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Abstract

A large portion of urban emissions in developing countries come from old gasoline vehicles driven in metropolitan areas. The

present study aimed to develop models to estimate the environmental impact of different contents of gasoline and ethanol

mixtures (pure gasoline; 25, 50, 75% ethanol blended to gasoline; and 100% ethanol) in a flex-fuel engine. We tested the blended

fuel using three different speeds and recorded the GHG emissions and engine output data. The data mining approach was used to

develop environmental impact predictive models. The ethanol content in gasoline; the engine rotational speed 900, 2000, and

3000 rpm; and λ were used as attributes. The classification target was the environmental impact concerning the CO2 emission

(“low,” “average,” and “high”). We employed the Random forest algorithm to develop predictive models. The mean values of

CO2 concentrations for all studied fuel content were above 2.47% of the volume. The trees’ models (accuracy 73%, κ =0.61)

showed three alternatives for predicting the environmental impact based on the ethanol blend, the engine rotation, λ, and the air-

fuel ratio. Such models might help policymakers develop educational campaigns to reduce short- and medium-term urban

commuter traffic pollution in countries that lack suitable urban transportation.
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Introduction

Passenger and light-duty vehicles are a significant portion of

urban emissions (Hitchcock et al. 2014; Slovic and Ribeiro

2018). In late years, locals were exposed to contaminant levels

of particulate matter above the recommendations in near 80%

of urban areas (WHO 2016). Urban air pollution is a critical

risk to global health, and the impact of the exposure has been

described in the current literature (Currie et al. 2014; Kim et al.

2017). The International Energy Agency (IEA 2018; IEA

2019) reports that CO2 emissions from fuel combustion de-

creased by around 12% in the European Union and 16% in the

USA. However, the Americas’ overall levels showed little

change, as growing economies such as Brazil (+43%) and

Mexico (+24%) increased emissions. The world’s energy de-

mand is increasingly growing nowadays, and fossil fuel de-

pletion is becoming a crucial and worldwide issue, not only

concerning the road transport sector. In effect, the extensive

economic growth model has led to severe damage to the eco-

logical environment, and severe air pollution problems have

occurred frequently in the last decade. More than 25 billion

tons of CO2 from worldwide human activities are released

annually into the atmosphere (Iodice et al. 2017a; Iodice

et al 2019). Therefore, the development of new technologies

(such as battery electric vehicles for sustainable mobility) and

the changing from conventional fuel to biofuel should be a

rigorous necessity to meet the energy demands for the trans-

portation sector and limit the production of CO2 and particu-

late matters in urban contexts (Iodice et al. 2017b).

Non-fossil fuels are considered renewable since they are

produced from a natural source. An example is ethanol
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(C2H5OH), a natural fuel produced from sugarcane that is con-

sidered an alternative source to fossil fuels (Schwaderlapp et al.

2012; Schifter et al. 2013; IEA 2018; Roso et al. 2019). Despite

the advancement of electric vehicles, transport energy’s prog-

ress falls on a complex interchange between various actors,

besides being distinct in different parts of the world. For in-

stance, in developing countries, transport energy policies rely

on the already established fuel distribution network, and signif-

icant changes might be implemented to change this scenario

(Kalghatgi 2018). Plausible projections indicate that by 2040

around 90% of transport energy will come from combustion

engines powered by petroleum (WEC 2011). The mixture of

the two fuels, gasoline and ethanol when adequately combined,

improves the general energy efficiency of the vehicles, the

torque, and the engine power for application in flex-fuel tech-

nology (Delgado et al. 2007; Venugopal et al. 2013; Roso et al.

2019) in addition to reducing emissions of greenhouse gases

when compared to pure gasoline (Venugopal et al. 2013; IEA

2018; Schifter et al. 2018; Roso et al. 2019). However, the low

ambient temperature might increase emissions (Suarez-Bertoa

et al. 2015), independent of the ethanol content (EC).

Currently, more than 20 countries around the world already

adopt a blend of ethanol in commercialized gasoline, such as

the USA (E10) and Brazil (E27) (ANP 2015). The use of

gasoline-ethanol blend can benefit air quality in the cities com-

pared to gasoline in conventional engines (Rice et al. 1991).

The trend towards using liquid fuels derived from petro-

leum and the global need to reduce the level of pollutant emis-

sions amply justify ethanol’s addition to pure gasoline in the

short term (Beer and Grant 2007). A flex-fuel engine emerged

to best adapt to this mixture. Ethanol has a higher-octane

number that allows the operation with higher compression

rates without entering auto-ignition and greater efficiency

(Roso et al. 2019). Technically, these engines allow the com-

pression rates to be changed, as the delay in advance the igni-

tion point, the operating temperature (electronic thermostatic

valves), and the fuel injection time variation. However,

Barakat et al. (2016) noted a low slope linear relationship

between fuel consumption and ethanol concentration. Other

authors (Guerrieri et al. 1995; Topgul et al. 2006; Cataluna

et al. 2008) reported a sharp rise in fuel consumption using the

ethanol-gasoline blend. Cahyono and Abu Bakar (2011)

found a decrease in engine torque and power when ethanol

was used as a fuel compared to gasoline. However, those

findings are just related to the use of ethanol blend in conven-

tional gasoline ignition engines. Ethanol is characterized by a

higher heat of vaporization than gasoline. This aspect makes

the intake manifold’s temperature lower because ethanol re-

quires more heat to evaporate, increasing the engine’s volu-

metric efficiency. However, a higher heat of vaporization

could cause lower combustion temperature and burning ve-

locity and higher CO and HC emissions. The Reid vapor

pressure (RVP) of ethanol is significantly lower than gasoline,

and then the resulting lower volatility can cause difficult cold

transient of the engine during the warm-up phase.

Nevertheless, the ethanol-gasoline blended fuels do not have

an RVP value that ranges linearly with the percentage of eth-

anol in the blends. With the increase of ethanol content at first,

the RVP of the blended fuel rises to reach a maximal value at

about 15% v/v of ethanol addition (so facilitating the cold-

start), while after, at higher ethanol percentages, the RVP de-

clines (Iodice et al. 2017b).

The application of data mining techniques in fuel blends

tests can identify information more accurately by applying

algorithms. Data mining is the method of discovering infor-

mation from a defined set of data. The approach uses mathe-

matical analysis to extract patterns and trends that might exist

in data. Predictive analytics and machine learning resources

can be used for accurate checks on the environmental impact

of fossil, and non-fossil fuel blends, considering managing

data growth, integrating and analyzing data to obtain useful

decision-making insights in the use of fuels (Shah and Trivedi

2012; Jorge et al. 2017). In most cases, these predictive rules

are clearly understood when transformed into “If-Then” rules,

which can help generate control strategies that might enable

policymakers’ appropriate decision-making and recommen-

dations in urban transportation to mitigate the pollution

output.

Although soft computing has been applied to forecast emis-

sions from SI engines using ethanol blends (Thakur et al.

2020), most studies use traditional artificial neural networks

(ANNs) and neuro-fuzzy inference systems (ANFIS) for

modeling purposes (Najafi et al. 2016). We suggest that a

machine learning algorithm is suitable for predicting the envi-

ronmental impact when using different gasoline and ethanol

blends in a spark-ignition engine. Therefore, the present

study’s objective was to develop a model to estimate the gas-

oline and ethanol blends (pure gasoline; 25, 50, 75% ethanol

blended with gasoline; and 100% ethanol) environmental im-

pact in a flex-fuel engine using the data mining approach.

Materials and method

Powertrain test platform

The Powertrain (a Renault® flex-fuel engine) used was a mo-

bile platform, consisting of a 1598 cm3 engine, four cylinders

in line, and eight valves, cooling by water pressure circuit,

with sequential multipoint electronic fuel injection system

and a management module (Injepro brand ®, model EFI-

light v2) that allowed to control and access the actuators

map. The platform featured all the automotive vehicle systems

with a fuel supply system and reservoir, cooling system with

radiator and fan, electrical system (alternator and battery), and

starter. The engine specifications are presented in Table 1.
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The engine was instrumented with data acquisition sys-

tems (Fig. 1), composed of a system to acquire the test

data. A system to control the engine registered the test data

(Manager module, model EFI-light v2, InjePro®). An ex-

haust gas system was used to collect exhaust gas samples

and analyze emission concentration (PC - Multi-Gas,

Napro®, SP, Brasil).

The engine was warmed up before the tests started. It was

brought to a condition of 924.4 mB of the indicated average

effective pressure and subjected up to 900 rpm (low speed),

2000 rpm, and 3000 rpm to measure the concentration of

gases (carbon monoxide ( CO), carbon dioxide (CO2), oxygen

(O2), hydrocarbon (HC), nitrogen oxide (NOx), corrected car-

bon monoxide (COc), corrected hydrocarbon (HCc = dilution

factor × measured HC)), factor dilution (F-dilution), dilution,

λ, and the air-fuel ratio.

Fuel blend testing

The tests were carried out using ethanol (anhydrous alcohol)

and gasoline. The properties of ethanol and gasoline are

shown in Table 2. The mixtures used in the Powertrain test

were pure gasoline (E0), gasoline with 25% ethanol (E25),

gasoline with 50% ethanol (E50), gasoline with 75% ethanol

(E75), and pure ethanol (E100). Brazilian standard gasoline is

sold with 27% ethanol (ANP 2015; ANP 2017). The extrac-

tion of this volume of ethanol was carried through decantation

and separation for standardization purposes before the test.

Table 1 Technical specifications

of the powertrain engine Volume 1.598 cm3

Fuel system Sequential multipoint electronic injection

Cylinder displacement 80.5 mm

Number of cylinders 4

Compression ratio 9.5:1.0

Combustion chamber layout Roof-shaped pent

Upper piston geometry Top piston crown on plate

Camshaft 2 - DOHC without VVT

Connecting rod length 137 mm

Diameter × stroke 79.0 × 81.4 mm

Geometric compression ratio 11.0: 1

Inlet valve opening (B-TDC) 10° (ref. 1 mm)

Inlet valve closure (A-BDC) 20° (ref. 1 mm)

Inlet valve diameter × lift 30 × 7.95 mm

Exhaust valve closure (B-BDC) 30° (ref. 1mm)

Exhaust valve closure (A-TDC) 0° (ref. 1mm)

Exhaust valve diameter × elevation 24 × 7.00 mm

Ignition order 1–3–4–2

Fig. 1 Schematic diagram of the

flex-fuel engine assembly and

instrumentation
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Before starting each data collection, we decontaminate the

engine oil. The engine was started and running at idle (900

rpm) until the thermostatic valve opens (observed when the

fan is running), when the 30-min count starts running at idle

and only then start testing.

The analyzer was maintained for an initial warm-up period,

which consisted of two fan activation cycles to ensure the

correct measurement of the gases. Within that period, the soft-

ware reported that the equipment was heating up. Then, the

equipment’s leak test was verified by closing the gas capture

probe and waiting for the screen’s instructions to start the

tests. Before starting the measurement, the equipment per-

forms a check to detect HC residues’ presence in the environ-

ment. This procedure aims to confirm that before measure-

ments start, the indicated value is at its minimum. After the

engine was already idling (900 rpm), it was expected 60 s,

which was the estimated time to stabilize the gas reading and

thus obtain a lesser variation in data collection. At the end of

the 60-s cycle, a new cycle with a rotation of 2000 rpm and

3000 rpm later was installed and maintained as the previous

test, with data being collected using the same procedure as the

initial one.

Data analysis

Data on gas concentrations (carbon monoxide (CO), carbon

dioxide (CO2), oxygen (O2), hydrocarbon (HC), nitrogen ox-

ide (NOx), corrected carbon monoxide (COc = dilution factor

× measured CO), corrected hydrocarbon (HCc = dilution fac-

tor × measured HC)), dilution factor (F-dilution), dilution (di-

lution =CO,% + CO2,%), λ, and the air-fuel ratio were mea-

sured and collected in function of engine speed (900, 2000,

and 3000 rpm) and fuel mixtures (gasoline and ethanol con-

tent: 0, 25, 50, 75, and 100% ethanol content). The test was

performed three times for each variable, each time lasting 30 s,

where data were continuously registered to calculate the mean

values of gas concentrations, F-dilution, dilution, λ, and the

air-fuel.

Data pre-processing was performed in Excel spreadsheets

for further processing in the data mining software RapidMiner

Studio® v9 (Hofmann and Klinkenberg 2014; Rapidminer

Studio 2020). RapidMiner® is a data mining platform de-

signed from elementary building blocks, called operators.

Each operator performs a specific action on the data: loading

and storing data, transforming data, or inferencing a model in

the data (Habib and Umar 2015; Ristoski et al. 2015). The data

set of the tests in the powertrain was loaded, stored, and trans-

formed. After this data pre-processing, a predictive model was

inferred through the operators’ processes (split data - 80%

training data and 20% to develop the model; Random forest;

apply model and performance) interconnecting their input-

output ports (Fig. 2).

The attributes used to build the predictive model in data

mining using the modeling classification were gasoline-

ethanol mixture (0% ethanol, 20, 50, and 75% ethanol and

100% ethanol), the environmental impact (which was

discretized in ordinal categorical data “low,” “average,” and

“high” according to the values of CO2 emission, Table 3), the

engine speed (900 rpm, 2000 rpm, and 3000 rpm), and the λ.

When λ = 1, the mixture is stoichiometrically correct. When λ

< 1, the mixture is rich, and when λ > 1, the mixture is lean.

Discretization reduces and simplifies data, making learning

faster and the results more robust. After applying discretization,

the data were treated as nominal data during the data mining

process (Garcia et al. 2013). The use of classification algorithms

based on Random forest (operator: random forest) was applied

to generate rules for predicting the effect of the mixture of

gasoline and ethanol on the environmental impact due to the

air-fuel rotation λ. The model validation was parameterized

using the operator split data with a percentage split of 80%

for training and 20% for testing.

The percentage of correctly classified samples compared to

the number of all examples is accuracy (Eq. (1)). The rate of

true positives to all as positive predicted samples is the preci-

sion (Eq. (2)). The recall is the ratio of precisely predicted

positive observations to all the target classes (Eq. (3)). The

confusion matrix was calculated to find the prediction accura-

cy using the classifying performance. The kappa (κ) is a sta-

tistical coefficient of inter-rater reliability applied to evaluate

two appraisers’ agreement. In this study, we assumed that the

classification was appropriate when κ ≥ 0.60.

Accuracy ¼ TPþ TNð Þ= TPþ FPþ FNþ TNð Þ ð1Þ

Precision ¼ TP= TPþ FPð Þ ð2Þ

Recall ¼ TP= TPþ FNð Þ ð3Þ

where TP is true positives, TN is true negatives, FP is false

positives, and FN is false negatives.

Table 2 Some properties values of tested ethanol and gasoline

Property Ethanol Gasoline

C-fraction (mass %) 52.2 87.4

O-fraction (mass %) 34.7 0

Density (ρ, kg/m3) 785.1 715–780

Stoichiometric air/fuel ratio (-) 9.0 14.2–15.0

Kinematic viscosity (mm2/s) 1.3 0.5

Reid vapor pressure (RVP) (kPa) 16.0 48-103

Research octane number (RON) (-) 108–109 84

Lower heating value (MJ/kg) 27.0 44.0

Latent heat vaporization (kJ/kg) 920 380

Values adapted from Park et al. (2010) and Iodice et al. (2017b)
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Results

Gasses concentration

The results of the concentrations of CO, CO2, O2, HC, NOx,

COc, and HCc; F-dilution; dilution; λ; the air-fuel ratio as a

function of fuel mixtures (E0, E25, E50, E75, and E100); and

engine speed (900, 2000, and 3000 rpm) are shown in Table 4.

Fuel tests without ethanol content (E0) showed average

concentrations of 3.05 to 9.01% at 3000 rpm for CO concen-

tration. The CO2 concentrations were 2.43% when at low

speed, 10.80% for 2000 rpm, and 4.63% for 3000 rpm. The

O2 concentrations were 15.07% for low speed, 3.10% for

2000 rpm, and 6.97% for 3000 rpm. HC ranged from 201.67

to 351.33 ppm vol. NOx showed values from 3.00 to

21.33 ppm vol. The COc concentration presented values from

3.33 to 10.43 ppm vol. The HCc concentration ranged from

2.99 to 7321.33 ppm vol. The dilution factor varied between

1.10 and 36.20. The λ ranged from 1.06 to 2.00. The dilution

was 5.49 to 13.78% vol, and the air-fuel ratio was 14.68 to

27.57 (Table 4).

The fuel tests with a blend of 25% ethanol content (E25)

showed an average CO concentration from 2.92 to 13.48%

vol. CO2 concentrations ranged from 2.47 to 13.07% vol,

and for O2 concentration was from 0.00 to 15. 23% vol. Hc

results were from 88.33 to 712.00 ppm vol, and NOx results

were from 0.00 to 33.67 ppm vol. Results of COc concentra-

tions were from 3.90 to 13.50% vol and from 3.90 at

712.00 ppm vol for HCc, with dilution factor ranging from

0.74 to 2.62, dilution from 5.75 to 20.35, λ from 0.64 to 2.00,

and air-fuel ratio ranged from 8.80 to 27.56 (Table 4). The fuel

tests with a 50% ethanol (E50) blend showed an average CO

concentration from 1.76 to 12.31% vol. Results of CO2 con-

centrationwere from 3.13 to 10.70% vol and for O2, from 0.27

to 16.03% vol. HC concentration values ranged from 10.67 to

152.33 ppm vol and from 0.00 to 6.33 ppm vol for NOx. COc

concentration results were 5.39–12.30% vol, and HCc con-

centration varied from 31.33 to 152.67 ppm vol, with a dilu-

tion factor between 0.81 and 3.09. The dilution varied be-

tween 4.88 and 18.43, while the λ was 0.69–2.00. The varia-

tion of the air-fuel ratio was 6.25–18.02. Fuel tests with a

mixture of 75% ethanol (E75) showed a CO average concen-

tration of 1.97–12.06% vol and CO2 concentration from 2.97

to 7.97% vol. The results of O2were from 3.53 to 16.07% vol,

and HC results were from 84.00 to 241.33 ppm vol. Results of

NOx concentration were from 0.00 to 3.67 ppm vol and from

5.92 to 12.07% vol for COc. HCc concentrations found con-

centrations were from 183.33 to 245.00 ppm vol, with a dilu-

tion factor between 0.83 and 3.08. The dilution varied from

Table 3 Discretization of the environmental impact based on CO2

emissions

CO2 emissions (%, vol) Environmental impact

≤ 2.6 “Low”

>2.6 and ≤ 8.5 “Average”

>8.5 “High”

Source: Gentner et al. (2017)

Fig. 2 The flow of the data mining process using the Random forest algorithm, illustrating the data processing steps and classification
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4.92 to 18.13% vol, the λ varied from 0.71 to 2.00, and the air-

fuel ratio was 6.39 to 18.02.

Fuel tests with 100% ethanol (E100) showed average CO

concentration of 1.32–10.67% vol, from 3.93 to 10.90% vol

for CO2, and from 2.30 to 15.37% vol for O2. HC’s concen-

tration varied from 66.67 to 401.67 ppm vol and for NOx was

0.00 ppm vol. COc concentration was from 3.74 to 10.66%

vol and varied from 5.54 to 401.67 ppm vol for HCc, with a

dilution factor between 0.84 and 2.88. The dilution varied

from 5.26 to 17.91% vol, the λ varied from 0.72 to 2.00,

and the air-fuel ratio was 6.48 to 18.02 (Table 4).

Random forest results

This operator generated a Random forest model, an assem-

blage of a certain number of random trees. These trees are

created on bootstrapped subsets of the input data. Each node

of a tree signifies a splitting rule for one specific attribute.

Only a subset of attributes was considered for the splitting rule

selection. For classification, the rule is splitting values belong-

ing to different classes. The building of new nodes is repeated

until the stopping criteria are met. Each random tree generates

a prediction for each input by following the tree branches

following the splitting rules and evaluating the leaf. We used

the minimal leaf size = 2. The model classification had an

accuracy of 73% and κ =0.61.

We selected three trees for estimating the environmental

impact. First is using the percentage of ethanol in the fuel

blend and engine rotation (Fig. 3). The second and third trees

were selected by adding air-fuel and λ variables to the previ-

ous ones (Figs. 4 and 5). Such trees represent the forecast of

environmental impact due to the fuel blend. In the confusion

matrix (Table 5), the model’s accuracy is presented (73%).

The prediction for the “average” environmental impact class

was 90% (true average = 90%), the “high” environmental

impact classification precision was 70% (true high = 70%),

and for “low” impact, it was 0% (true low = 0%). However,

the model lacked the precision to classify the “low” environ-

mental impact.

The “If-Then” rules are described as follows. If the per-

centage of the ethanol mixture is ≤ 12.5%, then the impact

is “low” (24% of the samples). If the ethanol content per-

centage > 12.5%, the engine rotation needs to be checked.

If the engine rotation is ≤ 1500 rpm, then the environmen-

tal impact is “average” (28% of the samples). If the engine

rotation is > 1500 rpm, another leaf needs to be checked,

the ethanol blend. If the ethanol mixture is > 87.5%, then

the environmental impact is “high” (14% of the samples).

If the ethanol mixture is ≤ 87.5%, then the environmental

impact is “average” (17% of the samples). If the ethanol

mixture is ≤ 62.5%, then the environmental impact is

“high,” and if the ethanol mixture is < 62.5%, then the

environmental impact is “average” (Fig. 3).

From the input data, the model predicted that when the

ethanol blend is below 12.5%, there is a high chance of the

environmental impact will remain “low.” Otherwise, it de-

pends on the engine rotation and the ethanol blend, but in all

cases, the result will be either “average” or “high” impact.

Table 4 The concentration of CO, CO2, O2, HC, NOx, COc, and HCc; F-dilution; dilution; λ; and the relationship air-fuel for gasoline (E0), 25%

ethanol (e25), 50% ethanol (E50), 75% ethanol (E75), and 100% ethanol (E100)

Ethanol

blend

Speed

(rpm)

CO (%

vol)

CO2 (%

vol)

O2 (%

vol)

HC (ppm

vol)

NOx (ppm

vol)

COc (%

vol)

HCc (ppm

vol)

F-

dilution

Dilution (%

vol)

λ Air-fuel

ratio

E0 ≤900 3.05 2.43 15.07 297.00 6.00 8.34 771.33 2.81 5.49 2.00 27.56

2000 2.99 10.80 3.10 201.67 3.00 3.33 2.99 1.10 13.78 1.06 14.68

3000 9.01 4.63 6.97 351.33 21.33 10.43 7321.33 36.20 13.66 1.10 15.10

E25 ≤900 2.92 2.47 15.23 123.67 0.00 7.60 318.67 2.62 5.75 2.00 27.56

2000 3.90 13.07 0.00 88.33 0.00 3.90 3.90 0.87 16.97 0.89 12.30

3000 13.48 6.87 0.00 712.00 33.67 13.50 712.00 0.74 20.35 0.64 8.80

E50 ≤900 1.76 3.13 16.03 10.67 0.00 5.39 31.33 3.09 4.88 2.00 18.02

2000 7.74 10.70 0.27 152.33 0.00 7.74 152.67 0.81 18.43 0.77 6.98

3000 12.31 5.83 3.30 145.00 6.33 12.30 145.00 0.83 18.16 0.69 6.25

E75 ≤900 1.97 2.97 16.07 84.00 3.67 5.92 245.00 3.08 4.92 2.00 18.02

2000 7.62 7.97 4.53 173.33 0.00 8.12 183.33 1.00 15.58 0.95 8.56

3000 12.06 6.07 3.53 241.33 1.67 12.07 241.33 0.83 18.13 0.71 6.39

E100 ≤900 1.32 3.93 15.37 66.67 0.00 3.74 191.00 2.88 5.26 2.00 18.02

2000 5.54 10.90 2.20 105.33 0.00 5.54 5.54 0.91 16.45 0.91 8.16

3000 10.65 7.27 2.30 401.67 0.00 10.66 401.67 0.84 17.91 0.72 6.48

rpm rotations per minute, F-dilution factor of dilution, air-fuel ratio relationship between the air and the fuel

63982 Environ Sci Pollut Res (2021) 28:63977–63988



This result is a hint towards the limit of ethanol blend to cause

low environmental impact.

The results of the decision tree using the λ and the air-fuel

ratio are shown in Fig. 4.

If the λ is > 0.857, then onemust check the air-fuel ratio. If the

air-fuel ratio is > 19.61, then the impact is high (16% of the

samples). If the air-fuel ratio is ≤ 19.61, then one needs to recheck

the air-fuel ratio. If the air-fuel ratio is > 12.6, then the

environmental impact is “average” (20% of the samples). If the

air-fuel ratio is ≤ 12.6, then one has to check λ. If λ is > 0.917,

then the environmental impact is “low” (ratio of the total = 7% of

the samples). If λ is less or equal to 0.917, then the environmental

impact is “high” (ratio of the total = 7% of the samples). If λ is ≤

0.857, then the air-fuel ratio needs to be checked. If the air-fuel

ratio is≤ 6.07, then the environmental impact is “high” (7%of the

samples). If the air-fuel ratio is > 6.07, then the air-fuel ratio needs

Fig. 3 The random tree for

classifying the ethanol and

gasoline blend’s environmental

impact using the variables ethanol

blend and engine rotation

Fig. 4 The random tree for

classifying the ethanol and

gasoline blend’s environmental

impact using the variables λ and

the air-fuel ratio
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to be rechecked. If the air-fuel ratio is > 8.930, then the environ-

mental impact is “average” (7% of the samples). If the air-fuel

ratio is > 8.795, then the environmental impact is “high” (7% of

the samples). If the air-fuel ratio is ≤ 8.795, then the environmen-

tal impact is “average” (13% of the samples) (Fig. 4).

The tree model shows two subtrees equally divided, and

the model found out that the split value of λ is 0.857. In both

subtrees, we found the air-fuel ration dependence leading to

either “average” or “high” environmental impact. The “low”

option represents only 7% of the samples, meaning that it

might not be a probable result.

Figure 5 presents the random tree for classifying the etha-

nol and gasoline mixture’s environmental impact using the

gasoline blend, λ, engine rotation, and the air-fuel ratio.

If λ > 1.620, then the environmental impact is “low”

(33.3% of the samples). If λ ≤ 1.620, then the air-fuel ratio

needs to be checked. If the air-fuel ratio is >15, then the envi-

ronmental impact is “average” (5.6% of the samples). If the

air-fuel ratio is ≤ 15, then the ethanol blend needs to be

checked. If the ethanol blend is ≤ 12.5, then one needs to

check the engine rotation. If the engine rotation is > 2500,

then the environmental impact of “high” (5.6% of the sam-

ples); otherwise, it is “average” (8.3% of the samples). If the

ethanol blend is >12.5, the air-fuel ratio needs to be checked.

If the air-fuel ratio is ≤ 8.71, the impact is “high” (30.6% of the

samples). If the air-fuel ratio is > 10.915, then the environ-

mental impact is “high” (11.1% of the samples); otherwise, it

is “average” (Fig. 5).

The tree model foresaw the environmental impact “low”

based on λ > 1.620. Otherwise, the other variables need to be

checked. A significant result (“high,” 30% of the samples)

was inferred to air-fuel in the range of 8.71 and 15, and an

ethanol blend >12.5%.

Discussion

The use of ethanol, particularly in spark-ignition engines, is ap-

pealing due to its reasonably high octane and the fact that it is

Fig. 5 The random tree for classifying the ethanol and gasoline mixture’s environmental impact using λ, ethanol blend, engine rotation, and the air-fuel ratio

Table 5 Confusion matrix of the model for the classification of the

environmental impact of ethanol and gasoline blends.

True

Predicted

‘high’ ‘low’ ‘average’

Class precision 

(%)

‘high’ 3 1 1 70

‘low’ 0 0 0 0

‘average’ 1 1 8 90

Class Recall (%) 70 0 90 Accuracy = 73%

The number of samples=45.
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cleaner than gasoline. The current test results showed that the CO

concentrations for all fuel mixtures indicated values above the

reference of CONAMA (2019) above 0.5% vol. However, HC

at 2000 rpm with a mixture of 25% and 50% EC at low speed

presented values within the recommended emission limit (ANP

2015; CONAMA2019). Considering theHCc results, theywere

within the acceptable limit (lower emissions) at 2000 rpm for E0,

E25, E75, and E100 and at low speed in E50 mixtures and E75.

The concentrations for CO2 also showed values within the limit

for all fuel mixtures at 2000 rpm (CONAMA 2019). However,

the proposed value is obtained from a vehicle using more com-

plex anti-pollution devices than that tested in the present study,

such as direct injection, plasma ignition, and recirculation of

exhaust gasses. In developing countries, more than 50% of pas-

senger vehicles are old concept cars (Kalghatgi 2018; Slovic and

Ribeiro 2018) like the one studied in the present research.

Therefore, estimating the environmental impact proposed here

refers to short- or medium-term mitigation before developing

countries’ population has access to better urban transportation

policies.

The Otto cycle engine is generally not ideal since other

output gases from incomplete fuel ignition come out of the

exhaust system. When the combustion is ideal, all O2 that

enters the engine is used for ignition. The lower the gas con-

centration in the exhaust system, the closer the combustion is

to the ideal (Thakur et al. 2017). The higher the concentration

of CO2 in the exhaust system, the better the combustion. The

air-fuel ratio can also affect the CO2 level. With the lack of a

rich mixture (O2), the carbon combines with the oxygen in the

burning generating CO (incomplete combustion). CO is con-

sidered a very toxic and reactive gas, so the lower the percent-

age, the better the combustion. HC also results from incom-

plete combustion in fractionated parts of long chains of non-

oxidized fuel. The lower the HC concentration, the better the

mixture’s combustion (Roso et al. 2019).

The fuel blends E25, E50, E75, and E100 had a dilution

factor of less than 1 for 2000 rpm and 3000 rpm. However, in

the test with pure gasoline, the dilution factor went from 36.20

to 3000 rpm. An increase in total hydrocarbon (HC) emissions

was detected as ethanol in the fuel increased (Schifter et al.

2018). In the present study, the HCc indicated higher emis-

sions for pure gasoline (E0) and with a mixture of 25% (E25)

of ethanol in a rotation of 3000 rpm.

The addition of ethanol to gasoline can reduce pollutant gas

emissions in ignition engines (Elfasakhany 2015; Koç et al.

2009). The higher is the EC in the fuel mixture, the lower the

environmental impact. However, Beer and Grant (2007) sug-

gest that higher evaporative emissions because of the increase

in vapor pressure for EC higher than 30% of ethanol may

present environmental and mechanical issues. In the present

study, mixtures with a higher percentage of ethanol had a

lower environmental impact than mixtures with a lower EC

that had a more significant environmental impact (“average”

to “high”). According to Schifter et al. (2018), ethanol blended

with gasoline in various concentrations is the most used alter-

native for positive-ignition engines to incorporate non-fossil

components and diversify energy input in transportation.

However, most current literature studies apply gasoline-

ethanol to a designed gasoline engine (Schifter et al. 2013;

Schifter et al. 2018; Roso et al. 2019). In flex-fuel engines,

the use of ethanol generates higher torque. Engines powered

by ethanol need a higher compression ratio (useful volume

between the piston head and the head-fixed volume defined

in the engine construction).

The complete oxidation of carbon in the fuel might increase

CO2 emissions with ethanol in gasoline design engines as

higher latent heat of vaporization might occur (Elfasakhany

2015). However, increasing CO2 can be reduced by raising the

EC for slower engine speeds (Garcıa et al. 2010). Knoll et al.

(2009) studied conventional vehicles’ performance and emis-

sions (1999 to 2007) with up to 20% by ethanol volume. The

authors found that the EC increase resulted in reductions in

total hydrocarbons and carbon monoxide and increases in eth-

anol emissions and aldehydes. Fuels added to ethanol (E0,

E10, E20, and E30) reduce CO, CO2, and NOX emissions

without significant energy loss than gasoline in a four-

cylinder spark-ignition engine (Doğan et al. 2017). The au-

thors carried out combustion tests with gasoline and mixed

with ethanol (50 and 85% v/v) in an engine with a maximum

power of 15 kW, performed at eight different engine speeds,

oscillating from 1500 to 5000 rpm, with increments of 500

rpm, and the results showed that the addition of ethanol to

gasoline implied a reduction in CO and HC emissions, in the

whole engine speed range. The addition of ethanol increased

the values of λ and made combustion more complete, reduc-

ing gas emissions since the latent heat of vaporization of

mixed fuels is higher than that of gasoline, providing greater

efficiency to the engine’s combustion process (Canakci et al.

2013; Najafi et al. 2015).

In low EC, the CO2 emissions varied between blends, sug-

gesting a dependence with C and H fuel contents. As the EC

rises, the NOx emissions decrease, and the E85 (or highest EC

fuel) shows the lowest NOx emissions. Such an effect might

be associated with temperature decline at the end of the com-

pression stroke (Schifter et al. 2013). Suarez-Bertoa et al.

(2015) found an increase in CO2 emissions in blends with

high EC (E75 and E85) compared to low EC (E5, E10, and

E15). In the present study using a flex-fuel engine, the devel-

oped model indicated that low EC (<12.5%) associated with

low engine rotation (<1450 rpm) leads to low environmental

impact. On the other hand, high EC associated with either low

or high engine speed tend to lead to average or high environ-

mental impact, agreeing partially with previous studies (Koç

et al. 2009; Schifter et al. 2018).

Gas emissions using five λ values and six gasoline/ethanol

blends indicate that rich mixtures (λ < 1) tend to produce higher
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concentrations of CO and HCs in exhaust gases (Schirmer et al.

2017). As λ increases, the higher quantity of oxygen in the air

leads to smaller amounts of produced gases. However, in lean

mixtures, HC emissions tend to increase again because com-

bustion may be incomplete. Tests with increasing EC in the

fuel-alcohol blend showed that ethanol reduces carbon emis-

sions, possibly because of the oxygen contained in ethanol

molecules, resulting in improved combustion and allowing

more significant advantage to be taken of the fuel’s thermody-

namic properties (Schifter et al. 2013).

In a previous study, the addition of 40% ethanol to the

unleaded gasoline gave the best results for the reduction of

carbon emissions by about 30% at a 9:1 compression ratio

(Topgul et al. 2006). The addition of 60% ethanol to the

unleaded gasoline caused a decrease in carbon emissions

by about 20%. The addition of 60% ethanol to gasoline

caused a 30% reduction in HC emissions at a high com-

pression ratio (Guerrieri et al. 1995). Therefore, the emis-

sions reduction is associated with gasoline-ethanol content

and relies on other engine-related characteristics, as we

found in the current study.

Most traffic divisions on transit departments worldwide

build up rules based mostly on security issues, and those rules

rely upon previous scientific knowledge. Tree models are built

from sequential, hierarchical decisions that finally lead to

some final broad concept. We believe that the generated “If-

Then” rules would help policymakers make appropriate edu-

cational campaigns to reducing urban pollution in the long

run. Public policies and proper advice must be used to con-

vince drivers, especially in developing countries, to reduce

their carbon footprint in urban areas concerning driving pas-

senger vehicles.

Conclusions

We developed models to estimate the environmental impact

from a flex-fuel engine and different gasoline-ethanol blends

in a passenger vehicle. The model forecasts that the environ-

mental impact is “low” to “average” when the fuel has a me-

dium to a high percentage of ethanol blended considering

rotation below 2000 rpm. On the other hand, for fuel mixtures

with a low percentage of ethanol, the environmental impact

depends on other characteristics of the engine and the means

of driving. The present study results emphasize that using

ethanol blend alone might not be an imminent simple solution

to lessen urban pollution by passenger cars. Drivers should be

educated on the environmental impact they cause by the way

in driving a vehicle.
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