 Jan 2019 → 11 Feb 2020
#17 #46 → #48 #1 → #45 02 Feb 2019 → 15 Feb 2020
#18 #47 → #48 #1 → #46 05 Feb 2019 → 18 Feb 2020

#19** #49 → #49 #1 → #48
#20† #50 → #55 #1 → #49 24 Mar 2019 → 06 Apr 2020

*In Fig.12.3 from the main text, points are numbered from left to right.
**Since there is only one genome in this time window, we cannot estimate a distance
among the infected population, so genome #49 was not used.
† This point was not included in Fig.12.3 because it is lacking more than one month of
genetic information between points #18 and #19, therefore the distance among the
recovered population cannot be well inferred.
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