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Resumo

Esta tese tem como objetivo apresentar resultados na dire¢ao de trés problemas distintos.

Mostramos que algebras graduadas que sao soma de duas subdlgebras homogéneas satisfa-
zendo identidades graduadas nem sempre sao gr-PI dlgebras. Além disso, apresentamos

condigoes suficientes para uma tal soma satisfazer alguma identidade polinomial graduada.

Consideramos imagens de polindmios multilineares graduados sobre a dlgebra graduada
de matrizes triangulares superiores e classificamos tais imagens para certas graduacoes.
Obtemos uma descrigao completa no caso de dimensao baixa nos ambientes ordinério e
de Jordan. Também estudamos o caso de matrizes triangulares superiores com involucgao
graduada e de dimensao baixa, onde classificamos imagens de polindmios multilineares

nestas algebras bem como mostramos que tais imagens nem sempre sao subespagos.

Uma generalizagao de algebras zpd é apresentada (as chamadas algebras f-zpd) e mos-
tramos que nem sempre a algebra das matrizes é f-zpd. Fornecemos varios exemplos de
polindmios f em que a algebra das matrizes é f-zpd, e consideramos um problema do tipo

Nullstellensatz que esta relacionado com a classe de algebras introduzida.

Palavras-chave: imagens de polinémios, conjectura de L’vov-Kaplansky, identidades
polinomiais, polindmios centrais, somas de algebras, matrizes triangulares superiores,
algebras de Jordan, algebras de Lie, involugoes, algebras graduadas, involugoes graduadas,

algebras zpd, algebras f-zpd, Nullstellensatz.



Abstract

The main goal of this thesis is to present results in the direction of three distinct problems.

We show that graded algebras which are sum of two homogeneous subalgebras satisfying
graded identities are not always gr-PI algebras. Moreover, we give sufficient conditions for

the sum to satisfy some graded polynomial identity.

We consider images of multilinear graded polynomials on the graded algebra of upper
triangular matrices and we classify such images for certain gradings. We obtain a full
description in the case of small dimension for the ordinary and Jordan settings. We also
study the case of upper triangular matrices with graded involution and of small dimension,
where we classify the images of multilinear polynomials on these algebras, moreover we

show that such images are not always vector subspaces.

A generalization of zpd algebras is presented (the so called f-zpd algebras) and we prove
that the full matrix algebra is not always f-zpd. We give several examples of polynomials
f where the full matrix algebra is f-zpd, and we also consider a problem of Nullstellensatz

type which is related to the class of algebras introduced.

Keywords: images of polynomials, L’vov-Kaplansky conjecture, polynomial identities,
central polynomials, sums of algebras, upper triangular matrices, Jordan algebras, Lie
algebras, involutions, graded algebras, graded involutions, zpd algebras, f-zpd algebras,

Nullstellensatz.
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Introduction

Images of polynomials on algebras appear in several results from Linear Algebra
and Ring Theory. For instance the well-known Cayley-Hamilton Theorem states that the
image of the characteristic polynomial of a matrix A € M, (F) on A itself is the null matrix.
Another example comes when the image of a polynomial on some algebra is always zero,
or even is always contained in the center of the algebra. These polynomials are known as

polynomial identity and central polynomial for the algebra, respectively.

Since polynomial identities for algebras are a particular example of images of
polynomials on algebras, we may say that the first results concerning the latter appeared
with the works of Dehn [18] and Wagner [65] in the twenties and thirties of the 20th
century. However, a different first result concerning images of polynomials on algebras is
addressed in the literature. In 1937, Shoda [56] showed that the image of the commutator
[z,y] := xy—yx on the full matrix algebra M, (F') with entries in a field F’ of characteristic
zero is exactly the subspace sl,,(F') of traceless matrices. Shoda’s result was generalized in

the fifties by Albert and Muckenhoupt [2] for matrices over arbitrary fields.

The result obtained by Shoda, Albert and Muckenhoupt can be equivalently
read as follows: the image of the polynomial xy — yx on the full matrix algebra is a vector
space. Now a question that appears is whether the image of an arbitrary polynomial on the
full matrix algebra is always a vector space. As one might already expect, this is not the
case in general. For instance, for an integer n > 2, the image of the polynomial f(z) = 2"
on M,(F) is not a vector space (see [52, Example 4]). It is not clear why the image of the
commutator on M, (F) is a vector space while the image of f(z) = 2" on the same algebra
is not. However, it is worth noticing that the commutator satisfies an additional property
that the latter does not. The commutator is what we call a multilinear polynomial. We
recall here that a polynomial in the free associative algebra is said multilinear if each one
of its variables appears exactly once in every monomial of this polynomial. So, what to
expect if we consider images of multilinear polynomials on the full matrix algebra instead?

This question goes in the direction of the following one posed by L’vov in [30, Problem 1.98].

Question. (L’'vov) Is the image of a multilinear polynomial on the full matrix

algebra a vector space?

The difficulty of studying the question above lies in the lack of structure of the
image of a multilinear polynomial on some algebra. On the other hand the linear span

of such images have a nice behaviour. In fact, they are Lie ideals of the algebra. In the
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particular case of the full matrix algebra M, (F), its Lie ideals are well known (up to
some mild conditions on the ground field F'). They are precisely {0}, F' (scalar matrices),
sl (F) and M, (F) itself, according to an old result due to Herstein [36]. Thus, in case
L’vov’s Question has a positive answer, then a full description of the images of multilinear
polynomials on M, (F) will be also obtained. The problem of obtaining a full description
of multilinear polynomials on matrices is attributed to Kaplansky (see [38]). As a resumé

of all these discussion we have the following conjecture.

Conjecture. (L’vov-Kaplansky) The image of a multilinear polynomial on
M, (F) is {0}, F, sl,,(F') or M, (F). Equivalently, the image of a multilinear polynomial on

M, (F) is a vector space.

Little is known concerning the above conjecture. The image of a multilinear
polynomial of degree 2 on M, (F') is an easy consequence from the results of Shoda, Albert
and Muckenhoupt. In fact, the image must be {0}, sl,(F') or M,,(F). In 2012, Kanel-Belov,
Malev and Rowen [38] showed that the L’vov-Kaplasnky conjecture is true for 2 x 2
matrices with entries in a quadratically closed field. The conjecture remains open besides
these two results. However partial results were obtained in the case of polynomials of

degree 3 [22] and also in the case of 3 x 3 matrices [39].

The L’vov-Kaplansky conjecture has shown to be a truly challenging problem,
and in attempting to approach it several variations of it have appeared. We firstly comment
about a weaker version of the L’vov-Kaplansky conjecture, the so called Mesyan conjecture
[52]. The latter states that the image of a multilinear polynomial of a fixed degree m on
M, (F) always contains sl,(F"), provided n is large enough. Mesyan’s conjecture is true for
poylnomials of degree 3 [52] and also for polynomials of degree 4 [16, 26], and it remains
open for polynomials of degree 5 or more. Subalgebras of M, (F') were also considered. In
23], Fagundes considered the subalgebra of strictly upper triangular matrices J, and proved
that the image of a multilinear polynomial of degree m on J* is J*™. A similar problem
was also posed for upper triangular matrices UT,,(F’), where partial results were obtained
in [25] by Fagundes and de Mello, and simultaneously fully solved in [31] by Gargate and
de Mello in case the ground field is infinite, and in [48] by Luo and Wang for fields with
at least n(n —1)/2 elements. The infinite-dimensional case was settled by Vitas in [63],
where the author proved that non-zero multilinear polynomials are surjective on algebras
with surjective inner derivations. In particular, every non-zero multilinear polynomial
is surjective on the algebra End(V') of endomorphisms of an infinite-dimensional vector

space V.

The nonassociative cases were also explored. Here we point out the work [51]

where Malev, Yavich and Shayer obtained a full description of the images of multilinear
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Jordan polynomials on the Jordan algebra given by a particular nondegenerate symmetric
bilinear form. Their result covers the cases of images of multilinear Jordan polynomials
on the 2 x 2 self-adjoint matrices over R, C,H (quaternions) and O (octonions). In the
Lie case, we have the paper [40] where Kanel-Belov, Malev and Rowen investigated the
images of arbitrary Lie polynomials (not necessarily multilinear) on the Lie algebra sly(F),
while in [64] Spenko showed that non-zero multilinear Lie polynomials of degree up to
four have images equal to sl,(F') on the Lie algebra gl,,(F") (excluded the trivial case of

polynomial of degree 1, of course).

In the same way that gradings on algebras showed to be an important tool for
the theory of algebras with polynomial identities (PI-algebras), one might also hope for
the same in the case of images of polynomials on algebras. This motivates the study of
such images on algebras with additional structure, such as group gradings or involutions,
for instance. Besides a first result concerning images of graded polynomials on algebras
that was given in 2000 by Kulyamin [47], just recently this topic has been more explored.
We draw the readers’ attention to the recent paper [17] from 2023 where Centrone and
de Mello considered images of multilinear graded polynomials on the full matrix algebra
M, (F) endowed with the natural Z,-grading (Vasilovsky’s grading). The authors classified
the linear span of the image of a multilinear graded polynomial on M, (F) with the
aforementioned grading, and conjectured that the same subspaces obtained are actually
the possible images that a multilinear graded polynomial can take on this algebra. They
also proved that their conjecture is true in the small (but not trivial) cases of polynomials
of degree 2 and also for 2 x 2 matrices. Also in 2023, Gargate and de Mello [32] gave
an equivalent form of the L’vov-Kaplansky conjecture in terms of images of multilinear
(nongraded) polynomials on the algebra M, (F) endowed with the Vasilovsky’s grading. In
particular, their result shows us the importance of studying images of graded polynomials
on graded algebras. The involutive case was explored by Franca and Urure in the papers
[60] and [61]. They considered the upper triangular matrix algebra UT,(F) with the
reflexive involution, and classified the images of multi-homogeneous Lie polynomials on
the skew-symmetric part of UT,, (F') for n < 4, and of multilinear Jordan polynomials of

degree up to 3 on the symmetric part of UT,(F).

We now turn out attention to the particular case where the image of a poly-
nomial on some algebra A is {0}. As we already mentioned such polynomials are called
polynomial identities for the algebra A. The study of PI theory is commonly divided in
three parts that we stress in the following. The first part concerns the description of all
polynomial identities of a given algebra, the second one is about studying the variety of
algebras defined by a given set of identities, while the last one is concerned in deciding if a
given algebra satisfies some polynomial identity or not. Recently most of the work done in
PI theory is in the direction of the two first parts. Concerning the third part, it is well

known that finite-dimensional algebras are PI. Moreover, we are also able to construct
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new PI algebras from old ones. Indeed, homomorphic images of PI algebras are also PI,
direct product of PI algebras satisfying a common identity is again PI, and subalgebras of
PI algebras are PI algebras. This is actually part of the contents of Birkhoff’s theorem
which states that any variety can be described as a class of algebras closed under taking
subalgebras, homomorphic images and direct products (for instance, see [21]). Besides
those results, it is not an easy task to construct PI algebras, or find sufficient conditions
on algebras so that these become PI algebras. A celebrated result in this direction is the
one given by Regev [53] where he uses combinatorial tools to establish that the tensor

product of PI algebras is also PI.

As we have commented, direct product of PI algebras satisfying a common
identity is again a PI algebra. This direct product coincides with the external direct sum
of PI algebras in case we have finitly many algebras. However, as one might expect, a quite
different situation is settled when we consider internal (direct) sums, that is, algebras
A = B + C such that both B and C are PI subalgebras of A. Then the natural question
that arises is whether A satisfies some polynomial identity or not. This question was
posed by Beidar and Mikhalev [9] in 1995. In this same paper the authors proved that
sums of rings satisfying product of commutators as identities is also a PI ring. Their
proof is far from being trivial, using structure results from the theory of associative rings
and also the so called Amitsur’s method (see the book [55]), which is another result in
the direction of existence of PI algebras. Besides the partial result given by Beidar and
Mikhalev on their own question, we can not consider this as a first result in the direction
of the aforementioned problem. In fact, in 1963 Kegel [44] showed that the sum of two
nilpotent rings is still nilpotent. Actually, Beidar and Mikhalev’s question is a particular
case of a problem posed by Szép [58, 59] in the late fifties concerning which properties one
may obtain on a ring A = B + C provided one has some information about the subrings B
and C.

In 1996, Kepczyk and Puczylowski initiated a sequence of papers concerning
the study of radicals of rings which are sums of two subrings using ideas that go back to
[3]. However some of their results were also related to Beidar and Mikhalev’s question. We
mention here the paper [43] where Kepczyk and Puczylowski obtained important results
concerning the problem of sums of PI rings. For instance, an important theorem obtained
by the authors in [43] was that a class of rings which is closed under homomorphic images,
direct powers and such that every prime ring in the class is GPI (satisfies some generalized
polynomial identity) is actually a class of PI rings. This result is of fundamental importance
in the positive solution of Beidar and Mikhalev’s question given by Kepezyk [41] in 2016.
Besides Kepczyk’s theorem being interesting by itself, it is worth noticing that it also has
connections with major problems in Ring Theory. For instance, we mention here the paper
[42] where Kepezyk used his positive answer to Beidar and Mikhalev’s problem to obtain

a new equivalent condition to Koethe’s conjecture (which states, in one among several of
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its equivalent forms, that the sum of left nil ideals is still nil in any ring).

The third and last topic of this thesis, but not less important, is concerning
a class of algebras called zero product determined algebras (which we briefly call zpd
algebras). These algebras first appeared in the works of Bresar and Semrl [15] and of
Alaminos, Bresar, Extremera and Villena [1]. In the first paper the authors described
commutativity preserving linear maps on finite-dimensional central simple algebras, while
in the second one it was studied derivations and some related maps on C*-algebras. By
the way how these algebras appeared one might expect their usefulness for applications. In
fact, several results on linear preserving maps and characterization of derivations on some

algebras have being obtained by using zpd algebras (see Chapter 3 of [13] for instance).

We recall that an algebra A is said zero product determined if for every bilinear
functional ¢ on A such that ¢(z,y) = 0 whenever xy = 0, then ¢(x,y) = 7(zy) for all
x,y € A, where 7 is a linear functional on A which depends on . Algebras generated
by idempotents are one of the examples of such algebras. In particular, the full matrix
algebra is zpd. On the other hand unital domains are not zpd algebras, except the case
where the domain is one-dimensional. A surprising result in the theory of zpd algebras
is the main theorem from [14] where Bresar showed that in the finite-dimensional unital
associative setting, zpd algebras are precisely those generated by idempotents. However, it
is still open the problem of existence of an infinite-dimensional unital zpd algebra which is
not generated by idempotents. We recommend the book [13] for further details concerning

this class of algebras.

In this thesis, we present results on the three topics previously discussed:
description of images of polynomials on algebras, algebras with polynomial identities and
zpd algebras. Let us briefly discuss these results and how they are organized in the present

text.

In the first chapter of this thesis we set the main definitions and results that
will be used in the whole text. The reader familiar with the basic notions of images of
polynomials on graded algebras might skip the first chapter, perhaps using it just for

consulting notations.

The second chapter is devoted to studying graded algebras which are sums
of two homogeneous subalgebras. In Section 2.1 we show that an analogue of Kepczyk’s
theorem can not be expected in the group-graded setting. In the rest of the chapter we
give sufficient conditions on a graded algebra A = B + C such that A satisfies some graded
polynomial identity. Hence in Section 2.2 we show that if B and C are gr-PI (satisfy some
graded identities) and B is also a two-sided ideal, then A is also gr-PI. In the last section of
this chapter (Section 2.3), we introduce the notion of graded semi-identities for A = B+ C
and we give sufficient conditions on such graded semi-identities in order to obtain graded

identities for A. The results from Chapter 2 are original and were published in [28].
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In the third chapter we discuss images of multilinear polynomials on upper
triangular matrices with several additional structures. The Section 3.1 is only devoted to
present a quick review on gradings on UT,,(F') (the upper triangular matrix algebra with
entries in a field F'). Section 3.2 shows the non existence of graded central polynomials for
UT,(F) with an arbitrary grading. In Section 3.3, we prove that the image of a multilinear
graded polynomial in neutral variables on the neutral component of UT,, (F') is always a
homogeneous vector space, regardless the grading. In Section 3.4 we study the images
of multilinear graded polynomials on UT,,(F') with certain gradings given by the group
Zq. Under some mild conditions on the ground field /' we obtain a precise description
of such images, in particular they are always homogeneous vector spaces. In Section 3.5
we apply some ideas from the previous section to obtain a sufficient condition for the
image of an ordinary multilinear polynomial on the full matrix algebra to contain the
subspace of traceless matrices. Such condition relies on graded polynomials obtained from
the ordinary one. Section 3.6 is concerned with the study of images of multilinear graded
polynomials on upper triangular matrix algebras of small dimension. In Subsection 3.6.1
we show that such images on UT5(F') and UT5(F) are always homogeneous subspaces. An
analogous result is proved in Subsection 3.6.2 where we considered the graded Jordan
algebra UJy(F') of 2 x 2 upper triangular matrices. In Subsection 3.6.3 we have obtained
a classification of multilinear graded Jordan polynomials on the Jordan algebra UJs(F')
endowed with the elementary natural Zs-grading. The last subsection (Section 3.6.4) deals
with the graded involutive case on UT5(F') and UT5(F'). During this subsection we prove
that the images of multilinear graded polynomials with involution on UT,(F') are always
a homogeneous subspace, and the same result was obtained for UT3(F) provided the
grading on this algebra is not trivial. Besides those results, we show that an analogue of
L’vov-Kaplansky conjecture can not be expected in the graded involutive case. We prove
that there exists a multilinear (graded) polynomial with involution so that its image on
UT,(F),n =3, (UT,(F),n > 4) is not a vector space. The results from this chapter are
new. The ones from Subsection 3.2 to Subsection 3.6.3 are published in [27], while the

results from Subsection 3.6.4 are submitted for publication [24].

In the last chapter we present a generalization of zpd algebras, that we call
f-zpd algebras (f an associative multilinear polynomial). We introduce this concept in
Section 4.1. In Section 4.2 we are mostly interested in investigating whether the full matrix
algebra M, (F') is f-zpd. While in Subsection 4.2.1 we prove that this is not always the
case, in Subsections 4.2.2, 4.2.3 we present some multilinear polynomials f so that M, (F')
is f-zpd. In Subsection 4.2.4 we show how one can construct an f-zpd algebra from given
ones using composition of polynomials. The last section (Section 4.3) is devoted to present
a related problem to f-zpd algebras. The problem goes in the direction of a multilinear
version of an old result due to Amitsur [4]. We show that if a multilinear polynomial g of

degree m preserves the zeros of a multilinear polynomial f of degree m on the full matrix
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algebra M, (F"), then g and f are linearly dependent, provided m < 2n — 3. The results

from this last chapter are new and are submitted for publication [8].
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1 Preliminaries

The main goal of this chapter is to establish the main definitions, notations
and basic results from the theory of algebras used during all this thesis. The reader already
familiar with the notions presented in this chapter may skip it without further problems

in following the thesis.

1.1 Graded algebras

A nonassociative algebra will mean a not necessarily associative algebra. The

word “algebra” in this thesis will stand for an associative algebra.

Definition 1.1. Let V be a vector space over a field F and let G be a group. We define a
G-grading on V as a decomposition

F:Vz@Vg

geG

into a direct sum of subspaces V,. In case A is a nonassociative algebra over F', a G-grading
on A is defined as a G-grading on the vector space A over F satisfying the additional

condition

.Ag.Ah e Agh,
forall g,h e @G.

Definition 1.2. The subspaces V, are called homogeneous components of the grading I

on V. A non-zero element v € V, is said to have homogeneous degree g, and we denote it

by deg(v) = g.

Definition 1.3. A subspace U of a G-graded space V is called homogeneous if

U=PUnYV,).

geG

Definition 1.4. We define the support of a G-grading I' on the vector space V as the

subset

supp(T) = {g € G|V, # 0},

Definition 1.5. Given a G-graded algebra A and a homogeneous ideal I of A, we define
a G-grading on the quotient A/T by setting (A/T), = {a +Z|a € Ay}.

We will use the multiplicative notation for the neutral element 1 of a group.
Obviously the homogeneous component 4; is a subalgebra of A, and it is also called the

neutral component of the graded algebra A. The following result is folklore.
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Proposition 1.6. Let A be a G-graded unital nonassociative algebra. Then its unit 1 € A

lies in the neutral component.

Definition 1.7. Let A and B be two G-graded nonassociative algebras. A homomorphism
w: A — B is called a graded homomorphism if o(A,) < By for all g € G. In case ¢ is an
isomorphism one can see that we actually have ¢(Ay) = ¢(B,), and in this case we say

that A and B are graded isomorphic algebras.

Besides the associative algebras, other two classes of algebras which will be
also explored on this thesis are the Jordan and Lie algebras. For that reason, let us recall

their definitions and a few examples.

Definition 1.8. Let J be a nonassociative commutative algebra. We say that J is a
Jordan algebra if (a*b)a = a*(ba) for all a,be J.

We can always obtain a Jordan structure from an associative algebra. Indeed,
given an algebra A over a field of characteristic different from 2, one just need to consider
the product aob = (ab + ba)/2 for all a,b e A. The Jordan algebra obtained in this way is
denoted by A,

Remark 1.9. Given a,b,c € J (a Jordan algebra), we denote (a,b,c) = (ab)c — a(bc) (the

associator of the elements a,b, c in this order).

Definition 1.10. Let £ be a nonassociative algebra. We say that L is a Lie algebra if a*> = 0
(which implies anti-commutativity in case L is an algebra over a field of characteristic

different from 2) and (ab)c + (ca)b + (bc)a = 0 (Jacobi identity) for all a,b,c € L.

As in the Jordan case, one can also obtain Lie structures from associative
ones. Let A be an algebra and consider the product [a,b] = ab — ba for all a,b € A. This
defines a Lie algebra which will be denoted by A7), Every Lie algebra can be realized as a
subalgebra of some A7), where A is an associative algebra; this is the content of the well
known Poincaré-Birkhoff-Witt theorem. The analogous statement for Jordan algebras fails,
there exist Jordan algebras that are not isomorphic to subalgebras of any A™) given from
an associative algebra A. Such Jordan algebras are called exceptional; on the contrary J
is special. We recall here that the notion of a Jordan algebra can be extended to the case
of base field of characteristic 2, these are the so-called quadratic Jordan algebras. Since we

shall not need this notion we will not discuss it further.

Remark 1.11. In both Jordan and Lie cases, we use the left-normed orientation for

product of three or more elements if there are no parentheses (or brackets) in the product.

An example of group graded algebra that will be exhaustively used in this
thesis is the free G-graded algebra (in different classes of algebras). For that reason let us

introduce this algebra in the following examples.
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Example 1.12. Let G be a group and let X¢ = {xgg)|g €eG,i=1,2,...} be a set of non-
commutative and nonassociative variables. Let F{Xg} be the free G-graded nonassociative
algebra. This means it is the vector space with basis consisting of all monomials (with all
possible valid dispositions of parentheses) on X¢q. The degree of a monomial is the product
(in G) of the degrees of its variables. The free associative G-graded algebra is defined as
F(Xg) = F{X¢g}/K where K is the T-ideal generated by (xl(gi)xﬁ-g"))x;g’“) - xl(-gi)(:vg-gj)x,(cg’“)).
Notice that F{X¢) is G-graded since K is a homogeneous ideal of F{X¢}. The elements

from F{(X¢) are called G-graded polynomials.

Example 1.13. Let G be a group and let Xg = {xgg)|g eG,i=1,2,...} be a set of non-
commutative and nonassociative variables. Let F{Xg} be the free G-graded nonassociative

algebra.

e We denote by I the intersection of all homogeneous ideals of F{Xg} containing the
set {f2, (fifo) fs + (fafa) fr + (fafo) ol fus fos 5 € F{Xa}}s

e We denote by J the intersection of all homogeneous ideals of F{Xq} containing the
set { fif2 = f2/f1, () (f2f1) = ((Fufo) f2) fil frs fo € F{XG}}

Hence we have that

e L(Xg) = F{Xg}/I is the free G-graded Lie algebra (and its elements are called
G-graded Lie polynomials);

o J(Xa)=F{Xg}/J is the free G-graded Jordan algebra (and its elements are called
G-graded Jordan polynomials).

Remark 1.14. Notice that we recover the ordinary setting in all definitions above by

considering the trivial G-grading on A, which is the one given by the trivial group G = {e}.

Definition 1.15. A polynomial [ = f(a:%gl), 29 e F(Xg) (resp. L(Xg) / T(Xg))

i)

is multilinear if each variable xggz appears in every monomial of f exactly once.

Remark 1.16. In particular one can notice that multilinear polynomials have the following

form in the associative setting

f= 2 agx((,ga()l)) . ~:c§g(‘;$>), a, € F,

OESm

where S, denotes the symmetric group of degree m.

Remark 1.17. Given an m-tuple (g1,...,9m) € G™, the vector space of multilinear
G-graded polynomials in m variables a:§91), e ,:137(79;”) will be denoted by PY9m)  More

generally, given a decomposition m = mq + - - - +my, where m; € N, the space of multilinear

polynomials in m; homogeneous variables of degree g; is denoted by P, . m, -
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1.2 Images of graded polynomials on graded algebras

We start this subsection with the definition of image of a graded polynomial

on some graded algebra.

Definition 1.18. Let f(azggl), o amy e FOXG) (resp. L(X¢g) /T (X)) and let A be a
G-graded algebra (resp. Lie/Jordan algebra). We define the image of f on A (denoted by
f(A)) as the image of the function

fo Ay x--x A, — A
(a1,...,am) — flay,...,an).
Equivalently
fA) ={F(ar, ... am)|a; € Ag,}.

We observe that f is a multilinear function whenever f is a multilinear polyno-

mial.

In the next proposition we present some basic properties of images of graded
polynomials on algebras. The proposition is written in the associative setting, however the

same properties hold in the Lie and Jordan cases.

Proposition 1.19 ([27]). Let f € F{X¢g) and let T be a G-grading on the algebra A.

1. f(A) is invariant under graded endomorphisms of F{Xg);

2. If 1 € A and f € F(Xg) is multilinear in neutral variables and the sum of its

coefficients is non-zero, then f(A) = Aj, the neutral component in the grading on A;

3. Assume that there exists an one-dimensional subspace V of A such that f(A) <V and
assume that A\f(A) < f(A) for every A € F. Then either f(A) = {0} or f(A) =V;

4. If supp(T') is abelian and f € F{(X¢g) is multilinear, then f(A) is entirely contained

in some homogeneous component.

Proof. The proof of items 1, 3 and 4 are immediate. For the second item, we just need to
recall that 1 € A; (Proposition 1.6), and that

fla,1,...,1) = f(1,...,1)a forall ae A,
where f(1,...,1) is non-zero by hypothesis. ]

The following lemma is a useful tool when one is dealing with images of

polynomials on associative algebras of small dimension.
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Lemma 1.20 ([50]). Let F' be a field, and let Vi, ..., Vi, V be vector spaces over F'. Assume

that the image of a multilinear map f : HVi — V contains two linearly independent
i=1
vectors. Then the image of f contains a 2-dimensional vector subspace.

As a direct corollary, we have the following

Corollary 1.21. Assume that the image of a multilinear polynomial f on some algebra A

is contained in some 2-dimensional vector space. Then f(A) is a vector subspace.

Proof. Let f(A) < V, where dim(V) = 2. If f(A) contains two linearly independent
vectors, by the previous lemma f(A4) = V. Now assume that any two vectors in f(.A)

are linearly dependent. Then f(A) < U, where U is an 1-dimensional subspace. Hence,
f(A) = {0} or f(A) =U by Proposition 1.19 (3). O

Another important property concerning images of graded polynomials on
algebras is that the homogeneous subspace structure of the image is invariant under graded

homomorphic images.

Proposition 1.22 ([27]). Let G be a group and let A and B be two G-graded algebras
such that B is a graded homomorphic image of A. Let f € F{(X¢g) be a graded polynomial
and assume that f(A) is a homogeneous subspace of A. Then f(B) is also a homogeneous

subspace of B.

Proof. Let ¢: A — B be a graded epimorphism. We start by noticing that

b e B,., 1, ..., m, we have bl(j) = ¢(a§j)) for some agj)

()

Then taking bV

¢ is surjective. This leads us to

e A,,, since

VAL R 2 I A I )
= af(¢(a 5 )y, < s(al) + f(o(at?), ..., o(a?))
= o(af(al’,....a) + f(a,....a?))

which is an element from ¢(f(A)) = f(¢(A)) since we are assuming that f(A) is a

subspace. Then f(B) is also a subspace.

Now we assume that f(A) is a homogeneous subspace and let b = by, +- - - + by,
be an element in f(B) written as the sum of its homogeneous components. Since b € f(B)
let

b= f(by,...,bm) = f(P(ar),...,0(an)) = o(f(a1,...,amn))
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for some b; = ¢(a;), and let
f(alw"vam) =g, + -+ ag
be the sum of its homogeneous components. It follows that

b= ¢(agl> +t Cb(agz)

and since ¢ is a graded homomorphism we must have k£ = [ and every ¢g; must be equal to

some hg. Without loss of generality, we assume by, = ¢(a,,). Now it is enough to use that

f(A) is homogeneous and ¢(f(A)) = f(¢(A)). O

Remark 1.23. In the proof of Proposition 1.22 we have not used the associativity of A.
Therefore it also holds for arbitrary algebras, in particular an analogous proposition holds

for graded Jordan algebras.

An important problem concerning images of polynomials on algebras is the

well-known L’vov-Kaplansky conjecture.

Conjecture 1.24 ([30]). The image of f € P,, on the full matriz algebra M, (F) is a

vector space.

Equivalently, the image of a multilinear polynomial on M,,(F') is one of the four
subspaces: {0}, I (viewed as the space of scalar matrices), sl,(F") (the space of traceless
matrices) or M, (F).

An important example of image of a graded polynomial on some graded algebra
A is the one whose image is identically zero. Such polynomial is called a graded polynomial
identity for the algebra A.

Definition 1.25. Let f € F(X¢) (resp. L(X¢)/T (X)) and let A be a G-graded algebra
(resp. Lie/Jordan algebra). We say that f = 0 is a graded polynomial identity for A if
f(A) = 0. Equivalently, f =0 is a graded polynomial identity for A if

fe[Nker(y),

where the intersection runs over all graded homomorphisms ¢ : F{Xg) — A (resp. ¢ with

domain in L(Xa)/ T (Xe)).

We say that a nonassociative algebra A is gr-PI if A satisfies some non-zero

graded polynomial identity.
We denote by Idg(.A) the two-sided ideal of all graded identities for A. It turns

out that Idg(A) is actually a Tiz-ideal, that is, an ideal which is invariant under graded

endomorphisms of the free G-graded associative (resp. Lie/Jordan) algebra.

Given a subset S © F(Xg) (resp. L(Xg)/T(Xc)), we denote by (S)'¢ the
Te-ideal generated by S, that is, the intersection of all Ti;-ideals that contain S.
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Definition 1.26. Let f € F(X¢) be a polynomial with zero constant term and let A be a
G-graded algebra. We say that f is a graded central polynomial for A if f = 0 is not a
graded identity for A and f(A) < Z(A), where Z(A) denotes the center of A.
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2 Sums of gr-Pl algebras

In this chapter we will deal with the problem of when a graded algebra A = B+C,
graded by a group G, which is a sum of two homogeneous subalgebras B and C both
satisfying graded polynomial identities, also does satisfy some graded polynomial identity.
Whereas the problem has a negative answer in general (as we will see in the first section),
in the second and third sections we present sufficient conditions on the algebra A = B+ C
in order to turn it into a gr-PI algebra. During this chapter, all algebras are over an
arbitrary field F'. The results from this chapter are new and were published in the journal

Linear Algebra and its Applications [28]. This is a joint work with Plamen Koshlukov.

Before going into the main topic of this chapter, let us recall that when the
algebra A is endowed with the trivial grading then sums of PI algebras is again PI. This
result is due to M. Kepczyk.

Theorem 2.1 ([41]). Let A = B+ C be an algebra that is a sum of two PI subalgebras.
Then A is also a PI algebra.

In an attempt to approach a graded version of Theorem 2.1, one may try to
reduce the problem from the graded setting to the ordinary one. This can be done by
looking for sufficient conditions on the graded identities on B and C which imply the
existence of ordinary identities on these subalgebras. As an example of such sufficient

condition we recall the following result from [7, 11].

Theorem 2.2. Let G be a finite group and let A be a G-graded algebra. If the neutral
component Ay is a Pl-algebra, then A is a Pl-algebra.

As a direct consequence we have the following corollary.

Corollary 2.3. Let G be a finite group and let A = B + C be an algebra that is the sum
of two homogeneous subalgebras. If B and C satisfy graded polynomial identities in neutral

variables, then A is a PI algebra.

We give below a slight improvement of the corollary above. This improvement
is concerning gradings on algebras by monoids, whose definition remains the same as in

the group graded case. Let us start with the following lemma.

Lemma 2.4. Let M be a monoid and let V be an M -graded vector space. Let V = Vi + Vs
be a sum of two homogeneous subspaces. Then V,, = Vi, + Va, for each m e M, where

Vim s the homogeneous component of degree m of V;, i = 1, 2.
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Proof. Let m € M. Since Vi,, = V,, n Vi and Vs, = V,,, 0 Vy it follows that
Vim + Vom © V. Reciprocally let v € V,,. Hence v = v; + vy for some v; € V; and

vg € Vy. Writing
VI = Vi, +  F Vi + -+ Vi, and Vg = Vg + 0 A Vo + o A Vo,

such that v1 ,m, € Vim,:, Vi,m € Vims V2,m; € Vam,s V2.m € Vam. We can assume without loss

of generality that mq,...,m,..., m, are pairwise distinct. Therefore
O0=v—vi—v2=(v—vim = Vom) = (Vim + V2mi) =+ = (Vim, + V2,m,.)-
This implies v = vy ,, + V2, and hence we have V,, = V1, + Vo . O

Let A be an algebra graded by a monoid M. Assume that A = B + C is a sum
of two homogeneous subalgebras. Then Lemma 4.38 gives us that A; = By + C;. Since B,
and C; are subalgebras of A;, Theorems 2.1 and 2.2 lead us to the following result.

Theorem 2.5. Let A = B+ C be an algebra graded by a monoid M such that B and C are
two homogeneous subalgebras. If B and C satisfy polynomial identities in neutral variables,
then the same holds for the algebra A.

2.1 Sums of gr-Pl subalgebras do not always satisfy graded identities

The main goal of this section is to show that there exist a group G and a
G-graded algebra A = B + C sum of two homogeneous subalgebras such that both B and
C are gr-PI algebras but A is not.

For simplicity let us denote by F the free associative algebra F(X).

Consider the F-algebra A = My(F) and a Zs-grading on it given by

A = A ® A7 where
A0=<]: 0) an A1=<O f).
0 F F 0

We define now two subalgebras B and C of A by setting

B:‘F]: andCZ}—O.
0 F F F

Lemma 2.6. The subalgebras B and C of A are homogeneous in the grading, A =B+ C,
and both B and C satisfy the graded identity :Egl)xél) = 0.

Proof. All statements are immediate. m

Now it is enough to prove that A satisfies no Zs-graded identities.
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Proposition 2.7. The Zs-graded algebra A satisfies no graded identities.

Proof. Suppose, on the contrary, that A does satisfy a non-zero graded identity f. Without

loss of generality we can assume f multilinear

e a2 D),

Y m )

We shall use an argument with generic matrices. We take the elements

a; = “ and b, = v , 1>=1
0 (4 ti 0
in A where u;, v;, w;, t; are distinct variables in the set X. These generic elements multiply

a0 0 A0

Gia; — UUj , aib; UW; |
0 VU5 Uitj 0
iti 0 0 U

bz‘bj = Wity s bjai Wi .
0 tiwj tjui 0

@) @) @
g1 M2l - Xy,

(1,...,k), and the m; are monomials that do not contain variables of homogeneous degree

as follows:

Take a monomial m = m,z my.1 where (ji,...,Jx) is a permutation of
T (some of the m; may be empty). Suppose that m participates in f with non-zero
coefficient. As f is a graded identity for A then f(as,...,am,b1,...,bx) =0 in A.

Let us evaluate m on aq, ..., a,,, and by, ..., by. Depending on the parity of &k
we get a matrix in either Ay or A;. Assume k even. Then at position (1, 1) of the resulting

matrix we will have an entry of the type
awj, Pat j, Wy, Pat, - -

where a4 is the product of the entries u; at position (1, 1) of the matrices a; that appear
in the substitution for m., in their respective order. Similarly S5 is the product of the
entries v; that come from the matrices in the second block, ms, and so on, alternating the

(1,1) and (2, 2) entries of these blocks consecutively.

Since we obtain a monomial in the free associative algebra F'(X), it must cancel
out with the monomial coming from some other term of f. But our monomial comes from
only one term of f, namely from m. Thus the resulting monomial in F(X) cannot cancel
out, and this proves that the coefficient of m must be 0. Hence if k is even we are done.

When £ is odd the argument is analogous, and we omit it. O]

Remark 2.8. One could expect a positive answer by requiring A = B @ C instead of
A = B + C. However, even in the direct sum case we have the following example: we

consider the Zs-graded algebra A = Ay @ Ay as in the previous example, and we take

B:]:}_ cde=OO.
0 0 F F
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Clearly A = B®C, and both B and C are homogeneous subalgebras satisfying xg)xg) = 0.

Remark 2.9. The same two examples given above transfer to the graded Lie case. Indeed,
let A = Ag@ A, as before, and consider the Lie algebra A7), Concerning the first ezample,
we write A7) = B +C) | and one can easily see that B and C) are homogeneous Lie
subalgebras of A7), both satisfying [xgl),q:gl)] = 0. It remains to prove that A does not
satisfy Zo-graded Lie identities. Assume the contrary, and consider the embedding of the
free Zy-graded Lie algebra into F{(X,)™). Hence, we would have a Zy-graded (associative)
identity for A, which can not occur in light of Proposition 2.7. The example from Remark

2.8 s treated analogously.

2.2 The sum of a gr-Pl ideal and a gr-Pl subalgebra

In this section we study graded algebras which are a sum of a homogeneous
ideal and a homogeneous subalgebra, both of them satisfying graded polynomial identities.

Our goal in this section is to show that the sum itself is also gr-PI.
Throughout this section G will denote a finite group.

We recall that the operations on some direct power HA of A are given by

the operations on A component-wise. We can extend the G-grading of A to the algebra

H A as follows:

l_[Az @Ag such that A, = H.Ag

geG

where A, is the homogeneous component of degree g of A.

Let us start with the following easy lemma.

Lemma 2.10. If A is a gr-PI algebra, then HA is also a gr-PI algebra.

Proof. 1t is enough to notice that if A satisfies f = 0, then H.A also does. n

Lemma 2.11. Let A be a G-graded algebra which is not gr-PI. Then some direct power
of A contains a homogeneous subalgebra that is graded isomorphic to some free G-graded

associative algebra.

Proof. Take H = F{Xg)\{0}. By hypothesis, for each h € H we have h ¢ Idg(.A). Hence
there exists some graded homomorphism ¢,: F(Xs) — A such that ¢,(h) # 0. We
define ¥: F{(Xqg) — HA by ¥(f) = (¢n(f))n. It is easy to check that 1 is a graded

heH
homomorphism. Moreover, if h € H then ¢p(h) # 0 and then ¥ (h) # 0. We conclude that
¥ is a graded embedding of F{X¢) into H A. O

heH
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Lemma 2.12. Let F{X¢) be the free graded associative algebra and let L be a homogeneous
left ideal of F{X¢g). Then L does not satisfy any graded polynomial identity.

Proof. Assume that £ satisfies some graded polynomial identity f (xggl), ..., z¥)). Without
loss of generality we can assume that f is multilinear of degree n. Let w € £\{0} be a

homogeneous element, and let us say deg(w) = g. Fori = 1, ..., n, we consider the variables

l'ghi)

where h; = g;g~". Hence deg(wghi)w) = ¢; and then f(xghl)w, L atmy) = 0.

n

On the other hand, we write f and w as follows:
f=mi+--+m and w=w +- - +w

as sums of their distinct non-zero monomials, respectively. Then

faiw, . e w) =y mi(a)"wj,, g, (2.1)

We claim that f (xghl)w, ..., 2")y) is a non-zero polynomial and this will lead us to a
contradiction. To this end, it is enough to prove that the monomials in (2.1) are pairwise

distinct.

For a fixed index i, we must have

_ (h1) h (h1) h _
my = mi('fl Wpy s - - - 7I£L n)wpn) 7 mi(Il Way s - - - ,CL’&L n)qu) =My

provided that the n-tuples (p1,...,pn) # (q1,--.,qn). Indeed, without loss of generality

we may assume p; # q; and m; = ozxggl) . -xfj’”) for some non-zero scalar o € F'. Then we

write

_ (91) ’ _ (g1) "
my, = ary Wy, w and my = axy W, w

and since w,, # w,,, then m, # my.
It remains to analyse the monomials

_ (h1) (hn) _ (h1) (hn)
my = m;(zy Wy, ..., x, ™ wy,) and mg = my(zy Vwy,, ..., T wg,)

for i # j. We start by rewriting the monomials mi(xggl), o abm)y = m/29)m” and

m m

m; (mggl), Lzl = "z 99m™ where r # s and m’, m”, m"”, m" are suitable monomials.

We notice that we may have m’ = m". Therefore we suppose that the monomial m,, starts

with m’(xghl)wpl, )

m (xghl)wa, . ,x;h”)

. 1/ (h1) h oy (h1) h
even if m' (2" w,,, ..., x"w, ) = m" (@ w,y,, ..., zPw,,). O

wy, )9 w,, and my starts with

wg, )29 w,,. Since 197 # 2199 then we must have m, # my,

Before stating the main theorem of this section, we recall that a graded algebra

A is called gr-prime if the product of two non-zero homogeneous ideals of A is still non-zero.
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Theorem 2.13. Let A be a class of G-graded algebras closed under graded homomorphic
images and direct powers. Assume that every gr-prime algebra in 24 has a non-zero ho-
mogeneous ideal satisfying some graded polynomial identity. Then A is a class of gr-PI

algebras.

Proof. Assume that some algebra A € 2l is not gr-PI. Then Lemma 2.11 gives us the
existence of some homogeneous subalgebra T of H.A which is graded isomorphic to
F(X¢). By the Zorn Lemma, there exists a homogeneous ideal Z of H A that is maximal
with respect to the property 7 nZ = {0}. Since 2 is closed under homomorphic images
and direct powers then A = (H A)/T € 2. We claim that A is a gr-prime algebra. In fact,
let J1/Z and J5/Z be non-zero homogeneous ideals of A. Hence there exist x € T n J;\{0}
and y € T n J\{0}, and then 0 # (z +Z)(y + Z) € (J1/Z)(J2/T), which proves our claim.
Therefore A has a non-zero homogeneous ideal £ = £/Z satisfying a graded polynomial
identity. Since £ # 0, the maximality of Z implies the existence of a non-zero homogeneous
element z € L n T, that is, z ¢ Z. Recalling that

T=T+D)/IT=T/(TnI)=T =F{Xg),
we have that 77 < L. In other words, we have a non-zero homogeneous left ideal of T

which satisfies a graded polynomial identity. But this is an absurd by Lemma 2.12. [

Corollary 2.14. Let A be a G-graded algebra such that A = B + C where B is a
homogeneous ideal of A and C is a homogeneous subalgebra of A. Moreover assume that B

and C both satisfy graded polynomial identities. Then A is a gr-PI algebra.

Proof. Consider the class 2 of all G-graded algebras A = B + C where B is a homogeneous
gr-Pl ideal and C is a homogeneous gr-PI subalgebra. Notice that every non-zero algebra in
2( contains some non-zero homogeneous gr-PI ideal, since in case B = {0}, we have C = A
which is an ideal of A. Moreover, one can see that 2 contains the class of all G-graded
algebras satisfying some graded polynomial identity and actually we aim to show that

these two classes are the same.

Given A € 2, notice that H A= H B+ 1_[ C, 1_[ B is a homogeneous ideal
of H A and HC is a homogeneous subalgebra of 1_[ A. Moreover, Lemma 2.10 gives us
that both HB and HC satisfy graded polynomial identities provided B and C also do.
Hence H.A e A. Now let ¢: A — A, be a graded epimorphism where A = B+ C € 2.
Then Ay = p(B) + ¢(C) where p(B) is a homogeneous gr-PI ideal of A and ¢(C) is a

homogeneous gr-PI subalgebra of A. Therefore we also have As € 2.

Since every non-zero algebra in 2l contains some non-zero homogeneous gr-PI
ideal, then we can apply Theorem 2.13 to get that 2 is a class of gr-PI algebras. In
particular, A € 2 is a gr-PI algebra. ]
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We note that no additional information is given on the identity satisfied by A.
In the following we will prove that in case the group G is abelian, then we can obtain a

concrete identity for the sum A = B + C.

Corollary 2.15. Let A be a G-graded algebra such that G is an abelian group and

A =B+ C, where B is a homogeneous ideal of A and C is a homogeneous subalgebra of

A. Moreover assume that B satisfies an identity f(xghl), e ,xfﬁm)) and C satisfies and
identity g(azggl), . ,:cﬁf’”)). Then A is a gr-PI algebra and we can explicitly compute an
identity for A.

Proof. We can assume without loss of generality that ¢ is multilinear. Notice that A/B
is a homomorphic image of C/(B n C). Since g is an identity for C, then the same holds
for A/B. Thus, g(A) < B. Since G is abelian and ¢ is multilinear then we have that ¢
is actually an homogeneous element in F{Xs), say of homogeneous degree h. Therefore
the polynomial p; given by the product of ¢ with a variable of homogeneous degree h™'h;
is a polynomial of homogeneous degree h;, for each + = 1,...,m. We can also assume
that the variables occuring in all polynomials p; are pairwise distinct. We conclude that

f(p1,-..,pm) is a non-zero polynomial which is an identity for A = B + C. ]

Corollary 2.16. Let A = B + C be a G-graded algebra, where B is a homogeneous
ideal satisfying some ordinary polynomial identity f(x1,...,xy) and C is a homogeneous
xggl) 2'9)). Then the algebra A satisfies

9o e ey n

subalgebra satisfying some graded identity g(
the following graded identity

Flo@@ 2y g(@W), .z,

Proof. We evaluate each homogeneous variable of degree h by some element a; € A;,. By
Lemma 2.4, we can write a; = b, + ¢, where b, € B, and ¢, € Cy. Since B is an ideal
of A we obtain that each evaluation of g on homogeneous elements of A is a sum of
homogeneous elements of B plus an evaluation of ¢ on C. This last evaluation of ¢ on
C is zero actually zero since g is a graded polynomial identity for C. We therefore get
an evaluation of f on elements of B, and now it is enough to use that f is an ordinary

polynomial identity for B to get the desired conclusion. m

Corollary 2.17. Let A = B + C be a G-graded algebra, where B is a homogeneous ideal

2o £9)) and C is a homogeneous

of A satisfying a graded polynomial identity f( ey Ty
subalgebra satisfying some ordinary polynomial identity g(x1,...,x,). Then A satisfies the

following graded identity
1 1 " 1
Flg@, 25, ey gl 2 2y,

ml »¥m2»

Proof. The proof follows the argument from the previous corollary. O
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2.3  Graded semi-identities

Throughout this section G will denote a finite group.

We will define the so-called graded semi-identities for the sum A = B + C and
we will show how some particular graded semi-identities can ensure the existence of graded

polynomial identities for A.

As a motivation for the following definition we recall that Lemma 2.4 gives
us that A, = B, + C, for each g € G, hence every a, € A, is a sum a, = by + ¢4, by € By,
cg € Cy. Thus it is convenient to consider free variables corresponding to the homogeneous

components B, and C, and look for their interplay with the variables corresponding to A,.

We introduce the following sets of variables

Yo = {y§9)|g€G,i= 1,2,...} and Zg= {zl-(g)|g€G,i= 1,2,...},

and we consider the free G-graded algebra F(Ys U Zg). We set :1:59) = yi(g)

+ 219 for each
g € G, and then we may consider F{(Xs) € F(Ys U Zg). We are now ready to introduce

the definition of graded semi-identities for a sum A = B + C.

Definition 2.18. Let

f = f(y:([hl)7 R 7y’r(”r]1:'/M)7Z§hl)7 st 7Z7€Lhn)> € F<YG o ZG>7

such that hy, ..., hm, b, ..., hy € G. We say that f = 0 is a graded semi-identity for
A=B+Cif
FO bl (M ka)y =

for all bghi) e B, C§Bj) € Cﬁj' We say that a graded semi-identity f = 0 is trivial if
feldg(A).

We notice here that the notion of a graded semi-identity depends on the
decomposition A = B + C.

Example 2.19. Let F be an F-algebra without 1 such that F = L1 + Lo, where Ly is a
subalgebra of F and Lo is an ideal of F (for instance, take F = F{(X), the free associative
algebra without 1, L1 the subalgebra generated by all monomials which do not contain the

variable x1, and Loy the subalgebra generated by the monomials that contain x4 ).

A:<]-" £2>.
Ly, F

Consider the Zo-grading on A given by A = Ay @® Ay where

Ay = 0 and A, = 0 EQ.
0 F Ly 0

We now set



Chapter 2. Sums of gr-PI algebras 33

Notice then that A = B + C, where

B = Lo 0 and C = L2 Ls ,
0 £1 £2 £2

and both B and C are homogeneous subalgebras of A. Now, it is clear that ygl)

=01isa

nontrivial graded semi-identity for A.

In this section we will present some nontrivial graded semi-identities satisfied
by A that imply the existence of graded polynomial identities for A. We now define a type
of multilinear polynomial in F{Ys U Z5) which we will consider as a graded semi-identity

for A.

Definition 2.20. Letyy, ..., ya € Yo and x441, . .., T2q_1 € Xg be homogeneous variables.

We define the following polynomial

Spd(yl,--~ayd;$d+17---,12d—1) = Z AolYo(1)Ld+1Ys(2)Td+2 " * * L2d—1Yo(d)
O’GSd

where a, € F, and Sy stands for the symmetric group permuting {1,..., d}.

The polynomial defined above was influenced by a generalization of the Capelli
identity, the so-called sparse identity (see for instance [10]). We will be interested in the
case where the variables y’s are of the same homogeneous degree g and the z’s are all of

homogeneous degree g~*. We denote the latter polynomial as Spd[Y(g), X (971)].

2.3.1 Codimensions modulo graded semi-identities

From now on we assume that G = {g1, ..., gx}.

Given n € N we write n = ny + - -+ + ng, where nq, ..., n, are non-negative

integers. We recall the vector space of multilinear graded polynomials P, . ., in n;

homogeneous variables of degrees g;, respectively. Precisely

(91) ;
Poy,..ny, = spanf{g(ry - - - Ug(n) | 0 € Spyuyy, = o) forip € {1,...,n},
_ (92) :
Uy +iy = Tpris, fOT 42 € {1, na}, ...,
_ .(gk) :
Upy 4oy +ip, = Tory by 44, 10T G € {1, g}

Note that dim(P,, ) = n! and therefore we have the following straightforward lemma.

Lemma 2.21. [If there exists a positive integer n = ny + - - - + ng such that

P
d. T 5y ng !
m (Pm,,,_,n A IdG(A)> =

k

then A satisfies a multilinear graded polynomial identity of degree n in n; variables of

homogeneous degree g;, respectively.
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Denoting by Idg(A) the set of all graded semi-identities of A (including the
identically zero polynomial), it follows immediately that Idg(A), Idg(B), Idg(C) <
Idi,(A). Moreover Idg,(A) is an ideal of F(Ys U Z) which is invariant under all graded
endomorphisms that preserve both F(Ys) and F{(Zg).

The vector space of multilinear polynomials in F'(Ys U Zg) is defined as

Vit = SPAN{U(1) -+ Ug(n) | 0 € Sp, 05, € {yffl), zflgl)} for iy e {1,...,n1},...,
Unjtdnp_1+ip € {yﬁbﬁk-zm-i-nk_l-&-ikv Zr(ilim-i-nk_l-&-ik} for Zk € {17 <. ank}}

One can easily see that P,, ., < Vi, .. Moreover, if

k

e O Vg 0 1dG(A)),

-----

then f is a graded semi-identity in the homogeneous variables y and z, and f can be

(9) (9) (9)

written as a polynomial in the variables z;”" = v;>" + z;". Now given any a, € A,, Lemma

2.4 yields the existence of b, € B, and ¢, € C, such that a, = b, 4 ¢,. Hence an evaluation
9) (9)

of the variable a:f on some element a, implies an evaluation of the variables y;*’ on some

b, and zi(g) on some c¢g4, respectively. Since f is a graded semi-identity, then such evaluation

must be zero on A. This shows that f is a graded identity. Therefore we conclude that
Py N 1dg(A) = Py, np 0 (Vi 0 1dE(A)).

As a consequence of the discussion above we have the following lemma.

Lemma 2.22. [f there exists a positive integer n = ny + - - - + ng such that

vV
d. N1,y..., Nk ‘
. (an,..-,nk N ]d‘&(A)) =

then A satisfies some multilinear graded polynomial identity of degree n in n; variables of

homogeneous degree g;, fori=1, ..., k.

Proof. Notice that

Pnl,...,nk — Pnl,...,nk N an,...,nk SN VTLl,.‘.,TLk )
Pm,m,nk M [dG<A) Pn17-~~7nk M (Vm,m,nk M IdSG(A)) an,u-,nk a IdSG<'A>
and finally apply Lemma 2.21. m

We consider one further decomposition on the space V,,, _,,. In this decom-

(95) (95)

position we will determine precisely when v; is given by either y,”’ or z;”7’. For each

J=1,..., k we consider integers 0 < 7; < nj,and 1 <t; <--- < ty,, < ny. Denoting
r=(ri,...,rp) and t = (L1, .oyt ooy ey By, ), we define
Virrmprt = SPAN{Us(1) = - VUg(n) | 0 € S, 05 = yl(fl) for iy € {t1,,... b, }, and

Vi, = Zl(fl) for 11 € {]_, R ,nl}\{th, e ,t1T1}7 ey

— ., (9k) ;
Uny+tnp_1+ie = Yni+tnp_1+ix for 7y € {tkl’ T ’tk%} and

Unitotnp_1+ip = Z’Eik-g--~+nk—1+ik for i € {1’ T ’nk}\{tkl’ T ’tk"'k}}'
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In other words, in V,,, . . rt We have k groups of distinct variables, with ny, ..., ng
variables in each one of them, respectively. In the i-th group of variables we take r; among
them: the ones with indices {t;, ... L, }, 0 < r; < n;. These variables are the y'9) and

the remaining variables from this group are z\9.

One can notice that

ni Nk
an,m,nk = @ T @ ana“-,nk:rut‘
r1=0 =0
1<7§11<---<1€1T1 <nj 1<tk1<"'<tkrk <ng

In particular, a graded semi-identity in V,,, ,, can be written as a sum of polynomials in

k
Vor...nert- The next lemma shows that each one of these polynomials in V,,, ., rt are

also graded semi-identities.

Lemma 2.23. The following decomposition of Vy, . . 0 1di(A) holds

ni ng
Vs 0 1 (A) = @ @ (Vo emprie 0 1dg(A)).
r1=0 rp=0
1<t11<“~<t1T1 <ni 1Stk1<---<tkrk <ng

Proof. Let f e V,, . nIdi(A) and write

1 Tk
IS D IED VD I YR (22)
r1=01<t1, <-e<t1,., <M1 r=0 1<ty <-~~<tka <ng

We have to show that each fr¢ € Vi, n,rt is also a graded semi-identity of A. We proceed
by induction on the number of terms of the sum (2.2). The base case is when f = f, ¢, and
here we already have f, ¢ € Idg,(A). From now on we suppose that there exist at least two
non-zero terms in (2.2), and we take two distinct of them, say f,¢ and fig. Hence there
exists some variable, which without loss of generality we will suppose yz-(g 1), such that it
occurs in fy¢ but not in fﬁg. Now we write f = fi + f2, where f; is the sum of the terms
from (2.2) that contain the variable 4 and f, is the sum of terms from (2.2) which do
not. Evaluating yfgl) by 0 we obtain that f, is a consequence of f and therefore f; is a
graded semi-identity. Hence the same happens to f; = f — fo. Now it is enough to apply

the induction hypothesis to both f; and f5. O

We finish this section by showing how the decomposition above can be used to

prove the existence of a graded polynomial identity for A.

In order to simplify our notation we will write just V,,, ,, r instead of V},, ., v,
wheret = (1,...,7r1,...,1,...,7%). Note that given any t there exists a graded isomorphism

of vector spaces V,,, o, v = Vi, npore Such that

an,...,nk,r M IdSG(A) = an,...,nk,r,t N [dsG(A)

n n
We also note that there exist exactly ( 1) e ( g
1

) vector spaces Vj,,  n, rt isomorphic
Tk

to ana"'7nk7r'
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Lemma 2.24. If there exists a positive integer n = ny + - - - + ng such that

di an,...7nk,r < n!
1m .
Vior 0 1dG(A) 2n’

for all r, then A satisfies some multilinear graded polynomial identity of degree n in n;

variables of homogeneous degree g;, fori =1, ..., k.

Proof. By Lemma 2.23 we have

v A <& my n V.
d. N1y, _ o o d N1,...,Nk,T
e A Td5(A) IIEEDY () () Y er 0 15 (A)

r1=0 Tk=0

r1=0 re=0

Now it suffices to apply Lemma 2.22. O]

2.3.2 A generating set for V,, o modulo Id(A)

In this section we give a generating set for V,, o o, by using the language of
good permutations of the symmetric group. This notion appeared in the proof of the well
known theorem of Regev about the exponential upper bound of the codimension sequence
of a PI algebra, see [53]. Good sequences and similar combinatorial notions have been
extensively used in studying numerical invariants of PI algebras such as codimensions,

cocharacters, and so on.

Definition 2.25. Let ne N and 1 < d <n. We say that o € S, is a d-bad permutation if
there exist 1 < iy < --- <'ig < n such that o(i1) > --- > o(ig). Otherwise we call 0 € S, a

d-good permutation.

We recall a well known result about the number of d-good permutations (see

[54]). It can be obtained by using the theorem of Dilworth in Combinatorics.

Lemma 2.26. The number of d-good permutations in S, is at most (d — 1)*".

We will adopt the following convention: given d > n, then every permutation
in S, is d-good. Such convention does not change the maximum number of d-good

permutations. Indeed, in this case the number is exactly n! which is less than (d — 1)*".

Definition 2.27. Let m be the monomial

h (hiy) . (hiy+1) (hig) (hiy_y+1) (hiy)
Ulyc(r(ﬁ o ‘yo(ii)wya(iirl) " Yo(in) U3 '/Ulya(ii,ijrl) Yo Vit € Vit

where vy, ..., vy are (eventually empty) words in the homogeneous variables of type z.

We say that m is a d-y-good monomial if the permutation o € S; is a d-good one.
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We recall a combinatorial fact concerning finite groups, [7, Lemma 4.1].

Lemma 2.28. Every product of |H|d words in a finite group H contains a product of d

consecutive trivial subwords.

In the next lemma we will assume that A satisfies a graded semi-identity of
the form Spgy, [Y(g); X (971)], for some g € G. Without loss of generality we write g = ¢
and we denote n; = n and r = r. We also use o(g) to denote the order of the element

g € G (and of the cyclic subgroup generated by g).

-----

monomials for all r.

Proof. Following our convention we may assume (2d; — 1)o(g) < r. The proof will be done
by contradiction. Thus we assume that V,, o o, is not generated by the (2d; — 1)o(g)-y-
good monomials modulo Idg,(A). Hence the set 4 of all (2d; — 1)o(g)-y-bad monomials
which cannot be written as a linear combination of (2d; — 1)o(g)-y-good monomials

modulo Idf,(A) is nonempty. We order the variables in Y of homogeneous degree g as

y” < g

left to the right in the variables in Y of homogeneous degree g, only. Let m, € i be

< --- and we take in i the partial order given lexicographically from the

a minimal element, where 7 € S, is the permutation which defines the positions of the
variables from Y of homogeneous degree g in this minimal element. In particular, m., is
a (2d; — 1)o(g)-y-bad monomial and hence there exist 1 < i1 < -+ < i(24,-1)o(g) < 1 such
that 7(i1) > -+ > 7(i2d-1)o(y))-

We write m, = wow ws * - W2d, —1)o(g) W (2d;, ~1)0(g)+1, Where w; is the word that

starts with yig(zj) and ends just before yggﬁl), J=1,...,(2d1 —1o(g9) — 1, wad—1)(g) =

yig(g@dlil)o(g)), wo and W24, —1)o(g)+1 are suitable words.
Applying Lemma 2.28 to the subgroup generated by g, we obtain the existence
of 2d; — 1 consecutive subwords @y, ..., Waq,—1 from wy - - - W24, —1)0(g) Where deg(w,;) = 1,

j=1,...,2d — 1.

Hence we rewrite m, = Wyw; - - - Waq, —1Waq, , Where W, and Ws,, are suitable
words. Note that for each j =1, ..., d; — 1, we can write Wy;_;Wq; = yig(gl)mdﬁj for some
[ (which depends on j) and myg, +; is the subword of Ws;_1W,; obtained by deleting its first
(9)

(i1

variable. Denote m; = v ) for j =1, ..., d; — 1, and take my,, as the first variable of

Wad, —1-
In this way we have

m; = moMmyMmg, +1M2 - - - Mg, —1M2d, —11Mq, a4,

where my = Wy, Moy is a suitable word, deg(m;) = ¢ for j = 1, ..., d; and

deg(mg,+;) = gt for j =1, ..., d; — 1. Indeed, it follows from deg(Wq;_1;5) = 1
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and deg(yig(gl)) = g that deg(mg, ;) = g~ . We also note that each m; is evaluated on Y
of homogeneous degree g and each mg, 1; is evaluated on X¢ of homogeneous degree gt

Moreover, we have m; > - > myg,.

Recalling that Spg, [Y@; X0 )] € Id%(A) and that the scalar related to the

identity permutation can be assumed as 1, we can write

m, = Z — QUMM (1) My 41 (2) * - Mgy —1Mo(dy) M2, (mod 1dg(A)).
oeSq, \{id}

Since for each o € Sy, \{id} we have
My = MoMe(1)Mdy+1Mo(2) * " M2d1 1Mo (dy)M2d, < Mr,y

the minimality of m., leads us to m, ¢ 4. Therefore each m, can be written as a linear
combination of (2d; — 1)o(g)-y-good monomials modulo the graded semi-identities of A,

and hence the same happens for m,. This is a contradiction to m., € 4. O

2.3.3 Existence of a graded identity for A

First of all let us estimate the dimension of V,, o, modulo Idg,(A). We start

by recalling the following result from [7].

Theorem 2.30. Let A be an algebra graded by a finite group G. If the neutral component

of A satisfies a polynomial identity of degree d then
P(hl,...,hn)
di < (|Gld —1)*"
1m P(hl 77777 hn) m ]dG(A) (’ ’ )

for every n € N and (hq, ..., h,) € G".

For our main goal of this section we consider one last decomposition of the

vector space V,, o . o, into the subspaces

Uno....oxupa = SPAN{Yo(1) - - Yo(p)Zr(1) "~ Zr(a)) " Yolpr+-tpu—s+1) *** Yolr) X
X Zr(quttquoi 1) Zr(nr) | O € Sp, T € Spy}
where r = p; + - +p,and n —r = ¢ + --- + g, are such that p; = 0, ¢, = 0, and

P2y -y Pus q1s - - - Qu—1 > 0, and the homogeneous variables were written without their

homogeneous degrees for simplicity.

Hence we have

Vn=07"'707r = @ Un707"'707r7u7p7q' (2'3)
u7p7q
Definition 2.31. A composition of a positive integer n sequence of integers (ny, ..., ng)

such thatn =ny + -+ + ng.
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Remark 2.32. The number of compositions of a positive integer n is exactly 2" . In
particular, one can see that there exist at most 2" - 2"7" = 2" wvector spaces Uy 0rup.q

appearing in the decomposition of Vo or in (2.5).

Lemma 2.33. Let A = B+ C be a G-graded algebra sum of two homogeneous subalgebras.
We assume that A satisfies the graded semi-identity Spg, [Y(g); X(gfl)] and Cy satisfies a
polynomial identity of degree do. Then the following inequality holds

: VnO...Or 5 o B
d 008 < 9n((2d; — 1)o(g) — 1) (|Gldy — 12 (r + 1)
im ey < 2((2d1 = Dolg) = (|Gl = 1) + 1)

Proof. We start the proof by recalling that Lemma 2.29 gives us a generating set for
Vio...or modulo Id%(A), namely the set of all (2d; — 1)o(g)-y“-good monomials. By
(2.3) it is enough to count the number of (2d; — 1)o(g)-y'?-good monomials modulo the
graded semi-identities of A in U, orupq- First of all note that there exist at most

((2d, — 1)o(g) — 1)*" dispositions of the homogeneous variables y modulo Id(A). We also

( n—r >_ (n—r)!
qi,---;qu QI'C]u'

different manners of distributing the homogeneous variables z that occur in blocks of ¢

have

consecutive ones, ..., g, consecutive ones. By Theorem 2.30, each consecutive group of
homogeneous variables 2 can be written as a linear combination of at most (|G|dy — 1)%%

monomials modulo Id(A). Hence U, o 0rupq 1S generated by at most

n—r

Gldy — 1)°" - - (|G|dy — 1)
L )6k 1Pl 1)

<@m—1w@»—w”<

monomials.

Therefore the multinomial theorem enables us to bound the multinomial co-

efficient corresponding to the homogeneous variables z by v"~" and since u < r + 1 we

( et )é(?ﬂrl)”r.
qis---,4qu

We finish the proof of this lemma by observing that there exist at most 2" vector spaces
of the form Uy, orupq (See Remark 2.32). O

write

We are ready to prove the main result of this section. We recall the following

inequality known as Stirling’s formula

(& €

nl ~ \/27m(n> ;  and <n) <nl, forall neN (2.4)

where the meanings of e and 7 are the obvious ones.
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Theorem 2.34. Let A = B+ C be a G-graded algebra which is a sum of two homogeneous
subalgebras. If A satisfies the graded semi-identity Spa, [Y(g);X(gil)] and Cy satisfies
some ordinary polynomial identity of degree ds, then A satisfies some graded multilinear
polynomial identity of degree n in homogeneous variables of degree g, where n is the least
integer greater or equal to a® such that a = 8e((2d; — 1)o(g) — 1)*(|G|dy — 1)2.

Proof. Lemma 2.24 reduces the existence of the required graded polynomial identity to

the existence of a positive integer n € N such that

vn,O,...,O,r < 71
Vao,.or N Idg(A) 277

dim
for every r.

We begin by assuming that r # 0 and we will show that there exists n € N
(which does not depend on r) such that

8"e"((2dy — 1)o(g) — 1)**(|G|dy — 1)*"+"" < n™.

Recall a = 8¢((2d; — 1)o(g) — 1)*(|G|dy — 1)*. Take n € N as the least integer satisfying

n—r

n = o, we claim that o"r"™" < n". We can consider r < n, since for » = n the inequality
a" < n” follows from o < n. We consider two cases now.

n _ _
Case 1: r < —. In this case we have ar < n and hence o"r"™" < (ar)” < n'".

«

n
Case 2: — < r < n. In this second case we have n < ar, that is, there exists a
o
positive real number v such that ar = n + v. The minimality of n leads us to r < a®. We

also note that ¥ > 1. Therefore,

nn > (aa)n _ an(aafl)nfr(aafl)r _ an<aa71)nfraar7r

T

a—l)n—fran—r+v — an(aa>n—rav > anrn— ,

= o"(«
which finishes the second case and the proof of the claim.

Since r # 0, we have r + 1 < 2r and hence
47e™((2d, — 1)o(g) — 1)* (|Gldy — 1)2("_T)(r + 1)
<8"%"((2d; — 1)o(g) — 1)**(|G|dy — 1)*"r™" < n"

which implies in turn that

n" n!

< —.
enn AL

The only case left is when r = 0; we note that for any positive integer n > 4e(|G|dy — 1)?

2"((2dy — Do(g) — 1)*(|G|do — 1)*" 7 (r + 1)" 7" <

(in particular for the same n chosen in the case r # 0) we have 4"e"(|G|dy — 1)*" < n",

and then it follows that

n" n!

< —_
en2n  2n
Now it is enough to apply Lemma 2.33 in order to finish the proof. O]

2"(|Gldy — 1) <
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Remark 2.35. If we take F, Ly, Lo as defined in Example 2.19 for F given by the free
associative algebra F{X) without 1, then A does not satisfy an identity in variables of
homogeneous degree 1, but satisfies a graded semi-identity of the type Spy. However, this

does not contradict our last theorem, since clearly Cy is not PI.
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3 Images of graded polynomials on upper tri-

angular matrices

In this chapter we will deal with the problem of classifying images of polynomials
on algebras with additional structure. We will be mostly concerned with the upper
triangular matrix algebra UT,,(F') with entries in a field F. When the field F' is clear in
the context, then we will use the simpler notation UT,, instead of the previous one. The
results from Section 3.2 to Section 3.6 are new and two papers were written from them.
The first one is published in the Canadian Journal of Mathematics [27] in a joint work
with Plamen Koshlukov. The second one is published on arXiv and has been submitted

for publication in a specialized journal [24].

3.1 A review of gradings on UT,,

In this first section we will give a short review of group-gradings on the

associative upper triangular matrix algebra. Thus let us start with the following definition.

Definition 3.1. Let G be a group. A G-grading I' on UT,, is said elementary if all matrix
units e;; are homogeneous in this grading. Fquivalently, we say that I" is elementary if
there exists a sequence (gi,. .., gn) € G™ such that deg(e;;) = g; 'g; for alli,j. The grading

[ is also called elementary induced by the sequence (g1,...,9,) € G".

The importance of elementary gradings on U'T,, is given in the next theorem
due to Valenti and Zaicev in 2007.

Theorem 3.2. [62] Let T be a G-grading on UT,. Then T' is graded isomorphic to some

elementary G-grading.

Clearly, it is true that knowing the homogeneous degree of the matrices e;; in
an elementary grading gives us the homogeneous components of it. The next result shows
us that in order to completely determine the elementary grading it is enough to know the

homogeneous degree of the matrix units ;41,2 =1, ..., n — 1, only.

Proposition 3.3. [20] Every elementary G-grading on UT,, is uniquely determined by
the homogeneous degree of the elements in the first diagonal of a matriz in the Jacobson

radical of UT,.

We finish this quick review with two results also from [20] about the neutral

component of elementary gradings on UT,,.
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Lemma 3.4. Let I' be an elementary grading on UT,,. Then the neutral component of I’

contains the subspace of all diagonal matrices.

Proposition 3.5. Let I" be an elementary grading on UT,,. Then the neutral component

of I is isomorphic (as F-algebras) to the direct sum

Ur,, @©---oUT,,.

3.2 Graded central polynomials for upper triangular matrices

The main goal of this section is to prove that there exist no graded central
polynomials for upper triangular matrices. It is well known that the algebra of upper block
triangular matrices has no central polynomials in case the number of blocks is greater
than 1, see [33, Lemma 1]. In particular, the upper triangular matrix algebra UT,,(F") has

no central polynomials.

Theorem 3.6. Let UT,, = A = @Ag be a G-grading on the algebra of upper triangular
geG
matrices over a field. If n > 1 then there exist no graded central polynomials for A.

Proof. By Theorem 3.2 we have that A is graded isomorphic to some elementary grading
on UT,. Hence we may reduce our problem to the elementary gradings. Now we assume
that f € F(X¢) is a polynomial with zero constant term, such that f(A) is contained
in Z(A) (which can be identified with the ground field F'). We write f as f = fi + fo
where f; contains neutral variables only and f5 has at least one non neutral variable in
each of its monomials. Consider aq, ..., a,, € A;, and by, ..., b, arbitrary elements of
homogeneous degree # 1 that occur in f. Hence, in light of Lemma 3.4 we have that
flai,...,am,b1,....b) = fi(a,...,ay,) + j where j € J, the Jacobson radical of A, and
@; is the diagonal part of a;. Since f(A) < F, then j = 0 and hence f(A) = f1(D), where
D denotes the subspace of diagonal matrices. Now, notice that if \y, ..., \,, € F are

arbitrary, then
f1(/\1€11, s /\m€11) = f1</\17 cee )‘m)611~

Since f1(D) < F, we must have fi(A\,...,A,) = 0. Hence, for diagonal matrices
D, = Z )\,(f)ekk we have
=1

A1 D) = DAY, A ew, = 0,
k=1

and thus f(A) = {0}. We conclude the non existence of graded central polynomials for
Uur,. [

As an immediate consequence we have the following corollary.
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Corollary 3.7. The space of scalar matrices can not be realized as the image of some

multilinear graded polynomial on UT,.

3.3 The neutral component of UT,,

We start this section by recalling the following definition from [31].
Definition 3.8. Let f € F(X). We say that f has commutator degree r if
fellzy,ze] - [72r1, $2r]>T and  f ¢ {[x1,22] - - - [T2r 11, 5132r+2]>T-

We say that f has commutator degree 0 if f is not a consequence of the commmutator.

We now recall a result due to Gargate and de Mello concerning the description

of images of multilinear polynomials on upper triangular matrices.

Theorem 3.9. [31] Let F' be an infinite field and let f € P,,. Then f(UT,) = J" if and

only if f has commutator degree r.

A slight improvement of Theorem 3.9 was given shortly afterwards.

Theorem 3.10. [48] Let F be a field with at least n(n — 1)/2 elements. Then the image

of fe P, onUT, is J", where r is the commutator degree of f.

As a consequence of these results we have the following proposition.

Proposition 3.11. Let F' be a field with at least n(n — 1)/2 elements. The image of a
multilinear polynomial on T = UT,, ®---@UT,, is either T or some power of its Jacobson

radical J.

Proof. Let f e F(X) be a multilinear polynomial. By [12, Proposition 5.60] we have
J=5L@ - DJ,

where J; stands for the Jacobson radical of UT,,,,» = 1,..., k. Now it is enough to apply
Theorem 3.10 to see that

f(M=fUT,,)® - f(UL,)=J® --@J,=J,

where 7 is the commutator degree of f. O

In light of Proposition 1.22, Proposition 3.5 and Proposition 3.11, we have the

following corollary.

Corollary 3.12. The image of a multilinear polynomial in neutral variables on UT,, is a

homogeneous vector subspace, regardless of the grading on UT,,.



Chapter 3. Images of graded polynomials on upper triangular matrices 45

3.4 Certain Z,-gradings

Apart from the last section of this chapter, we will adopt the following notation:
the set of neutral variables in Xg will be denoted by Y5 = {y1,¥2,...} and the non-
neutral ones will be denoted by Zg = {21, 22, ... }. Of course we will make clear what the
homogeneous degrees of the variables z;’s are. We shall say that the variables of type y

are even while those of type z are odd.

Throughout this section A will denote the algebra of upper triangular matrices

UT, endowed with the elementary Z,-grading given by the following sequence in Z;

(6,T,...,q—2,g—1,q—1,...,q—}),

~

n —q+ 1 times

where ¢ < n are integers. Our goal is to give a complete description of the images of

multilinear graded polynomials on A.
One can see that for ¢ = n we recover the natural Z,-grading on UT,, given by
dege;; = j —i (mod n) for every i < j.

For 1 =0,1,...,q — 1, let us describe the homogeneous component A;. First of

all we notice that the homogeneous components of A are all given in blocks in the form

A C
(%)
where Ae UT,_(F),B e UT,_g+1(F) and C' € M,_1 _q+1(F'). More precisely, the neutral
component Ag is such that A is a diagonal matrix, B is an arbitrary triangular matrix and
C = 0. In other words, Ay = F@®---® F ®UT,_;41(F). Concerning the homogeneous
component A; where [ # 0, we have A as matrix with non-zero entries in the [ 4 1 diagonal

only (the main diagonal is counted as the first one), B = 0 and C as a matrix with

non-zero entries in the ¢ — [ row only. Thus a general element in 4; has the form

F

In other words,

A; =span{e; iy, e |i=1,...,q—0Lj=q+1,...,n}

For 1 <r <n — ¢ we also define the following homogeneous subspaces of A;

B;, =spanfe,1; | j=q+r,...,n}
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Notice then that B;, is just the subspace of A; whose entire [ + 1 diagonal is
zero and where the non-zero entries occur only in the ¢ — [ row (some entries in this row

might be zero from left to the right, depending on the value of r).

An easy computation shows that the following are graded identities for A

[y1,92]2 = 0 (3.1)
z129 =0 (3.2)
(Y1, v2] - - [Y2(n—qs1)-1, Y2(n—g+1)] = 0 (3.3)

where the variables y; are neutral ones, z, z;, zo are non-neutral variables and deg(z1) +
deg(zz) = 0.

We state several lemmas concerning the description of some graded polynomials
on A. In the upcoming lemmas, unless otherwise stated, we assume that the field F' has

at least n(n — 1)/2 elements and f € F(X¢) is a multilinear polynomial.
In the next two lemmas we will assume that
f = f(217~-a217yl+1»---aym)

where deg(z;) = 1, 1 < i < [. It is obvious that in this case one must have f(.A) as a subset

of A;. Modulo the identity (3.1) we rewrite the polynomial f as

f= Z Yir 21Yin 22 Yiy 21y iy T 1 (3.4)
i1,
where Yi; = Yij, ~-yijkj is such that i;, <--- < ijk].- Moreover g;, .. i, is the polynomial

obtained by permuting the neutral variables whose indices are different from either of 21,
..., %1, and forming a linear combination of such monomials. Furthermore, h is the sum of
polynomials that differ from the first summand of f by nontrivial permutations of the odd

variables.

Among all polynomials g;, . ; (including those defined analogously in h), we

.....

choose one, say g, of least commutator degree r. Up to permuting the odd variables, we

can assume that the polynomial g occurs in the first summand of f.

Hence, in case 1 < 7 < n — ¢, we can improve the inclusion f(A) < A; to
f(A) = B;,. Our goal is to prove that f(A) = A; in case r = 0 and f(A) = B;,. otherwise.

Lemma 3.13. Let 1 <I<qg—1. If1<r<n-—gq, then f(A) =B

i,r :

Proof. Let § = vi, 21Yi, 22 - - - Yi, 219 be the non-zero summand of f written as above, where

the commutator degree of g is . We consider the following evaluations: the variables in

Vi, bY €q—i 41, the ones in y;, by €4_i41,4-i+1, - ., and all variables in y;, by e;_14-1. We
n

also put 21 = €g_ig—1+1, 22 = €q—i41,g-142, - - -5 Zl-1 = €q—2,4-1, and 2, = Z Wkeq—1 k- Since
k=q
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g has commutator degree r, Theorem 3.10 enables us to evaluate the even variables in g

0 0
0 UTn—q+1

in order to obtain the matrix e, q1r + €q41,g4r+1 +* + €nepn-

by matrices from

Note that the evaluations that we have considered allow us to reduce the study

of the image of f to the polynomial g. Under these evaluations we have

G = (We€q—1,g T Wg+1€g-1,g+1 + ** + Wn€qi,n)(€qq4r + Eqitgars1 T + Enry)

= WqCq—1,q+r + We+1€q—l,g+r+1 + *** + Wp—rCq—in-

Taking a matrix B € B; ., say B = b,eq_1,4+r + -+ + by_req_1,, We can easily realize B as

image of § by choosing w; = b;, j = ¢, ..., n—r. Hence f(A) = B O

Z,r'

Before analysing the case of zero commutator degree, let us recall the following

elementary and well known result.

Lemma 3.14. Let F be a finite field with d elements and let [ = f(wy,...,wy) be a
non-zero commutative polynomial. If deg,, (f) < d—1 for alli =1, ..., m, then there
exist ay, ..., ay € F such that f(ay,...,an) # 0.

Corollary 3.15. Let F' be a finite field with d elements and let

fl(wl C. ,’Z,Um)’ .. .,fd,l(wl, Ce ,’U}m)

be non-zero commutative polynomials. If deg,, (f;) <1 for all i, j, then there exist a, ...,
am € F such that

fl(al,...,am) # 0,...,fd_1(a1,...,am) # 0.
We also recall the following well-known lemma.

Lemma 3.16. Let f € F(X) be multilinear. Then f has commutator degree 0 if and only
if the sum of its coefficients is different from 0.

Lemma 3.17. If F' is a field with at least n elements and r = 0, then f(A) = A;.

Proof. Denoting by D the homogeneous subspace of diagonal matrices of A, we consider

the following homogeneous subalgebra of A:

S=D® P A

1<i<g—1

We will show that f(S) is exactly A; which is enough to conclude the lemma.
Note that S still satisfies the identity (3.2) and it also satisfies [y1, y2] = 0.



Chapter 3. Images of graded polynomials on upper triangular matrices 48

By the identity [y1,y2] = 0, we may write the polynomial § (according to

Lemma 3.13) as
BYir 21Yiz %2 -+ Yiy iy

where 3 is the sum of all coefficients of the polynomial g and y;,,, is the product of the
variables of g in increasing order of the indices. Since r = 0, we get from Definition 3.8
and Lemma 3.16 that 5 # 0.

Now we write f = f(z1,..., 20, Yis1, - -, Ym) @S

l
F=>4
j=1

where f; is the sum of all monomials of f such that the variable z; is in the j-th position

in relation to the odd variables.
For each j =1, ..., [, we write

fj = Z fj,a

aeSl(j)

where Sl(j) = {0 € Silo(j) =1}, fjo is the sum of all monomials of f; where the order of

the odd variables is given by the permutation o.

q—1 n
Taking z; = 2 wl(cl)ek,kJrl + wé”eqfl,qﬂ +oee ws)—leqﬂ,n and y; = Z wl(gj)ekk
k=1 k=1
we have
q—1
1) (2 !
Jrid(z1, - 2 Y1, - Ym) = Z pkwl(c )wl(cJZl e 'wl(w)rz-l@hkﬂ
k=1
1 -1 1 -1 (1
where pg, k =1, ..., n—1, are polynomials in the variables wY | w™ . We note that
all polynomials pg, k =1, ..., n — [, are non-zero ones. Indeed, we just have to check that

different monomials in f; ;4 give different monomials in p;. To this end, note that if m,
and my are different monomials in f; 4, then there exists some even variable y; such that
the quantity of preceding odd variables in relation to y; is distinct in m; and my. This
gives us variables w") with different lower indices in the two monomials in pj given by m;
and msy, which proves our claim. Moreover, we note that every variable in each monomial

of the polynomial p, appears exactly once.

Since we have at most n — 1 polynomials pg, by Corollary 3.15 there exist

evaluations of the even variables y; by diagonal matrices D; such that p, take non-zero
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values simultaneously for all k. Hence

q—1
o(1 o(l—1 l
=5 (8 - uf )l e

k=1 O'ESZU)
o(1l o(l—1
+( Z %w;—(l ! wé—(Q )))wq Cq—lg+1
eSl(l)
o(l o(l—1 l
N +( S D uf ))>wn>1€q_l,n
es®

with g # 0 because the coefficients a are determined by the polynomials pg. So the
polynomials inside the brackets above are non-zero ones and each of their monomials
have variables of degree one. Applying Corollary 3.15 once again we may evaluate the
variables 2, ..., 21 by matrices in Ci, ..., Cj_; € Ay such that all these polynomials
take non-zero values on F. Denote by oy, € F\{0}, k = 1, ..., ¢ — [, the values of the

polynomials inside the brackets after such evaluations.

Therefore

f(Cl, Ce ,lel, Zl,Dl+1, Ce ,Dm)

(=}

I
[

-1
0] ® )
(Oél,kwk ot Wiy g T QuEWEL g | CRkrl
1

=
Il

@ (0

l l
+ 0,qWy "y + -+ Q—1,qWe o + ahq,lwé )) €q—1,q+1

l l l
+ -+ (al,nlwé)l + -+ Oélfl’nflwélg + al,qlw,(l)_l)equn

where o, # 0 for every k =1, ..., ¢ — L

q—1
Then given a matrix B = Z brek ki + bg—1+1€9-1,g41 + -+ + bu_jeqin € A; we

k=1
take

f(Cl, . .,C’l_l,zl,DlH, . .,Dm) = B

and we obtain a linear system in the variables w® whose solution (not necessarily unique)

can be found recursively. ]

Corollary 3.18. Let f € F(X|Z,) be a multilinear polynomial of non-neutral homogeneous
degree. Then f(A) is {0}, B;, or Ay.

Proof. By Lemmas 3.13 and 3.17, we already know the image of f on A in case the
non-neutral variables on f are those of homogeneous degree 1 only. Let us now consider
the general case. Modulo the graded identities (3.1), (3.2), (3.3), let f and g be as in the
comments before Lemma 3.13 and let r be the commutator degree of g. Hence f(A) < B; . if

r # 0and f(A) < A; otherwise. Recalling that the image is invariant under endomorphisms
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of the free Z,-graded algebra (see Proposition 1.19(1)), the image of the polynomial f
obtained from f by evaluating every non-neutral variable z; of homogeneous degree k by a
product of k variables of homogeneous degree 1, is contained in f(.A). But the polynomial
g defined for f (see the comments before Lemma 3.13) is the same as the one defined for
f. This allows us to get B, < f(A) in case r # 0 and A; < f(A) otherwise. O

The corollary above allows us to state the following definition.

Definition 3.19. Let f € F(X|Z,) be a multilinear polynomial. We say that f has right-
commutator-degree r modulo Idg, (A) if r is the minimal commutator degree of all those
polynomials of the form g,
(34).

i (include those in h) appearing in f modulo Idz, (A) in

.....

We notice that the right-commutator-degree modulo Idz, (A) of a multilinear

polynomial is well-defined by the image of f on A via Corollary 3.18.

Theorem 3.20. Let F' be a field with at least n(n—1)/2 elements, let UT, = ) A be en-
keZqg

dowed with the elementary Z,-grading given by the sequence (0,1,...,q—2,q—1,...,¢—1)
and let f e F(X|Z,) be a multilinear polynomial. Then f(UT,) is

{0}, of [ is a graded polynomial identity for UT,;

J",if fis a polynomial in neutral variables and has commutator-degree r, where J

stands for the Jacobson radical of Ag;

B; ., if | has right-commutator-degree r modulo Id; (UT,), r=1,...,n—q;

Az, if [ has right-commutator-degree 0 modulo Idyz, (UT,).

In particular, the image is always a homogeneous vector subspace.

Proof. The proof is clear from Proposition 3.11 and Corollary 3.18. O

Remark 3.21. Considering similar computations one can easily see that the result is also

valid for the elementary Z,-grading defined by the sequence (¢ —1,...,q — 1, —2,...,1,0),

where we have n — q + 1 copies of ¢ — 1 in the beginning of the sequence.

In the next corollary we are assuming that F' is a field of characteristic

zero and A = UT, is endowed with the elementary Z,-grading given by the sequence
0,1,...,q—2,q—1,...,q—1).

Corollary 3.22. The Ty, -ideal Idz, (A) is generated by the graded identities (3.1), (5.2),
and (3.3).
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Proof. Let f € Idg,(A). Since the ground field has characteristic zero, we may assume
that f is multilinear. Notice that in the proof of Theorem 3.20 and in the lemmas that
precede it, we have shown that if f is not a consequence of the identities (3.1), (3.2), and
(3.3), then f(A) # {0}. In other words, if f € Idz, (A), then f is a consequence of the

aforementioned identities. O

We recall that in case ¢ = n we have the natural Z,-grading on UT,,.

Corollary 3.23. Let F be a field with at least n elements, let UT,, be endowed with the
natural Z,-grading and let f € F{(X|Z,) be a multilinear polynomial. Then the image of f

on UT, 1is either zero or some homogeneous component.

Proof. It follows from the proof of Lemma 3.17. [

Remark 3.24. Notice that the same result also holds if we consider the natural Z-grading
on UT,. Analogous results hold for the lower triangular matriz algebra LT, as well (we

will use this remark in the next section).

3.5 Traceless matrices

As an application of the results obtained in the previous section, we now give a
sufficient condition for the subspace of the traceless matrices to be contained in the image

of a multilinear polynomial on the full matrix algebra.

We start by recalling the following result from [5].
Theorem 3.25. [5] Let D be a division ring, n = 2 an integer, and A € M,(D) a
non-central matriz. Then A is similar (conjugate) to a matriz in M, (D) with at most one

non-zero entry on the main diagonal. In particular, if A has trace zero, then it is similar

to a matriz in M, (D) with only zeros on the main diagonal.

Consider the natural Z-grading on M, (F) = (P M, (F), given by

re’
span{egpir |k =1,...,n—7r}, if0<r<n-—1
M, (F), =< span{ej_,x |k=1,...,n+7r}, if —n+1<r<-1 (3.5)
{0}, elsewhere

Theorem 3.26. Let n > 2 be an integer, let F' be a field with at least (n — 1)n + 1
elements where char(F') does not divide n, and let f € F(X) be a multilinear polynomial.

If f(yn, - Yme, 2) &y, y2D™ for every non-neutral variable z, then f(M,(F)) contains
sl (F).
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Proof. Since char(F") does not divide n, then we have that any non-zero traceless matrix is
non-central. Using further that f(M,(F)) is invariant under automorphisms of M, (F'), by
Theorem 3.25 it is enough to show that f(M, (F')) contains all matrices with zero diagonal.
Let A be a zero diagonal matrix and write A as the sum of its homogeneous components
(with respect to the Z-grading on M, (F') given by (3.5))

—1 n—1
i Y aeSa
i=—n+1 =1
n+1 n—i
where A; = Z ap—ikeh—ig fori=—-n+1 ..., =l and A; = Z Ak ktiCh i O 2 =1, ...,
k=1 k=1

n—1.

By hypothesis and from Corollary 3.23 we have that f(yi,. .., Ym_1, z(i)) is not
a graded polynomial identity for U7}, with the natural Z-grading, for every variable z*) of

homogeneous degree ¢ where 1 <7 <n — 1.

We now consider the following evaluations on generic matrices: y; = Z w,ij )ekk

forall j=1,...,m—1and 2 = Z w,im’i)ek’kﬂ.

Hence
Fr, e ym,2Y) = Z pk,iwlgm’i)ek,k+i
k=1
where py,; is a polynomial in the variables wk Since f ¢ 1dz(UT,), Corollary 3.23 gives us
that the image of f(y1, ..., Ym_1,2?) on UT, is exactly (UT},);. Hence all Dk,i are NON-ZETo

polynomials. Moreover notice that py; is such that all its monomials are multilinear ones.

Analogously, we also have that f(yi, ..., Ym—1, z(i)) is not a graded polynomial
identity for the lower triangular matrix algebra LT, endowed with the natural Z-grading,
fori=—-n+1, ..., —1. Therefore

n— Z
f(ylw"aymflu 2 mwk T €k+zk
n+1t
where 2 = Z wy ek ik and gx,; are non-zero commutative polynomials with multilin-
k=1

ear monomials.

The number of polynomials p;; and g, is exactly (n — 1)n. We now apply
Corollary 3.15 to get an evaluation of all variables w,(gj ) such that the polynomials py;
and gi; assume simultaneously non-zero values in F'. Such evaluations give us diagonal
matrices Dy, ..., D,,_; such that

n—i

f(D1,..., Dy, 29) = Z @i,kwém’i)ek,k+i
k=1
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where o ;, are non-zero scalars. Thus each matrix A; can be realized as f(Ds, ..., Dy_1, B;)
for a suitable matrix B; € (UT,);, for every i = 1, ..., n — 1. Similarly we also have that
each matrix A; can be realized as f(D, ..., Dy_1,C;) for a suitable matrix C; € (LT,);,

foralli=—n+1, ..., —1. Hence

—1 n—1 -1 n—1

A= Y A+ A= > f(Di....Dy1,C)+ Y. f(Dy,...,Dpy, By)
i=—n+1 i=1 i=—n+1 i=1
and it is enough to use the linearity of f in one variable to get A € f(M,,(F)). O

Corollary 3.27. Let char(F') = 0 and consider the multilinear polynomial

f(xh"'axm) = Z Oéa[xm7xa(1)7"'7x0'(m—1)] € F<X>7

oESm—1

where Z ay #0. Then f(M,(F)) = sl,,(F).

O'ESm_1

Proof. Consider the polynomial

f(yb s 7ym7172m) € F<XZ>

In light of the Jacobi identity, one can see that modulo the Ty-ideal [y, y2])"* we have

[Zm> Yo(1)y - - - 7y0(m—1)] = [Zma Yiy .- aymfl]

for all o € S,,_1. Hence, modulo [y, 32])"%, we can write f as

F=0> a)lzmy - Ymol.

UESm_1

n

Hence, for j = 1,...,m — 1 we take D; = Z ie;; and D, € M, (F') a non-zero non-neutral
i=1

homogeneous element concerning the grading given in (3.5), and now one can easily check

that
f(Dlw--vafl;Dm):( Z Oég)Dm¢O.

0ESm—1

This implies in f ¢ {[y1,52])"?. Now it is enough to apply Theorem 3.26 to get
slp(F) < f(My(F)). Since the opposite inclusion is trivial, we get the equality. H

We notice that the corollary above recovers the Shoda’s result [56] about

commutators on the full matrix algebra.
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3.6 Small dimension cases

During this section we will deal with the images of multilinear graded poly-
nomials on upper triangular matrices of small dimension and endowed with different
additional structures. We will see that a way clearer picture can be obtained when we
have small dimension. Precisely in the associative and Jordan settings the image is always
a homogeneous vector space, regardless of the grading. However in the involution case
we will see that there exist multilinear polynomials such that their images on the upper

triangular matrix algebra is not a vector space.

3.6.1 The associative setting

Throughout this section F' will denote an arbitrary field.

Let us start with the case of 2 x 2 matrices. This is actually an easy consequence

of Proposition 1.22.

Theorem 3.28. Let UT, = A = (—BAg be some grading on A and let f € F(Xg) be a
geG

multilinear graded polynomial. Then f(A) is a homogeneous subspace of A.

Proof. By Theorem 3.2 and Proposition 1.22, it is enough to consider images of multilinear
graded polynomials on elementary gradings only. We notice that just two elementary
G-gradings can be defined on A = UTs. Indeed, an elementary grading on UT5 is com-
pletely determined by the homogeneous degree of ej5. If deg(ejs) = 1, then we have the
trivial grading, and we apply Theorem 3.10. Hence we assume 4; = span{ej, a2} and
A, = span{ej2}, where g # 1. In this grading the images of multilinear polynomials in
neutral variables are handled by Lemma 3.16 and Proposition 1.19 (2). Since A2 = {0}, it
is enough to consider multilinear polynomials in one variable of homogeneous degree g
and all remaining variables of neutral degree. In this case the image is contained in A4,

and by Proposition 1.19 (3) we are done. O

Now we prove an analogous fact to Theorem 3.28 with A = UTj instead of
UT,. From now on in this subsection we assume that A is endowed with some elementary
G-grading given by a tuple (g1,¢2) € G* Hence g = deg(es), g2 = deg(ess), and
93 := 9192 = deg(e1s).

Hence the elementary gradings on UTj are exactly the ones given by the

following relations.

(D) {1} n {91, 92, 93} # .

(a) g1 = go = 1, which implies g3 = 1;
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(b) g1 =1 and g2 # 1, which implies g3 = go;
(¢) g2 =1 and g # 1, which implies g3 = gy;
(d) g3=1, g1 # 1 and g1 = go;

() gs=1,1 # 1,90 # 1 and g1 # go.

(I1) {1} n {91, 92,93} = &
(a) 1,91, 92, g3 are pairwise distinct elements;

(b) g1 = g2 # gs.

In the following lemmas we discuss the grading on UTj; determined by each
relation above and we give a precise description of the respective image of a multilinear

graded polynomial on such a graded algebra.

Lemma 3.29. Let UTy be endowed with the grading (1)(b). Then f(UTs) is a homogeneous

subspace.

Proof. We denote g, = g, then we have A; = span{eiy, €29, €33, €12} and A, = span{e;s, ea3}.
We notice that Ag = {0} and hence we only need to analyse multilinear polynomials in at

most one variable of homogeneous degree g.

The case when f is a multilinear polynomial in neutral variables is settled by
Lemma 3.16 and Proposition 1.19(2).

Now we consider f as a multilinear polynomial in one non-neutral variable and
m — 1 neutral ones. Since A satisfies the graded identity z[y;,y2] = 0, then modulo this

identity we write f as
Z hil,...,ikzmyil Yy

1<iy <--<ip<m—1

If all polynomials h;, . ; have commutator degree different from 0, then
f(UTs) < span{ej3} and then we apply Proposition 1.19(3). Otherwise we may assume
without loss of generality that h; __; has commutator degree 0. Then we perform the
following evaluations: y; = -+ = y, = es3, y; = €11 + ex for every j ¢ {1,...,k}, and
Zm = ofl(alelg + ageq3), where « is the sum of the coefficients of h; _x. Notice that under
such an evaluation we have ajejs + aseas € f(UTs) which proves that f(UT5) = A,. O

Lemma 3.30. Let UTy be endowed with the grading (I)(c). Then f(UTs) is a homogeneous

subspace.

Proof. Notice that A; = span{eiq, €2, €33, €23}, Ay = span{ejs, €13} and also that A
satisfies the identities [y, y2]z = 0 and 225 = 0. Thus, the proof is similar to the one for
(D(b). O



Chapter 3. Images of graded polynomials on upper triangular matrices 56

Lemma 3.31. Let UT; be endowed with the grading (1)(e). Then f(UTs) is a homogeneous

subspace.

Proof. Here we must have A; = span{eyy, e, €33, €13}, Ay, = span{eia}, Ay, = span{ess}.
Notice that A2 = A2 = {0}, Ay, Ay, = {0}, and Ay, Ay, < spanfeis}.

The case when f is a multilinear polynomial in neutral variables can be treated
as in the grading (I)(b). Hence we may consider f is a multilinear polynomial in: one
variable of degree g; (respectively ¢g2) and m — 1 neutral variables, or in one variable of
degree g1, one of degree g, and m — 2 neutral ones. In each of these situations we have that

f(UT3) is contained in a one-dimensional space and we apply Proposition 1.19(3). O

Lemma 3.32. Let UT; be endowed with the grading (11)(a). Then f(UT3) is a homogeneous

subspace.

Proof. We have A; = span{ej,esn,ess}, A, = span{eis}, A, = span{ess}, and
Ay, = span{ejz}. The only nontrivial relation among the non-neutral homogeneous com-

ponents is given by A, Ay, = Ag,.
The case of f in neutral variables is the same as for the grading (I)(b).

Since the non-neutral components are one-dimensional, then the image of a
multilinear polynomial in one non-neutral variable and m — 1 neutral ones is always zero

or the respective homogeneous component.

In case f has one variable of homogeneous degree g;, one of degree g and

m — 2 neutral ones then the image is contained in A,,, and we are done. O

Lemma 3.33. Let UTj be endowed with the grading (I1)(b). Then f(UTs) is a homogeneous

subspace.

Proof. Note that A; = span{ej, e, €33}, Ay, = span{eis, eo3} and Ay, = span{e;s}. We

only need to consider the case when f is a multilinear polynomial in m — 1 neutral variables

and one of homogeneous degree gy, since the remaining cases can be treated as above. We
m

write f = Z fj where f; is the sum of all monomials from f which contain the variable

j=1
Zm in the j-th position. Hence, modulo [y;,y2] = 0 we have

f] = Z Olil,...,ijflyzj e yijflzmylﬂ e ?/km,j

1<i1<---<i]~,1<m71

where ky,...,k,—; € {1,...,m — 1} are such that k; < --- < k,_;. We evaluate

Y = wy)en + €99 + wéi)egg and z,, = wgm)elg + wém)€23. Thus f(y1,. - Ym-1, Zm) is
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given by
1 -1
0 pr(w, .. w™ ™ 0
1 -1
0 pa(ws” . wg™ ywy™
0
m . .
where pl(wgl), . ,wgm_l)) = Z Z O[i17---,ij_1w§”) .. -wglj’l) and py is given
j=1 I<i<<ijism—1
analogously.
We claim that p; takes non-zero values on F'. Indeed, assume that p; is a
polynomial identity for F' and denote e; = Z Ofil,...,ij,lwgil) .. ,wfj‘l). Hence
1<i1<---<i]~,1<m71
m
P1 = Z ej.
j=1
Notice that e; is a commutative polynomial and taking w?) =... = wgmfl) = 0 we have

e; = 0. Taking wgl)

= 1 and zero for the remaining values w;’s we have a; = 0 for all
le{l,...,m—1} and hence es = 0. Now assume ¢; = 0 for all [ < k, and we shall prove that
er = 0. For each chosen i1, ..., i,_, we take wY) =0 for all ¢ {iy,...,ix_1}, then e, =0

(1) L (tp—1

forall [ > k and e, = ;i Wy w,y ). Then we take wyl) =... = ka-l) =1 and

k

we conclude that «;, = 0. Hence p; = 0, which is a contradiction. An analogous

clk—1

claim holds for p,. Therefore it is enough to use the variables wY”’ and wém) to realize any

matrix in A,, in the image of f on UTs. m

Lemma 3.34. Let UT; be endowed with the grading (I)(d). Then f(UT3) is a homogeneous

subspace.

Proof. We denote g = ¢; and notice that A; = span{es,ean,ess, e13} and
Ay = span{ers, ex3}. Then A2 < span{eis} and A satisfies the identities z[y1,y2] = 0
and [y, y2]z = 0. The case when f has one variable of homogeneous degree g and m — 1
neutral variables can be treated as in the previous lemma. The remaining cases are

considered as above. O

Hence we have the following theorem.

Theorem 3.35. Let F' be an arbitrary field, let Ul = A = @Ag be some nontrivial

geG
grading on A, and let f € F{Xq) be a multilinear graded polynomial. Then f(A) is a

homogeneous subspace of A. If |F| = 3 and A is equipped with the trivial grading, then the

image 1s also a subspace.

Proof. The proof is clear from the previous lemmas and Proposition 1.22. m
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3.6.2 The Jordan setting

Throughout this subsection we assume that F' is a field of characteristic different
from 2 and we denote by UJ,, the Jordan algebra of the upper triangular matrices with
product a o b = (ab + ba)/2. Unlike the associative setting, gradings on U.J,, are not only
elementary ones. Actually, a second kind of gradings also occurs on UJ,, the so-called
mirror type gradings, and we define these below. First of all let us introduce the following

notation. Let 7, m be non negative integers and set
E+

im = Ciitm t €nicmiim—it1 and B = €jiim — €nimmitn—it1-

Definition 3.36. A G-grading on UJ, is called of mirror type if the matrices E}, and
E;,. are homogeneous, and deg(E} ) # deg(E;, ).

mm

We recall the following theorem from [46].

Theorem 3.37. The G-gradings on the Jordan algebra UJ, are, up to a graded isomor-
phism, elementary or of mirror type. Moreover the support of a G-grading on UJy is always

commutative.

In particular we have the following classification of the gradings on U J,.

Proposition 3.38. Up to a graded isomorphism, the gradings on UJy are given by
UJy,=A= @Ag where

geG

(I) elementary ones
(a) trivial grading,
(b) Ay = Feyy + Fegy, Ay = Feyo,
(1I) mirror type ones
(a) Ay = F(enn + exn), Ay = F(enn — exn) + Feys;
(b) Ay = Fenn + exn) + Fez, Ay = Flenn — ea);
(¢c) Ay = Flen + ex), Ay = Flen — exn), A, = Fer,

where g € G is an element of order 2.

Next we describe precisely the image of a multilinear graded Jordan polynomial

f on some gradings considered above.

Lemma 3.39. Let UJy be endowed with the grading (I)(b) and let f € J(Xg) be a

multilinear polynomial. Then f(UJy) is a homogeneous subspace.
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Proof. We start with a multilinear polynomial f in m neutral variables. We evaluate
each variable y; to an arbitrary diagonal matrix D;. Therefore each monomial m in f is

evaluated to Dy --- D,,, where g € F is the coeflicient of m. Hence
f(Dy,...,Dy) =aDy--- Dy,

where o € F is the sum of all coefficients of f. In case a = 0, then f = 0 is a graded
polynomial identity for U.J,, otherwise we can take Dy = --- = D,,, = I, and use D; in

order to obtain every diagonal matrix in the image of f on U.J,.

Since U J; satisfies the graded identity 2125 = 0 such that deg(z;) = deg(z2) = g,
then we only need to analyse the case where f is a multilinear polynomial in m — 1 neutral
variables and one of homogeneous degree g. Obviously we must have f(U.J;) < A, and

this homogeneous component is one-dimensional, then we are done. O

For the grading (II)(a) we recall the following lemma from [34] applied to
multilinear polynomials. If no brackets are given in a product, we assume these left-

normed, that is abc = (ab)c.

Lemma 3.40. Let UJy be endowed with the grading (II)(a) and let f € J(Xq), be a
multilinear polynomial. Then, modulo the graded identities of UJy, we can write f as a

linear combination of monomials of the type
Y- ~ylzi0(zilzi2) s (Zz‘2m712i2m), 1< < l,il < ig < 7:3 << im < im+1,i0 > 0.

Lemma 3.41. Let U Jy be endowed with the grading (1I)(a). Then f(U.Jy) is a homogeneous

subspace.

Proof. Since dim(A4;) = 1 it follows that if the image of a multilinear polynomial on U.J,

is contained in A; then it must be either {0} or A;.

Now we consider a multilinear polynomial f in homogeneous variables of degree
1 and g such that deg(f) = g. Let m =y - - - 125, (24, 2i,) - - - (Zig,,_, Zin,, ) De @ monomial as
in Lemma 3.40. We notice that the main diagonal of a matrix in m(U.Jy) is such that the

k+1

entry (k, k) is given by (—1)"""a, where a is the product of the entries at position (1, 1) of

all matrices y and z. Hence every matrix in f(U.J;) is of the form

where « is the sum of all coefficients of f.

In case a = 0, then f(UJy) < span{e;s} and then the image is completely

determined.
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We consider now o # 0. Our goal is to prove that f(UJy) = A,. With-
out loss of generality, we assume that the non-zero scalar occurs in the monomial
Y1 yizo(z122) - - - (22m—122m ). Then we take the following evaluation: y; = -+ = y; = Iy,
2o = wi(e1] — e92) + waegs and z; = €17 — ey for every i = 1, ..., 2m, where wy, wy are
commutative variables. Therefore

aw, Wy
f(ylv"'7yl720a"'7z2m):( >

— Qw1

Since a # 0, it follows that f(UJy) = A,. O

Now we consider the grading (II)(b) and we recall another lemma from [34]

that we state in the following.

Lemma 3.42. Let f € J(X)1 be a multilinear polynomial. Then, modulo the graded

identities of UJy, f can be written as a linear combination of monomials of the form

1. (yh o 'yir)(zjl T Zjl);
2. ((Wizi) 23 in -+~ i) 25 -+ 2o
where [ = 0 is even, 7 =2 0, 1y < -+ < 1,, and zj, < zj, < zj, < -+ < 2j,.

Lemma 3.43. Let U Jy be endowed with the grading (II)(b). Then f(UJ3) is a homogeneous

subspace.

Proof. We start with a multilinear polynomial f in m neutral variables. Notice that U.J,
satisfies the graded identity (y1,y2,y3) = 0. Hence, modulo the graded identities of U.J,
we can write f as

f=ayiym,
where « is the sum of the coefficients in f. If &« = 0, then f is a graded identity of U J; and
we are done. In case « # 0 it is enough to take yo = --- =y, = Iy and use y; to realize

an arbitrary element from A; in the image of f. This implies in f(UJy) = A;.

Now we consider a multilinear polynomial f which has at least one variable of
homogeneous degree g. In case deg(f) = g, then f(UJy) is completely determined, since
dim(A,) = 1. So we assume deg(f) = 1. In case f is a multilinear polynomial in variables
of homogeneous degree g, then f(UJy) is contained in the vector space of the scalar
matrices, and therefore the image is completely determined. Hence we assume further that
f has at least one variable of neutral degree and let f be a multilinear polynomial in [
neutral variables vy, ..., y;, and m — [ variables z;,1, ..., 2, of homogeneous degree g.
Then by Lemma 3.42, we write f as

!
f=ayy)(zs - zm) + Zai+1(((y¢2’z+1)21+2)y1 C Ui y)aes 2
i=1
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Here ¢; means that the variable y; does not appear in the product v - - 4; - - - ;.
We replace y; = wgi)(en + e99) + wéi)eu and z; = ng)(en — €92), where the w’s
are commuting variables. Notice that the Jordan product of two matrices y; and ¥ is

given by y; - yo where the dot - stands for the usual product of matrices. On the other

hand, the usual product of n matrices vy, ..., y, is given by
WV "
WV |
where
D Y SRR

I<ii<<ip—1<n
in€{l,..,n\{i1, . sin—1}

as one can see by induction on n. Hence the image of the monomial

ar(yr - y) (2141 Zm)

on UJ, is equal to

wgl) .. .wgm) Z wgil) o wgilﬂ)wéiz)wg”l) . .wgm)
o 1< <-<iy_1<l
1 ile{lz"'7l}\{i17"'7il71} ’
W™

while the image of

ai+1(((yizl+l)zl+2)yl o @ o 'yl)2'1+3 T Zm

Wy
a; m .
+ W™

Therefore the main diagonal of f(yi,..., v, 2141, -+, 2m) is given by

on U.J, is equal to

awgl) o ~w§m)(611 + €92)

where « is the sum of all coefficients in f. The entry at position (1,2) is given by

(41) (f1-1), (ir) ) (141) (m)
Z wy Wy Wy WY Wy “€12.
1<Z’1<---<il,1<l
ile{lz--'vl}\{il7"'7il—1}

If « = 0, then f(UJy) < span{ejs} and we are done. We thus assume a # 0 and we
notice that we may also assume «; # 0, otherwise f(UJy) < span{ej; + es} which is an

one-dimensional subspace.

We therefore take

. wgi)=1f0rz’:2,...,m;
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. wg) =0fori=2,...,1.
These evaluations imply that

f(yr,e11 + €2, ... €11 + €22, €11 — €92, ..., €11 — €92) = ( (1)

Since both a and «; are non-zero scalars, then we can realize any matrix from A; in the

image of f on Uy, that is, f(UJy) = A;. O

Theorem 3.44. Let UJy = @Ag be a G-grading and let f € J(Xg) be a multilinear

geG
graded Jordan polynomial. Then f(U.Js) is a homogeneous subspace.

Proof. We first consider a nontrivial grading on U.J;. By Remark 1.23 we may reduce the
defined grading on UJ; to one of those described above. We note that the case of the
grading (II)(c) follows from the fact that f(U.J;) is entirely contained in some homogeneous
component and all of them are one-dimensional. We use Lemmas 3.39, 3.41 and 3.43 for the
remaining nontrivial gradings. Now we consider the trivial grading on UJy. Let f € J(X)
be a multilinear polynomial. We may assume that f ¢ Id(U.J;). By [57], the algebra
J(X)/Id(U.Jy) is a special Jordan algebra, and hence we may assume f as an element in
the free special Jordan algebra. Therefore, the image f(U.J3) is equal to the image of some
associative polynomial on UTs. Hence f(U.Jy) € {J,UJy} where J = Jac(UTy). O

Remark 3.45. Consider the Lie algebra UTTE*) with product given by the Lie bracket.
Given a grading on UT,(L’), we notice that J = [UTEL’), UTT(L’)] is always a homogeneous
ideal. We also notice that if f € L(Xg) is a multilinear polynomial of degree = 2, then
fUT)) ds contained in J. In particular, for n = 2 we must have that f(UTQ(_)) s
contained in span{eia} which is a homogeneous subspace. Since the image of multilinear
polynomials of degree 1 is trivial, we have that f(U T2(_)) is always a homogeneous subspace,

regardless of the grading defined on UTZ(_).

3.6.3 The natural elementary Zs-grading in the Jordan algebra U J3

In this section we study images of multilinear polynomials on the Jordan algebra
A = UJs endowed with the elementary Zs-grading given by the sequence (0, 1,2), that
is, Ay = span{ej, €29, €33}, Ay = span{es, €23}, and A5 = span{e;3}. We assume the base

field is of characteristic different from 2.

We recall the following identity which holds in any Jordan algebra.
Lemma 3.46. Let J be a Jordan algebra. Then
abed + adeb + bdca = (ab)(ed) + (ac)(bd) + (ad)(be)

foralla, b, c, de J.
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Proof. See for example [37, Page 34]. ]

As an easy consequence of Lemma 3.46 we have
abed + adceb + bdca = abde + acdb + beda (3.6)
for every a, b, ¢, d e J.
The next lemma points out some graded identities for the algebra U Js.

Lemma 3.47. The identities

(Y1,¥2,y3) = 0, (y1,2,y2) = 0 and 2,20 = 0

hold for UJs, where z,z1,29 are odd variables and either deg(z;) + deg(zs) = 0 or
deg(z1) = deg(z2) = 2.

Proof. A straightforward computation, hence it is omitted. m

The next lemma has the same proof as [34, Lemma 5.3]. However we will

consider its proof here for the sake of completeness.

Lemma 3.48. The polynomial

1

= () = 5 (30 o))+ 0n00) + (o) — <Con o))

is a consequence of (yi1, z,ys2), where deg(z) € {I1,2}.
Proof. Taking a = ys,b = y3,c = z and d = y; in the identity (3.6) we have

—((y2ys)2)y1 — (n1y3)2)y2 — ((W1y2)2)ys + ((veys)y1)z = —((v22)y1)ys — (y32)y1)ve.

Hence, we can write h = 2g as

b= 2(y1(y2(y32)) — ((y22)y1)ys — ((¥32)y1)v2
= (y3, 2, y2)y1 + (Y2, 2y3, y1) + (Y3, 2Y2, Y1)

which implies that g is a consequence of (y, 2, ya). ]

Given two even variables y; and y; we set y; < y; if ¢ < j. Hence we define an
order on words in even variables Y; < Y5 considering the left lexicographic order in case
Y; and Y5 have the same length, and Y; < Y5 in case Y5 is longer than Y;. For the next
lemma we use ideas from [34, Lemma 5.6]. We denote by T the T-ideal generated by the

identities from Lemma 3.47.
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Lemma 3.49. Let f = f(y1,.. ., Ym-1,2m) € J(Xz,) be a multilinear polynomial, where
deg(z,) € {1,2}. Then modulo T, f is a linear combination of monomials of the form

Y1(2Ys), where each Y; is an increasingly ordered product of even variables and Yy < Ys.

Proof. 1t is enough to consider f = f(y1,...,Ym—1,2m) as a monomial. We apply induction
on m. If m =1 or m = 2, then the conclusion is obvious. So we assume m > 3 and we
write f = gh where g, h € J(X¢). Without loss of generality we may assume that the odd
variable z,, occurs in g. Hence h = Y; and by the induction hypothesis we must have g as
a linear combination of monomials of the form Y3(zY3). On the other hand the Lemma
3.48 gives us that

((1)Y; = 5 (V095) + Va00Y8) + Vi -(011) — +(Yi (vavs) )

Now it is enough to use the identities (y1,y2,y3) = 0, (1, 2, ¥2) = 0 and the commutativity
of the Jordan product to get that each monomial inside the bracket on the right side of

the equation above is actually in the desired form. O

Theorem 3.50. Let F be an infinite field of characteristic different from 2 and let
f € J(Xz,) be a multilinear graded polynomial. Then the image of f on the graded
Jordan algebra UJs endowed with the natural elementary Zs-grading is either {0} or some

homogeneous component.

Proof. Since f is a homogeneous element in the graded algebra J(X7,) and 2125 = 0 holds
on UJs, for either degz; + degzy, = 0 or deg(z;) = deg(z2) = 2, we will consider the

following three cases in our proof.

Case 1: deg f = 0. Here we must have f = f(y1,...,yn) and the proof is the
same as the first paragraph of the proof of Lemma 3.39.

Case 2: deg f = 1. Let f = f(y1,---,Ym_1,2m) be such that degz,, = 1. By
Lemma 3.49, modulo 7', we may write f as a linear combination of monomials of the form
Y1(2mY2), where Y} < Ys. On the other hand, given

3
Y = Z w,(:)ekk and z,, = w§m)612 + wém)egg, (3.7)
k=1
. 0 (w@ + wéi))wgm) 0
note that y;z, = 3 0 (WS + wiwi™ | and then
0
0 plwgm) 0
fn, o Ymets 2m) = 0 powd”
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where p; and ps are polynomials in the variables w®, i = 1, ..., m — 1. We claim that if
f # 0 modulo T, then p; # 0 and py # 0. Indeed, consider the monomial m = aY;(z,,Y3),
where Y7 = yj, -+ yj., Yo =y, - - -y, and Yy < Y5. Note that the (1,2) entry of the image

s

of m under the evaluation (3.7) is given by

1 (491) (1)

i j i m ls l ls
Lo w4 0wl ) 4l )
Hence p; contains the following monomials
1 . . 1 , .
Zawyl) . -w?”wéll) . -wéls) and Zawgﬂ) . -wéh)wyl) o -w?s).

Since Y; < Y, the two monomials above can only be obtained from the monomial m.
Hence, if f # 0 modulo 7', then f contains some monomial m as above for some non-zero
«, which will imply in non-zero monomials in p; that are not scalar multiple of any other

one that comes from the remaining monomials of f. The same ideas also prove that p, # 0.

Now we use the fact that F' is infinite to get evaluations of the even variables
for diagonal matrices such that p; and p, assume non-zero values on F', simultaneously.
We finally use the variables wgm) and wém) to get arbitrary odd matrices in f(UJ3), that
is, f(UJs) = (UJs)s.

Case 3: deg f = 2. This last case follows from the fact that the homogeneous

component of degree 2 is one dimensional. O

3.6.4 The (graded) involution setting

In this section F' is a field of characteristic different from 2. Recall that an
involution = on an algebra A defines two subspaces S and K of A such that A =S® K,
and where S consists of the symmetric elements, that is, a € A such that a* = a, while

consistis of the skew-symmetric ones, that is, a € A such that a* = —a.

Two algebras with involution (A, ;) and (B, =) are isomorphic as algebras with
involution if there exists an isomorphism of algebras ¢ : A — B such that ¢(a™') = p(a)*?,
for all a € A. We say that two involutions *; and *9 on A are equivalent if (A, ;) and

(A, =9) are isomorphic as algebras with involution.

An involution = on a G-graded algebra A is called a G-graded involution if the

homogeneous components of A are invariant under =, that is, if
I:A=FPA,
geG
is the G-grading on A, then A7 = Ay, for all g € G. We notice that the subspaces S and
IC are homogeneous in the grading.
Setting Xg = {ri4lg € G,i=1,2,...} and X§ = {2} |ge G,i=1,2,...}, we
denote by F(Xq, X[) the free G-graded associative algebra with involution. By writting
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Yig = (xi,g—l—ng)/Z and z; , = (mi,g—x;g)/Q and denoting Yo = {yi4lg € G,i =1,2,...} and
Za ={zig4lge G,i=1,2,...}, we may consider elements from F(X¢, X as polynomials
in homogeneous symmetric/skew-symmetric variables. We also will use F(Ys U Zg) to

denote the free G-graded associative algebra with involution.

The space of multilinear graded polynomials with involution is given by

PT(,LG”‘) = span{&o(1),g, Eo(m)gm |G € (Ui 2}, i =1,...,m,g1,...,9m € G}.
We notice here that polynomial functions given by the polynomials in P,, are not multilinear
functions. For instance, the polynomial f = i 4225 + 21,422 is a multilinear graded -
polynomial however the function given by it on some graded algebra with involution is
not bilinear. In order to obtain multilinear functions we will need to consider the following

multilinear graded #-polynomials from P,,.

For a fixed m-tuple (g1,...,9m) € G™, let us consider the subspace P,(,fl’*) of
P&G’*) given by

G, . ‘
PTSLZ*) = span{&,(1) - - -§U(m)|§i =Ygt =1,...0,& = zig,0=1+1,...,m}.

In case the G-grading is trivial, that is, G' defined as the trivial group, then we
simply denote P,Efl’*) just by Py ;.

Definition 3.51. Let f = f(Y1,915- - Ygis D101 - - - > Zmogm) € P((i’*) and let A be an

m

algebra with involution. We define the image of f on A (denoted by f(A)) as the image of
the function
f: Sglx---Sglxngle---xngm - A
((ll, .o, ap, bl+17 Ce ,bm) — f(al, e ap, bl+1, .. ,bm).

bl

where a; € Sy, and bj € Ky,
We now turn our attention to recall the following description of (graded)
involutions on the upper triangular matrix algebra UT,,.

Definition 3.52. The reflexive involution r on UT, is defined as A" = QA'Q, where

AeUT,, A denotes the usual transposition of matrices and Q is the permutation matriz

0 -~ 0 1
0 - 10
Q:

In case n = 2k is even, we define a second involution on UT, named the sympletic
involution s given by A* = DA"D™" where A e UT,, and

I
p—(f 0},
0 —I,
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The next result from [19] shows that involutions on upper triangular matrices
are essentially the reflexive and the sympletic one (the later occurring only in matrices of

even order).
Theorem 3.53 ([19]). Every involution on UT, is equivalent to the reflexive or the
sympletic one.

Graded involutions on UT,, are also well known. We recall them in the following.

Theorem 3.54 ([29]). Let F be an algebraically closed field of characteristic different
from 2, and let G be a group. Let T'y be a G-grading on UT,, such that supp(I'1) generates
G. Let p1 be a graded involution on T'y. Then (I'1, 1) is isomorphic to (I's, p9) where
[y is the elementary grading on UT, induced by a sequence (gi,...,qg,) € G" such that

9190 = G20n—1 = -+ = Gng1 and @9 is either r or s.

In the following sections we describe the images of polynomials from Py(nG’l’*) on

UT, and UTj and we show the difficulties of extending such results to higher dimensions.

3.6.4.1 2 x 2 matrices

First of all we recall that both reflexive and sympletic involutions acts on UT3

I A ) R G R (S

In light of Theorem 3.54, one can easily see that a graded involution on UT; is

as follows:

isomorphic to either the reflexive or sympletic one, where UT5, is endowed with either the
o I'y; - trivial grading;
o I'yo-UTy, =A@ A,, where A; = span{ey, exn} and A, = span{ejs}.

The next three subsections are devoted to classify the images of polynomials

from Péfl’*) on UT;. In particular we show that the image is always a vector space.

3.6.4.1.1 Grading I'y ;: the reflexive case

We notice that UT, = S @ K, where § = span{e;; + e, e} and

K = span{ei; — ea2}. In the following we recall a result from [19] (see also [35]).

Proposition 3.55. Let f € F(Y u Z). Then, modulo the identities with involution of

(UTy,r), we have that f is a linear combination of polynomials of the form

Dp1 D q1 q D1 D q1 q

wheren =1,m = 1,p1,...,Pn,q1y---,qm = 0,k > 1.
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We consider a set of commuting variables W = {w§i)|i,j =1,2,...} and the
commutative polynomial algebra F[W]. Let us also set the following evaluations of the

symmetric and skew-symmetric variables by matrices with entries in F[W]:

@ @) ()
wy Wy wy 0
;= i and z. = . . 3.8
’ < w§)> j ( —w?)) o

Remark 3.56. In a product x - - T, the hat = means that the variable x; is missing.

Lemma 3.57. In light of (3.8), the entry (1,2) of y1 -+ -y, is given by

~

1 /T l )
Zw§>---w§>---w§>w§>

i=1

Proof. 1t is enough to apply induction on [. O]

In the following result we identify the space of scalar matrices with F' and we

also denote J = span{eja}.

Theorem 3.58. Let f € P, . Then the image of f on (UTy,r) is {0}, J, F,KC, S, or K+ J.

Proof. Let f = f(y1,.--, ¥, 21415+ - -, 2m)- By Proposition 3.55, we may write f modulo
Id(UTy,r) as

f=ay- iz zm Z Yy - Yz Zme1[Zms Uil

and additionally assume f non-zero modulo Id(UT3,r). Notice that if a = 0, then
f(UT,) = J. Indeed, this follows from the fact that the image of [z,,,y;] is contained in .J

along with the later being an one-dimensional ideal of UT5.
We may assume from now on that a # 0 and let us denote n = m — [. Note
that under the evaluation (3.8) and by Lemma 3.57 we have that the entry (1,2) of

Y1 Y21 - Zm S given by

l —

(1 mzen -z = ()"0 ™™ S Tl g,
i=1
Moreover, for each i € {1,... 1}, we have [z, y;] = 2w§ ™) (1)612 and also
(- Ti Y1 Zmet)1 = w%l) .. .wy) .. -wgl)wglﬂ) . .wY”*l)_
Thus /\
yl ce 3?1 e ylZl+1 . mel[zmy yl] — 2w§1) e wgl) wgm)wg)elZ.
Therefore we conclude that f(vy1,...,y, z141,- - -, 2m) 18 given by the following sum:

l —

awgl) . -w§ )(611 + (—1)"eq) Z )" + 20;)wy O -wgi) . 'w§m)w§i)elg.
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If (=1)"a+2a; =0forallie{l,...,1}, then one can see that f(UTy) = F or f(UT,) = K,

according to whether 7 is even or odd, respectively.

We assume now that (—1)"a + 2ay, # 0 for some k € {1,...,l}. We thus have

that f(UTy) < S, in case 7 is even, or f(UTy) < K + J otherwise. We further perform the
()
J

following evaluation on the commutative variables w

. wgi) =1lfori=101+1,...,m;
. wg) =0 for all © # k;
e w =1forallie{l,... I}\{k}.
Therefore,
(k) (k)

FW, U, 211y s 2m) = awy (er1 + (—=1)7ex2) + ((—1)"a + 20 )wsy ™~ 12

which implies in f(UTy) =S or f(UTy) = K + J. O

3.6.4.1.2 Grading I'y;: the symplectic case

Once again, we start recalling the following proposition from [19] (see also [35]).

Proposition 3.59. Let f € FY u Z). Then, modulo the identities with involution of
(UTy, s), we have that f is a linear combination of polynomials of the form
P, ] 2 and g ot

where 7 > 1.

We consider evaluations of the variables z;’s by matrices with entries in F[W]:
(4) (@)
wy W

Lemma 3.60. In light of (3.9), the matriz zy - - - 2, is given by

forie{l,...,m}.

wi - w™ (en + (=1)"es) + 3 (=1l e
=1

Proof. Induction on m. O]

The proof of the next theorem follows the same ideas from the reflexive case.

Theorem 3.61. Let f € P, ;. Then the image of f on (UT,s) is {0}, J,5,K,KnD,S+J,

where D denotes the space of diagonal matrices.
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Proof. By Proposition 3.59 and since S = F, we may consider

m
flz1, oy 2m) :aozl"'zm+Z%[Zz‘,21]2’2“'3i“-zm.
i=2

We notice that

[Zi, 21] = 2(w§i)w§1) - wgi)wgl))elz

and /\
(205 zpm)an = (—1)™w® -l (™
Hence,
[zi,21)z0 - 5o 2 = (=)™ 2w - ™ wd — ™ ey,
and therefore the evaluation of f on the matrices 24, ..., 2z, is given by the sum of the

following two matrices

agwgl) o -wgm)(ell + (=1)"eq)

and

(=)™ (a0t Y 20wy - wi™ w4+ (=)™ (=1 aot2a0)wy” - wy” - wi™wy ) ers.
=2 =2

We may assume o # 0, otherwise the image is already determined since f(UT3) < J.

If —ay —1—2 2a; = 0 and (—1)"ag + 20, = 0 for all i € {2,...,m}, then it is easy

=2
to see that f(UTs) = span{ei; + (—1)"exn} € {S, n D}. Otherwise let us first assume
that —ag + Z 2a; # 0. Then we perform the following evaluation of the commutative
i=2

variables wj(i) :

. wgi) =1forallie{2...,m}.
We therefore have

F(z1, s zm) = agwiV (eqy + (=1)egs) + (—1)™ (=0 + Z 20w ers
i=1

which implies in f(UT3) = span{ej; + (—1)"eqn, e12} € {K, S + J}.
Assume now that (—1)’ag + 2a; # 0 for some i € {2,...,m}. We thus set the
evaluation
e wy =0forallje {1,....,m}\{i};

. ng) =1forall je{1,...,m}\{i}.
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We obtain then
Fz1y s zm) = agw (eqg + (=1)™egq) + (—=1)™((—=1)" + 20 )wl ey,

which clearly leads us to f(UTs) = spanf{ey; + (—1)™eg, €12} € {K,S + J}. O

3.6.4.1.3 Grading I'z

Let us first write

UTy = A @ A,,

where A; = span{e;q, ean} and A, = span{e;o}. We further write
A =85 @K and 4, =S, K, (3.10)

with respect to the involution = € {r, s}.

Applying Corollary 1.21 gives us that the image of a multilinear graded poly-
nomial with involution f on UTs is a vector space (the subspaces V; are defined as the
ones appearing in the decompositions in (3.10), accordingly to the homogeneous degree
and symmetry of the variables occuring in f). Indeed, since Supp(I'y2) is abelian, then
f(UTy) is contained in some homogeneous component, and now one just need to notice

that both A; and A, have dimension < 2.

It is also straightforward to obtain a precise classification of the images of

multilinear graded #-polynomials on UT, with the grading I'ss.

Proposition 3.62. Let f € F{YqUZg) be multilinear and consider the G-graded involution
« € {r,s} on UTy with respect to the grading I'ss. Then f(UTy) is either {0} or some

(skew-)symmetric part from some homogeneous component.

Proof. Let us consider = = r, since the sympletic case is quite similar. First we note that

S1 = span{ey; + e}, K1 = span{ei; — exn},S; = A, and K, = {0}.

Since Supp(Ta2) = {1, g}, we may consider that only variables of homogeneous
degree 1 and g occur in f. Now note that S, is a nilpotent ideal of UT5 of index 2, and it
is one-dimensional as a vector space. Hence if f has at least one variable of homogeneous
degree g, then f(UT3) is either {0} or S,.

So we may assume now that f has only neutral variables. Since UT, satisfies
the graded =-identities [211,221] = 0 and [y1,1, 2] = 0, where x € Y& U Zg, then modulo

these identities we may write f as

f=ayi1 - yazie11 0 Zmt,

for some « € F'. This will therefore imply in f(UT) equals to {0}, S; or K;. O
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We therefore conclude the following theorem.

Theorem 3.63. Let F' be an algebraically closed field of characteristic different from 2.
Let f € ngl’*). Assume that UTy is endowed with some G-graded involution = on a grading

[ such that supp(I') generates G. Then the image of f on UTy is a homogeneous vector

space.

In the next section we show that a result like Theorem 3.63 can not be obtained

if we consider matrices of order greater than 2.

3.6.4.2 The image is not always a vector space

Next we present an example which shows that an analogue of Theorem 3.63
can not be expected for upper triangular matrices of order n > 3. In other words, we
prove that images of multilinear *-polynomials on UT,, are not always vector spaces. The
polynomial from our example will be in skew-symmetric variables. For that reason, we

recall that the skew-symmetric part of UT,, with the reflexive involution is given by
K= Span{eij - €n+1—j,n+l—i|i <Juj=1... ,TL}.

Proposition 3.64. Let n > 3 and let UT,, be endowed with the reflexive involution. Then

the image of the multilinear polynomial f(z1, z9) = 2122 on UT,, is not a vector space.

Proof. Let n be an odd integer (the even case can be treated analogously, up to minor

adjustments), and let us assume that f(UT,,) is a vector space.

n+1
Denoting ng = — W have that

e11 + enn = fle11 — enn, €11 — €nn)

€1in :f(el,no — €ng,ny —C€1ng + enoﬂ)'

Hence we must have ey + e, + €1, € f(UT,), that is, there exist A, B € K
such that
€11 + épn + €1n = AB. (311)

Let us write
A= Z Q5 €45 and B = Z bijeij.
1<i<j<n 1<i<j<n
and since A, B € K, we additionally have that a;; = —a,11-jn+1—i and bj; = —bpy1—jnt1-,

for all 7, j.

We claim that (AB);, = 0, which clearly leads us to a contradiction. To prove

the claim, let us compute the following entries of the product AB:
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1. “Half first row”: for j = 2,...,ng, the entry (1, 7) is given by
J
Z alibij
i=1
2. “Half last column”: for ¢ = ng,...,n — 1, the entry (i,n) is given by

n
Z aijbjn~
j=i

We rewrite the entry (i,n) above as

l

n n
Z ij0jm = Z nt1—jnt1-iDLnt1—j = Z @ribir,
j=i J=t

k=1
for [ =2,...,ng.
We now prove that a;; = by; = 0 for j = 2,...,ng. To this end we proceed by

induction on ng. For the base of the induction, we note that the entries (1,2) and (n—1,n)

along with Equation (3.11) give us
a11b12 + algbgg =0 and aggblg + a12b11 = 0.

Since ay1b;; # 0 and agebsy = 0, we therefore get a;5 = bis = 0. We assume now
ai; = by; = 0 for j < ng. Considering the entries (1, ng) and (ng,n) along with Equation
(3.11) we have

no no

2 alibi,no = (0 and Z akmoblk = 0.

i=1 k=1
By our induction hypothesis, the two equations above reduce to

allbl,ng + al,nobno,no = 0 and al,nobll + ano,nobl,no = 0.

Now it is enough to use that a;1b61; # 0 and anynebngn, = 0 to get
A1ny = bl,no = 0.
Finally, to obtain our claim we just need to notice that

n

(AB)1n = zn] aribin = — Z a13b1 n1-i
i=1

=1

and that a1, = by, = a; = by; =0fori=2,..., ng. O

3.6.4.3 The 3 x 3 case and one more example

In the last section we proved in particular that images of multilinear =-
polynomials on UT3 are not always vector spaces. In that situation we had UTj; endowed

with the trivial grading. In this section we will show that the picture changes when we
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allow UT3 be endowed with some nontrivial grading. Moreover, we also show that the
nontrivial grading setting fails if we consider upper triangular matrices of order greater

than 3.

Let us recall that, up to equivalence, there is only one involution on UT}, the
reflexive one, given by:

r

11 Q12 413 a33 dg23 (13
Q22 A23 = Q22 Q12
a33 11

Therefore, the only graded involutions on UT3 are the ones given by the reflexive involution
r and gradings:

o I'y3 - trivial grading;

o I'y3-UT; = A @A, where A; = span{e;y, €, €33, €13} and A, = span{ess, €a3};

o I's3-Uls =A@ A;® Ay, where Ay = span{eyy, e, €33}, A, = span{ejs, e23} and

A, = span{ejs}.

In the next subsections we describe the images of polynomials from Pfl’*) on UTj. In

particular, we show that the image is always a vector space in case U'Tj is endowed with a
nontrivial grading. We also give an example of a multilinear graded #-polynomial whose
image on UT,, (n > 4) is not a vector space where UT} is endowed with the natural

Zy-grading.
3.6.43.1 The grading I'y 3

We recall that A; = span{eir, €, €33, €13} and A, = span{eis, ea3}. Hence,
S1 = span{eq; + ess, €22, 613},55; = span{eis + ez},

IC1 = span{e;; — es3} and K, = span{ejs + eas}.

Since the homogeneous components are invariant under the involution, we may regard the
neutral component A; as an algebra with involution as well. In the next lemma we notice

some similarities between the reflexive case on UT5 and A;.

Lemma 3.65. The neutral component of UTy with reflexive involution and grading I's 3

satisfies the following identities:
(1) [y, 92]s (i0) [21, 22]; (@42) [y1, z][w2, 22]; (iv) 219122 — 2o 21

Proof. 1t is immediate, so omitted. O
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One can see that the identities from the lemma above are exactly the ones
satisfied by UT, with the reflexive involution (see [19, Theorem 3.1}). So it is expected that
we can use the same approach from Proposition 3.58. Let us thus consider the following

evaluation of the variables y’s and z’s by matrices over F[W]:

wgi) 0 w:()f) ng 0 0
Y = wéi) 0 | and z; = 0 0 (3.12)
o e

Lemma 3.66. Let y;,i = 1,...,m, as in equation (3.12). Then the entry (1,3) of y1 - Ym

is given by

- 1 /T m
S,

Proof. Induction on m. m

The proof of the next lemma follows the same ideas from Proposition 3.58.

Lemma 3.67. Let f € FY U Z) be multilinear. Then f(A;) is {0},J,81 n D,
(St n D) + J,81,K1 or Ky + J, where J denotes the subspace spanned by {ei3}, and

D stands for the linear span of {e11, e33}.

Proof. By Proposition 3.55 we may write f as
f=oyyizig o zm + Z QY1 Yz Zmet [ 2ms Uil

We will assume « # 0, since otherwise we clearly have f(UT3) € {{0}, J}.

Let n = m — [. Then notice that the main diagonal of f is given by

U)gl) o 'U)gm)(en + (—1)7es3) + )\wél) o 'wém)ezm
where A = 0 if there is no skew-symmetric variable in f, and A = 1 otherwise. The case
where f has only symmetric variables is obvious, indeed one can esaily obtain f(UT3) = S;.

Hence we may assume that f has skew-symmetric variables and also A = 0. Hence
f(UTg) c (Sl M D) +Jor f(UTg) C ICl + J,

accordingly n is even or 7 is odd, respectively. Now let us turn our attention to the nilpotent

part f. We start to noticing that [z, y;] = 2w§i)w§m)613, and therefore

Yo Ui Yk mel[zma yi] = 2w§1) e -wy) e ‘wgmi )wz(a )wgm)ew.

Hence, in light of Lemma 3.66 we must have f(y1,..., ¥, 2141, - -, 2m) equals to

l —

awgl) . -w§ )(611 + (—1)"e33) Z )" + 20;)wy @ -wgi) . 'w§m)w§i)613.
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Proceding in a silimar fashion as in Proposition 3.58, one can see that
f(UTg) € {IC1,1C1 + J, 81 M D, (81 M D) + J},
which finishes the proof. m

Proposition 3.68. Let f € Pfl’*). Then f(UT3) is {0}, J,81 n D, (S1 n D) + J, S5, Ky,
K1+ J, some one-dimensional subspace of Ay or Ay. Moreover, every one-dimensional
subspace of Ay can be realized as the image of some multilinear graded polynomial with

involution on UTsy, as well as the homogeneous component A .

Proof. The proof of the first part is clear from Lemma 3.67 and Corollary 1.21. Now, fix

a, f € I and consider the one-dimensional subspace
V= span{aem + 5623} c .Al.

It is straightforward to check that the image of az; 9211 + B21,121,0 on UT;s is exactly V,
and that the image of ¥ gy11 on UTj is exactly A;. O]

3.6.4.3.2 The grading I's 3

We recall that A; = span{e;y, ess, €33}, A, = span{ejs, ea3} and Aj, = span{e;s}.
We therefore write

UT; =8 8K ®S,0K,®S,®K),

where &) = span{e;; + ess,en}, K1 = span{e;; — ess}, S, = span{e;s + e},
IC, = span{eis — eas},Sn = spanf{e;s} and K, = {0}. Hence we have the following re-

sult.

Proposition 3.69. Let F' be a field of characteristic different from 2 and let f € P,Efl’*).
Then f(UTs) is {0}, 81, K1, (K1)?, some one-dimensional subspace of A,, A, or Sy,. More-
over, any subspace of A, can be realized as the image of some multilinear polynomial on
UTs.

Proof. Assume first that f has (skew-)symmetric neutral variables only. Since UTj satisfies
[21, x2] where x1, x5 are any (skew-)symmetric neutral variables, then the image of f on
UTsj is either zero or the image of a word in the form y; - - - 41241 - - - 2, on UT3. Clearly
the former gives us f(UT3) € {S1, K1, (K1)?}.

Let us assume now that f has non neutral variables. Since x,x5 is an identity
for UT5; when z; has homogeneous degree g and x, has homogeneous degree h, then

f(UTs) is always contained in some non-neutral homogeneous component. In this case, we
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apply Corollary 1.21 to conclude that f(UT3) is a vector subspace of A, or Aj,. Moreover,
we notice that A, = f(UT3) for f = y10y1,1, and for arbitrarily fixed «, f € F' and

V = span{aejs + [eas}

we have V = f(UTg) fOI' f = a21,0y1,1 — Byl,lzl,o' D

We therefore conclude the following theorem.

Theorem 3.70. Let F' be an algebraically closed field of characteristic different from 2. Let
fe Pr(fl’*). Assume that UTs is endowed with some G-graded involution * on a nontrivial
grading T such that supp(T") generates G. Then, the image of f on UTj is a homogeneous

vector space.

We finish this section by showing that, in general, Theorem 3.70 can not be

expected to hold for UT,,, n = 4, not even for the canonical Z,-grading.

Proposition 3.71. Let n > 4 and let U'T,, be endowed with the canonical Z,,-grading and
reflexive involution. Then the image of the multilinear polynomial f(y10,Y21) = Y1,0Y2,1 ON

U, is not a vector space.

Proof. Let us suppose n even (the odd case is analogous). We recall that the symmetric

parts of homogeneous degree 0 and 1 are given by

So = Spaﬂ{eii + Cpngi—imti—ist =1,... 7”/2}7 and

S = Span{en/z,(n+2)/2, Ciit1 + en—imr1—i;t=1,..., =1+ ”/2}

Assuming that f(UT,) is a vector space, and noticing that

flen + enn, €12+ €n_1n) = €12

flea2 + €n—1n-1,€23 + €n—2n_1) = €23

we therefore have ejg + e93 € f(UT,) (we take eg3 = f(ega + €33, €23) in case n = 4). Hence
there exist A € Sy and B € S such that ey + €93 = AB.

n n—1
Writing A = Z azey; and B = Z biit1€ii+1, we therefore have
i=1 i=1

(AB)lz = a11b12
(AB)23 = ag2bo3
(AB>n—1,n = an—l,n—lbn—l,n = by

Since the entry (n — 1,n) from AB is zero, we conclude that either (AB);2 = 0 or
(AB)a3 = 0, a contradiction. O
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4 f-zpd algebras

In this chapter we introduce the class of zpd algebras as well as the main
examples (non-examples) and results concerning this class of algebras. Our main reference
for the basics of zpd algebras is the book [13] (see also the paper [14]). The results from
Section 4.2 to Section 4.3 are submitted for publication in a specialized journal [8]. This is

a joint work with Zan Bajuk, Matej Bresar and Antonio Ioppolo.

4.1 (f-)zpd algebras

We start this section by defining the class of zpd algebras.

Definition 4.1. Let A be a nonassociative algebra over a field F. We say that A is a
zero product determined algebra (zpd algebra for short) if for every bilinear functional

v: Ax A— F satisfying
zy=0=¢(x,y) =0 (z,yeA)
then there exists a linear functional T : A — F such that

o(z,y) = 7(vy) forall x,yeA.

It might be a tough task to find nontrivial examples of zpd algebras by just

having in mind the definition given above. For this reason we state the next theorem.

Theorem 4.2 ([13]). Let A be an associative algebra. If A is generated by idempotents,
then A is zpd.

Remark 4.3. The converse of Theorem 4.2 is valid when A is finite-dimensional.
Example 4.4. The field F' is a zpd algebra over itself.
Example 4.5. The full matriz algebra M, (F') is zpd.

Example 4.6. Given A and B F-algebras generated by idempotents and M an (A, B)-
bimodule, then the triangular algebra

A M

0 B

is zpd. In particular, the algebra of upper triangular matrices UT, (F) is zpd.

Of course not every algebra is zpd. Let us see some examples.
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Proposition 4.7. [13] Let A be a unital nonassociative algebra of dimension greater than

1. If A has no zero-divisors, then A is not zpd.

Example 4.8. A division algebra of dimension greater than 1 is not zpd. In particular,

the field F' is the only division zpd algebra over F.

A natural question now is how to construct examples of zpd algebras from the
ones that we already know. Fortunately, the class of zpd algebras has a nice behaviour under
some classic constructions. For instance, homomorphic image of unital zpd nonassociative
algebra is also zpd. The same stability happens for direct sums and tensor products of

zpd nonassociative algebras (see [13]).

Definition 4.9. Let A be an algebra. We say that A is a zero Lie product determined
algebra (zLpd algebra for short) if A is zpd.
Clearly commutative algebras are zLpd.

Theorem 4.10. If A is a zLpd unital algebra, then so is M,(A) for everyn > 1.

In particular, the full matrix algebra M, (F) is zLpd.

Definition 4.11. Let A be an algebra. We say that A is zero Jordan product determined
algebra (2Jpd algebra for short) if A is zpd.

Theorem 4.12. Let A be an unital algebra over a field of characteristic different from 2.
If A is generated by idempotents, then A is zJpd.

In particular, the full matrix algebra M, (F) (char(F) # 2) is zJpd.

Let us now summarize the results presented so far concerning the algebra
M, (F). We have seem that M, (F) is zpd, zLpd and also zJpd. This means the following:
for i =1,2,3, let @;: M, (F) x M,(F) — F be a bilinear functional such that

ry =0=¢i(z,y) =0
ry —yr = 0= @y(z,y) =0
zy +yr = 0= @3(z,y) =0

Then there exist linear functionals 7;: M, (F) — F such that
pr(e,y) = mi(ry)

pa(z,y) = Ta(2y — yz)
ws(z,y) = m3(xy + yx)

for all z,y € M, (F).
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In other words, bilinear functionals on the full matrix algebra preserving zeros
of the polynomials zy, vy —yz and xy + yz can be described in terms of a linear functional

on the algebra and the polynomial. This motivates the following definition.

Definition 4.13. Let A be an algebra and let f € P, be a multilinear polynomial of degree
m. We say that A is an f-zero product determined algebra (f-zpd algebra for short) if for

every multilinear functional p: A™ — F satisfying
flat, ... am) =0=(a,...,an) =0 (ai,...,a, € A)
then there exists a linear functional 7: A — F such that

olar, ..., am) =7(f(ay,...,an))

forall aq, ..., a,¢€ A.

In light of Theorems 4.2, 4.10, 4.12, we can now pose the following question.

Question 4.14. Let f € P,,. Is the full matriz algebra M, (F) an f-zpd algebra?

This chapter is concerned with dealing with Question 4.14 and related problems.

We now finish this first section with some basic properties of f-zpd algebras.

Remark 4.15. During the rest of this chapter f will always denote a multilinear polynomial

of degree m.

Proposition 4.16. Let A be an algebra.

(i) A is f-zpd for any polynomial identity f of A;

(ii) Let o € F be non-zero. Then A is f-zpd if and only if A is a.f-zpd.

Proof. The proof is straightforward. ]

Proposition 4.17. Let o = f(1,...,1) # 0. Then A is f-zpd if and only if any multilinear

functional ¢: A™ — F preserving zeros of [ satisfies

o(ar,...,am) =a to(flay,...,an),1,...,1)

for all aq, ..., a,¢€ A.

Proof. Assume that A is f-zpd. Then there exists a linear functional 7: A — F such that

olar,...,am) =71(f(a1,...,an)), for all a1, ..., a,, € A. Hence

o(flar,...,;am), 1,...; ) =7(f(f(ai,...,an),1,...,1))
=ar(f(ay,...,an))
(
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and the desired conclusion follows. Reciprocally, it is enough to define the linear functional
7: A — F given by
7(a) = o 'p(a,1,...,1) forall ae A O

Lemma 4.18. An F-algebra A is f-zpd if and only if every multilinear functional
o: A™ — F that preserves zeros of [ satisfies the following condition: for all N > 1
andallagt),..., Je A, t=1,...,N,

p(al?,...,a®) =0 (4.1)

P 5=
—

=
u@
an

Proof. The “only if” part is clear. To prove the “if” part, denote by Ay the linear span of
f(A), and observe that (4.1) implies that 79: Ag — F,

(Zf(al m)) =iso(a§t)’-~7a£?)

t=1
is a well defined linear functional on A,. Letting 7: A — F to be any linear extension of

To, we thus have p(ay,...,a,) =7 (f(a1,...,an)) forall aq,...,a, € A. ]

Lemma 4.19. Let A be an f-zpd algebra and let V be a vector space over F. If a multilinear

map ®: A™ — V preserves zeros of f, then there exists a linear map T: A — V such that
D(ay,...,an) =T (f(ar,...,an))

for all aq, ..., a,¢€ A.

Proof. If V = F then this is true by the definition of an f-zpd algebra. The general case

can be easily reduced to this one. Indeed, take a linear functional w on ¥ and observe that

the composition w o ® is a multilinear functional preserving zeros of f. We may therefore

use Lemma 4.18 to conclude that for all agt), e ,aﬁfl) €A,

N
Sl al) =0 =
t=1
N N
w (Z CD(a@,...,an)) = Z(w o(b)(agt),...,arfl)) = 0.
t=1

t=1
Since w is an arbitrary linear functional on V), it follows that & satisfies

Zf ...,a,fl)—O:Zq) ® ..,a,j})zo.

We can now repeat the argument from the proof of Lemma 4.18, that is, we define the

linear map Ty: Ag — V by

T()(if(agt),..., %)) Zq) ...,a%))

(where Ag is the linear span of the image of f on A) and extend it to a linear map
T: A->V. O
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4.2 Examples and non-examples of f-zpd algebras

In this section we will be focused in dealing with Question 4.14. While the first
subsection is devoted to show that Question 4.14 has a negative answer in general, the

following subsections give examples of multilinear polynomials f so that M, (F) is f-zpd.

4.2.1 The full matrix algebra is not always f-zpd

Until the rest of this section, assume that the field F' has more than 3 elements.
Pick a, 8 € F\{0,—1} with a # f. Fix n > 2 and a multilinear central polynomial
¢ = c(zy,...,1;) of M,(F), and define multilinear polynomials hy, ho, f,g of degree
m =10+ 1 by

hi = c(1,. .. Tm—2, Tim—1)Tm,
ho = c(T1,. .., Tm—2, Tm)Tm_1,
f = hy + ahs,
g = h1 + Bhs.

Example 4.20. If n = 2, then we can take
c = |21, 22][23, 24] + [23, T4][71, 72]

which is a central polynomial of minimal degree. Then hq, ha, f, g are of degree m = 5. For

example,

[ =21, z]|xs, xa]xs+[23, 2a][21, T2] 25

+a|xy, o]z, 5|y + fxs, v5][21, 2] 240
The next proposition is related to the multilinear Nullstellensatz from the last
section of this chapter.

Proposition 4.21. Let Ay, ..., A, € M, (F). The following conditions are equivalent:

(i) f(Ar, ... An) =0.
(i) g(Ar,..., An) = 0.

(ii) hi(Ar, ..., Apn) = ho(Ay, ..., Ap) = 0.

In particular, f and g have the same zero sets. However, g is not the sum of a scalar

multiple of f and a polynomial identity.
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Proof. Suppose that f(Ay,...,An) = 0 but hy(Ay,...,A,) # 0. The latter implies
c(Ay, ..., Ay_1) # 0 which together with f(Ay,..., A,) = 0 shows that A, = AA,,_; for

some A € F. Hence,

(]_ + O[)h1<A1, ce ,Am)
Z)\(l + (I)C(Al, N ,Am_l)Am_l
ZC(Al, e 7Am—27 Am—l)Am + CYC(Al, PN ,Am_g, Am)Am—l
=f(Ay,...,A,)=0.
As o # —1, this contradicts our assumption. We have thereby shown that (i) implies (iii).

Since (iii) trivially implies (i), these two conditions are equivalent. Similarly we see that

(ii) and (iii) are equivalent.

Let us now prove that g is not a sum of a scalar multiple of f and polynomial
identity of M,,(F'). Indeed, assume that g = A\f + h, where h € Id(M,(F)). This means
that g — A\f € Id(M,(F)), that is,

(1 =Nz, .oy Tpe1) T + (B — Aa)c(xy, . .o T) T € Td(M,(F)).

If A = 1, then we conclude that c(z1, ..., zmy)Tm-1 € Id(M,(F)) which is clearly an absurd.
We assume then A # 1. Taking Ay, ..., A1 € M, (F) such that v = ¢(Aq,..., A1) #0
and A, € M, (F) linearly independent with A,, 1, we see that

(1= N4 + (8 — Aa)dA,_, =0,

where § € F. This is an absurd, and we conclude the proof of the proposition. O

The second proposition provides an evidence for the nontriviality of the results

of the following subsections.

Proposition 4.22. M, (F) is not f-zpd.

Proof. Pick By, ..., By_1 € M,(F) such that ¢(By, ..., B,_1) # 0. Hence,
p(A) = C(Bl, ceey Bm727 A)

is a non-zero linear functional on M, (F') (here we identified scalars with scalar multiples
of the identity). Let w be any linear functional on M,,(F') that is linearly independent with
p. Define ¢: M,,(F)™ — F by

SD(Al, . 7Am> = C(Al, . ,Amfl)W(Am).

Observe that the implication (i) == (iii) from Proposition 4.21 shows that for all
Ala"'aAmEMn(F>a

f(Al,...,Am) =0 = 90<A1,7Am) = 0.
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Suppose M,,(F') were f-zpd. Then there would exist a linear functional 7 on M, (F") such
that

O(A1, ..., An) =7 (f(A1,..., An))
for all Ay,..., A, € M, (F). That is,

C<A17 s 7Am727 Amfl)w(Am)
=C<A1, . 7Am727 Amfl)T<Am> + OéC(Al, Ce 7Am727 Am)T(Amfl).

Taking B; for A;, i =1,...,m — 2, and writing A for A,,_; and B for A,,, we thus have
p(A)w(B) = p(A)T(B) + at(A)p(B)

for all A, B € M, (F). Picking any A ¢ ker p we see that 7 = w + Ap for some \ € F.

Consequently,
((1+ a)Ap(A) + aw(A))p(B) =0,

which contradicts the linear independence of p and w. O]

4.2.2 The generalized commutator
This subsection is devoted to the generalized commutator
f(xl, 952,953) = T1T2T3 — T3L2X1-
This is one of the polynomials that deserve special attention (see, e.g., [45]), so

the question of whether the algebra M, (F') is f-zpd occurs naturally. We will show that

the answer is affirmative.

Throughout this subsection, we assume that o: M, (F)* — F is a 3-linear
functional such that for all A, B,C € M, (F),

ABC — CBA =0 — (A, B,C) = 0. (4.2)

Our goal is to prove that ¢ satisfies the condition presented in Lemma 4.18. Thus, assume
that N > 1 and that the matrices

A(t) = Z aﬁjeij, B(t) = Z bfjeij, C(t) = Z ngeij,

ij=1 ij=1 ij=1
t=1,...,N, where ¢;; are standard matrix units, satisfy
N
ST AOBOCH B0 A® _ (4.3)
t=1

We have to show that N
Dl (AP, BY cW) . (4.4)
t=1

We proceed with a series of lemmas.
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Lemma 4.23. We have

N n n
t t oot t ot t |
Z Z Z azkbklclj - Cz‘kbklalj + Zanggz% ciibyar | = 0.
=1 \ =1 k=1
k#j l#z

Proof. Note that for each pair (i, ) € {1,...,n}?,

(ADBOCO — COBOAO) = 3 aly byl — cyblyal;.
k=1

and hence, by (4.3),

N n

t ot i tot ot
Z Z @by — Cirbiyay; = 0.
t=1k,l=1

Clearly ambgl fj - c”béZ ;; = 0 for all . Hence this sum reduces to the one from the
statement of the lemma. ]

It is obvious that f(A, B, A) = 0 and so
p(A,B,A) =0

yielding
@(Aa Ba C) = _80(07 Ba A)

forall A, B,C € M, (F). In what follows, we will use these two identities without comment.

Lemma 4.24. We have

p (AW, BY 0W)

n n n
t
Z 22 zkbklcz; ©(€ik, e, €15) +Z% zCszO(ez‘j,@jz,@lj)

3,7=1 k=1 =1
k;é] l#1

MZ ip1=

-+
Il
—

bkgazj €zk,€kl,€z] ZCU Jlal] €zj,€j17€lj)>-

l;éz

~
Il
—_

-
MM:

Proof. Clearly,
N N n n
Z¢ (A(t),B(t),C’(t)) — Z (Z ZJe”, Z bklekz, Z Cpqepq>
t=1 i,j=1 k=1 pg=1

5\ (4.5)
= Z 2 CL bklcpq(’p(ew’ 6kl7 epq)
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It is easy to check that if i, j, k, [, p, ¢ satisfy one of the following conditions

j # kand g # k,
j# kand i # [,
[ # pand q # k,
l#pandi#I,

then f(ei;, €, €pg) = 0 and so p(e;;, €x, €pq) = 0. Hence we may assume that the following

relations hold

j=korq=k,
j=kori=I,
l=porq=k,
l=pori=1I.
We can rewrite (4.5) as
N N n
Z ¥ (A(t)’ B(t)’ C(t) = 2 Z az] ]lclqu elja ejl? elq)
t=1 t=11,5,l,q=1
N n n
+ Z 2 CL kz pk(p 61]76k17€pk))
t=11,5,p=1k=1
k7
N n n
+Z Z Z Jl p]go (€35 €ji, €pj)-
t=114,7=1p=1
p#i
Hence,
N N n n
ng (A(t)’B(t)’O(t)) - Z Z < Z a?kb%cfjso(@imekl,ezj)
t=1 t=14d,j=1 \ k=1
- Z Z 'kalafj@(eik, €xi, €15)
I=1k=1
k#j
o Z Czjbzlafjgp(elja €, 6l])>
7
Finally, using ¢(e;;, €ji, €;;) = 0 we obtain the statement of the lemma. O]

Lemma 4.25. Ifu #1,i; 1 # 1, and j # k, then
@(eikaekl, €lj) = 90(611@, eku:euj)-

Proof. Note that

flein + ews, €r + €pu, €15 + €ir;) = 0.
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Therefore,

0 = @(eik + €uj, ekl + €kus €15 + €ik)
= @(€ik, ert, e15) + P(€ir, ert, €in) + ©(€ik, Crus €15)
+ @€k Chu, €i) + P(eujs erts e1j) + Pleus, et eix)
+ @(ewj, eku, €15) + ©(€uj, €u, €ik)

= @(ek, ext, €15) + ©(euj, €kus k) O
Lemma 4.26. If [ # 1 and k # j, then
pleij, €1, e3) = (e, e, e7)-
Proof. Note that
fei; + e, e + ex, erj + ei) = 0.

Therefore,

0 = p(eij + ey, e + eps, e + €ix)
= pleij, i, €3) + (e, €51, i) + pleij, en, eyj)
+ (e, enrs eir) + (e, e, er5) + pley, eji, eir)
+ pley, e, ei) + pley, e, €in)

= w(eij, e, e15) + (e, e, €ir)- O

Lemma 4.27. If k # i and k # j, then
‘P(eik,Gki,Gu) = 80(6ik>€kk,€kj)-
Proof. Note that
feir + erj, eni + ek, €ij + ex) = 0.
Therefore,
0 = @(eik + €nj, eri + exk, €ij + €ix)
= ©(eik, exi, €ij) + @€k, €xis €ir) + ©(€ik, €xk, €i5)
+ p(€ik, €kks €ik) + 90(€kj7 Clis %‘) + SO(ekj, €ki, €ik)

+ ©(ekj, ek, i) + ©(erj, exr, €ix)

= (€, eri, €ij) + @(erj, ek, €ik)- []

Lemma 4.28. If k +# i, then

90(%‘, €ik, eki) = sﬂ(eik, €Lk, 6k:i>-
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Proof. Note that
fesi + €nis ik + €xky i + €ix) = 0
and therefore
0 = @(ei; + ek, ik + €xks €xi + €ik)
= (i, €ik, €xi) + (€ii ik, €ir) + (€4t Chy €ki)
+ ©(€ii, ek €ik) + P(€ki, €iks €ki) + P(Ekis ity €ik)
+ @€k, Chks €ki) + ©(€kis €k €ik)
= (i, €ik, €xi) + (ers, ek, €ik)- [
Lemma 4.29. We have
@i, €55, €55) = P(€is, iy €i5) = ©(eij, €55, €55)-
Proof. Note that
fleii + €55, €ii + €ij, €55 + €i;) = 0.
Therefore,
0 = @(ei; + ejj, € + €ij, €5 + €ii)
= (e, i, €i5) + @€y €iiy €ii) + @€y €55, €55)
+ SO(Gn', €ij, Gu‘) + 90(63']', €ii, eij) + Sp(ejj> € en')
+ p(ejj, €ij, €i5) + plejj, €ij, €ii)
= (e, €, €i5) + @(ejj, €ij, €ii).
The second equality can be obtained analogously. O

The next result contains all information that we need from the previous five

lemmas.
Lemma 4.30. Giveni,je {1,...,n}, the set
Qi = {p(eir, en )k, I =1...

is a singleton set.

Proof. Assume first that ¢ # j. We claim that

;n\{p(eij, €5, €if) }

Dy = {p(ey, 5, €55)}-

Consider (e;x, e, €;;) where k # j and [ # 4. Since j # i, by Lemma 4.25 we

have 90(€¢k,6kz,€lj) = 90(€¢k,€kj,€jj)- We

©(€ik, erj, €55) = ©(€ij; €55, €55).-

now apply Lemma 4.26 to get
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We now consider the case where 7 # [ and j = k. In this case take u # j and by
Lemma 4.26 we have p(e;;, €j1, €15) = @(€iu, €us €15). However @ (e, e, €1) = ¢(€ij, €54, €5)
since u # j, [ # ¢ and the previous case.

We now consider the case where j # k and ¢ = [. If k = i, then by Lemma 4.29
we have ¢(e;i, i, €i) = ¢(eij, €55, €j;). In case k # i, then (e, exi, €i;) = ©(€ik, €xk, €kj)-
We now apply Lemma 4.25 to obtain ¢(e;, exr, €xj) = ¢ (€, €k, €j;) and finally Lemma

4.26 to get @(ei, ex;, €j;) = p(eij, €54, €;5) as desired.

We may now consider the case where ¢ = j. Fix u # 7. We claim that
®;; = {o(€iis Cius €ui) }-

Initially consider & # ¢ and [ # 4 Then by Lemma 4.25
o€k, exl, €1i) = ©(€ik, €xu, €u;) and by Lemma 4.26 we obtain ¢(€ix, €xu, €ui) = ©(€ii, €ius Cui)-

If k£ # i and [ = i, then Lemma 4.27 @(e;x, €, €:i) = ©(€ik, €xk, €ki). By Lemma
4.25 (€, €k, Cki) = o€k, €k, €u;) and  finally Lemma 4.26 implies
@(eik, Cku; €m') = @(67;1;7 Ciu,s €m')-

We now consider ¥ = ¢ and [ # 4. By Lemma 4.28 we have
(e, i, e1) = (eq, ey, e;). By Lemma 4.25 ¢(ey, ey, 1) = (e, e, €ui) and then Lemma

4.26 implies @(e;, e, €ui) = ©(€iis Cin, €ui)- O

Theorem 4.31. Let f = x1x9x3 — x3wowy. Then the algebra M, (F) is f-zpd.

Proof. As already mentioned, in light of Lemma 4.18 it is enough to prove (4.4). Considering
the right-hand side of the identity given in Lemma 4.24, and denoting ®;; = {y;;} by

Lemma 4.30, we therefore have

N

N n
AN, BO_ 0
o pap

n
t gt t t 1t t t 1t t t gt t
@bl — Cikbay; + Z a;;bc; — Cz‘jbjla’lj> Pij
=1

t =
l#14

n
t 1t .t t gt i t gt .t t gt t
1 =1
#J 1#1

Invoking Lemma 4.23 we now obtain the desired conclusion that

N
D e (AD, BY cW) — . 0
t=1

4.2.3 Polynomials given by cyclic permutations

In this subsection we deal with a multilinear polynomial f whose monomials
correspond to a cyclic permutation and satisfies the condition that the sum of its coefficients

is non-zero. The only assumption that we will require on our algebra is that it is generated
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by idempotents. In our proof we will use ideas from the proof that an algebra generated
by idempotents is zJpd (see [6] or [13, Theorem 3.15]).

Let us now state the theorem.
Theorem 4.32. Let char(F') # 2, let oy, ...,y € F be such that Z"il a; # 0, and let
flz1,. o xm) = qmy Ty + QTo - T @1 + - + Q@ Ty - Ty

If an F-algebra A is generated by idempotents, then A is f-zpd.

Proof. In light of Proposition 4.16(7i), we may assume without loss of generality that

2 a; = 1. Let ¢ be an m-linear functional preserving zeros of f. By Proposition 4.17, it
i=1
suffices to prove that ¢ satisfies

olar,...,am) =o(f(ar,...,am), 1,...,1) (4.6)

for all a,...,a,, € A.

Set a1 = ap. We claim that a; + a;41 # 0 for some i. Indeed, if m is even

then this is immediate from
1= (a1 +ag) + + (no1 + am),
and if m is odd this follows from the observation that
Q= —Qg =+ =Q, =—0

implies 2a; = 0 and hence a; = 0, so we can again use the assumption that the sum of all

«; is 1. After relabeling, if necessary, we may assume that i = m, i.e.,
a1 + oy, # 0.
Let S denote the set of all s € A such that
olar, ..., am-1,8) = o(f(ar,...,am-1,5),1,...,1)

for all ay,...,a,,1 € A. To prove (4.6), we have to show that S = A. We will establish

this by induction on m.

In the base case where m = 2 we have
f(z1,22) = w129 + ooy

with a3 + a3 = 1. The proof that we will give is just a minor modification of the proof

that A is zJpd (i.e., of the case where a; = ).
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Since S is a vector subspace of A, it is enough to show that S contains every
product of the form ejes - - - €, where e; are idempotents in A. We proceed by induction on
n. Let e € A be an idempotent, and let us first prove that e € §. Considering an arbitrary

a € A and writing h = 1 — e, we have
a = eae + hae + eah + hah

and hence
o(a,e) = ¢(eae, e) + p(hae, e) + p(eah, e) + (hah,e).

Recalling that oy + as = 1, one can easily check that
f(hae, €= al) = f(eaha €— Oég) = f(@(l@, h) = f(h&h, 6) = Oa

which gives us the following relations

o(hae, e) = agp(hae, 1),
p(eah,e) = ozggo(eah 1),
p(eae, e) = p(eae, 1),

(

o(hah,e) = 0.
Consequently,

o(a,e) = p(eae, e) + p(eah, e) + p(hae, e) + p(hah, e)

l

eae + ajhae + azeah, 1)

(
p(eae, 1) + agp(hae, 1) + asp(eah, 1)
i
w(f(a,e),1).

We have thus shown that e € S.

Next, assuming that S contains products of n idempotents, let us prove that S

also contains eq - - - e,€,,1, where each ¢; € A is an idempotent. Write
hi=1—e1,hny1=1—¢epi1,t =€ ey,
(t =1if n = 1), so we want to prove that ejte,,1 € S. For any a € A, we have
a = ey1aeq + hpi1ae1 + enp1ahy + hyppahy.
Therefore,
o(a, ertens) = pleniaer, erteniy) + @(hniraer, erten i)
+ @(€n+1ah1, €1t€n+1) + ¢(hn+1ahla €1t€n+1)
= ¢(ent10e1,teni1 — hat + hithyiq)
+ @(hpy1aer, ten1 — hiteyiq)
+ @(ens10hy, e1t — egthniq)
+ @(hpi10hy, erten ).
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Since
f(enyraeq, hithy, 1) =0,
f(hpiraer, hite, 1) = 0,
f(ens1ahy, eithy, 1) =0,
f(hni1ahy, ete, 1) =0
and hence

P\ent+10€7, hlthn-‘rl

o(hnyraer, hite, 1y

~— ~— ~— ~~—
I

(
(
@(entrahy, er1thn
©(hpi1ahy, erten
we can conclude that
ola, erteni1) = p(enpraer, ten g — hait) + @(hyiiaer, teni1) + @(e,1ahy, eqt).
Since te, 1, hit,te, 11, et lie in S by the induction hypothesis, it follows that
p(ens1aer, tens1) = w(arenraeiten ) + aste,iaer, 1),
p(ensraer, hit) = p(aghite,iaeq, 1),
(
(

@(hnsraer, tenr) = @(arhpiiaerte, 1,1),

2 €n+1ah1,€1t) = 80((12€1t6n+1ah1; 1)'

One easily checks that this implies that
pla, erteni1) = @(f(a, ertenta), 1).

Hence ejte,,1 € S, which concludes the proof for the base case where m = 2.

Assume now m > 2 and that the result holds for m — 1, and so in particular for

the polynomial f(z1,...,Z,—1,1) (which is also of the required form). As the (m —1)-linear

functional p(ay,...,a,_1,1) preserves its zeros, we have
olar, ... am-1,1) =o(f(ar,...,am-1,1),1,...,1) (4.7)
for all ay,...,a,_1 € A.

As in the m = 2 case, it is enough to show that S contains every element of the
form ejey - - - €, where e; are idempotents in A. The proof that we will give is conceptually
similar to the one just given, but the necessary changes are not obvious. We proceed by

induction on n.
To handle the base case, take an idempotent e = e; € A. We must prove that
e € S. Denote 1 — e by h and write a; = ea; + ha; and a,,_1 = a,,_1€ + a,,_1h. Thus,

olar, ..., am-1,€) =p(eay, ..., an_1e,€) + (eay,...,an_1h,e)

(4.8)
+ @(hay, ... an_1e,€) + @(hay, ..., an_1h,e).
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It is easy to see that

eay, ..., aym_16,e—1) =0,

(
€a1, ., Qm_1h, (1 + am)e — ay,) =0,
( 1 1 ( 1 ) ) <49)
f(hay, ..., am_1e, (g + ap)e —ag) =0,
f(hal, e ,am,lh, 6) = 0.
Of course, ¢ then satisfies the same identities, which can be written as
pleay, ..., am_1e,e) = p(eay, ..., an_16,1),
(aq + am)plear, ..., am—1h,e) = app(ear, ... an_1h,1),
(o + ap)p(hay, ... am_1e,€) = ayp(hay, ..., an_1e,1),

o(hay, ..., am_1h,e) = 0.
Consequently, (4.8) becomes
olay,...,am-1,€) = p(eay, ..., a, 1€,1)

+ ap(ay + am) toleay, . .., am_1h,1)

+ 041(041 + am)_l(p(h’ala ey 1€, 1)
Applying (4.7) it follows that
olar,...,am-1,€) = o(f(eay,...,an_1e,1),1,...,1)

+ am(oq + o) to(flear, ..., am_1h,1),1,...,1)
+ar(og + ) ro(f(har, ... ame,1),1,...,1).

Using (4.9) we obtain
olay, ..., am-1,¢) = @(f(eay,...,am_1e,€),1,...,1)
+o(f(eay,...,am_1h,e),1,...,1)
+ o(f(hay, ... ,am_1e,e),1,...,1).
Since f(hay,...,am_1h,e) =0 (see (4.9)), it follows that
olat,...,am-1,€) = p(f(ar,...,am-1,€),1,...,1).
This means that e € S, as desired.

We may now assume that any product of n idempotents is contained in S. Take

idempotents ey, ..., e,+1 and let us prove that S contains e; - - - e,e,+1. Write
hiy=1—e1, hpp1=1—¢py1, t=e2-- €,
(t =1if n = 1). We have to show that e;te,,1 € S. Take ay,as,...,a,_1 € A and write

a; = €101 + hpprar and a1 = a1y + A1y
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We have
(a1, ..., am-1,e1teni1) = @(€nt101, ..., Am_1€1, €1tCn41)
+ @(ent101, - . ., Am_1hy, erten i)
+ @(hns1a1, ..., Gm_1e1, €1len41)
+ @(hpira1, ..., Gp_rhy, eten i)
= @(ent101, ... Am_r€1,tenr1 — hat + hithyiq)
+ @(ens1a1, ..., Gpm1hy,e1t — eqthyiq)
+ (p(thrla“l? <oy m—1€1, Zfen+1 - hltenJrl)
+ @(thrlal, s 7am71h17 elten+1>'
One easily checks that
f(€n+1a17 ceey m—_1€1, hlthn-i-l) =0,
f(€n+1&1, s >am71h17 eltthrl) = 07 (410)
f(hn+1a17 s, 161, h1t€n+1) = 07
f(hns1a1, ... am_1hy, erte,q) = 0.
As ¢ then satisfies the same identities, it follows that
o(ar, ., am_1,e1ten1) = @(ent101, - . Amo1€1,teni1 — hit)
+ @(en+1a1,. .., Am_1h1, 1)
+ Qp(thrlal; ceey 1€, ten+1>-
Since te, 1, hit, et te, 1 € S by the induction assumption, it follows that
o(ar, ..., am-1,e1tens1) = o(f(ens101, ..., am_rer, ten — hat),1,...,1)
+ go(f(en+1a1> s Jam—lhb elt)7 17 ct ]-)
+@(f(hnyr01, ..., amorer, tenn), 1, 1).
Applying (4.10) we finally obtain
@(ar, ..., am-1,e1teni1)
= (,0(f<€n+1a1, ceey 1€, t6n+1 - hlt + hltthrl)a 17 R 1)
+ gp(f(enJrlal? s 7am71h17 elt - elthn+1)7 17 teey 1)
+ QO(f(hn_;,_lCLl, e, m_1€1, t€n+1 — h1t€n+1), 1, ceey 1)
+ (,D(f(hn+1a1, Ce ,am_lhl, 61t€n+1), 1, ce 1)
- @(f(ala coey Am—1, elten-l-l)a 17 R 1)
This means that ejte,,; € S and the proof is complete. O
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4.2.4 Constructing new examples from old ones

To state our first result in this section, we need the following generalization of

the definition of a f-zpd algebra.

Definition 4.33. Let f = f(xy,...,zy) € Flxy,22,...) be a multilinear polynomial,
let A be an F-algebra, and let Vi, ..., V,, be vector subspaces of A. We say that the set
Vi X -+ XV, is f-zpd if for every m-linear functional p: V) x --- x V,, — F with the
property that for all a; € V;, 1 =1,...,m,

flay,...;an) =0 = p(ay,...,ay) =0,

there exists a linear functional T on A such that
olar,...,am) =71 (f(ar,...,an))
foralla; e V;, 1 =1,...,m.

Clearly A™ = A x --- x A being f-zpd is the same thing as A being f-zpd.

We draw the readers’ attention here that the L’vov-Kaplansky conjecture
indicates that the assumption (a) from the following theorem is not artificial. The theorem
actually concerns an arbitrary algebra A, but of course we are primarily interested in the

case where A = M,,(F).

Theorem 4.34. Let A be an F-algebra and let k > 1. For each i = 1,...k, let
fi (Iil, . ,ximi) € F{xy,x9,...) be a multilinear polynomial in m; variables and let
Vl(i), e ,V@ be vector subspaces of A. Set

U =V x oo x VO,

m;

Further, let fo € F{x1,xa,...) be a multilinear polynomial in k variables, and let

f:fO(fla"'afk)-

Suppose that the following three conditions are satisfied:

(a) For eachi=1,...,k, f;(U;) is a vector subspace of A.
(b) For eachi=1,... k, the set U; is f;-zpd.

(c) The set f1(Uy) x -+ x fr.(U) is fo-2zpd.

Then the set Uy X --- X Uy, 1s [-zpd.
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Proof. Foreach i =1,...,k, we set
Wi =U; x Uipq X -+ X Uy,

Our goal is to prove that W, is f-zpd. T hus take a multilinear functional ¢: W; — F

that preserves zeros of f, that is, for all a ) e V

f(al,al)) =0 — 90( Val) =0,

Define the multilinear functional v wilh > F by
1 mi

-----

e o (@) = (o a0, all)).

RRRPL¢ 27

Clearly Pa@, k) Preserves zeros of f1 on U,. Since U, is f1-zpd, there is a linear functional
PARRS] mk
Ta®) L a®) A — F' such that

PARAS] mk
ety (a7 ) =7y (1 (o all))
Now define (I)li fl(z/{l) X W2 — F by

Ol (al,a?),... al?) ...,agk),... a(k)> =T,® L (a1).

Y
? Tme? m [ARS} mk

The linearity of ®; in the first argument is obvious. Let us prove the linearity of ®; in the

second argument. It is enough to show that

Tal® 45 o ) = To@ 0@ o + To@ o alk) (4.11)
and
7' (2) (2) a(k) = AT (2) (2) (k) (4.12)
s " yeens mp yAo " yeeey mk
. 1
where A € F. Take ay € f(U;) and write a; = f; (al s M) Then,
(2>+b<2), é2)7 .a %l)c (CL1) =T (2)+b 2) (2 ( <a1 yeooy @ ))
a®
=@ (2)+b(2) (2), a g']fl)c 7" ) m1
_ (1) 1 (2) k
_S0<a1 ,70/5”37@1 +b1 ,0,2 ,,ag”)c
_ (1) (2) (2 k
_(p<a1 ,7a,’(nz CLI ,a/2 ,,agnl)c
(1) 1 (2 (2 k
—i—go(al ,...,aﬁni,bl , Qy ,...,aﬁnz
— (1) (1)
=¥, @ P a (k;)c <a1 g o Qo)
(1) 1
+ gobgz)’agz)w’agsl)c (CLl s 7(713

— (1) 1
= Ta?),af’,..‘,a%’f; (f1 <a1 g 70’1(713
(1) a®
+ 7'b<12)7@&2)7“.7(1%1;)C <f1 (al N A

= (T @ ,@ kT T (2) o, 55)) (a1),
. k

a2777n
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which proves (4.11). The proof of (4.12) is similar. Analogously we see that ®; is linear in

other arguments, so ®; is a multilinear functional. Moreover,

¢(a§1),... atl) a?),... a? .--,agk)w-' a(k))

) my? ) mo’ Y mi

=, (fl <a§1),...,a$3) ,agz),...,a%,...,agk),...,aSSD

for all ay) € V]@. From this we see that the multilinear functional

© @ w:Us = F,
m

a1,a; *,...,a

given by

¥ (3) (kl)c <a52)7"'7a’£32) =& (alva(l )7""a7(7%l’a53)7""a7(7]7€42;>7

a1,a; *,...,a

preserves zeros of fo on Us. As Uy is fo-zpd, there exists a linear functional

@ miA-F

al:al ey

such that

oo (@7 a@) =7 o o (o (o, a2)).
1 e Gmy, 1 o @my

Next we define
(I)QZ fl(Z/ﬁ) X fg(Z/{Q) X W3 — F

by
(3) k
o, <a1,a2,a1 ,...,aﬁnS,...,al ,...,aﬁni = Ty @) (ag) .

-----

We show that ®5 is multilinear in a similar fashion as we showed that ®; is multilinear.

Moreover, we have

1
o (al? o alt)

=0, <f1 (aﬁ”,..., ﬁ,ﬂ) a?),...,a%,...,agk),...,agm
=PV, a)al®,... a®) <a§2),...,a%>

=7h@®....a$).a®....a) <f2 <a§2),...,a%>>
=0, (£ (o a) o (a0 ).

Repeating this process, we obtain the existence of a multilinear functional

O fl(u1> X f2(u2) X o+ X fk(uk) — F

satisfying

1 k
('0(@3)7‘”7@22) :@(fl <agl),.”’a%1>7,..7fk <a'(1)77a'$71i;)€>>
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for agi) € V]@. Suppose fo(aq,...,a;) = 0 for some a; € f(U;). Write a; = f; (agi), . a(i)>,

? ' my

we then have
f(agl),...,a%i,...,agk),...,agﬁzi) = 0.
Hence

gp(agl),...,agi,...,agk),...,ang =0,

that is,

® (ay,... ap) =cI><f1 (agﬂ,,,,,agg) it (a&k»...,a&’i,{)) = 0.

Therefore, ® preserves zeros of fy. Since f1(Uy) x -+ x fi.(Uy) is fo-zpd, there exists a
linear functional 7: A — F such that, for all a; € f; (U;),

S (ar,...,ax) =71 (folar,...,ax)).

The proof is complete since, for all a§i) e A,
go(agl),...,agfn=T<f(a§1),...,a§,’2>). m

The following corollary is immediate.

Corollary 4.35. Let f1,..., fr be multilinear polynomials in distinct variables and let f
be a multilinear polynomial in k variables. Let A be an F-algebra satisfying the following

two conditions:

(a) Ais fi-zpd fori=0,1,... k.

(b) fi(A)=A fori=1,... k.
Then the algebra A is f-zpd where f = fo(f1,.. ., fx)-

The applicability of Theorem 4.34 and Corollary 4.35 of course depends on the

validity of the L’vov-Kaplansky conjecture and its variants.
We continue with a lemma needed for another corollary to Theorem 4.34. Recall

that sl,(F") stands for the Lie algebra of traceless matrices in M, (F').

Lemma 4.36. Let fo = [x1,x2] and let Vi, Vs € {sl,(F), M, (F)}. Then the set Vi x Vy is
fo-zpd, provided that char(F') is 0 or does not divide n.

Proof. We know that M,,(F') is zLpd (see Theorem 4.10), which means that M, (F) x M, (F)
is fo-zpd.

Let ¢: sl,(F) x M,(F) — F be a bilinear functional preserving zeros of fj.
Our assumption on char(F') implies that M,,(F') = sl,(F) @ F - 1. Therefore, we extend
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¢ to M,(F)?* by setting ¢(1,a) = 0 for all a € M,(F). Let now a,b € M,(F) be such
that [a,b] = 0. Writing a = [ay, az] + A\l with ay,a € M,(F) and X\ € F, we thus have
[[a1,az2],b] = 0. Since [ay, az] € si,,(F), it follows that

p(a,b) = (a1, as],b) = 0.

As M,(F) is zLpd, there exists a linear functional 7: M,(F) — F such that
o(c,d) = 7([c,d]) for all ¢,d € M,(F), and so in particular for all ¢ € sl,(F) and
d € M, (F). This proves that the set sl,(F) x M, (F) is fo-zpd.

The M, (F) x sl,(F) case can be handled similarly, and so can be the
sl (F) x sl,(F') case. Indeed, one extends a bilinear functional ¢ defined on sl,,(F') x sl,,(F')
to M, (F)? by setting »(1,a) = ¢(a,1) = 0 for all a € M, (F). O

Corollary 4.37. If f is a multilinear Lie monomial, then the algebra M, (F') is f-zpd,
provided that char(F) is 0 or does not divide n.

Proof. First let us show that f(M,(F)) is a vector space. In fact, we claim that
f(M,(F)) = sl,(F), unless the degree m of f is 1, in which case f(M,(F')) is obvi-
ously equal to M,,(F'). We may therefore assume that m > 1 and that our claim is true for
Lie monomials of degree less than m. Write f = [f1, f2], where f; and f; are multilinear
Lie monomials in distinct variables of degree at most m — 1. By [2], every matrix in sl,,(F')
is a commutator of two matrices from M, (F). However, since M,,(F) = sl,(F)® F -1 by
the characteristic assumption, it is actually a commutator of two matrices from si,,(F).

Since, by our assumption, fi(M,(F)) and fo(M,(F)) contain si,(F), it follows that

Let us now prove that M, (F') is f-zpd. There is nothing to prove if m = 1, so
we may assume that m > 1 and that by writing f = [fi, f2] as above we have that M, (F)
is fi~zpd, i = 1,2. Since f;(M,(F)) € {sl,(F), M,(F)}, taking into account Lemma 4.36
we can apply Theorem 4.34 to conclude that M, (F) is f-zpd. O

It is clear that the method of proof can be used for some other polynomials.
For example, using the fact that the algebra M, (F) is zJpd (Theorem 4.12) and that
the polynomial fo = z129 + x9xq obviously satisfies fo(M,(F)) = M, (F) provided that
char(F) # 2, we see that Corollary 4.35 yields the following result (by a Jordan monomial

we mean a monomial in the free special Jordan algebra).

Corollary 4.38. Let char(F)+# 2. If f is a multilinear Jordan monomial, then the algebra
M, (F) is f-zpd.
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4.3 A multilinear Nullstellensatz

In this last section we consider the situation where f and ¢ are multilinear
polynomials of the same degree m such that every zero of f in A™, where A is an algebra,

is also a zero of g, that is, for all aq,...,a,, € A,
flai,...;an) =0 = g(ai,...,a,) =0.

From Lemma 4.19 it is evident that the situation above it is a special case
of the condition from the definition of an f-zpd algebra. It is therefore natural to ask
whether the problem of describing the relation between f and ¢ can be solved in any f-zpd
algebra. In the next proposition, we give a positive answer under the assumption that
f(1,...,1) #0.

Proposition 4.39. Let A be an F-algebra and let f,g € F{xy,xs,...) be multilinear
polynomials of degree m such that every zero of f in A™ is a zero of g. If A is f-zpd and
f(1,...,1) # 0, then there exist an scalar X € F and a polynomial identity h of A such
that g = A\f + h.

Proof. 1t is clear from our assumptions that

(a1, am) — glat, ... an)

is an m-linear map that preserves zeros of f. Lemma 4.19 therefore shows that there exists

a linear map T: A — A satisfying
glar,...,am) =T (f(ar,...,am)).
Thus, for every a € A we have
g(1,...;,Da=g(a,1,...,1)=T(f(a,1,...,1)) = f(1,...,1)T(a).
Setting A = g(1,...,1)f(1,...,1)"" we thus have T'(a) = Aa for all a € A, and hence
glar,...,am) = Af(ag,...,an)

for all ay,...,a, € A. This means that h = g — \f is a polynomial identity of A. ]
Corollary 4.40. Let char(F) # 2, let oy, ..., q,, € F be such that Z a; # 0, and let
i=1
flz1, .o @) = qmy Ty + QTo - T @1 + -+ Q@ Ty - Ty
If an F-algebra A is generated by idempotents and g is a multilinear polynomial of degree

m such that every zero of f in A™ is a zero of g, then there exist an scalar A € F and a
polynomial identity h of A such that g = Af + h.
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Proof. This is immediate from Theorem 4.32 and Proposition 4.39. O

From now on we consider the case where A = M,,(F'). We recall from Proposi-
tion 4.21 that the conclusion of Proposition 4.39 then does not always hold. Our goal is to
show that it does hold provided that m < 2n — 3. In fact, since, as is well known, M, (F')
has no polynomial identities of degree less than 2n, we will actually prove that f and g

are linearly dependent. To this end, we start by introducing the necessary notation.
In what follows, let ay, 8, € F' be such that

f = Z UgTo(1) " " Lo(m),

oESH

9= Z Baxa(l) o Lo(m)-

0ESm

We set
Supp(f) = {o € Sy | a, # 0}

and similarly we define Supp(g). Further, for each o € S,, we write

(xla s 7xm>a = To(1) " To(m)-

Thus, for example,

f= Z Ao (1, T o

o€Sm

We will consider evaluations (aq, ..., an), with a; € M, (F).

The next two definitions are standard in group theory.

Definition 4.41. We define a metric d on S, by letting d(o1, o3) to be the least nonnegative
integer k for which there exists a sequence of transpositions 11, Ta, ..., Tk € Sy, Ssuch that

T "T101 = O09.

The next definition concerns any subset T of S,,, but we will be actually

interested in the case where T' = Supp(f).

Definition 4.42. Let T be a subset of S,,. We define an equivalence relation on T as
follows: o1 ~ o3 if and only if there exists a (possibly empty) sequence of transpositions

T, To, ..., Tk Such that
(a) 7;---moreT,i=1,....,k—1,
(b) T TiOL = 09

The following theorem is the main result of this section.
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Theorem 4.43. Let f,g € F{xy,x9,...) be multilinear polynomials of degree m such that
every zero of f in M,(F)™ is a zero of g. If m < 2n — 3, then there exists an scalar \ € F
such that f = A\g.

m+ 1

Proof. Set mqg = % + 1 if m is even and mg = if m is odd. Note that mg+1 < n

since m + 3 < 2n. Define a sequence e = (ey, ..., e,) by setting
Cmo—1me M €VeN

€1 = €11, €3 =2¢€612, €3=¢€22, ..., En=
€mo,mo m odd

For any o, 7 € S,,, we have

elmg ifo=m"

(Ea(1)s -+ » €a(m))r = Ex(c(1)) """ Ex(o(m)) = o
0 otherwise
Therefore, for every o € S,, we have
a, =0 = f (60—1(1), e ,Gofl(m)) = Q€1 m, = 0

= g (60*1(1)7 B eofl(m)) = 6061,7710 =0

= [, =0.
We have thereby proved that

Supp(g) < Supp(f). (4.13)

Take o € Supp(f) and write A = o' 3,, so that 8, = Aa,. We claim that

Bro = Airo (4.14)

for every transposition 7. Indeed, without loss of generality we may assume that o = (1)

and we write 7 = (pq) with p < g. We consider four cases.

Case 1: p and ¢ are both even. In this case e, and e, are square-zero matrices.

Hence, considering the matrices

a; = ¢, i€ {l,....,mj\{p,q},
ap = €, + €y,
ag = )€y — Oirey,
we have
flar,...,am) = (rap) — a@yor)erm, = 0.

This implies that

0=g(ai,...,an) = (Brap) — Bayar)eim, = (Br — Ao ) 1)€1,mo
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which yields (4.14).

Case 2: p and ¢ are both odd. In this case both e, and e, are idempotents.

We reduce this case to the previous one by considering a shift on the sequence e, that is,

Ermo,mo s m even

él = €12, éQ = €22, é’3 = €23, ceey €m =
€mo,mo+15 TN odd

Now it is enough to perform the evaluation at

a; =é;, 1€ {1,...,m}\{p,q},
a, = €, + €4,
(g = Q1)€p — Q7€

and proceed as at the end of Case 1.

Case 3: p is odd and ¢ is even. In this case e, is an idempotent but e, is not.
The idea now is to consider a shift on the sequence from e, on. This shift will turn the
element in the g-th position into an idempotent. So an additional change will be needed in

this element as well. Precisely we take

€1 =€, ..., €p1=E€p-lpl,q, E€Ep=Cptl ptl, g,
2 0 2 2 02
€p+1 = Cptlyqpilyy, -5 €01 T €4.441, €0 = €441, 449,
~ ~ €mo,mo+15 m even
€q+1 = €%+2,%+27 ceey B =

€mo+1mo+1, M odd .
We consider the evaluation at
a; =&, ie{l,....m\{p,q},
ap = €, + €4,
aq = Q1)€p — €y
and once again we proceed as in the end of Case 1.

Case 4: p is even and ¢ is odd. Here we have that e, as a square-zero matrix
and e, is idempotent. We proceed similarly as in the previous case. The difference, however,
is that no shift is needed at the beginning, just the change in the elements at the g-th

position.

This completes the proof of our claim.

Let [o] denote the equivalence class of o in Supp(f)/ ~. Write Ay for A
Observe that (4.14) implies that
Bor = A[o]0or (4.15)
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for all o’ € [o].

In view of (4.13) and (4.15), we are left to prove that A4 = Ap for all equivalence
classes A, B in Supp(f)/ ~. Assume this is not true and consider a pair of permutations
o1 and o9 such that

d(oy,09) = merixl,%geB d(my,mg) =: L. (4.16)

A,BeSupp(f)/~
AAFAB

Let f, denote the reindexing of f through the permutation 1, i.e.,

fo= Y Qouo()* Tyo(m)-

o€ESH
We claim that we may assume o907 ! is the product of disjoint cycles
opo = (5181 —1--- 1) (sp 8, — 15,1 +1).

Indeed, let us prove that the minimum ¢ in (4.16) is invariant under reindexing of the

variables in both f and g, that is,

(= in d(my, ma). (4.17)
A,BeSupp(fy)/~
AA#AB
We first notice that Supp(fy) = ¢Supp(f). Denoting the equivalent classes in

Supp(fy)/ ~ by [[o]], 0 € Supp(fy), one then can see that for each o € Supp(fy), there
exists o’ € Supp(f) such that

We also notice that for o = 1o’ where o’ € Supp(f), we must have \jj5)] = Aj». In fact,
Mol = @1, By10 = ) Bor = Ao

Hence we conclude that the sets in the equations (4.16) and (4.17) for which we take the

minimum are actually the same, and we therefore conclude the equation (4.17).

Writing 0,07 ! as a product of h disjoint cycles, and recalling that two permu-
tations are conjugated if and only if they have the same cycle type, we therefore have the

existence of ¢ € S,, such that
Yogor M = (sy,80 — 1,0, 1) - (sp, sp— 1, ..., sp1 + 1),
Hence, up to reindexing both f and ¢ by v, we may assume
9ot = (s1,51—1,...,1) - (sp,8n — 1,..., 821 + 1),

proving our claim.
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Since disjoint cycles commute, we may also assume that the first p cycles are

of even length and the remaining h — p are of odd length, where 0 < p < h.

Setting sop = 0 and taking into account for instance [49], we have

h
ﬁzsh—h=Zsi—si,1—1.

i=1

Finally, we also assume that o7 = (1). Only minor adjustments in the proof are
needed if oy is an arbitrary permutation, which, however, makes the reading more difficult.

Thus, from now one we will be dealing with the permutations (1) and
oy =(sys1—1---1)---(spsp—1-5s,_1+1).

We have /\[(1)] #* )\[02].

In order to obtain a contradiction, our goal will be to construct a sequence
E e M,(F)™ such that

Eqy = e1me, FEop = —%elmo, E, =0 for all o € Supp(f)\{(1), 02}

g2
This will imply
(1)
J(E) = apgyerm, — Qs Climy = 0,

02

hence

ja(C)

9(E) = Nana@)eime — Moa] Qs ——€1my = (A[(1)] = A[ow])@(1)€1,mg = 0,

02

ans so A[(1)] = A[s,], contrary to the assumption.

As the first step, we shall construct the sequence E in three particular cases.

We will see at the end that the general case will follow from these three ones.
Case 1: p = h (all cycles are of even length).

By assumption, s; = 2¢;, ¢ = 1,..., h. We introduce the sequence E in blocks

as follows:
E = (Eb BRI Eh: Ethl)a
® El = €11,€12,€22; - - -, €1 1,415 €q1, 1 + €41,q1+15 €q1,q1+1 + e,
* E2 = € +1L,q1+15 Cqr+1,q1425 - - - > €ga—1,g25 €q2,q2 T Cqa,q2+1>
€g2,q2+1 T €qi+1,q1+1;
o Ep=e€g 1+1,g0 1415 €q—1,an> €qnan T Canan+1s

Q1)
Can.an+1 — Cqn_1+1l,gp_1+1>
Agy
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° Eh+1 = Cqp+1,qn+15 Cqp+1,q0+25 - - - Em/ mg -
Here m’ = myg if m is odd and m' = my — 1 otherwise (recall that mg is defined at the
beginning of the proof).

One can easily see that the non-zero products of matrices in £ are only obtained

by joining the non-zero evaluations of each block, in the increasing order of the blocks.

For i =1,2,...,h, define the following sets of permutations:

Ri={(1),(s;i ~+» Si—1+3 8i—1+2),(8 -+ si—1+2 8.1+ 1)}

Then we get

(
€1.mo if o = (1)
—a(l) €1,mg if o = 09

E, = < Yoy

Ho€1 mg ifo=m - mp meR, o¢{(l),02}

L0 otherwise,

where p, € F.

In order to complete the proof of this case we are left to show that actually
the permutations n of the third item of E, giving a non-zero evaluation are not elements

of Supp(f). To this end let us prove the following facts.

e d(n, (1)) <.

This follows from a direct comparison between 7 and o,. Indeed, let n = my - - - 7w,
m; € R;. Since n # o9, we have that at least one of the m;’s is not equal to
(s; -+ 8i—1 +2 8,1+ 1). Hence we have a fewer number of transpositions in the
decomposition of 1 than in that of oy. As a consequence we obtain d(n, (1)) < ¢, as

desired.

o d(n,o9) <.

As before let n = 7y -+ 7w, m € R;. Since n # (1), we have that at least one of
the m;’s is not equal to (1). Now consider oy~ *. If 5 involves a cycle of the form
(S; ... Si-1+2 s;_1+ 1), then the elements from the set {s;,...,s;—1 + 2,81 + 1}
are fixed in oon~!. The outcome of this is that, with respect to the i-th block, we
have fewer transpositions in 0277_1 than in oy and we are done in this case. The other
possibility is that a cycle of the form (s; -+ s;-1 + 3 s;_1 + 2) occurs in 7. In this
case, in the i-th block of oyn™" only the transposition (s;_; + 1 s;) appears. Since

1 <3 <s; —s;-1 — 1, we reach the desired conclusion d(n,02) < £.
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According to the above two facts we can complete the proof of this case. If
Al # A1), we immediately get a contradiction to the minimality of ¢ since we have
proved that d(n, (1)) < £. So assume that \,; = Aja)]. Since by hypothesis Ajg,] # A1),
we obtain that A # A[s,]. Again we get a contradiction to the minimality of £ since we

have proved that d(n, o) < /.
Case 2: h =1 and s; = 2¢ + 1 is odd.
Consider the sequence E = (Fy, E5) given in two blocks as follows:

@)

o Ey =eq1,6e12,€0,... » €q,q+15 €q+1,g+1 — — €11,
gy
° E2 = €q+1,q+25€q+2,qg+35 - - - » Em/;mg -
It is not difficult to see that
€1.my if o= (1)
(1) :
Ea = — €1,mg> if oe {0'2, (81 -3 2)} .
g2
0, otherwise

The proof of this case is complete since it is sufficient to observe that (s; - -+ 3 2) ¢ Supp(f).
Case 3: h =2, p =0 (2 odd cycles).

In this case we have that s; = 2¢; + 1 and sy = 2¢5.

Consider the sequence E = (Ey, E») given in two blocks as follows:

e I =eq,e12,62,... v €q1,q1+15 €qitl,q1+1 T €11, €q41,q1 425
Q1)
€q14+2,q14+21 - -+ 1 €aa—1,g2> €g2,q2 T €g2,q2+15 Cqorga+1 — o €q+1l,q1+15
g2
. By = Car+1,q2+1) Cqa+1,g2+25 - -+ 5 Em/ mo -

Define the following two sets of permutations:

Ry = {(1), (81 ---32),(s1 - 2 1)},
R2 = {(1),(82 81+2 81+1)}.

One can directly see that

-

61,m0, lf g = (1)
—%el,mo, if o0 =0y
E, =< @o
Ho€1me s if o =mmy, meR;, 0¢{(1),02} oro=_(sg- - 5)

L0, otherwise,
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where p, € F.

Let 1 be a permutation of the third item of E, giving a non-zero evaluation. In
order to complete the proof of this case we need to show that n ¢ Supp(f). Assume first
that n = mm, where 7;’s are permutations from R;. In this case we are in the situation
of Case 1 and, proceeding in a similar manner, we arrive at the desired conclusion. Now

suppose that n = (s3 -+ s; + 1 s1). In this case we obtain that
oan P =(s1 838 —18 —2---50+2850+ 1),

which decomposes into s; — sg transpositions. Since ss — s; — 1 = 2 (otherwise we would
have a cycle of length 1 in o9 and we could just ignore it), we get
81—80<81—80+82—81—2=(81—80—1)+(82—81—1)=€.

This shows that d(o2,n7) < (. Analogously we have that d((1),7) < ¢. In fact
(s -+ s1 + 1 s1) decomposes into sy — s; transpositions, which is less than
(s1 —so— 1) + (so — sy — 1). Using the same approach at the end of Case 1, we get

the desired conclusion also in this case.

In order to complete the proof of the theorem we are left to analyze the general
situation. Recall that
oy =(s1859—1---1)-(spsp—1-sp1+1),
where the first p cycles are of even length (s; = 2¢;) and the remaining h — p are of odd
length, p € {0,1,...,h}. Note that h — p > 0, otherwise we are in Case 1.

Now distinguish two situations: A — p odd or h — p even.

Suppose first that h —p = 2k + 1 is odd. In this case we construct the sequence
E = (Gy,...,Gp.GY,...,G}, Gyq) in blocks as follows:

o for the blocks G;, i = 1,...,p, we use the idea of Case 1. More precisely we put

G = €gi—1+1,gi—1+15 €q_1+1,qi—-1+25 €qi_1+2,q;-1+2) - - - » €q;—1,q:>
€qi.q + €qi,q;i+1) €qi,qi+1 + €gi_1+1,q;—1+1>

where we assume that ¢y = 0;

o for the blocks G;, j=1,...,k, we mimic the first block of matrices (called F) given

in Case 3, more precisely
G; = €Qj—1+p+1:qj'—l+p+1’ €Qj—1+p+1:q1—1+p+2’ o ’e‘Ij+p:‘1j+p+1’
€qj4pt1aiip+tl T €q5 11 p+1,g 14p+1s Cajipt1a54p+2)
€qjtp+2:aj4p+21 2 €qjapr1—1,gj4p410

€jips1,0i4pr1 T €qiaps1,Giapr1 D Cqjpit @iopr1+l T €qiupt1,gjep+1s
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« the block G}, is constructed as in Case 2:

/
k+1 = Capsrt1+Lapint1+Dl Cappni1+L,aprni1+2s -+ Caprpyo,qprnratls
(1)
Coptr+atl,gprrtatl — Cop+rk+1+1l,gprri1+1s
Agy
Caprrratldprit2t+2s Caprriat2apinrat2r - - Em/imo-

Now assume that h — p = 2k is even. In this case we do not have the last block

1. All the other ones are constructed as in the previous case, except for the last one

%.» which becomes:

’
Gk = Cop1ptLah—14p+D Cah14p+t L @h—14p+25 5 Clhgp Qrip+ 1o

Cpsp+1l,quiptl + Car—14p+1,ak—14p+1 Carip+1,qu1p+2>

Chtpt2,ahtpt2r 9 Capypr1—Lauipt1
@)
C bt p+1,Th+pr1 + Cahtpr1:Thtp+1+D Chipi1,hgpr1+l — o Chtp+1,qutp+1ls
o2
Cartp+1+L,ak1pr1+1 Cahipr1+1,quspr1+2s - - Em/imo-

In both cases, we get that the sequence F is such that

Eqy = e1me, Fop = —%el,mo, E, =0 for all 0 € Supp(f)\{(1), o2}

g2

In fact, each permutation n ¢ {(1), 02}, giving a non-zero evaluation of the
matrices in the sequence E, does not belong to Supp(f). Indeed, in computing d(n, (1))

and d(n, 03), we always have a sum
L+t

where, for each i, l; < s; —s;1 —1or Ly +1; < (8531 — s — 1) + (s; — ;1 — 1), and for

at least one ¢ we have that the inequality is strict. O
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