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Resumo
Esta tese tem como objetivo apresentar resultados na direção de três problemas distintos.

Mostramos que álgebras graduadas que são soma de duas subálgebras homogêneas satisfa-
zendo identidades graduadas nem sempre são gr-PI álgebras. Além disso, apresentamos
condições suficientes para uma tal soma satisfazer alguma identidade polinomial graduada.

Consideramos imagens de polinômios multilineares graduados sobre a álgebra graduada
de matrizes triangulares superiores e classificamos tais imagens para certas graduações.
Obtemos uma descrição completa no caso de dimensão baixa nos ambientes ordinário e
de Jordan. Também estudamos o caso de matrizes triangulares superiores com involução
graduada e de dimensão baixa, onde classificamos imagens de polinômios multilineares
nestas álgebras bem como mostramos que tais imagens nem sempre são subespaços.

Uma generalização de álgebras zpd é apresentada (as chamadas álgebras f -zpd) e mos-
tramos que nem sempre a álgebra das matrizes é f -zpd. Fornecemos vários exemplos de
polinômios f em que a álgebra das matrizes é f -zpd, e consideramos um problema do tipo
Nullstellensatz que está relacionado com a classe de álgebras introduzida.

Palavras-chave: imagens de polinômios, conjectura de L’vov-Kaplansky, identidades
polinomiais, polinômios centrais, somas de álgebras, matrizes triangulares superiores,
álgebras de Jordan, álgebras de Lie, involuções, álgebras graduadas, involuções graduadas,
álgebras zpd, álgebras f-zpd, Nullstellensatz.



Abstract
The main goal of this thesis is to present results in the direction of three distinct problems.

We show that graded algebras which are sum of two homogeneous subalgebras satisfying
graded identities are not always gr-PI algebras. Moreover, we give sufficient conditions for
the sum to satisfy some graded polynomial identity.

We consider images of multilinear graded polynomials on the graded algebra of upper
triangular matrices and we classify such images for certain gradings. We obtain a full
description in the case of small dimension for the ordinary and Jordan settings. We also
study the case of upper triangular matrices with graded involution and of small dimension,
where we classify the images of multilinear polynomials on these algebras, moreover we
show that such images are not always vector subspaces.

A generalization of zpd algebras is presented (the so called f -zpd algebras) and we prove
that the full matrix algebra is not always f -zpd. We give several examples of polynomials
f where the full matrix algebra is f -zpd, and we also consider a problem of Nullstellensatz
type which is related to the class of algebras introduced.

Keywords: images of polynomials, L’vov-Kaplansky conjecture, polynomial identities,
central polynomials, sums of algebras, upper triangular matrices, Jordan algebras, Lie
algebras, involutions, graded algebras, graded involutions, zpd algebras, f-zpd algebras,
Nullstellensatz.
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Introduction

Images of polynomials on algebras appear in several results from Linear Algebra
and Ring Theory. For instance the well-known Cayley-Hamilton Theorem states that the
image of the characteristic polynomial of a matrix A P MnpF q on A itself is the null matrix.
Another example comes when the image of a polynomial on some algebra is always zero,
or even is always contained in the center of the algebra. These polynomials are known as
polynomial identity and central polynomial for the algebra, respectively.

Since polynomial identities for algebras are a particular example of images of
polynomials on algebras, we may say that the first results concerning the latter appeared
with the works of Dehn [18] and Wagner [65] in the twenties and thirties of the 20th
century. However, a different first result concerning images of polynomials on algebras is
addressed in the literature. In 1937, Shoda [56] showed that the image of the commutator
rx, ys :“ xy´yx on the full matrix algebra MnpF q with entries in a field F of characteristic
zero is exactly the subspace slnpF q of traceless matrices. Shoda’s result was generalized in
the fifties by Albert and Muckenhoupt [2] for matrices over arbitrary fields.

The result obtained by Shoda, Albert and Muckenhoupt can be equivalently
read as follows: the image of the polynomial xy ´ yx on the full matrix algebra is a vector
space. Now a question that appears is whether the image of an arbitrary polynomial on the
full matrix algebra is always a vector space. As one might already expect, this is not the
case in general. For instance, for an integer n ě 2, the image of the polynomial fpxq “ xn

on MnpF q is not a vector space (see [52, Example 4]). It is not clear why the image of the
commutator on MnpF q is a vector space while the image of fpxq “ xn on the same algebra
is not. However, it is worth noticing that the commutator satisfies an additional property
that the latter does not. The commutator is what we call a multilinear polynomial. We
recall here that a polynomial in the free associative algebra is said multilinear if each one
of its variables appears exactly once in every monomial of this polynomial. So, what to
expect if we consider images of multilinear polynomials on the full matrix algebra instead?
This question goes in the direction of the following one posed by L’vov in [30, Problem 1.98].

Question. (L’vov) Is the image of a multilinear polynomial on the full matrix
algebra a vector space?

The difficulty of studying the question above lies in the lack of structure of the
image of a multilinear polynomial on some algebra. On the other hand the linear span
of such images have a nice behaviour. In fact, they are Lie ideals of the algebra. In the
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particular case of the full matrix algebra MnpF q, its Lie ideals are well known (up to
some mild conditions on the ground field F ). They are precisely t0u, F (scalar matrices),
slnpF q and MnpF q itself, according to an old result due to Herstein [36]. Thus, in case
L’vov’s Question has a positive answer, then a full description of the images of multilinear
polynomials on MnpF q will be also obtained. The problem of obtaining a full description
of multilinear polynomials on matrices is attributed to Kaplansky (see [38]). As a resumé
of all these discussion we have the following conjecture.

Conjecture. (L’vov-Kaplansky) The image of a multilinear polynomial on
MnpF q is t0u, F, slnpF q or MnpF q. Equivalently, the image of a multilinear polynomial on
MnpF q is a vector space.

Little is known concerning the above conjecture. The image of a multilinear
polynomial of degree 2 on MnpF q is an easy consequence from the results of Shoda, Albert
and Muckenhoupt. In fact, the image must be t0u, slnpF q or MnpF q. In 2012, Kanel-Belov,
Malev and Rowen [38] showed that the L’vov-Kaplasnky conjecture is true for 2 ˆ 2
matrices with entries in a quadratically closed field. The conjecture remains open besides
these two results. However partial results were obtained in the case of polynomials of
degree 3 [22] and also in the case of 3 ˆ 3 matrices [39].

The L’vov-Kaplansky conjecture has shown to be a truly challenging problem,
and in attempting to approach it several variations of it have appeared. We firstly comment
about a weaker version of the L’vov-Kaplansky conjecture, the so called Mesyan conjecture
[52]. The latter states that the image of a multilinear polynomial of a fixed degree m on
MnpF q always contains slnpF q, provided n is large enough. Mesyan’s conjecture is true for
poylnomials of degree 3 [52] and also for polynomials of degree 4 [16, 26], and it remains
open for polynomials of degree 5 or more. Subalgebras of MnpF q were also considered. In
[23], Fagundes considered the subalgebra of strictly upper triangular matrices J , and proved
that the image of a multilinear polynomial of degree m on Jk is Jkm. A similar problem
was also posed for upper triangular matrices UTnpF q, where partial results were obtained
in [25] by Fagundes and de Mello, and simultaneously fully solved in [31] by Gargate and
de Mello in case the ground field is infinite, and in [48] by Luo and Wang for fields with
at least npn ´ 1q{2 elements. The infinite-dimensional case was settled by Vitas in [63],
where the author proved that non-zero multilinear polynomials are surjective on algebras
with surjective inner derivations. In particular, every non-zero multilinear polynomial
is surjective on the algebra EndpV q of endomorphisms of an infinite-dimensional vector
space V .

The nonassociative cases were also explored. Here we point out the work [51]
where Malev, Yavich and Shayer obtained a full description of the images of multilinear
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Jordan polynomials on the Jordan algebra given by a particular nondegenerate symmetric
bilinear form. Their result covers the cases of images of multilinear Jordan polynomials
on the 2 ˆ 2 self-adjoint matrices over R,C,H (quaternions) and O (octonions). In the
Lie case, we have the paper [40] where Kanel-Belov, Malev and Rowen investigated the
images of arbitrary Lie polynomials (not necessarily multilinear) on the Lie algebra sl2pF q,
while in [64] Špenko showed that non-zero multilinear Lie polynomials of degree up to
four have images equal to slnpF q on the Lie algebra glnpF q (excluded the trivial case of
polynomial of degree 1, of course).

In the same way that gradings on algebras showed to be an important tool for
the theory of algebras with polynomial identities (PI-algebras), one might also hope for
the same in the case of images of polynomials on algebras. This motivates the study of
such images on algebras with additional structure, such as group gradings or involutions,
for instance. Besides a first result concerning images of graded polynomials on algebras
that was given in 2000 by Kulyamin [47], just recently this topic has been more explored.
We draw the readers’ attention to the recent paper [17] from 2023 where Centrone and
de Mello considered images of multilinear graded polynomials on the full matrix algebra
MnpF q endowed with the natural Zn-grading (Vasilovsky’s grading). The authors classified
the linear span of the image of a multilinear graded polynomial on MnpF q with the
aforementioned grading, and conjectured that the same subspaces obtained are actually
the possible images that a multilinear graded polynomial can take on this algebra. They
also proved that their conjecture is true in the small (but not trivial) cases of polynomials
of degree 2 and also for 2 ˆ 2 matrices. Also in 2023, Gargate and de Mello [32] gave
an equivalent form of the L’vov-Kaplansky conjecture in terms of images of multilinear
(nongraded) polynomials on the algebra MnpF q endowed with the Vasilovsky’s grading. In
particular, their result shows us the importance of studying images of graded polynomials
on graded algebras. The involutive case was explored by Franca and Urure in the papers
[60] and [61]. They considered the upper triangular matrix algebra UTnpF q with the
reflexive involution, and classified the images of multi-homogeneous Lie polynomials on
the skew-symmetric part of UTnpF q for n ď 4, and of multilinear Jordan polynomials of
degree up to 3 on the symmetric part of UTnpF q.

We now turn out attention to the particular case where the image of a poly-
nomial on some algebra A is t0u. As we already mentioned such polynomials are called
polynomial identities for the algebra A. The study of PI theory is commonly divided in
three parts that we stress in the following. The first part concerns the description of all
polynomial identities of a given algebra, the second one is about studying the variety of
algebras defined by a given set of identities, while the last one is concerned in deciding if a
given algebra satisfies some polynomial identity or not. Recently most of the work done in
PI theory is in the direction of the two first parts. Concerning the third part, it is well
known that finite-dimensional algebras are PI. Moreover, we are also able to construct
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new PI algebras from old ones. Indeed, homomorphic images of PI algebras are also PI,
direct product of PI algebras satisfying a common identity is again PI, and subalgebras of
PI algebras are PI algebras. This is actually part of the contents of Birkhoff’s theorem
which states that any variety can be described as a class of algebras closed under taking
subalgebras, homomorphic images and direct products (for instance, see [21]). Besides
those results, it is not an easy task to construct PI algebras, or find sufficient conditions
on algebras so that these become PI algebras. A celebrated result in this direction is the
one given by Regev [53] where he uses combinatorial tools to establish that the tensor
product of PI algebras is also PI.

As we have commented, direct product of PI algebras satisfying a common
identity is again a PI algebra. This direct product coincides with the external direct sum
of PI algebras in case we have finitly many algebras. However, as one might expect, a quite
different situation is settled when we consider internal (direct) sums, that is, algebras
A “ B ` C such that both B and C are PI subalgebras of A. Then the natural question
that arises is whether A satisfies some polynomial identity or not. This question was
posed by Beidar and Mikhalev [9] in 1995. In this same paper the authors proved that
sums of rings satisfying product of commutators as identities is also a PI ring. Their
proof is far from being trivial, using structure results from the theory of associative rings
and also the so called Amitsur’s method (see the book [55]), which is another result in
the direction of existence of PI algebras. Besides the partial result given by Beidar and
Mikhalev on their own question, we can not consider this as a first result in the direction
of the aforementioned problem. In fact, in 1963 Kegel [44] showed that the sum of two
nilpotent rings is still nilpotent. Actually, Beidar and Mikhalev’s question is a particular
case of a problem posed by Szép [58, 59] in the late fifties concerning which properties one
may obtain on a ring A “ B ` C provided one has some information about the subrings B
and C.

In 1996, Kȩpczyk and Puczylowski initiated a sequence of papers concerning
the study of radicals of rings which are sums of two subrings using ideas that go back to
[3]. However some of their results were also related to Beidar and Mikhalev’s question. We
mention here the paper [43] where Kȩpczyk and Puczylowski obtained important results
concerning the problem of sums of PI rings. For instance, an important theorem obtained
by the authors in [43] was that a class of rings which is closed under homomorphic images,
direct powers and such that every prime ring in the class is GPI (satisfies some generalized
polynomial identity) is actually a class of PI rings. This result is of fundamental importance
in the positive solution of Beidar and Mikhalev’s question given by Kȩpczyk [41] in 2016.
Besides Kȩpczyk’s theorem being interesting by itself, it is worth noticing that it also has
connections with major problems in Ring Theory. For instance, we mention here the paper
[42] where Kȩpczyk used his positive answer to Beidar and Mikhalev’s problem to obtain
a new equivalent condition to Koethe’s conjecture (which states, in one among several of
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its equivalent forms, that the sum of left nil ideals is still nil in any ring).

The third and last topic of this thesis, but not less important, is concerning
a class of algebras called zero product determined algebras (which we briefly call zpd
algebras). These algebras first appeared in the works of Brešar and Šemrl [15] and of
Alaminos, Brešar, Extremera and Villena [1]. In the first paper the authors described
commutativity preserving linear maps on finite-dimensional central simple algebras, while
in the second one it was studied derivations and some related maps on C˚-algebras. By
the way how these algebras appeared one might expect their usefulness for applications. In
fact, several results on linear preserving maps and characterization of derivations on some
algebras have being obtained by using zpd algebras (see Chapter 3 of [13] for instance).

We recall that an algebra A is said zero product determined if for every bilinear
functional φ on A such that φpx, yq “ 0 whenever xy “ 0, then φpx, yq “ τpxyq for all
x, y P A, where τ is a linear functional on A which depends on φ. Algebras generated
by idempotents are one of the examples of such algebras. In particular, the full matrix
algebra is zpd. On the other hand unital domains are not zpd algebras, except the case
where the domain is one-dimensional. A surprising result in the theory of zpd algebras
is the main theorem from [14] where Brešar showed that in the finite-dimensional unital
associative setting, zpd algebras are precisely those generated by idempotents. However, it
is still open the problem of existence of an infinite-dimensional unital zpd algebra which is
not generated by idempotents. We recommend the book [13] for further details concerning
this class of algebras.

In this thesis, we present results on the three topics previously discussed:
description of images of polynomials on algebras, algebras with polynomial identities and
zpd algebras. Let us briefly discuss these results and how they are organized in the present
text.

In the first chapter of this thesis we set the main definitions and results that
will be used in the whole text. The reader familiar with the basic notions of images of
polynomials on graded algebras might skip the first chapter, perhaps using it just for
consulting notations.

The second chapter is devoted to studying graded algebras which are sums
of two homogeneous subalgebras. In Section 2.1 we show that an analogue of Kȩpczyk’s
theorem can not be expected in the group-graded setting. In the rest of the chapter we
give sufficient conditions on a graded algebra A “ B ` C such that A satisfies some graded
polynomial identity. Hence in Section 2.2 we show that if B and C are gr-PI (satisfy some
graded identities) and B is also a two-sided ideal, then A is also gr-PI. In the last section of
this chapter (Section 2.3), we introduce the notion of graded semi-identities for A “ B ` C
and we give sufficient conditions on such graded semi-identities in order to obtain graded
identities for A. The results from Chapter 2 are original and were published in [28].
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In the third chapter we discuss images of multilinear polynomials on upper
triangular matrices with several additional structures. The Section 3.1 is only devoted to
present a quick review on gradings on UTnpF q (the upper triangular matrix algebra with
entries in a field F ). Section 3.2 shows the non existence of graded central polynomials for
UTnpF q with an arbitrary grading. In Section 3.3, we prove that the image of a multilinear
graded polynomial in neutral variables on the neutral component of UTnpF q is always a
homogeneous vector space, regardless the grading. In Section 3.4 we study the images
of multilinear graded polynomials on UTnpF q with certain gradings given by the group
Zq. Under some mild conditions on the ground field F we obtain a precise description
of such images, in particular they are always homogeneous vector spaces. In Section 3.5
we apply some ideas from the previous section to obtain a sufficient condition for the
image of an ordinary multilinear polynomial on the full matrix algebra to contain the
subspace of traceless matrices. Such condition relies on graded polynomials obtained from
the ordinary one. Section 3.6 is concerned with the study of images of multilinear graded
polynomials on upper triangular matrix algebras of small dimension. In Subsection 3.6.1
we show that such images on UT2pF q and UT3pF q are always homogeneous subspaces. An
analogous result is proved in Subsection 3.6.2 where we considered the graded Jordan
algebra UJ2pF q of 2 ˆ 2 upper triangular matrices. In Subsection 3.6.3 we have obtained
a classification of multilinear graded Jordan polynomials on the Jordan algebra UJ3pF q

endowed with the elementary natural Z3-grading. The last subsection (Section 3.6.4) deals
with the graded involutive case on UT2pF q and UT3pF q. During this subsection we prove
that the images of multilinear graded polynomials with involution on UT2pF q are always
a homogeneous subspace, and the same result was obtained for UT3pF q provided the
grading on this algebra is not trivial. Besides those results, we show that an analogue of
L’vov-Kaplansky conjecture can not be expected in the graded involutive case. We prove
that there exists a multilinear (graded) polynomial with involution so that its image on
UTnpF q, n ě 3, (UTnpF q, n ě 4) is not a vector space. The results from this chapter are
new. The ones from Subsection 3.2 to Subsection 3.6.3 are published in [27], while the
results from Subsection 3.6.4 are submitted for publication [24].

In the last chapter we present a generalization of zpd algebras, that we call
f -zpd algebras (f an associative multilinear polynomial). We introduce this concept in
Section 4.1. In Section 4.2 we are mostly interested in investigating whether the full matrix
algebra MnpF q is f -zpd. While in Subsection 4.2.1 we prove that this is not always the
case, in Subsections 4.2.2, 4.2.3 we present some multilinear polynomials f so that MnpF q

is f -zpd. In Subsection 4.2.4 we show how one can construct an f -zpd algebra from given
ones using composition of polynomials. The last section (Section 4.3) is devoted to present
a related problem to f -zpd algebras. The problem goes in the direction of a multilinear
version of an old result due to Amitsur [4]. We show that if a multilinear polynomial g of
degree m preserves the zeros of a multilinear polynomial f of degree m on the full matrix
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algebra MnpF q, then g and f are linearly dependent, provided m ă 2n ´ 3. The results
from this last chapter are new and are submitted for publication [8].
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1 Preliminaries

The main goal of this chapter is to establish the main definitions, notations
and basic results from the theory of algebras used during all this thesis. The reader already
familiar with the notions presented in this chapter may skip it without further problems
in following the thesis.

1.1 Graded algebras
A nonassociative algebra will mean a not necessarily associative algebra. The

word “algebra” in this thesis will stand for an associative algebra.

Definition 1.1. Let V be a vector space over a field F and let G be a group. We define a
G-grading on V as a decomposition

Γ: V “
à

gPG

Vg

into a direct sum of subspaces Vg. In case A is a nonassociative algebra over F , a G-grading
on A is defined as a G-grading on the vector space A over F satisfying the additional
condition

AgAh Ă Agh,

for all g, h P G.

Definition 1.2. The subspaces Vg are called homogeneous components of the grading Γ
on V. A non-zero element v P Vg is said to have homogeneous degree g, and we denote it
by degpvq “ g.

Definition 1.3. A subspace U of a G-graded space V is called homogeneous if

U “
à

gPG

pU X Vgq.

Definition 1.4. We define the support of a G-grading Γ on the vector space V as the
subset

supppΓq “ tg P G|Vg ‰ 0u.

Definition 1.5. Given a G-graded algebra A and a homogeneous ideal I of A, we define
a G-grading on the quotient A{I by setting pA{Iqg “ ta ` I|a P Agu.

We will use the multiplicative notation for the neutral element 1 of a group.
Obviously the homogeneous component A1 is a subalgebra of A, and it is also called the
neutral component of the graded algebra A. The following result is folklore.
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Proposition 1.6. Let A be a G-graded unital nonassociative algebra. Then its unit 1 P A
lies in the neutral component.

Definition 1.7. Let A and B be two G-graded nonassociative algebras. A homomorphism
φ : A Ñ B is called a graded homomorphism if φpAgq Ă Bg for all g P G. In case φ is an
isomorphism one can see that we actually have φpAgq “ φpBgq, and in this case we say
that A and B are graded isomorphic algebras.

Besides the associative algebras, other two classes of algebras which will be
also explored on this thesis are the Jordan and Lie algebras. For that reason, let us recall
their definitions and a few examples.

Definition 1.8. Let J be a nonassociative commutative algebra. We say that J is a
Jordan algebra if pa2bqa “ a2

pbaq for all a, b P J .

We can always obtain a Jordan structure from an associative algebra. Indeed,
given an algebra A over a field of characteristic different from 2, one just need to consider
the product a ˝ b “ pab` baq{2 for all a, b P A. The Jordan algebra obtained in this way is
denoted by Ap`q.

Remark 1.9. Given a, b, c P J (a Jordan algebra), we denote pa, b, cq “ pabqc´ apbcq (the
associator of the elements a, b, c in this order).

Definition 1.10. Let L be a nonassociative algebra. We say that L is a Lie algebra if a2
“ 0

(which implies anti-commutativity in case L is an algebra over a field of characteristic
different from 2) and pabqc ` pcaqb ` pbcqa “ 0 (Jacobi identity) for all a, b, c P L.

As in the Jordan case, one can also obtain Lie structures from associative
ones. Let A be an algebra and consider the product ra, bs “ ab ´ ba for all a, b P A. This
defines a Lie algebra which will be denoted by Ap´q. Every Lie algebra can be realized as a
subalgebra of some Ap´q, where A is an associative algebra; this is the content of the well
known Poincaré-Birkhoff-Witt theorem. The analogous statement for Jordan algebras fails,
there exist Jordan algebras that are not isomorphic to subalgebras of any Ap`q given from
an associative algebra A. Such Jordan algebras are called exceptional; on the contrary J
is special. We recall here that the notion of a Jordan algebra can be extended to the case
of base field of characteristic 2, these are the so-called quadratic Jordan algebras. Since we
shall not need this notion we will not discuss it further.

Remark 1.11. In both Jordan and Lie cases, we use the left-normed orientation for
product of three or more elements if there are no parentheses (or brackets) in the product.

An example of group graded algebra that will be exhaustively used in this
thesis is the free G-graded algebra (in different classes of algebras). For that reason let us
introduce this algebra in the following examples.
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Example 1.12. Let G be a group and let XG “ tx
pgq

i |g P G, i “ 1, 2, . . . u be a set of non-
commutative and nonassociative variables. Let F tXGu be the free G-graded nonassociative
algebra. This means it is the vector space with basis consisting of all monomials (with all
possible valid dispositions of parentheses) on XG. The degree of a monomial is the product
(in G) of the degrees of its variables. The free associative G-graded algebra is defined as
F xXGy “ F tXGu{K where K is the T -ideal generated by px

pgiq
i x

pgjq

j qx
pgkq

k ´ x
pgiq
i px

pgjq

j x
pgkq

k q.
Notice that F xXGy is G-graded since K is a homogeneous ideal of F tXGu. The elements
from F xXGy are called G-graded polynomials.

Example 1.13. Let G be a group and let XG “ tx
pgq

i |g P G, i “ 1, 2, . . . u be a set of non-
commutative and nonassociative variables. Let F tXGu be the free G-graded nonassociative
algebra.

• We denote by I the intersection of all homogeneous ideals of F tXGu containing the
set tf 2

1 , pf1f2qf3 ` pf2f3qf1 ` pf3f1qf2|f1, f2, f3 P F tXGuu;

• We denote by J the intersection of all homogeneous ideals of F tXGu containing the
set tf1f2 ´ f2f1, pf1f1qpf2f1q ´ ppf1f1qf2qf1|f1, f2 P F tXGuu.

Hence we have that

• LpXGq “ F tXGu{I is the free G-graded Lie algebra (and its elements are called
G-graded Lie polynomials);

• J pXGq “ F tXGu{J is the free G-graded Jordan algebra (and its elements are called
G-graded Jordan polynomials).

Remark 1.14. Notice that we recover the ordinary setting in all definitions above by
considering the trivial G-grading on A, which is the one given by the trivial group G “ teu.

Definition 1.15. A polynomial f “ fpx
pg1q

1 , . . . , xpgmq
m q P F xXGy (resp. LpXGq / J pXGq)

is multilinear if each variable xpgiq
i appears in every monomial of f exactly once.

Remark 1.16. In particular one can notice that multilinear polynomials have the following
form in the associative setting

f “
ÿ

σPSm

ασx
pgσp1qq

σp1q
¨ ¨ ¨ x

pgσpmqq

σpmq
, ασ P F,

where Sm denotes the symmetric group of degree m.

Remark 1.17. Given an m-tuple pg1, . . . , gmq P Gm, the vector space of multilinear
G-graded polynomials in m variables xpg1q

1 , . . . , xpgmq
m will be denoted by P pg1,...,gmq. More

generally, given a decomposition m “ m1 ` ¨ ¨ ¨ `mk where mi P N, the space of multilinear
polynomials in mi homogeneous variables of degree gi is denoted by Pm1,...,mk .



Chapter 1. Preliminaries 21

1.2 Images of graded polynomials on graded algebras
We start this subsection with the definition of image of a graded polynomial

on some graded algebra.

Definition 1.18. Let fpx
pg1q

1 , . . . , xpgmq
m q P F xXGy (resp. LpXGq/J pXGq) and let A be a

G-graded algebra (resp. Lie/Jordan algebra). We define the image of f on A (denoted by
fpAq) as the image of the function

f̃ : Ag1 ˆ ¨ ¨ ¨ ˆ Agm Ñ A
pa1, . . . , amq ÞÑ fpa1, . . . , amq.

Equivalently
fpAq “ tfpa1, . . . , amq|ai P Agiu.

We observe that f̃ is a multilinear function whenever f is a multilinear polyno-
mial.

In the next proposition we present some basic properties of images of graded
polynomials on algebras. The proposition is written in the associative setting, however the
same properties hold in the Lie and Jordan cases.

Proposition 1.19 ([27]). Let f P F xXGy and let Γ be a G-grading on the algebra A.

1. fpAq is invariant under graded endomorphisms of F xXGy;

2. If 1 P A and f P F xXGy is multilinear in neutral variables and the sum of its
coefficients is non-zero, then fpAq “ A1, the neutral component in the grading on A;

3. Assume that there exists an one-dimensional subspace V of A such that fpAq Ă V and
assume that λfpAq Ă fpAq for every λ P F . Then either fpAq “ t0u or fpAq “ V;

4. If supppΓq is abelian and f P F xXGy is multilinear, then fpAq is entirely contained
in some homogeneous component.

Proof. The proof of items 1, 3 and 4 are immediate. For the second item, we just need to
recall that 1 P A1 (Proposition 1.6), and that

fpa, 1, . . . , 1q “ fp1, . . . , 1qa for all a P A1,

where fp1, . . . , 1q is non-zero by hypothesis.

The following lemma is a useful tool when one is dealing with images of
polynomials on associative algebras of small dimension.
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Lemma 1.20 ([50]). Let F be a field, and let V1, . . . ,Vm,V be vector spaces over F . Assume

that the image of a multilinear map f :
m

ź

i“1
Vi Ñ V contains two linearly independent

vectors. Then the image of f contains a 2-dimensional vector subspace.

As a direct corollary, we have the following

Corollary 1.21. Assume that the image of a multilinear polynomial f on some algebra A
is contained in some 2-dimensional vector space. Then fpAq is a vector subspace.

Proof. Let fpAq Ă V, where dimpVq “ 2. If fpAq contains two linearly independent
vectors, by the previous lemma fpAq “ V. Now assume that any two vectors in fpAq

are linearly dependent. Then fpAq Ă U , where U is an 1-dimensional subspace. Hence,
fpAq “ t0u or fpAq “ U by Proposition 1.19 (3).

Another important property concerning images of graded polynomials on
algebras is that the homogeneous subspace structure of the image is invariant under graded
homomorphic images.

Proposition 1.22 ([27]). Let G be a group and let A and B be two G-graded algebras
such that B is a graded homomorphic image of A. Let f P F xXGy be a graded polynomial
and assume that fpAq is a homogeneous subspace of A. Then fpBq is also a homogeneous
subspace of B.

Proof. Let ϕ : A Ñ B be a graded epimorphism. We start by noticing that

ϕpfpAqq “ fpϕpAqq.

Then taking bp1q

i , bp2q

i P Bgi , i “ 1, . . . , m, we have bpjq

i “ ϕpa
pjq

i q for some apjq

i P Agi , since
ϕ is surjective. This leads us to

αfpb
p1q

1 , . . . , bp1q
m q ` fpb

p2q

1 , . . . , bp2q
m q

“ αfpϕpa
p1q

1 q, . . . , ϕpap1q
m qq ` fpϕpa

p2q

1 q, . . . , ϕpap2q
m qq

“ ϕpαfpa
p1q

1 , . . . , ap1q
m q ` fpa

p2q

1 , . . . , ap2q
m qq

which is an element from ϕpfpAqq “ fpϕpAqq since we are assuming that fpAq is a
subspace. Then fpBq is also a subspace.

Now we assume that fpAq is a homogeneous subspace and let b “ bh1 `¨ ¨ ¨`bhk
be an element in fpBq written as the sum of its homogeneous components. Since b P fpBq

let
b “ fpb1, . . . , bmq “ fpϕpa1q, . . . , ϕpamqq “ ϕpfpa1, . . . , amqq
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for some bi “ ϕpaiq, and let

fpa1, . . . , amq “ ag1 ` ¨ ¨ ¨ ` agl

be the sum of its homogeneous components. It follows that

b “ ϕpag1q ` ¨ ¨ ¨ ` ϕpaglq

and since ϕ is a graded homomorphism we must have k “ l and every gt must be equal to
some hs. Without loss of generality, we assume bgt “ ϕpagtq. Now it is enough to use that
fpAq is homogeneous and ϕpfpAqq “ fpϕpAqq.

Remark 1.23. In the proof of Proposition 1.22 we have not used the associativity of A.
Therefore it also holds for arbitrary algebras, in particular an analogous proposition holds
for graded Jordan algebras.

An important problem concerning images of polynomials on algebras is the
well-known L’vov-Kaplansky conjecture.

Conjecture 1.24 ([30]). The image of f P Pm on the full matrix algebra MnpF q is a
vector space.

Equivalently, the image of a multilinear polynomial on MnpF q is one of the four
subspaces: t0u, F (viewed as the space of scalar matrices), slnpF q (the space of traceless
matrices) or MnpF q.

An important example of image of a graded polynomial on some graded algebra
A is the one whose image is identically zero. Such polynomial is called a graded polynomial
identity for the algebra A.

Definition 1.25. Let f P F xXGy (resp. LpXGq/J pXGq) and let A be a G-graded algebra
(resp. Lie/Jordan algebra). We say that f “ 0 is a graded polynomial identity for A if
fpAq “ 0. Equivalently, f “ 0 is a graded polynomial identity for A if

f P
č

kerpφq,

where the intersection runs over all graded homomorphisms φ : F xXGy Ñ A (resp. φ with
domain in LpXGq/ J pXGq).

We say that a nonassociative algebra A is gr-PI if A satisfies some non-zero
graded polynomial identity.

We denote by IdGpAq the two-sided ideal of all graded identities for A. It turns
out that IdGpAq is actually a TG-ideal, that is, an ideal which is invariant under graded
endomorphisms of the free G-graded associative (resp. Lie/Jordan) algebra.

Given a subset S Ă F xXGy (resp. LpXGq{J pXGq), we denote by xSy
TG the

TG-ideal generated by S, that is, the intersection of all TG-ideals that contain S.
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Definition 1.26. Let f P F xXGy be a polynomial with zero constant term and let A be a
G-graded algebra. We say that f is a graded central polynomial for A if f “ 0 is not a
graded identity for A and fpAq Ă ZpAq, where ZpAq denotes the center of A.
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2 Sums of gr-PI algebras

In this chapter we will deal with the problem of when a graded algebra A “ B`C,
graded by a group G, which is a sum of two homogeneous subalgebras B and C both
satisfying graded polynomial identities, also does satisfy some graded polynomial identity.
Whereas the problem has a negative answer in general (as we will see in the first section),
in the second and third sections we present sufficient conditions on the algebra A “ B ` C
in order to turn it into a gr-PI algebra. During this chapter, all algebras are over an
arbitrary field F . The results from this chapter are new and were published in the journal
Linear Algebra and its Applications [28]. This is a joint work with Plamen Koshlukov.

Before going into the main topic of this chapter, let us recall that when the
algebra A is endowed with the trivial grading then sums of PI algebras is again PI. This
result is due to M. Kȩpczyk.

Theorem 2.1 ([41]). Let A “ B ` C be an algebra that is a sum of two PI subalgebras.
Then A is also a PI algebra.

In an attempt to approach a graded version of Theorem 2.1, one may try to
reduce the problem from the graded setting to the ordinary one. This can be done by
looking for sufficient conditions on the graded identities on B and C which imply the
existence of ordinary identities on these subalgebras. As an example of such sufficient
condition we recall the following result from [7, 11].

Theorem 2.2. Let G be a finite group and let A be a G-graded algebra. If the neutral
component A1 is a PI-algebra, then A is a PI-algebra.

As a direct consequence we have the following corollary.

Corollary 2.3. Let G be a finite group and let A “ B ` C be an algebra that is the sum
of two homogeneous subalgebras. If B and C satisfy graded polynomial identities in neutral
variables, then A is a PI algebra.

We give below a slight improvement of the corollary above. This improvement
is concerning gradings on algebras by monoids, whose definition remains the same as in
the group graded case. Let us start with the following lemma.

Lemma 2.4. Let M be a monoid and let V be an M -graded vector space. Let V “ V1 ` V2

be a sum of two homogeneous subspaces. Then Vm “ V1,m ` V2,m for each m P M , where
Vi,m is the homogeneous component of degree m of Vi, i “ 1, 2.
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Proof. Let m P M . Since V1,m “ Vm X V1 and V2,m “ Vm X V2 it follows that
V1,m ` V2,m Ă Vm. Reciprocally let v P Vm. Hence v “ v1 ` v2 for some v1 P V1 and
v2 P V2. Writing

v1 “ v1,m1 ` ¨ ¨ ¨ ` v1,m ` ¨ ¨ ¨ ` v1,mn and v2 “ v2,m1 ` ¨ ¨ ¨ ` v2,m ` ¨ ¨ ¨ ` v2,mn

such that v1,mi P V1,mi , v1,m P V1,m, v2,mi P V2,mi , v2,m P V2,m. We can assume without loss
of generality that m1, . . . ,m, . . . ,mn are pairwise distinct. Therefore

0 “ v ´ v1 ´ v2 “ pv ´ v1,m ´ v2,mq ´ pv1,m1 ` v2,m1q ´ ¨ ¨ ¨ ´ pv1,mn ` v2,mnq.

This implies v “ v1,m ` v2,m and hence we have Vm “ V1,m ` V2,m.

Let A be an algebra graded by a monoid M . Assume that A “ B ` C is a sum
of two homogeneous subalgebras. Then Lemma 4.38 gives us that A1 “ B1 ` C1. Since B1

and C1 are subalgebras of A1, Theorems 2.1 and 2.2 lead us to the following result.

Theorem 2.5. Let A “ B ` C be an algebra graded by a monoid M such that B and C are
two homogeneous subalgebras. If B and C satisfy polynomial identities in neutral variables,
then the same holds for the algebra A.

2.1 Sums of gr-PI subalgebras do not always satisfy graded identities
The main goal of this section is to show that there exist a group G and a

G-graded algebra A “ B ` C sum of two homogeneous subalgebras such that both B and
C are gr-PI algebras but A is not.

For simplicity let us denote by F the free associative algebra F xXy.

Consider the F -algebra A “ M2pFq and a Z2-grading on it given by
A “ A0 ‘ A1 where

A0 “

˜

F 0
0 F

¸

and A1 “

˜

0 F
F 0

¸

.

We define now two subalgebras B and C of A by setting

B “

˜

F F
0 F

¸

and C “

˜

F 0
F F

¸

.

Lemma 2.6. The subalgebras B and C of A are homogeneous in the grading, A “ B ` C,
and both B and C satisfy the graded identity xp1q

1 x
p1q

2 “ 0.

Proof. All statements are immediate.

Now it is enough to prove that A satisfies no Z2-graded identities.
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Proposition 2.7. The Z2-graded algebra A satisfies no graded identities.

Proof. Suppose, on the contrary, that A does satisfy a non-zero graded identity f . Without
loss of generality we can assume f multilinear

f “ fpx
p0q

1 , . . . , xp0q
m , x

p1q

1 , . . . , x
p1q

k q.

We shall use an argument with generic matrices. We take the elements

ai “

˜

ui 0
0 vi

¸

and bi “

˜

0 wi

ti 0

¸

, i ě 1

in A where ui, vi, wi, ti are distinct variables in the set X. These generic elements multiply
as follows:

aiaj “

˜

uiuj 0
0 vivj

¸

, aibj “

˜

0 uiwj

vitj 0

¸

,

bibj “

˜

witj 0
0 tiwj

¸

, bjai “

˜

0 wjvi

tjui 0

¸

.

Take a monomial m “ m1x
p1q

j1 m2x
p1q

j2 ¨ ¨ ¨ x
p1q

jk
mk`1 where pj1, . . . , jkq is a permutation of

p1, . . . , kq, and the mi are monomials that do not contain variables of homogeneous degree
1 (some of the mi may be empty). Suppose that m participates in f with non-zero
coefficient. As f is a graded identity for A then fpa1, . . . , am, b1, . . . , bkq “ 0 in A.

Let us evaluate m on a1, . . . , am, and b1, . . . , bk. Depending on the parity of k
we get a matrix in either A0 or A1. Assume k even. Then at position p1, 1q of the resulting
matrix we will have an entry of the type

α1wj1β2tj2α3wj3β4tj4 ¨ ¨ ¨

where α1 is the product of the entries ui at position p1, 1q of the matrices ai that appear
in the substitution for m1, in their respective order. Similarly β2 is the product of the
entries vi that come from the matrices in the second block, m2, and so on, alternating the
p1, 1q and p2, 2q entries of these blocks consecutively.

Since we obtain a monomial in the free associative algebra F xXy, it must cancel
out with the monomial coming from some other term of f . But our monomial comes from
only one term of f , namely from m. Thus the resulting monomial in F xXy cannot cancel
out, and this proves that the coefficient of m must be 0. Hence if k is even we are done.
When k is odd the argument is analogous, and we omit it.

Remark 2.8. One could expect a positive answer by requiring A “ B ‘ C instead of
A “ B ` C. However, even in the direct sum case we have the following example: we
consider the Z2-graded algebra A “ A0 ‘ A1 as in the previous example, and we take

B “

˜

F F
0 0

¸

and C “

˜

0 0
F F

¸

.



Chapter 2. Sums of gr-PI algebras 28

Clearly A “ B ‘ C, and both B and C are homogeneous subalgebras satisfying xp1q

1 x
p1q

2 “ 0.

Remark 2.9. The same two examples given above transfer to the graded Lie case. Indeed,
let A “ A0 ‘A1 as before, and consider the Lie algebra Ap´q. Concerning the first example,
we write Ap´q

“ Bp´q
`Cp´q, and one can easily see that Bp´q and Cp´q are homogeneous Lie

subalgebras of Ap´q, both satisfying rx
p1q

1 , x
p1q

2 s “ 0. It remains to prove that Ap´q does not
satisfy Z2-graded Lie identities. Assume the contrary, and consider the embedding of the
free Z2-graded Lie algebra into F xXZ2y

p´q. Hence, we would have a Z2-graded (associative)
identity for A, which can not occur in light of Proposition 2.7. The example from Remark
2.8 is treated analogously.

2.2 The sum of a gr-PI ideal and a gr-PI subalgebra
In this section we study graded algebras which are a sum of a homogeneous

ideal and a homogeneous subalgebra, both of them satisfying graded polynomial identities.
Our goal in this section is to show that the sum itself is also gr-PI.

Throughout this section G will denote a finite group.

We recall that the operations on some direct power
ź

A of A are given by
the operations on A component-wise. We can extend the G-grading of A to the algebra
ź

A as follows:
ź

A “
à

gPG

Ag such that Ag “
ź

Ag

where Ag is the homogeneous component of degree g of A.

Let us start with the following easy lemma.

Lemma 2.10. If A is a gr-PI algebra, then
ź

A is also a gr-PI algebra.

Proof. It is enough to notice that if A satisfies f “ 0, then
ź

A also does.

Lemma 2.11. Let A be a G-graded algebra which is not gr-PI. Then some direct power
of A contains a homogeneous subalgebra that is graded isomorphic to some free G-graded
associative algebra.

Proof. Take H “ F xXGyzt0u. By hypothesis, for each h P H we have h R IdGpAq. Hence
there exists some graded homomorphism ϕh : F xXGy Ñ A such that ϕhphq ‰ 0. We
define ψ : F xXGy Ñ

ź

hPH
A by ψpfq “ pϕhpfqqh. It is easy to check that ψ is a graded

homomorphism. Moreover, if h P H then ϕhphq ‰ 0 and then ψphq ‰ 0. We conclude that
ψ is a graded embedding of F xXGy into

ź

hPH
A.
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Lemma 2.12. Let F xXGy be the free graded associative algebra and let L be a homogeneous
left ideal of F xXGy. Then L does not satisfy any graded polynomial identity.

Proof. Assume that L satisfies some graded polynomial identity fpx
pg1q

1 , . . . , xpgnq
n q. Without

loss of generality we can assume that f is multilinear of degree n. Let w P Lzt0u be a
homogeneous element, and let us say degpwq “ g. For i “ 1, . . . , n, we consider the variables
x

phiq
i where hi “ gig

´1. Hence degpx
phiq
i wq “ gi and then fpx

ph1q

1 w, . . . , xphnq
n wq “ 0.

On the other hand, we write f and w as follows:

f “ m1 ` ¨ ¨ ¨ ` mk and w “ w1 ` ¨ ¨ ¨ ` wl

as sums of their distinct non-zero monomials, respectively. Then

fpx
ph1q

1 w, . . . , xphnq
n wq “

k
ÿ

i“1

l
ÿ

j1,...,jn“1
mipx

ph1q

1 wj1 , . . . , x
phnq
n wjnq. (2.1)

We claim that fpx
ph1q

1 w, . . . , xphnq
n wq is a non-zero polynomial and this will lead us to a

contradiction. To this end, it is enough to prove that the monomials in (2.1) are pairwise
distinct.

For a fixed index i, we must have

mp “ mipx
ph1q

1 wp1 , . . . , x
phnq
n wpnq ‰ mipx

ph1q

1 wq1 , . . . , x
phnq
n wqnq “ mq

provided that the n-tuples pp1, . . . , pnq ‰ pq1, . . . , qnq. Indeed, without loss of generality
we may assume p1 ‰ q1 and m1 “ αx

pg1q

1 ¨ ¨ ¨ xpgnq
n for some non-zero scalar α P F . Then we

write
mp “ αx

pg1q

1 wp1w
1 and mq “ αx

pg1q

1 wq1w
2

and since wp1 ‰ wq1 , then mp ‰ mq.

It remains to analyse the monomials

mp “ mipx
ph1q

1 wp1 , . . . , x
phnq
n wpnq and mq “ mjpx

ph1q

1 wq1 , . . . , x
phnq
n wqnq

for i ‰ j. We start by rewriting the monomials mipx
pg1q

1 , . . . , xpgnq
n q “ m1xpgrq

r m2 and
mjpx

pg1q

1 , . . . , xpgnq
n q “ m3xpgsq

s m4, where r ‰ s and m1,m2,m3,m4 are suitable monomials.
We notice that we may have m1

“ m3. Therefore we suppose that the monomial mp starts
with m1

px
ph1q

1 wp1 , . . . , x
phnq
n wpnqxpgrq

r wpr and mq starts with
m3

px
ph1q

1 wq1 , . . . , x
phnq
n wqnqxpgsq

s wqs . Since xpgrq
r ‰ xpgsq

s , then we must have mp ‰ mq,
even if m1

px
ph1q

1 wp1 , . . . , x
phnq
n wpnq “ m3

px
ph1q

1 wq1 , . . . , x
phnq
n wqnq.

Before stating the main theorem of this section, we recall that a graded algebra
A is called gr-prime if the product of two non-zero homogeneous ideals of A is still non-zero.
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Theorem 2.13. Let A be a class of G-graded algebras closed under graded homomorphic
images and direct powers. Assume that every gr-prime algebra in A has a non-zero ho-
mogeneous ideal satisfying some graded polynomial identity. Then A is a class of gr-PI
algebras.

Proof. Assume that some algebra A P A is not gr-PI. Then Lemma 2.11 gives us the
existence of some homogeneous subalgebra T of

ź

A which is graded isomorphic to
F xXGy. By the Zorn Lemma, there exists a homogeneous ideal I of

ź

A that is maximal
with respect to the property T X I “ t0u. Since A is closed under homomorphic images
and direct powers then A “ p

ź

Aq{I P A. We claim that A is a gr-prime algebra. In fact,
let J1{I and J2{I be non-zero homogeneous ideals of A. Hence there exist x P T X J1zt0u

and y P T X J2zt0u, and then 0 ‰ px` Iqpy ` Iq P pJ1{IqpJ2{Iq, which proves our claim.
Therefore A has a non-zero homogeneous ideal L “ L{I satisfying a graded polynomial
identity. Since L ‰ 0, the maximality of I implies the existence of a non-zero homogeneous
element x P L X T , that is, x R I. Recalling that

T “ pT ` Iq{I – T {pT X Iq – T – F xXGy,

we have that T x Ă L. In other words, we have a non-zero homogeneous left ideal of T
which satisfies a graded polynomial identity. But this is an absurd by Lemma 2.12.

Corollary 2.14. Let A be a G-graded algebra such that A “ B ` C where B is a
homogeneous ideal of A and C is a homogeneous subalgebra of A. Moreover assume that B
and C both satisfy graded polynomial identities. Then A is a gr-PI algebra.

Proof. Consider the class A of all G-graded algebras A “ B ` C where B is a homogeneous
gr-PI ideal and C is a homogeneous gr-PI subalgebra. Notice that every non-zero algebra in
A contains some non-zero homogeneous gr-PI ideal, since in case B “ t0u, we have C “ A
which is an ideal of A. Moreover, one can see that A contains the class of all G-graded
algebras satisfying some graded polynomial identity and actually we aim to show that
these two classes are the same.

Given A P A, notice that
ź

A “
ź

B `
ź

C,
ź

B is a homogeneous ideal
of

ź

A and
ź

C is a homogeneous subalgebra of
ź

A. Moreover, Lemma 2.10 gives us
that both

ź

B and
ź

C satisfy graded polynomial identities provided B and C also do.
Hence

ź

A P A. Now let φ : A Ñ A2 be a graded epimorphism where A “ B ` C P A.
Then A2 “ φpBq ` φpCq where φpBq is a homogeneous gr-PI ideal of A and φpCq is a
homogeneous gr-PI subalgebra of A. Therefore we also have A2 P A.

Since every non-zero algebra in A contains some non-zero homogeneous gr-PI
ideal, then we can apply Theorem 2.13 to get that A is a class of gr-PI algebras. In
particular, A P A is a gr-PI algebra.
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We note that no additional information is given on the identity satisfied by A.
In the following we will prove that in case the group G is abelian, then we can obtain a
concrete identity for the sum A “ B ` C.

Corollary 2.15. Let A be a G-graded algebra such that G is an abelian group and
A “ B ` C, where B is a homogeneous ideal of A and C is a homogeneous subalgebra of
A. Moreover assume that B satisfies an identity fpx

ph1q

1 , . . . , xphmq
m q and C satisfies and

identity gpx
pg1q

1 , . . . , xpgnq
n q. Then A is a gr-PI algebra and we can explicitly compute an

identity for A.

Proof. We can assume without loss of generality that g is multilinear. Notice that A{B
is a homomorphic image of C{pB X Cq. Since g is an identity for C, then the same holds
for A{B. Thus, gpAq Ă B. Since G is abelian and g is multilinear then we have that g
is actually an homogeneous element in F xXGy, say of homogeneous degree h. Therefore
the polynomial pi given by the product of g with a variable of homogeneous degree h´1hi

is a polynomial of homogeneous degree hi, for each i “ 1, . . . ,m. We can also assume
that the variables occuring in all polynomials pi are pairwise distinct. We conclude that
fpp1, . . . , pmq is a non-zero polynomial which is an identity for A “ B ` C.

Corollary 2.16. Let A “ B ` C be a G-graded algebra, where B is a homogeneous
ideal satisfying some ordinary polynomial identity fpx1, . . . , xmq and C is a homogeneous
subalgebra satisfying some graded identity gpx

pg1q

1 , . . . , xpgnq
n q. Then the algebra A satisfies

the following graded identity

fpgpx
pg1q

11 , . . . , x
pgnq

1n q, . . . , gpx
pg1q

m1 , . . . , x
pgnq
mn qq.

Proof. We evaluate each homogeneous variable of degree h by some element ah P Ah. By
Lemma 2.4, we can write ah “ bh ` ch where bh P Bh and ch P Ch. Since B is an ideal
of A we obtain that each evaluation of g on homogeneous elements of A is a sum of
homogeneous elements of B plus an evaluation of g on C. This last evaluation of g on
C is zero actually zero since g is a graded polynomial identity for C. We therefore get
an evaluation of f on elements of B, and now it is enough to use that f is an ordinary
polynomial identity for B to get the desired conclusion.

Corollary 2.17. Let A “ B ` C be a G-graded algebra, where B is a homogeneous ideal
of A satisfying a graded polynomial identity fpx

pg1q

1 , . . . , xpgmq
m q and C is a homogeneous

subalgebra satisfying some ordinary polynomial identity gpx1, . . . , xnq. Then A satisfies the
following graded identity

fpgpx
pg1q

11 , x
p1q

12 , . . . , x
p1q

1n q, . . . , gpx
pgnq

m1 , x
p1q

m2, . . . , x
p1q
mnqq.

Proof. The proof follows the argument from the previous corollary.
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2.3 Graded semi-identities
Throughout this section G will denote a finite group.

We will define the so-called graded semi-identities for the sum A “ B ` C and
we will show how some particular graded semi-identities can ensure the existence of graded
polynomial identities for A.

As a motivation for the following definition we recall that Lemma 2.4 gives
us that Ag “ Bg ` Cg for each g P G, hence every ag P Ag is a sum ag “ bg ` cg, bg P Bg,
cg P Cg. Thus it is convenient to consider free variables corresponding to the homogeneous
components Bg and Cg and look for their interplay with the variables corresponding to Ag.

We introduce the following sets of variables

YG “ ty
pgq

i |g P G, i “ 1, 2, . . . u and ZG “ tz
pgq

i |g P G, i “ 1, 2, . . . u,

and we consider the free G-graded algebra F xYG Y ZGy. We set xpgq

i “ y
pgq

i ` z
pgq

i for each
g P G, and then we may consider F xXGy Ă F xYG Y ZGy. We are now ready to introduce
the definition of graded semi-identities for a sum A “ B ` C.

Definition 2.18. Let

f “ fpy
ph1q

1 , . . . , yphmq
m , z

ph̃1q

1 , . . . , zph̃nq
n q P F xYG Y ZGy,

such that h1, . . . , hm, h̃1, . . . , h̃n P G. We say that f “ 0 is a graded semi-identity for
A “ B ` C if

fpb
ph1q

1 , . . . , bphmq
m , c

ph̃1q

1 , . . . , cph̃nq
n q “ 0

for all bphiq
i P Bhi, c

ph̃jq

j P Ch̃j . We say that a graded semi-identity f “ 0 is trivial if
f P IdGpAq.

We notice here that the notion of a graded semi-identity depends on the
decomposition A “ B ` C.

Example 2.19. Let F be an F -algebra without 1 such that F “ L1 ` L2, where L1 is a
subalgebra of F and L2 is an ideal of F (for instance, take F “ F xXy, the free associative
algebra without 1, L1 the subalgebra generated by all monomials which do not contain the
variable x1, and L2 the subalgebra generated by the monomials that contain x1).

We now set

A “

˜

F L2

L2 F

¸

.

Consider the Z2-grading on A given by A “ A0 ‘ A1 where

A0 “

˜

F 0
0 F

¸

and A1 “

˜

0 L2

L2 0

¸

.
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Notice then that A “ B ` C, where

B “

˜

L1 0
0 L1

¸

and C “

˜

L2 L2

L2 L2

¸

,

and both B and C are homogeneous subalgebras of A. Now, it is clear that yp1q

1 “ 0 is a
nontrivial graded semi-identity for A.

In this section we will present some nontrivial graded semi-identities satisfied
by A that imply the existence of graded polynomial identities for A. We now define a type
of multilinear polynomial in F xYG Y ZGy which we will consider as a graded semi-identity
for A.

Definition 2.20. Let y1, . . . , yd P YG and xd`1, . . . , x2d´1 P XG be homogeneous variables.
We define the following polynomial

Spdpy1, . . . , yd;xd`1, . . . , x2d´1q “
ÿ

σPSd

ασyσp1qxd`1yσp2qxd`2 ¨ ¨ ¨ x2d´1yσpdq

where ασ P F , and Sd stands for the symmetric group permuting t1, . . . , du.

The polynomial defined above was influenced by a generalization of the Capelli
identity, the so-called sparse identity (see for instance [10]). We will be interested in the
case where the variables y’s are of the same homogeneous degree g and the x’s are all of
homogeneous degree g´1. We denote the latter polynomial as SpdrY pgq, Xpg´1q

s.

2.3.1 Codimensions modulo graded semi-identities

From now on we assume that G “ tg1, . . . , gku.

Given n P N we write n “ n1 ` ¨ ¨ ¨ ` nk, where n1, . . . , nk are non-negative
integers. We recall the vector space of multilinear graded polynomials Pn1,...,nk in ni

homogeneous variables of degrees gi, respectively. Precisely

Pn1,...,nk “ spantuσp1q ¨ ¨ ¨uσpnq | σ P Sn, ui1 “ x
pg1q

i1 for i1 P t1, . . . , n1u,

un1`i2 “ x
pg2q

n1`i2 for i2 P t1, . . . , n2u, . . . ,

un1`¨¨¨nk´1`ik “ x
pgkq

n1`¨¨¨nk´1`ik
for ik P t1, . . . , nkuu.

Note that dimpPn1,...,nkq “ n! and therefore we have the following straightforward lemma.

Lemma 2.21. If there exists a positive integer n “ n1 ` ¨ ¨ ¨ ` nk such that

dim
ˆ

Pn1,...,nk

Pn1,...,nk X IdGpAq

˙

ă n!,

then A satisfies a multilinear graded polynomial identity of degree n in ni variables of
homogeneous degree gi, respectively.
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Denoting by IdsGpAq the set of all graded semi-identities of A (including the
identically zero polynomial), it follows immediately that IdGpAq, IdGpBq, IdGpCq Ă

IdsGpAq. Moreover IdsGpAq is an ideal of F xYG Y ZGy which is invariant under all graded
endomorphisms that preserve both F xYGy and F xZGy.

The vector space of multilinear polynomials in F xYG Y ZGy is defined as

Vn1,...,nk “ spantvσp1q ¨ ¨ ¨ vσpnq | σ P Sn, vi1 P ty
pg1q

i1 , z
pg1q

i1 u for i1 P t1, . . . , n1u, . . . ,

vn1`¨¨¨`nk´1`ik P ty
pgkq

n1`¨¨¨`nk´1`ik
, z

pgkq

n1`¨¨¨`nk´1`ik
u for ik P t1, . . . , nkuu.

One can easily see that Pn1,...,nk Ă Vn1,...,nk . Moreover, if

f P Pn1,...,nk X pVn1,...,nk X IdsGpAqq,

then f is a graded semi-identity in the homogeneous variables y and z, and f can be
written as a polynomial in the variables xpgq

i “ y
pgq

i ` z
pgq

i . Now given any ag P Ag, Lemma
2.4 yields the existence of bg P Bg and cg P Cg such that ag “ bg ` cg. Hence an evaluation
of the variable xpgq

i on some element ag implies an evaluation of the variables ypgq

i on some
bg and zpgq

i on some cg, respectively. Since f is a graded semi-identity, then such evaluation
must be zero on A. This shows that f is a graded identity. Therefore we conclude that

Pn1,...,nk X IdGpAq “ Pn1,...,nk X pVn1,...,nk X IdsGpAqq.

As a consequence of the discussion above we have the following lemma.

Lemma 2.22. If there exists a positive integer n “ n1 ` ¨ ¨ ¨ ` nk such that

dim
ˆ

Vn1,...,nk

Vn1,...,nk X IdsGpAq

˙

ă n!

then A satisfies some multilinear graded polynomial identity of degree n in ni variables of
homogeneous degree gi, for i “ 1, . . . , k.

Proof. Notice that
Pn1,...,nk

Pn1,...,nk X IdGpAq
“

Pn1,...,nk X Vn1,...,nk

Pn1,...,nk X pVn1,...,nk X IdsGpAqq
ãÑ

Vn1,...,nk

Vn1,...,nk X IdsGpAq
.

and finally apply Lemma 2.21.

We consider one further decomposition on the space Vn1,...,nk . In this decom-
position we will determine precisely when vi is given by either ypgjq

i or zpgjq

i . For each
j “ 1, . . . , k we consider integers 0 ď rj ď nj, and 1 ď tj1 ă ¨ ¨ ¨ ă tjrj ď nj. Denoting
r “ pr1, . . . , rkq and t “ pt11 , . . . , t1r1

, . . . , tk1 , . . . , tkrk q, we define

Vn1,...,nk,r,t “ spantvσp1q ¨ ¨ ¨ vσpnq | σ P Sn, vi1 “ y
pg1q

i1 for i1 P tt11 , . . . , t1r1
u, and

vi1 “ z
pg1q

i1 for i1 P t1, . . . , n1uztt11 , . . . , t1r1
u, . . . ,

vn1`¨¨¨`nk´1`ik “ y
pgkq

n1`¨¨¨`nk´1`ik
for ik P ttk1 , . . . , tkrk u and

vn1`¨¨¨`nk´1`ik “ z
pgkq

n1`¨¨¨`nk´1`ik
for ik P t1, . . . , nkuzttk1 , . . . , tkrk uu.
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In other words, in Vn1,...,nk,r,t we have k groups of distinct variables, with n1, . . . , nk
variables in each one of them, respectively. In the i-th group of variables we take ri among
them: the ones with indices tti1 , . . . , tiriu, 0 ď ri ď ni. These variables are the ypgiq, and
the remaining variables from this group are zpgiq.

One can notice that

Vn1,...,nk “

n1
à

r1“0
1ďt11 ă¨¨¨ăt1r1 ďn1

¨ ¨ ¨

nk
à

rk“0
1ďtk1 ă¨¨¨ătkrk

ďnk

Vn1,...,nk,r,t.

In particular, a graded semi-identity in Vn1,...,nk can be written as a sum of polynomials in
Vn1,...,nk,r,t. The next lemma shows that each one of these polynomials in Vn1,...,nk,r,t are
also graded semi-identities.

Lemma 2.23. The following decomposition of Vn1,...,nk X IdsGpAq holds

Vn1,...,nk X IdsGpAq “

n1
à

r1“0
1ďt11 ă¨¨¨ăt1r1 ďn1

¨ ¨ ¨

nk
à

rk“0
1ďtk1 ă¨¨¨ătkrk

ďnk

pVn1,...,nk,r,t X IdsGpAqq.

Proof. Let f P Vn1,...,nk X IdsGpAq and write

f “

n1
ÿ

r1“0

ÿ

1ďt11 ă¨¨¨ăt1r1 ďn1

¨ ¨ ¨

nk
ÿ

rk“0

ÿ

1ďtk1 ă¨¨¨ătkrk
ďnk

fr,t. (2.2)

We have to show that each fr,t P Vn1,...,nk,r,t is also a graded semi-identity of A. We proceed
by induction on the number of terms of the sum (2.2). The base case is when f “ fr,t, and
here we already have fr,t P IdsGpAq. From now on we suppose that there exist at least two
non-zero terms in (2.2), and we take two distinct of them, say fr,t and f̃r̃,̃t. Hence there
exists some variable, which without loss of generality we will suppose ypg1q

i , such that it
occurs in fr,t but not in f̃r̃,̃t. Now we write f “ f1 ` f2, where f1 is the sum of the terms
from (2.2) that contain the variable ypg1q

i and f2 is the sum of terms from (2.2) which do
not. Evaluating ypg1q

i by 0 we obtain that f2 is a consequence of f and therefore f2 is a
graded semi-identity. Hence the same happens to f1 “ f ´ f2. Now it is enough to apply
the induction hypothesis to both f1 and f2.

We finish this section by showing how the decomposition above can be used to
prove the existence of a graded polynomial identity for A.

In order to simplify our notation we will write just Vn1,...,nk,r instead of Vn1,...,nk,r,t,
where t “ p1, . . . , r1, . . . , 1, . . . , rkq. Note that given any t there exists a graded isomorphism
of vector spaces Vn1,...,nk,r – Vn1,...,nk,r,t such that

Vn1,...,nk,r X IdsGpAq – Vn1,...,nk,r,t X IdsGpAq.

We also note that there exist exactly
ˆ

n1

r1

˙

¨ ¨ ¨

ˆ

nk
rk

˙

vector spaces Vn1,...,nk,r,t isomorphic
to Vn1,...,nk,r.
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Lemma 2.24. If there exists a positive integer n “ n1 ` ¨ ¨ ¨ ` nk such that

dim
ˆ

Vn1,...,nk,r

Vn1,...,nk,r X IdsGpAq

˙

ă
n!
2n ,

for all r, then A satisfies some multilinear graded polynomial identity of degree n in ni

variables of homogeneous degree gi, for i “ 1, . . . , k.

Proof. By Lemma 2.23 we have

dim Vn1,...,nk

Vn1,...,nk X IdsGpAq
“

n1
ÿ

r1“0
¨ ¨ ¨

nk
ÿ

rk“0

ˆ

n1

r1

˙

¨ ¨ ¨

ˆ

nk
rk

˙

dim Vn1,...,nk,r

Vn1,...,nk,r X IdsGpAq

ă

n1
ÿ

r1“0
¨ ¨ ¨

nk
ÿ

rk“0

ˆ

n1

r1

˙

¨ ¨ ¨

ˆ

nk
rk

˙

n!
2n

“ 2n1 ¨ ¨ ¨ 2nk n!
2n “ n!

Now it suffices to apply Lemma 2.22.

2.3.2 A generating set for Vn,0,...,0,r modulo Ids
GpAq

In this section we give a generating set for Vn,0,...,0,r by using the language of
good permutations of the symmetric group. This notion appeared in the proof of the well
known theorem of Regev about the exponential upper bound of the codimension sequence
of a PI algebra, see [53]. Good sequences and similar combinatorial notions have been
extensively used in studying numerical invariants of PI algebras such as codimensions,
cocharacters, and so on.

Definition 2.25. Let n P N and 1 ď d ď n. We say that σ P Sn is a d-bad permutation if
there exist 1 ď i1 ă ¨ ¨ ¨ ă id ď n such that σpi1q ą ¨ ¨ ¨ ą σpidq. Otherwise we call σ P Sn a
d-good permutation.

We recall a well known result about the number of d-good permutations (see
[54]). It can be obtained by using the theorem of Dilworth in Combinatorics.

Lemma 2.26. The number of d-good permutations in Sn is at most pd ´ 1q
2n.

We will adopt the following convention: given d ą n, then every permutation
in Sn is d-good. Such convention does not change the maximum number of d-good
permutations. Indeed, in this case the number is exactly n! which is less than pd ´ 1q

2n.

Definition 2.27. Let m be the monomial

v1y
ph1q

σp1q
¨ ¨ ¨ y

phi1 q

σpi1q
v2y

phi1`1q

σpi1`1q
¨ ¨ ¨ y

phi2 q

σpi2q
v3 ¨ ¨ ¨ vly

phil´1`1q

σpil´1`1q
¨ ¨ ¨ y

phil q

σpilq
vl`1 P Vn1,...,nk,r,t

where v1, . . . , vl`1 are (eventually empty) words in the homogeneous variables of type z.
We say that m is a d-y-good monomial if the permutation σ P Sl is a d-good one.
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We recall a combinatorial fact concerning finite groups, [7, Lemma 4.1].

Lemma 2.28. Every product of |H|d words in a finite group H contains a product of d
consecutive trivial subwords.

In the next lemma we will assume that A satisfies a graded semi-identity of
the form Spd1rY pgq;Xpg´1q

s, for some g P G. Without loss of generality we write g1 “ g

and we denote n1 “ n and r1 “ r. We also use opgq to denote the order of the element
g P G (and of the cyclic subgroup generated by g).

Lemma 2.29. The space Vn,0,...,0,r is generated, modulo IdsGpAq, by all p2d1 ´1qopgq-y-good
monomials for all r.

Proof. Following our convention we may assume p2d1 ´ 1qopgq ď r. The proof will be done
by contradiction. Thus we assume that Vn,0,...,0,r is not generated by the p2d1 ´ 1qopgq-y-
good monomials modulo IdsGpAq. Hence the set U of all p2d1 ´ 1qopgq-y-bad monomials
which cannot be written as a linear combination of p2d1 ´ 1qopgq-y-good monomials
modulo IdsGpAq is nonempty. We order the variables in YG of homogeneous degree g as
y

pgq

1 ă y
pgq

2 ă ¨ ¨ ¨ and we take in U the partial order given lexicographically from the
left to the right in the variables in YG of homogeneous degree g, only. Let mτ P U be
a minimal element, where τ P Sr is the permutation which defines the positions of the
variables from YG of homogeneous degree g in this minimal element. In particular, mτ is
a p2d1 ´ 1qopgq-y-bad monomial and hence there exist 1 ď i1 ă ¨ ¨ ¨ ă ip2d1´1qopgq ď r such
that τpi1q ą ¨ ¨ ¨ ą τpip2d1´1qopgqq.

We write mτ “ w0w1w2 ¨ ¨ ¨wp2d1´1qopgqwp2d1´1qopgq`1, where wj is the word that
starts with y

pgq

τpijq
and ends just before ypgq

τpij`1q
, j “ 1, . . . , p2d1 ´ 1qopgq ´ 1, wp2d1´1qopgq “

y
pgq

τpip2d1´1qopgqq
, w0 and wp2d1´1qopgq`1 are suitable words.

Applying Lemma 2.28 to the subgroup generated by g, we obtain the existence
of 2d1 ´ 1 consecutive subwords w1, . . . , w2d1´1 from w1 ¨ ¨ ¨wp2d1´1qopgq where degpwjq “ 1,
j “ 1, . . . , 2d1 ´ 1.

Hence we rewrite mτ “ w0w1 ¨ ¨ ¨w2d1´1w2d1 , where w0 and w2d1 are suitable
words. Note that for each j “ 1, . . . , d1 ´ 1, we can write w2j´1w2j “ y

pgq

τpilq
md1`j for some

l (which depends on j) and md1`j is the subword of w2j´1w2j obtained by deleting its first
variable. Denote mj “ y

pgq

τpilq
for j “ 1, . . . , d1 ´ 1, and take md1 as the first variable of

w2d1´1.

In this way we have

mτ “ m0m1md1`1m2 ¨ ¨ ¨md1´1m2d1´1md1m2d1

where m0 “ w0, m2d1 is a suitable word, degpmjq “ g for j “ 1, . . . , d1 and
degpmd1`jq “ g´1 for j “ 1, . . . , d1 ´ 1. Indeed, it follows from degpw2j´1w2jq “ 1
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and degpy
pgq

τpilq
q “ g that degpmd1`jq “ g´1. We also note that each mj is evaluated on YG

of homogeneous degree g and each md1`j is evaluated on XG of homogeneous degree g´1.
Moreover, we have m1 ą ¨ ¨ ¨ ą md1 .

Recalling that Spd1rY pgq;Xpg´1q
s P IdsGpAq and that the scalar related to the

identity permutation can be assumed as 1, we can write

mτ “
ÿ

σPSd1 ztidu

´ασm0mσp1qmd1`1mσp2q ¨ ¨ ¨m2d1´1mσpd1qm2d1 pmod IdsGpAqq.

Since for each σ P Sd1ztidu we have

mσ “ m0mσp1qmd1`1mσp2q ¨ ¨ ¨m2d1´1mσpd1qm2d1 ă mτ ,

the minimality of mτ leads us to mσ R U. Therefore each mσ can be written as a linear
combination of p2d1 ´ 1qopgq-y-good monomials modulo the graded semi-identities of A,
and hence the same happens for mτ . This is a contradiction to mτ P U.

2.3.3 Existence of a graded identity for A

First of all let us estimate the dimension of Vn,0,...,0,r modulo IdsGpAq. We start
by recalling the following result from [7].

Theorem 2.30. Let A be an algebra graded by a finite group G. If the neutral component
of A satisfies a polynomial identity of degree d then

dim P ph1,...,hnq

P ph1,...,hnq X IdGpAq
ď p|G|d ´ 1q

2n

for every n P N and ph1, . . . , hnq P Gn.

For our main goal of this section we consider one last decomposition of the
vector space Vn,0,...,0,r into the subspaces

Un,0,...,0,r,u,p,q “ spantyσp1q . . . yσpp1qzτp1q ¨ ¨ ¨ zτpq1q ¨ ¨ ¨ yσpp1`¨¨¨`pu´1`1q ¨ ¨ ¨ yσprqˆ

ˆ zτpq1`¨¨¨`qu´1`1q ¨ ¨ ¨ zτpn´rq | σ P Sr, τ P Sn´ru

where r “ p1 ` ¨ ¨ ¨ ` pu and n ´ r “ q1 ` ¨ ¨ ¨ ` qu are such that p1 ě 0, qu ě 0, and
p2, . . . , pu, q1, . . . , qu´1 ą 0, and the homogeneous variables were written without their
homogeneous degrees for simplicity.

Hence we have

Vn,0,...,0,r “
à

u,p,q
Un,0,...,0,r,u,p,q. (2.3)

Definition 2.31. A composition of a positive integer n sequence of integers pn1, . . . , nkq

such that n “ n1 ` ¨ ¨ ¨ ` nk.
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Remark 2.32. The number of compositions of a positive integer n is exactly 2n´1. In
particular, one can see that there exist at most 2r ¨ 2n´r

“ 2n vector spaces Un,0,...,0,r,u,p,q
appearing in the decomposition of Vn,0,...,0,r in (2.3).

Lemma 2.33. Let A “ B ` C be a G-graded algebra sum of two homogeneous subalgebras.
We assume that A satisfies the graded semi-identity Spd1rY pgq;Xpg´1q

s and C1 satisfies a
polynomial identity of degree d2. Then the following inequality holds

dim Vn,0,...,0,r
Vn,0,...,0,r X IdsGpAq

ď 2npp2d1 ´ 1qopgq ´ 1q
2r

p|G|d2 ´ 1q
2pn´rq

pr ` 1q
n´r.

Proof. We start the proof by recalling that Lemma 2.29 gives us a generating set for
Vn,0,...,0,r modulo IdsGpAq, namely the set of all p2d1 ´ 1qopgq-ypgq-good monomials. By
(2.3) it is enough to count the number of p2d1 ´ 1qopgq-ypgq-good monomials modulo the
graded semi-identities of A in Un,0,...,0,r,u,p,q. First of all note that there exist at most
pp2d1 ´ 1qopgq ´ 1q

2r dispositions of the homogeneous variables y modulo IdsGpAq. We also
have

ˆ

n ´ r

q1, . . . , qu

˙

“
pn ´ rq!
q1! ¨ ¨ ¨ qu!

different manners of distributing the homogeneous variables z that occur in blocks of q1

consecutive ones, . . . , qu consecutive ones. By Theorem 2.30, each consecutive group of
homogeneous variables z can be written as a linear combination of at most p|G|d2 ´ 1q

2qi

monomials modulo IdsGpAq. Hence Un,0,...,0,r,u,p,q is generated by at most

pp2d1 ´ 1qopgq ´ 1q
2r

ˆ

n ´ r

q1, . . . , qu

˙

p|G|d2 ´ 1q
2q1 ¨ ¨ ¨ p|G|d2 ´ 1q

2qu

monomials.

Therefore the multinomial theorem enables us to bound the multinomial co-
efficient corresponding to the homogeneous variables z by un´r and since u ď r ` 1 we
write

ˆ

n ´ r

q1, . . . , qu

˙

ď pr ` 1q
n´r.

We finish the proof of this lemma by observing that there exist at most 2n vector spaces
of the form Un,0,...,0,r,u,p,q (see Remark 2.32).

We are ready to prove the main result of this section. We recall the following
inequality known as Stirling’s formula

n! „
?

2πn
ˆ

n

e

˙n

; and
ˆ

n

e

˙n

ă n!, for all n P N (2.4)

where the meanings of e and π are the obvious ones.
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Theorem 2.34. Let A “ B ` C be a G-graded algebra which is a sum of two homogeneous
subalgebras. If A satisfies the graded semi-identity Spd1rY pgq;Xpg´1q

s and C1 satisfies
some ordinary polynomial identity of degree d2, then A satisfies some graded multilinear
polynomial identity of degree n in homogeneous variables of degree g, where n is the least
integer greater or equal to αα such that α “ 8epp2d1 ´ 1qopgq ´ 1q

2
p|G|d2 ´ 1q

2.

Proof. Lemma 2.24 reduces the existence of the required graded polynomial identity to
the existence of a positive integer n P N such that

dim Vn,0,...,0,r
Vn,0,...,0,r X IdsGpAq

ă
n!
2n ,

for every r.

We begin by assuming that r ‰ 0 and we will show that there exists n P N
(which does not depend on r) such that

8nenpp2d1 ´ 1qopgq ´ 1q
2n

p|G|d2 ´ 1q
2nrn´r

ď nn.

Recall α “ 8epp2d1 ´ 1qopgq ´ 1q
2
p|G|d2 ´ 1q

2. Take n P N as the least integer satisfying
n ě αα, we claim that αnrn´r

ď nn. We can consider r ă n, since for r “ n the inequality
αn ď nn follows from α ă n. We consider two cases now.

Case 1: r ď
n

α
. In this case we have αr ď n and hence αnrn´r

ď pαrqn ď nn.

Case 2:
n

α
ă r ă n. In this second case we have n ă αr, that is, there exists a

positive real number v such that αr “ n ` v. The minimality of n leads us to r ă αα. We
also note that αv ą 1. Therefore,

nn ě pααq
n

“ αnpαα´1
q
n´r

pαα´1
q
r

“ αnpαα´1
q
n´rααr´r

“ αnpαα´1
q
n´rαn´r`v

“ αnpααq
n´rαv ą αnrn´r,

which finishes the second case and the proof of the claim.

Since r ‰ 0, we have r ` 1 ď 2r and hence

4nenpp2d1 ´ 1qopgq ´ 1q
2r

p|G|d2 ´ 1q
2pn´rq

pr ` 1q
n´r

ď8nenpp2d1 ´ 1qopgq ´ 1q
2n

p|G|d2 ´ 1q
2nrn´r

ď nn

which implies in turn that

2npp2d1 ´ 1qopgq ´ 1q
2r

p|G|d2 ´ 1q
2pn´rq

pr ` 1q
n´r

ď
nn

en2n ă
n!
2n .

The only case left is when r “ 0; we note that for any positive integer n ě 4ep|G|d2 ´ 1q
2

(in particular for the same n chosen in the case r ‰ 0) we have 4nenp|G|d2 ´ 1q
2n

ď nn,
and then it follows that

2np|G|d2 ´ 1q
2n

ď
nn

en2n ă
n!
2n

Now it is enough to apply Lemma 2.33 in order to finish the proof.
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Remark 2.35. If we take F , L1, L2 as defined in Example 2.19 for F given by the free
associative algebra F xXy without 1, then A does not satisfy an identity in variables of
homogeneous degree 1, but satisfies a graded semi-identity of the type Spd. However, this
does not contradict our last theorem, since clearly C1 is not PI.
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3 Images of graded polynomials on upper tri-
angular matrices

In this chapter we will deal with the problem of classifying images of polynomials
on algebras with additional structure. We will be mostly concerned with the upper
triangular matrix algebra UTnpF q with entries in a field F . When the field F is clear in
the context, then we will use the simpler notation UTn instead of the previous one. The
results from Section 3.2 to Section 3.6 are new and two papers were written from them.
The first one is published in the Canadian Journal of Mathematics [27] in a joint work
with Plamen Koshlukov. The second one is published on arXiv and has been submitted
for publication in a specialized journal [24].

3.1 A review of gradings on UTn
In this first section we will give a short review of group-gradings on the

associative upper triangular matrix algebra. Thus let us start with the following definition.

Definition 3.1. Let G be a group. A G-grading Γ on UTn is said elementary if all matrix
units eij are homogeneous in this grading. Equivalently, we say that Γ is elementary if
there exists a sequence pg1, . . . , gnq P Gn such that degpeijq “ g´1

i gj for all i, j. The grading
Γ is also called elementary induced by the sequence pg1, . . . , gnq P Gn.

The importance of elementary gradings on UTn is given in the next theorem
due to Valenti and Zaicev in 2007.

Theorem 3.2. [62] Let Γ be a G-grading on UTn. Then Γ is graded isomorphic to some
elementary G-grading.

Clearly, it is true that knowing the homogeneous degree of the matrices eij in
an elementary grading gives us the homogeneous components of it. The next result shows
us that in order to completely determine the elementary grading it is enough to know the
homogeneous degree of the matrix units ei,i`1, i “ 1, . . . , n ´ 1, only.

Proposition 3.3. [20] Every elementary G-grading on UTn is uniquely determined by
the homogeneous degree of the elements in the first diagonal of a matrix in the Jacobson
radical of UTn.

We finish this quick review with two results also from [20] about the neutral
component of elementary gradings on UTn.
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Lemma 3.4. Let Γ be an elementary grading on UTn. Then the neutral component of Γ
contains the subspace of all diagonal matrices.

Proposition 3.5. Let Γ be an elementary grading on UTn. Then the neutral component
of Γ is isomorphic (as F -algebras) to the direct sum

UTn1 ‘ ¨ ¨ ¨ ‘ UTnk .

3.2 Graded central polynomials for upper triangular matrices
The main goal of this section is to prove that there exist no graded central

polynomials for upper triangular matrices. It is well known that the algebra of upper block
triangular matrices has no central polynomials in case the number of blocks is greater
than 1, see [33, Lemma 1]. In particular, the upper triangular matrix algebra UTnpF q has
no central polynomials.

Theorem 3.6. Let UTn “ A “
à

gPG

Ag be a G-grading on the algebra of upper triangular

matrices over a field. If n ą 1 then there exist no graded central polynomials for A.

Proof. By Theorem 3.2 we have that A is graded isomorphic to some elementary grading
on UTn. Hence we may reduce our problem to the elementary gradings. Now we assume
that f P F xXGy is a polynomial with zero constant term, such that fpAq is contained
in ZpAq (which can be identified with the ground field F ). We write f as f “ f1 ` f2

where f1 contains neutral variables only and f2 has at least one non neutral variable in
each of its monomials. Consider a1, . . . , am P A1, and b1, . . . , bl arbitrary elements of
homogeneous degree ‰ 1 that occur in f . Hence, in light of Lemma 3.4 we have that
fpa1, . . . , am, b1, . . . , blq “ f1pa1, . . . , amq ` j where j P J , the Jacobson radical of A, and
ai is the diagonal part of ai. Since fpAq Ă F , then j “ 0 and hence fpAq “ f1pDq, where
D denotes the subspace of diagonal matrices. Now, notice that if λ1, . . . , λm P F are
arbitrary, then

f1pλ1e11, . . . , λme11q “ f1pλ1, . . . , λmqe11.

Since f1pDq Ă F , we must have f1pλ1, . . . , λmq “ 0. Hence, for diagonal matrices

Di “

n
ÿ

k“1
λ

piq
k ekk we have

f1pD1, . . . , Dmq “

n
ÿ

k“1
f1pλ

p1q

k , . . . , λ
pmq

k qekk “ 0,

and thus fpAq “ t0u. We conclude the non existence of graded central polynomials for
UTn.

As an immediate consequence we have the following corollary.
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Corollary 3.7. The space of scalar matrices can not be realized as the image of some
multilinear graded polynomial on UTn.

3.3 The neutral component of UTn
We start this section by recalling the following definition from [31].

Definition 3.8. Let f P F xXy. We say that f has commutator degree r if

f P xrx1, x2s ¨ ¨ ¨ rx2r´1, x2rsy
T and f R xrx1, x2s ¨ ¨ ¨ rx2r`1, x2r`2sy

T .

We say that f has commutator degree 0 if f is not a consequence of the commmutator.

We now recall a result due to Gargate and de Mello concerning the description
of images of multilinear polynomials on upper triangular matrices.

Theorem 3.9. [31] Let F be an infinite field and let f P Pm. Then fpUTnq “ Jr if and
only if f has commutator degree r.

A slight improvement of Theorem 3.9 was given shortly afterwards.

Theorem 3.10. [48] Let F be a field with at least npn ´ 1q{2 elements. Then the image
of f P Pm on UTn is Jr, where r is the commutator degree of f .

As a consequence of these results we have the following proposition.

Proposition 3.11. Let F be a field with at least npn ´ 1q{2 elements. The image of a
multilinear polynomial on T “ UTn1 ‘¨ ¨ ¨‘UTnk is either T or some power of its Jacobson
radical J .

Proof. Let f P F xXy be a multilinear polynomial. By [12, Proposition 5.60] we have

J “ J1 ‘ ¨ ¨ ¨ ‘ Jk,

where Ji stands for the Jacobson radical of UTni , i “ 1, . . . , k. Now it is enough to apply
Theorem 3.10 to see that

fpT q “ fpUTn1q ‘ ¨ ¨ ¨ ‘ fpUTnkq “ Jr1 ‘ ¨ ¨ ¨ ‘ Jrk “ Jr,

where r is the commutator degree of f .

In light of Proposition 1.22, Proposition 3.5 and Proposition 3.11, we have the
following corollary.

Corollary 3.12. The image of a multilinear polynomial in neutral variables on UTn is a
homogeneous vector subspace, regardless of the grading on UTn.
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3.4 Certain Zq-gradings
Apart from the last section of this chapter, we will adopt the following notation:

the set of neutral variables in XG will be denoted by YG “ ty1, y2, . . . u and the non-
neutral ones will be denoted by ZG “ tz1, z2, . . . u. Of course we will make clear what the
homogeneous degrees of the variables zi’s are. We shall say that the variables of type y
are even while those of type z are odd.

Throughout this section A will denote the algebra of upper triangular matrices
UTn endowed with the elementary Zq-grading given by the following sequence in Znq

p0, 1, . . . , q ´ 2, q ´ 1, q ´ 1, . . . , q ´ 1
loooooooooooomoooooooooooon

n ´ q ` 1 times

q,

where q ď n are integers. Our goal is to give a complete description of the images of
multilinear graded polynomials on A.

One can see that for q “ n we recover the natural Zn-grading on UTn given by
deg eij “ j ´ i pmod nq for every i ď j.

For l “ 0, 1, . . . , q ´ 1, let us describe the homogeneous component Al. First of
all we notice that the homogeneous components of A are all given in blocks in the form

˜

A C

B

¸

,

where A P UTq´1pF q, B P UTn´q`1pF q and C P Mq´1,n´q`1pF q. More precisely, the neutral
component A0 is such that A is a diagonal matrix, B is an arbitrary triangular matrix and
C “ 0. In other words, A0 “ F ‘ ¨ ¨ ¨ ‘ F ‘ UTn´q`1pF q. Concerning the homogeneous
component Al where l ‰ 0, we have A as matrix with non-zero entries in the l` 1 diagonal
only (the main diagonal is counted as the first one), B “ 0 and C as a matrix with
non-zero entries in the q ´ l row only. Thus a general element in Al has the form

¨

˚

˚

˚

˚

˚

˚

˚

˝

F
. . .

F

F F ¨ ¨ ¨ F

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

In other words,

Al “ spantei,i`l, eq´l,j | i “ 1, . . . , q ´ l, j “ q ` 1, . . . , nu.

For 1 ď r ď n ´ q we also define the following homogeneous subspaces of Al

Bl,r “ spanteq´l,j | j “ q ` r, . . . , nu.
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Notice then that Bl,r is just the subspace of Al whose entire l ` 1 diagonal is
zero and where the non-zero entries occur only in the q ´ l row (some entries in this row
might be zero from left to the right, depending on the value of r).

An easy computation shows that the following are graded identities for A

ry1, y2sz “ 0 (3.1)
z1z2 “ 0 (3.2)

ry1, y2s ¨ ¨ ¨ ry2pn´q`1q´1, y2pn´q`1qs “ 0 (3.3)

where the variables yi are neutral ones, z, z1, z2 are non-neutral variables and degpz1q `

degpz2q “ 0.

We state several lemmas concerning the description of some graded polynomials
on A. In the upcoming lemmas, unless otherwise stated, we assume that the field F has
at least npn ´ 1q{2 elements and f P F xXGy is a multilinear polynomial.

In the next two lemmas we will assume that

f “ fpz1, . . . , zl, yl`1, . . . , ymq

where degpziq “ 1, 1 ď i ď l. It is obvious that in this case one must have fpAq as a subset
of Al. Modulo the identity (3.1) we rewrite the polynomial f as

f “
ÿ

i1,...,il

yi1z1yi2z2 ¨ ¨ ¨ yil
zlgi1,...,il

` h (3.4)

where yij
“ yij1 ¨ ¨ ¨ yijkj

is such that ij1 ă ¨ ¨ ¨ ă ijkj . Moreover gi1,...,il
is the polynomial

obtained by permuting the neutral variables whose indices are different from either of i1,
. . . , il, and forming a linear combination of such monomials. Furthermore, h is the sum of
polynomials that differ from the first summand of f by nontrivial permutations of the odd
variables.

Among all polynomials gi1,...,il
(including those defined analogously in h), we

choose one, say g, of least commutator degree r. Up to permuting the odd variables, we
can assume that the polynomial g occurs in the first summand of f .

Hence, in case 1 ď r ď n ´ q, we can improve the inclusion fpAq Ă Al to
fpAq Ă Bl,r. Our goal is to prove that fpAq “ Al in case r “ 0 and fpAq “ Bl,r otherwise.

Lemma 3.13. Let 1 ď l ď q ´ 1. If 1 ď r ď n ´ q, then fpAq “ Bl,r.

Proof. Let g “ yi1z1yi2z2 ¨ ¨ ¨ yil
zlg be the non-zero summand of f written as above, where

the commutator degree of g is r. We consider the following evaluations: the variables in
yi1 by eq´l,q´l, the ones in yi2 by eq´l`1,q´l`1,. . . , and all variables in yil

by eq´1,q´1. We

also put z1 “ eq´l,q´l`1, z2 “ eq´l`1,q´l`2, . . . , zl´1 “ eq´2,q´1, and zl “

n
ÿ

k“q

wkeq´1,k. Since
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g has commutator degree r, Theorem 3.10 enables us to evaluate the even variables in g

by matrices from
˜

0 0
0 UTn´q`1

¸

in order to obtain the matrix eq,q`r ` eq`1,q`r`1 ` ¨ ¨ ¨ ` en´r,n.

Note that the evaluations that we have considered allow us to reduce the study
of the image of f to the polynomial g. Under these evaluations we have

g “ pwqeq´l,q ` wq`1eq´l,q`1 ` ¨ ¨ ¨ ` wneq´l,nqpeq,q`r ` eq`1,q`r`1 ` ¨ ¨ ¨ ` en´r,nq

“ wqeq´l,q`r ` wq`1eq´l,q`r`1 ` ¨ ¨ ¨ ` wn´req´l,n.

Taking a matrix B P Bl,r, say B “ bqeq´l,q`r ` ¨ ¨ ¨ ` bn´req´l,n we can easily realize B as
image of g by choosing wj “ bj, j “ q, . . . , n ´ r. Hence fpAq “ Bl,r.

Before analysing the case of zero commutator degree, let us recall the following
elementary and well known result.

Lemma 3.14. Let F be a finite field with d elements and let f “ fpw1, . . . , wmq be a
non-zero commutative polynomial. If degwipfq ď d ´ 1 for all i “ 1, . . . , m, then there
exist a1, . . . , am P F such that fpa1, . . . , amq ‰ 0.

Corollary 3.15. Let F be a finite field with d elements and let

f1pw1 . . . , wmq, . . . , fd´1pw1, . . . , wmq

be non-zero commutative polynomials. If degwipfjq ď 1 for all i, j, then there exist a1, . . . ,
am P F such that

f1pa1, . . . , amq ‰ 0, . . . , fd´1pa1, . . . , amq ‰ 0.

We also recall the following well-known lemma.

Lemma 3.16. Let f P F xXy be multilinear. Then f has commutator degree 0 if and only
if the sum of its coefficients is different from 0.

Lemma 3.17. If F is a field with at least n elements and r “ 0, then fpAq “ Al.

Proof. Denoting by D the homogeneous subspace of diagonal matrices of A, we consider
the following homogeneous subalgebra of A:

S “ D ‘
à

1ďlďq´1
Al.

We will show that fpSq is exactly Al which is enough to conclude the lemma.
Note that S still satisfies the identity (3.2) and it also satisfies ry1, y2s “ 0.
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By the identity ry1, y2s “ 0, we may write the polynomial g (according to
Lemma 3.13) as

βyi1z1yi2z2 ¨ ¨ ¨ yil
zlyil`1

where β is the sum of all coefficients of the polynomial g and yil`1 is the product of the
variables of g in increasing order of the indices. Since r “ 0, we get from Definition 3.8
and Lemma 3.16 that β ‰ 0.

Now we write f “ fpz1, . . . , zl, yl`1, . . . , ymq as

f “

l
ÿ

j“1
fj

where fj is the sum of all monomials of f such that the variable zl is in the j-th position
in relation to the odd variables.

For each j “ 1, . . . , l, we write

fj “
ÿ

σPS
pjq

l

fj,σ

where Spjq

l “ tσ P Sl|σpjq “ lu, fj,σ is the sum of all monomials of fj where the order of
the odd variables is given by the permutation σ.

Taking zi “

q´1
ÿ

k“1
w

piq
k ek,k`1 `wpiq

q eq´1,q`1 ` ¨ ¨ ¨ `w
piq
n´1eq´1,n and yj “

n
ÿ

k“1
w

pjq

k ekk

we have

fl,idpz1, . . . , zl, yl`1, . . . , ymq “

q´l
ÿ

k“1
pkw

p1q

k w
p2q

k`1 ¨ ¨ ¨w
plq
k`l´1ek,k`l

` pq´l`1w
p1q

q´l ¨ ¨ ¨w
pl´1q

q´2 wplq
q eq´l,q`1 ` ¨ ¨ ¨ ` pn´lw

p1q

q´l ¨ ¨ ¨w
pl´1q

q´2 w
plq
n´1eq´l,n

where pk, k “ 1, . . . , n´ l, are polynomials in the variables wpl`1q, . . . , wpmq. We note that
all polynomials pk, k “ 1, . . . , n´ l, are non-zero ones. Indeed, we just have to check that
different monomials in fl,id give different monomials in pk. To this end, note that if m1

and m2 are different monomials in fl,id, then there exists some even variable yj such that
the quantity of preceding odd variables in relation to yj is distinct in m1 and m2. This
gives us variables wpjq with different lower indices in the two monomials in pk given by m1

and m2, which proves our claim. Moreover, we note that every variable in each monomial
of the polynomial pk appears exactly once.

Since we have at most n ´ 1 polynomials pk, by Corollary 3.15 there exist
evaluations of the even variables yj by diagonal matrices Dj such that pk take non-zero
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values simultaneously for all k. Hence

fl “

q´l
ÿ

k“1

ˆ

ÿ

σPS
plq
l

ασw
pσp1qq

k ¨ ¨ ¨w
pσpl´1qq

k`l´2

˙

w
plq
k`l´1ek,k`l

`

ˆ

ÿ

σPS
plq
l

ασw
pσp1qq

q´l ¨ ¨ ¨w
pσpl´1qq

q´2

˙

wplq
q eq´l,q`1

` ¨ ¨ ¨ `

ˆ

ÿ

σPS
plq
l

ασw
pσp1qq

q´l ¨ ¨ ¨w
pσpl´1qq

q´2

˙

w
plq
n´1eq´l,n

with αid ‰ 0 because the coefficients α are determined by the polynomials pk. So the
polynomials inside the brackets above are non-zero ones and each of their monomials
have variables of degree one. Applying Corollary 3.15 once again we may evaluate the
variables z1, . . . , zl´1 by matrices in C1, . . . , Cl´1 P A1 such that all these polynomials
take non-zero values on F . Denote by αl,k P F zt0u, k “ 1, . . . , q ´ l, the values of the
polynomials inside the brackets after such evaluations.

Therefore

fpC1, . . . , Cl´1, zl, Dl`1, . . . , Dmq

“

q´l
ÿ

k“1

ˆ

α1,kw
plq
k ` ¨ ¨ ¨ ` αl´1,kw

plq
k`l´2 ` αl,kw

plq
k`l´1

˙

ek,k`l

`

ˆ

α1,qw
plq
q´l ` ¨ ¨ ¨ ` αl´1,qw

plq
q´2 ` αl,q´lw

plq
q

˙

eq´l,q`1

` ¨ ¨ ¨ `

ˆ

α1,n´1w
plq
q´l ` ¨ ¨ ¨ ` αl´1,n´1w

plq
q´2 ` αl,q´lw

plq
n´1

˙

eq´l,n

where αl,k ‰ 0 for every k “ 1, . . . , q ´ l.

Then given a matrix B “

q´l
ÿ

k“1
bkek,k`l ` bq´l`1eq´l,q`1 ` ¨ ¨ ¨ ` bn´leq´l,n P Al we

take
fpC1, . . . , Cl´1, zl, Dl`1, . . . , Dmq “ B

and we obtain a linear system in the variables wplq whose solution (not necessarily unique)
can be found recursively.

Corollary 3.18. Let f P F xX|Zqy be a multilinear polynomial of non-neutral homogeneous
degree. Then fpAq is t0u,Bl,r or Al.

Proof. By Lemmas 3.13 and 3.17, we already know the image of f on A in case the
non-neutral variables on f are those of homogeneous degree 1 only. Let us now consider
the general case. Modulo the graded identities (3.1), (3.2), (3.3), let f and g be as in the
comments before Lemma 3.13 and let r be the commutator degree of g. Hence fpAq Ă Bl,r if
r ‰ 0 and fpAq Ă Al otherwise. Recalling that the image is invariant under endomorphisms
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of the free Zq-graded algebra (see Proposition 1.19(1)), the image of the polynomial f̃
obtained from f by evaluating every non-neutral variable zi of homogeneous degree k by a
product of k variables of homogeneous degree 1, is contained in fpAq. But the polynomial
g defined for f (see the comments before Lemma 3.13) is the same as the one defined for
f̃ . This allows us to get Bl,r Ď f̃pAq in case r ‰ 0 and Al Ď f̃pAq otherwise.

The corollary above allows us to state the following definition.

Definition 3.19. Let f P F xX|Zqy be a multilinear polynomial. We say that f has right-
commutator-degree r modulo IdZqpAq if r is the minimal commutator degree of all those
polynomials of the form gi1,...,il

(include those in h) appearing in f modulo IdZqpAq in
(3.4).

We notice that the right-commutator-degree modulo IdZqpAq of a multilinear
polynomial is well-defined by the image of f on A via Corollary 3.18.

Theorem 3.20. Let F be a field with at least npn´1q{2 elements, let UTn “
à

kPZq
Ak be en-

dowed with the elementary Zq-grading given by the sequence p0, 1, . . . , q ´ 2, q ´ 1, . . . , q ´ 1q

and let f P F xX|Zqy be a multilinear polynomial. Then fpUTnq is

• t0u, if f is a graded polynomial identity for UTn;

• Jr, if f is a polynomial in neutral variables and has commutator-degree r, where J
stands for the Jacobson radical of A0;

• Bl,r, if f has right-commutator-degree r modulo IdZqpUTnq, r “ 1, . . . , n ´ q;

• Al, if f has right-commutator-degree 0 modulo IdZqpUTnq.

In particular, the image is always a homogeneous vector subspace.

Proof. The proof is clear from Proposition 3.11 and Corollary 3.18.

Remark 3.21. Considering similar computations one can easily see that the result is also
valid for the elementary Zq-grading defined by the sequence pq ´ 1, . . . , q ´ 1, q ´ 2, . . . , 1, 0q,
where we have n ´ q ` 1 copies of q ´ 1 in the beginning of the sequence.

In the next corollary we are assuming that F is a field of characteristic
zero and A “ UTn is endowed with the elementary Zq-grading given by the sequence
p0, 1, . . . , q ´ 2, q ´ 1, . . . , q ´ 1q.

Corollary 3.22. The TZq-ideal IdZqpAq is generated by the graded identities (3.1), (3.2),
and (3.3).
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Proof. Let f P IdZqpAq. Since the ground field has characteristic zero, we may assume
that f is multilinear. Notice that in the proof of Theorem 3.20 and in the lemmas that
precede it, we have shown that if f is not a consequence of the identities (3.1), (3.2), and
(3.3), then fpAq ‰ t0u. In other words, if f P IdZqpAq, then f is a consequence of the
aforementioned identities.

We recall that in case q “ n we have the natural Zn-grading on UTn.

Corollary 3.23. Let F be a field with at least n elements, let UTn be endowed with the
natural Zn-grading and let f P F xX|Zny be a multilinear polynomial. Then the image of f
on UTn is either zero or some homogeneous component.

Proof. It follows from the proof of Lemma 3.17.

Remark 3.24. Notice that the same result also holds if we consider the natural Z-grading
on UTn. Analogous results hold for the lower triangular matrix algebra LTn as well (we
will use this remark in the next section).

3.5 Traceless matrices
As an application of the results obtained in the previous section, we now give a

sufficient condition for the subspace of the traceless matrices to be contained in the image
of a multilinear polynomial on the full matrix algebra.

We start by recalling the following result from [5].

Theorem 3.25. [5] Let D be a division ring, n ě 2 an integer, and A P MnpDq a
non-central matrix. Then A is similar (conjugate) to a matrix in MnpDq with at most one
non-zero entry on the main diagonal. In particular, if A has trace zero, then it is similar
to a matrix in MnpDq with only zeros on the main diagonal.

Consider the natural Z-grading on MnpF q “
à

rPZ
MnpF qr given by

MnpF qr “

$

’

&

’

%

spantek,k`r | k “ 1, . . . , n ´ ru, if 0 ď r ď n ´ 1
spantek´r,k | k “ 1, . . . , n ` ru, if ´ n ` 1 ď r ď ´1
t0u, elsewhere

(3.5)

Theorem 3.26. Let n ě 2 be an integer, let F be a field with at least pn ´ 1qn ` 1
elements where charpF q does not divide n, and let f P F xXy be a multilinear polynomial.
If fpy1, . . . , ym´1, zq R xry1, y2sy

TZ for every non-neutral variable z, then fpMnpF qq contains
slnpF q.
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Proof. Since charpF q does not divide n, then we have that any non-zero traceless matrix is
non-central. Using further that fpMnpF qq is invariant under automorphisms of MnpF q, by
Theorem 3.25 it is enough to show that fpMnpF qq contains all matrices with zero diagonal.
Let A be a zero diagonal matrix and write A as the sum of its homogeneous components
(with respect to the Z-grading on MnpF q given by (3.5))

A “

´1
ÿ

i“´n`1
Ai `

n´1
ÿ

i“1
Ai

where Ai “

n`i
ÿ

k“1
ak´i,kek´i,k for i “ ´n ` 1, . . . , ´1 and Ai “

n´i
ÿ

k“1
ak,k`iek,k`i for i “ 1, . . . ,

n ´ 1.

By hypothesis and from Corollary 3.23 we have that fpy1, . . . , ym´1, z
piq

q is not
a graded polynomial identity for UTn with the natural Z-grading, for every variable zpiq of
homogeneous degree i where 1 ď i ď n ´ 1.

We now consider the following evaluations on generic matrices: yj “

n
ÿ

k“1
w

pjq

k ekk

for all j “ 1, . . . , m ´ 1 and zpiq
“

n´i
ÿ

k“1
w

pm,iq
k ek,k`i.

Hence

fpy1, . . . , ym´1, z
piq

q “

n´i
ÿ

k“1
pk,iw

pm,iq
k ek,k`i

where pk,i is a polynomial in the variables wpjq

k . Since f R IdZpUTnq, Corollary 3.23 gives us
that the image of fpy1, . . . , ym´1, z

piq
q on UTn is exactly pUTnqi. Hence all pk,i are non-zero

polynomials. Moreover notice that pk,i is such that all its monomials are multilinear ones.

Analogously, we also have that fpy1, . . . , ym´1, z
piq

q is not a graded polynomial
identity for the lower triangular matrix algebra LTn endowed with the natural Z-grading,
for i “ ´n ` 1, . . . , ´1. Therefore

fpy1, . . . , ym´1, z
piq

q “

n´i
ÿ

k“1
qk,iw

pm,´iq
k ek`i,k

where zpiq
“

n`i
ÿ

k“1
w

pm,´iq
k ek´i,k and qk,i are non-zero commutative polynomials with multilin-

ear monomials.

The number of polynomials pk,i and qk,i is exactly pn ´ 1qn. We now apply
Corollary 3.15 to get an evaluation of all variables wpjq

k such that the polynomials pk,i
and qk,i assume simultaneously non-zero values in F . Such evaluations give us diagonal
matrices D1, . . . , Dm´1 such that

fpD1, . . . , Dm´1, z
piq

q “

n´i
ÿ

k“1
αi,kw

pm,iq
k ek,k`i
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where αi,k are non-zero scalars. Thus each matrix Ai can be realized as fpD1, . . . , Dm´1, Biq

for a suitable matrix Bi P pUTnqi, for every i “ 1, . . . , n ´ 1. Similarly we also have that
each matrix Ai can be realized as fpD1, . . . , Dm´1, Ciq for a suitable matrix Ci P pLTnqi,
for all i “ ´n ` 1, . . . , ´1. Hence

A “

´1
ÿ

i“´n`1
Ai `

n´1
ÿ

i“1
Ai “

´1
ÿ

i“´n`1
fpD1, . . . , Dm´1, Ciq `

n´1
ÿ

i“1
fpD1, . . . , Dm´1, Biq

and it is enough to use the linearity of f in one variable to get A P fpMnpF qq.

Corollary 3.27. Let charpF q “ 0 and consider the multilinear polynomial

fpx1, . . . , xmq “
ÿ

σPSm´1

ασrxm, xσp1q, . . . , xσpm´1qs P F xXy,

where
ÿ

σPSm´1

ασ ‰ 0. Then fpMnpF qq “ slnpF q.

Proof. Consider the polynomial

fpy1, . . . , ym´1, zmq P F xXZy.

In light of the Jacobi identity, one can see that modulo the TZ-ideal xry1, y2sy
TZ we have

rzm, yσp1q, . . . , yσpm´1qs “ rzm, y1, . . . , ym´1s

for all σ P Sm´1. Hence, modulo xry1, y2sy
TZ , we can write f as

f “ p
ÿ

σPSm´1

ασqrzm, y1, . . . , ym´1s.

Hence, for j “ 1, . . . ,m´ 1 we take Dj “

n
ÿ

i“1
ieii and Dm P MnpF q a non-zero non-neutral

homogeneous element concerning the grading given in (3.5), and now one can easily check
that

fpD1, . . . , Dm´1, Dmq “ p
ÿ

σPSm´1

ασqDm ‰ 0.

This implies in f R xry1, y2sy
TZ . Now it is enough to apply Theorem 3.26 to get

slnpF q Ă fpMnpF qq. Since the opposite inclusion is trivial, we get the equality.

We notice that the corollary above recovers the Shoda’s result [56] about
commutators on the full matrix algebra.
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3.6 Small dimension cases
During this section we will deal with the images of multilinear graded poly-

nomials on upper triangular matrices of small dimension and endowed with different
additional structures. We will see that a way clearer picture can be obtained when we
have small dimension. Precisely in the associative and Jordan settings the image is always
a homogeneous vector space, regardless of the grading. However in the involution case
we will see that there exist multilinear polynomials such that their images on the upper
triangular matrix algebra is not a vector space.

3.6.1 The associative setting

Throughout this section F will denote an arbitrary field.

Let us start with the case of 2ˆ2 matrices. This is actually an easy consequence
of Proposition 1.22.

Theorem 3.28. Let UT2 “ A “
à

gPG

Ag be some grading on A and let f P F xXGy be a

multilinear graded polynomial. Then fpAq is a homogeneous subspace of A.

Proof. By Theorem 3.2 and Proposition 1.22, it is enough to consider images of multilinear
graded polynomials on elementary gradings only. We notice that just two elementary
G-gradings can be defined on A “ UT2. Indeed, an elementary grading on UT2 is com-
pletely determined by the homogeneous degree of e12. If degpe12q “ 1, then we have the
trivial grading, and we apply Theorem 3.10. Hence we assume A1 “ spante11, e22u and
Ag “ spante12u, where g ‰ 1. In this grading the images of multilinear polynomials in
neutral variables are handled by Lemma 3.16 and Proposition 1.19 (2). Since A2

g “ t0u, it
is enough to consider multilinear polynomials in one variable of homogeneous degree g
and all remaining variables of neutral degree. In this case the image is contained in Ag

and by Proposition 1.19 (3) we are done.

Now we prove an analogous fact to Theorem 3.28 with A “ UT3 instead of
UT2. From now on in this subsection we assume that A is endowed with some elementary
G-grading given by a tuple pg1, g2q P G2. Hence g1 “ degpe12q, g2 “ degpe23q, and
g3 :“ g1g2 “ degpe13q.

Hence the elementary gradings on UT3 are exactly the ones given by the
following relations.

(I) t1u X tg1, g2, g3u ‰ H.

(a) g1 “ g2 “ 1, which implies g3 “ 1;
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(b) g1 “ 1 and g2 ‰ 1, which implies g3 “ g2;

(c) g2 “ 1 and g1 ‰ 1, which implies g3 “ g1;

(d) g3 “ 1, g1 ‰ 1 and g1 “ g2;

(e) g3 “ 1, g1 ‰ 1, g2 ‰ 1 and g1 ‰ g2.

(II) t1u X tg1, g2, g3u “ H.

(a) 1, g1, g2, g3 are pairwise distinct elements;

(b) g1 “ g2 ‰ g3.

In the following lemmas we discuss the grading on UT3 determined by each
relation above and we give a precise description of the respective image of a multilinear
graded polynomial on such a graded algebra.

Lemma 3.29. Let UT3 be endowed with the grading (I)(b). Then fpUT3q is a homogeneous
subspace.

Proof. We denote g2 “ g, then we have A1 “ spante11, e22, e33, e12u and Ag “ spante13, e23u.
We notice that A2

g “ t0u and hence we only need to analyse multilinear polynomials in at
most one variable of homogeneous degree g.

The case when f is a multilinear polynomial in neutral variables is settled by
Lemma 3.16 and Proposition 1.19(2).

Now we consider f as a multilinear polynomial in one non-neutral variable and
m ´ 1 neutral ones. Since A satisfies the graded identity zry1, y2s “ 0, then modulo this
identity we write f as

ÿ

1ďi1ă¨¨¨ăikďm´1
hi1,...,ikzmyi1 ¨ ¨ ¨ yik .

If all polynomials hi1,...,ik have commutator degree different from 0, then
fpUT3q Ă spante13u and then we apply Proposition 1.19(3). Otherwise we may assume
without loss of generality that h1,...,k has commutator degree 0. Then we perform the
following evaluations: y1 “ ¨ ¨ ¨ “ yk “ e33, yj “ e11 ` e22 for every j R t1, . . . , ku, and
zm “ α´1

pa1e13 ` a2e23q, where α is the sum of the coefficients of h1,...,k. Notice that under
such an evaluation we have a1e13 ` a2e23 P fpUT3q which proves that fpUT3q “ Ag.

Lemma 3.30. Let UT3 be endowed with the grading (I)(c). Then fpUT3q is a homogeneous
subspace.

Proof. Notice that A1 “ spante11, e22, e33, e23u, Ag1 “ spante12, e13u and also that A
satisfies the identities ry1, y2sz “ 0 and z1z2 “ 0. Thus, the proof is similar to the one for
(I)(b).
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Lemma 3.31. Let UT3 be endowed with the grading (I)(e). Then fpUT3q is a homogeneous
subspace.

Proof. Here we must have A1 “ spante11, e22, e33, e13u, Ag1 “ spante12u, Ag2 “ spante23u.
Notice that A2

g1 “ A2
g2 “ t0u, Ag2Ag1 “ t0u, and Ag1Ag2 Ă spante13u.

The case when f is a multilinear polynomial in neutral variables can be treated
as in the grading (I)(b). Hence we may consider f is a multilinear polynomial in: one
variable of degree g1 (respectively g2) and m ´ 1 neutral variables, or in one variable of
degree g1, one of degree g2 and m´ 2 neutral ones. In each of these situations we have that
fpUT3q is contained in a one-dimensional space and we apply Proposition 1.19(3).

Lemma 3.32. Let UT3 be endowed with the grading (II)(a). Then fpUT3q is a homogeneous
subspace.

Proof. We have A1 “ spante11, e22, e33u, Ag1 “ spante12u, Ag2 “ spante23u, and
Ag3 “ spante13u. The only nontrivial relation among the non-neutral homogeneous com-
ponents is given by Ag1Ag2 “ Ag3 .

The case of f in neutral variables is the same as for the grading (I)(b).

Since the non-neutral components are one-dimensional, then the image of a
multilinear polynomial in one non-neutral variable and m´ 1 neutral ones is always zero
or the respective homogeneous component.

In case f has one variable of homogeneous degree g1, one of degree g2 and
m ´ 2 neutral ones then the image is contained in Ag2 , and we are done.

Lemma 3.33. Let UT3 be endowed with the grading (II)(b). Then fpUT3q is a homogeneous
subspace.

Proof. Note that A1 “ spante11, e22, e33u, Ag1 “ spante12, e23u and Ag3 “ spante13u. We
only need to consider the case when f is a multilinear polynomial in m´1 neutral variables
and one of homogeneous degree g1, since the remaining cases can be treated as above. We

write f “

m
ÿ

j“1
fj where fj is the sum of all monomials from f which contain the variable

zm in the j-th position. Hence, modulo ry1, y2s “ 0 we have

fj “
ÿ

1ďi1ă¨¨¨ăij´1ďm´1
αi1,...,ij´1yi1 ¨ ¨ ¨ yij´1zmyk1 ¨ ¨ ¨ ykm´j

where k1, . . . , km´j P t1, . . . ,m ´ 1u are such that k1 ă ¨ ¨ ¨ ă km´j. We evaluate
yi “ w

piq
1 e11 ` e22 ` w

piq
3 e33 and zm “ w

pmq

1 e12 ` w
pmq

2 e23. Thus fpy1, . . . , ym´1, zmq is
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given by
¨

˚

˝

0 p1pw
p1q

1 , . . . , w
pm´1q

1 qw
pmq

1 0
0 p2pw

p1q

3 , . . . , w
pm´1q

3 qw
pmq

2

0

˛

‹

‚

where p1pw
p1q

1 , . . . , w
pm´1q

1 q “

m
ÿ

j“1

ÿ

1ďi1ă¨¨¨ăij´1ďm´1
αi1,...,ij´1w

pi1q

1 ¨ ¨ ¨w
pij´1q

1 and p2 is given

analogously.

We claim that p1 takes non-zero values on F . Indeed, assume that p1 is a
polynomial identity for F and denote ej “

ÿ

1ďi1ă¨¨¨ăij´1ďm´1
αi1,...,ij´1w

pi1q

1 ¨ ¨ ¨w
pij´1q

1 . Hence

p1 “

m
ÿ

j“1
ej.

Notice that e1 is a commutative polynomial and taking wp1q

1 “ ¨ ¨ ¨ “ w
pm´1q

1 “ 0 we have
e1 “ 0. Taking w

plq
1 “ 1 and zero for the remaining values w1’s we have αl “ 0 for all

l P t1, . . . ,m´1u and hence e2 “ 0. Now assume el “ 0 for all l ă k, and we shall prove that
ek “ 0. For each chosen i1, . . . , ik´1 we take wprq

1 “ 0 for all r R ti1, . . . , ik´1u, then el “ 0
for all l ą k and ek “ αi1,...,ik´1w

pi1q

1 ¨ ¨ ¨w
pik´1q

1 . Then we take wpi1q

1 “ ¨ ¨ ¨ “ w
pik´1q

1 “ 1 and
we conclude that αi1,...,ik´1 “ 0. Hence p1 “ 0, which is a contradiction. An analogous
claim holds for p2. Therefore it is enough to use the variables wpmq

1 and wpmq

2 to realize any
matrix in Ag1 in the image of f on UT3.

Lemma 3.34. Let UT3 be endowed with the grading (I)(d). Then fpUT3q is a homogeneous
subspace.

Proof. We denote g “ g1 and notice that A1 “ spante11, e22, e33, e13u and
Ag “ spante12, e23u. Then A2

g Ă spante13u and A satisfies the identities zry1, y2s “ 0
and ry1, y2sz “ 0. The case when f has one variable of homogeneous degree g and m ´ 1
neutral variables can be treated as in the previous lemma. The remaining cases are
considered as above.

Hence we have the following theorem.

Theorem 3.35. Let F be an arbitrary field, let UT3 “ A “
à

gPG

Ag be some nontrivial

grading on A, and let f P F xXGy be a multilinear graded polynomial. Then fpAq is a
homogeneous subspace of A. If |F | ě 3 and A is equipped with the trivial grading, then the
image is also a subspace.

Proof. The proof is clear from the previous lemmas and Proposition 1.22.
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3.6.2 The Jordan setting

Throughout this subsection we assume that F is a field of characteristic different
from 2 and we denote by UJn the Jordan algebra of the upper triangular matrices with
product a ˝ b “ pab ` baq{2. Unlike the associative setting, gradings on UJn are not only
elementary ones. Actually, a second kind of gradings also occurs on UJn, the so-called
mirror type gradings, and we define these below. First of all let us introduce the following
notation. Let i, m be non negative integers and set

E`
i:m “ ei,i`m ` en´i´m`1,n´i`1 and E´

i:m “ ei,i`m ´ en´i´m`1,n´i`1.

Definition 3.36. A G-grading on UJn is called of mirror type if the matrices E`
i:m and

E´
i:m are homogeneous, and degpE`

i:mq ‰ degpE´
i:mq.

We recall the following theorem from [46].

Theorem 3.37. The G-gradings on the Jordan algebra UJn are, up to a graded isomor-
phism, elementary or of mirror type. Moreover the support of a G-grading on UJ2 is always
commutative.

In particular we have the following classification of the gradings on UJ2.

Proposition 3.38. Up to a graded isomorphism, the gradings on UJ2 are given by
UJ2 “ A “

à

gPG

Ag where

(I) elementary ones

(a) trivial grading;

(b) A1 “ Fe11 ` Fe22, Ag “ Fe12,

(II) mirror type ones

(a) A1 “ F pe11 ` e22q, Ag “ F pe11 ´ e22q ` Fe12;

(b) A1 “ F pe11 ` e22q ` Fe12, Ag “ F pe11 ´ e22q;

(c) A1 “ F pe11 ` e22q, Ag “ F pe11 ´ e22q, Ah “ Fe12,

where g P G is an element of order 2.

Next we describe precisely the image of a multilinear graded Jordan polynomial
f on some gradings considered above.

Lemma 3.39. Let UJ2 be endowed with the grading (I)(b) and let f P J pXGq be a
multilinear polynomial. Then fpUJ2q is a homogeneous subspace.
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Proof. We start with a multilinear polynomial f in m neutral variables. We evaluate
each variable yi to an arbitrary diagonal matrix Di. Therefore each monomial m in f is
evaluated to βD1 ¨ ¨ ¨Dm, where β P F is the coefficient of m. Hence

fpD1, . . . , Dmq “ αD1 ¨ ¨ ¨Dm

where α P F is the sum of all coefficients of f . In case α “ 0, then f “ 0 is a graded
polynomial identity for UJ2, otherwise we can take D2 “ ¨ ¨ ¨ “ Dm “ I2 and use D1 in
order to obtain every diagonal matrix in the image of f on UJ2.

Since UJ2 satisfies the graded identity z1z2 “ 0 such that degpz1q “ degpz2q “ g,
then we only need to analyse the case where f is a multilinear polynomial in m´ 1 neutral
variables and one of homogeneous degree g. Obviously we must have fpUJ2q Ă Ag and
this homogeneous component is one-dimensional, then we are done.

For the grading (II)(a) we recall the following lemma from [34] applied to
multilinear polynomials. If no brackets are given in a product, we assume these left-
normed, that is abc “ pabqc.

Lemma 3.40. Let UJ2 be endowed with the grading (II)(a) and let f P J pXGqg be a
multilinear polynomial. Then, modulo the graded identities of UJ2, we can write f as a
linear combination of monomials of the type

y1 ¨ ¨ ¨ ylzi0pzi1zi2q ¨ ¨ ¨ pzi2m´1zi2mq, 1 ă ¨ ¨ ¨ ă l, i1 ă i2 ă i3 ă ¨ ¨ ¨ ă im ă im`1, i0 ą 0.

Lemma 3.41. Let UJ2 be endowed with the grading (II)(a). Then fpUJ2q is a homogeneous
subspace.

Proof. Since dimpA1q “ 1 it follows that if the image of a multilinear polynomial on UJ2

is contained in A1 then it must be either t0u or A1.

Now we consider a multilinear polynomial f in homogeneous variables of degree
1 and g such that degpfq “ g. Let m “ y1 ¨ ¨ ¨ ylzi0pzi1zi2q ¨ ¨ ¨ pzi2m´1zi2mq be a monomial as
in Lemma 3.40. We notice that the main diagonal of a matrix in mpUJ2q is such that the
entry pk, kq is given by p´1q

k`1a, where a is the product of the entries at position p1, 1q of
all matrices y and z. Hence every matrix in fpUJ2q is of the form

˜

α ¨ a ˚

´α ¨ a

¸

where α is the sum of all coefficients of f .

In case α “ 0, then fpUJ2q Ă spante12u and then the image is completely
determined.
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We consider now α ‰ 0. Our goal is to prove that fpUJ2q “ Ag. With-
out loss of generality, we assume that the non-zero scalar occurs in the monomial
y1 ¨ ¨ ¨ ylz0pz1z2q ¨ ¨ ¨ pz2m´1z2mq. Then we take the following evaluation: y1 “ ¨ ¨ ¨ “ yl “ I2,
z0 “ w1pe11 ´ e22q ` w2e12 and zi “ e11 ´ e22 for every i “ 1, . . . , 2m, where w1, w2 are
commutative variables. Therefore

fpy1, . . . , yl, z0, . . . , z2mq “

˜

αw1 w2

´αw1

¸

.

Since α ‰ 0, it follows that fpUJ2q “ Ag.

Now we consider the grading (II)(b) and we recall another lemma from [34]
that we state in the following.

Lemma 3.42. Let f P J pXq1 be a multilinear polynomial. Then, modulo the graded
identities of UJ2, f can be written as a linear combination of monomials of the form

1. pyi1 ¨ ¨ ¨ yirqpzj1 ¨ ¨ ¨ zjlq;

2. pppyizj1qzj2qyi1 ¨ ¨ ¨ yirqzj3 ¨ ¨ ¨ zjl,

where l ě 0 is even, r ě 0, i1 ă ¨ ¨ ¨ ă ir, and zj1 ă zj2 ă zj3 ă ¨ ¨ ¨ ă zjl.

Lemma 3.43. Let UJ2 be endowed with the grading (II)(b). Then fpUJ2q is a homogeneous
subspace.

Proof. We start with a multilinear polynomial f in m neutral variables. Notice that UJ2

satisfies the graded identity py1, y2, y3q “ 0. Hence, modulo the graded identities of UJ2

we can write f as
f “ αy1 ¨ ¨ ¨ ym,

where α is the sum of the coefficients in f . If α “ 0, then f is a graded identity of UJ2 and
we are done. In case α ‰ 0 it is enough to take y2 “ ¨ ¨ ¨ “ ym “ I2 and use y1 to realize
an arbitrary element from A1 in the image of f . This implies in fpUJ2q “ A1.

Now we consider a multilinear polynomial f which has at least one variable of
homogeneous degree g. In case degpfq “ g, then fpUJ2q is completely determined, since
dimpAgq “ 1. So we assume degpfq “ 1. In case f is a multilinear polynomial in variables
of homogeneous degree g, then fpUJ2q is contained in the vector space of the scalar
matrices, and therefore the image is completely determined. Hence we assume further that
f has at least one variable of neutral degree and let f be a multilinear polynomial in l

neutral variables y1, . . . , yl, and m ´ l variables zl`1, . . . , zm of homogeneous degree g.
Then by Lemma 3.42, we write f as

f “ α1py1 ¨ ¨ ¨ ylqpzl`1 ¨ ¨ ¨ zmq `

l
ÿ

i“1
αi`1pppyizl`1qzl`2qy1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylqzl`3 ¨ ¨ ¨ zm.
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Here pyi means that the variable yi does not appear in the product y1 ¨ ¨ ¨ pyi ¨ ¨ ¨ yl.

We replace yi “ w
piq
1 pe11 ` e22q `w

piq
2 e12 and zj “ w

pjq

1 pe11 ´ e22q, where the w’s
are commuting variables. Notice that the Jordan product of two matrices y1 and y2 is
given by y1 ¨ y2 where the dot ¨ stands for the usual product of matrices. On the other
hand, the usual product of n matrices y1, . . . , yn is given by

˜

w
p1q

1 ¨ ¨ ¨wpnq
n w

w
p1q

1 ¨ ¨ ¨wpnq
n

¸

,

where
w “

ÿ

1ďi1ă¨¨¨ăin´1ďn
inPt1,...,nuzti1,...,in´1u

w
pi1q

1 ¨ ¨ ¨w
pin´1q

1 w
pinq

2 ,

as one can see by induction on n. Hence the image of the monomial

α1py1 ¨ ¨ ¨ ylqpzl`1 ¨ ¨ ¨ zmq

on UJ2 is equal to

α1

¨

˚

˚

˝

w
p1q

1 ¨ ¨ ¨w
pmq

1

ÿ

1ďi1ă¨¨¨ăil´1ďl
ilPt1,...,luzti1,...,il´1u

w
pi1q

1 ¨ ¨ ¨w
pil´1q

1 w
pilq
2 w

pl`1q

1 ¨ ¨ ¨w
pmq

1

w
p1q

1 ¨ ¨ ¨w
pmq

1

˛

‹

‹

‚

,

while the image of
αi`1pppyizl`1qzl`2qy1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylqzl`3 ¨ ¨ ¨ zm

on UJ2 is equal to

αi`1

˜

w
p1q

1 ¨ ¨ ¨w
pmq

1

w
p1q

1 ¨ ¨ ¨w
pmq

1

¸

.

Therefore the main diagonal of fpy1, . . . , yl, zl`1, . . . , zmq is given by

αw
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` e22q

where α is the sum of all coefficients in f . The entry at position p1, 2q is given by
ÿ

1ďi1ă¨¨¨ăil´1ďl
ilPt1,...,luzti1,...,il´1u

w
pi1q

1 ¨ ¨ ¨w
pil´1q

1 w
pilq
2 w

pl`1q

1 ¨ ¨ ¨w
pmq

1 e12.

If α “ 0, then fpUJ2q Ă spante12u and we are done. We thus assume α ‰ 0 and we
notice that we may also assume α1 ‰ 0, otherwise fpUJ2q Ă spante11 ` e22u which is an
one-dimensional subspace.

We therefore take

• w
piq
1 “ 1 for i “ 2, . . . ,m;
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• w
piq
2 “ 0 for i “ 2, . . . , l.

These evaluations imply that

fpy1, e11 ` e22, . . . , e11 ` e22, e11 ´ e22, . . . , e11 ´ e22q “

˜

αw
p1q

1 α1w
p1q

2

αw
p1q

1

¸

.

Since both α and α1 are non-zero scalars, then we can realize any matrix from A1 in the
image of f on UJ2, that is, fpUJ2q “ A1.

Theorem 3.44. Let UJ2 “
à

gPG

Ag be a G-grading and let f P J pXGq be a multilinear

graded Jordan polynomial. Then fpUJ2q is a homogeneous subspace.

Proof. We first consider a nontrivial grading on UJ2. By Remark 1.23 we may reduce the
defined grading on UJ2 to one of those described above. We note that the case of the
grading (II)(c) follows from the fact that fpUJ2q is entirely contained in some homogeneous
component and all of them are one-dimensional. We use Lemmas 3.39, 3.41 and 3.43 for the
remaining nontrivial gradings. Now we consider the trivial grading on UJ2. Let f P JpXq

be a multilinear polynomial. We may assume that f R IdpUJ2q. By [57], the algebra
JpXq{IdpUJ2q is a special Jordan algebra, and hence we may assume f as an element in
the free special Jordan algebra. Therefore, the image fpUJ2q is equal to the image of some
associative polynomial on UT2. Hence fpUJ2q P tJ, UJ2u where J “ JacpUT2q.

Remark 3.45. Consider the Lie algebra UT p´q
n with product given by the Lie bracket.

Given a grading on UT p´q
n , we notice that J “ rUT p´q

n , UT p´q
n s is always a homogeneous

ideal. We also notice that if f P LpXGq is a multilinear polynomial of degree ě 2, then
fpUT p´q

n q is contained in J . In particular, for n “ 2 we must have that fpUT
p´q

2 q is
contained in spante12u which is a homogeneous subspace. Since the image of multilinear
polynomials of degree 1 is trivial, we have that fpUT

p´q

2 q is always a homogeneous subspace,
regardless of the grading defined on UT

p´q

2 .

3.6.3 The natural elementary Z3-grading in the Jordan algebra UJ3

In this section we study images of multilinear polynomials on the Jordan algebra
A “ UJ3 endowed with the elementary Z3-grading given by the sequence p0, 1, 2q, that
is, A0 “ spante11, e22, e33u, A1 “ spante12, e23u, and A2 “ spante13u. We assume the base
field is of characteristic different from 2.

We recall the following identity which holds in any Jordan algebra.

Lemma 3.46. Let J be a Jordan algebra. Then

abcd ` adcb ` bdca “ pabqpcdq ` pacqpbdq ` padqpbcq

for all a, b, c, d P J .
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Proof. See for example [37, Page 34].

As an easy consequence of Lemma 3.46 we have

abcd ` adcb ` bdca “ abdc ` acdb ` bcda (3.6)

for every a, b, c, d P J .

The next lemma points out some graded identities for the algebra UJ3.

Lemma 3.47. The identities

py1, y2, y3q “ 0, py1, z, y2q “ 0 and z1z2 “ 0

hold for UJ3, where z, z1, z2 are odd variables and either degpz1q ` degpz2q “ 0 or
degpz1q “ degpz2q “ 2.

Proof. A straightforward computation, hence it is omitted.

The next lemma has the same proof as [34, Lemma 5.3]. However we will
consider its proof here for the sake of completeness.

Lemma 3.48. The polynomial

g “ y1py2py3zqq ´
1
2

ˆ

y1pzpy2y3qq ` y2pzpy1y3qq ` y3pzpy1y2qq ´ zpy1py2y3qq

˙

is a consequence of py1, z, y2q, where degpzq P t1, 2u.

Proof. Taking a “ y2, b “ y3, c “ z and d “ y1 in the identity (3.6) we have

´ppy2y3qzqy1 ´ ppy1y3qzqy2 ´ ppy1y2qzqy3 ` ppy2y3qy1qz “ ´ppy2zqy1qy3 ´ ppy3zqy1qy2.

Hence, we can write h “ 2g as

h “ 2py1py2py3zqq ´ ppy2zqy1qy3 ´ ppy3zqy1qy2

“ py3, z, y2qy1 ` py2, zy3, y1q ` py3, zy2, y1q

which implies that g is a consequence of py1, z, y2q.

Given two even variables yi and yj we set yi ă yj if i ă j. Hence we define an
order on words in even variables Y1 ă Y2 considering the left lexicographic order in case
Y1 and Y2 have the same length, and Y1 ă Y2 in case Y2 is longer than Y1. For the next
lemma we use ideas from [34, Lemma 5.6]. We denote by T the TG-ideal generated by the
identities from Lemma 3.47.
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Lemma 3.49. Let f “ fpy1, . . . , ym´1, zmq P JpXZ3q be a multilinear polynomial, where
degpzmq P t1, 2u. Then modulo T , f is a linear combination of monomials of the form
Y1pzY2q, where each Yi is an increasingly ordered product of even variables and Y1 ă Y2.

Proof. It is enough to consider f “ fpy1, . . . , ym´1, zmq as a monomial. We apply induction
on m. If m “ 1 or m “ 2, then the conclusion is obvious. So we assume m ě 3 and we
write f “ gh where g, h P JpXGq. Without loss of generality we may assume that the odd
variable zm occurs in g. Hence h “ Y1 and by the induction hypothesis we must have g as
a linear combination of monomials of the form Y2pzY3q. On the other hand the Lemma
3.48 gives us that

pY2pzY3qqY1 “
1
2

ˆ

Y1pzpY2Y3qq ` Y2pzpY1Y3qq ` Y3pzpY1Y2qq ´ zpY1pY2Y3qq

˙

.

Now it is enough to use the identities py1, y2, y3q “ 0, py1, z, y2q “ 0 and the commutativity
of the Jordan product to get that each monomial inside the bracket on the right side of
the equation above is actually in the desired form.

Theorem 3.50. Let F be an infinite field of characteristic different from 2 and let
f P JpXZ3q be a multilinear graded polynomial. Then the image of f on the graded
Jordan algebra UJ3 endowed with the natural elementary Z3-grading is either t0u or some
homogeneous component.

Proof. Since f is a homogeneous element in the graded algebra JpXZ3q and z1z2 “ 0 holds
on UJ3, for either deg z1 ` deg z2 “ 0 or degpz1q “ degpz2q “ 2, we will consider the
following three cases in our proof.

Case 1: deg f “ 0. Here we must have f “ fpy1, . . . , ymq and the proof is the
same as the first paragraph of the proof of Lemma 3.39.

Case 2: deg f “ 1. Let f “ fpy1, . . . , ym´1, zmq be such that deg zm “ 1. By
Lemma 3.49, modulo T , we may write f as a linear combination of monomials of the form
Y1pzmY2q, where Y1 ă Y2. On the other hand, given

yi “

3
ÿ

k“1
w

piq
k ekk and zm “ w

pmq

1 e12 ` w
pmq

2 e23, (3.7)

note that yizm “
1
2

¨

˚

˝

0 pw
piq
1 ` w

piq
2 qw

pmq

1 0
0 pw

piq
2 ` w

piq
3 qw

pmq

2

0

˛

‹

‚

and then

fpy1, . . . , ym´1, zmq “

¨

˚

˝

0 p1w
pmq

1 0
0 p2w

pmq

2

0

˛

‹

‚
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where p1 and p2 are polynomials in the variables wpiq, i “ 1, . . . , m ´ 1. We claim that if
f ‰ 0 modulo T , then p1 ‰ 0 and p2 ‰ 0. Indeed, consider the monomial m “ αY1pzmY2q,
where Y1 “ yj1 ¨ ¨ ¨ yjr , Y2 “ yl1 ¨ ¨ ¨ yls and Y1 ă Y2. Note that the p1, 2q entry of the image
of m under the evaluation (3.7) is given by

1
4αpw

pj1q

1 ¨ ¨ ¨w
pjrq

1 ` w
pj1q

2 ¨ ¨ ¨w
pjrq

2 qw
pmq

1 pw
pl1q

1 ¨ ¨ ¨w
plsq

1 ` w
pl1q

2 ¨ ¨ ¨w
plsq

2 q.

Hence p1 contains the following monomials
1
4αw

pj1q

1 ¨ ¨ ¨w
pjrq

1 w
pl1q

2 ¨ ¨ ¨w
plsq

2 and 1
4αw

pj1q

2 ¨ ¨ ¨w
pjrq

2 w
pl1q

1 ¨ ¨ ¨w
plsq

1 .

Since Y1 ă Y2, the two monomials above can only be obtained from the monomial m.
Hence, if f ‰ 0 modulo T , then f contains some monomial m as above for some non-zero
α, which will imply in non-zero monomials in p1 that are not scalar multiple of any other
one that comes from the remaining monomials of f . The same ideas also prove that p2 ‰ 0.

Now we use the fact that F is infinite to get evaluations of the even variables
for diagonal matrices such that p1 and p2 assume non-zero values on F , simultaneously.
We finally use the variables wpmq

1 and w
pmq

2 to get arbitrary odd matrices in fpUJ3q, that
is, fpUJ3q “ pUJ3q1.

Case 3: deg f “ 2. This last case follows from the fact that the homogeneous
component of degree 2 is one dimensional.

3.6.4 The (graded) involution setting

In this section F is a field of characteristic different from 2. Recall that an
involution ˚ on an algebra A defines two subspaces S and K of A such that A “ S ‘ K,
and where S consists of the symmetric elements, that is, a P A such that a˚

“ a, while K
consistis of the skew-symmetric ones, that is, a P A such that a˚

“ ´a.

Two algebras with involution pA, ˚1q and pB, ˚2q are isomorphic as algebras with
involution if there exists an isomorphism of algebras φ : A Ñ B such that φpa˚1q “ φpaq

˚2 ,
for all a P A. We say that two involutions ˚1 and ˚2 on A are equivalent if pA, ˚1q and
pA, ˚2q are isomorphic as algebras with involution.

An involution ˚ on a G-graded algebra A is called a G-graded involution if the
homogeneous components of A are invariant under ˚, that is, if

Γ : A “
à

gPG

Ag

is the G-grading on A, then A˚
g Ă Ag, for all g P G. We notice that the subspaces S and

K are homogeneous in the grading.

Setting XG “ txi,g|g P G, i “ 1, 2, . . . u and X˚
G “ tx˚

i,g|g P G, i “ 1, 2, . . . u, we
denote by F xXG, X

˚
Gy the free G-graded associative algebra with involution. By writting
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yi,g “ pxi,g`x
˚
i,gq{2 and zi,g “ pxi,g´x

˚
i,gq{2 and denoting YG “ tyi,g|g P G, i “ 1, 2, . . . u and

ZG “ tzi,g|g P G, i “ 1, 2, . . . u, we may consider elements from F xXG, X
˚
Gy as polynomials

in homogeneous symmetric/skew-symmetric variables. We also will use F xYG Y ZGy to
denote the free G-graded associative algebra with involution.

The space of multilinear graded polynomials with involution is given by

P pG,˚q
m “ spantξσp1q,g1 ¨ ¨ ¨ ξσpmq,gm |ξi P tyi, ziu, i “ 1, . . . ,m, g1, . . . , gm P Gu.

We notice here that polynomial functions given by the polynomials in Pm are not multilinear
functions. For instance, the polynomial f “ y1,gz2,h ` z1,gz2,h is a multilinear graded ˚-
polynomial however the function given by it on some graded algebra with involution is
not bilinear. In order to obtain multilinear functions we will need to consider the following
multilinear graded ˚-polynomials from Pm.

For a fixed m-tuple pg1, . . . , gmq P Gm, let us consider the subspace P pG,˚q

m,l of
P pG,˚q
m given by

P
pG,˚q

m,l “ spantξσp1q ¨ ¨ ¨ ξσpmq|ξi “ yi,gi , i “ 1, . . . , l, ξi “ zi,gi , i “ l ` 1, . . . ,mu.

In case the G-grading is trivial, that is, G defined as the trivial group, then we
simply denote P pG,˚q

m,l just by P ˚
m,l.

Definition 3.51. Let f “ fpy1,g1 , . . . , yl,gl , zl`1,gl`1 , . . . , zm,gmq P P
pG,˚q

m,l and let A be an
algebra with involution. We define the image of f on A (denoted by fpAq) as the image of
the function

f̃ : Sg1 ˆ ¨ ¨ ¨ Sgl ˆ Kgl`1 ˆ ¨ ¨ ¨ ˆ Kgm Ñ A
pa1, . . . , al, bl`1, . . . , bmq ÞÑ fpa1, . . . , al, bl`1, . . . , bmq.

,

where ai P Sgi and bj P Kgj .

We now turn our attention to recall the following description of (graded)
involutions on the upper triangular matrix algebra UTn.

Definition 3.52. The reflexive involution r on UTn is defined as Ar “ QAtQ, where
A P UTn, At denotes the usual transposition of matrices and Q is the permutation matrix

Q “

¨

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 1
0 ¨ ¨ ¨ 1 0
... ... ...
1 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‚

.

In case n “ 2k is even, we define a second involution on UTn named the sympletic
involution s given by As “ DArD´1 where A P UTn and

D “

˜

Ik 0
0 ´Ik

¸

.
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The next result from [19] shows that involutions on upper triangular matrices
are essentially the reflexive and the sympletic one (the later occurring only in matrices of
even order).

Theorem 3.53 ([19]). Every involution on UTn is equivalent to the reflexive or the
sympletic one.

Graded involutions on UTn are also well known. We recall them in the following.

Theorem 3.54 ([29]). Let F be an algebraically closed field of characteristic different
from 2, and let G be a group. Let Γ1 be a G-grading on UTn such that supppΓ1q generates
G. Let φ1 be a graded involution on Γ1. Then pΓ1, φ1q is isomorphic to pΓ2, φ2q where
Γ2 is the elementary grading on UTn induced by a sequence pg1, . . . , gnq P Gn such that
g1gn “ g2gn´1 “ ¨ ¨ ¨ “ gng1 and φ2 is either r or s.

In the following sections we describe the images of polynomials from P
pG,˚q

m,l on
UT2 and UT3 and we show the difficulties of extending such results to higher dimensions.

3.6.4.1 2 ˆ 2 matrices

First of all we recall that both reflexive and sympletic involutions acts on UT2

as follows:
˜

a b

0 c

¸r

“

˜

c b

0 a

¸

and
˜

a b

0 c

¸s

“

˜

c ´b

0 a

¸

.

In light of Theorem 3.54, one can easily see that a graded involution on UT2 is
isomorphic to either the reflexive or sympletic one, where UT2 is endowed with either the

• Γ2,1 - trivial grading;

• Γ2,2 - UT2 “ A1 ‘ Ag, where A1 “ spante11, e22u and Ag “ spante12u.

The next three subsections are devoted to classify the images of polynomials
from P

pG,˚q

m,l on UT2. In particular we show that the image is always a vector space.

3.6.4.1.1 Grading Γ2,1: the reflexive case

We notice that UT2 “ S ‘ K, where S “ spante11 ` e22, e12u and
K “ spante11 ´ e22u. In the following we recall a result from [19] (see also [35]).

Proposition 3.55. Let f P F xY Y Zy. Then, modulo the identities with involution of
pUT2, rq, we have that f is a linear combination of polynomials of the form

yp1
1 ¨ ¨ ¨ ypnn z

q1
1 ¨ ¨ ¨ zqmm rzm, yks and yp1

1 ¨ ¨ ¨ ypnn z
q1
1 ¨ ¨ ¨ zqmm

where n ě 1,m ě 1, p1, . . . , pn, q1, . . . , qm ě 0, k ě 1.
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We consider a set of commuting variables W “ tw
piq
j |i, j “ 1, 2, . . . u and the

commutative polynomial algebra F rW s. Let us also set the following evaluations of the
symmetric and skew-symmetric variables by matrices with entries in F rW s:

yi “

˜

w
piq
1 w

piq
2

w
piq
1

¸

and zj “

˜

w
pjq

1 0
´w

pjq

1

¸

. (3.8)

Remark 3.56. In a product x1 ¨ ¨ ¨ pxi ¨ ¨ ¨ xm, the hat p means that the variable xi is missing.

Lemma 3.57. In light of (3.8), the entry p1, 2q of y1 ¨ ¨ ¨ yl is given by
l

ÿ

i“1
w

p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

plq
1 w

piq
2

Proof. It is enough to apply induction on l.

In the following result we identify the space of scalar matrices with F and we
also denote J “ spante12u.

Theorem 3.58. Let f P P ˚
m,l. Then the image of f on pUT2, rq is t0u, J, F,K,S, or K `J .

Proof. Let f “ fpy1, . . . , yl, zl`1, . . . , zmq. By Proposition 3.55, we may write f modulo
IdpUT2, rq as

f “ αy1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm `

l
ÿ

i“1
αiy1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm´1rzm, yis

and additionally assume f non-zero modulo IdpUT2, rq. Notice that if α “ 0, then
fpUT2q “ J . Indeed, this follows from the fact that the image of rzm, yis is contained in J
along with the later being an one-dimensional ideal of UT2.

We may assume from now on that α ‰ 0 and let us denote η “ m ´ l. Note
that under the evaluation (3.8) and by Lemma 3.57 we have that the entry p1, 2q of
y1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm is given by

py1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zmq12 “ p´1q
ηw

pl`1q

1 ¨ ¨ ¨w
pmq

1

l
ÿ

i“1
w

p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

plq
1 w

piq
2 .

Moreover, for each i P t1, . . . , lu, we have rzm, yis “ 2wpmq

1 w
piq
2 e12 and also

py1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm´1q11 “ w
p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

plq
1 w

pl`1q

1 ¨ ¨ ¨w
pm´1q

1 .

Thus
y1 ¨ ¨ ¨ py1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm´1rzm, yis “ 2wp1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
2 e12.

Therefore we conclude that fpy1, . . . , yl, zl`1, . . . , zmq is given by the following sum:

αw
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` p´1q
ηe22q `

l
ÿ

i“1
pp´1q

ηα ` 2αiqwp1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
2 e12.
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If p´1q
ηα`2αi “ 0 for all i P t1, . . . , lu, then one can see that fpUT2q “ F or fpUT2q “ K,

according to whether η is even or odd, respectively.

We assume now that p´1q
ηα ` 2αk ‰ 0 for some k P t1, . . . , lu. We thus have

that fpUT2q Ă S, in case η is even, or fpUT2q Ă K ` J otherwise. We further perform the
following evaluation on the commutative variables wpiq

j :

• w
piq
1 “ 1 for i “ l ` 1, . . . ,m;

• w
piq
2 “ 0 for all i ‰ k;

• w
piq
1 “ 1 for all i P t1, . . . , luztku.

Therefore,

fpy1, . . . , yl, zl`1, . . . , zmq “ αw
pkq

1 pe11 ` p´1q
ηe22q ` pp´1q

ηα ` 2αkqw
pkq

2 e12

which implies in fpUT2q “ S or fpUT2q “ K ` J .

3.6.4.1.2 Grading Γ2,1: the symplectic case

Once again, we start recalling the following proposition from [19] (see also [35]).

Proposition 3.59. Let f P F xY Y Zy. Then, modulo the identities with involution of
pUT2, sq, we have that f is a linear combination of polynomials of the form

yp1
1 ¨ ¨ ¨ ypnn rzj, zisz

qi
i z

qi`1
i`1 ¨ ¨ ¨ zqmm and yp1

1 ¨ ¨ ¨ ypnn z
q1
1 ¨ ¨ ¨ zqmm

where j ą i.

We consider evaluations of the variables zi’s by matrices with entries in F rW s:

zi “

˜

w
piq
1 w

piq
2

´w
piq
1

¸

(3.9)

for i P t1, . . . ,mu.

Lemma 3.60. In light of (3.9), the matrix z1 ¨ ¨ ¨ zm is given by

w
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` p´1q
me22q `

m
ÿ

i“1
p´1q

i`mw
p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
2 e12

Proof. Induction on m.

The proof of the next theorem follows the same ideas from the reflexive case.

Theorem 3.61. Let f P P ˚
m,l. Then the image of f on pUT2, sq is t0u, J,S,K,KXD,S `J ,

where D denotes the space of diagonal matrices.
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Proof. By Proposition 3.59 and since S “ F , we may consider

fpz1, . . . , zmq “ α0z1 ¨ ¨ ¨ zm `

m
ÿ

i“2
αirzi, z1sz2 ¨ ¨ ¨ pzi ¨ ¨ ¨ zm.

We notice that
rzi, z1s “ 2pw

piq
1 w

p1q

2 ´ w
piq
2 w

p1q

1 qe12

and
pz2 ¨ ¨ ¨ pzi ¨ ¨ ¨ zmq22 “ p´1q

mw
p2q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 .

Hence,

rzi, z1sz2 ¨ ¨ ¨ pzi ¨ ¨ ¨ zm “ p´1q
m2pw

p2q

1 ¨ ¨ ¨w
pmq

1 w
p1q

2 ´ w
p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
2 qe12

and therefore the evaluation of f on the matrices z1, . . . , zm is given by the sum of the
following two matrices

α0w
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` p´1q
me22q

and
`

p´1q
m

p´α0`

m
ÿ

i“2
2αiqwp2q

1 ¨ ¨ ¨w
pmq

1 w
p1q

2 `

m
ÿ

i“2
p´1q

m
pp´1q

iα0`2αiqwp1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
2

˘

e12.

We may assume α0 ‰ 0, otherwise the image is already determined since fpUT2q Ă J .

If ´α0 `

m
ÿ

i“2
2αi “ 0 and p´1q

iα0 ` 2αi “ 0 for all i P t2, . . . ,mu, then it is easy

to see that fpUT2q “ spante11 ` p´1q
ne22u P tS,K X Du. Otherwise let us first assume

that ´α0 `

m
ÿ

i“2
2αi ‰ 0. Then we perform the following evaluation of the commutative

variables wpiq
j :

• w
piq
2 “ 0 for all i P t2, . . . ,mu;

• w
piq
1 “ 1 for all i P t2, . . . ,mu.

We therefore have

fpz1, . . . , zmq “ α0w
p1q

1 pe11 ` p´1q
me22q ` p´1q

m
p´α0 `

m
ÿ

i“1
2αiqwp1q

2 e12

which implies in fpUT2q “ spante11 ` p´1q
me22, e12u P tK,S ` Ju.

Assume now that p´1q
iα0 ` 2αi ‰ 0 for some i P t2, . . . ,mu. We thus set the

evaluation

• w
pjq

2 “ 0 for all j P t1, . . . ,muztiu;

• w
pjq

1 “ 1 for all j P t1, . . . ,muztiu.
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We obtain then

fpz1, . . . , zmq “ α0w
piq
1 pe11 ` p´1q

me22q ` p´1q
m

pp´1q
i

` 2αiqwpiq
2 e12,

which clearly leads us to fpUT2q “ spante11 ` p´1q
me22, e12u P tK,S ` Ju.

3.6.4.1.3 Grading Γ2,2

Let us first write
UT2 “ A1 ‘ Ag,

where A1 “ spante11, e22u and Ag “ spante12u. We further write

A1 “ S1 ‘ K1 and Ag “ Sg ‘ Kg (3.10)

with respect to the involution ˚ P tr, su.

Applying Corollary 1.21 gives us that the image of a multilinear graded poly-
nomial with involution f on UT2 is a vector space (the subspaces Vi are defined as the
ones appearing in the decompositions in (3.10), accordingly to the homogeneous degree
and symmetry of the variables occuring in f). Indeed, since SupppΓ2,2q is abelian, then
fpUT2q is contained in some homogeneous component, and now one just need to notice
that both A1 and Ag have dimension ď 2.

It is also straightforward to obtain a precise classification of the images of
multilinear graded ˚-polynomials on UT2 with the grading Γ2,2.

Proposition 3.62. Let f P F xYGYZGy be multilinear and consider the G-graded involution
˚ P tr, su on UT2 with respect to the grading Γ2,2. Then fpUT2q is either t0u or some
(skew-)symmetric part from some homogeneous component.

Proof. Let us consider ˚ “ r, since the sympletic case is quite similar. First we note that

S1 “ spante11 ` e22u,K1 “ spante11 ´ e22u,Sg “ Ag and Kg “ t0u.

Since SupppΓ2,2q “ t1, gu, we may consider that only variables of homogeneous
degree 1 and g occur in f . Now note that Sg is a nilpotent ideal of UT2 of index 2, and it
is one-dimensional as a vector space. Hence if f has at least one variable of homogeneous
degree g, then fpUT2q is either t0u or Sg.

So we may assume now that f has only neutral variables. Since UT2 satisfies
the graded ˚-identities rz1,1, z2,1s “ 0 and ry1,1, xs “ 0, where x P YG Y ZG, then modulo
these identities we may write f as

f “ αy1,1 ¨ ¨ ¨ yl,1zl`1,1 ¨ ¨ ¨ zm,1,

for some α P F . This will therefore imply in fpUT2q equals to t0u,S1 or K1.
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We therefore conclude the following theorem.

Theorem 3.63. Let F be an algebraically closed field of characteristic different from 2.
Let f P P

pG,˚q

m,l . Assume that UT2 is endowed with some G-graded involution ˚ on a grading
Γ such that supppΓq generates G. Then the image of f on UT2 is a homogeneous vector
space.

In the next section we show that a result like Theorem 3.63 can not be obtained
if we consider matrices of order greater than 2.

3.6.4.2 The image is not always a vector space

Next we present an example which shows that an analogue of Theorem 3.63
can not be expected for upper triangular matrices of order n ě 3. In other words, we
prove that images of multilinear ˚-polynomials on UTn are not always vector spaces. The
polynomial from our example will be in skew-symmetric variables. For that reason, we
recall that the skew-symmetric part of UTn with the reflexive involution is given by

K “ spanteij ´ en`1´j,n`1´i|i ď j, i, j “ 1, . . . , nu.

Proposition 3.64. Let n ě 3 and let UTn be endowed with the reflexive involution. Then
the image of the multilinear polynomial fpz1, z2q “ z1z2 on UTn is not a vector space.

Proof. Let n be an odd integer (the even case can be treated analogously, up to minor
adjustments), and let us assume that fpUTnq is a vector space.

Denoting n0 “
n ` 1

2 we have that

e11 ` enn “ fpe11 ´ enn, e11 ´ ennq

e1n “fpe1,n0 ´ en0,n,´e1,n0 ` en0,nq.

Hence we must have e11 ` enn ` e1n P fpUTnq, that is, there exist A,B P K
such that

e11 ` enn ` e1n “ AB. (3.11)

Let us write
A “

ÿ

1ďiďjďn

aijeij and B “
ÿ

1ďiďjďn

bijeij.

and since A,B P K, we additionally have that aij “ ´an`1´j,n`1´i and bij “ ´bn`1´j,n`1´i,
for all i, j.

We claim that pABq1n “ 0, which clearly leads us to a contradiction. To prove
the claim, let us compute the following entries of the product AB:
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1. “Half first row”: for j “ 2, . . . , n0, the entry p1, jq is given by

j
ÿ

i“1
a1ibij

2. “Half last column”: for i “ n0, . . . , n ´ 1, the entry pi, nq is given by
n

ÿ

j“i

aijbjn.

We rewrite the entry pi, nq above as

n
ÿ

j“i

aijbjn “

n
ÿ

j“i

an`1´j,n`1´ib1,n`1´j “

l
ÿ

k“1
aklb1k,

for l “ 2, . . . , n0.

We now prove that a1j “ b1j “ 0 for j “ 2, . . . , n0. To this end we proceed by
induction on n0. For the base of the induction, we note that the entries p1, 2q and pn´ 1, nq

along with Equation (3.11) give us

a11b12 ` a12b22 “ 0 and a22b12 ` a12b11 “ 0.

Since a11b11 ‰ 0 and a22b22 “ 0, we therefore get a12 “ b12 “ 0. We assume now
a1j “ b1j “ 0 for j ă n0. Considering the entries p1, n0q and pn0, nq along with Equation
(3.11) we have

n0
ÿ

i“1
a1ibi,n0 “ 0 and

n0
ÿ

k“1
ak,n0b1k “ 0.

By our induction hypothesis, the two equations above reduce to

a11b1,n0 ` a1,n0bn0,n0 “ 0 and a1,n0b11 ` an0,n0b1,n0 “ 0.

Now it is enough to use that a11b11 ‰ 0 and an0,n0bn0,n0 “ 0 to get
a1,n0 “ b1,n0 “ 0.

Finally, to obtain our claim we just need to notice that

pABq1n “

n
ÿ

i“1
a1ibin “ ´

n
ÿ

i“1
a1ib1,n`1´i

and that a1n “ b1n “ a1i “ b1i “ 0 for i “ 2, . . . , n0.

3.6.4.3 The 3 ˆ 3 case and one more example

In the last section we proved in particular that images of multilinear ˚-
polynomials on UT3 are not always vector spaces. In that situation we had UT3 endowed
with the trivial grading. In this section we will show that the picture changes when we
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allow UT3 be endowed with some nontrivial grading. Moreover, we also show that the
nontrivial grading setting fails if we consider upper triangular matrices of order greater
than 3.

Let us recall that, up to equivalence, there is only one involution on UT3, the
reflexive one, given by:

¨

˚

˝

a11 a12 a13

a22 a23

a33

˛

‹

‚

r

“

¨

˚

˝

a33 a23 a13

a22 a12

a11

˛

‹

‚

.

Therefore, the only graded involutions on UT3 are the ones given by the reflexive involution
r and gradings:

• Γ1,3 - trivial grading;

• Γ2,3 - UT3 “ A1 ‘ Ag, where A1 “ spante11, e22, e33, e13u and Ag “ spante12, e23u;

• Γ3,3 - UT3 “ A1 ‘ Ag ‘ Ah, where A1 “ spante11, e22, e33u, Ag “ spante12, e23u and
Ah “ spante13u.

In the next subsections we describe the images of polynomials from P
pG,˚q

m,l on UT3. In
particular, we show that the image is always a vector space in case UT3 is endowed with a
nontrivial grading. We also give an example of a multilinear graded ˚-polynomial whose
image on UTn pn ě 4q is not a vector space where UT4 is endowed with the natural
Zn-grading.

3.6.4.3.1 The grading Γ2,3

We recall that A1 “ spante11, e22, e33, e13u and Ag “ spante12, e23u. Hence,

S1 “ spante11 ` e33, e22, e13u,Sg “ spante12 ` e23u,

K1 “ spante11 ´ e33u and Kg “ spante12 ` e23u.

Since the homogeneous components are invariant under the involution, we may regard the
neutral component A1 as an algebra with involution as well. In the next lemma we notice
some similarities between the reflexive case on UT2 and A1.

Lemma 3.65. The neutral component of UT3 with reflexive involution and grading Γ2,3

satisfies the following identities:

piq ry1, y2s; piiq rz1, z2s; piiiq ry1, z1sry2, z2s; pivq z1y1z2 ´ z2y1z1.

Proof. It is immediate, so omitted.
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One can see that the identities from the lemma above are exactly the ones
satisfied by UT2 with the reflexive involution (see [19, Theorem 3.1]). So it is expected that
we can use the same approach from Proposition 3.58. Let us thus consider the following
evaluation of the variables y’s and z’s by matrices over F rW s:

yi “

¨

˚

˝

w
piq
1 0 w

piq
3

w
piq
2 0

w
piq
1

˛

‹

‚

and zj “

¨

˚

˝

w
pjq

1 0 0
0 0

´w
pjq

1

˛

‹

‚

(3.12)

Lemma 3.66. Let yi, i “ 1, . . . ,m, as in equation (3.12). Then the entry p1, 3q of y1 ¨ ¨ ¨ ym

is given by
m
ÿ

i“1
w

p1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
3 .

Proof. Induction on m.

The proof of the next lemma follows the same ideas from Proposition 3.58.

Lemma 3.67. Let f P F xY Y Zy be multilinear. Then fpA1q is t0u, J,S1 X D,
pS1 X Dq ` J,S1,K1 or K1 ` J , where J denotes the subspace spanned by te13u, and
D stands for the linear span of te11, e33u.

Proof. By Proposition 3.55 we may write f as

f “ αy1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm `

l
ÿ

i“1
αiy1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm´1rzm, yis.

We will assume α ‰ 0, since otherwise we clearly have fpUT3q P tt0u, Ju.

Let η “ m ´ l. Then notice that the main diagonal of f is given by

w
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` p´1q
ηe33q ` λw

p1q

2 ¨ ¨ ¨w
pmq

2 e22,

where λ “ 0 if there is no skew-symmetric variable in f , and λ “ 1 otherwise. The case
where f has only symmetric variables is obvious, indeed one can esaily obtain fpUT3q “ S1.
Hence we may assume that f has skew-symmetric variables and also λ “ 0. Hence

fpUT3q Ă pS1 X Dq ` J or fpUT3q Ă K1 ` J,

accordingly η is even or η is odd, respectively. Now let us turn our attention to the nilpotent
part f . We start to noticing that rzm, yis “ 2wpiq

3 w
pmq

1 e13, and therefore

y1 ¨ ¨ ¨ pyi ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm´1rzm, yis “ 2wp1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pm´1q

1 w
piq
3 w

pmq

1 e13.

Hence, in light of Lemma 3.66 we must have fpy1, . . . , yl, zl`1, . . . , zmq equals to

αw
p1q

1 ¨ ¨ ¨w
pmq

1 pe11 ` p´1q
ηe33q `

l
ÿ

i“1
pp´1q

ηα ` 2αiqwp1q

1 ¨ ¨ ¨
y

w
piq
1 ¨ ¨ ¨w

pmq

1 w
piq
3 e13.
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Proceding in a silimar fashion as in Proposition 3.58, one can see that

fpUT3q P tK1,K1 ` J,S1 X D, pS1 X Dq ` Ju,

which finishes the proof.

Proposition 3.68. Let f P P
pG,˚q

m,l . Then fpUT3q is t0u, J,S1 X D, pS1 X Dq ` J,S1,K1,

K1 ` J , some one-dimensional subspace of A1 or A1. Moreover, every one-dimensional
subspace of A1 can be realized as the image of some multilinear graded polynomial with
involution on UT3, as well as the homogeneous component A1.

Proof. The proof of the first part is clear from Lemma 3.67 and Corollary 1.21. Now, fix
α, β P F and consider the one-dimensional subspace

V “ spantαe12 ` βe23u Ă A1.

It is straightforward to check that the image of αz1,0z1,1 ` βz1,1z1,0 on UT3 is exactly V ,
and that the image of y1,0y1,1 on UT3 is exactly A1.

3.6.4.3.2 The grading Γ3,3

We recall that A1 “ spante11, e22, e33u,Ag “ spante12, e23u and Ah “ spante13u.
We therefore write

UT3 “ S1 ‘ K1 ‘ Sg ‘ Kg ‘ Sh ‘ Kh

where S1 “ spante11 ` e33, e22u,K1 “ spante11 ´ e33u,Sg “ spante12 ` e23u,

Kg “ spante12 ´ e23u,Sh “ spante13u and Kh “ t0u. Hence we have the following re-
sult.

Proposition 3.69. Let F be a field of characteristic different from 2 and let f P P
pG,˚q

m,l .
Then fpUT3q is t0u,S1,K1, pK1q

2, some one-dimensional subspace of Ag, Ag or Sh. More-
over, any subspace of Ag can be realized as the image of some multilinear polynomial on
UT3.

Proof. Assume first that f has (skew-)symmetric neutral variables only. Since UT3 satisfies
rx1, x2s where x1, x2 are any (skew-)symmetric neutral variables, then the image of f on
UT3 is either zero or the image of a word in the form y1 ¨ ¨ ¨ ylzl`1 ¨ ¨ ¨ zm on UT3. Clearly
the former gives us fpUT3q P tS1,K1, pK1q

2
u.

Let us assume now that f has non neutral variables. Since x1x2 is an identity
for UT3 when x1 has homogeneous degree g and x2 has homogeneous degree h, then
fpUT3q is always contained in some non-neutral homogeneous component. In this case, we
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apply Corollary 1.21 to conclude that fpUT3q is a vector subspace of Ag or Ah. Moreover,
we notice that Ag “ fpUT3q for f “ y1,0y1,1, and for arbitrarily fixed α, β P F and

V “ spantαe12 ` βe23u

we have V “ fpUT3q for f “ αz1,0y1,1 ´ βy1,1z1,0.

We therefore conclude the following theorem.

Theorem 3.70. Let F be an algebraically closed field of characteristic different from 2. Let
f P P

pG,˚q

m,l . Assume that UT3 is endowed with some G-graded involution ˚ on a nontrivial
grading Γ such that supppΓq generates G. Then, the image of f on UT3 is a homogeneous
vector space.

We finish this section by showing that, in general, Theorem 3.70 can not be
expected to hold for UTn, n ě 4, not even for the canonical Zn-grading.

Proposition 3.71. Let n ě 4 and let UTn be endowed with the canonical Zn-grading and
reflexive involution. Then the image of the multilinear polynomial fpy1,0, y2,1q “ y1,0y2,1 on
UTn is not a vector space.

Proof. Let us suppose n even (the odd case is analogous). We recall that the symmetric
parts of homogeneous degree 0 and 1 are given by

S0 “ spanteii ` en`1´i,n`1´i; i “ 1, . . . , n{2u, and
S1 “ spanten{2,pn`2q{2, ei,i`1 ` en´i,n`1´i; i “ 1, . . . ,´1 ` n{2u.

Assuming that fpUTnq is a vector space, and noticing that

fpe11 ` enn, e12 ` en´1,nq “ e12

fpe22 ` en´1,n´1, e23 ` en´2,n´1q “ e23

we therefore have e12 ` e23 P fpUTnq (we take e23 “ fpe22 ` e33, e23q in case n “ 4). Hence
there exist A P S0 and B P S1 such that e12 ` e23 “ AB.

Writing A “

n
ÿ

i“1
aiieii and B “

n´1
ÿ

i“1
bi,i`1ei,i`1, we therefore have

pABq12 “ a11b12

pABq23 “ a22b23

pABqn´1,n “ an´1,n´1bn´1,n “ a22b12

Since the entry pn ´ 1, nq from AB is zero, we conclude that either pABq12 “ 0 or
pABq23 “ 0, a contradiction.
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4 f -zpd algebras

In this chapter we introduce the class of zpd algebras as well as the main
examples (non-examples) and results concerning this class of algebras. Our main reference
for the basics of zpd algebras is the book [13] (see also the paper [14]). The results from
Section 4.2 to Section 4.3 are submitted for publication in a specialized journal [8]. This is
a joint work with Žan Bajuk, Matej Brešar and Antonio Ioppolo.

4.1 (f -)zpd algebras
We start this section by defining the class of zpd algebras.

Definition 4.1. Let A be a nonassociative algebra over a field F . We say that A is a
zero product determined algebra (zpd algebra for short) if for every bilinear functional
φ : A ˆ A Ñ F satisfying

xy “ 0 ñ φpx, yq “ 0 px, y P Aq

then there exists a linear functional τ : A Ñ F such that

φpx, yq “ τpxyq for all x, y P A.

It might be a tough task to find nontrivial examples of zpd algebras by just
having in mind the definition given above. For this reason we state the next theorem.

Theorem 4.2 ([13]). Let A be an associative algebra. If A is generated by idempotents,
then A is zpd.

Remark 4.3. The converse of Theorem 4.2 is valid when A is finite-dimensional.

Example 4.4. The field F is a zpd algebra over itself.

Example 4.5. The full matrix algebra MnpF q is zpd.

Example 4.6. Given A and B F -algebras generated by idempotents and M an pA,Bq-
bimodule, then the triangular algebra

˜

A M
0 B

¸

is zpd. In particular, the algebra of upper triangular matrices UTnpF q is zpd.

Of course not every algebra is zpd. Let us see some examples.
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Proposition 4.7. [13] Let A be a unital nonassociative algebra of dimension greater than
1. If A has no zero-divisors, then A is not zpd.

Example 4.8. A division algebra of dimension greater than 1 is not zpd. In particular,
the field F is the only division zpd algebra over F .

A natural question now is how to construct examples of zpd algebras from the
ones that we already know. Fortunately, the class of zpd algebras has a nice behaviour under
some classic constructions. For instance, homomorphic image of unital zpd nonassociative
algebra is also zpd. The same stability happens for direct sums and tensor products of
zpd nonassociative algebras (see [13]).

Definition 4.9. Let A be an algebra. We say that A is a zero Lie product determined
algebra (zLpd algebra for short) if Ap´q is zpd.

Clearly commutative algebras are zLpd.

Theorem 4.10. If A is a zLpd unital algebra, then so is MnpAq for every n ě 1.

In particular, the full matrix algebra MnpF q is zLpd.

Definition 4.11. Let A be an algebra. We say that A is zero Jordan product determined
algebra (zJpd algebra for short) if Ap`q is zpd.

Theorem 4.12. Let A be an unital algebra over a field of characteristic different from 2.
If A is generated by idempotents, then A is zJpd.

In particular, the full matrix algebra MnpF q (charpF q ‰ 2) is zJpd.

Let us now summarize the results presented so far concerning the algebra
MnpF q. We have seem that MnpF q is zpd, zLpd and also zJpd. This means the following:
for i “ 1, 2, 3, let φi : MnpF q ˆ MnpF q Ñ F be a bilinear functional such that

xy “ 0 ñ φ1px, yq “ 0
xy ´ yx “ 0 ñ φ2px, yq “ 0
xy ` yx “ 0 ñ φ3px, yq “ 0

Then there exist linear functionals τi : MnpF q Ñ F such that

φ1px, yq “ τ1pxyq

φ2px, yq “ τ2pxy ´ yxq

φ3px, yq “ τ3pxy ` yxq

for all x, y P MnpF q.
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In other words, bilinear functionals on the full matrix algebra preserving zeros
of the polynomials xy, xy´ yx and xy` yx can be described in terms of a linear functional
on the algebra and the polynomial. This motivates the following definition.

Definition 4.13. Let A be an algebra and let f P Pm be a multilinear polynomial of degree
m. We say that A is an f -zero product determined algebra (f -zpd algebra for short) if for
every multilinear functional φ : Am

Ñ F satisfying

fpa1, . . . , amq “ 0 ñ φpa1, . . . , amq “ 0 pa1, . . . , am P Aq

then there exists a linear functional τ : A Ñ F such that

φpa1, . . . , amq “ τpfpa1, . . . , amqq

for all a1, . . . , am P A.

In light of Theorems 4.2, 4.10, 4.12, we can now pose the following question.

Question 4.14. Let f P Pm. Is the full matrix algebra MnpF q an f -zpd algebra?

This chapter is concerned with dealing with Question 4.14 and related problems.
We now finish this first section with some basic properties of f -zpd algebras.

Remark 4.15. During the rest of this chapter f will always denote a multilinear polynomial
of degree m.

Proposition 4.16. Let A be an algebra.

(i) A is f -zpd for any polynomial identity f of A;

(ii) Let α P F be non-zero. Then A is f -zpd if and only if A is αf -zpd.

Proof. The proof is straightforward.

Proposition 4.17. Let α “ fp1, . . . , 1q ‰ 0. Then A is f -zpd if and only if any multilinear
functional φ : Am

Ñ F preserving zeros of f satisfies

φpa1, . . . , amq “ α´1φpfpa1, . . . , amq, 1, . . . , 1q

for all a1, . . . , am P A.

Proof. Assume that A is f -zpd. Then there exists a linear functional τ : A Ñ F such that
φpa1, . . . , amq “ τpfpa1, . . . , amqq, for all a1, . . . , am P A. Hence

φpfpa1, . . . , amq, 1, . . . , 1q “ τpfpfpa1, . . . , amq, 1, . . . , 1qq

“ ατpfpa1, . . . , amqq

“ αφpa1, . . . , amq,
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and the desired conclusion follows. Reciprocally, it is enough to define the linear functional
τ : A Ñ F given by

τpaq “ α´1φpa, 1, . . . , 1q for all a P A.

Lemma 4.18. An F -algebra A is f-zpd if and only if every multilinear functional
φ : Am

Ñ F that preserves zeros of f satisfies the following condition: for all N ě 1
and all aptq

1 , . . . , aptq
m P A, t “ 1, . . . , N ,
N
ÿ

t“1
f

`

a
ptq
1 , . . . , aptq

m

˘

“ 0 ùñ

N
ÿ

t“1
φ

`

a
ptq
1 , . . . , aptq

m

˘

“ 0 (4.1)

Proof. The “only if” part is clear. To prove the “if” part, denote by A0 the linear span of
fpAq, and observe that (4.1) implies that τ0 : A0 Ñ F ,

τ0

˜

N
ÿ

t“1
f

´

a
ptq
1 , . . . , aptq

m

¯

¸

“

N
ÿ

t“1
φ

´

a
ptq
1 , . . . , aptq

m

¯

is a well defined linear functional on A0. Letting τ : A Ñ F to be any linear extension of
τ0, we thus have φpa1, . . . , amq “ τ pfpa1, . . . , amqq for all a1, . . . , am P A.

Lemma 4.19. Let A be an f -zpd algebra and let V be a vector space over F . If a multilinear
map Φ: Am

Ñ V preserves zeros of f , then there exists a linear map T : A Ñ V such that

Φpa1, . . . , amq “ T pfpa1, . . . , amqq

for all a1, . . . , am P A.

Proof. If V “ F then this is true by the definition of an f -zpd algebra. The general case
can be easily reduced to this one. Indeed, take a linear functional ω on V and observe that
the composition ω ˝ Φ is a multilinear functional preserving zeros of f . We may therefore
use Lemma 4.18 to conclude that for all aptq

1 , . . . , aptq
m P A,

N
ÿ

t“1
f

`

a
ptq
1 , . . . , aptq

m

˘

“ 0 ùñ

ω

˜

N
ÿ

t“1
Φ

`

a
ptq
1 , . . . , aptq

m

˘

¸

“

N
ÿ

t“1
pω ˝ Φq

`

a
ptq
1 , . . . , aptq

m

˘

“ 0.

Since ω is an arbitrary linear functional on V , it follows that Φ satisfies
N
ÿ

t“1
f

`

a
ptq
1 , . . . , aptq

m

˘

“ 0 ùñ

N
ÿ

t“1
Φ

`

a
ptq
1 , . . . , aptq

m

˘

“ 0.

We can now repeat the argument from the proof of Lemma 4.18, that is, we define the
linear map T0 : A0 Ñ V by

T0

˜

N
ÿ

t“1
f

´

a
ptq
1 , . . . , aptq

m

¯

¸

“

N
ÿ

t“1
Φ

`

a
ptq
1 , . . . , aptq

m

˘

(where A0 is the linear span of the image of f on A) and extend it to a linear map
T : A Ñ V .
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4.2 Examples and non-examples of f -zpd algebras
In this section we will be focused in dealing with Question 4.14. While the first

subsection is devoted to show that Question 4.14 has a negative answer in general, the
following subsections give examples of multilinear polynomials f so that MnpF q is f -zpd.

4.2.1 The full matrix algebra is not always f -zpd

Until the rest of this section, assume that the field F has more than 3 elements.
Pick α, β P F zt0,´1u with α ‰ β. Fix n ě 2 and a multilinear central polynomial
c “ cpx1, . . . , xlq of MnpF q, and define multilinear polynomials h1, h2, f, g of degree
m “ l ` 1 by

h1 “ cpx1, . . . , xm´2, xm´1qxm,

h2 “ cpx1, . . . , xm´2, xmqxm´1,

f “ h1 ` αh2,

g “ h1 ` βh2.

Example 4.20. If n “ 2, then we can take

c “ rx1, x2srx3, x4s ` rx3, x4srx1, x2s

which is a central polynomial of minimal degree. Then h1, h2, f, g are of degree m “ 5. For
example,

f “ rx1, x2srx3, x4sx5`rx3, x4srx1, x2sx5

`αrx1, x2srx3, x5sx4 ` αrx3, x5srx1, x2sx4.

The next proposition is related to the multilinear Nullstellensatz from the last
section of this chapter.

Proposition 4.21. Let A1, . . . , Am P MnpF q. The following conditions are equivalent:

(i) fpA1, . . . , Amq “ 0.

(ii) gpA1, . . . , Amq “ 0.

(iii) h1pA1, . . . , Amq “ h2pA1, . . . , Amq “ 0.

In particular, f and g have the same zero sets. However, g is not the sum of a scalar
multiple of f and a polynomial identity.
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Proof. Suppose that fpA1, . . . , Amq “ 0 but h1pA1, . . . , Amq ‰ 0. The latter implies
cpA1, . . . , Am´1q ‰ 0 which together with fpA1, . . . , Amq “ 0 shows that Am “ λAm´1 for
some λ P F . Hence,

p1 ` αqh1pA1, . . . , Amq

“λp1 ` αqcpA1, . . . , Am´1qAm´1

“cpA1, . . . , Am´2, Am´1qAm ` αcpA1, . . . , Am´2, AmqAm´1

“fpA1, . . . , Amq “ 0.

As α ‰ ´1, this contradicts our assumption. We have thereby shown that (i) implies (iii).
Since (iii) trivially implies (i), these two conditions are equivalent. Similarly we see that
(ii) and (iii) are equivalent.

Let us now prove that g is not a sum of a scalar multiple of f and polynomial
identity of MnpF q. Indeed, assume that g “ λf ` h, where h P IdpMnpF qq. This means
that g ´ λf P IdpMnpF qq, that is,

p1 ´ λqcpx1, . . . , xm´1qxm ` pβ ´ λαqcpx1, . . . , xmqxm´1 P IdpMnpF qq.

If λ “ 1, then we conclude that cpx1, . . . , xmqxm´1 P IdpMnpF qq which is clearly an absurd.
We assume then λ ‰ 1. Taking A1, . . . , Am´1 P MnpF q such that γ “ cpA1, . . . , Am´1q ‰ 0
and Am P MnpF q linearly independent with Am´1, we see that

p1 ´ λqγAm ` pβ ´ λαqδAm´1 “ 0,

where δ P F . This is an absurd, and we conclude the proof of the proposition.

The second proposition provides an evidence for the nontriviality of the results
of the following subsections.

Proposition 4.22. MnpF q is not f -zpd.

Proof. Pick B1, . . . , Bm´1 P MnpF q such that cpB1, . . . , Bm´1q ‰ 0. Hence,

ρpAq “ cpB1, . . . , Bm´2, Aq

is a non-zero linear functional on MnpF q (here we identified scalars with scalar multiples
of the identity). Let ω be any linear functional on MnpF q that is linearly independent with
ρ. Define φ : MnpF q

m
Ñ F by

φpA1, . . . , Amq “ cpA1, . . . , Am´1qωpAmq.

Observe that the implication (i) ùñ (iii) from Proposition 4.21 shows that for all
A1, . . . , Am P MnpF q,

fpA1, . . . , Amq “ 0 ùñ φpA1, . . . , Amq “ 0.
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Suppose MnpF q were f -zpd. Then there would exist a linear functional τ on MnpF q such
that

φpA1, . . . , Amq “ τ pfpA1, . . . , Amqq

for all A1, . . . , Am P MnpF q. That is,

cpA1, . . . , Am´2, Am´1qωpAmq

“cpA1, . . . , Am´2, Am´1qτpAmq ` αcpA1, . . . , Am´2, AmqτpAm´1q.

Taking Bi for Ai, i “ 1, . . . ,m ´ 2, and writing A for Am´1 and B for Am, we thus have

ρpAqωpBq “ ρpAqτpBq ` ατpAqρpBq

for all A,B P MnpF q. Picking any A R ker ρ we see that τ “ ω ` λρ for some λ P F .
Consequently,

pp1 ` αqλρpAq ` αωpAqqρpBq “ 0,

which contradicts the linear independence of ρ and ω.

4.2.2 The generalized commutator

This subsection is devoted to the generalized commutator

fpx1, x2, x3q “ x1x2x3 ´ x3x2x1.

This is one of the polynomials that deserve special attention (see, e.g., [45]), so
the question of whether the algebra MnpF q is f -zpd occurs naturally. We will show that
the answer is affirmative.

Throughout this subsection, we assume that φ : MnpF q
3

Ñ F is a 3-linear
functional such that for all A,B,C P MnpF q,

ABC ´ CBA “ 0 ùñ φpA,B,Cq “ 0. (4.2)

Our goal is to prove that φ satisfies the condition presented in Lemma 4.18. Thus, assume
that N ě 1 and that the matrices

Aptq
“

n
ÿ

i,j“1
atijeij, Bptq

“

n
ÿ

i,j“1
btijeij, Cptq

“

n
ÿ

i,j“1
ctijeij,

t “ 1, . . . , N , where eij are standard matrix units, satisfy
N
ÿ

t“1
AptqBptqCptq

´ CptqBptqAptq
“ 0. (4.3)

We have to show that
N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“ 0. (4.4)

We proceed with a series of lemmas.
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Lemma 4.23. We have

N
ÿ

t“1

¨

˚

˝

n
ÿ

l“1

n
ÿ

k“1
k‰j

atikb
t
klc

t
lj ´ ctikb

t
kla

t
lj `

n
ÿ

l“1
l‰i

atijb
t
jlc

t
lj ´ ctijb

t
jla

t
lj

˛

‹

‚

“ 0.

Proof. Note that for each pair pi, jq P t1, . . . , nu
2,

`

AptqBptqCptq
´ CptqBptqAptq

˘

ij
“

n
ÿ

k,l“1
atikb

t
klc

t
lj ´ ctikb

t
kla

t
lj,

and hence, by (4.3),
N
ÿ

t“1

n
ÿ

k,l“1
atikb

t
klc

t
lj ´ ctikb

t
kla

t
lj “ 0.

Clearly atijb
t
jic

t
ij ´ ctijb

t
jia

t
ij “ 0 for all t. Hence this sum reduces to the one from the

statement of the lemma.

It is obvious that fpA,B,Aq “ 0 and so

φpA,B,Aq “ 0,

yielding
φpA,B,Cq “ ´φpC,B,Aq

for all A,B,C P MnpF q. In what follows, we will use these two identities without comment.

Lemma 4.24. We have
N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“

N
ÿ

t“1

n
ÿ

i,j“1

˜

n
ÿ

l“1

n
ÿ

k“1
k‰j

atikb
t
klc

t
ljφpeik, ekl, eljq `

n
ÿ

l“1
l‰i

atijb
t
jlc

t
ljφpeij, ejl, eljq

´

n
ÿ

l“1

n
ÿ

k“1
k‰j

ctikb
t
kla

t
ljφpeik, ekl, eljq ´

n
ÿ

l“1
l‰i

ctijb
t
jla

t
ljφpeij, ejl, eljq

¸

.

Proof. Clearly,

N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“

N
ÿ

t“1
φ

˜

n
ÿ

i,j“1
atijeij,

n
ÿ

k,l“1
btklekl,

n
ÿ

p,q“1
ctpqepq

¸

“

N
ÿ

t“1

n
ÿ

i,j,k,l,p,q“1
atijb

t
klc

t
pqφpeij, ekl, epqq.

(4.5)
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It is easy to check that if i, j, k, l, p, q satisfy one of the following conditions

j ‰ k and q ‰ k,

j ‰ k and i ‰ l,

l ‰ p and q ‰ k,

l ‰ p and i ‰ l,

then fpeij, ekl, epqq “ 0 and so φpeij, ekl, epqq “ 0. Hence we may assume that the following
relations hold

j “ k or q “ k,

j “ k or i “ l,

l “ p or q “ k,

l “ p or i “ l.

We can rewrite (4.5) as

N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“

N
ÿ

t“1

n
ÿ

i,j,l,q“1
atijb

t
jlc

t
lqφpeij, ejl, elqq

`

N
ÿ

t“1

n
ÿ

i,j,p“1

n
ÿ

k“1
k‰j

atijb
t
kic

t
pkφpeij, eki, epkq

`

N
ÿ

t“1

n
ÿ

i,j“1

n
ÿ

p“1
p‰i

atijb
t
jic

t
pjφpeij, eji, epjq.

Hence,

N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“

N
ÿ

t“1

n
ÿ

i,j“1

˜

n
ÿ

k,l“1
atikb

t
klc

t
ljφpeik, ekl, eljq

´

n
ÿ

l“1

n
ÿ

k“1
k‰j

ctikb
t
kla

t
ljφpeik, ekl, eljq

´

n
ÿ

l“1
l‰i

ctijb
t
jla

t
ljφpeij, ejl, eljq

¸

.

Finally, using φpeij, eji, eijq “ 0 we obtain the statement of the lemma.

Lemma 4.25. If u ‰ l, i; l ‰ i, and j ‰ k, then

φpeik, ekl, eljq “ φpeik, eku, eujq.

Proof. Note that
fpeik ` euj, ekl ` eku, elj ` eikq “ 0.
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Therefore,

0 “ φpeik ` euj, ekl ` eku, elj ` eikq

“ φpeik, ekl, eljq ` φpeik, ekl, eikq ` φpeik, eku, eljq

` φpeik, eku, eikq ` φpeuj, ekl, eljq ` φpeuj, ekl, eikq

` φpeuj, eku, eljq ` φpeuj, eku, eikq

“ φpeik, ekl, eljq ` φpeuj, eku, eikq.

Lemma 4.26. If l ‰ i and k ‰ j, then

φpeij, ejl, eljq “ φpeik, ekl, eljq.

Proof. Note that
fpeij ` elj, ejl ` ekl, elj ` eikq “ 0.

Therefore,

0 “ φpeij ` elj, ejl ` ekl, elj ` eikq

“ φpeij, ejl, eljq ` φpeij, ejl, eikq ` φpeij, ekl, eljq

` φpeij, ekl, eikq ` φpelj, ejl, eljq ` φpelj, ejl, eikq

` φpelj, ekl, eljq ` φpelj, ekl, eikq

“ φpeij, ejl, eljq ` φpelj, ekl, eikq.

Lemma 4.27. If k ‰ i and k ‰ j, then

φpeik, eki, eijq “ φpeik, ekk, ekjq.

Proof. Note that
fpeik ` ekj, eki ` ekk, eij ` eikq “ 0.

Therefore,

0 “ φpeik ` ekj, eki ` ekk, eij ` eikq

“ φpeik, eki, eijq ` φpeik, eki, eikq ` φpeik, ekk, eijq

` φpeik, ekk, eikq ` φpekj, eki, eijq ` φpekj, eki, eikq

` φpekj, ekk, eijq ` φpekj, ekk, eikq

“ φpeik, eki, eijq ` φpekj, ekk, eikq.

Lemma 4.28. If k ‰ i, then

φpeii, eik, ekiq “ φpeik, ekk, ekiq.
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Proof. Note that
fpeii ` eki, eik ` ekk, eki ` eikq “ 0

and therefore

0 “ φpeii ` eki, eik ` ekk, eki ` eikq

“ φpeii, eik, ekiq ` φpeii, eik, eikq ` φpeii, ekk, ekiq

` φpeii, ekk, eikq ` φpeki, eik, ekiq ` φpeki, eik, eikq

` φpeki, ekk, ekiq ` φpeki, ekk, eikq

“ φpeii, eik, ekiq ` φpeki, ekk, eikq.

Lemma 4.29. We have

φpeii, eij, ejjq “ φpeii, eii, eijq “ φpeij, ejj, ejjq.

Proof. Note that
fpeii ` ejj, eii ` eij, eij ` eiiq “ 0.

Therefore,

0 “ φpeii ` ejj, eii ` eij, eij ` eiiq

“ φpeii, eii, eijq ` φpeii, eii, eiiq ` φpeii, eij, eijq

` φpeii, eij, eiiq ` φpejj, eii, eijq ` φpejj, eii, eiiq

` φpejj, eij, eijq ` φpejj, eij, eiiq

“ φpeii, eii, eijq ` φpejj, eij, eiiq.

The second equality can be obtained analogously.

The next result contains all information that we need from the previous five
lemmas.

Lemma 4.30. Given i, j P t1, . . . , nu, the set

Φij “ tφpeik, ekl, eljq|k, l “ 1 . . . , nuztφpeij, eji, eijqu

is a singleton set.

Proof. Assume first that i ‰ j. We claim that

Φij “ tφpeij, ejj, ejjqu.

Consider φpeik, ekl, eljq where k ‰ j and l ‰ i. Since j ‰ i, by Lemma 4.25 we
have φpeik, ekl, eljq “ φpeik, ekj, ejjq. We now apply Lemma 4.26 to get
φpeik, ekj, ejjq “ φpeij, ejj, ejjq.
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We now consider the case where i ‰ l and j “ k. In this case take u ‰ j and by
Lemma 4.26 we have φpeij, ejl, eljq “ φpeiu, eul, eljq. However φpeiu, eul, eljq “ φpeij, ejj, ejjq

since u ‰ j, l ‰ i and the previous case.

We now consider the case where j ‰ k and i “ l. If k “ i, then by Lemma 4.29
we have φpeii, eii, eijq “ φpeij, ejj, ejjq. In case k ‰ i, then φpeik, eki, eijq “ φpeik, ekk, ekjq.
We now apply Lemma 4.25 to obtain φpeik, ekk, ekjq “ φpeik, ekj, ejjq and finally Lemma
4.26 to get φpeik, ekj, ejjq “ φpeij, ejj, ejjq as desired.

We may now consider the case where i “ j. Fix u ‰ i. We claim that

Φij “ tφpeii, eiu, euiqu.

Initially consider k ‰ i and l ‰ i. Then by Lemma 4.25
φpeik, ekl, eliq “ φpeik, eku, euiq and by Lemma 4.26 we obtain φpeik, eku, euiq “ φpeii, eiu, euiq.

If k ‰ i and l “ i, then Lemma 4.27 φpeik, eki, eiiq “ φpeik, ekk, ekiq. By Lemma
4.25 φpeik, ekk, ekiq “ φpeik, eku, euiq and finally Lemma 4.26 implies
φpeik, eku, euiq “ φpeii, eiu, euiq.

We now consider k “ i and l ‰ i. By Lemma 4.28 we have
φpeii, eil, eliq “ φpeil, ell, eliq. By Lemma 4.25 φpeil, ell, eliq “ φpeil, elu, euiq and then Lemma
4.26 implies φpeil, elu, euiq “ φpeii, eiu, euiq.

Theorem 4.31. Let f “ x1x2x3 ´ x3x2x1. Then the algebra MnpF q is f -zpd.

Proof. As already mentioned, in light of Lemma 4.18 it is enough to prove (4.4). Considering
the right-hand side of the identity given in Lemma 4.24, and denoting Φij “ tφiju by
Lemma 4.30, we therefore have
N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“

N
ÿ

t“1

n
ÿ

i,j“1

˜

n
ÿ

l“1

n
ÿ

k“1
k‰j

atikb
t
klc

t
lj ´ ctikb

t
kla

t
lj `

n
ÿ

l“1
l‰i

atijb
t
jlc

t
lj ´ ctijb

t
jla

t
lj

¸

φij

“

n
ÿ

i,j“1

N
ÿ

t“1

˜

n
ÿ

l“1

n
ÿ

k“1
k‰j

atikb
t
klc

t
lj ´ ctikb

t
kla

t
lj `

n
ÿ

l“1
l‰i

atijb
t
jlc

t
lj ´ ctijb

t
jla

t
lj

¸

φij.

Invoking Lemma 4.23 we now obtain the desired conclusion that
N
ÿ

t“1
φ

`

Aptq, Bptq, Cptq
˘

“ 0.

4.2.3 Polynomials given by cyclic permutations

In this subsection we deal with a multilinear polynomial f whose monomials
correspond to a cyclic permutation and satisfies the condition that the sum of its coefficients
is non-zero. The only assumption that we will require on our algebra is that it is generated
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by idempotents. In our proof we will use ideas from the proof that an algebra generated
by idempotents is zJpd (see [6] or [13, Theorem 3.15]).

Let us now state the theorem.

Theorem 4.32. Let charpF q ‰ 2, let α1, . . . , αm P F be such that
ÿm

i“1
αi ‰ 0, and let

fpx1, . . . , xmq “ α1x1 ¨ ¨ ¨ xm ` α2x2 ¨ ¨ ¨ xmx1 ` ¨ ¨ ¨ ` αmxmx1 ¨ ¨ ¨ xm´1.

If an F -algebra A is generated by idempotents, then A is f -zpd.

Proof. In light of Proposition 4.16piiq, we may assume without loss of generality that
m
ÿ

i“1
αi “ 1. Let φ be an m-linear functional preserving zeros of f . By Proposition 4.17, it

suffices to prove that φ satisfies

φpa1, . . . , amq “ φpfpa1, . . . , amq, 1, . . . , 1q (4.6)

for all a1, . . . , am P A.

Set αm`1 “ α1. We claim that αi ` αi`1 ‰ 0 for some i. Indeed, if m is even
then this is immediate from

1 “ pα1 ` α2q ` ¨ ¨ ¨ ` pαm´1 ` αmq,

and if m is odd this follows from the observation that

α1 “ ´α2 “ ¨ ¨ ¨ “ αm “ ´α1

implies 2α1 “ 0 and hence α1 “ 0, so we can again use the assumption that the sum of all
αi is 1. After relabeling, if necessary, we may assume that i “ m, i.e.,

α1 ` αm ‰ 0.

Let S denote the set of all s P A such that

φpa1, . . . , am´1, sq “ φpfpa1, . . . , am´1, sq, 1, . . . , 1q

for all a1, . . . , am´1 P A. To prove (4.6), we have to show that S “ A. We will establish
this by induction on m.

In the base case where m “ 2 we have

fpx1, x2q “ α1x1x2 ` α2x2x1

with α1 ` α2 “ 1. The proof that we will give is just a minor modification of the proof
that A is zJpd (i.e., of the case where α1 “ α2).
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Since S is a vector subspace of A, it is enough to show that S contains every
product of the form e1e2 ¨ ¨ ¨ en where ei are idempotents in A. We proceed by induction on
n. Let e P A be an idempotent, and let us first prove that e P S. Considering an arbitrary
a P A and writing h “ 1 ´ e, we have

a “ eae ` hae ` eah ` hah

and hence
φpa, eq “ φpeae, eq ` φphae, eq ` φpeah, eq ` φphah, eq.

Recalling that α1 ` α2 “ 1, one can easily check that

fphae, e ´ α1q “ fpeah, e ´ α2q “ fpeae, hq “ fphah, eq “ 0,

which gives us the following relations

φphae, eq “ α1φphae, 1q,

φpeah, eq “ α2φpeah, 1q,

φpeae, eq “ φpeae, 1q,

φphah, eq “ 0.

Consequently,

φpa, eq “ φpeae, eq ` φpeah, eq ` φphae, eq ` φphah, eq

“ φpeae, 1q ` α1φphae, 1q ` α2φpeah, 1q

“ φpeae ` α1hae ` α2eah, 1q

“ φpfpa, eq, 1q.

We have thus shown that e P S.

Next, assuming that S contains products of n idempotents, let us prove that S
also contains e1 ¨ ¨ ¨ enen`1, where each ei P A is an idempotent. Write

h1 “ 1 ´ e1, hn`1 “ 1 ´ en`1, t “ e2 ¨ ¨ ¨ en,

(t “ 1 if n “ 1), so we want to prove that e1ten`1 P S. For any a P A, we have

a “ en`1ae1 ` hn`1ae1 ` en`1ah1 ` hn`1ah1.

Therefore,
φpa, e1ten`1q “ φpen`1ae1, e1ten`1q ` φphn`1ae1, e1ten`1q

` φpen`1ah1, e1ten`1q ` φphn`1ah1, e1ten`1q

“ φpen`1ae1, ten`1 ´ h1t ` h1thn`1q

` φphn`1ae1, ten`1 ´ h1ten`1q

` φpen`1ah1, e1t ´ e1thn`1q

` φphn`1ah1, e1ten`1q.
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Since
fpen`1ae1, h1thn`1q “ 0,
fphn`1ae1, h1ten`1q “ 0,
fpen`1ah1, e1thn`1q “ 0,
fphn`1ah1, e1ten`1q “ 0

and hence
φpen`1ae1, h1thn`1q “ 0,
φphn`1ae1, h1ten`1q “ 0,
φpen`1ah1, e1thn`1q “ 0,
φphn`1ah1, e1ten`1q “ 0,

we can conclude that

φpa, e1ten`1q “ φpen`1ae1, ten`1 ´ h1tq ` φphn`1ae1, ten`1q ` φpen`1ah1, e1tq.

Since ten`1, h1t, ten`1, e1t lie in S by the induction hypothesis, it follows that

φpen`1ae1, ten`1q “ φpα1en`1ae1ten`1 ` α2ten`1ae1, 1q,

φpen`1ae1, h1tq “ φpα2h1ten`1ae1, 1q,

φphn`1ae1, ten`1q “ φpα1hn`1ae1ten`1, 1q,

φpen`1ah1, e1tq “ φpα2e1ten`1ah1, 1q.

One easily checks that this implies that

φpa, e1ten`1q “ φpfpa, e1ten`1q, 1q.

Hence e1ten`1 P S, which concludes the proof for the base case where m “ 2.

Assume now m ą 2 and that the result holds for m´ 1, and so in particular for
the polynomial fpx1, . . . , xm´1, 1q (which is also of the required form). As the pm´1q-linear
functional φpa1, . . . , am´1, 1q preserves its zeros, we have

φpa1, . . . , am´1, 1q “ φpfpa1, . . . , am´1, 1q, 1, . . . , 1q (4.7)

for all a1, . . . , am´1 P A.

As in the m “ 2 case, it is enough to show that S contains every element of the
form e1e2 ¨ ¨ ¨ en where ei are idempotents in A. The proof that we will give is conceptually
similar to the one just given, but the necessary changes are not obvious. We proceed by
induction on n.

To handle the base case, take an idempotent e “ e1 P A. We must prove that
e P S. Denote 1 ´ e by h and write a1 “ ea1 ` ha1 and am´1 “ am´1e ` am´1h. Thus,

φpa1, . . . , am´1, eq “φpea1, . . . , am´1e, eq ` φpea1, . . . , am´1h, eq

` φpha1, . . . , am´1e, eq ` φpha1, . . . , am´1h, eq.
(4.8)
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It is easy to see that

fpea1, . . . , am´1e, e ´ 1q “ 0,
fpea1, . . . , am´1h, pα1 ` αmqe ´ αmq “ 0,
fpha1, . . . , am´1e, pα1 ` αmqe ´ α1q “ 0,
fpha1, . . . , am´1h, eq “ 0.

(4.9)

Of course, φ then satisfies the same identities, which can be written as

φpea1, . . . , am´1e, eq “ φpea1, . . . , am´1e, 1q,

pα1 ` αmqφpea1, . . . , am´1h, eq “ αmφpea1, . . . , am´1h, 1q,

pα1 ` αmqφpha1, . . . , am´1e, eq “ α1φpha1, . . . , am´1e, 1q,

φpha1, . . . , am´1h, eq “ 0.

Consequently, (4.8) becomes

φpa1, . . . , am´1, eq “ φpea1, . . . , am´1e, 1q

` αmpα1 ` αmq
´1φpea1, . . . , am´1h, 1q

` α1pα1 ` αmq
´1φpha1, . . . , am´1e, 1q.

Applying (4.7) it follows that

φpa1, . . . , am´1, eq “ φpfpea1, . . . , am´1e, 1q, 1, . . . , 1q

` αmpα1 ` αmq
´1φpfpea1, . . . , am´1h, 1q, 1, . . . , 1q

` α1pα1 ` αmq
´1φpfpha1, . . . , am´1e, 1q, 1, . . . , 1q.

Using (4.9) we obtain

φpa1, . . . , am´1, eq “ φpfpea1, . . . , am´1e, eq, 1, . . . , 1q

` φpfpea1, . . . , am´1h, eq, 1, . . . , 1q

` φpfpha1, . . . , am´1e, eq, 1, . . . , 1q.

Since fpha1, . . . , am´1h, eq “ 0 (see (4.9)), it follows that

φpa1, . . . , am´1, eq “ φpfpa1, . . . , am´1, eq, 1, . . . , 1q.

This means that e P S, as desired.

We may now assume that any product of n idempotents is contained in S. Take
idempotents e1, . . . , en`1 and let us prove that S contains e1 ¨ ¨ ¨ enen`1. Write

h1 “ 1 ´ e1, hn`1 “ 1 ´ en`1, t “ e2 ¨ ¨ ¨ en

(t “ 1 if n “ 1). We have to show that e1ten`1 P S. Take a1, a2, . . . , am´1 P A and write

a1 “ en`1a1 ` hn`1a1 and am´1 “ am´1e1 ` am´1h1.
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We have

φpa1, . . . , am´1, e1ten`1q “ φpen`1a1, . . . , am´1e1, e1ten`1q

` φpen`1a1, . . . , am´1h1, e1ten`1q

` φphn`1a1, . . . , am´1e1, e1ten`1q

` φphn`1a1, . . . , am´1h1, e1ten`1q

“ φpen`1a1, . . . , am´1e1, ten`1 ´ h1t ` h1thn`1q

` φpen`1a1, . . . , am´1h1, e1t ´ e1thn`1q

` φphn`1a1, . . . , am´1e1, ten`1 ´ h1ten`1q

` φphn`1a1, . . . , am´1h1, e1ten`1q.

One easily checks that

fpen`1a1, . . . , am´1e1, h1thn`1q “ 0,
fpen`1a1, . . . , am´1h1, e1thn`1q “ 0,
fphn`1a1, . . . , am´1e1, h1ten`1q “ 0,
fphn`1a1, . . . , am´1h1, e1ten`1q “ 0.

(4.10)

As φ then satisfies the same identities, it follows that

φpa1, . . . , am´1, e1ten`1q “ φpen`1a1, . . . , am´1e1, ten`1 ´ h1tq

` φpen`1a1, . . . , am´1h1, e1tq

` φphn`1a1, . . . , am´1e1, ten`1q.

Since ten`1, h1t, e1t, ten`1 P S by the induction assumption, it follows that

φpa1, . . . , am´1, e1ten`1q “ φpfpen`1a1, . . . , am´1e1, ten`1 ´ h1tq, 1, . . . , 1q

` φpfpen`1a1, . . . , am´1h1, e1tq, 1, . . . , 1q

` φpfphn`1a1, . . . , am´1e1, ten`1q, 1, . . . , 1q.

Applying (4.10) we finally obtain

φpa1, . . . , am´1, e1ten`1q

“ φpfpen`1a1, . . . , am´1e1, ten`1 ´ h1t ` h1thn`1q, 1, . . . , 1q

` φpfpen`1a1, . . . , am´1h1, e1t ´ e1thn`1q, 1, . . . , 1q

` φpfphn`1a1, . . . , am´1e1, ten`1 ´ h1ten`1q, 1, . . . , 1q

` φpfphn`1a1, . . . , am´1h1, e1ten`1q, 1, . . . , 1q

“ φpfpa1, . . . , am´1, e1ten`1q, 1, . . . , 1q.

This means that e1ten`1 P S and the proof is complete.
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4.2.4 Constructing new examples from old ones

To state our first result in this section, we need the following generalization of
the definition of a f -zpd algebra.

Definition 4.33. Let f “ fpx1, . . . , xmq P F xx1, x2, . . . y be a multilinear polynomial,
let A be an F -algebra, and let V1, . . . ,Vm be vector subspaces of A. We say that the set
V1 ˆ ¨ ¨ ¨ ˆ Vm is f-zpd if for every m-linear functional φ : V1 ˆ ¨ ¨ ¨ ˆ Vm Ñ F with the
property that for all ai P Vi, i “ 1, . . . ,m,

fpa1, . . . , amq “ 0 ùñ φpa1, . . . , amq “ 0,

there exists a linear functional τ on A such that

φpa1, . . . , amq “ τ pfpa1, . . . , amqq

for all ai P Vi, i “ 1, . . . ,m.

Clearly Am
“ A ˆ ¨ ¨ ¨ ˆ A being f -zpd is the same thing as A being f -zpd.

We draw the readers’ attention here that the L’vov-Kaplansky conjecture
indicates that the assumption (a) from the following theorem is not artificial. The theorem
actually concerns an arbitrary algebra A, but of course we are primarily interested in the
case where A “ MnpF q.

Theorem 4.34. Let A be an F -algebra and let k ě 1. For each i “ 1, . . . , k, let
fi

`

xi1 , . . . , ximi
˘

P F xx1, x2, . . . y be a multilinear polynomial in mi variables and let
Vpiq

1 , . . . ,Vpiq
mi

be vector subspaces of A. Set

Ui “ Vpiq
1 ˆ ¨ ¨ ¨ ˆ Vpiq

mi
.

Further, let f0 P F xx1, x2, . . . y be a multilinear polynomial in k variables, and let

f “ f0 pf1, . . . , fkq .

Suppose that the following three conditions are satisfied:

(a) For each i “ 1, . . . , k, fipUiq is a vector subspace of A.

(b) For each i “ 1, . . . , k, the set Ui is fi-zpd.

(c) The set f1pU1q ˆ ¨ ¨ ¨ ˆ fkpUkq is f0-zpd.

Then the set U1 ˆ ¨ ¨ ¨ ˆ Uk is f -zpd.
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Proof. For each i “ 1, . . . , k, we set

Wi “ Ui ˆ Ui`1 ˆ ¨ ¨ ¨ ˆ Uk.

Our goal is to prove that W1 is f -zpd. Thus, take a multilinear functional φ : W1 Ñ F

that preserves zeros of f , that is, for all apiq
j P Vpiq

j ,

f
´

a
p1q

1 , . . . , apkq
mk

¯

“ 0 ùñ φ
´

a
p1q

1 , . . . , apkq
mk

¯

“ 0.

Define the multilinear functional φ
a

p2q

1 ,...,a
pkq
mk

: U1 Ñ F by

φ
a

p2q

1 ,...,a
pkq
mk

´

a
p1q

1 , . . . , ap1q
m1

¯

“ φ
´

a
p1q

1 , . . . , ap1q
m1 , a

p2q

1 , . . . , apkq
mk

¯

.

Clearly φ
a

p2q

1 ,...,a
pkq
mk

preserves zeros of f1 on U1. Since U1 is f1-zpd, there is a linear functional
τ
a

p2q

1 ,...,a
pkq
mk

: A Ñ F such that

φ
a

p2q

1 ,...,a
pkq
mk

´

a
p1q

1 , . . . , ap1q
m1

¯

“ τ
a

p2q

1 ,...,a
pkq
mk

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯¯

.

Now define Φ1 : f1pU1q ˆ W2 Ñ F by

Φ1

´

a1, a
p2q

1 , . . . , ap2q
m2 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“ τ
a

p2q

1 ,...,a
pkq
mk

pa1q.

The linearity of Φ1 in the first argument is obvious. Let us prove the linearity of Φ1 in the
second argument. It is enough to show that

τ
a

p2q

1 `b
p2q

1 ,a
p2q

2 ,...,a
pkq
mk

“ τ
a

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

` τ
b

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

(4.11)

and
τ
λa

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

“ λτ
a

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

(4.12)

where λ P F . Take a1 P fpU1q and write a1 “ f1

´

a
p1q

1 , . . . , ap1q
m1

¯

. Then,

τ
a

p2q

1 `b
p2q

1 ,a
p2q

2 ,...,a
pkq
mk

pa1q “ τ
a

p2q

1 `b
p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯¯

“ φ
a

p2q

1 `b
p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

a
p1q

1 , . . . , ap1q
m1

¯

“ φ
´

a
p1q

1 , . . . , ap1q
m1 , a

p2q

1 ` b
p2q

1 , a
p2q

2 , . . . , apkq
mk

¯

“ φ
´

a
p1q

1 , . . . , ap1q
m1 , a

p2q

1 , a
p2q

2 , . . . , apkq
mk

¯

` φ
´

a
p1q

1 , . . . , ap1q
m1 , b

p2q

1 , a
p2q

2 , . . . , apkq
mk

¯

“ φ
a

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

a
p1q

1 , . . . , ap1q
m1

¯

` φ
b

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

a
p1q

1 , . . . , ap1q
m1

¯

“ τ
a

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯¯

` τ
b

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯¯

“

´

τ
a

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

` τ
b

p2q

1 ,a
p2q

2 ,...,a
pkq
mk

¯

pa1q,
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which proves (4.11). The proof of (4.12) is similar. Analogously we see that Φ1 is linear in
other arguments, so Φ1 is a multilinear functional. Moreover,

φ
´

a
p1q

1 , . . . , ap1q
m1 , a

p2q

1 , . . . , ap2q
m2 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“ Φ1

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯

, a
p2q

1 , . . . , ap2q
m2 , . . . , a

pkq

1 , . . . , apkq
mk

¯

for all apiq
j P Vpiq

j . From this we see that the multilinear functional

φ
a1,a

p3q

1 ,...,a
pkq
mk

: U2 Ñ F,

given by

φ
a1,a

p3q

1 ,...,a
pkq
mk

´

a
p2q

1 , . . . , ap2q
m2

¯

“ Φ1

´

a1, a
p2q

1 , . . . , ap2q
m2 , a

p3q

1 , . . . , apkq
mk

¯

,

preserves zeros of f2 on U2. As U2 is f2-zpd, there exists a linear functional

τ
a1,a

p3q

1 ,...,a
pkq
mk

: A Ñ F

such that

φ
a1,a

p3q

1 ,...,a
pkq
mk

´

a
p2q

1 , . . . , ap2q
m2

¯

“ τ
a1,a

p3q

1 ,...,a
pkq
mk

´

f2

´

a
p2q

1 , . . . , ap2q
m2

¯¯

.

Next we define
Φ2 : f1pU1q ˆ f2pU2q ˆ W3 Ñ F

by
Φ2

´

a1, a2, a
p3q

1 , . . . , ap3q
m3 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“ τ
a1,a

p3q

1 ,...,a
pkq
mk

pa2q .

We show that Φ2 is multilinear in a similar fashion as we showed that Φ1 is multilinear.
Moreover, we have

φ
´

a
p1q

1 , . . . , apkq
mk

¯

“Φ1

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯

, a
p2q

1 , . . . , ap2q
m2 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“φ
f1pa

p1q

1 ,...,a
p1q
m1 q,a

p3q

1 ,...,a
pkq
mk

´

a
p2q

1 , . . . , ap2q
m2

¯

“τ
f1pa

p1q

1 ,...,a
p1q
m1 q,a

p3q

1 ,...,a
pkq
mk

´

f2

´

a
p2q

1 , . . . , ap2q
m2

¯¯

“Φ2

´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯

, f2

´

a
p2q

1 , . . . , ap2q
m2

¯

, a
p3q

1 , . . . , apkq
mk

¯

.

Repeating this process, we obtain the existence of a multilinear functional

Φ: f1pU1q ˆ f2pU2q ˆ ¨ ¨ ¨ ˆ fkpUkq Ñ F

satisfying

φ
´

a
p1q

1 , . . . , apkq
mk

¯

“ Φ
´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯

, . . . , fk

´

a
pkq

1 , . . . , apkq
mk

¯¯
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for apiq
j P Vpiq

j . Suppose f0pa1, . . . , akq “ 0 for some ai P fpUiq. Write ai “ fi

´

a
piq
1 , . . . , a

piq
mi

¯

,
we then have

f
´

a
p1q

1 , . . . , ap1q
m1 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“ 0.

Hence
φ

´

a
p1q

1 , . . . , ap1q
m1 , . . . , a

pkq

1 , . . . , apkq
mk

¯

“ 0,

that is,

Φ pa1, . . . , akq “ Φ
´

f1

´

a
p1q

1 , . . . , ap1q
m1

¯

, . . . , fk

´

a
pkq

1 , . . . , apkq
mk

¯¯

“ 0.

Therefore, Φ preserves zeros of f0. Since f1pU1q ˆ ¨ ¨ ¨ ˆ fkpUkq is f0-zpd, there exists a
linear functional τ : A Ñ F such that, for all ai P fi pUiq,

Φ pa1, . . . , akq “ τ pf0 pa1, . . . , akqq .

The proof is complete since, for all apiq
j P A,

φ
´

a
p1q

1 , . . . , apkq
mk

¯

“ τ
´

f
´

a
p1q

1 , . . . , apkq
mk

¯¯

.

The following corollary is immediate.

Corollary 4.35. Let f1, . . . , fk be multilinear polynomials in distinct variables and let f0

be a multilinear polynomial in k variables. Let A be an F -algebra satisfying the following
two conditions:

(a) A is fi-zpd for i “ 0, 1, . . . , k.

(b) fipAq “ A for i “ 1, . . . , k.

Then the algebra A is f -zpd where f “ f0 pf1, . . . , fkq .

The applicability of Theorem 4.34 and Corollary 4.35 of course depends on the
validity of the L’vov-Kaplansky conjecture and its variants.

We continue with a lemma needed for another corollary to Theorem 4.34. Recall
that slnpF q stands for the Lie algebra of traceless matrices in MnpF q.

Lemma 4.36. Let f0 “ rx1, x2s and let V1,V2 P tslnpF q,MnpF qu. Then the set V1 ˆ V2 is
f0-zpd, provided that char(F ) is 0 or does not divide n.

Proof. We know thatMnpF q is zLpd (see Theorem 4.10), which means thatMnpF qˆMnpF q

is f0-zpd.

Let φ : slnpF q ˆ MnpF q Ñ F be a bilinear functional preserving zeros of f0.
Our assumption on charpF q implies that MnpF q “ slnpF q ‘ F ¨ 1. Therefore, we extend
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φ to MnpF q
2 by setting φp1, aq “ 0 for all a P MnpF q. Let now a, b P MnpF q be such

that ra, bs “ 0. Writing a “ ra1, a2s ` λ1 with a1, a2 P MnpF q and λ P F , we thus have
rra1, a2s, bs “ 0. Since ra1, a2s P slnpF q, it follows that

φpa, bq “ φpra1, a2s, bq “ 0.

As MnpF q is zLpd, there exists a linear functional τ : MnpF q Ñ F such that
φpc, dq “ τprc, dsq for all c, d P MnpF q, and so in particular for all c P slnpF q and
d P MnpF q. This proves that the set slnpF q ˆ MnpF q is f0-zpd.

The MnpF q ˆ slnpF q case can be handled similarly, and so can be the
slnpF qˆslnpF q case. Indeed, one extends a bilinear functional φ defined on slnpF qˆslnpF q

to MnpF q
2 by setting φp1, aq “ φpa, 1q “ 0 for all a P MnpF q.

Corollary 4.37. If f is a multilinear Lie monomial, then the algebra MnpF q is f-zpd,
provided that char(F ) is 0 or does not divide n.

Proof. First let us show that fpMnpF qq is a vector space. In fact, we claim that
fpMnpF qq “ slnpF q, unless the degree m of f is 1, in which case fpMnpF qq is obvi-
ously equal to MnpF q. We may therefore assume that m ą 1 and that our claim is true for
Lie monomials of degree less than m. Write f “ rf1, f2s, where f1 and f2 are multilinear
Lie monomials in distinct variables of degree at most m´ 1. By [2], every matrix in slnpF q

is a commutator of two matrices from MnpF q. However, since MnpF q “ slnpF q ‘ F ¨ 1 by
the characteristic assumption, it is actually a commutator of two matrices from slnpF q.
Since, by our assumption, f1pMnpF qq and f2pMnpF qq contain slnpF q, it follows that
fpMnpF qq “ slnpF q.

Let us now prove that MnpF q is f -zpd. There is nothing to prove if m “ 1, so
we may assume that m ą 1 and that by writing f “ rf1, f2s as above we have that MnpF q

is fi-zpd, i “ 1, 2. Since fipMnpF qq P tslnpF q,MnpF qu, taking into account Lemma 4.36
we can apply Theorem 4.34 to conclude that MnpF q is f -zpd.

It is clear that the method of proof can be used for some other polynomials.
For example, using the fact that the algebra MnpF q is zJpd (Theorem 4.12) and that
the polynomial f0 “ x1x2 ` x2x1 obviously satisfies f0pMnpF qq “ MnpF q provided that
charpF q ‰ 2, we see that Corollary 4.35 yields the following result (by a Jordan monomial
we mean a monomial in the free special Jordan algebra).

Corollary 4.38. Let char(F )‰ 2. If f is a multilinear Jordan monomial, then the algebra
MnpF q is f -zpd.
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4.3 A multilinear Nullstellensatz
In this last section we consider the situation where f and g are multilinear

polynomials of the same degree m such that every zero of f in Am, where A is an algebra,
is also a zero of g, that is, for all a1, . . . , am P A,

fpa1, . . . , amq “ 0 ùñ gpa1, . . . , amq “ 0.

From Lemma 4.19 it is evident that the situation above it is a special case
of the condition from the definition of an f -zpd algebra. It is therefore natural to ask
whether the problem of describing the relation between f and g can be solved in any f -zpd
algebra. In the next proposition, we give a positive answer under the assumption that
fp1, . . . , 1q ‰ 0.

Proposition 4.39. Let A be an F -algebra and let f, g P F xx1, x2, . . . y be multilinear
polynomials of degree m such that every zero of f in Am is a zero of g. If A is f -zpd and
fp1, . . . , 1q ‰ 0, then there exist an scalar λ P F and a polynomial identity h of A such
that g “ λf ` h.

Proof. It is clear from our assumptions that

pa1, . . . , amq ÞÑ gpa1, . . . , amq

is an m-linear map that preserves zeros of f . Lemma 4.19 therefore shows that there exists
a linear map T : A Ñ A satisfying

gpa1, . . . , amq “ T pfpa1, . . . , amqq.

Thus, for every a P A we have

gp1, . . . , 1qa “ gpa, 1, . . . , 1q “ T pfpa, 1, . . . , 1qq “ fp1, . . . , 1qT paq.

Setting λ “ gp1, . . . , 1qfp1, . . . , 1q
´1 we thus have T paq “ λa for all a P A, and hence

gpa1, . . . , amq “ λfpa1, . . . , amq

for all a1, . . . , am P A. This means that h “ g ´ λf is a polynomial identity of A.

Corollary 4.40. Let charpF q ‰ 2, let α1, . . . , αm P F be such that
m
ÿ

i“1
αi ‰ 0, and let

fpx1, . . . , xmq “ α1x1 ¨ ¨ ¨ xm ` α2x2 ¨ ¨ ¨ xmx1 ` ¨ ¨ ¨ ` αmxmx1 ¨ ¨ ¨ xm´1.

If an F -algebra A is generated by idempotents and g is a multilinear polynomial of degree
m such that every zero of f in Am is a zero of g, then there exist an scalar λ P F and a
polynomial identity h of A such that g “ λf ` h.
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Proof. This is immediate from Theorem 4.32 and Proposition 4.39.

From now on we consider the case where A “ MnpF q. We recall from Proposi-
tion 4.21 that the conclusion of Proposition 4.39 then does not always hold. Our goal is to
show that it does hold provided that m ă 2n´ 3. In fact, since, as is well known, MnpF q

has no polynomial identities of degree less than 2n, we will actually prove that f and g

are linearly dependent. To this end, we start by introducing the necessary notation.

In what follows, let ασ, βσ P F be such that

f “
ÿ

σPSm

ασxσp1q ¨ ¨ ¨ xσpmq,

g “
ÿ

σPSm

βσxσp1q ¨ ¨ ¨ xσpmq.

We set
Supppfq “ tσ P Sm | ασ ‰ 0u

and similarly we define Supppgq. Further, for each σ P Sm we write

px1, . . . , xmqσ “ xσp1q ¨ ¨ ¨ xσpmq.

Thus, for example,
f “

ÿ

σPSm

ασpx1, . . . , xmqσ.

We will consider evaluations pa1, . . . , amqσ with ai P MnpF q.

The next two definitions are standard in group theory.

Definition 4.41. We define a metric d on Sm by letting dpσ1, σ2q to be the least nonnegative
integer k for which there exists a sequence of transpositions τ1, τ2, . . . , τk P Sm such that
τk ¨ ¨ ¨ τ1σ1 “ σ2.

The next definition concerns any subset T of Sm, but we will be actually
interested in the case where T “ Supppfq.

Definition 4.42. Let T be a subset of Sm. We define an equivalence relation on T as
follows: σ1 „ σ2 if and only if there exists a (possibly empty) sequence of transpositions
τ1, τ2, . . . , τk such that

(a) τi ¨ ¨ ¨ τ1σ1 P T , i “ 1, . . . , k ´ 1,

(b) τk ¨ ¨ ¨ τ1σ1 “ σ2.

The following theorem is the main result of this section.
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Theorem 4.43. Let f, g P F xx1, x2, . . . y be multilinear polynomials of degree m such that
every zero of f in MnpF q

m is a zero of g. If m ă 2n´ 3, then there exists an scalar λ P F

such that f “ λg.

Proof. Set m0 “
m

2 ` 1 if m is even and m0 “
m ` 1

2 if m is odd. Note that m0 ` 1 ď n

since m ` 3 ă 2n. Define a sequence e “ pe1, . . . , emq by setting

e1 “ e11, e2 “ e12, e3 “ e22, . . . , em “

$

&

%

em0´1,m0 m even

em0,m0 m odd
.

For any σ, π P Sm, we have

peσp1q, . . . , eσpmqqπ “ eπpσp1qq ¨ ¨ ¨ eπpσpmqq “

$

&

%

e1,m0 if σ “ π´1

0 otherwise
.

Therefore, for every σ P Sm we have

ασ “ 0 ùñ f
`

eσ´1p1q, . . . , eσ´1pmq

˘

“ ασe1,m0 “ 0
ùñ g

`

eσ´1p1q, . . . , eσ´1pmq

˘

“ βσe1,m0 “ 0
ùñ βσ “ 0.

We have thereby proved that
Supppgq Ď Supppfq. (4.13)

Take σ P Supppfq and write λ “ α´1
σ βσ, so that βσ “ λασ. We claim that

βτσ “ λατσ (4.14)

for every transposition τ . Indeed, without loss of generality we may assume that σ “ p1q

and we write τ “ pp qq with p ă q. We consider four cases.

Case 1: p and q are both even. In this case ep and eq are square-zero matrices.
Hence, considering the matrices

ai “ ei, i P t1, . . . ,muztp, qu,

ap “ ep ` eq,

aq “ αp1qep ´ ατeq,

we have
fpa1, . . . , amq “ pαταp1q ´ αp1qατ qe1,m0 “ 0.

This implies that

0 “ gpa1, . . . , amq “ pβταp1q ´ βp1qατ qe1,m0 “ pβτ ´ λατ qαp1qe1,m0 ,
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which yields (4.14).

Case 2: p and q are both odd. In this case both ep and eq are idempotents.
We reduce this case to the previous one by considering a shift on the sequence e, that is,

ẽ1 “ e12, ẽ2 “ e22, ẽ3 “ e23, . . . , ẽm “

$

&

%

em0,m0 , m even

em0,m0`1, m odd
.

Now it is enough to perform the evaluation at

ai “ ẽi, i P t1, . . . ,muztp, qu,

ap “ ẽp ` ẽq,

aq “ αp1qẽp ´ ατ ẽq

and proceed as at the end of Case 1.

Case 3: p is odd and q is even. In this case ep is an idempotent but eq is not.
The idea now is to consider a shift on the sequence from ep on. This shift will turn the
element in the q-th position into an idempotent. So an additional change will be needed in
this element as well. Precisely we take

ẽ1 “ e11, . . . , ẽp´1 “ e p´1
2 , p´1

2 `1, ẽp “ e p`1
2 , p`1

2 `1,

ẽp`1 “ e p`1
2 `1, p`1

2 `1, . . . , ẽq´1 “ e q
2 ,
q
2 `1, ẽq “ e q

2 `1, q2 `2,

ẽq`1 “ e q
2 `2, q2 `2, . . . , ẽm “

$

&

%

em0,m0`1, m even

em0`1,m0`1, m odd .

We consider the evaluation at

ai “ ẽi, i P t1, . . . ,muztp, qu,

ap “ ẽp ` ẽq,

aq “ αp1qẽp ´ ατ ẽq

and once again we proceed as in the end of Case 1.

Case 4: p is even and q is odd. Here we have that ep as a square-zero matrix
and eq is idempotent. We proceed similarly as in the previous case. The difference, however,
is that no shift is needed at the beginning, just the change in the elements at the q-th
position.

This completes the proof of our claim.

Let rσs denote the equivalence class of σ in Supppfq{ „. Write λrσs for λ.
Observe that (4.14) implies that

βσ1 “ λrσsασ1 (4.15)
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for all σ1
P rσs.

In view of (4.13) and (4.15), we are left to prove that λA “ λB for all equivalence
classes A,B in Supppfq{ „. Assume this is not true and consider a pair of permutations
σ1 and σ2 such that

dpσ1, σ2q “ min
π1PA,π2PB

A,BPSupppfq{„

λA‰λB

dpπ1, π2q “: ℓ. (4.16)

Let fψ denote the reindexing of f through the permutation ψ, i.e.,

fψ “
ÿ

σPSm

ασxψσp1q ¨ ¨ ¨ xψσpmq.

We claim that we may assume σ2σ
´1
1 is the product of disjoint cycles

σ2σ
´1
1 “ ps1 s1 ´ 1 ¨ ¨ ¨ 1q ¨ ¨ ¨ psh sh ´ 1 ¨ ¨ ¨ sh´1 ` 1q.

Indeed, let us prove that the minimum ℓ in (4.16) is invariant under reindexing of the
variables in both f and g, that is,

ℓ “ min
π1PA,π2PB

A,BPSupppfψq{„

λA‰λB

dpπ1, π2q. (4.17)

We first notice that Supppfψq “ ψSupppfq. Denoting the equivalent classes in
Supppfψq{ „ by rrσss, σ P Supppfψq, one then can see that for each σ P Supppfψq, there
exists σ1

P Supppfq such that
rrσss “ ψrσ1

s.

We also notice that for σ “ ψσ1 where σ1
P Supppfq, we must have λrrσss “ λrσ1s. In fact,

λrrσss “ α´1
ψ´1σβψ´1σ “ α´1

σ1 βσ1 “ λrσ1s.

Hence we conclude that the sets in the equations (4.16) and (4.17) for which we take the
minimum are actually the same, and we therefore conclude the equation (4.17).

Writing σ2σ
´1
1 as a product of h disjoint cycles, and recalling that two permu-

tations are conjugated if and only if they have the same cycle type, we therefore have the
existence of ψ P Sm such that

ψσ2σ
´1
1 ψ´1

“ ps1, s1 ´ 1, . . . , 1q ¨ ¨ ¨ psh, sh ´ 1, . . . , sh´1 ` 1q.

Hence, up to reindexing both f and g by ψ, we may assume

σ2σ
´1
1 “ ps1, s1 ´ 1, . . . , 1q ¨ ¨ ¨ psh, sh ´ 1, . . . , sh´1 ` 1q,

proving our claim.
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Since disjoint cycles commute, we may also assume that the first p cycles are
of even length and the remaining h ´ p are of odd length, where 0 ď p ď h.

Setting s0 “ 0 and taking into account for instance [49], we have

ℓ “ sh ´ h “

h
ÿ

i“1
si ´ si´1 ´ 1.

Finally, we also assume that σ1 “ p1q. Only minor adjustments in the proof are
needed if σ1 is an arbitrary permutation, which, however, makes the reading more difficult.
Thus, from now one we will be dealing with the permutations p1q and

σ2 “ ps1 s1 ´ 1 ¨ ¨ ¨ 1q ¨ ¨ ¨ psh sh ´ 1 ¨ ¨ ¨ sh´1 ` 1q.

We have λrp1qs ‰ λrσ2s.

In order to obtain a contradiction, our goal will be to construct a sequence
E P MnpF q

m such that

Ep1q “ e1,m0 , Eσ2 “ ´
αp1q

ασ2

e1,m0 , Eσ “ 0 for all σ P Supppfqztp1q, σ2u.

This will imply
fpEq “ αp1qe1,m0 ´ ασ2

αp1q

ασ2

e1,m0 “ 0,

hence

gpEq “ λrp1qsαp1qe1,m0 ´ λrσ2sασ2

αp1q

ασ2

e1,m0 “ pλrp1qs ´ λrσ2sqαp1qe1,m0 “ 0,

ans so λrp1qs “ λrσ2s, contrary to the assumption.

As the first step, we shall construct the sequence E in three particular cases.
We will see at the end that the general case will follow from these three ones.

Case 1: p “ h (all cycles are of even length).

By assumption, si “ 2qi, i “ 1, . . . , h. We introduce the sequence E in blocks
as follows:

E “ pE1, . . . , Eh, Eh`1q,

• E1 “ e11, e12, e22, . . . , eq1´1,q1 , eq1,q1 ` eq1,q1`1, eq1,q1`1 ` e11,

• E2 “ eq1`1,q1`1, eq1`1,q1`2, . . . , eq2´1,q2 , eq2,q2 ` eq2,q2`1,
eq2,q2`1 ` eq1`1,q1`1,

...

• Eh “ eqh´1`1,qh´1`1, . . . , eqh´1,qh , eqh,qh ` eqh,qh`1,
eqh,qh`1 ´

αp1q

ασ2

eqh´1`1,qh´1`1,



Chapter 4. f -zpd algebras 106

• Eh`1 “ eqh`1,qh`1, eqh`1,qh`2, . . . , em1,m0 .

Here m1
“ m0 if m is odd and m1

“ m0 ´ 1 otherwise (recall that m0 is defined at the
beginning of the proof).

One can easily see that the non-zero products of matrices in E are only obtained
by joining the non-zero evaluations of each block, in the increasing order of the blocks.

For i “ 1, 2, . . . , h, define the following sets of permutations:

Ri “ tp1q, psi ¨ ¨ ¨ si´1 ` 3 si´1 ` 2q, psi ¨ ¨ ¨ si´1 ` 2 si´1 ` 1qu.

Then we get

Eσ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e1,m0 if σ “ p1q

´
αp1q

ασ2

e1,m0 if σ “ σ2

µσe1,m0 if σ “ π1 ¨ ¨ ¨ πh, πi P Ri, σ R tp1q, σ2u

0 otherwise,

where µσ P F .

In order to complete the proof of this case we are left to show that actually
the permutations η of the third item of Eσ giving a non-zero evaluation are not elements
of Supppfq. To this end let us prove the following facts.

• dpη, p1qq ă ℓ.

This follows from a direct comparison between η and σ2. Indeed, let η “ π1 ¨ ¨ ¨ πh,
πi P Ri. Since η ‰ σ2, we have that at least one of the πi’s is not equal to
psi ¨ ¨ ¨ si´1 ` 2 si´1 ` 1q. Hence we have a fewer number of transpositions in the
decomposition of η than in that of σ2. As a consequence we obtain dpη, p1qq ă ℓ, as
desired.

• dpη, σ2q ă ℓ.

As before let η “ π1 ¨ ¨ ¨ πh, πi P Ri. Since η ‰ p1q, we have that at least one of
the πi’s is not equal to p1q. Now consider σ2η

´1. If η involves a cycle of the form
psi . . . si´1 ` 2 si´1 ` 1q, then the elements from the set tsi, . . . , si´1 ` 2, si´1 ` 1u

are fixed in σ2η
´1. The outcome of this is that, with respect to the i-th block, we

have fewer transpositions in σ2η
´1 than in σ2 and we are done in this case. The other

possibility is that a cycle of the form psi ¨ ¨ ¨ si´1 ` 3 si´1 ` 2q occurs in η. In this
case, in the i-th block of σ2η

´1 only the transposition psi´1 ` 1 siq appears. Since
1 ă 3 ď si ´ si´1 ´ 1, we reach the desired conclusion dpη, σ2q ă ℓ.
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According to the above two facts we can complete the proof of this case. If
λrηs ‰ λrp1qs, we immediately get a contradiction to the minimality of ℓ since we have
proved that dpη, p1qq ă ℓ. So assume that λrηs “ λrp1qs. Since by hypothesis λrσ2s ‰ λrp1qs,
we obtain that λrηs ‰ λrσ2s. Again we get a contradiction to the minimality of ℓ since we
have proved that dpη, σ2q ă ℓ.

Case 2: h “ 1 and s1 “ 2q ` 1 is odd.

Consider the sequence E “ pE1, E2q given in two blocks as follows:

• E1 “ e11, e12, e22, . . . , eq,q`1, eq`1,q`1 ´
αp1q

ασ2

e11,

• E2 “ eq`1,q`2, eq`2,q`3, . . . , em1,m0 .

It is not difficult to see that

Eσ “

$

’

’

’

&

’

’

’

%

e1,m0 , if σ “ p1q

´
αp1q

ασ2

e1,m0 , if σ P tσ2, ps1 ¨ ¨ ¨ 3 2qu

0, otherwise

.

The proof of this case is complete since it is sufficient to observe that ps1 ¨ ¨ ¨ 3 2q R Supppfq.

Case 3: h “ 2, p “ 0 (2 odd cycles).

In this case we have that s1 “ 2q1 ` 1 and s2 “ 2q2.

Consider the sequence E “ pE1, E2q given in two blocks as follows:

• E1 “ e11, e12, e22, . . . , eq1,q1`1, eq1`1,q1`1 ` e11, eq1`1,q1`2,

eq1`2,q1`2, . . . , eq2´1,q2 , eq2,q2 ` eq2,q2`1, eq2,q2`1 ´
αp1q

ασ2

eq1`1,q1`1,

• E2 “ eq2`1,q2`1, eq2`1,q2`2, . . . , em1,m0 .

Define the following two sets of permutations:

R1 “ tp1q, ps1 ¨ ¨ ¨ 3 2q, ps1 ¨ ¨ ¨ 2 1qu,

R2 “ tp1q, ps2 ¨ ¨ ¨ s1 ` 2 s1 ` 1qu.

One can directly see that

Eσ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e1,m0 , if σ “ p1q

´
αp1q

ασ2

e1,m0 , if σ “ σ2

µσe1,m0 , if σ “ π1π2, πi P Ri, σ R tp1q, σ2u or σ “ ps2 ¨ ¨ ¨ s1q

0, otherwise,
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where µσ P F .

Let η be a permutation of the third item of Eσ giving a non-zero evaluation. In
order to complete the proof of this case we need to show that η R Supppfq. Assume first
that η “ π1π2, where πi’s are permutations from Ri. In this case we are in the situation
of Case 1 and, proceeding in a similar manner, we arrive at the desired conclusion. Now
suppose that η “ ps2 ¨ ¨ ¨ s1 ` 1 s1q. In this case we obtain that

σ2η
´1

“ ps1 s2 s1 ´ 1 s1 ´ 2 ¨ ¨ ¨ s0 ` 2 s0 ` 1q,

which decomposes into s1 ´ s0 transpositions. Since s2 ´ s1 ´ 1 ě 2 (otherwise we would
have a cycle of length 1 in σ2 and we could just ignore it), we get

s1 ´ s0 ă s1 ´ s0 ` s2 ´ s1 ´ 2 “ ps1 ´ s0 ´ 1q ` ps2 ´ s1 ´ 1q “ ℓ.

This shows that dpσ2, ηq ă ℓ. Analogously we have that dpp1q, ηq ă ℓ. In fact
ps2 ¨ ¨ ¨ s1 ` 1 s1q decomposes into s2 ´ s1 transpositions, which is less than
ps1 ´ s0 ´ 1q ` ps2 ´ s1 ´ 1q. Using the same approach at the end of Case 1, we get
the desired conclusion also in this case.

In order to complete the proof of the theorem we are left to analyze the general
situation. Recall that

σ2 “ ps1 s1 ´ 1 ¨ ¨ ¨ 1q ¨ ¨ ¨ psh sh ´ 1 ¨ ¨ ¨ sh´1 ` 1q,

where the first p cycles are of even length (si “ 2qi) and the remaining h ´ p are of odd
length, p P t0, 1, . . . , hu. Note that h ´ p ą 0, otherwise we are in Case 1.

Now distinguish two situations: h ´ p odd or h ´ p even.

Suppose first that h´ p “ 2k` 1 is odd. In this case we construct the sequence
E “ pG1, . . . , Gp, G

1
1, . . . , G

1
k, G

1
k`1q in blocks as follows:

• for the blocks Gi, i “ 1, . . . , p, we use the idea of Case 1. More precisely we put

Gi “ eqi´1`1,qi´1`1, eqi´1`1,qi´1`2, eqi´1`2,qi´1`2, . . . , eqi´1,qi ,

eqi,qi ` eqi,qi`1, eqi,qi`1 ` eqi´1`1,qi´1`1,

where we assume that q0 “ 0;

• for the blocks G1
j , j “ 1, . . . , k, we mimic the first block of matrices (called E1) given

in Case 3, more precisely

G1
j “ eqj´1`p`1,qj´1`p`1, eqj´1`p`1,qj´1`p`2, . . . , eqj`p,qj`p`1,

eqj`p`1,qj`p`1 ` eqj´1`p`1,qj´1`p`1, eqj`p`1,qj`p`2,

eqj`p`2,qj`p`2, . . . , eqj`p`1´1,qj`p`1 ,

eqj`p`1,qj`p`1 ` eqj`p`1,qj`p`1`1, eqj`p`1,qj`p`1`1 ` eqj`p`1,qj`p`1;
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• the block G1
k`1 is constructed as in Case 2:

G1
k`1 “ eqp`k`1`1,qp`k`1`1, eqp`k`1`1,qp`k`1`2, . . . , eqp`k`2,qp`k`2`1,

eqp`k`2`1,qp`k`2`1 ´
αp1q

ασ2

eqp`k`1`1,qp`k`1`1,

eqp`k`2`1,qp`k`2`2, eqp`k`2`2,qp`k`2`2, . . . , em1,m0 .

Now assume that h´ p “ 2k is even. In this case we do not have the last block
G1
k`1. All the other ones are constructed as in the previous case, except for the last one

G1
k, which becomes:

G1
k “ eqk´1`p`1,qk´1`p`1, eqk´1`p`1,qk´1`p`2, . . . , eqk`p,qk`p`1,

eqk`p`1,qk`p`1 ` eqk´1`p`1,qk´1`p`1, eqk`p`1,qk`p`2,

eqk`p`2,qk`p`2, . . . , eqk`p`1´1,qk`p`1 ,

eqk`p`1,qk`p`1 ` eqk`p`1,qk`p`1`1, eqk`p`1,qk`p`1`1 ´
αp1q

ασ2

eqk`p`1,qk`p`1,

eqk`p`1`1,qk`p`1`1, eqk`p`1`1,qk`p`1`2, . . . , em1,m0 .

In both cases, we get that the sequence E is such that

Ep1q “ e1,m0 , Eσ2 “ ´
αp1q

ασ2

e1,m0 , Eσ “ 0 for all σ P Supppfqztp1q, σ2u.

In fact, each permutation η R tp1q, σ2u, giving a non-zero evaluation of the
matrices in the sequence E, does not belong to Supppfq. Indeed, in computing dpη, p1qq

and dpη, σ2q, we always have a sum

l1 ` ¨ ¨ ¨ ` lh

where, for each i, li ď si ´ si´1 ´ 1 or li`1 ` li ď psi`1 ´ si ´ 1q ` psi ´ si´1 ´ 1q, and for
at least one i we have that the inequality is strict.
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