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RESUMO 

 
Keshavarz, Mohammadreza, UM MODELO PARA ANÁLISE DO FLUXO DE FLUIDOS NÃO-

NEWTONIANOS EM RESERVATÓRIOS NATURALMENTE FRATURADOS, Campinas, 

Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 1993. 180 p. 

Dissertação (Doutorado) 

 

A complexidade das operações de perfuração aumenta significativamente no contexto de 

reservatórios naturalmente fraturados (NFRs). A análise qualitativa e quantitativa das perdas de 

fluido de perfuração oferece critérios para algumas questões imperativas, como o projeto de 

fluido de perfuração não-Newtoniano que orienta ações corretivas precoces e o gerenciamento 

eficaz da pressão do poço. A pesquisa atual desenvolveu um modelo abrangente para abordar 

as limitações das metodologias pré-existentes. Este modelo leva em consideração as 

características dos NFRs, a reologia do fluido de perfuração, o fenômeno de perda de fluido e 

as condições do poço para prever a taxa e o volume de perda do fluido de perfuração até um 

grau aceitável. O modelo proposto é empregado para medir a taxa e o volume do fluido de 

perfuração não-Newtoniano escoando através de NFRs, levando em consideração a pseudo-

plasticidade do fluido de perfuração não apenas para o sistema de fratura, mas também para o 

sistema de matriz sob pressão constante de poço (incorporando uma contribuição de matriz 

adimensional, D, na solução). A solução introduzida é eficaz em avaliar o progresso da fluido 

de perfuração tanto em NFRs quanto em reservatórios homogêneos. Esta metodologia 

desenvolvida é posteriormente aplicada para gerar curva-tipo para auxiliar nas análises 

qualitativas e quantitativas. A avaliação qualitativa é realizada para conduzir uma análise de 

sensibilidade em parâmetros de NFR e para examinar seu impacto no fenômeno de perda e no 

volume total de perda de fluidos do poço para o reservatório, enquanto a análise quantitativa 

mede as propriedades de NFR, o volume cumulativo total e o ROI (raio de invasão) em sistemas 

de unidades SI e de campo. A solução desenvolvida e as curvas-tipo são verificadas por dois 

métodos: primeiro, reduzindo-a a uma solução pré-existente (projetada para o caso do fluido 

Newtoniano) incorporando suas suposições; e segundo, aplicando-se dados de campo de 

medições de perda de um poço fraturado no Golfo do México. Casos sintéticos são utilizados 

para demonstrar a aplicação do fluxo de trabalho para medir propriedades de NFR, de taxa de 

perda de um fluido de perfuração e da perda total, e os resultados são comparados com modelos 

anteriores. O estudo destaca a influência das propriedades do NFR e da pseudo-plasticidade do 

fluido de perfuração (representada pelo índice de comportamento do fluxo, n) na taxa de perda 



 

  

de fluido de perfuração, volume total de perda e no fenômeno de perda de fluido, especialmente 

sob uma suposição de pressão constante dentro do poço. Este estudo sugere procedimentos 

práticos para ajustar as propriedades do fluido de perfuração e projetar tratamentos que 

interrompam perdas adicionais desse fluido. Nas condições estipuladas do poço, os operadores 

podem utilizar efetivamente a pseudo-plasticidade dos fluidos de perfuração como uma 

ferramenta para mitigar a perda de fluido de perfuração, especialmente através de NFRs com 

características de perda mais altas. O estudo identifica três períodos no fenômeno de perda de 

fluido de perfuração através dos NFRs, dependendo das propriedades deste, da reologia do 

fluido de perfuração e do coeficiente de perda: tempo inicial, período transiente e tempo tardio. 

Cada período requer um fluido de perfuração específico com pseudo-plasticidade distinta para 

mitigar a perda de fluido de perfuração e otimizar o desempenho da operação de perfuração. A 

pesquisa sugere que o projeto do fluido de perfuração deve garantir alta pseudo-plasticidade 

durante os tempos iniciais e finais e menor pseudo-plasticidade durante o período transiente. 

(Pode ser aplicado para técnicas de MPD* para perfurar perspectivas desafiadoras).  Esta 

pesquisa aconselha a formulação de fluidos de perfuração para manter elevada pseudo-

plasticidade nas fases inicial e final, e níveis baixos durante o período transiente. (Pode ser 

aplicado a técnicas de MPD para perfurar prospectos desafiadores). Os resultados também 

indicam que o período transiente desempenha um papel fundamental no fenômeno de perda de 

fluido de perfuração através de NFRs. Sugere-se manter este período curto enquanto se tenta 

manter uma taxa de invasão mais baixa do fluido de perfuração. A pseudo-plasticidade do fluido 

de perfuração pode desempenhar um papel crítico no controle deste período. A análise 

paramétrica revela um impacto significativo da pseudo-plasticidade do fluido de perfuração no 

volume cumulativo e no ROI em NFRs com pressão diferencial maior, perda e aberturas de 

fratura maiores. Além disso, o procedimento permite aos operadores determinar o ROI para os 

tempos de início e fim equivalentes do período transiente. O modelo proposto aprimora a 

conclusão de poços, a recuperação avançada de petróleo (EOR), a caracterização de NFR e as 

operações de perfuração ao facilitar a análise precisa das propriedades do reservatório e dos 

volumes de fluido em NFRs. Ele orienta os operadores na refinaria da reologia do fluido de 

perfuração para minimizar a perda de lama e melhorar a eficiência no flooding polimérico, 

otimizando assim o desempenho em reservatórios complexos. 

 

Palavras-Chave: Fluidos não-Newtonianos; Reservatórios - Fratura; Reservatórios de 

petróleo; Reservatórios - Modelos matemáticos; Poços de petróleo - Fluidos de perfuração 

* Managed Pressure Drilling ou Perfuração com Pressão Gerenciada  



 

  

ABSTRACT 

 
The complexity of drilling operations significantly intensifies in the context of naturally-

fractured reservoirs (NFRs). Quantitative and qualitative analysis of drilling fluid losses offers 

a criterion for some imperative issues such as designing Non-Newtonian drilling fluid which 

guides early remedial actions and managing wellbore pressure effectively. In this study, I 

develop a comprehensive model to address the limitations of pre-existing methodologies. This 

model takes into account the characteristics of NFRs, the rheology of the mud, the leak-off 

phenomenon, and the wellbore conditions to predict the rate and volume of mud loss to an 

acceptable degree. The proposed model allows for gauging the rate and volume of Non-

Newtonian drilling fluid through NFRs, taking into consideration the pseudo-plasticity of the 

drilling fluid not just for the fracture system, but also for the matrix system under constant 

wellbore pressure (incorporating a dimensionless matrix contribution, D, into the solution). The 

introduced solution is proficient in assessing drilling-fluid progress in both NFRs and 

homogeneous reservoirs. Subsequently, I apply it to generate type-curves to aid in quantitative 

and qualitative analyses. By utilizing qualitative evaluation, I conduct a sensitivity analysis on 

NFR parameters to examine their impact on the leak-off phenomenon and total loss volume, 

while a quantitative analysis measures NFR properties, total cumulative volume, and ROI in 

both SI and field unit systems. Next, I verify the solution and type-curves through two methods: 

first, by reducing it to the pre-existing solution (designed for the Newtonian fluid case) by 

incorporating their assumptions; and second, by applying field data of loss measurements from 

a fractured well in the Gulf of Mexico. Four cases demonstrate the application of the workflow 

to measure NFR properties, mud loss rate, and total loss, and allow the comparison of the results 

with previous models. The study underscores the influence of NFR properties and mud pseudo-

plasticity (represented by the flow behavior index) on the drilling fluid loss rate, total loss 

volume, and the leak-off phenomenon, especially under a constant pressure assumption within 

the wellbore. The findings suggest practical procedures to adjust drilling-fluid properties and 

design remedial mud loss treatments to halt further drilling fluid loss. Under the stipulated 

wellbore conditions, operators can effectively utilize the pseudo-plasticity of drilling fluids as 

a tool to mitigate mud loss, particularly through NFRs with higher leak-off characteristics. The 

study identifies three periods in the mud loss phenomenon through NFRs, depending on their 

properties, mud rheology, and leak-off coefficient: early time, transient period, and late time. 

Each period requires a specific drilling fluid with distinct pseudo-plasticity to mitigate mud loss 

and increase performance. This research suggests that drilling-fluid design should ensure high 



 

  

pseudo-plasticity during early and late times and lower pseudo-plasticity during the transient 

period. (Can be applied for MPD* techniques to drill challenging prospects). The results also 

indicate that the transient period plays a pivotal role in the mud loss phenomenon through NFRs, 

and suggest decreasing this period while keeping the rate of mud advancement low. The 

pseudo-plasticity of drilling fluid can play a critical role in controlling this period. A parametric 

analysis reveals a significant impact of drilling-fluid pseudo-plasticity on cumulative volume 

and radius of invasion (ROI) in NFRs with higher differential pressure, leak-off, and larger 

fracture apertures. Additionally, the procedure allows operators to determine the ROI for 

equivalent starting and ending times of the transient period. The proposed model enhances well-

completion, enhanced oil recovery (EOR), NFR characterization, and drilling operations by 

facilitating precise analysis of reservoir properties and fluid volumes in NFRs. It guides 

operators in refining drilling-fluid rheology to minimize mud loss and improve efficiency in 

polymer flooding, thereby optimizing performance in complex reservoirs. 
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NOMENCLATURE 

 

List of abbreviations and acronyms                                      Units 

 
A Area, L2, [m2] or [ft2] 
Am-f Cross-sectional area matrix to fracture, L2, [m2] or [ft2] 
D Dimensionless Matrix contribution, dimensionless 
Ei Exponential integral, dimensionless 
I0 Modified Bessel Functions of the first kind, zero order, dimensionless  
I1 Area, L2, [m2] or [ft2] 
Iv Modified Bessel Functions of the first kind, v order, dimensionless 
K0 Modified Bessel Functions of the first kind, zero order, dimensionless  
K1 Modified Bessel Functions of the first kind, first order, dimensionless  
Kv Modified Bessel Functions of the first kind, v order, dimensionless 
L Length, L, [m, cm] or [ft, in] 
V Velocity, L/t, [m/s] or [ft/s] 
Vr Rock volume, L3, [m3] or [ft3] 
Y Distance, L, [m] or [ft] 
co Fluid compressibility, (M/Lt2)-1, [Pa-1] or [psi-1] 
cr Formation compressibility, (M/Lt2)-1, [Pa-1] or [psi-1] 
ct Total compressibility, (M/Lt2)-1, [Pa-1] or [psi-1] 
h Net pay thickness, L, [m] or [ft] 
k Permeability, L2, [mD] or [m2] 
kf Fracture permeability, L2, [mD] or [m2] 
km Matrix permeability, L2, [mD] or [m2] 
kr Radial Permeability, L2, [mD] or [m2] 
n Flow behavior index, dimensionless 
p Pressure, M/Lt2, [Pa] or [psi] 
Pf Pressure in the fracture, M/Lt2, [Pa] or [psi] 
Pi Initial pressure, M/Lt2, [Pa] or [psi] 
pm Pressure in the matrix, M/Lt2, [Pa] or [psi] 
PD Dimensionless pressure, dimensionless 
PDNN Dimensionless Non-Newtonian pressure, dimensionless 
PfD Dimensionless pressure in the fracture, dimensionless 
PmD Dimensionless pressure in the matrix, dimensionless 
PwD Dimensionless wellbore pressure, dimensionless  
q Flowrate, L3/t, [m3/sec] or [ft3/s] 
qm Matrix flowrate, L3/t, [m3/sec] or [ft3/s] 
qD Dimensionless flow rate, dimensionless  
QD Dimensionless cumulative volume (In this case cumulative mud loss or any other Non-
Newtonian fluids), dimensionless 
r Radial distance, L, [m] or [ft] 
tD Dimensionless time, dimensionless 
tDNN Dimensionless Non-Newtonian time, dimensionless 
  Storativity ratio, dimensionless 
ΔL Length, L, [m] or [ft] 
Δp Pressure differential, M/Lt2, [Pa] or [psi] 
 Shear rate, t-1, [s-1]] 
 Newtonian Viscosity, M/Lt, [cp] or [lbm/ft.s] 
eff Effective viscosity, M/Lt, [cp] or [lbm/ft.s] 
 Interporosity flow parameter, dimensionless 
 Porosity, fraction 
f Fracture Porosity, fraction 
m Matrix Porosity, fraction  
 Density, M/L3, [kg/m3] or [lbm/ft3] 
 Shear stress M/Lt2, [N/m2] or [lbf /ft2] 



 

  

 
α            Shape factor, dimensionless 

DGD      Dual Gradient Drilling 

DMTC   Derivative-based mud type-curves 

LWD      Logging While Drilling 

MPD      Managed Pressure Drilling 

MTC      Mud type-curves  

NFR       Naturally-fractured reservoir 

TP          Transient period 
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1 INTRODUCTION 

Lost circulation is experienced in all types of reservoirs. However, naturally-fractured 

reservoirs (NFRs) are particularly prone to severe mud losses. Lost circulation into fractures 

has been the most serious formation-damage mode for the fractured reservoir (Carlson, 1999; 

Xu et al., 2016; Fakoya and Ahmed, 2018; Okoro et al., 2018; Mansour et al., 2019; Wu et al., 

2020; Chan et al., 2022). It also presents challenges due to uncertainties in the fracture 

characteristics (notably fracture aperture) and loss rate. Natural fractures are recognized as 

beneficial for production; however, they introduce complications during drilling operations. A 

total-loss situation through NFRs under high downhole differential pressure can pose 

significant challenges. Consequently, it is imperative to address the loss before the continuation 

of drilling operations. A reliable estimate of NFR characteristics is required for the design of 

remedial drilling fluid loss treatments (Razavi et al., 2015, 2016, 2017a). Losses through NFR 

are controlled by the natural-fractured system, including fracture orientation, fracture density, 

fracture roughness, and distribution of fracture aperture; the losses through NFR also depend 

on other factors such as wellbore pressure, the drilling-fluid rheology and composition, the leak-

off through the fracture walls, and filter-cake buildup inside the fracture. Severe mud losses can 

create subsequent problems such as well-control issues and formation damage. Therefore, loss 

circulation presents a key challenge to health and safety and the economic viability of drilling 

a well. Losses through matrix should be distinguished from losses through natural fractures. 

Dyke et al. (1995) demonstrated that mud loss through natural fractures can be distinguished 

from that through matrix pores. Mud loss through fractures initiates with pronounced losses 

that subsequently decline over time, whereas mud loss through pores commences slowly and 

intensifies gradually. A realistic procedure for assessing the mud-loss behavior of yield power-

law drilling fluids in fractured formations must consider both leak-off and the transient period. 

NFRs are inherently heterogeneous across multiple scales, presenting unique challenges in 

reservoir characterization. Researchers identify these complexities as arising primarily from 

two relatively independent systems: the fracture system and the porous matrix system. Each 

system contributes uniquely to the reservoir's overall behavior, necessitating a comprehensive 

and multi-faceted approach for accurate analysis and prediction under different operational 

conditions. In academic literature, mathematical representations of these reservoirs are typically 

formulated as either single or double porosity models (Wennberg et al., 2006; Golghanddashti, 

2011; Narr, 2011; Rezaee, 2015; Abbasi et al., 2017; Wang et al., 2018;). 
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In the endeavor to understand and measure loss through NFR, numerous researchers have 

developed both analytical and numerical models (Liétard et al., 1999; Lavrov, 2006; Majidi et 

al., 2010; Razavi et al., 2017b; Dokhani et al., 2019). Liétard et al., (1999) developed a 

mathematical model for an infinite fracture to predict the radial flow of Bingham-plastic drilling 

fluids. This model postulated that mud advancement would ultimately halt due to mud yield 

stress (Miska et al., 2008; Majidi et al., 2010). This approach informed an approximate 

formulation for predicting the lost circulation of yield power-law fluids in NFRs. It was found 

through a sensitivity analysis that increasing the yield stress or the flow-behavior index of the 

drilling fluid could mitigate mud losses. Razavi et al. (2017) presented a theoretical model for 

predicting the infiltration of drilling mud into NFRs. However, this model, like its predecessors, 

grappled with several issues including the over-simplification of complex physical processes 

and limited applicability across various types of NFRs. Bychina et al. (2017) introduced a 

versatile model that can manage different fluid rheologies, thereby eliminating the need for 

individual models for NFR tailored to each fluid type. Their model considers fracture 

deformation and both constant and variable leak-off rates into the formation. A sensitivity 

analysis was performed to discern the effects of variables such as fracture normal stiffness, 

leak-off rate, mud-yield stress, and aperture on mud losses. The model demonstrates that 

fracture deformation, leak-off pressure, and fluid yield stress significantly influence fluid loss 

in the formation. Dokhani et al., (2019) revisited the mud-loss issue by combing fracture 

deformation and leak-off from fracture surfaces to describe the mud-loss pattern through NFRs. 

The predictions of this numerical model reveal that, depending on the magnitude of the leak-

off coefficient, it is possible to identify three major patterns for transient mud-loss data. 

Concurrently, several researchers have presented reservoir models that take into account flow 

behavior within a double-porosity reservoir. Warren and Root (1963) suggested a direct 

proportional relationship between the pressure difference in matrix-fracture systems and the 

fluid-flow transfer rate in fully-linked, regularly fractured media. Da Prat (1990) introduced the 

concept of outer bounded boundary and constant pressure conditions at the inner boundary for 

radial reservoirs, leading to the development of characteristic type curves, enabling analysis 

based on these assumptions. Garcia-Pastrana et al. (2017) assessed a reservoir model that 

considers Non-Newtonian behavior within a double-porosity reservoir. Their model revealed 

an inter-porosity transfer function for the pseudo-steady state by incorporating the 

dimensionless matrix contribution parameter. Unlike previous efforts, their approach focuses 

on Non-Newtonian fluid flow through NFRs and extends the model's applicability to most 

practical mud-loss measurement cases. A review of existing literature reveals that the effects of 
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the leak-off phenomenon through NFRs, influenced by their natural characteristics, are not 

accurately considered. Further, the optimization of mud pseudo-plasticity for each scenario and 

period, which offers a criterion for designing loss preventative materials, and early remedial 

actions are the focal points of this study. In this thesis, we present an evaluated solution for the 

dual porosity diffusivity model (proposed by Garcia-Pastrana et al., 2017 in the literature) under 

a constant inner wellbore pressure. The solution, which considers the physics of pseudo-steady 

state inter-porosity transfer for Non-Newtonian fluids, gives the drilling fluid rate and invaded 

volume through NFRs (Keshavarz, M., & Moreno, R. B. Z. L. 2023). The solution in 

dimensionless terms is then numerically found using the inverse Laplace transform with the 

Stehfest algorithm (Stehfest, 1970). Additionally, unit conversion terms convert dimensionless 

terms into dimensional ones for drilling fluid rate, total loss volume, and wellbore differential 

pressure. By varying scenarios based on NFR properties and mud rheology, a series of type-

curves are generated to perform qualitative and quantitative mud loss analyses. I validate the 

numerical solution for the diffusivity equation through two methods: first, by comparing the 

results with the solution obtained by Da Prat (1990) under the assumption of Newtonian 

reservoir fluid, and second, by using drilling fluid loss measurements from a fractured well in 

the Gulf of Mexico (Majidi et al., 2010). This work has practical implications for forecasting 

the rate and volume of Non-Newtonian fluids through NFRs, determining rock properties, and 

enhancing oil recovery mechanisms, such as polymer injection for oil production. By 

integrating the varied characteristics of NFR geology and fluid rheology, this research 

significantly enhances the reliability of these forecasts. These improvements are crucial for 

optimizing drilling operations and customizing oil recovery strategies to meet the unique 

challenges presented by NFRs. 
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1.1 Motivation 

 

The study of drilling-fluid-loss models provides invaluable insights; however, these models are 

often accompanied by certain limitations. A critical deficiency arises from the lack of realistic 

characterization of Naturally Fractured Reservoirs (NFRs), which decreases the accuracy of 

mud-loss prediction, especially in complex cases. Traditionally, mud-loss models have been 

constructed based on the conservation of mass and momentum for transient radial flow in a 

variable-width fracture unit, or a single fracture. These models often overlook the important 

fact that an NFR comprises a system of matrix-fracture structures. Moreover, existing models 

tend to consider the Non-Newtonian behavior of drilling fluids throughout the fracture system, 

while neglecting the advancement of Non-Newtonian drilling flow through the matrix system. 

This oversight can lead to inaccurate predictions of reservoir behavior. The primary motivation 

of this research is to address these gaps. Our work presents an evaluated solution that not only 

takes into consideration the Non-Newtonian drilling-flow advancement through both the matrix 

and the total system but also aims to improve the characterization of drilling-fluid invasion into 

NFRs. Our approach aims to make models more geologically and rheologically consistent, 

thereby enhancing the predictive accuracy of mud-loss phenomena. Another key motivation for 

this research is the need for a robust methodology that can generate type-curves to facilitate 

both quantitative and qualitative analysis of drilling fluid loss. Such a methodology must 

consider the characteristics of NFRs, the rheology of drilling fluid, and wellbore conditions. 

Furthermore, our work also aims to categorize mud-loss phenomena from two distinct 

perspectives, bringing a new depth of understanding to this critical area. Ultimately, there is a 

pressing need for an efficient workflow that allows for real-time measurement of NFR 

properties during drilling operations, thereby substantially improving operational efficiency. 

This research is driven by the necessity for such an advanced workflow and the potential 

benefits it could bring to the field of drilling. 
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1.2 Objectives 

 

The objective of this research is to derive a comprehensive and evaluated solution to quantify 

the drilling fluid loss rate, total loss volume, and NFR characteristics, incorporating the 

complexities of mud rheology and reservoir properties. Subsequently, the study aims to 

introduce a streamlined workflow that translates results from dimensionless terms to 

dimensional in real-time in both SI and field units. The specific objectives to fulfill this 

overarching goal are: 

✓ Assess the significance of NFR characteristics and drilling-fluid pseudo-plasticity, and 

their interaction on the leak-off phenomenon, drilling fluid rate, and total loss volume. 

That includes a sensitivity analysis on these factors to propose practical procedures for 

modifying drilling-fluid properties and designing remedial mud-loss treatments for each 

scenario to curtail further drilling fluid loss. 

✓ Evaluate the influence of NFR characteristics and drilling-fluid rheology on the 

transient period, a critical factor in the mud-loss phenomenon. 

✓ Identify wellbore conditions that enable operators to utilize drilling-fluid rheology as an 

effective tool to control mud-loss progression through NFRs with different leak-offs. 

✓ Provide a flexible and applicable solution for not only NFRs but also homogeneous 

reservoirs (after simplification) to measure drilling-fluid loss rate and volume. This 

allows for the comparison of the influence of mud pseudo-plasticity on loss volume 

between NFRs and homogeneous reservoirs. 

✓ Improve the total loss-volume estimation by incorporating not just a unique fracture 

width, but also a matrix-fracture system that captures the physical phenomena of 

drilling-fluid progression through NFRs. 

✓ Generate dimensionless type-curves to facilitate qualitative and quantitative analysis 

through NFRs, enabling the quantification of NFR properties (by applying curve-fitting 

techniques), drilling-fluid rate, total loss volume, and the performance of sensitivity 

analyses on NFR parameters to observe their influence on the leak-off phenomenon and 

total loss volume during different periods. 

✓ Develop a workflow to simultaneously measure total loss volume and NFR properties 

during drilling. 

✓ Quantify drilling-fluid volume through each specific period separately, particularly the 

early and transient periods. 
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✓ Determine the ROI for equivalent starting and ending times of the transient period. 

✓ Identify and manage the transient period effectively to suggest drilling fluids with 

optimum rheology. 

✓ Manage the leak-off phenomenon in NFRs through different periods. 

✓ Identify the optimum differential pressure inside the wellbore to mitigate further loss. 

Each of these objectives contributes to a broader understanding of mud-loss phenomena in both 

homogeneous reservoirs and NFRs and provides practical tools for its effective management.
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1.3 Thesis outline 

 

This dissertation is organized into seven chapters. 

Chapter 1 serves as the introduction, setting the stage for the ensuing chapters. 

Chapter 2 provides the theoretical background and reviews key bibliographic references that 

support the methodology of this study.  

Chapter 3 delineates the general methodological procedures used to derive the evaluated 

solution and generate type-curves. This chapter also presents a workflow for quantifying and 

analyzing parameters for each case. 

Chapter 4 assesses the applicability of the proposed workflow through four cases, working 

within the framework of the evaluated model. This section includes the validation of the model 

and a comparison of the results with existing models. 

Chapter 5 discusses and presents the research results, divided into five sections. It includes a 

qualitative and quantitative analysis of NFR geology and fluid rheology, focusing on their 

impact on drilling fluid rate and volume. The key sections are as follows: 

- The derivation of the evaluated solution to measure Non-Newtonian fluid rate and volume for 

two types of reservoirs. 

- A comparison of drilling fluid rate and cumulative loss volume in homogenous and NFR 

settings, with an analysis of how drilling-fluid pseudo-plasticity affects drilling fluid rate and 

volume in these two types of reservoirs. 

- A sensitivity analysis on NFR properties to observe their influence on Non-Newtonian fluid 

rate and volume through NFR with varying degrees of leak-off. 

- An integrated evaluation of the simultaneous impact of two critical factors, mud rheology, and 

dimensionless matrix contribution, on the cumulative volume of Non-Newtonian fluid aims to 

elucidate their interactive effects on total cumulative volume measurement. 

- An examination of the influence of wellbore boundary conditions on total cumulative volume, 

and the introduction of different criteria to categorize types of mud loss. 

Chapter 6 presents the main accomplishments of the research and suggests potential 

applications of the findings. 

Finally, Chapter 7 outlines future research directions, proposing methods to extend the model's 

applicability to different Non-Newtonian fluids through the COMSOL program. This chapter 

acts as a guide for subsequent researchers, offering insights into potential areas for further 

development and enhancement. 



24 

 

  

2 FUNDAMENTAL AND LITERATURE REVIEW 

This chapter offers a comprehensive literature review and outlines the fundamentals of drilling 

fluid loss, the characteristics of naturally fractured reservoirs (NFRs), the leak-off phenomenon, 

and pre-existing models used to measure total loss volume. The primary emphasis of this review 

is on the aspects related to NFRs. The review will delve into an in-depth exploration of the 

current literature and prevailing theories in the field, along with an examination of the 

methodologies, findings, and conclusions drawn from past research. The objective is to 

illuminate the current understanding and prevailing knowledge gaps regarding the complex 

interplay between drilling fluid loss, NFR characteristics, and the leak-off phenomenon. This 

in-depth literature review will ultimately serve as a foundation upon which the subsequent 

chapters of this thesis are built. 

2.1 Lost circulation 

Lost circulation is one of the most troublesome drilling problems. In addition to mud loss itself, 

lost circulation can also lead to formation damage, wellbore instability and derivative issues 

(e.g., pack-offs, stuck pipe), and wellbore-control issues (Mahmoudi et al., 2016). As a 

consequence, the economic implications are substantial, largely stemming from the loss of 

expensive drilling fluid into the formation. This loss often accounts for a significant non-

productive time dedicated to regaining circulation (Cook, 2011; Feng et al., 2015; Feng and 

Gray, 2018). Mud loss can be classified into four categories based on the severity of the losses, 

as detailed in Table 2.1. 

 

Table 2.1: Mud loss classification (Guillot et al., 1990; Pilehvari and Nyshadham, 2002; Majidi et al., 2008; 

Razavi et al., 2014). 

 

 

Classification of mud loss according to their severity 

 

 

loss rate less than 10 

bbl/h, ie, below 1.6 

m3/h 

 

Seepage losses 

 

 

10-100 bbl/h, ie,1.6-

16 m3/h 

 

 

Partial loss 

 

More than 100 bbl/h, 

ie, above 16 m3/h 

 

 

Severe loss 

 

No returns to the 

surface 

 

 

Total loss 
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Conventional drilling operations are commonly conducted under various circumstances and are 

classified according to Table 2.2. 

 

Table 2.2: Conventional drilling operations (Rehm, 2012). 

 

Three general regimes of drilling fluid density 
 

 

Overbalanced drilling 

 

 

 

Uses fluid density that produces 

about 150 psi overbalance 

against borehole pressure 

(BHP) 

 

 

Balanced pressure 

drilling 

 

 

 

Fluid column, either 

static or circulating, is 

balanced against BHP 

 

Underbalanced operations 

 

 

 

Deliberately keeps the fluid 

column below BHP by 

including drilling with air or 

gas 

 

Overbalanced drilling is achieved by using heavier drilling fluid to maintain wellbore pressure 

above formation pressure. Although this is done with the main purpose of killing the well, there 

are various problems accompanying overbalanced drilling which are detailed in Table 2.3. 

 

Table 2.3: Disadvantageous of overbalanced drilling (Ostroot et al., 2007) 

 

Overbalanced drilling disadvantages 

 

 

Loss 

circulation 

 

 

Pipe sticking 

 

 

Minimizing 

differential 

sticking 

 

 

Formation 

damage 

 

 

Reduction of 

well 

productivity 

due to skin 

 

Disguise 

lithology 

changes and 

transition 

zones 

 

Reduce the 

rate of 

penetration 

substantially 

 

 

Avoiding and mitigating lost circulation requires well-thought-out strategies and thorough 

preparation, taking into account all crucial factors during the operation. Lost circulation can be 

addressed through both preventive and corrective procedures, as illustrated in Table 2.4. 
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Table 2.4: Procedures to mitigate lost circulation (Boukadi et al., 2004; Alsaba, 2014; Al-Hameedi et al., 

2018; Elkatatny et al., 2020) 

 

Actions to mitigate lost circulation 

(Preventive and Corrective Approach) 

 

 

Casing 

program 

optimization 

[2] 

Precise 

controlled 

bottom 

hole 

pressure 

drilling 

[17] 

Wellbore 

Pressure 

Containment 

Improvement 

(WPCI) 

New 

organi

c salt 

drillin

g fluid 

system 

 

 

Plug 

while 

drill 

 

Compound 

plugged 

agent 

 

Appro

priate 

size 

for 

compo

site 

LCMs 

Using 

compositions 

of LCM 

rather than 

just one type 

of them 

(Savari 2016) 

Optimum 

particle size 

distribution 

which 

maximizes 

the Wellbore 

Strengthening 

(Razavi 

2016) 

 

Lost circulation is expected to occur in any type of lithology and formations as this issue has 

been encountered in many rock types at different depths. Table 2.5 classifies these types of 

formations. 

Table 2.5: Susceptible formations prone to mud losses (Lavrov et al., 2016). 

 

Susceptible formation for mud loss 
 

 

High-porosity high-

permeability rocks 

such as sandstone 

 

 

 

 

Seepage losses 

 

 

Unconsolidated sand 

or gravel and narrow 

fractures (natural or 

induced) 

 

 

 

Partial loss 

 

Unconsolidated sand 

or gravel and wider 

fractures (natural or 

induced) 

 

 

 

Severe loss 

 

Vugular or 

cavernous 

formations, heavily 

fractured rocks, and 

large fracture 

apertures 

 

Total loss 

 

As noted earlier, mud loss varies across different types of formations. These formations are 

categorized in Table 2.6 below. 
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Table 2.6: Various formations for drilling (Lavrov et al., 2016). 

 

 

Type of formations for drilling 
 

 
Unconsolidated formations 

 

 

Gravel 

Sand 

Silt 

clay 

Sand with pebbles or 

boulders 

 

 
Low to medium-strength 

formations 

 

 

Shale 

Sandstone 

 
Medium to high-strength 

formations 

 

 

Limestone 

Igneous (granite,basalt) 

Metamorphic (Slate,gneiss) 

 

Some common measures can be introduced to reduce lost-circulation incidents. They are 

categorized as shown in Table 2.7. 

 

Table 2.7: Measures to mitigate the lost-circulation phenomenon (Boukadi et al., 2004; Moazzeni et al., 

2012; Lavrov et al., 2016). 

 

 

Three methods to solve the mud loss problem 
 

 
Operational procedure 

 

 

 

Float valves attached to the 

drill string act as a 

mechanical barrier to avoid 

influx entering the drill string 

 
Optimize 

annulus fill-up 

rate 

 
Bridging agents 

 

 

 

Combine the material such as tuff fiber 

cement pills to mud. The pore size needs to 

be larger than about three times the solid 

particle diameter for the mud to be able to 

enter the pore space [5] 

 
 

There are numerous procedures and techniques to improve the interpretation of mud loss, in 

this regard, some of the common procedures are mentioned in Table 2.8. 
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Table 2.8: Technics for mud-loss interpretation (Boukadi et al., 2004). 

 

Combination of procedures to improve interpretation of mud loss and its 

mechanism 

 

Core analysis 

 

Logging 

Monitoring 

operational drilling 

parameters 

 

Pit level 

 

Flow rate data 

 

It should be noted that the implementation of preventive measures requires properly diagnosing 

the losses, both in terms of their mechanism and the location of the thief zone. Therefore, the 

characteristics of a formation dictate the type of treatment to control lost circulation. Selection 

of the proper solution depends on understanding the formation and identifying the type and 

cause of lost circulation. Table 2.9 provides some examples of diagnostic features of lost-

circulation mechanisms through various formations.  

 

Table 2.9: Formation types and diagnostic of lost circulation (Lavrov et al., 2016) 

 

Formation types and diagnostics of lost circulation 

High-porosity rock 

* Losses start gradually 

* Loss flow rate increases gradually and may then gradually decrease as filter cake builds up 

Vugular formation 

* Loss starts suddenly 

* Severe or total loss 

* Impossible to cure with LCM 

* Loss in specific types of formations; eg, carbonates (karst) 

* Drill bit may drop a few meters when it hits the vug 

Natural fracture 

* Loss starts suddenly as fractures are intersected by the wellbore 

Drilling-induced fracture 

* Loss often accompanies pressure surges (eg, when running pipe in a hole or starting the pump) 

 

The common model used to describe mud loss is Darcy’s law, occasionally taking into account 

the filter-cake effect (Moore, 1986; Carlson et al., 1996). It is important to note that mud losses 
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into the matrix primarily occur in high-permeability formations like sandstone. In such media, 

these losses can be controlled by building a low-permeability filter cake inside the wellbore, 

which mitigates further mud loss when the appropriate mud is utilized (Ziegler and Jones, 2014; 

Feng and Gray, 2018). In the case of caverns or vugs, there are no models to anticipate the mud-

loss volume due to the easiness of mud advancement through their system without any 

confrontation. 

2.2 Fractured reservoirs  

 

According to the classification provided by Canson (1985) and further elaborated by Feng et 

al. (2015), fractures within geological formations can be categorized into four principal types: 

natural fractures, induced fractures, cavernous formations, and formations with high 

permeability. While natural fractures can be present in any formation, they are more commonly 

found in geologic settings with ongoing tectonic activity (Cook, 2011). Fractures can also be 

induced while drilling due to drilling dynamics such as the drilling speed and weight-on-bit but 

most commonly due to excessive mud weights or pressures in the wellbore. Therefore, proper 

planning is required to prevent inducing fractures by adjusting the drilling and hydraulic 

parameters, since once a fracture is induced, less pressure is needed to lengthen the fracture 

further into the formation. Cavernous or vugular zones are fractures that create a large pathway 

for all or nearly all drilling fluid to invade the formation resulting in total loss. These zones are 

difficult to seal and management of these zones often requires complex drilling strategies. 

Highly permeable zones are more prone to induced fractures and might result in forming large, 

connected networks that are difficult to seal. Also, it can be said that NFRs are composed of 

random distributions of fractures, vugs, and matrices. The distribution of fractures in the 

reservoir can be massive, localized, oriented, or clustered along a fault. The nature of the 

fractures and their distribution has considerable influence on the pressure response of a well in 

a test. NFR can be represented with different models based on the type and distribution of the 

fractures within the system. These representative models are homogeneous reservoir, multiple 

region or composite reservoir, anisotropic reservoir, single fracture reservoir, and double-

porosity reservoir. The main types of fractures have been categorized in Fig 2.1. 
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Fig 2.1 Main types of fractures (Alsaba, 2014). 

 

The majority of lost circulation occurs through NFR, especially in drilling operations in deep 

water, depleted reservoirs, and fractured shale. Drilling through NFRs always presents 

challenges as a result of uncertainty in the loss rate and fracture sizes. However, offset well data 

should be applied to precisely anticipate the depths at which lost circulation is to be expected, 

which will help to plan accordingly. A total loss situation in an NFR that is highly pressurized 

can pose significant challenges. This loss situation must be addressed before drilling continues. 

In the case of drilling-induced fractures, Kostov et al. (2015) employed either a steady or time-

variable injection rate at the wellbore as the boundary condition to initiate fractures. Yet, this 

model does not accurately reflect the actual conditions at the fracture mouth where, typically, 

a consistent bottom-hole pressure is maintained during drilling. This contrasts with a scenario 

where a constant flow rate is assumed at the well's inner boundary. Such differing boundary 

conditions can result in varying mud loss volumes, indicating that a constant rate model may 

not fully capture the complexities of the process. Furthermore, it is almost impossible to regain 
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mud loss with an injection-rate boundary condition because all the injected fluid is forced into 

the fracture. A comprehensive lost circulation model should couple mud circulation in the 

wellbore for instantaneous anticipation of bottom hole pressure (BHP), instead of defining just 

an inner-boundary condition at the bottom hole. Therefore, the dynamic BHP and mud-loss 

flow can be measured.  

2.3 Drilling operations and Bottom Hole Conditions 

 

In the context of the solution presented in this study, it is imperative to maintain constant 

differential pressure intervals during drilling operations. To achieve this, a constant bottom hole 

pressure (CBHP) assumption is advocated, necessitating the use of an appropriate technique to 

keep the BHP constant. Maintaining BHP is a pivotal factor in drilling operations to ensure 

safety and efficiency. Various techniques are available to achieve constant BHP, including 

drilling with CBHP, managed pressure drilling (MPD), dual gradient drilling (DGD), and 

pressurized mud cap drilling (PMCD). The choice of the appropriate technique is contingent 

upon the specific drilling conditions and objectives, highlighting the significance of selecting 

the right method for maintaining constant BHP for the successful application of this model in 

drilling operations. The importance of maintaining constant pressure is underscored by its role 

in mitigating risks associated with differential pressure fluctuations. These fluctuations can lead 

to wellbore instability, drilling fluid losses, and even catastrophic blowouts. By applying the 

inner-constant pressure assumption, commonly utilized for water influx calculations in gas and 

oil reservoirs, we can also determine drilling-fluid loss volumes with greater accuracy. This 

principle further reinforces the necessity of constant BHP, as it provides a more stable drilling 

environment, optimizing operational safety and efficiency. Therefore, when selecting the 

appropriate technique to maintain constant BHP, criteria such as the geological conditions, well 

depth and configuration, and anticipated pressure variances must be thoroughly evaluated. This 

approach ensures that the selected method aligns with the specific requirements of the drilling 

operation, thereby enhancing its success rate. Fig 2.2 illustrates how an MPD system maintains 

wellbore pressure constancy across each interval, exemplifying the practical application of 

these concepts in real-world drilling scenarios. 
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Fig 2.2 Illustration shows maintaining constant differential pressure intervals during drilling operations. 

 

2.4 Mud classifications and existing drilling fluid-loss models 

 

Drilling fluid, or mud, is a specialized fluid circulated through a wellbore to facilitate drilling 

operations. The choice of specific drilling fluid systems is optimized based on the 

characteristics of the targeted geological formation. Essential to its functionality, a drilling fluid 

must possess certain desirable physical properties. For instance, it must have a viscosity that 

permits easy pumping and circulation at pressures commonly used in drilling operations, 

without generating excessive differential pressure. Additionally, the fluid must exhibit 

sufficient thixotropic behavior to suspend cuttings within the borehole when the fluid 

circulation is halted. Drilling fluids can be categorized based on their mechanical and 

rheological responses to external pressure and shear stress. The first category considers the 

fluid’s resilience to the intense pressures deep within the wellbore, maintaining its structural 

integrity and flow characteristics. The second category focuses on the fluid's behavior under 

shear stress, which occurs when different fluid layers move at varying speeds, as seen during 

fluid circulation. This classification is critical for understanding how the fluid will perform, 
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particularly its ability to carry drill cuttings to the surface amidst the mechanical forces of 

drilling operations. This classification is further illustrated in Fig 2.3.  

 

Fig 2.3 Fluid behavior classification 

 

As another classification, drilling fluids can be categorized based on their base fluid, as shown 

in Table 2.10. 

 

Table 2.10: Drilling fluid classification (Boukadi, 2010; Alsaba, 2014; Al-Hameedi, 2018; Elkatatny, 2020). 

 

 Water-Based Muds (WBM) 

Drilling fluid systems Nonaqueous-Based Drilling Fluids (NADF) 
 Pneumatic Systems 

 

Several analytical and numerical models have been developed historically to estimate drilling 

fluid losses into formations. The advantages and disadvantages of each model are presented in 

Table 2.11 below. 

 

 

 

 

 

 

 

 

 

 

Classification of 
fluid behaviour

Newtonian 
fluid

Non-Newtonian 
fluid behaviour

time-
independent

Shear-thinning or 
pseudoplastic fluids

The power-
law or 

Ostwald de 
Waele 
model

Carreau 
viscosity 
equation

Cross 
viscosity 
equation

Ellis fluid 
model

Viscoplasti
c fluid 

behaviour

Bingham 
plastic 
model

Herschel-
Bulkley fl 
uid model

Casson 
fluid model

Shear-
thickening 
or dilatant 

fluid 

time-
dependent

Thixotropy Rheopexy

visco-elastic

Maxwell
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Table 2.11: Comparative Analysis of Previous Models: Strengths and Weaknesses in Loss Volume 

Measurement. 

 

MODEL STRENGTH WEAKNESSES 
Sanfilippo et 

al. (1997)  
Simple and flexible Newtonian mud, non-deformable NFR, 

uniform aperture, do not consider leak-off 
Lietard et al. 

(1999) 
Evaluate the contribution of the natural 

fractures to the total permeability of a reservoir 

rock 

Newtonian mud, non-deformable, constant 

aperture, incompressible mud, neglecting 

fracture deformation 
Lavrov and 

Tronvoll 

(2003) 

 

Considering the linear deformation of rock 
Newtonian mud, linear fracture, finite 

length, Newtonian mud, constant leak-off 

from the walls of the fracture 
Lavrov and 

Tronvoll 

(2004) 

Power-law drilling fluid in deformable 

fracture, considering fracture aperture, 

borehole pressure, formation 

Neglecting leak-off through walls of 

fracture 

 

Majidi et al., 

(2008 and 

2010) 

The radial flow of a yield-power law fluid into 

an infinite fracture, effects of formation fluid 

into the model (if the ratio of formation fluid 

viscosity to drilling-fluid rheology is less than 

or equal to 0.01, the effects of formation fluids 

can be neglected) 

 

non-deformable and constant aperture 

fracture, incompressible drilling fluid, no 

leak-off from the walls of the fracture 

Shahri and 

Majidi 

(2011) 

Applying exponential deformation function 

which replaced with linear deformation of 

rock.  

Does not consider the permeability of the 

fracture walls and leak-off 

Sun and 

Huang 

(2015) 

 

Considering deformable fracture 
The numerical stability of the explicit 

method requires very small-time steps 

especially when the flow behavior index 

deviates from the unity 
 

Xia et al. 

(2015a and 

2015b)  

A complex methodology that couples the 

impacts of the formation matrix and the 

fracture, the methodology focuses on 

characterizing a network of natural fractures 

(as opposed to a single natural fracture, 

Due to the complexity of developed model, 

it requires significant computational time 

which restricts the application of the 

developed model for most practical cases 

of mud-loss data analysis in real-time 
 

Albattat and 

Hoteit (2019) 

 

Using parabolic shape for deformation of 

upper plate in terms of hydraulic pressure 

Applying parabolic shape for deformation 

of the upper plate in terms of 
hydraulic pressure, however, this treatment 

is not conclusive since several solid spacers 

were used to maintain a uniform gap 
Albattat et al. 

(2022) 

Using derivative-based solution to reduce 

uncertainty 

Considering one hydraulic aperture rather 

than a system of matrix-fracture and 

neglecting mud infiltration in the porous 

media 

 

 

2.5 Type-Curve analysis application 

Type-curve analysis is a pivotal tool in reservoir engineering, particularly for evaluating well-

test data in NFRs. Log-log type-curve matching to rate-time data provides insights into the 

reservoir's characteristics such as fracture-matrix interactions and storage capacities solely 

using drilling-fluid data. Originally developed for homogeneous systems (Sun, 2015), the 

technique was extended to NFRs by researchers like Da Prat (1990) and Sageev et al. (1985), 

accounting for the complex flow patterns in these reservoirs. These adaptations were necessary 

because NFRs behave differently from homogeneous systems due to the presence of matrix and 
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fractures with distinct properties. Traditionally tailored for Newtonian fluids, type-curve 

analysis has been adjusted to handle Non-Newtonian fluids as well, where viscosity changes 

with flow conditions. This adaptability underscores the technique's versatility, allowing it to 

remain relevant for modern reservoir engineering applications. Type-curve analysis not only 

diagnoses the current state of a reservoir but also predicts future performance, guiding decisions 

for well interventions and recovery strategies. As such, it continues to be an indispensable 

method for well-test interpretation and reservoir management, balancing historical 

development with modern requirements for accuracy and applicability. 

2.6 Theoretical foundation 

 

There are various analytical and numerical models developed to model the dynamics of Non-

Newtonian fluid flow from the wellbore to homogenous and NFR reservoirs. This section 

summarizes the models found in the literature to characterize the models applied to measure 

Non-Newtonian fluid rate and volume which can be categorized into two main procedures: 

 

2.6.1 Non-Newtonian fluid volume measurement based on linear momentum 

 

Lavrov and Tronvoll (2004) developed several theoretical models that considered mud losses 

(Non-Newtonian fluid) into a deformable fracture of finite length, then, Liétard et al., (1999) 

developed a model based on the radial flow of a Bingham-plastic fluid into an unlimited-

extension fracture. Non-Newtonian fluid flow through fracture medium was described by the 

local pressure drop because of laminar flow in a slot of width w. According to the linear 

momentum equation, the pressure gradient and average velocity are interrelated (Liétard et al., 

1999b; Majidi et al., 2010) 

dP

dr
=

12μpv

w2 +
3τ𝑦

w
 ……………………………………………………...………..…………Eq 2.1 

where v, P, r, w, τy and μp are the average velocity, differential pressure, radial distance, 

fracture hydraulic width, yield stress, and plastic viscosity of the fluid, respectively. 

Considering constant overpressure established at the wall, Liétard et al., (1999) obtained a 

relationship for mud-invasion velocity versus time. This model predicted that the mud losses 

would eventually stop because of the yield stress of drilling fluid. The ultimate quantity of mud 

loss is a function of the yield value of the drilling fluid and the amount of overpressure. The 

model assumes a constant drilling overpressure (i.e., the difference between the circulating 
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pressure and the static reservoir pressure does not change with time). The governing equation 

is derived by use of the principles of conservation of mass and conservation of linear 

momentum for transient radial flow in a fracture. Pilehvari and Nyshadham (2002) have shown 

the approximately steady-state laminar solution of the momentum-balance equation for radial 

flow is used to model mud flow in a single fracture but it has some restrictions such as does not 

consider the transient flow effects which are so important during the short times and is 

important for mud loss issues, particularly in fractured reservoirs; the other deficiency is 

neglecting the fluid leak-off through the walls of the natural fracture (Dual-porosity model) into 

formation for heterogeneous reservoirs; in reality, part of the advancing drilling fluid in the 

fracture may leak off into the reservoir rock, particularly when the permeability of the formation 

is high. 

 

2.6.2 Non-Newtonian fluid volume measurement based on radial diffusivity equation 

 

Building on the seminal work of Ikoku and Ramey (1979) on modeling Non-Newtonian fluid 

flow within homogeneous reservoirs, Olarewaju (1992) introduced a dual-porosity partial 

differential equation (PDE) for describing the radial flow of Non-Newtonian fluids through 

NFR. This work was further advanced by Escobar et al. (2011), who incorporated a pseudo-

steady-state interporosity transfer function into the Non-Newtonian radial diffusivity equation, 

enhancing its ability to model Non-Newtonian fluid behavior in double porosity systems. This 

comprehensive modeling approach integrates mass conservation principles, transport 

equations, and state equations to formulate a PDE that effectively captures the time-dependent 

flow of Non-Newtonian fluids, such as drilling fluids, through porous media. The model utilizes 

a specialized interporosity transfer function that is designed to represent a "pseudosteady-state" 

flow regime within the reservoir matrix, a critical aspect considering that both pseudosteady-

state and transient flow regimes play significant roles in describing fluid movement from the 

matrix to fractures. This thesis specifically focuses on the pseudosteady-state flow regime. This 

research aims to rigorously evaluate the PDE model for Non-Newtonian fluid flow within a 

dual-porosity reservoir, taking into account pseudo-steady-state interporosity transfer 

conditions, as outlined by Garcia-Pastrana et al. (2017). The foundational equations and the 

theoretical framework for this analysis are detailed in Table 2.12 (section II.2.8), which 

introduces eight distinct models, each tailored to specific fluid rheology and boundary 

conditions. These models are applied in various contexts, including well-test analysis and water 
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influx measurement, highlighting the diverse applicability of the radial diffusivity equation. 

Table 2.12 provides a systematic categorization of these models into eight different cases. 

 

Table 2.12: Radial diffusivity-based equation for various cases. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radial 
diffusivity 
based equation 
for different 
cases

II.2.1 Flow of newtonian fluids through homogeneous reservoirs under constant rate 

II.2.2 Flow of newtonian fluid (mud) through homogeneous reservoirs under inner 
constant pressure

II.2.3 Flow of Non-Newtonian fluids through homogeneous reservoirs under 
constant rate 

II.2.4 Flow of Non-Newtonian fluids through homogeneous reservoirs under inner 
constant pressure

II.2.5 Flow of newtonian fluids through Natural fractured reservoir (double porosity 
model) with pseudosteady-state interporosity transfer under constant rate

II.2.6 Flow of newtonian fluids through Natural fractured reservoir (double porosity 
model) with pseudosteady-state interporosity transfer under inner constant pressure 

II.2.7 Flow of Non-Newtonian fluids through NFR (double porosity model) with 
pseudosteady-state interporosity transfer under constant rate 

II.2.8 Flow of Non-Newtonian fluids through NFR (double porosity model) with 
pseudosteady-state interporosity transfer under inner constant pressure 
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3 MATHEMATICAL MODELING AND METHODOLOGY 

 

This thesis focuses on measuring the cumulative volume of Non-Newtonian fluid flow through 

NFR (section 2.5.2 at Table 2.9). The aim is to analyze the flow across a specified inner radius 

over a given time interval in response to a specific differential pressure between an outer 

boundary and the specific inner radius. Additionally, simplifications particularize the 

applicability to homogeneous reservoirs. In this regard, the underlying equation is the partial 

differential equation for Non-Newtonian flow within a double porosity reservoir under pseudo-

steady-state inter-porosity transfer conditions, as proposed by Garcia-Pastrana et al. (2017). The 

model core structure comprises a conservation of mass law, a transport equation, and an 

equation of state, and a diagram is provided below to outline the schematic of the model. To 

analyze Non-Newtonian fluid flow through NFR and homogeneous reservoirs, the proposed 

evaluated solution in this study is solved under a wellbore constant pressure assumption, 

resulting in both numerical and analytical solutions. The presented solution aims to quantify 

the drilling-fluid rate and cumulative loss volume at distinct time intervals for the NFR. The 

outer boundary is conceptualized as an infinite-acting reservoir condition. The inner-constant 

pressure assumption, frequently employed for water-influx calculations in gas and oil 

reservoirs, can similarly be used to determine drilling-fluid loss volumes. Although Da Prat 

(1990) proposed a solution for the dual-porosity model under a constant pressure drop at the 

wellbore, his methodology is based on the premise of Newtonian fluids. Such an assumption is 

not considered realistic for this study's objective, which focuses on assessing the flow of drilling 

fluid through the NFR. In this context, the influence of the outer boundary does not appear, 

positing that the infiltrating Non-Newtonian fluid does not interact with the outer boundary as 

it moves through the combined system (fracture+matrix). 
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Fig 3.1 Schematic representation of the proposed model for fractured reservoir Garcia-Pastrana et al., 

(2017). 

 

3.1 Assumptions 

 

The assumptions listed for Non-Newtonian fluid flow through naturally fractured reservoirs are 

critical for the analytical tractability and simplification of the complex physical processes 

involved. These assumptions are made to strike a balance between mathematical rigor and the 

practical applicability of the model. While some assumptions, such as the homogeneity of 

matrix blocks and constant fracture porosity, might seem idealized, they are essential for 

developing a foundational understanding of fluid flow in NFRs. These assumptions are aligned 

with common practices in reservoir engineering, particularly when employing dual-porosity 

models, and are supported by existing literature in the field. The realism of these assumptions 

varies; however, they are constructed on the premise that simplifying complex reservoir 

characteristics enables the derivation of meaningful insights into fluid flow dynamics. The 

assumption of constant pressure within the wellbore, rather than a constant rate, for instance, 

reflects a practical approach to measuring fluid influx and reservoir management through 

techniques such as managed pressure drilling. This particular assumption is not only feasible 

but also common in dual-porosity modeling, facilitating the analysis of fluid flow under 

controlled conditions that closely mimic operational practices. The importance of these 

assumptions lies in their ability to define the scope and applicability of the model. They 
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delineate the conditions under which the model's predictions are valid, guiding engineers in 

applying the model to real-world scenarios with similar characteristics. Violating these 

assumptions could lead to discrepancies between the model's predictions and actual reservoir 

behavior. For example, deviations from the assumed homogeneity and isotropy of matrix 

blocks, or changes in fracture porosity, could affect the radius of invasion and fluid flow 

patterns, potentially necessitating adjustments to the model or the application of different 

modeling techniques to accurately capture the observed dynamics. Therefore, while these 

assumptions simplify the modeling process, their limitations and the implications of their 

violation must be acknowledged and addressed through sensitivity analyses, comparative 

studies, or model refinement to ensure the model remains a valuable tool for understanding and 

managing Non-Newtonian fluid flow in NFRs. 

 

• A vertical well penetrates the entire thickness of the reservoir. 

• The reservoir thickness is uniform (constant). 

• The matrix blocks are in a systematic array of identical rectangular parallelepipeds. 

• The matrix blocks are homogeneous and isotropic. 

• The matrix blocks have a constant porosity (Φm). 

• The fracture network is arrayed as an orthogonal system of continuous and uniform 

fractures. 

• The fracture porosity (Φf) is unique to the fracture system (i.e., is constant) 

• The double porosity media is considered to be homogeneously distributed. 

• Flow to the wellbore occurs only through the fracture network. 

• Flow occurs only between the matrix blocks and fracture network (no flow between 

matrix blocks). 

• The reservoir (matrix) and fracture permeabilities are constant. 

• The system contains a slightly compressible fluid and Isothermal. 

• The effects of gravity are negligible. 

• The pressure gradients are small. 

• Non-Newtonian fluids obey the Ostwald de Waele power law relationship over the flow 

regime of interest. 

• The fluid is classified as pseudoplastic and exhibits time-independent behavior; the flow 

behavior index values range from zero to one, with a value of one corresponding to the 

case of a Newtonian fluid. 
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• Single phase flow 

3.2 Diffusivity-based model for NFR 

 

The partial differential equation evaluated in the literature, proposed by Garcia-Pastrana et al., 

(2017) is applied to describe the flow behavior of Non-Newtonian fluids as presented in Eq 3.1 

 

∂2pf

∂r2 +
n

r
[

∂pf

∂r
] =

nµeff

kf
. [

q

2πhr
]

n−1

. [(φct)f
∂pf

∂t
+ (φct)m

∂pm

∂t
] …..………..….……….……Eq 3.1 

 

The source term equation, which adds the fluid from the fracture to the matrix is defined by 

 

∂pm

∂t
=

α

(φct)m

km

μeff
[

qm

∆L2
]

1−n

. (pf − pm)…..…………….........…………….…….…………Eq 3.2 

 

Where pf, pm, r, t, kf, km, α, qm, φ, n, h, μeff, ΔL, and ct represent the pressure drop in the fracture 

system, pressure drop in the matrix system, radius, time, fracture permeability, matrix 

permeability, shape factor, matrix flow rate, porosity, flow behavior index, reservoir height, 

effective viscosity, length, and total compressibility. Dimensionless variables, Eq 3.3 and Eq 

3.4, as cited in the literature (Da Prat, 1990; Garcia-Pastrana et al., 2017a), are used to derive 

Eq 3.5. These dimensionless quantities allow for the comparison and interpretation of data 

across different wells, reservoirs, and operational conditions by normalizing the data against 

reference quantities. These variables are then applied to transform Eqs 3.1 and 3.2 into their 

dimensionless forms. The dimensionless pressure in the fracture network is 

 

pfD =
(2πh)nkf(pi−pf)

qnμeffrw
1−n  ………………………………………………….…………………..Eq 3.3 

 

Here, pi, rw, and q represent the initial pressure, wellbore radius, and flow rate respectively. The 

dimensionless pressure in the matrix is 

 

pmD =
(2πh)nkm(pi−pm)

qnμeffrw
1−n  …………………...……………...……………….………………Eq 3.4 

 

The dimensionless rate is derived as 

 



42 

 

  

qD = [
μeff.rw

1−n

kf.(2πh)n.(pi−p)
]

1

n
. q ………..…………..…………………………....……………...Eq 3.5 

 

Dimensionless time 

 

tD =
q1−nkf

n(φct)t(2πh)1−nμeffrw
3−n . t  ………………………..………….……...……….………..Eq 3.6 

 

Where the total expansion of the reservoir is 

 

(Φct)t = (Φct)f +  (Φct)m ………………………….....……………..…………………Eq 3.7 

 

and the dimensionless radius is 

 

rD =
r

rw
 ….…………………………………………...……...…..………...........………...Eq 3.8 

 

At the same time, there are three dimensionless terms have been introduced to describe the NFR 

characteristics which introduced below,  

 

The storativity ratio is defined as 

 

ω =
 (ΦV)f

 (ΦV)f+ (ΦV)m
  ………………………………….……....………...………..………….Eq 3.9 

 

where interface inter-porosity coefficient λ defined as 

 

λ = α
km

kf
rw

2  ...………………………...…....………..………...….....…….…….……….Eq 3.10 

 

The dimensionless matrix contribution, D, is defined as 

 

D =
qm

q

2πhrw

∆L2  ……………….…………......…….…...……..……....………..………….Eq 3.11 

 

With these dimensionless variables, Eq 3.1 and Eq 3.2 can be written in the dimensionless form 

proposed by Escobar et al. (2011) 
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∂2pfD

∂rD
2 +

n

rD

∂pfD

∂rD
= rD

1−n (ω
∂pfD

∂tD
+ (1 − ω)

∂pmD

∂tD
) , tD > 0 …..……...…….….………….Eq 3.12 

 

For the source term, the dimensionless form is defined by (Escobar et al. 2011) 

 

∂pmD

∂tD
=

nλ

(1−ω)
. D1−n. (pfD − pmD)  ………………...………..…….................………….Eq 3.13 

 

 

3.3 General and numerical solution 

 

The study carried out in this thesis commences with a rigorous investigation of the solutions to 

fluid flow models within double porosity reservoirs, specifically under the operational 

paradigms of constant rate and constant pressure. Our inquiry begins with an analytical 

revisitation of the established Garcia-Pastrana et al. (2017) model, traditionally framed within 

a constant rate context. In a departure from the original study, we recalibrate the model to a 

constant pressure framework, an approach that aligns more closely with field-realistic scenarios 

(specifically the drilling-fluid loss phenomenon) and the operational parameters that define 

them. This adaptation is crucial, as it imparts a nuanced understanding of the pressure dynamics 

that are often paramount in reservoir management. Building on this groundwork, the study 

pivots to a focused analysis of Non-Newtonian fluid flow through NFR as delineated in Section 

2.5.2 (Table 2.9). By measuring the cumulative volume of fluid over time and the response to 

differential pressure across a defined inner radius, we gain critical insights into the behavior of 

such fluids under specific conditions. The model is further refined with simplifications to render 

it applicable to homogeneous reservoirs, a common scenario in the field. Employing the 

foundational partial differential equation for Non-Newtonian flow within a double porosity 

reservoir, which encompasses pseudo-steady-state inter-porosity transfer conditions as 

proposed by Garcia-Pastrana et al., we extend the dialogue on reservoir characterization. To 

address the flow dynamics in NFR and homogeneous reservoirs, the proposed model within 

this study is resolved under a wellbore constant pressure assumption. The fruit of this labor is 

a set of both numerical and analytical solutions, which are meticulously derived and cataloged 

in Appendices A and B, respectively. These evaluated solutions form the bedrock for 

subsequent qualitative and quantitative analyses, providing a comprehensive framework to 

interrogate the mechanics of Non-Newtonian fluid flow in reservoirs. This chapter is structured 

to facilitate an in-depth understanding of these phenomena. The first section, "The Solution 
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Under Constant Rate Assumption," scrutinizes the constant rate condition, while the second, 

"The Solution Under Constant Pressure Assumption," delves into the particulars of maintaining 

a constant pressure. Each segment elaborates on the distinctive features and resultant dynamics 

specific to the condition in question, thus offering a robust conceptual toolkit for practitioners 

and researchers alike in the domain of reservoir petroleum engineering. In bridging the gap 

between the established insights of the Garcia-Pastrana model and the novel approaches 

introduced in this study, the chapter emphasizes a bifocal perspective that not only enriches the 

scholarly discourse but also informs the strategic development of more effective and predictive 

reservoir management techniques. Additionally, the findings hold particular relevance for 

drilling operations, offering pivotal knowledge that can aid in managing and mitigating drilling 

fluid loss, a critical operational challenge. This dual application showcases the practical 

implications of the research, underscoring its importance in both the optimization of reservoir 

exploitation and the enhancement of drilling efficiency. 

 

3.3.1 The Solution Under Constant Rate Assumption for Non-Newtonian Fluids in 

NFRs 

This section elucidates the solution methodology applied to the Garcia model for double 

porosity reservoirs characterized by Non-Newtonian fluid behavior. The analytical approach 

employs the Laplace transform to determine essential solutions. To achieve this, specific initial 

and boundary conditions have been meticulously established, which are crucial for the accurate 

depiction of the solution relevant to our scenario. The derived general solution of Garcia-

Pastrana et al. (2017), expressed in a dimensionless format within the Laplace domain, is 

encapsulated by 

 

pfDNN(rD, u) = rD

1−n

2 [C1I1−n

3−n

(
2

3−n
. √u. g(u) . rD

3−n

2 ) + C2K1−n

3−n

(
2

3−n
. √u. g(u) . rD

3−n

2 )]…....Eq 3.14 

It incorporates the modified Bessel functions of the first and second kinds, denoted by I and K 

respectively, with order ν. Here, 'u' symbolizes the Laplace transform variable, and the function 

'g(u)' is defined as 

 

g(u) =
ω(1−ω)u+nλD1−n

(1−ω)u+nλD1−n  ……………….….............….........…....…….…………………Eq 3.15 

The initial condition presumes a uniformly distributed pressure throughout the reservoir, which 

is mathematically articulated in Eq 3.16. In contrast, the inner boundary condition is established 
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based on a constant flow rate, detailed in Eq 3.17, and it applies irrespective of the temporal 

frame under consideration. 

 

pmDNN(rmD, 0) = pfDNN(rfD, 0) = 0 ……………..……….......…..................………...Eq 3.16 

 

[rD.
dp̂fD(rD,u)

drD
]

rD=1
=−

1

𝑢
    ……………….….……......…..……….…....……....………...Eq 3.17 

 

As for the outer boundary condition, the model assumes the reservoir is infinite-acting, meaning 

the outer boundaries exert no influence. This translates to the condition 

 

lim
rD→∞

pfDNN(rD, t) = 0……..……..……...................……….…………..………………Eq 3.18 

 

Building upon these conditions, the solution within the Laplace domain for an infinite-acting 

reservoir, considering a constant flow rate at the wellbore, is precisely formulated as 

p̂fD(rD, u) =
rD

1−n
2 .K1−n

3−n

(
2.√u.g(u)

3−n
.rD

3−n
2 )

u.√𝑢.𝑔(𝑢) .K 2
3−n

(
2.√u.g(u)

3−n
)
 …….……..……...….…..……......................……...Eq 3.19 

 

Due to the complexities inherent in the equation, direct analytical inversion from the Laplace 

to the real domain is not feasible. As such, the Gaver-Stehfest numerical inversion algorithm is 

utilized to translate Eq 3.19 into a form that is applicable for practical use. 

 

3.3.2 The Solution Under Constant Pressure Assumption for Non-Newtonian Fluids in 

Reservoirs 

This section explores the solution for Non-Newtonian fluid flow in double porosity reservoirs 

under a constant pressure assumption, diverging from the constant rate conditions previously 

discussed in the literature and revisited above. This new approach mirrors practical wellbore 

conditions more accurately and allows for a deeper understanding of pressure-driven flow 

behavior in such reservoirs. The analytical solutions in the Laplace domain are modified to 

reflect these conditions and are numerically inverted to real-time domains to provide actionable 

insights for reservoir management and drilling operations. We divide this section into two parts. 

First, we discuss solutions for NFRs under constant pressure. Then, we examine solutions for 

homogeneous reservoirs, applying the same pressure conditions. These discussions are aimed 
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at clarifying fluid behavior in each reservoir type, aiding in effective management and drilling 

practices. 

 

3.3.2.1 The Solution for NFR 

 

In this part of the study, we diverge from the dual-porosity model solutions provided by Garcia-

Pastrana et al. (2017), which were based on a wellbore constant rate assumption suitable for 

well-test applications. Instead, our study employs a wellbore constant pressure approach to 

develop an appropriate solution for quantifying Non-Newtonian fluid volume. For quantifying 

the fluid volume, the procedure outlined by Archer has been utilized (Archer, 2000). To solve 

Eq 3.12 and Eq 3.13, initial and boundary conditions are considered as: 

Initial Condition: uniform pressure distribution 

 

pmDNN(rmD, 0) = pfDNN(rfD, 0) = 0 ……………..……….............................………...Eq 3.20 

 

Inner boundary condition: constant flow pressure 

 

pfDNN-(
∂PfD

∂tD
)=1……………….….……......…..……...…………...…...……....………...Eq 3.21 

 

The outer boundary condition is considered an infinite-acting reservoir, as shown below 

 

lim
rD→∞

pfDNN(rD, t) = 0……..……..……...................…........……….…..………………Eq 3.22 

 

After solving the double-porosity diffusivity model for Non-Newtonian fluids (Eq 3.12 and Eq 

3.13), the general solution is presented in the literature (Arfken et al., 2013) in dimensionless 

form as modified Bessel functions of the first and second kind as shown above at Eq 3.14. Then, 

in this section, Eq 3.14 is solved under a wellbore constant pressure condition to derive the 

dimensionless pressure, as presented below 

 

p̂fD(rD, u) =
rD

1−n
2 .K1−n

3−n

(
2.√u.g(u)

3−n
.rD

3−n
2 )

u .K1−n
3−n

(
2.√u.g(u)

3−n
)

 …….……..……...….…..……...........……....……...Eq 3.23 

In the literature, there are numerous algorithms designed for the numerical inversion of Laplace 

transforms. It is essential to focus on methods that are stable, accurate, and efficient. The Gaver-
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Stehfest inversion method (Stehfest, 1970; Kuhlman, 2013) meets these criteria for a majority 

of practical cases encountered. Owing to its high accuracy and stability for most pressure 

solutions, it stands as one of the most widely adopted methods in this field (Kuhlman, 2013).  

Since Eq 3.23 is solved numerically by employing the Stehfest inverse algorithm to convert the 

solution in the Laplace domain to those in the real-time domain. The results indicate that the 

differential pressure remains constant at different times within the wellbore, confirming the 

observed case. These results are presented in Fig 3.2. According to the Darcy's law, it is feasible 

to relate dimensionless pressure with dimensionless rate as below 

 

qD = −rD.
∂pD

∂rD
 …..……………….…..……...........…………………..……....…………Eq 3.24 

 

Subsequently, we utilize Eq 3.23 and incorporate it into Eq 3.24 to derive the dimensionless 

rate. The resulting equation, provided below, is used to measure the flow of Non-Newtonian 

fluid through the NFR 

q̂D(rD, u) = −rD.
∂p̂D(rD,u)

∂rD
= −rD.

∂

∂rD
(

rD

1−n
2 .K1−n

3−n

(
2.√u.g(u)

3−n
.rD

3−n
2 )

u .K1−n
3−n

(
2.√u.g(u)

3−n
)

  ) =

(1−n).r
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2 .K1−n
3−n

(
2.r

3−n
2 .√u.g(u)

3−n
)

2.u.K1−n
3−n

(
2.√u.g(u)

3−n
)

−

r
1−n

2 +
3−n

2 .√u.g(u).[−K1−n
3−n

−1
(

2.r
3−n

2 .√ug(u)

3−n
)−K1−n

3−n
+1

(
2.r

3−n
2 .√ug(u)

3−n
)]

2.u.K1−n
3−n

(
2.√u.g(u)

3−n
)

................................................Eq 3.25 

 

To measure Non-Newtonian fluid dimensionless rate through NFR, Eq 3.25 has been solved 

numerically by applying the inverse Laplace Transform by Gaver-Stehfest, (1970) algorithm 

(MATLAB application has been used for the calculation). Dimensionless rate versus time has 

been graphed in Fig 3.2. The cumulative drilling-fluid recovery is defined by (Archer, 2000) 

 

QD(rD, tD) = ∫ qD(rD, tD) dtD
tD

0
………………..…………............……………………Eq 3.26 

 

Therefore, dimensionless Non-Newtonian fluid volume is measured below, (Appendix A) 
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QD(rD, u) =
1

u
. qD(rD, u) = −

(1−n).r
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2 .K1−n
3−n

(
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(
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2 .√ug(u)

3−n
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2.u2.K1−n
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(
2.√u.g(u)

3−n
)

 ………….….......……..…… Eq 3.27 

 

Eq 3.27 is numerically solved for NFR and drilling-fluid properties with specific values of λ = 

5E-6, ω = 1E-3, n = 0.5, and D = 1E3. Under the assumption of constant wellbore pressure, the 

cumulative drilling-fluid loss versus time is illustrated in Fig 3.2. 

 

 
Fig 3.2 Measured dimensionless pressure, rate, and volume of drilling fluid by the proposed model. 

 

3.3.2.2 The Solution for Homogenous reservoir (After simplification) 

 

After simplifying the proposed complex solution for NFR (Eq 3.12 and Eq 3.13), it becomes 

applicable to describe the flow of a slightly compressible, Non-Newtonian, power-law fluid in 

a homogeneous porous medium proposed by Ikoku and Ramey, (1979). One initial and two 

boundary conditions in the dimensionless form are assumed to derive the evaluated solution for 

a homogenous reservoir under wellbore constant pressure. 

 

pDNN(rD, 0) = 0...…..……….……………..……..……..………………….…………..Eq 3.28 

pDNN(1, tD) = 1…..………………..……………..……...……………….……………..Eq 3.29 
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lim
rD→∞

pD(rD, tD) = 0…..……..…………….......…..…...…......………………………...Eq 3.30 

 

Thus, in this study, the solution for a homogeneous reservoir can be derived in the Laplace 

domain under wellbore constant pressure, as presented below 

p̂(rD, u) =
rD

1−n
2 .K1−n

3−n

(
2

3−n
.√u .rD

3−n
2 )

u .K1−n
3−n

(
2

3−n
.√u)

 ………….……..…….………...………….…………...Eq 3.31 

 

To ensure the wellbore pressure is kept constant, equation Eq 3.31 must be solved numerically. 

The result is graphed in Fig 3.3. Similarly, while Darcy`s law applied, the dimensionless rate 

in the Laplace domain for Non-Newtonian fluid through homogenous reservoir derived as  

 

qD(rD, u) =
r2−n.K 2

3−n

(
2.r

3−n
2 .√u

3−n
)

u0.5.Kn−1
n−3

(
2.√u

3−n
)

…..………………….......…..…….……..……….……...Eq 3.32 

 

Then, the dimensionless volume can be derived as 

 

QD(rD, u) =
r2−n.K 2

3−n

(
2.r

3−n
2 .√u

3−n
)

u1.5.Kn−1
n−3

(
2.√u

3−n
)

.……………………….......………….………………….Eq 3.33 

 

Since Eq 3.33 is solved numerically, the cumulative fluid versus time is plotted in Fig 3.3. 
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Fig 3.3 Dimensionless pressure, rate, and volume of Non-Newtonian fluid versus time in a homogenous 

reservoir under inner-constant pressure assumption (n=0.1). 

 

3.3.2.2.1 Dimensionless rate early time (short-time approximation) 

 

When the solution in Laplace space is derived for measuring Non-Newtonian fluid rate through 

a homogenous case, Hankel developed asymptotic (short argument) expansions can be applied 

to derive an analytical solution designed for a short time. Since Hankel expansion is applied to 

approximate Besselk for both the numerator and denominator of Eq 3.32, the equation is 

simplifying and taking Laplace inversion, consequently, dimensionless rate analytical solution 

for short time measured as below 

qD(rD, tD) =
r(1.25−0.75n).e

− 
(1−r

D

(1.5 − 
n
2

)
)2

(n−3)2.tD

√π.√tD
 …………………..……....……...……………….Eq 3.34 

 

3.3.2.2.2 Dimensionless rate at late time (long-time approximation) 

 

To derive the long-time behavior of dimensionless flow rates, developed asymptotic (Large 

argument) expansions by Hankel should be applied in both numerator and denominator to 

approximate modified Besselk terms for a long time, following simplifying the equation and 

taking LaPlace inversion, consequently, dimensionless rate analytical solution for long-time 

measured as below (Appendix B) 
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qD(rD, tD) =
(3−n)

n+1
3−n.r1−n.tD

− 
2

n−3
−1

Γ(
n−1

n−3
)

 .…………………………….......….……………….Eq 3.35 

 

3.3.2.2.3 Dimensionless volume at early time (short-time approximation) 

 

To measure the early-time behavior of Non-Newtonian dimensionless fluid rates, Hankel 

developed asymptotic (short argument) expansions should be applied, as a result, 

approximation of Besselk for both numerator and denominator of Eq 3.33, then, taking the 

LaPlace inversion result in dimensionless analytical volume at a short time as below 

 

QD(rD, tD) = −
0.9 .rD

2−n.(rw−1).(
1.77245.tD.|n−3|.1F1(−0.5;0.5;

(rw−1)2

(n−3)2.tD
)

|rw−1|
−3.1416)

√3−n .(n−3)
 …….........….……Eq 3.36 

 

3.3.2.2.4  Dimensionless volume at a late time (long-time approximation) 

 

To derive Non-Newtonian analytical fluid volume for a long time, 

similarly, developed asymptotic (small argument) expansions have been applied to 

approximate quantity of Besselk for both numerator and denominator, then, taking Laplace 

inversion of the result to achieve dimensionless analytical volume in real long-time  

 

QD(rD, tD) =
(3−n)

n+1
3−n.r1−n.tD

− 
(5−n)
n−3

−1
.Γ(

2

n−3
)

Γ(
n−1

n−3
).Γ(−

5−n

n−3
)

…..…….…………...…….….……………...Eq 3.37 

 

3.4 Model validation 

The proposed solution is validating by treating the fluid as Newtonian (n=1). This aligns with 

the solution reported by Da Prat (1990) for Newtonian fluid data. Fig 3.4 presents the results of 

the proposed solution for the dimensionless drilling fluid-loss rate through NFR, considering 

various inter-porosity flow coefficients under constant wellbore pressure conditions. These are 

compared with Da Prat's (1990) model for Newtonian fluid. The outcomes from our model 

closely match the data presented by Da Prat (1990) for Newtonian fluid flow. The specifications 

for NFR and mud pseudo-plasticity, employed to adjust both models, are λ=1E0, 1E-3, 1E-5, 

1E-7, 1E-9; ω=0.01; n=1; and D=1. In the context of numerical inversion using the Stehfest 

algorithm, a distinct parameter n is utilized to denote the number of terms in the approximation 

for Laplace transform inversion. After careful analysis and experimentation, the optimal value 

https://en.wikipedia.org/wiki/Asymptotic_expansion
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for this specific application is found to be n=8, a choice that ensures a balance between 

computational efficiency and the desired level of accuracy. This parameter is maintained at 8 

to solve both the Keshavarz-Moreno and Da Prat models. In Fig 3.4, our model's results are 

delineated by solid lines, while Da Prat's (1990) data is indicated by dashed lines. Close 

examination reveals a remarkable agreement between the two models. 

 

 
Fig 3.4 Comparison of presented solution with analytical one derived by Da Prat (1990). 

 

 

3.5 Qualitative and quantitative analysis of drilling-fluid loss 

 

The solution evaluated in the previous section serves as a foundational structure for generating 

specific type-curves for each scenario. These scenarios vary based on factors such as inter-

porosity flow coefficient, storativity ratio, dimensionless matrix contribution, and flow 

behavior index, all of which are critical to this strategy. The following section describes how 

these type-curves facilitate analysis. 

 

3.5.1 Qualitative analysis 

 

The evaluated solution derived in the previous section is considered as a base structure to draw 

different type-curves for each specific scenario. Created type-curves are completely depend on 

inter-porosity flow coefficient, storativity ratio, dimensionless matrix contribution, and flow 
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behavior index. These four parameters play an important role in this strategy. Due to the 

definition, these parameters can be measured since the operator has access to the reservoir 

properties such as porosity, permeability, and total compressibility. Various procedures exist to 

determine high-resolution reservoir properties, including logging while drilling (LWD) and 

drilling-cutting analysis. Once the type-curve for each specific scenario is created (according 

to the mentioned above parameters), the sensitivity analysis on two issues can be performed. 

The first sensitive analysis is being performed on NFR characteristics (including inter-porosity 

flow coefficient, storativity ratio, and dimensionless matrix contribution) and drilling-fluid 

pseudo-plasticity to observe how these factors affect the leak-off phenomenon and loss volume 

over different periods. In addition, two procedures can be used to measure the dimensionless 

loss volume for each scenario, which provides insights into how these parameters affect the 

total loss volume. The first method involves calculating the area under the dimensionless rate-

time curve using the trapezoidal rule. The second method involves directly measuring the 

dimensionless loss volume by numerically solving the evaluated solution. The second 

sensitivity analysis is conducted on reservoir properties and wellbore conditions such as fracture 

permeability, total storativity, fracture storativity, wellbore differential pressure, fracture 

aperture, and radius of invasion to observe how they influence the drilling-fluid rate and loss 

volume. 

 

3.5.2 Quantitative analysis 

 

One of the main goals of this study is to present a procedure that facilitates the quantification 

of reservoir parameters and total loss volume. To accomplish this, the evaluated dual-porosity 

solution (Eqs 3.23, 3.25, 3.27), which is detailed in section 3.3.21, provides the essential 

framework for developing specific type-curves for each scenario, taking into account inter-

porosity flow coefficient, storativity ratio, dimensionless matrix contribution, and flow 

behavior index. These generated type-curves are applied to estimate not only NFR parameters 

but also Non-Newtonian fluid rate and total cumulative volume. Two detailed procedures are 

described as follows: The first procedure employs type-curve matching for reservoir parameter 

estimation, while the second procedure not only quantifies drilling-fluid rate and total loss 

volume but also aids in categorizing them across three distinct periods in NFR, considering two 

different classification schemes. Additionally, the effects of NFR properties, wellbore 

differential pressure, and fracture aperture on a radius of invasion (ROI) and total cumulative 
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volume are examined. The workflow for measuring parameters using these two procedures is 

further explained below. 

 

3.5.2.1 Reservoir properties measurement by derived type-curves 

 

The derived evaluated solution for NFR is applied to reproduce type-curves to use in this 

procedure. Since drilling-fluid data is available, the type-curve based on the storativity ratio 

and inter-porosity flow coefficient of the studied NFR case is graphed to measure reservoir 

properties such as fracture permeability, fracture storativity, and total storativity. In this process, 

drilling-fluid rate data is graphed as a function of time on tracing paper, and then it is placed 

over the desired type-curve to find the match point at the rate and time axis to put in Eq 3.38. 

As a result, fracture permeability can be measured by Eq 3.38 as shown in Table 3.1. To 

facilitate the process and directly measure fracture permeability from the total cumulative 

volume curve, the fracture permeability has also been derived based on this parameter according 

to Eq 3.39 as shown in Table 3.1. It should be noted that Eq 3.39 is presented to facilitate the 

process of directly measuring fracture permeability from the total cumulative volume curve. 

Similarly, total storativity can be calculated by matching the point of drilling-fluid time and 

dimensionless time by Eq 3.40 as illustrated in Table 3.1. The total storativity definition can be 

applied to determine fracture storativity (Da Prat, 1990) by Eq 3.41 as shown in Table 3.1. Eqs 

3.38 to 3.40 are then transformed from the SI unit to the field unit and subsequently derived as 

Eqs 3.42 to 3.44, which have been added to Table 3.1. The dimensionless terms for both SI and 

Field unit are listed in Table 3.1 below, 
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Table 3.1: Dimensionless terms for the curve-fitting procedure. 

 

 

 

3.5.2.2 Cumulative volume measurement through NFR by real-time curves (after type-

curve conversion) 

 

This method concentrated on measuring Non-Newtonian fluid rate and volume by converting 

presented type-curves to dimensional real-time data curves (For each dimensionless rate, there 

is one equivalent rate in real time; the dimensionless time is measured through NFR and plot). 

In this regard, the type-curve for NFR with specific inter-porosity flow coefficient, storativity 

ratio, dimensionless matrix contribution, and flow behavior index graphed. The reservoir 

specification of this reservoir should then be put in Eqs 3.45 to 3.47 in Table 3.2 to measure 

drilling-fluid rate and volume versus time in a real-time graph (dimensional curve) for this type 

of NFR to convert the data to real-time data. 

 

 

 

 

 

 

 

 

Matching 

terms 

                           SI unit                                                                   Field unit 

Fracture 

permeability  

(Rate data) - 

k
f
 

(
μeff.rw

1−n

(2πh)n.(pi−p)
) . ([

q

qD
]

n

)
M

                                 

(3.38) 

        (
μeff∗rw

1−n

(7.081∗10−3∗h)n∗(pi−p)
) ∗ ([

q

qD
]

n

)
M

,                

(3.42) 

 

 

Fracture 

permeability  

(Loss volume 

data) - k
f
 

[
(2πh)

n2−n−1
n .(pi−p)

−1
n

μ
eff

1−
1
n.n.(φ.ct)t.qn−1.rw

4−(
n2+1

n )
]

n

1−n

. [
Q

QD
]

M

n

1−n
  

(3.39) 

[
7.081n.hn−2.(pi−p)

−1
n

(0.19).μ
eff

1−
1
n.n.(φ.ct)t.qn−1.rw

4−(
n2+1

n )
]

n

1−n

. [
Q

QD
]

M

n

1−n
,           

(3.43) 

Total 

Storativity -  
[φct]t

= [φcm

+ φcf] 

 

       (
kf.q1−n

n.(2πh)1−n.μeff.rw
3−n) . (

t

tD
)

M
             

(3.40) 

 

               (
2.637∗10−4∗kf∗q1−n

n∗(h)1−n∗μeff∗rw
3−n ) ∗ (

t

tD
)

M
,                       

(3.44) 

 

Fracture 

storativity -  

φcf 

 

           [φcm + φcf]. ω                         

(3.41) 

 
[φcm + φcf]. ω 



56 

 

  

Table 3.2: Dimensional rate, volume, and time for both SI and field data. 

 

 

Eqs 3.45 to 3.47 are converted from the SI unit to the field unit and further derived as Eqs 3.48 

to 3.50. These equations have been included in Table 3.2. The table lists dimensionless terms 

for rate, volume, and time in both SI and field units. The procedure presented in this study 

enables the measurement and analysis of Non-Newtonian fluid cumulative volume for each 

specific NFR in real time by generating a predictive curve for each scenario. The process 

flowchart is illustrated in Fig 3.5.  

 

 

Fig 3.5 Type-curve conversion to real-time data process (since reservoir parameters are available). 

 

It is worth noting that additional conversion factors from Table 3.3 are required to be added to 

Eqs 3.38 to 3.41 and Eqs 3.45 to 3.47 to render them applicable to field data. Four cases (with 

field data) are presented in the application section of this study to clarify and confirm the 

applicability of the presented procedure. This procedure can be applied in conditions where 

drilling-fluid field data is unavailable. 

 

According to NFR characteristics, dimensionless rate 
measured and set in Eq. (3.45)

The drilling fluid rate in real time is measuring

Dimensionless rate and time accessible by type-curve, 
therefore, for each drilling fluid rate, there is equivalent 

time, Eq. (3.47)

Drilling fluid rate curve in real time
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Table 3.3: Conversion constants for dimensionless pressure and time functions (Dake, 2001; Lee et al., 

2003). 

 

Constant Darcy Units Field Units SI Units 

𝐭𝐃𝐜 1 2.637E-4 3.557E-6 

𝐩𝐃𝐜 2π 7.081E-3 5.356E-4 

𝐩𝐃𝐜𝐫=
𝟏

𝐩𝐃𝐜
 1/(2π) 141.2 1867.1 
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4 APPLICATION 

In unconventional reservoirs, several enhanced oil recovery (EOR) projects are being executed 

to extract heavy hydrocarbon resources, along with drilling fluid loss mitigation projects to 

mitigate further loss. This section introduces four case studies to illustrate the applicability and 

efficacy of the proposed methodology and workflow. The aim is to validate the proposed 

procedure using two distinct sets of field data: data from the Machar-20 field in the UK central 

North Sea (Liétard et al., 1999b; Li´etard et al., 2002; Albattat et al., 2022) and loss 

measurements data from a fractured well in the Gulf of Mexico (Majidi et al., 2010). These 

datasets have been utilized to substantiate the effectiveness of the proposed solution. The 

objectives of these case studies are to: (1) determine NFR characteristics, such as fracture 

permeability and storativity as well as total storativity by type-curve matching; (2) quantify the 

rate and volume of Non-Newtonian fluid in real-time to predict the total cumulative volume; 

(3) classify drilling fluid rate and volume based on two criteria; (4) conduct a sensitivity 

analysis of reservoir and fluid properties, as well as differential wellbore pressure, to evaluate 

their impact on total cumulative volume; (5) measure the equivalent ROI for starting and ending 

transient periods through NFR; and (6) determine the total loss volume for each period. The 

following section presents these case studies in detail. 

 

4.1 Case 1 

 

In the first case, Machar-20 field data (Sanfilippo et al., 1997; Liétard et al., 1999; Albattat et 

al., 2022) in the literature is applied to demonstrate the application of the type-curve matching 

procedure to determine fracture permeability, total storativity, and fracture storativity for a Non-

Newtonian drilling fluid within a double porosity reservoir model under wellbore constant 

pressure conditions. The drilling fluid and reservoir data are presented in Table 4.1 a, while 

mud-loss rate data for the Machar-20 field are reported in Table 4.1 b. In addition, the 

dimensionless rate and volume are graphed for the NFR properties (λ, ω, and D) and pseudo-

plastic mud in Fig. 4.1 
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Table 4.1: Input parameters of base scenario, Machar 20 field data, (b) Drilling fluid report for Machar 

20 field (Albattat et al., 2022; Liétard et al., 1999). 

 

(a) 
Parameter Value Parameter Value 

n 0.375 ω 1E-3 

h, ft 0.00203412 μ, cp 30.5 

Overpressure, Δp, psi 1120 rw 0.36 

λ 9E-1 D 6E-6 

 

(b) 
Time, day Loss volume, bbl Rate, bbl/day Time, day Loss volume, bbl Rate, bbl/day 

0.0064 17.60 2734.59 0.2536 231.88 914.11 

0.0122 29.19 2375.33 0.2704 240.63 889.63 

0.0222 48.35 2177.57 0.2899 246.36 849.58 

0.0277 55.41 1993.82 0.3232 256.06 792.09 

0.0393 74.85 1902.25 0.3576 266.66 745.50 

0.0491 87.13 1773.27 0.3808 272.88 716.41 

0.0612 100.24 1635.85 0.4089 282.55 690.84 

0.0732 113.21 1544.97 0.4300 286.23 665.59 

0.0864 125.20 1449.07 0.4571 292.75 640.38 

0.0988 137.69 1392.61 0.4897 297.96 608.43 

0.1129 147.14 1303.22 0.5212 301.11 577.62 

0.1250 157.97 1263.42 0.5494 305.77 556.54 

0.1422 170.25 1196.90 0.5824 309.45 531.34 

0.1583 179.33 1132.19 0.6115 315.11 515.29 

0.1731 190.42 1099.94 0.6337 319.38 503.92 

0.1900 199.79 1051.20 0.6537 325.49 497.90 

0.2063 208.48 1010.09 0.6570 323.82 492.83 

0.2298 221.14 962.20    

 

Initially, the dimensionless rate as a function of time is plotted for the corresponding inter-

porosity flow parameter, dimensionless storage coefficient, and flow behavior index (after 

numerically solving the evaluated model for NFR). Subsequently, it is placed over Machar 20 

field data (Table 4.1 b), enabling the determination of NFR parameters, as illustrated in Fig 4.1. 
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Fig 4.1 Dimensionless type-curve and real time data matching. 

 

As the two graphs are found to match, the corresponding fractions are obtained from Fig 4.1. 

The resulting fractions are presented in Table 4.2. 

 

Table 4.2: Measured ratio for this scenario. 

 

Parameter Quantity 
𝐪

𝐪𝐃

 
1E3

1.5E − 2
 

𝐭

𝐭𝐃

 
1E − 1

1E6
 

 

Considering both reservoir and drilling fluid data, Eqs. 3.41, 3.42, and 3.43 are utilized to 

determine fracture permeability, storativity, and total storativity. In this context, fracture 

permeability is evaluated as 

kf = (
30.5 ∗ (0.36)1−0.375

(7.081 ∗ 10−3 ∗ 0.00203412)0.375 ∗ (1120)
) ∗ ([

1E3

1.5E − 2
]

0.8

)
M

= 60.5 mD 

The relative permeability can also be directly measured using the dimensionless cumulative 

volume while applying Eq. 3.42. Additionally, the total storativity can be measured using Eq. 

3.43 as shown below, 
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(ϕ𝐶𝑡)t = (
2.637∗10−4∗60.5∗(1000)1−0.375

0.375∗(0.00203412)1−0.375∗30.5∗0.363−0.375) ∗ (
1E−1

1E6
)

M
= 1.7E − 4 psi-1 

It is crucial to emphasize that the time variable in Eq 3.43, which is a dimensional equation, 

should be quantified in hours. Additionally, after determining the total storativity, the storativity 

specific to fractures is assessed. This measurement, indicative of the fractures' capacity to retain 

drilling fluid, is determined to be 6.1E-5. Previous studies in the literature, such as Da Prat 

(1990), have employed Newtonian fluids to determine fracture permeability, total storativity, 

and fracture storativity parameters. In contrast, this study applies a Non-Newtonian fluid to 

ascertain these three parameters in NFR, with the results falling within the acceptable range for 

NFR reservoirs. 

 

4.2 Case 2 

In this section, we use the Machar-20 filed data to describe the workflow for measuring drilling 

fluid rate and volume by generated type-curve. If Non-Newtonian fluid field data is unavailable, 

this procedure can be utilized for real-time measurement of Non-Newtonian fluid rate and 

volume. When NFR characteristics and drilling-fluid rheology data are available, it is possible 

to convert the dimensionless drilling fluid rate and volume data into real-time data. This can be 

presented in the form of a real-time graph for a particular NFR, which can be subjected to 

quantitative analysis to predict Non-Newtonian fluid rate, cumulative loss volume, ROI, start 

and end of the transient period, the cumulative loss in each period, and classification of the mud 

loss. In addition, the drilling fluid (which is a Non-Newtonian fluid) rate and total loss volume 

have been categorized using two distinct criteria to differentiate the type of drilling fluid loss 

and observe it during separate intervals. The procedure is described as follows: Firstly, a type-

curve is graphed for a specific inter-porosity flow parameter, storativity ratio, flow behavior 

index, and dimensionless matrix contribution, according to Table 4.1 a, and the result is 

depicted in Fig 4.1 (solid line). Secondly, to convert the dimensionless type-curve into a real-

time curve, Eqs. 3.47 to 3.49 are utilized by incorporating the reservoir characteristic data 

(Table 4.1 a) to measure the drilling fluid rate and loss volume in real time. By following this 

procedure, the Non-Newtonian fluid rate and loss volume for each NFR can be measured in 

real time over different periods. The drilling fluid rate is measured and depicted in Fig 4.2 with 

respect to reservoir properties, drilling-fluid rheology, and wellbore condition. Then, Nayberg 

& Petty's (1986) description is applied to classify the drilling fluid loss. Fig 4.2 presents the 

outcome of applying this criterion to the drilling fluid rate over time, as demonstrated below 
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Fig 4.2 Categorization of drilling fluid loss based on Nayberg and Petty's (1986) standard. 

 

 

In Fig 4.2, a severe loss is observed to occur at early times, which continues into the transient 

period. At later stages, partial and seepage losses are noted. The duration of drilling fluid loss, 

dictated by its severity, is presented in Table 4.3 and is illustrated in Fig 4.2. 

 

Table 4.3: Mud-loss duration according to Nayberg and Petty's (1986) categorization. 

 

Parameter Severe loss Partial loss Seepage loss 

Duration of mud loss 

Categorized by severity, min (time changed from hr to 

min) 

3.54 min 2E6 min 5.25E7 min 

 

The total cumulative loss can be measured in two ways: by applying the trapezoidal rule to Fig 

4.2 or by directly utilizing Eq 3.48. In this section, Eq 3.49 is used, and the resulting graph of 

the total loss volume is displayed in Fig 4.3. As another categorization, the total loss volume, 

along with the drilling fluid rate, is divided into three phases: early time, transient time, and late 

time. These divisions are highlighted in Fig 4.3. 
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Fig 4.3 Drilling fluid rate and loss volume versus time in the dimensional curve. 

 

In the given scenario, the cumulative loss volume from t=1.5E-8 to t=1.36E6 hours for each 

phase (early, transient, and late time) is meticulously calculated using Eq 3.49. This approach 

enables the detailed measurement of the total loss volume within each period, applying the 

reservoir parameters and adjusting dimensionless parameters λ, ω, n, and D, as depicted by the 

red solid line in Fig 4.3. Furthermore, Table 4.4 elaborates on the quantity and duration of loss 

for each period separately. Such detailed quantification lays a robust foundation for operators 

to effectively manage the overall loss volume, taking into consideration the characteristics of 

the NFR. This methodological approach not only ensures accurate measurement but also 

facilitates a comprehensive understanding and management of loss volumes in relation to NFR 

properties. 

 

Table 4.4: Mud-loss volume and duration time in each section 

 

Parameter Early time Transient time Late time 

Drilling-fluid loss volume (bbl) 

and period time (hour) 

 

3.7E-3 bbl - 6.47E-6 hr 

 

3.336 bbl - 7.77E-3 hr 

 

7.6E6 bbl – 9E5 hr 

 

 

Fig 4.4 illustrates the early-time behavior of the ROI as the drilling fluid invades through the 

NFR, for the specific reservoir characteristics. The figure demonstrates how this procedure can 

aid in identifying the ROI during each period, and also enables the operator to determine the 
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corresponding ROI at the beginning and end of the transient period. The three distinct periods 

are differentiated in the figure using different colors, as shown below. 

 

Fig 4.4 Categorization of the radius of invasion and drilling fluid rate. 

 

Measuring the ROI at the beginning and end of each period aids in better characterizing the 

mud loss phenomenon, thereby assisting operators in mitigating mud loss at earlier times. In 

this case, the ROI at the start and end of the transient period is measured and displayed in Table 

4.5. 

Table 4.5: Radius of invasion for the start and end of the transition period. 

 

Time, hour Radius of invasion, ft 

3.6E-6 2 

9E-3 70 

 

When drilling fluid invades through the NFR, the total loss volume corresponding to each ROI 

is measured based on the properties of both the reservoir and the Non-Newtonian fluid. Fig 4.5 

illustrates the ROI and the equivalent cumulative volume at the onset of the transient period. 

The period time in Fig 4.5 is determined by measuring the corresponding ROI for each time 

interval. It is observed that, when the drilling-fluid front reaches 2 ft through the NFR (marking 

the commencement of the transient period), the total loss volume stands at 3.5E-3 bbl. This 

continues until it reaches 2.8 bbl at a distance of 60 ft, marking the conclusion of the transient 

period. 
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Fig 4.5 Drilling-fluid total loss volume for the equivalent radius of invasion through NFR. 

 

To demonstrate the significance of Non-Newtonian fluid pseudo-plasticity in NFR with 

different fracture apertures (considered as reservoir thickness within the matrix-fracture 

system), four cases varying in fracture aperture and fluid pseudo-plasticity were analyzed. The 

findings indicate that the impact of drilling-fluid rheology in NFR is considerably more 

pronounced for higher fracture apertures than for lower ones, especially at later times. 

Therefore, this parameter can play a crucial role in decreasing the drilling fluid invasion rate. 

While the fracture aperture does not inherently alter the duration of the transient period, it 

modulates the rate at which this period occurs, either intensifying or attenuating it. Additionally, 

an increase in fracture aperture leads to an increase in the total cumulative fluid volume. The 

proposed analytical framework enables operators to precisely gauge the fracture aperture. This 

is achieved by taking into account both the inherent properties of the NFR and the fluid's 

pseudo-plasticity within the fracture and porous medium, utilizing the available differential 

pressure inside the wellbore. Table 4.6 provides detailed reservoir and drilling-fluid 

information, while Fig 4.6 illustrates the obtained results. In Fig 4.6, the drilling-fluid rate is 

represented by a solid line and the cumulative volume by a dotted line. 
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Table 4.6: Well, reservoir, and drilling fluid information applied in the calculations 

 

Parameter Value Parameter Value 

n 0.375 & 0.6 μ, cp 30.5 

h, ft 0.001 & 0.009 rw, ft 0.36 

Δpw, psi 1120 kf, md 60.5 

λ 9E-01 [ϕct]t , psi-1 1.75E-4 

ω 1E-3 ϕ 0.12 

 

 

 

Fig 4.6 Mud-rheology influence on total cumulative volume through NFR with different fracture aperture 

(reservoir thickness, matrix-fracture system. 

 

 

To validate and showcase the applicability of the model introduced here (Keshavarz-Moreno 

model), we compared its predictions of drilling fluid rate and volume in NFR with the Majidi 

model and the field data (Gulf of Mexico) from an actual mud-loss incident (Majidi et al., 2010; 

Razavi et al., 2017b). The comparison is depicted in Fig 4.7. The Keshavarz-Moreno model is 

specifically designed to simulate pseudo-plastic fluid flow through NFR. In contrast to earlier 

studies that attempted to incorporate yield stress to simulate drilling-fluid invasion, the 

Keshavarz-Moreno model prioritizes the consideration of drilling-fluid pseudo-plasticity 

(power law model) during the early stages of drilling-fluid invasion. This approach results in a 

high degree of accuracy, emphasizing the importance of focusing on pseudo-plasticity rather 

than yield stress in the initial stages of drilling-fluid invasion. In practice, early-time behavior 

of drilling fluid is typically a concern, and remedial actions are implemented to mitigate losses. 
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The significance of the presented result in precisely simulating the drilling fluid rate of invasion 

at earlier times can be observed. Input parameters for the base scenario are provided in Table 

4.7. 

Table 4.7: Well, reservoir, and drilling-fluid information applied in the calculations. 

 

Parameter Value Parameter Value 

n 0.41 ω          1E-3 

h, ft 2.9E-3 μ, cp  30.5 

Overpressure, Δp, psi 800 rw  0.36 

λ 8E-4 [φct]t , psi-1 1.5E-4 

ϕ 0.12  k, md 300 

D 9E-4   

 

An overpressure ranging from approximately 700 to 800 psi was estimated through equivalent 

circulating density (ECD) calculations, as detailed in Majidi et al. (2010). This estimation was 

further elucidated by comparing the observed rate of losses with the loss volume predicted by 

the model, as depicted in Fig 4.7. Within the same figure, the Keshavarz-Moreno model is 

shown to have been adapted to align with field data, yielding an average fracture width 

measurement of 2.9E-3 ft. Notably, this measurement is congruent with the findings presented 

in the Majidi model, where the average hydraulic width was measured at 2.88E-3 ft. Unlike 

pre-existing models, the model introduced in this study precisely characterizes the period during 

which the drilling fluid occurs, thus setting it apart from previous approaches. The results of 

the presented model are further compared with the Majidi model, emphasizing the importance 

of yield stress at late times. Therefore, in the context of drilling-fluid phenomena, the presented 

model is noteworthy; although it considers only pseudoplasticity, it remains functional for 

drilling fluid with yield stress. In this case, as can be seen, the yield stress takes effect during 

the late period time at t=1E3 minutes. 
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Fig 4.7 The predictions of the Keshavarz-Moreno model is compared with the Majidi model and field data 

of a real-life mud-loss phenomenon. 

 

 

4.3 Case 3 

In this section, two critical issues are examined. The first issue focuses on the impact of 

wellbore differential pressure on the rate of drilling fluid loss. The subsequent analysis 

investigates the influence of drilling-fluid rheology under both higher and lower differential 

wellbore pressures. Relevant data on the reservoir and drilling fluid are provided in Table 4.8. 

 

Table 4.8: Well, reservoir, and drilling fluid information applied in the calculations. 

 
Parameter Value Parameter Value 

n 0.375 & 0.6 ω          1E-3 

h, ft 0.00203412 μ, cp  30.5 

Overpressure, Δp, psi 1120 & 2000 rw  0.36 

λ 9E-1 [φct]t , psi-1 1.75E-4 

ϕ 0.12  k, md 60.5 

D 6E-6   

 

The drilling fluid rate is measured at two distinct wellbore pressures: 1120 psi and 2000 psi. As 

illustrated in Fig 4.8, the rheology of the drilling fluid is found to be pivotal in mitigating mud-

loss volume when the differential pressure inside the wellbore increases. This emphasizes the 

significance of the pseudoplasticity of drilling fluids during deepwater drilling. Furthermore, 

an increase in wellbore differential pressure is observed to result in a higher drilling fluid rate. 

It is noteworthy that while an elevated differential pressure inside the wellbore is not shown to 
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influence the duration of the transition period, the transient period is found to occur at higher 

rates. 

 

 

Fig 4.8 Drilling fluid rate under two different wellbore differential pressures. 
 

 

4.4 Case 4 

To examine the impact of drilling-fluid rheology on the ROI and total cumulative volume, four 

cases with different inter-porosity flow parameters and pseudo-plasticity are analyzed and 

depicted in Figs 4.9 and 4.10, as illustrated below. The reservoir and fluid details are 

summarized in Table 4.9.  

 

Table 4.9: Well, reservoir, and drilling fluid information applied in the calculations. 

 
Parameter Value Parameter Value 

n 0.375 & 0.6 μ, cp 30.5 

h, ft 0.00203412 rw 0.36 

Δpw 1120 kf 60.577 

λ 1E-3 & 1E-9 [ϕct]t , psi-1 1.75E-04 

ω 3.5E-2 ϕ 0.12 
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Fig 4.9 Radius of invasion comparison for two different fluid pseudo-plasticity and inter-porosity flow 

parameters. 

 

In Figs 4.9 and 4.10, the results indicate that the inter-porosity flow parameter significantly 

influences ROI and total loss volume, especially when drilling fluids with higher pseudo-

plasticity are used compared to those with lower pseudo-plasticity. This underscores the pivotal 

role of drilling-fluid rheology in NFRs with heightened leak-off. Notably, NFRs characterized 

by higher inter-porosity flow parameters exhibit increased drilling fluid loss and ROI, 

particularly during the transient period. This trend is more pronounced when drilling fluids with 

greater pseudo-plasticity are employed. For NFRs with elevated leak-off, a rapid increase in 

ROI is observed, which becomes even more pronounced during the transient period. 

Furthermore, Fig 4.9 provides a means to measure the ROI from the beginning to the end of the 

transient period, ranging in this case from 30ft to 2E4 ft, respectively.  
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Fig 4.10 Total loss volume comparison for two different fluid pseudo-plasticity and inter-porosity flow 

parameters.
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5 RESULT AND DISCUSSION 

In this chapter, we synthesize the findings from our evaluated solution model as applied to 

NFRs. Following this, we illustrate the utility of the derived type-curves through a sensitivity 

analysis, the outcomes of which are extensively discussed in this section. Additionally, we have 

successfully identified and categorized various dimensionless terms, which have subsequently 

been introduced. In essence, this chapter encapsulates the key findings and implications drawn 

from our research and discusses them in detail. 

5.1 Derived solution 

In this study, we utilize the radial diffusivity equation as the foundational framework to analyze 

mud loss in both homogeneous formations and Naturally Fractured Reservoirs (NFRs). Upon 

solving the radial diffusivity equations with the assumption of constant wellbore pressure, we 

present the solutions for both scenarios as follows: 

 

• For Non-Newtonian drilling fluid advancing through an NFR with a constant inner wellbore 

pressure, we derive dimensionless rates and volumes as expressed in Equations 3.25 and 

3.27, respectively. 

• For a homogeneous reservoir, considering the simplifications made for dimensionless rates 

through an NFR, we present the dimensionless rate and volume equations for measuring the 

advancement of Non-Newtonian drilling fluids under a constant inner wellbore pressure as 

Equations 3.32 and 3.33, respectively. 

 

To enhance understanding, we have compiled two tables that systematically present the drilling 

fluid model for various scenarios under two distinct inner-boundary conditions. These tables 

detail the drilling-fluid flow models, evaluated solutions, their boundary conditions, and 

dimensionless equations for pressure, rate, and loss volume, along with the generated 

dimensionless terms. 
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Table 5.1: Diffusivity-based equations, boundary conditions, and solutions under wellbore constant 

pressure for both NFR and homogenous reservoir (Da Prat, 1990; Dake, 2001; Lee et al., 2003). 

 
Fluid type and 

reservoir type 

Newtonian, 

homogenous  (Lee, John 

В, & Spivey, 2003) 

Newtonian, NFR reservoir  (DA 

PRAT, 1990) 

Non-Newtonian, homogenous 

(Ikoku & Ramey Jr, 1979) 

Non-Newtonian, NFR reservoir 

Dimensionless 

equation in matrix 

 
1

rD

∂

∂rD
(rD

∂pD

∂rD
) =

∂p

∂tD
 

 

(1 − ω)
∂pDm

∂tD
= λ(pDf − pDm) 

 

∂2pDNN

∂rD
2 +

n

rD

∂pDNN

∂rD

= rD
1−n (

∂pDNN

∂tDNN
) 

 
∂pDm

∂tD
=

nλ

(1 − ω)
. D1−n. (pfD − pmD) 

Dimensionless 

equation in 

fracture+matrix (total 

system) 

 

………. 
∂2pfD

∂rD
2 +

1

rD

∂pfD

∂rD

= (ω
∂pfD

∂tD
+ (1 − ω)

∂pmD

∂tD
) 

 

……… 
∂2pfD

∂rD
2 +

n

rD

∂pfD

∂rD
= rD

1−n (ω
∂pfD

∂tD

+ (1 − ω)
∂pmD

∂tD
) , tD

> 0 

Initial boundary pD(rD, 0) = 0 pmD(rmD, 0) = pfD(rfD, 0) = 0 pDNN(rD, 0) = 0 pmDNN(rDf, 0) = pfDNN(rDf, 0) = 0 

Inner boundary pD(1, tD) = 1 
pfD − S(

∂pfD

∂tD
) = 1 

PDNN(1, tD) = 1 pfDNN-S(
∂pfD

∂tD
)=1 

Outer boundary lim
rD→∞

pD(rD, t) = 0 lim
rD→∞

pDNN(rD, t) = 0 lim
rD→∞

pD(rD, t) = 0 lim
rD→∞

pfDNN(rD, t) = 0 

Dimensionless 

equation in matrix in 

laplace space 

 
1

rD

d

drD
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=
λ

u. (1 − ω) + λ
. ṕfD(r, u) 
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n

rD
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= u. rD
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nλD1−n

u. (1 − ω) + nλD1−n
. ṕfD(rD, u) 

Dimensionless 

equation in 

fracture+matrix (total 

system) Laplace space 

 1

rD

d

drD
[rD

dṕfD(rD, u)

drD
]

= u. f(u). ṕfD(rD, u) 

f(u) =
ω(1 − ω)u + λ

(1 − ω)u + λ
 

 

 

 

 

d2ṕfD(rD, u)

∂rD
2 +

n

rD

dṕfD(rD, u)

drD

= rD
1−n[u. g(u). ṕfD(rD, u)] 

g(u) =
ω(1 − ω)u + nλD1−n

(1 − ω)u + nλD1−n
 

 

Inner boundary in ls 
ṕD(1, u) =

1

u
 ṕfD − S(

∂pfD

∂rD
)rD=1 =

1

u
 ṕD(1, u) =

1

u
 ṕfD − S(

∂pfD

∂rD
)rD=1 =

1

u
 

Outer boundary in ls lim
rD→∞

ṕD(rD, u) = 0 lim
rD→∞

ṕDNN(rD, u) = 0 lim
rD→∞

ṕD(rD, u) = 0 lim
rD→∞

ṕfDNN(rD, u) = 0 

General solution in 

Laplace domain 

 

pD(rD, u)

= I0(rD√u)

+ K0(rD√u) 

pfD(rD, u)

= AI0 (rD√u. f(u))

+ BK0(rD√u. f(u)) 

pD(rD, u)

= rD

1−n
2 [BI1−n

3−n
(

2

3 − n
. √u . rD

3−n
2 )

+ CK1−n
3−n

(
2

3 − n
. √u . rD

3−n
2 )] 

pfD(rD, u)

= rD

1−n
2 [C1I1−n

3−n
(

2

3 − n
. √u. g(u) . rD

3−n
2 )

+ C2K1−n
3−n

(
2

3 − n
. √u. g(u) . rD

3−n
2 )] 

 

 

Interporosity flow 

function 

  

f(u) =
ω(1 − ω)u + λ

(1 − ω)u + λ
 

  

g(u) =
ω(1 − ω)u + nλD1−n

(1 − ω)u + nλD1−n  

 

Solution after 

imposing boundary 

condition 

ṕD(rD, u)

=
K0(rD . √u)

u . K0(√u)
 

 

ṕfD(rD, u) =
K0(√u. f(u) . rD)

u. K0(√u. f(u))
 

 

 

ṕ(rD, u)

=

rD

1−n
2 . K1−n

3−n
(

2
3 − n

. √u . rD

3−n
2 )

u . K1−n
3−n

(
2

3 − n
. √u)

 

 

 

ṕfD(rD, u) =

rD

1−n
2 . K1−n

3−n
(
2. √u. g(u)

3 − n
. rD

3−n
2 )

u . K1−n
3−n

(
2. √u. g(u)

3 − n
)

 

 

Dimensionless rate in 

Laplace domain 

(Vaneverdingen 

procedure) 

q̂D(rD, u)

=
K0(√u)

u . K0(rD. √u)
 

q̂fD(rD, u) =
K0(√u. f(u))

u. K0(√u. f(u). rD)
 

 

 

q̂D(rD, u)

=

K1−n
3−n

(
2

3 − n
. √u)

u. rD

1−n
2 . K1−n

3−n
(

2
3 − n

. √u . rD

3−n
2 )

 

q̂fD(rD, u) =

K1−n
3−n

(
2. √u. g(u)

3 − n
)

u. rD

1−n
2 . K1−n

3−n
(
2. √u. g(u)

3 − n
. rD

3−n
2 )

 

 

 

 

 

 

Dimensionless rate in 

Laplace domain 

(Rosalind Archer-Jim 

Lamber`s procedure) 

 

 

 

 

 

qD(rD, u)

=
rD

√u

K1(rD . √u)

 K0(√u)
 

 

 

 

 

 

q̂fD(rD, u)

=
rD. √u. f(u). K1[rD. √u. f(u)]

u. K0 [√u. f(u)]
 

 

 

 

 

 

 

qD(rD, u)

=

r2−n. K 2
3−n

(
2. r

3−n
2 . √u

3 − n
)

u0.5. Kn−1
n−3

(
2. √u
3 − n

)

 

qD(rD, u)

= −

(1 − n). r
1−n

2 . K1−n
3−n

(
2. r

3−n
2 . √u. g(u)

3 − n
)

2. u. K1−n
3−n

(
2. √u. g(u)

3 − n
)

−

r
1−n

2 +
3−n

2 . √u. g(u). [−K1−n
3−n−1

(
2. r

3−n
2 . √ug(u)

3 − n
) − K1−n

3−n+1
(

2. r
3−n

2 . √ug(u)
3 − n

)]

2. u. K1−n
3−n

(
2. √u. g(u)

3 − n
)

 

 

Dimensionless rate in 

real short-time 

approximation 

(Rosalind Archer-Jim 

Lamber`s procedure) 

 

qD(rD, tD)

=
√𝑟𝐷

√𝜋. 𝑡𝐷
. e

− 
(𝑟𝐷−1)2

4.tD  

qD =
√π

π
. (

tD

ω
)−

1
2 

qD(rD, tD)

=
r(1.25−0.75n). e

− 
(1−rD

(1.5 − 
n
2

)
)2

(n−3)2.tD

√π. √tD

 

 

 

 

--------- 
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Dimensionless rate in 

real long-time 

approximation 

(Rosalind Archer’s 

and Jim Lambers 

procedure) 

 

 

--------- 

 

qD =
2

lntD + 0.80907
 

qD(rD, tD)

=
(3 − n)

n+1
3−n. r1−n. tD

− 
2

n−3−1

Γ(
n − 1
n − 3

)
 

 

 

----------- 

Dimensionless 

accumulation in 

Laplace domain 

(Vaneverdingen 

procedure) 

 

Q̂D(rD, u)

=
K0(√u)

u2 . K0(rD. √u)
 

 

Q̂fD(rD, u) =
K0(√u. f(u))

u2. K0(√u. f(u). rD)
 

 

Q̂D(rD, u)

=

K1−n
3−n

(
2

3 − n
. √u)

u2. r
D

1−n
2 . K1−n

3−n
(

2
3 − n

. √u . r
D

3−n
2 )

 
Q̂fD(rD, u) =

K1−n
3−n

(
2. √u. g(u)

3 − n
)

u2. r
D

1−n
2 . K1−n

3−n
(
2. √u. g(u)

3 − n
. r

D

3−n
2 )

 

 

 

 

 

Dimensionless 

accumulation in 

Laplace domain 

(Rosalind Archer’s 

and Jim Lambers 

procedure) 

 

 

 

 

 

QD =
rD

u1.5
.
K1(rD. √u)

K0(√u)
 

 

 

 

 

QD(rD, u)

=
rD. √u. f(u). K1[rD. √u. f(u)]

u2. K0 [√u. f(u)]
 

 

 

 

 

QD(rD, u)

=

r2−n. K 2
3−n

(
2. r

3−n
2 . √u

3 − n
)

u1.5. Kn−1
n−3

(
2. √u
3 − n

)

 

QD(rD, u)

= −

(1 − n). r
1−n

2 . K1−n
3−n

(
2. r

3−n
2 . √u. g(u)

3 − n
)

2. u2. K1−n
3−n

(
2. √u. g(u)

3 − n
)

−

r
1−n

2 +
3−n

2 . √u. g(u). [−K1−n
3−n

−1
(

2. r
3−n

2 . √ug(u)

3 − n
) − K1−n

3−n
+1

(
2. r

3−n
2 . √ug(u)
3 − n

)]

2. u2. K1−n
3−n

(
2. √u. g(u)

3 − n
)

 

 

Dimensionless 

accumulation in real 

short-time 

approximation(Rosali

nd Archer’s and Jim 

Lambers procedure) 

QD(rD, tD)

= √rD{2. √
tD

π
. e

−
(rD−1)2

4.tD

− (rD

− 1)erfc(
rD − 1

2√tD
)} 

 

 

QD =
2√π

π
. (ωtD)

1
2 

 

QD(rD, tD)

= −
0.9 . rD

2−n. (rw − 1). (
1.77245. tD. |n − 3|.1F1(−0.5; 0.5;

(rw − 1)2

(n − 3)2. tD
)

|rw − 1|
− 3.1416)

√3 − n . (n − 3)
 

 

 

 

-------------- 

 

Dimensionless 

accumulation in real 

long-time 

approximation 

(Rosalind Archer’s 

and Jim Lambers 

procedure) 

 

 

 

----------- 

 

 

 

------------ 

QD(rD, tD)

=
(3 − n)

n+1
3−n. r1−n. tD

− 
(5−n)
n−3 −1. Γ(

2
n − 3

)

Γ (
n − 1
n − 3

) . Γ(−
5 − n
n − 3

)
 

 

 

 

---------- 

 

 

Dimensionless 

Pressure of matrix 

 

 

pD =
(pi − p)

pi−pw
 

 

pmD =
(pi − pm)

q
2πh)

μeff. B
km

 

 

 

pDNN =
p − pi

(
q

2πh
)n.

μeff. rw
1−n

kr

 

 

 

pmD =
(pi − pm)

(
q

2πh)
)n μeff. rw

1−n

km

 

Dimensionless 

Pressure of fracture 

 

……… 
pfD =

2πkfh(pi − pf)

qμB
 

 

………. 
pfD =

kf(pi − pf)

(
q

2πh)
)n μeff. rw

1−n

kf

 

Dimensionless Time 
tD =

kt

Φµctrw
2

 tD =
μ. rw

2

[(ΦCt)m + (ΦCt)f]Kf
. t tDNN =

t

G. rw
3−n

 

G=
nΦctμeff

kr
(

2πh

q
)1−n 

tD =
q1−nkf

n(φct)t(2πh)1−nμeffrw
3−n

. t 

 

 

Dimensionless rate 

qD(tD) = − (
∂pD

∂rD
)

rD=1

 qD(tD) = − (
∂pD

∂rD
)

rD=1

 qD(tD) = − (
∂pD

∂rD
)

rD=1

=
q

qref

=
q

2πh[
k

μeff. rw
1−n . ∆pref]

1
n

 

 

qD = [
μeff. rw

1−n

kf. (2πh)n. (pi − p)
]

1
n

. q 

Dimensionless radius rD =
r

rw
 rD =

r

rw
 rD =

r

rw
 rD =

r

rw
 

 

 

 

 

Cumulative volume 

 

 

 

 

QD=∫ qD. dtD
tD

0
 

 

 

 

 

 

QD=∫ qD. dtD
tD

0
 

 

 

QD = ∫ qD. dtD

tD

0

=
Q

Qref

=
Q

qref. tref

=
Q

2πh2−n.
k
μ

1−n
n

. qn−1. rw

2n−n2+1
2 . ∆p

ref

1
n . ct. n. Φ

 

 

 

QD=∫ qD. dtD
tD

0  

 

 

(Measuring by Trapezoidal rule) 

Dimensionless matrix 

contribution 

   
D =

qm

q
.
2πhrw

∆L2  

Storage  
ω =

(ΦV)f

(ΦV)f + (ΦV)m
 ω =

(ΦV)f

(ΦV)f + (ΦV)m
 ω =

(ΦV)f

(ΦV)f + (ΦV)m
 

Interporosity flow  
λ = α

Km

Kf
rw

2  λ = α
Km

Kf
rw

2  λ = α
Km

Kf
rw

2  
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Table 5.2: Diffusivity-based equations, boundary conditions, and solutions under wellbore constant rate 

assumption for both NFR and homogenous reservoir (Da Prat, 1990; Dake, 2001; Lee et al., 2003). 

 
Fluid type and 

reservoir type 

Newtonian, homogenous 

(Lee, John В, & Spivey, 

2003) 

Newtonian, NFR reservoir (DA PRAT, 

1990) 

Non-Newtonian, homogenous (Ikoku & 

Ramey Jr, 1979) 

Non-Newtonian, NFR reservoir (Garcia-Pastrana, Valdes-

Perez, & Blasingame, 2017) 

Dimensionless 

equation in matrix 

 
1

rD

∂

∂rD
(rD

∂pD

∂rD
) =

∂pD

∂tD
 

 

(1 − ω)
∂pmD

∂tD
= λ(pfD − pmD) 

 
∂2pDNN

∂rD
2 +

n

rD

∂pDNN

∂rD

= rD
1−n (

∂pDNN

∂tDNN
) 

 
∂pmD

∂tD
=

nλ

(1 − ω)
. D1−n. (pfD − pmD) 

Dimensionless 

equation in 

fracture+matrix (total 

system) 

 
………. 

∂2pfD

∂rD
2 +

1

rD

∂pfD

∂rD

= (ω
∂pfD

∂tD
+ (1 − ω)

∂pmD

∂tD
) 

 
……… 

∂2pfD

∂rD
2 +

n

rD

∂pfD

∂rD
= rD

1−n (ω
∂pfD

∂tD

+ (1 − ω)
∂pmD

∂tD
) , tD

> 0 
Initial boundary PD(rD, 0) = 0 pmD(rmD, 0) = pfD(rfD, 0) = 0 pDNN(rD, 0) = 0 pmDNN(rmD, 0) = pfDNN(rfD, 0) = 0 
Inner boundary 

(
∂pD

∂rD
)rD=1 = −1 (

∂pfD

∂rD
)rD=1 = −1 (

∂pDNN

∂rD
)rD=1 = −1 (

∂pfDNN

∂rD
)rD=1 = −1 

Outer boundary lim
rD→∞

pD(rD, t) = 0 lim
rD→∞

pDNN(rD, t) = 0 lim
rD→∞

pD(rD, t) = 0 lim
rD→∞

pfDNN(rD, t) = 0 

Dimensionless 

equation in matrix in 

Laplace space 

 
1

rD

d

drD
(rD

dpD

drD
) = upD 

 
ṕmD(rD, u)

=
λ

u. (1 − ω) + λ
. ṕfD(r, u) 

 
d2pDNN

drD
2 +

n

rD

dpDNN

drD

= u. rD
1−n. pDNN 

 

ṕmD(rD, u) =
nλD1−n

u. (1 − ω) + nλD1−n
. ṕfD(rD, u) 

Dimensionless 

equation in 

fracture+matrix (total 

system) Laplace space 

 1

rD

d

drD
[rD

dṕfD(rD, u)

drD
]

= u. f(u). ṕfD(rD, u) 

f(u) =
ω(1 − ω)u + λ

(1 − ω)u + λ
 

 

 
 

 
d2ṕfD(rD, u)

∂rD
2 +

n

rD

dṕfD(rD, u)

drD

= rD
1−n[u. g(u). ṕfD(rD, u)] 

g(u) =
ω(1 − ω)u + nλD1−n

(1 − ω)u + nλD1−n
 

 
Inner boundary in 

laplace domain 
(
dṕD

drD
)rD=1 = −

1

u
 (

dṕfD

drD
)rD=1 = −

1

u
 (

dṕDNN

drD
)rD=1 = −

1

u
 (

dṕfDNN

drD
)rD=1 = −

1

u
 

Outer boundary in 

laplace domain 

lim
rD→∞

ṕD(rD, u) = 0 lim
rD→∞

ṕDNN(rD, u) = 0 lim
rD→∞

ṕD(rD, u) = 0 lim
rD→∞

ṕfDNN(rD, u) = 0 

General solution in 

laplace domain 

 

pD(rD, u)

= I0(rD√u)

+ K0(rD√u) 

pfD(rD, u)

= AI0 (rD√u. f(u))

+ BK0(rD√u. f(u)) 

 

pD(rD, u)

= rD

1−n
2 [BI1−n

3−n
(

2

3 − n
. √u . rD

3−n
2 )

+ CK1−n
3−n

(
2

3 − n
. √u . rD

3−n
2 )] 

pfD(rD, u)

= rD

1−n
2 [C1I1−n

3−n
(

2

3 − n
. √u. g(u) . rD

3−n
2 )

+ C2K1−n
3−n

(
2

3 − n
. √u. g(u) . rD

3−n
2 )] 

 
 

Interporosity flow 

function 

 
f(u) =

ω(1 − ω)u + λ

(1 − ω)u + λ
 

 
g(u) =

ω(1 − ω)u + nλD1−n

(1 − ω)u + nλD1−n
 

 

Solution after 

imposing boundary 

condition 

 
ṕD(rD, u)

=
K0(rD . √u)

u1.5 . K1(√u)
 

 
ṕfD(rD, u)

=
K0(√u f(u) . rD)

u. √u. f(u) . K1(√u. f(u))
 

 
ṕ(rD, u)

=

rD

1−n
2 . K1−n

3−n
(

2
3 − n

. √u . rD

3−n
2 )

u1.5 . K 2
3−n

(
2

3 − n
. √u)

 

 
 

ṕfD(rD, u) =

rD

1−n
2 . K1−n

3−n
((

2. √u. g(u)
3 − n

). rD

3−n
2 )

u. √u. g(u) . K 2
3−n

(
2. √u. g(u)

3 − n
)

 

 
Dimensionless rate in 

laplace domain 

(Vaneverdingen 

procedure) 

 
qD(rD, u)

=
1

u0.5 .
K0(rD. √u)

K1(√u)
 

qD(rD, u) =
√f(u). K1[√u. f(u)]

u0.5{K0 [√u. f(u). rD]}
 

 

f(u) =
ω(1 − ω)u + λ

(1 − ω)u + λ
 

qD(rD, u)

=

K 2
3−n

(
2. √u
3 − n

)

u0.5. rD

1−n
2 . K1−n

3−n
(
2. √u. rD

3−n
2

3 − n
)

 
qD(rD, u) =

√g(u). K 2
3−n

[
2. √u. g(u)

3 − n
]

u0.5. rD

1−n
2 . {K1−n

3−n
[
2. √u. g(u)

3 − n
. rD

3−n
2 ]}

 

 

Dimensionless rate in 

Laplace domain (Sina 

procedure) 

 
 
 
 
 
 
 

qD(rD, u)

=
rD

u
.
K1(rD. √u)

K1(√u)
 

 
 
 
 
 

qD(rD, u) =
rD. K1[rD. √u. f(u)]

u. K1 [√u. f(u)]
 

 

f(u) =
ω(1 − ω)u + λ

(1 − ω)u + λ
 

qD(rD, u)

=
−1

2. u2.5. K
−

2
n−3

(−
2. √u
n − 3

)

. r−n[−(n

− 1). u. r
n+1

2 . Kn−1
n−3

(−
2. r1.5−

n
2. √u

n − 3
)

− r2. u1.5. K 2
n−3

(−
2. r1.5−

n
2. √u

n − 3
)

− r2. u1.5. K2(n−2)
n−3

(−
2. r1.5−

n
2. √u

n − 3
)] 

qD(rD, u)

= −

(1 − n). r
1−n

2 . K1−n
3−n

(
2. r

3−n
2 . √u. g(u)

3 − n
)

2. u. √u. g(u). K 2
3−n

(
2. √u. g(u)

3 − n
)

−

r
1−n

2 +
3−n

2 . [−K1−n
3−n−1

(
2. r

3−n
2 . √ug(u)

3 − n
) − K1−n

3−n+1
(

2. r
3−n

2 . √ug(u)
3 − n

)]

2. u. K 2
3−n

(
2. √u. g(u)

3 − n
)
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Dimensionless rate in 

real short-time 

approximation 

    

Dimensionless rate in 

real long-time 

approximation 

  
 

  

Dimensionless 

accumulation in 

Laplace domain 

(Vaneverdingen 

procedure) 

 
QD(rD, u)

=
1

u1.5 .
K1(√u)

K0(rD√u)
 

 

QD(rD, u) =
√f(u). K1[√u. f(u)]

u1.5{K0 [√u. f(u). rD]}
 

 

QD(rD, u)

=

K 2
3−n

(
2. √u
3 − n

)

u1.5. rD

1−n
2 . K1−n

3−n
(
2. √u. r

D

3−n
2

3 − n
)

 
QD(rD, u) =

√g(u). K 2
3−n

[
2. √u. g(u)

3 − n
]

u1.5. r
D

1−n
2 . {K1−n

3−n
[
2. √u. g(u)

3 − n
. r

D

3−n
2 ]}

 

 

Dimensionless 

accumulation in 

Laplace domain (Sina 

procedure) 

 
 
 
 

QD(rD, u)

=
rD

u2
.
K1(rD. √u)

K1(√u)
 

 
 
 
 

qD(rD, u) =
rD. K1[rD. √u. f(u)]

u2. K1 [√u. f(u)]
 

 

QD(rD, u)

=
−1

2. u3.5. K
−

2
n−3

(−
2. √u
n − 3

)

. r−n[−(n

− 1). u. r
n+1

2 . Kn−1
n−3

(−
2. r1.5−

n
2. √u

n − 3
)

− r2. u1.5. K 2
n−3

(−
2. r1.5−

n
2. √u

n − 3
)

− r2. u1.5. K2(n−2)
n−3

(−
2. r1.5−

n
2. √u

n − 3
)] 

QD(rD, u)

= −

(1 − n). r
1−n

2 . K1−n
3−n

(
2. r

3−n
2 . √u. g(u)

3 − n
)

2. u2. √u. g(u). K 2
3−n

(
2. √u. g(u)

3 − n
)

−

r
1−n

2
+

3−n
2 . [−K1−n

3−n
−1

(
2. r

3−n
2 . √ug(u)

3 − n
) − K1−n

3−n
+1

(
2. r

3−n
2 . √ug(u)
3 − n

)]

2. u2. K 2
3−n

(
2. √u. g(u)

3 − n
)

 

 

Dimensionless 

accumulation in real 

short-time 

approximation 

    

Dimensionless 

accumulation in real 

long-time 

approximation 

    

Dimensionless 

Pressure of matrix 
pD =

(pi − p)

pi−pw
 pmD =

2πKmh(pi − pm)

qμB
 

 
 

pDNN =
p − pi

(
q

2πh
)n.

μeff. rw
1−n

kr

 

 

 
 

pmD =
(2πh)nkm(pi − pm)

qnμeffrw
1−n

 

 

Dimensionless 

Pressure of fracture 

……… 
pfD =

2πkfh(pi − pf)

qμB
 

………. 
pfD =

(2πh)nkf(pi − pf)

qnμeffrw
1−n  

Dimensionless Time 
tD =

kt

Φµctrw
2

 tD =
μ. rw

2

[(ΦCt)m + (ΦCt)f]Kf
. t 

 

tDNN =
t

G. rw
3−n 

G=
nΦctμeff

kr
(

2πh

q
)1−n 

tD =
q1−nkf

n(φct)t(2πh)1−nμeffrw
3−n

. t 

Dimensionless Rate 
qD(tD) = − (

∂pD

∂rD
)

rD=1

 qD(tD) = − (
∂pD

∂rD
)

rD=1

 qD(tD) = − (
∂pD

∂rD
)

rD=1

=
q

qref

=
q

2πh[
k

μeff. rw
1−n . ∆pref]

1
n

 

qD(tD) = − (
∂pD

∂rD
)

rD=1

 

 rD =
r

rw
 rD =

r

rw
 rD =

r

rw
 rD =

r

rw
 

Cumulative 

production 
QD=∫ qD. dtD

tD

0
 

 

QD=∫ qD. dtD
tD

0
 

 
 

QD = ∫ qD. dtD

tD

0

=
Q

Qref

=
Q

qref. tref

=
Q

2πh2−n.
k
μ

1−n
n

. qn−1. rw

2n−n2+1
2 . ∆P

ref

1
n . ct. n. Φ

 

 

 

QD=∫ qD. dtD
tD

0
 

 

Dimensionless matrix 

contribution 

   
D =

qm

q
.
2πhrw

∆L2  

Storage  
ω =

(ΦV)f

(ΦV)f + (ΦV)m
 

 
ω =

(ΦV)f

(ΦV)f + (ΦV)m
 

Interporosity flow  
λ = α

Km

Kf
rw

2  
 

λ = α
Km

Kf
rw

2  

 

 

5.2 Quantitative analysis on drilling fluid rate and volume 

 

The dimensionless terms derived and stated, not only measure NFR properties but also quantify 

drilling fluid rate and volume. It also makes the operator capable of measuring NFR properties 
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(while drilling) by applying a curve-fitting procedure on both rate-time and volume-time 

graphs. Moreover, this procedure decreases non-productive time by determining NFR 

properties while drilling. 

 

5.3 Qualitative analysis on drilling fluid rate and volume 

 

This section presents and describes the achievements that result from the evaluated solution 

model for NFR and the methodological approach proposed in this work. In this regard, type-

curves resulting from the solution have been employed to do sensitive analysis on NFR 

parameters, mud rheology, and wellbore boundary conditions to better understand the 

mechanism of drilling fluid loss in NFR. The influence of each parameter on drilling fluid rate 

and volume is investigated and explained below. 

5.3.1 Mud rheology and NFR properties influence on leak-off and total loss volume 

under constant wellbore pressure 

 

The scenario that follows in this study, takes into account the leak-off phenomenon through 

NFR which is modeled by the evaluated dual-porosity model. The governing evaluated solution 

leads to the conclusion that NFR characteristics and drilling-fluid rheological properties directly 

influence the leak-off phenomenon and total loss volume. The following has demonstrated how 

the leak-off phenomenon affects the drilling fluid rate and total loss volume in NFRs with 

different reservoir parameters. This section also has demonstrated how drilling-fluid pseudo-

plasticity affects the drilling-fluid advancement through NFR at early, transient, and late 

periods. Additionally, it has demonstrated how operators can control the leak-off phenomenon 

and total loss volume effectively, by establishing constant pressure inside the wellbore. It 

should be noted that these four contributing elements can potentially increase the leak-off 

influence on total loss volume in the earlier times through NFR. How these elements have an 

impact is discussed in the following sections. 

5.3.1.1 Storativity Ratio Impact on Leak-off and Total Loss Volume 

 

The present section illustrates the considerable influence of the relative storage and expansion 

capacity of fractures and matrix medium (as measured by the storativity ratio parameter), on 

the short-term deliverability of NFR, as well as the drilling fluid rate and the total loss volume. 

NFRs with a higher potential to store drilling fluid in the fractured medium, which has a lower 
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storage capacity in the matrix medium, display different drilling fluid rates and volume 

characteristics compared to those with a greater potential to store drilling fluid in the matrix 

medium. Sensitive analysis on this parameter and its influence on the drilling fluid rate reveals 

that the higher the storativity ratio, the dimensionless rate drops abruptly due to the predominant 

flow of mud through the fractured medium. As NFR with a lower storativity ratio can primarily 

store drilling fluid through the porous medium, its dimensionless rate occurs at lower values, 

particularly during the initial times, and its transient period starts earlier and lasts longer. It 

should be noted, at ω=1 which means all the expansion in the reservoir is attributed to the 

fracture expansion, transient period disappearing. After tD=1E1, the total system almost acts as 

a homogenous system, and the rate of mud advancement decreases equally, due to the existence 

of a homogenous system. As observed, during the initial times, the mud loss primarily occurred 

in the fractured medium. For example, for ω=1E-1, the mud loss in fractured medium occurring 

between tD=1E-2 to tD=1E-1, following a transient period that began between tD=1E-1 to 

tD=1E1, and the mud loss inside fractured medium passes through a porous medium. Since 

equilibrium has been established between fracture and matrix, mud loss has continued to 

infiltrate through the entire system. The dual porosity model assumes that the matrix has low 

permeability but a large storage capacity compared to the fractured system, whereas the 

fractured medium has high permeability but low storage capacity relative to the natural fracture 

system. Thus, it is imperative to consider the storativity ratio as a parameter that introduces 

storage capacity and analyzes how it affects total loss volume in NFR while constant pressure 

is established inside the wellbore. In this regard, sensitivity analysis is performed on this 

parameter, revealing that increasing the storativity ratio results in greater drilling-fluid storage 

in the fractured medium and consequently leads to higher cumulative loss at earlier times. In 

the case of NFR with a lower storativity ratio, a larger quantity of mud can be stored in the 

matrix medium, leading to reduced drilling-fluid invasion, particularly during the early times. 

Additionally, the distinction in cumulative loss among various storativity ratios is more 

pronounced during the early time; however, once tD=3E1 is surpassed, the mud-loss volume 

reaches equilibrium for the entire system. Consequently, this factor plays a vital role mainly 

during the earlier times. Dimensionless cumulative volume can be calculated by measuring the 

area under each dimensionless rate curve separately by applying the trapezoidal rule for these 

four different storativity ratios (ω=1E0, ω=1E-1, ω=1E-2, ω=1E-3) to perform sensitivity 

analysis and observe how this parameter affects cumulative loss volume. This is illustrated in 

Fig 5.1. Other NFR characteristics held constant during the analysis include λ= 5E-6, n=0.8, 
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and D=1. The dotted line in Fig 5.1 represents the transient period during dimensionless rate 

and volume for NFR with various storativity ratios. 

 

 

Fig 5.1 Dimensionless rate and volume for NFR with different interporosity flow coefficient. 

 

5.3.1.2 Interporosity Coefficient Impact on Leak-off and Total Loss Volume 

 

In this section, it has investigated how matrix-fracture communication (exchange of mud 

between the fracture and the matrix systems) affects the leak-off phenomenon and drilling fluid. 

This is studied under constant wellbore pressure as Non-Newtonian drilling fluid invaded 

through NFR. Sensitivity analysis is conducted on the inter-porosity flow coefficient, which is 

an important characteristic of NFR, to observe how the drilling fluid loss rate and volume vary 

for NFR with different quantities of matrix-fracture communication. The analysis reveals that 

the higher the matrix-fracture communication, the earlier the transition period begins, resulting 

in a higher constant drilling fluid rate due to higher acceptance of drilling fluid by matrix 

medium during this period. After the equilibrium condition is established, a decreasing trend in 

the dimensionless rate is observed. As an example, when λ=1E-6, the drilling-fluid flows 

through the fractured medium between tD=1E-2 and tD=1E+1, leading to an abrupt decrease in 

the mud-loss rate. This is followed by a transient period between tD=1E+1 and tD=1E4. After 

the equilibrium condition is established, the decreasing trend in the mud-loss rate in the total 

system continues. Fig 5.2 depicts the outcome. Subsequently, a sensitivity analysis is performed 
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on the inter-porosity coefficient to evaluate its impact on drilling-fluid volume in NFR. The 

outcome indicates that an increase in the inter-porosity flow coefficient leads to a sudden surge 

in the cumulative loss at early times, and there is a significant increase in mud advancement 

during the transition period. As an example, in the case of NFR with an inter-porosity flow 

coefficient of 1E-3, the amount of drilling mud invaded between tD=1E-2 and tD=5E-2 shows a 

significant increase (higher slope) compared to later times (tD=5E-2). Therefore, it can be 

observed that due to the earlier onset of the transition period, the loss volume increases more 

substantially for NFRs with a higher inter-porosity flow coefficient than for those with a lower 

coefficient. The dotted line in Fig 5.2 shows the transient period for the dimensionless rate and 

volume of NFR with different inter-porosity coefficient factors. Other parameters, including 

ω=1E-3, n=0.1, and D=1E3, are kept constant.   

 

 

Fig 5.2 Dimensionless rate and volume for NFR with different interporosity flow coefficients. 

 

 

 

5.3.1.3 Dimensionless Matrix Contribution Impact on Leak-off and Mud-Loss 

Phenomenon 

 

The influence of Non-Newtonian inter-porosity transfer function (described by dimensionless 

Matrix contribution) on the leak-off phenomenon, drilling fluid rate, and volume during 

different periods have been studied in this section. The other three reservoir parameters are held 

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E-3

1E-2

1E-1

1E+0

1E+1

1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

D
im

en
si

o
n

le
ss

 v
o

lu
m

e

D
im

en
si

o
n

le
ss

 r
at

e

Dimensionless time

λ=1E0, qD λ=1E-3, qD λ=1E-6, qD

λ=1E-9, qD TP (λ=1E-6) TP (λ=1E-9)

λ=1E0, QD λ=1E-3, QD λ=1E-6, QD

λ=1E-9, QD TP (λ=1E-3)



81 

 

  

constant to examine the effect of dimensionless matrix contribution on total loss volume. A 

sensitivity analysis is conducted on the dimensionless matrix contribution and its effect on the 

drilling fluid rate. The result shows that NFR with higher dimensionless matrix contribution 

experienced a transient period at earlier times compared to those with lower contributions. This 

is due to a higher rate of drilling-fluid invasion into the matrix medium, as the matrix medium 

accepted the drilling fluid with higher quantities. It should be noted that during the transition 

period in which the fracture supplies the matrix, a higher dimensionless matrix contribution 

results in the earlier drilling-fluid invasion from the fracture into the matrix medium, causing 

the drilling fluid rate to not decrease abruptly and remain high for a longer duration. As a 

consequence, the drilling fluid invades the fractured medium at higher rates during the transition 

period. As illustrated in Fig 5.3, for NFR with D=1E3, the mud invasion through the fractured 

medium exhibits a sharp decreasing trend between tD=1E-2 and tD=5E-2, followed by a constant 

rate of mud loss due to the transition zone between tD=5E-2 and tD=1E1. After tD=1E1, the 

mud-loss incident continues in the entire system as the equilibrium condition is established. In 

summary, the higher the Non-Newtonian inter-porosity transfer function, the higher the NFR 

susceptibility to severe losses. This underscores the importance of monitoring mud rheology 

during each drilling period to manage or reduce loss to an acceptable level. 

In the case of cumulative loss, it has been investigated how dimensionless matrix contribution 

affects total loss volume under the mentioned assumption. As previously stated, the higher the 

dimensionless matrix contribution factor, the earlier the transient period begins, resulting in a 

greater quantity of drilling fluid invading the matrix medium and total system. As a result, the 

mud-loss volume is higher for greater dimensionless matrix contribution. The reason is that the 

matrix system accepts greater mud quantities (higher qm). The total loss volume for NFR with 

different dimensionless matrix contributions shows a significant difference at earlier times, 

indicating the sensitivity of the dimensionless matrix contribution factor during this period. 

However, this difference gradually decreases and vanishes after tD=1E4 when the mud-loss 

behavior becomes similar in the total system. This suggests that the dimensionless matrix 

contribution factor plays a crucial role in controlling early mud losses. As depicted in Fig 5.3, 

for NFR with D=1E3, the drilling fluid loss occurred mainly in the fractured system during the 

early times (1E-2<tD<5E-2). Then, the loss volume increases intensively due to the onset of the 

transient period and the mud invasion from the fracture into the matrix medium (5E-2<tD<1E1). 

Finally, the drilling fluid loss invades the entire system at tD>1E1. The dotted line in Fig 5.3 

shows the transient period of dimensionless rate and volume for NFR with varying 
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dimensionless matrix contributions. It is important to note that λ=1E-3, ω=1E-3, and n=1E-1 

are constant parameters in this analysis.   

 

 

Fig 5.3 Dimensionless rate and volume for NFR with different dimensionless matrix contributions. 

 

5.3.1.4 Drilling-Fluid Rheology Impact on Leak-off and Total Loss Volume 

 

Depending on the pseudo-plasticity of the drilling fluid, dimensionless rate, and volume are 

varied for each case through NFR while the inner constant pressure assumption is considered 

inside the wellbore. The sensitivity analysis of drilling-fluid pseudo-plasticity and its effect on 

drilling fluid rate and total cumulative volume can be separated into three distinct periods. The 

results show that drilling fluids with greater pseudo-plastic behavior led to a slower reduction 

of dimensionless rate during early times (in this case, tD < 2E-2). This is because the high 

velocity of drilling fluid flowing through the fracture decreases the viscosity of Non-Newtonian 

drilling fluid due to the relationship between shear rate and viscosity in pseudo-plastic fluids. 

As a result, the changes in dimensionless rate are minimal. In other words, the decreasing trend 

in dimensionless rate is less pronounced for pseudo-plastic drilling fluids than for Newtonian 

fluids when passing through a fractured system. Despite a sudden decrease in the drilling fluid 

rate through a fractured medium for drilling fluids with lower pseudo-plasticity, the total 

drilling fluid loss remains higher during early times due to greater invasion of drilling fluid at 

the start. Therefore, for drilling fluids with high pseudo-plasticity, the rate of invasion decreases 

significantly during earlier times. Fig 5.4 depicts the outcome. During the transient period (in 
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this case, 3E-2 < tD < 1E3), the dimensionless rate increases with higher pseudo-plasticity 

(lower n) of the drilling fluid. This is because higher pseudo-plasticity drilling fluids experience 

a significant decrease in viscosity during a mud-loss exchange between the fracture and matrix 

medium. Therefore, drilling fluid inside fracture medium invades through matrix medium at a 

higher rate (because the mud with higher pseudo-plasticity is highly sensitive to velocity and 

its viscosity decreases abruptly compared to Newtonian-mud type). As a result, the 

dimensionless rate remains at maximum points for drilling fluids with high pseudo-plasticity. 

As shown in Fig 5.4, drilling fluid with higher pseudo-plasticity experienced less change in 

dimensionless rate and maintained a lower viscosity during the transient period. It also reveals 

that the transient period for drilling fluid with higher pseudo-plasticity is shorter and terminates 

earlier but at a higher rate, leading to a higher loss volume of drilling fluid compared to the 

lower pseudo-plasticity fluid during the transient period. While minimizing the transient period 

is important, it is preferable to use a drilling fluid that maintains its pseudo-plasticity at a lower 

level temporarily during this period, resulting in a lower drilling fluid rate. At late times, once 

the matrix and fracture system reaches equilibrium, the dimensionless rate for drilling fluid with 

higher pseudo-plasticity decreases more rapidly than that of a Newtonian fluid. Therefore, after 

the transient period, the trend changes abruptly. After this period, the viscosity of pseudo-plastic 

drilling fluid increases significantly due to the saturation of the matrix medium with drilling 

fluid and the establishment of an equilibrium condition. Consequently, the velocity of the fluid 

decreases, leading to a sharp decline in the dimensionless rate for drilling fluid with this type 

of rheology.  

The effect of drilling fluid pseudo-plasticity on cumulative mud loss can be classified into three 

categories: early time, transition period, and late time. Fig 5.4 illustrates that at early times (in 

this case, tD < 2E-1), the dimensionless rate decreases sharply for drilling fluid with lower 

pseudo-plasticity, while the cumulative loss remains higher. As mentioned earlier, during the 

transition period, drilling fluid with higher pseudo-plasticity exhibits a higher invasion rate into 

the matrix system, leading to increased loss volume for mud with this rheology. During late 

times, the equilibrium condition is established in the total system (matrix+fracture), causing a 

shift in the trend of drilling fluid volume. The decrease in volume for the case with higher 

pseudo-plasticity is more abrupt than for the lower one. Furthermore, the effect of drilling fluid 

pseudo-plasticity on the overall system is considerably distinguishable during the late times 

compared to other periods. The dotted line in Fig 5.4 indicates the transient period of 

dimensionless rate and volume for drilling fluid with different pseudo-plasticity. In this section, 

we assume that λ=1E-3, ω=1E-3, and D=1E3 remain constant. 
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Fig 5.4 Dimensionless rate and volume for different drilling-fluid pseudo-plasticity through NFR. 

 

5.3.2 Simultaneous Influence of Mud Rheology and Dimensionless Matrix 

Contribution on Total Loss Volume 

 

This section presents a comprehensive investigation of the simultaneous effects of the Non-

Newtonian inter-porosity transfer function and drilling-fluid pseudo-plasticity on mud-loss rate 

and volume. In this regard, NFRs with four different Non-Newtonian inter-porosity transfer 

functions are subjected to drilling fluid with varying pseudo-plasticity (achieved by adjusting 

the flow behavior index from n=0.1 to n=1) to assess how these critical reservoirs and drilling-

fluid parameters interact and impact drilling fluid rate and volume. An infinite-acting reservoir 

is considered an outer boundary condition. The findings reveal that a decrease in drilling-fluid 

pseudo-plasticity leads to a more uniform drilling fluid rate across NFRs with different Non-

Newtonian inter-porosity transfer functions (the impact of the Non-Newtonian inter-porosity 

transfer function on the dimensionless rate is more pronounced in the presence of a higher 

pseudo-plastic-drilling fluid). This is supported by the observed similarity in the dimensionless 

rate versus dimensionless time graphs illustrated in Fig 5.5. The results indicate that the 

transient period duration is shorter for drilling fluids with higher pseudo-plasticity. This can be 

attributed to the rapid decrease in drilling-fluid viscosity during invasion through the matrix 

medium at a higher rate, leading to a faster establishment of the equilibrium between the matrix 

and fractured medium. Furthermore, for NFRs with similar Non-Newtonian inter-porosity 
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transfer functions, the onset of the transient period occurs earlier for drilling fluids with higher 

pseudo-plasticity, while the duration of this period shortens. In the mud-loss phenomenon, the 

worst-case scenario may arise for NFRs with a higher dimensionless matrix contribution. This 

is due to the transient period occurring at earlier times and higher rates, leading to an increased 

growth rate of mud loss. Fig 5.5 illustrates the transient period of the dimensionless rate for 

both scenarios, which is represented by the dotted line. The parameters λ=1E-3 and ω=1E-3 are 

held constant. 

 

 

Fig 5.5 Dimensionless rate while considering both dimensionless matrix contribution and mud pseudo-

plasticity. 
 

Subsequently, the combined impact of drilling-fluid pseudo-plasticity and Non-Newtonian 

inter-porosity transfer function on drilling fluid volume is analyzed. The results demonstrate 

that an increase in drilling-fluid pseudo-plasticity leads to a decrease in total drilling fluid loss 

volume, attributable to the shortened transient period. Additionally, the drilling fluid with 

higher pseudo-plasticity experiences transient periods at lower rates and concludes the period 

earlier, which results in a lower cumulative loss. When both of these parameters are taken into 

account, the cumulative loss reaches its minimum since the drilling fluid has higher pseudo-

plasticity, and the NFR has a lower dimensionless matrix contribution. Under such 

circumstances, the dimensionless rate exhibits a sudden decrease, while the transient period 

occurs with a delay at lower rates. In the case of two NFRs having equal Non-Newtonian inter-

porosity transfer function, the total loss volume is greater for mud with higher pseudo-plasticity 
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during the transient period due to the earlier start of this period at a higher rate. However, once 

the equilibrium situation is achieved in the matrix-fracture system, cumulative loss becomes 

similar for all cases. The dotted line in Figs 5.6 and 5.7 illustrates the transient period during 

dimensionless volume for both scenarios. The parameters λ=1E-3 and ω=1E-3 are held constant 

in these figures. 

 

 

Fig 5.6 Dimensionless cumulative loss for various dimensionless matrix contribution and n= 4E-1. 

 

 

Fig 5.7 Dimensionless cumulative loss for various dimensionless matrix contribution and n= 7E-1. 
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5.3.3 Wellbore Boundary Impact on Mud Loss 

 

The influence of the wellbore boundary conditions on the total loss volume is undeniable. 

Therefore, a sensitivity analysis is conducted on the characteristics of NFR and the rheology of 

drilling fluid, using dimensionless parameters such as storativity ratio, inter-porosity flow 

coefficient, dimensionless matrix contribution, and flow behavior index. The analysis is 

performed under two different wellbore boundary conditions (constant pressure and constant 

rate). The evaluated dual-porosity model under constant rate assumption proposed by Garcia-

Pastrana et al. (2017) compared with the presented results. The comparison shows that, while 

the constant rate assumption established inside the wellbore, reservoir and drilling-fluid 

characteristics do not significantly affect the leak-off phenomenon, drilling fluid rate, and total 

loss volume. However, the presented solution reveals that while constant pressure is established 

inside the wellbore (as the main assumption to solve the general solution), it significantly 

impacts the drilling fluid rate and total loss volume. Therefore, under this assumption, effective 

management of the leak-off phenomenon and total loss volume can be achieved. Additionally, 

in the case of a differential pressure inside the wellbore, it is confirmed that a higher wellbore 

differential pressure results in a greater drilling fluid rate. This underscores the significance of 

drilling-fluid rheology in reducing the total cumulative loss volume, particularly under wellbore 

constant pressure conditions. 

5.3.4 Categorization of drilling fluid rate and total loss volume 

 

The drilling fluid rate and volume can be categorized under two distinct criteria: the severity of 

the drilling fluid and the period time of mud loss. This is an aspect that has been neglected in 

previous studies on drilling fluid loss. To elucidate this point, the rate and loss of drilling fluid 

are measured through a specific field case, and categorization is applied to this case. This 

process is detailed in the methodology section of the thesis (see Fig 4.5 and Fig 4.7). The 

purpose of this categorization is to better characterize the mud loss incident and to facilitate the 

mitigation of further loss in each scenario, especially during earlier times. 

5.3.5 Dimensionless rate and volume through homogenous and NFR under wellbore 

constant pressure conditions while comparing cases 

 

In this study, sensitive analysis on drilling fluid loss and volume is done by two procedures. 
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Primarily, sensitive analysis on dimensionless rate and volume for NFR with different 

properties and drilling-fluid parameters such as relative storage and expansion capacity, matrix-

fracture communication, mud pseudo-plasticity, and Non-Newtonian inter-porosity transfer 

function to observe how they affect total loss volume. 

Secondly, sensitive analysis on drilling fluid loss and volume in real-time after converting the 

dimensionless parameters to real-time (while converting it to be applicable for field data), by 

this procedure, it is possible to do sensitive analysis on both previous reservoir parameters plus 

fracture permeability and storativity as well as total storativity. 

In the two above procedures, the influence of these parameters is observable in two ways, 

measuring the surface under a drilling fluid volume of each case (By Trapezoidal rule) or 

directly applying the introduced evaluated drilling fluid volume equation (solving by 

MATLAB). 

In this study, procedure one has been applied to do a sensitive analysis to facilitate the process. 

While drilling fluid loss advances through NFR and homogenous reservoirs, the mud-loss rate 

decreases for all types of drilling fluid with different pseudo-plasticity.  

In the case of a homogenous reservoir, as Fig 5.8 shows, the dimensionless rate declines rapidly 

for mud type with higher pseudo-plasticity in comparison with Newtonian one; the difference 

appears clearly after tD>1. Moreover, the influence of pseudo-plasticity on the drilling fluid rate 

is more obvious when inner-constant pressure is established inside the wellbore than the inner-

constant rate. Therefore, under this assumption, increasing mud pseudo-plasticity can 

effectively remedy loss volume. Figs. 5.8 and 5.9 show, how mud pseudo-plasticity affects the 

dimensionless drilling fluid rate and cumulative loss through homogenous reservoirs. In this 

regard, dimensionless rates for six types of mud with different pseudo-plasticity have been 

considered. 
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Fig 5.8 Influence of flow behavior index on dimensionless rate through homogenous reservoir under 

inner-constant pressure boundary. 

 

 

 
 

Fig 5.9 Influence of flow behavior index on dimensionless cumulative loss through homogenous reservoir 

under inner constant pressure boundary. 
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dramatically for a higher flow behavior index (Fig 5.10), the reason is that while mud 

advancement occurs through fractured-medium, the velocity of mud with higher pseudo-

plasticity decreases quickly, resulting in a sharp increase in viscosity, which it intensified 

decreasing mud-loss volume; therefore, as can be seen at Figs 5.10 and 5.11, the higher the 

drilling-fluid pseudo-plasticity, the lower the dimensionless rate and volume experienced.  

 

 
 

Fig 5.10 Influence of flow behavior index on dimensionless rate through NFR under inner-constant 

pressure boundary. 
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Fig 5.11 Influence of flow behavior index on dimensionless rate through NFR under inner-constant 

pressure boundary. 
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Fig 5.12 Dimensionless rate and cumulative volume through homogenous and NFR.
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6 CONCLUSIONS 

In this research, we propose a comprehensive and evaluated solution, advancing the estimation 

accuracy of fluid losses through NFRs, and thereby improving upon existing models. This 

solution considers the leak-off phenomenon and an inter-porosity transfer model that 

encapsulates the Non-Newtonian effects resulting from the interaction between the fracture and 

the matrix. The application of generated type-curves aims to facilitate quantitative and 

qualitative analysis while maintaining the complexity inherent in NFR cases. The significant 

outcomes from this study can be summarized as follows:  

• NFR properties and mud pseudo-plasticity significantly affect the drilling-fluid rate, total 

loss volume, and leak-off phenomenon. When constant pressure is maintained inside the 

wellbore, these factors can be effectively controlled, enabling the operator to utilize drilling-

fluid pseudo-plasticity as a tool to mitigate volume loss.  

• Drilling-fluid pseudo-plasticity can be utilized as a tool to manage transient periods and 

leak-offs during drilling operations. The impact of drilling-fluid rheology on total loss 

volume is more pronounced for NFRs with higher leak-offs than for those with lower leak-

off. Furthermore, the significance of mud rheology becomes more prominent under higher 

differential pressure conditions inside the wellbore compared to lower pressure conditions. 

• A higher relative storage and expansion capacity of the fracture-to-matrix system leads to 

an earlier transient period and increased drilling-fluid invasion through the fractured 

medium. Applying drilling fluid with higher pseudo-plasticity is considered an effective 

procedure in mitigating further loss during earlier times. 

• For NFRs with specific Non-Newtonian inter-porosity transfer functions, the relationship 

between mud pseudo-plasticity and the transient period's duration is inversely proportional, 

an increase in mud pseudo-plasticity results in a shorter transient period, initiating earlier. 

Furthermore, a sensitive analysis of the Non-Newtonian inter-porosity transfer function 

uncovers that the influence of this function on the drilling fluid rate becomes increasingly 

discernible as the pseudo-plasticity of the drilling fluid increases. 

• An increase in the Non-Newtonian inter-porosity transfer function, indicative of enhanced 

matrix-fracture communication, results in an earlier occurrence of the transient period at 

higher rates. This in turn leads to an increase in the volume of drilling fluid loss. 

• Total drilling fluid loss volume can be investigated during three distinct periods. During the 

early hours, despite the drilling-fluid rate through the fractured medium abruptly decreasing 
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for mud with lower pseudo-plasticity, the total mud loss remains higher (due to greater mud 

invasion at early times). Consequently, drilling fluid with higher pseudo-plasticity is 

deemed a more appropriate option for mitigating mud loss during this period. During the 

transient period, although this period is shorter when we use mud with higher pseudo-

plasticity, using such mud resulted in a higher total loss volume. This increase in loss 

volume is attributed to the higher drilling fluid rate during this period when compared to 

using mud with lower pseudo-plasticity. At late times, drilling fluid with higher pseudo-

plasticity experienced a sharp decrease in dimensionless rate when compared to drilling 

fluid with lower pseudo-plasticity. This led to a notable decrease in cumulative loss volume 

after the termination of the transient period. Overall, it is recommended to utilize a drilling 

fluid with a specific pseudo-plasticity during each stage of drilling to effectively mitigate 

further loss at earlier times. 

• In all cases of NFRs, it is advised to implement a procedure that diminishes the transient 

period while simultaneously maintaining a lower rate of mud advancement. This strategy 

should be complemented by a tailored design of the drilling fluid, ensuring it sustains higher 

pseudo-plasticity during the early and late stages and exhibits reduced pseudo-plasticity 

during the transient period. 

• When the pseudo-plasticity of the drilling fluid is maintained constant, an increase in the 

Non-Newtonian inter-porosity transfer function is found to elevate the volume of mud loss. 

This rise can be attributed to the transient period occurring at higher rates and starting at 

earlier times. These two factors intensify the total cumulative loss, especially in the early 

stages of the process. 

• While the rate of drilling-fluid flow through the fractured medium decreases notably for 

mud with lower pseudo-plasticity, an increase in total mud loss is recorded during the early 

stages. This surge in loss can be chiefly attributed to the amplified invasion of mud at the 

onset of the mud-loss phenomenon. 

• The workflow introduced in this study facilitates decision-making processes, enabling the 

measurement of NFR properties and the projection of decline curves for Non-Newtonian 

drilling fluid under various scenarios. 

• The larger the differential pressure inside the wellbore, the greater the importance of mud 

rheology in mitigating loss volume. 

• The significance of drilling-fluid rheology becomes particularly pronounced in NFRs with 

larger fracture apertures, highlighting its crucial role in managing fluid losses and reservoir 
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behavior. This underscores the importance of accurate rheological characterization in 

drilling operations, especially in reservoirs with substantial fracture apertures. 

• The impact of Non-Newtonian fluid properties on ROI is more readily discernible at earlier 

stages in NFRs with higher leak-off rates. Consequently, this parameter demonstrates an 

accelerated increase in NFRs with a larger inter-porosity flow parameter, underscoring the 

crucial interplay between fluid properties and reservoir behavior. 

• The current model, designed primarily for pseudoplastic fluid types, inherently limits its 

application to a narrow range of Non-Newtonian drilling fluids. Moreover, not 

incorporating the effect of reservoir fluids on drilling fluid invasion constrains the model's 

capability in accurately predicting mud loss rates, volumes, and NFR parameters in various 

drilling fluid loss scenarios. 
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7 RECOMMENDATIONS FOR FUTURE WORK 

The limitation of this approach is that it might not accurately predict the performance 

of other types of drilling fluids. For future work, it is recommended to extend the 

applicability of the model to various drilling fluids. This could be achieved by deriving 

a specific rheological model for each drilling fluid. Once the rheological model is 

derived, it can be integrated into the COMSOL program. The COMSOL program, 

coupled with the double-porosity model, will enable the accurate measurement of the 

drilling fluid loss volume for different types of drilling fluids. This expanded scope of 

analysis will contribute to a more comprehensive understanding of fluid dynamics in 

drilling operations.
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APPENDIX A  
 

DERIVATION OF DUAL-POROSITY SOLUTION THROUGH NFR UNDER 

WELLBORE CONSTANT PRESSURE CONDITION 

 

The Appendix presents the derivation of the solution to measure Non-Newtonian fluid through 

NFR (Double Porosity). Dimensionless form of the proposed model (Escobar et al., 2011) 

respectively, defined by 

 

∂2pfD

∂rD
2 +

n

rD

∂pfD

∂rD
= rD

1−n (ω
∂pfD

∂tD
+ (1 − ω)

∂pmD

∂tD
) , tD > 0 …..………...……..….……….Eq A.1 

 

For source term, dimensionless form defined by; 

 

∂pmD

∂tD
=

nλ

(1−ω)
. D1−n. (pfD − pmD)  …………………………..….....……....…………….Eq A.2 

 

To solve Eq A.1 and Eq A.2, the Eq 4.3 to Eq 4.5 turning to dimensionless form as below, 

 

Initial Condition: Uniform pressure distribution 

 

pmD(rmD, 0) = pfD(rfD, 0) = 0 …………….………................................……………...Eq A.3 

 

Inner Boundary Condition: Constant wellbore pressure 

 

pfD-S(
∂pfD

∂tD
)=1……………….….....………………...….…………….…...……………...Eq A.4 

 

Outer Boundary Condition: Infinite-acting reservoir 

 

lim
rD→∞

pfD(rD, t) = 0……..……..…….............…………....…….………..………………Eq A.5 

 

Taking the Laplace transform of Eq. A.2: 

 

uṕmD(rD, u) − pmD(rD, 0) =
nλ

(1−ω)
D1−n(ṕfD(rD, u) − ṕmD(rD, u))……….…..……….Eq A.6 

If Eq A.6 is arranged based on ṕmD(rD, u) function, it become 
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ṕmD(rD, u) =
nλD1−n

u(1−ω)+nλD1−n ṕfD(rD, u)……….......………………...…………………..Eq A.7 

 

Then, taking the Laplace transform of Eq A.1: 

 

d2ṕfD(rD,u)

drD
2 +

n

rD

dṕfD(rD ,u)

drD
= rD

1−n[ω(uṕfD(rD, u)) + (1 − ω)(uṕmD(rD, u))]…….....…..Eq A.8 

 

Then, Eq A.7 substituting in Eq A.8 

 

d2ṕfD(rD,u)

drD
2 +

n

rD

dṕfD(rD ,u)

drD
= rD

1−n [ω(uṕfD(rD, u)) + (1 −

ω)[u
nλD1−n

u(1−ω)+nλD1−n ṕfD(rD, u)]]........................................................................................Eq A.9 

 

The uṕfD(u) factored from Eq A.9 results in 

 

d2ṕfD(rD,u)

drD
2 +

n

rD

dṕfD(rD ,u)

drD
= rD

1−n [uṕfD(rD, u)
u(1−ω)ω+nλD1−n

u(1−ω)+nλD1−n ]]………...…..…………Eq A.10 

 

The interporosity flow function is introduced as 

 

g(u) =
ω(1−ω)u+nλD1−n

(1−ω)u+nλD1−n ………..……………………………......…………………........Eq A.11 

 

Since Eq A.11 substitute in Eq A.10, it become 

 

d2ṕfD(rD,u)

drD
2 +

n

rD

dṕfD(rD ,u)

drD
= rD

1−n[ug(u)ṕfD(rD, u)]]……...……...……………………..Eq A.12 

 

rD
2  factor is multiplying in Eq A.12 which results in 

rD
2 d2ṕfD(rD,u)

drD
2 + nrD

dṕfD(rD,u)

drD
= rD

3−n[ug(u)ṕfD(rD, u)]]…………..…………………..Eq A.13 

 

For solving Eq A.13, the parameter δ introduced as 
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δ=
1−n

2
………………………………………...……………...…………………………..Eq A.14 

 

Since δ term applied to Eq A.13, it become 

 

rD
2 d2ṕfD(rD,u)

drD
2 + (1 − 2δ)rD

dṕfD(rD,u)

drD
= rD

3−n[ug(u)ṕfD(rD, u)]]…………….………...Eq A.15 

 

Similar to Ikoku and Ramey (1979), the following transform function has been applied 

 

ṕfD(rD, u) = ĤD(𝑧)…………………………………..…………………………………Eq A.16 

 

Where this form uses the transformation variable (z): 

 

z =
2√ug(u)

3−n
rD

3−n

2 ……………………………………...…….…...……………………….Eq A.17 

 

By using the definitions prescribed by Eq A.16 and Eq A.17, it obtains 

 

z2 d2ĤD(z)

dz2 +
dĤD(z)

dz
= z2ĤD(z)……………………………………...…………………..Eq A.18 

 

As in the case of Ikoku and Ramey (1979), it obtained 

 

ν=
1−n

3−n
……………………...………………..…………………………………………...Eq A.19 

 

To set the coefficient of the first derivative term in Eq A.15 to one, the following equation is 

proposed: 

 

Ĥ𝐷(𝑧) =
𝑧𝜈

𝜓
Ḃ𝐷(𝑧)………………………………...……………………………………...Eq A.20 

 

Where 

 

ψ = [
2√ug(u)

3−n
]

1−n

3−n

……………………………………..…………………………………Eq A.21 
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Therefore Eq. A.15 can be expressed in terms of Eq. A.18 as: 

 

z2 d2ḂD(z)

dz2 + z
dḂD(z)

dz
= (ν2 + z2)ḂD(z)……………………….…..……………………Eq A.22 

 

Therefore, the solution is 

 

ḂD(z) = C1Iν(z) + C2Kν(z)………………………………...……...……………………..Eq.23 

 

Recalling the change of variable from Eq. A.20 and Eq. Eq A.22, therefore it becomes 

 

ĤD(z) = rD

1−n

2 [C1Iν(z) + C2Kν(z)]………………………….……..….…………………..Eq.24 

 

Then, Eq A.24 can be written as 

 

ṕfD(rD, u) = rD

1−n

2 [C1I1−n

3−n

[rD

3−n

2  
2√ug(u)

3−n
] + C2K1−n

3−n

  rD

3−n

2  
2√ug(u)

3−n
]………..........………..Eq A.25 

 

Then, the Laplace transform should be implied on boundary conditions to transform them in 

the Laplace domain. 

Initial Condition: Uniform pressure distribution 

 

ṕfD
(rD, u = 0) = 0…………………………...…….……………………………………Eq A.26 

 

Inner Boundary Condition: Constant flow pressure 

 

ṕfD − S (
∂ṔfD

∂rD
) =

1

u
…………………………………...…………...……………………..Eq A.27 

 

Outer Boundary Condition: Infinite-acting reservoir system 

 

lim
rD→∞

ṕfD(rD, u) = 0……..……..…….............................................................................................. .Eq A.28 
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Outer boundary condition considered on Eq A.25 which results in C1 equal to zero. At the same 

time, the inner constant pressure condition assumed inside the wellbore results in 

 

  
1

u
= rD

1−n

2 [C2. K1−n

3−n

rD

3−n

2 2√u.g(u)

3−n
]……………………...………...…………………...….Eq A.29 

 

After Eq A.29 solves for C2, it equals  

 

C2 =
1

u.K1−n
3−n

 
2√u.g(u)

3−n

 ……………………………..…….......…...…………………………Eq A.30 

 

Since the Eq A.30 substitute in Eq A.25, the specific result under constant wellbore pressure 

assumption in the Laplace domain derived as 

 

ṕfD(rD, u) =
rD

1−n
2 .K1−n

3−n

(
2.√u.g(u)

3−n
.rD

3−n
2 )

u .K1−n
3−n

(
2.√u.g(u)

3−n
)

 ……………………………...……...………………Eq A.31 

 

Then, Darcy's law applies to relate dimensionless pressure with dimensionless rate 

 

qD = −rD.
∂pD

∂rD
 ………………………………………..………………………………...Eq A.32 

 

After that, the Eq A.32 transforms to the Laplace domain as below 

 

q̂D = −rD.
∂p̂D

∂rD
 ………………………...……...………………………………………...Eq A.33 

 

After the Eq A.31 substitute in Eq A.33, the result will be  
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q̂D(rD, u) = −rD.
∂p̂D(rD,u)

∂rD
= −rD.

∂

∂rD
(

rD

1−n
2 .K1−n

3−n

(
2.√u.g(u)

3−n
.rD

3−n
2 )

u .K1−n
3−n

(
2.√u.g(u)

3−n
)

  ) =

(1−n).r
1−n

2 .K1−n
3−n

(
2.r

3−n
2 .√u.g(u)

3−n
)

2.u.K1−n
3−n

(
2.√u.g(u)

3−n
)

−

r
1−n

2 +
3−n

2 .√u.g(u).[−K1−n
3−n

−1
(

2.r
3−n

2 .√ug(u)

3−n
)−K1−n

3−n
+1

(
2.r

3−n
2 .√ug(u)

3−n
)]

2.u.K1−n
3−n

(
2.√u.g(u)

3−n
)

…………...................………Eq A.34 

 

Following by applying Theorem 7, (Jim Lambers, ENERGY 281, Spring Quarter 2007-08), to 

derive cumulative recovery as below 

 

QD(rD, tD) = ∫ qD(rD, tD) dtD
tD

0
………………..…………...........……………………Eq A.35 

 

QD(rD, u) =
1

u
. qD(rD, u) = −

(1−n).r
1−n

2 .K1−n
3−n

(
2.r

3−n
2 .√u.g(u)

3−n
)

2.u2.K1−n
3−n

(
2.√u.g(u)

3−n
)

−

r
1−n

2 +
3−n

2 .√u.g(u).[−K1−n
3−n

−1
(

2.r
3−n

2 .√ug(u)

3−n
)−K1−n

3−n
+1

(
2.r

3−n
2 .√ug(u)

3−n
)]

2.u2.K1−n
3−n

(
2.√u.g(u)

3−n
)

 ………….…....….......……..Eq A.36
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APPENDIX B  
 

DERIVATION OF DIFFUSIVITY SOLUTION THROUGH HOMOGENOUS 

RESERVOIR UNDER WELLBORE CONSTANT PRESSURE CONDITION 

 

 

This Appendix provides an evaluated solution suitable for measuring Non-Newtonian fluid 

flow through a homogenous reservoir.  

Dimensionless form of Non-Newtonian fluid flow through a homogenous reservoir derived by 

(Ikoku, 1979) is 

 
∂2pDNN

∂rD
2 +

n

rD

∂pDNN

∂rD
= rD

1−n ∂pDNN

∂tDNN
……………………………...…………………………..Eq B.1 

 

According to the cases that this study follows to measure drilling fluid rate and volume, the 

following initial and boundary conditions are considered, 

 

Initial condition: Uniform pressure distribution 

 

pDNN(rD, tD = 0) = 0 ……………………………...………...………………………….Eq B.2 

 

Inner boundary condition: Constant flow pressure 

 

pDNN(rD = 1, tD) = 0 ……………………………………………...…………………....Eq B.3 

 

Outer Boundary Condition: Infinite-Acting Reservoir 

 

lim
rD→∞

pDNN(rD, tD) = 0 ……………………..………………………....…….…………..Eq B.4 

 

Since the Laplace transforms apply to Eq B.1, it become 

 
d2ṕDNN(rD,u)

drD
2 +

n

rD

dṕDNN(rD,u)

drD
= rD

1−nuṕDNN……………………….........………………...Eq B.5 

 

Then, to solve the Eq B.5 for our specific case, the Laplace transform should be exerted on Eq 

B.3 and Eq B.4. 

Inner boundary condition in Laplace domain: Constant flow pressure 
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pDNN(rD = 1, u) =
1

u
 …………………………...….…………………………………… Eq B.6 

 

Outer Boundary Condition in the Laplace domain: Infinite-Acting Reservoir 

 

lim
rD→∞

pDNN(rD, u) = 0 …………………..………...……………………………………. Eq B.7 

 

Then, rD
2  should be multiplied on Eq B.5 

 

rD
2 d2ṕDNN(rD,u)

drD
2 + nrD

dṕDNN(rD,u)

drD
= rD

3−nuṕDNN(rD, u)…………...………….………….Eq B.8 

 

The δ defined as 

 

δ = 
1−n

2
…………...…………………..………………………...............………………….Eq B.9 

 

After considering Eq B.9 on Eq B.8, it results 

 

rD
2 d2ṕDNN(rD,u)

drD
2 + (1 − 2δ)rD

dṕDNN(rD,u)

drD
= rD

3−nuṕDNN(rD, u)……….………..………Eq B.10 

 

Following transform function defined  

 

ṕDNN(rD, u) = ĜD(z)…………… ……………………………...……...………………Eq B.11 

 

While the transform variable is 

 

z =
2√u

3−n
rD

3−n

2 ………………………………………………….....………………………Eq B.12 

 

Then, Eq B.11 and Eq B.12 substituting in Eq B.10 

 

z2 d2ĜD(z)

dz2 + (1 − 2ν)z
dĜD(z)

dz
= z2ĜD(z)…………..…………………...……………..Eq B.13 

 

The 𝜈 parameter is defined as  

 

ν =
1−n

3−n
 ………………………………………………………..……………..…………Eq B.14 

 

To arrange the first derivative term in Eq B.13 to one, the below equation suggests 



109 

 

  

ĜD(z) =
zν

ψ
BD(z)………………………………………..………….…………………..Eq B.15 

 

While 

 

Ψ=[
2√u

3−n
rD

3−n

2  ]

1−n

3−n

…………………………………..………………….…………………Eq B.16 

 

The transformation is given by Eq B.15 and Eq B.16 applying to Eq B.13 

 

z2 d2BD(z)

dz2 + z
dBD(z)

dz
= (ν2 + z2)BD(z)……………………………………….....……..Eq B.17 

 

Therefore, the general solution of Eq B.17 become 

 

BD(z) = C1Iν(z) + C2Kν(z)………………………………………...……...………...…Eq B.18 

 

While Eq B.15 is considered, the Eq B.18 become 

 

ĜD(z) =
zν

ψ
[C1Iν(z) + C2Kν(z)]…………………………..………....…………….....…Eq B.19 

 

Therefore, the general solution for Eq B.10 obtain as 

 

ṕDNN(rD, u) = rD

1−n

2 [C1I1−n

3−n

[rD

3−n

2  
2√u

3−n
] + C2K1−n

3−n

[rD

3−n

2  
2√u

3−n
]]………………....………..Eq B.20 

 

Since the outer boundary condition (infinite-acting behavior) applied on the general solution 

(Eq. B20) and the behavior of Modified Bessel functions of the first kind shows, the C1 

becomes zero. Then, inner constant pressure is applied on Eq B.20 which results in 

 

C2 =
1

u.K1−n
3−n

2√u

3−n

 …………………………….......……………...…………………………Eq B.21 

 

While substituting C1 and Eq B.21 in Eq B.20, the dimensionless pressure through a 

homogenous reservoir for Non-Newtonian fluid under constant wellbore pressure equal to 
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p̂(rD, u) =
rD

1−n
2 .K1−n

3−n

(
2

3−n
.√u .rD

3−n
2 )

u .K1−n
3−n

(
2

3−n
.√u)

 …………………………………..........………………Eq B.22 

 

Applying the Laplace transform to both sides of the Darcy equation 

 

qD(rD, u) = −rD.
∂p̂D(rD,u)

∂rD
= −rD.

∂

∂rD
(

rD

1−n
2 .K1−n

3−n

(
2

3−n
.√u .rD

3−n
2 )

u .K1−n
3−n

(
2

3−n
.√u)

)..….………..…….…......Eq B.23 

 

Then, the dimensionless rate in the Laplace domain for Non-Newtonian fluid in a homogenous 

reservoir will be 

qD(rD, u) =
r2−n.K 2

3−n

(
2.r

3−n
2 .√u

3−n
)

u0.5.Kn−1
n−3

(
2.√u

3−n
)

…..…………………………...…...….……….……........Eq B.24 

 

After that, dimensionless volume in the Laplace domain can be derived readily by recalling 

Theorem 7, therefore, it becomes 

QD(rD, u) =
r2−n.K 2

3−n

(
2.r

3−n
2 .√u

3−n
)

u1.5.Kn−1
n−3

(
2.√u

3−n
)

 …………………………........………………………….Eq B.25 

 

To derive the solution in analytical form, Hankel developed asymptotic (short argument) 

expansions that have been applied to transform the numerical solution in the Laplace domain. 

As a result, we can derive dimensionless rate and volume approximate solutions for both 

conditions. To derive the analytical solution for a short time, Hankel developed asymptotic 

(short argument) expansions (Eq B.26) applied to approximate the Bessel functions (qD  as s 

→ ∞,) at early times, 

 

Kα(u) ∼ √
π

2u
e−u (1 +

4α2−1

8u
+

(4α2−1)(4α2−9)

2!(8u)2 ) …………………….……...………….Eq B.26 

 

Since the approximate quantity for Besselk for both numerator and denominator is derived, the 

equation simplifies and prepares for LaPlace inversion, consequently, the dimensionless rate 

for a short time is measured below 

https://en.wikipedia.org/wiki/Hermann_Hankel
https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Hermann_Hankel
https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Asymptotic_expansion
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qD(rD, tD) =
r(1.25−0.75n).e

− 
(1−r

D

(1.5 − 
n
2

)
)2

(n−3)2.tD

√π.√tD
  …………………..……...…………………….Eq B.27 

 

To derive the analytical solution for a long time, developed asymptotic (Large argument) 

expansions by Hankel (Eq B.28) have been applied for both numerator and denominator to 

approximate modified Besselk terms  

 

Kα(z) ∼
Γ(α)

2
. (

2

z
)α   if  α˃0 ………………..…...………......……...............…..………..Eq B.28 

 

Then, the LaPlace inverse is taken to obtain the analytical dimensionless rate, and it become 

 

qD(rD, tD) =
(3−n)

n+1
3−n.r1−n.tD

− 
2

n−3
−1

Γ(
n−1

n−3
)

  …………………………..…….…………………..Eq B.29 

 

The analytical dimensionless cumulative loss in real short-time and long-time are deriving 

similarly as below respectively 

 

QD(rD, tD) = −
0.9 .rD

2−n.(rw−1).(
1.77245.tD.|n−3|.1F1(−0.5;0.5;

(rw−1)2

(n−3)2.tD
)

|rw−1|
−3.1416)

√3−n .(n−3)
.........……..….......Eq B.30 

 
 

QD(rD, tD) =
(3−n)

n+1
3−n.r1−n.tD

− 
(5−n)
n−3

−1
.Γ(

2

n−3
)

Γ(
n−1

n−3
).Γ(−

5−n

n−3
)

 ……………………...…….………….….....Eq B.31 

 


