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RESUMO 

 O desenvolvimento de um campo de petróleo e gás depende das informações descritas 

no plano de desenvolvimento do campo (FDP, field development plan) que rege a 

implementação de uma estratégia de produção ao longo do ciclo de vida do projeto. Entretanto, 

a escassez de informações e muitas incertezas técnicas e geológicas tornam o processo de 

tomada de decisão para seleção de FDP uma tarefa desafiadora. Dessa forma, uma equipe 

multidisciplinar é mandatória para tomar várias decisões de investimento para maximizar a 

função objetivo do projeto. Assim, um processo de desenvolvimento convencional de campos 

de petróleo pode oferecer um FDP abaixo do ideal devido a uma enorme lacuna de 

informações. 

 Tal configuração requer um processo de desenvolvimento de campo baseado em 

retroalimentação de informações para otimizar recorrentemente o FDP usando informações 

acumuladas ao longo do tempo para maximizar a função objetivo do projeto. O 

desenvolvimento de campo em malha fechada (CLFD, Closed Loop Field Development) é um 

fluxo de trabalho de desenvolvimento de campo baseado em retroalimentação com uma 

combinação exaustiva de tarefas multidisciplinares para usar dados adquiridos com frequência 

para otimizar a função objetivo do projeto. No entanto, estudos anteriores mostraram que o 

CLFD pode falhar por várias razões teóricas. Além disso, os fluxos de trabalho existentes 

dificilmente são adequados para revisar os FDPs para campos gigantes ou complexos que 

exigem modelos de simulação muito demorados. 

           Com base nesses fatos, este trabalho propõe um fluxo de trabalho CLFD eficiente e 

informado sobre o risco, utilizando quatro estudos científicos. No primeiro estudo, para 

entender melhor o CLFD, identificamos e enfatizamos o impacto de etapas individuais no 

CLFD para entender e mitigar possíveis problemas. Introduzimos um fluxo de trabalho CLFD 

informado sobre riscos no segundo trabalho e o testamos em dois estudos de caso com esse 

entendimento aprimorado. Um CLFD informado sobre riscos utiliza percepções de uma 

abordagem sistemática para avaliar os riscos associados ao desenvolvimento de campo para 

tomar decisões robustas para o campo real. No estudo subsequente, propomos e comparamos 

quatro métodos de otimização de FDP e suas vantagens e desvantagens do ponto de vista do 

fluxo de trabalho CLFD. No quarto trabalho, aplicamos um fluxo de trabalho CLFD eficiente 

e informado sobre riscos em um estudo de caso representando um campo gigante para destacar 

algumas preocupações práticas ao usar esses fluxos de trabalho. 



 

 

           Para resumir, a principal contribuição deste trabalho é apresentar dois fluxos de trabalho 

CLFD validados para promover um processo de tomada de decisão sólido, eficiente e 

informado sobre riscos sob incertezas geológicas para um campo de tamanho típico e gigante. 

Enquanto o primeiro fluxo de trabalho é abrangente e preparado para modelos mais rápidos, o 

último é mais eficiente e aplicável para aplicações práticas e demoradas. Sem um fluxo de 

trabalho eficiente, um ciclo do fluxo de trabalho CLFD pode consumir muito tempo e, portanto, 

pode ser impraticável desenvolver um campo com modelos de simulação baseados em física 

que demandam muito esforço computacional. Além disso, a aplicação dos fluxos de trabalho 

CLFD em todos os estudos de caso forneceu vários entendimentos interessantes sobre o tema. 

A tese também estabelece novas técnicas de otimização para uma otimização FDP mais rápida, 

ao mesmo tempo em que promove a probabilidade de sucesso da solução otimizada sobre o 

conjunto de cenários geológicos viáveis. 

 Para concluir, os estudos de reservatórios lutam para prever adequadamente o 

desempenho do reservatório devido às suas características inerentes de precisão, viés e erro. 

Apesar dessas características, um CLFD eficiente e informado sobre o risco oferece uma 

oportunidade ideal para assimilar novas informações em fases específicas e melhorar a 

compreensão do campo, que é visível na forma de decisões aprimoradas.



 

 

ABSTRACT 

 The development of an oil and gas field follows a field development plan (FDP) which 

governs the implementation of a production strategy throughout the project's lifespan. But, a 

dearth of information and copious technical and geological uncertainties makes the decision-

making process very challenging. Thus, a multidisciplinary team is mandated to make several 

front-end investment decisions regarding infrastructure and wells to maximize the project's 

objective function. Consequently, such a conventional field development process may offer a 

suboptimal FDP due to a massive information gap.  

 Such a setup necessitates a feedback-based field development process to recurrently 

optimize FDP using accrued information over time for maximizing the project’s objective 

function. Closed-loop field development (CLFD) is a feedback-based field development 

workflow with an exhaustive combination of multidisciplinary tasks to use frequently acquired 

data for optimizing the project’s objective function. Nevertheless, previous studies have shown 

that CLFD could fail for several theoretical reasons. Furthermore, the existing workflows are 

hardly suitable for revising the FDPs for giant or complex fields that require extensively time-

consuming simulation models. 

           Reasoning from these facts, this work proposes an efficient and risk-informed CLFD 

workflow utilizing four scientific studies. In the first study, we identify and emphasize the 

impact of individual steps in CLFD to recognize and mitigate potential problems. We introduce 

a risk-informed CLFD workflow in the second work and test it on two case studies with an 

improved understanding of CLFD. A risk-informed CLFD utilizes insights from a systematic 

approach for evaluating risks associated with field development to make well-informed 

decisions for the field. In the subsequent study, we propose and compare four FDP optimization 

methods and their advantages and disadvantages from the perspective of the CLFD workflow. 

In the fourth work, we apply an efficient and risk-informed CLFD workflow on a giant 

benchmark case study to highlight some practical concerns while using such workflows. 

           To summarize, the main contribution of this work is to introduce two validated CLFD 

workflows for promoting a deliberate, accelerated, and risk-informed decision-making process 

under geological uncertainties for typical-sized as well as giant fields. While the first workflow 

is comprehensive and equipped for faster models, the latter is more efficient and applicable for 

time-consuming and practical applications. Without an efficient workflow, a cycle of the CLFD 

workflow can be extensively time-intensive, and thus, it can be impractical to develop a field 



 

 

with expensive physics-based simulation models. Furthermore, the application of the CLFD 

workflows on all the case studies provided several interesting insights on the topic. The thesis 

also establishes new optimization techniques for faster FDP optimization while promoting the 

likelihood of success of the optimized solution over the ensemble of geologically feasible 

scenarios.  

 To conclude, reservoir studies struggle to predict reservoir performance adequately due 

to their inherent characteristic of accuracy, bias, and error. Despite these characteristics, a risk-

informed and efficient CLFD provides an ideal opportunity to assimilate new information over 

stipulated phases and improve the understanding of the field, which is visible in the form of 

improved decisions. 
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1 Introduction 
 

 A field development plan (FDP) is a mandated document that specifies the detailed 

actions, constraints, and processes required to develop an oil and gas field. It is a crucial 

document for a greenfield where a host of significant decisions must be made to bring the 

production online without delaying its plateau. A dearth of information and copious technical 

and geological uncertainties around the field renders the task even more complex. Despite these 

challenges, a multidisciplinary team makes several front-end investment decisions regarding 

infrastructure and wells to make the project as profitable as possible. Generally, this is 

performed by analyzing several hypothetical scenarios to forecast the long-term production of 

hydrocarbons and the corresponding monetary return. However, this conventional field 

development process may offer a suboptimal FDP due to a massive gap in information and a 

huge envelope of uncertainty. 

 Typically, only a few exploration wells and their production data over a couple of 

months are available for proposing the initial FDP. It is vital to assimilate new information 

over time to revise FDPs and make better decisions. Integrating new data with existing 

information can potentially aid the multidisciplinary team in understanding the field better for 

making well-informed decisions. Thus, optimizing updated models using the accrued 

information over time is critical for successfully developing an oil and gas field. This lacking 

is where the feedback-based field development process comes into play to mitigate a subpar 

FDP. Similar to the objective of drilling an appraisal well, a feedback-based field development 

process attempts to obtain information through new development well(s) for improving the 

project’s objective function (for instance, net present value (NPV), recovery factor (RF)) by 

reviewing the decision variables (for example, number, type, and location of wells) in the FDP. 

           While there is an extensive list of studies on conventional field development 

optimization, minimal work has been done in the area of feedback-based field development. 

This concept was first successfully explored under the label of closed-loop field development 

(CLFD) as a cyclical process to utilize the intermittently acquired information to improve 

decisions with gradually increasing periods of field development.  

 CLFD is an exhaustive combination of multidisciplinary tasks for using frequently 

acquired data to optimize the pre-defined objective function of the project. The amount of 

information can vary from hours to years. Similarly, the quality and reliability of the data can 
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depend on the source of measurement. The acquired data can also range from two-dimensional 

(2D) production data, well-tests, and up-to-date inputs to three-dimensional (3D) well logs and 

geophysical surveys. 

 CLFD has been endorsed by all previous work as a simple concept that can help 

multidisciplinary teams to optimize objectives while dealing with uncertainty. Despite this, 

limited theoretical evidence exists to justify the use of this principle in practical applications. 

This lack of support is because theoretical studies involving 3D field development utilizing the 

CLFD workflow yielded both pessimistic and optimistic outcomes. Computational expense, a 

huge envelope of uncertainty, and heterogeneity, among other factors, can also render such 

workflows time-consuming. Furthermore, the existing workflows are slow, leading to a 

reasonably large delay in their implementation in actual field applications, limiting their true 

benefits.  

 Some of the Brazilian pre-salt reservoirs present a perfect example for testing practical 

workflows to enthuse confidence in the performance of such workflows. Among other reasons, 

this is chiefly due to their complexities in terms of heterogeneities and the size of the field. To 

test, learn and develop a robust workflow using such complex fields, we present this work in 

the form of five scientific articles. We begin this thesis by unraveling the potential problems in 

the CLFD workflow. Based on this learning, we propose a robust and risk-informed CLFD 

workflow to ensure that it improves the results in the reference case (which represents the "true 

field" behavior in a synthetic benchmark case). As the optimization process is sluggish for 

time-consuming models, we focus on this aspect in the subsequent research. Two of the 

scientific studies focus on improving the optimization step of the CLFD process to endorse an 

efficient CLFD methodology. Integrating the knowledge from all four works, we test the 

pragmatic workflow on a giant benchmark with typical characteristics of a pre-salt field in 

offshore Brazil. This final paper also focuses on the practical realization of the concept of 

CLFD, while establishing the impact of CLFD workflow. 

 Typically, reservoir studies struggle to predict reservoir performance adequately due to 

their inherent characteristic of accuracy, bias, and error. Despite these characteristics, a risk-

informed and efficient CLFD provides an ideal opportunity to assimilate new information over 

specified phases and improve our understanding of the field. This improved understanding is 

best visible in the form of decisions made using CLFD. 

 This thesis focuses on learning the potential problems and using that knowledge to 

propose improved CLFD workflows. We introduce and validate two risk-informed CLFD 
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workflows for promoting robust decision-making under uncertainty for both typical and giant 

fields. The first workflow is comprehensive and equipped for faster simulation models. 

Without an efficient workflow, a CLFD cycle can be expensive in terms of time, rendering it 

impractical to develop a field with expensive physics-based simulation models. Hence, the 

second workflow is more efficient and applicable for time-consuming and practical 

applications. We addressed several research gaps in this niche subject while disclosing acute 

observations and enthusing confidence in applying the proposed workflows. 

 The research consists of seven chapters that include four chapters with scientific 

studies. The last two chapters of the work include the conclusion and likely future studies. The 

thesis also comprises four appendices which include a discussion on risk-informed decision-

making, an additional scientific article on a novel optimization algorithm, a summarized report 

on using flux-boundary conditions in sectorized field development, and published manuscripts’ 

license agreements. 

 Motivation 
 We derive our motivation from several well-established facts. Firstly, only limited 

research has been done in this niche area of the feedback-based field development process. 

 As endorsed by these limited studies, CLFD is an intuitive concept to assist 

multidisciplinary teams in maximizing the field's objective function while working with 

uncertainties. Despite this, none of the work supports the employment of this concept in the 

actual field. This impracticality arises because both negative and positive results were observed 

in the previous studies working on three-dimensional field development using CLFD 

workflow. 

           Furthermore, none of the previous work delved deeper and explained the impact of an 

individual step and all the steps of CLFD on uncertainties during field development. This 

description of the implicit working of steps is the key to highlighting the changes observed in 

the explicit objective function and revised FDP. Such descriptions are necessary to enthuse 

confidence in the effectiveness of CLFD and facilitate further improvements in the CLFD 

process.  

           Fourthly, all proposed workflows are highly time-consuming and infeasible for 

developing giant or complex fields requiring an elaborate physics-based simulation model to 

understand better the field's behavior. This shortcoming makes the CLFD workflows practical 

for only a theoretical application.  



  22 

 

 

           Finally, the limited work on the subject only focuses on improving the field's pre-

defined objective function(s), disregarding practical concerns like associated delays, execution 

time, and limitations of CLFD workflows to improve decisions in certain reservoirs. 

 Objectives 
 The primary objective of this work is to delineate an efficient and risk-informed CLFD 

workflow for practical applications in the exploration and production industry. We 

systematically analyze and unravel the potential problems in the existing workflows to help us 

build a robust and methodical CLFD workflow. We attempt to bolster confidence in our 

workflow using a diverse group of controlled and systematic experiments with multiple 

benchmark case studies. Intending to make the workflow efficient for real field applications, 

we propose alternate approaches and apply them on a giant benchmark field. 

 Description of thesis 
 The thesis consists of a series of four scientific articles. Three additional work are 

discussed in the form of appendices. In this subsection, we summarize all these studies and 

their contribution towards the overall objectives of the thesis. We present the detailed articles 

in the subsequent chapters.  

 Bottom-up analysis to unravel potential problems and emphasize the impact of 

individual steps in closed-loop field development (published work) 

 Loomba, A.K., Botechia, V.E. and Schiozer, D.J. 2020. Bottom-up analysis to unravel 

potential problems and emphasize the impact of individual steps in closed-loop field 

development. Presented at the Offshore Technology Conference held in Houston, Texas, United 

States of America, 4-7 May. DOI: 10.4043/30776-MS. 

 We started this work using the hypothetical conclusions of one of the previous studies 

that yielded negative results using CLFD workflow and concluded that a higher fidelity model 

can mitigate such outcomes. However, using an ensemble of relatively higher fidelity models 

did not yield better results using the existing workflow. Considering this disagreeable result, 

we introduced a bottom-up assessment of the CLFD workflow to exhibit the impact of 

individual steps on the workflow and highlight associated potential problems. By performing 

three new activities and comparing them with the existing CLFD workflow, we expanded our 

understanding of the CLFD workflow and the importance of individual steps. 

 Based on these experiments, we were able to identify that the propagation of specious 

scenarios/outputs can lead to an overall bias in the results of CLFD. As CLFD is a cyclical 
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process, one needs to be cautious about the output of the preceding step to the input of the next 

step. We also introduced a bi-criterion objective function focusing on the ensemble as well as 

individual representative models (RMs) to improve the likelihood of success of the optimized 

FDP. Based on one set of experiments, we also learned that accepting poorly history-matched 

scenarios can lead to an inferior ensemble of RMs and, consequently, influence the 

optimization process. Given that we work with limited information during the field 

development process, we also introduced flexibility of drilling (FoD) as an alternative to 

incorporate pragmatic drilling and avoid “unrealistic” bias that may affect FDPs in some 

instances when working in a theoretical environment. 

 The main contribution of this work is to systematically analyze and unravel the 

potential problems in the existing workflows. The work explores the impact of individual steps 

on the CLFD workflow. This knowledge is crucial for building a robust and methodical CLFD 

workflow. 

 Application of risk-informed closed-loop field development workflow to elucidate 

the evolution of uncertainties (published work) 

 Loomba, A.K., Botechia, V.E. and Schiozer, D.J. 2021. Application of risk-informed 

closed-loop field development workflow to elucidate the evolution of uncertainties. Journal of 

Petroleum Science and Engineering, 197, 107960, DOI: 10.1016/j.petrol.2020.107960. 

 Learning from the first work, we propose an improved and risk-informed CLFD 

workflow for three-dimensional (3D) synthetic field applications. This article attempts to 

provide a diverse and all-inclusive perspective on the subject to address some of the previously 

unanswered questions. The specific objectives of this study include testing the proposed risk-

informed workflow on two synthetic case studies while systematically investigating the 

individual steps to improve the CLFD workflow further. Unlike any previous work, we present 

a comprehensive discussion on the evolution of uncertainties as individual components of the 

risk-informed workflow are executed. As most of the previous work rarely focused on this 

aspect, we attempt to reinforce confidence in the feedback-based field development process by 

providing an intuition into the working of the methodology by contemplating our evolving 

ensemble of models. Most importantly, this work also introduces the value of closed-loop 

(VoCL) to quantify the impact of new decisions on the project's monetary objective function 

and analyze the bias related to model-based decisions. 

 The main contribution of this work is to delineate a comprehensive and risk-informed 

CLFD workflow and validate it using two field-scale examples. Unlike previous studies, we 
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strengthen the confidence in a CLFD workflow by providing a step-by-step analysis of the 

inputs and outputs of individual steps. 

 A comparative study to accelerate field development plan optimization (published 

work) 

 Loomba, A.K., Botechia, V.E. and Schiozer, D.J. 2022. A comparative study to 

accelerate field development plan optimization. Journal of Petroleum Science and 

Engineering, 208, 109708, DOI: 10.1016/j.petrol.2021.109708. 

 In this comparative study, we present and compare a few practical solutions to assist a 

complex/giant field's development while considering probabilistic scenarios to capture 

uncertainty. We define four workflows to expedite the process of FDP optimization. We 

implement and compare those workflows on a giant benchmark field. Based on a detailed 

investigation, we also present their advantages and disadvantages for establishing their 

applicability in different situations. Moreover, we show that the newly proposed methods and 

some fine-tuning exercises can make the FDP optimization process considerably efficient. 

With all research combined, we establish its usefulness in the CLFD workflow. 

 The focus of this work is to propose new techniques for making the optimization 

process highly efficient. As the model error is an inherent component within the simulation 

models, this research promotes the idea of developing a field with risk-averse techniques and 

selecting an appropriate FDP efficiently. 

 Revising field development plan of a giant field under uncertainty using accrued 

information (submitted for publication) 

 Stimulated by the high execution time for implementing a CLFD cycle in a complex 

oil and gas field with extensively time-consuming simulation models, we present an efficient 

CLFD workflow in this final work on CLFD. Without an efficient workflow, it can be time-

intensive to develop such field-scale examples. Hence, we propose and validate an efficient 

workflow for practical applications. The proposed workflow in this article uses the essential 

knowledge from previous studies to make all the individual steps faster than the previously 

validated workflow.  

 We test this efficient workflow on a giant benchmark case created with typical 

heterogeneous characteristics of a pre-salt field in Brazil. This benchmark case manifests a 

challenging environment with spatial and temporal complexity. Consequently, it makes a 

perfect testing ground for investigating the proposed workflow. To study the effect of CLFD, 

we also work with fewer decision variables in a quarter of a giant field and consider practical 
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timelines. Unlike previous work, we also establish the benefit of the workflow by including its 

execution time and buffer period to stress that CLFD works in a delayed environment. 

 The main contribution of this work to the thesis is to validate an improved, risk-

informed, and efficient CLFD workflow. Such a holistic workflow is indispensable for 

developing real field examples, which can be fraught with complexities. The article also 

stresses deliberately planning for the successful implementation of CLFD. 

 Concept of risk-informed decision-making – Appendix A 

 In 2008 and 2010, National Aeronautics and Space Administration (NASA) presented 

a risk-informed decision-making process as a deliberate workflow to mitigate the shortfalls in 

their outcomes. This appendix presents the difference between a risk-based and risk-informed 

decision-making process while highlighting the definition of risk-informed decision-making 

and how it was used in conjunction with CLFD workflow to yield robust results. 

 Using “flux boundary option” for well location optimization: a feasibility study – 

Appendix B 

 Computer Modelling Group Ltd. (CMG) introduced the “flux boundary option” in 2019 

as a tool to simulate a section of the full-field model, without hampering the results as well as 

saving time.  In this appendix, we assess the applicability of this newly introduced tool in terms 

of its function for performing production strategy (only well-location) optimization in a giant 

field.  

 Cluster-based learning and evolution algorithm for optimization (submitted for 

publication) – Appendix C 

 In this manuscript, we present cluster-based learning and evolution optimizer (CLEO) 

as an algorithm for solving optimization problems. The optimizer uses cluster-based 

manipulation of problem space during the exploration phase. The exploitation phase is 

executed using the updated knowledge of the problem space for fine-tuning. Using the concept 

of CLEO, we propose two approaches.  

 We validate the proposed approaches by optimizing the FDP for a simple and synthetic 

simulation model as well as a giant field-scale model. We perform both deterministic and 

probabilistic analyses with extensive as well as limited decision variables. In addition, we 

compared our proposed methods with four well-established optimizers (particle swarm 

optimization (PSO), differential evolution (DE), designed exploration controlled evolution 

(DECE), and iterative discrete Latin hypercube sampling method (IDLHC)). 
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 The main contribution of this addendum work is to propose a new optimization 

algorithm. As this optimization algorithm explores the problem space more efficiently, we use 

it as the core optimization algorithm in the final study on CLFD. We adapted the concepts of 

the second approach presented in this work to optimize >90% faster in the final study. 
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Abstract 

 Closed-loop field development (CLFD) is a feedback-based approach to optimize 

production strategy by utilizing new information iteratively during field development. Positive 

and negative results have been presented in previous work using CLFD, so this paper presents 

a bottom-up assessment of CLFD workflow to exhibit the impact of individual steps on the 

workflow, highlighting associated potential problems and, finally, proposing a methodology to 

tackle these problems. 

 Our CLFD workflow consists of updating static information, assimilating dynamic data 

to select an appropriate subset of models and, finally, selecting representative models to 

optimize the production strategy under uncertainties. We performed four activities to expand 

our understanding of CLFD by applying the workflow on UNISIM-I, a benchmark case study: 

(1) applying the aforementioned CLFD workflow, (2) applying the workflow after modifying 

objective function of optimization process, emphasizing the likelihood of success of optimized 

production strategy over the ensemble of simulation models, (3) applying the workflow after 

modifying the objective function, as well as the criteria for selecting the appropriate subset of 

models, post dynamic data assimilation, and (4) reanalyzing the results of activity 1 after using 

flexibility of drilling (FoD) - an approach proposed to partially imitate the real-time decision-

making process to ensure that the heel of a well is not drilled in a non-reservoir zone, by 

utilizing the available information. 
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 The application of the initial CLFD methodology (first activity) led to an increase in 

expected monetary value (EMV) based on simulation models, but we observed a decrease in 

EMV when we implemented this optimized strategy in the reference case UNISM-I-R (a very 

refined model that emulates a "true field"). This negative result formed the basis for our 

motivation to perform the bottom-up analysis. During the second activity, our attempt to 

improve the optimization process using a new objective-function, led to a significant 

improvement in EMV for the reference case, compared to the first activity. Re-applying the 

CLFD workflow using this newly tested objective function, while using stricter criteria for 

selecting approved models (third activity), provided an optimized production strategy for the 

reference case. Last activity provided a deeper insight into the CLFD workflow. Application 

of FoD, during the fourth activity, revealed that the poorer results during the first activity can 

be segregated into two separate components: (a) relatively poorer CLFD workflow and, (b) 

ignoring FoD to ineptly drill the wells in non-reservoir zones. 

 The bottom-up approach helped us systematically improve the CLFD workflow. 

Implementation of the improved workflow ensured that the optimized production strategy not 

only improved EMV for simulation models, but also the reference case. 

 Introduction 
 Optimization of a production strategy (PS) to improve pre-defined objective function(s) 

(expected monetary value (EMV), recovery factor (RF), etc.) of a field development plan is an 

arduous task. The lack of ample information and uncertainties revolving around geological and 

technical parameters renders the optimization process even more challenging. Acquiring 

information and reducing uncertainties to produce better geological and simulation models is, 

therefore, one of the key tasks for multidisciplinary teams working on the field development. 

 However, under the provided circumstances, decisions related to the design variables 

in a green field, i.e., the most crucial variables associated with the infrastructure and wells 

(Gaspar et.al 2016), need to be made under a large bracket of uncertainties. While most of these 

design variables, (e.g., platform and flowline system) cannot be modified after a concrete 

decision has been made, some of the other design variables (for e.g., well count, placement, 

etc.) can still be modified and optimized in an ad hoc manner by collecting and exploiting new 

information acquired during the development phase of the green field. This idea was first 

presented by Shirangi and Durlofsky (2015), under the broad label of closed-loop field 

development (CLFD) to optimize production strategy (PS) based on number, type, and 
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placement as well as operating constraints of wells by assimilating new information acquired 

by drilling new wells and using production data from the existing wells.  

 CLFD can be defined as a feedback-based approach to optimize PS by utilizing new 

information (production data, well-logs, etc.) iteratively during field development. According 

to Shirangi and Durlofsky (2015), CLFD consists of three cyclic steps; optimizing PS under 

the currently available geological information, drilling wells to obtain hard data as well as 

production data and finally, updating multiple geological models based on freshly available 

data. The authors used a hybrid particle swarm optimization-mesh adaptive direct search 

algorithm (Isebor et al., 2014) for optimizing the well type, location, and controls for the to-

be-drilled wells and well controls for the existing wells. For history matching, they opted for 

randomized maximum likelihood procedure (Oliver et al., 1996) by obtaining gradients using 

the adjoint method. In addition, they introduced the concept of optimization with sample 

validation (OSV) to select an apt number of representative models (RMs) to provide efficiency 

to the process under geological uncertainties. When applied to different synthetic small-scale 

examples, they noted that CLFD could yield positive results. Furthermore, Shirangi and 

Durlofsky (2015) also concluded that simultaneous optimization provides a better result 

compared to sequential optimization in CLFD and lower number of RMs in CLFD can yield 

lower positive results compared to the case where OSV was used to select apt number of RMs.  

 Morosov and Schiozer (2016), however, stressed that history matching (HM) and 

optimization are the two critical components of the CLFD workflow, and implemented a 

repeated sequence of drilling, data acquisition, HM and optimization in their work. For 

optimization, they used designed exploration and controlled evolution algorithm (Yang et al., 

2007). The authors used ensemble smoother with multiple data assimilation (ES-MDA), 

proposed by Emerick and Reynolds (2013), to perform HM and RMFinder, a software based 

on Meira et al. (2016), to select RMs. The authors implemented their CLFD methodology on 

UNISIM-I benchmark case (Gaspar et al., 2014 and Avansi and Schiozer, 2015), based on the 

Namorado field, Brazil. However, the authors obtained negative results after implementing 

CLFD. They highlighted that the optimized PS, obtained after implementing CLFD, yielded 

negative NPV in the “true-field” due to poor uncertainty assessment as a result of mainly three 

reasons: (1) upscaling process, (2) HM convergence to non-representative variables and (3) 

lack of geostatistical variability to account for uncertainties. Additionally, we believe that 

approving bad ensemble of scenarios, poor optimization process, bias caused by wells 
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representation, bad set of RMs or using too few RMs, poor uncertainty quantification, 

software/human error, etc. could also be potential causes for the failure. 

 Hidalgo et al. (2017) presented their custom-made workflow based on a sequence of 

four steps; HM, selection of representative models, optimization and acquisition of new 

production data and well-logs. Intrigued by the negative results of Morosov and Schiozer 

(2016), the authors tested their methodology on the same benchmark case to validate the 

advantages of implementing the CLFD workflow. The optimization was performed using a 

procedure based on the genetic algorithm with nonlinear constraints (Emerick et al., 2009), 

while ES-MDA was used to perform HM. The selection of RMs was performed using a genetic 

algorithm proposed by Armstrong et al. (2012). Although they worked with the same initial set 

of simulation models, the initial well count, trajectory, type, and drilling schedule were 

completely different than the one proposed by Morosov and Schiozer (2016). In contrast to the 

result presented by Morosov and Schiozer (2016), their workflow was able to exhibit a positive 

result with CLFD.  

 Kim et al. (2018) proposed a customized workflow and stressed that a combination of 

particle-swarm optimization and ensemble Kalman filter can find a reliable solution for real 

field development challenges. Schiozer et al. (2019) proposed a CLFD process divided into 12 

steps, contemplating a complete procedure that ranges from reservoir characterization to the 

final decision analysis.  

 In this work, we initially propose our custom-made workflow, motivated by previous 

work. Since Morosov and Schiozer (2016) concluded upscaling as one of the reasons for the 

failure of CLFD in their work, we test their hypothesis by implementing CLFD on relatively 

finer-scale simulation models of the benchmark UNISIM-I field, compared to Morosov and 

Schiozer (2016), under similar controlled-environment as theirs. We evaluate the results of the 

first cycle of CLFD and, based on the results, attempt to perform a bottom-up analysis. A 

bottom-up analysis can be defined as a systematic procedure for analyzing and finding the 

weakest component of a workflow, starting with the last step and gradually moving up toward 

the top or the preferred step. Such an analysis provides the necessary information to improve 

the workflow by understanding the impact of the individual steps on the subsequent steps of 

the workflow. In this paper, we investigate how to improve the initial custom-made CLFD 

methodology by improving the optimization process and increasing the likelihood of success 
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of the optimized PS over the ensemble of models. Furthermore, we also investigate how to 

improve the selection of an apt set of history-matched scenarios for picking a better set of RMs.  

 Given that we work with limited information during field development process, we also 

propose a pragmatic drilling approach for the synthetic “true field” (reference case – very 

refined model representing the real response), to partially imitate the real-time decision-making 

process in practice. This is important because an automatic procedure for model-based 

optimization in CLFD may suggest a good region/layer to drill a well based on the 

representative models, but the same might not be a good region in the reference case (due to 

intrinsic failure to capture uncertainties entirely). As the CLFD procedure does not consider 

this, we propose flexibility of drilling (FoD) as a supplementary method to ensure that we don’t 

drill the heel of the wells in a non-reservoir zone, by utilizing the available information. 

 Methodology 

 In this section, we start by presenting the initial CLFD methodology (ICM), motivated 

by the work done by Shirangi and Durlofsky (2015) and Morosov and Schiozer (2016). In 

sequence, we present and describe three more subsequent activities; improving optimization 

(IO), improving approved models (IAM) and application of flexibility of drilling (FoD). Table 

2-1 presents a glimpse of the three activities performed to improve the workflow. 

 
Table 2-1: Activities performed: bottom-up analysis and application of FoD. 

Activity Significant Feature 

ICM Applying CLFD using our initial methodology 

IO Applying CLFD after improving optimization process 

IAM Applying CLFD after improving approved subset of models 

FoD Applying flexibility of drilling  

 

 Initial CLFD methodology (ICM) 

 Based on the previous studies, we present the CLFD workflow centered on six 

components (Figure 2-1):  

1. Action: This is the first step of the CLFD methodology. Within this step, the new hard 

data, in the form of well-logs, is acquired as the new wells are drilled. These new well-

logs, along with the existing ones, are used to update the existing geological model and 

generate an updated ensemble of 500 petrophysical properties. This step also provides 
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an opportunity to acquire production data of the field. We add noise to this production 

data to make it similar to a real-life field data. 

2. Update Inputs: The newly drilled wells or production data can provide valuable 

information for updating the uncertainty attributes. In this step, the uncertainty 

attributes are updated based on this information. For example, drilling the first well in 

the eastern reservoir of the field assures the presence or absence of hydrocarbon and 

this uncertainty attribute can consequently be updated for simulation models. 

 

 
Figure 2-1: Generalized CLFD workflow. 

 
3. History Matching: Computer-assisted history matching is an important component of 

CLFD. To utilize the information available in the form of production data and improve 

the simulation models, ensemble smoother - multiple data assimilation (ES-MDA) is 

used (Emerick and Reynolds, 2013). Furthermore, the Kalman-gain localization 

scheme (Soares, 2017) is used with ES-MDA to perform data assimilation by 

modifying the grid-properties in the pre-defined neighborhood of the producers and 

injectors only. In other words, only the localized areas influenced by respective wells 

are modified. In this study, we assume a standard localization circle of 2000 meters for 

all wells. Apart from the modification of grid-properties, this step also helps reduce the 

variability of scalar uncertainty attributes (e.g.: rock compressibility, oil-water contact, 

etc.).  

4. Approved Models: To save computational time and exclude very bad scenarios, a 

smaller subset of scenarios is selected from the entire ensemble of 500 scenarios. 

Normalized quadratic distance with sign (NQDS) method (Avansi and Schiozer, 2015 
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and Avansi et al., 2016) is used to check the quality and exclude the bad scenarios. 

Based on a tolerance applied to the available production data, it provides a simple and 

yet sophisticated way to single out the bad scenarios. 

5. Selecting RMs: Although a smaller subset is picked by the end of the previous step, 

using more than 100+ scenarios for optimization (next step) is unfeasible. One way to 

maintain the quality of the results and reduce the computational effort is by using 

representative models (RMs), which can represent the variability of the uncertainties in 

a small number of simulation models. Developed by Meira et al. (2017), RMFinder 2.0 

is used to select nine RMs to represent the variability of the uncertain scenarios.   

6. Optimize: Based on the chosen RMs, we optimize the PS by modifying the well 

locations of the undrilled wells only. Optimization is performed using designed 

exploration and controlled evolution (DECE) algorithm (Yang et al., 2007). The RMs 

are robustly optimized by applying the procedure of Silva (2018) with a slight 

modification of the objective function. Instead of assuming equiprobable RMs, we 

calculate the objective function based on the probability of occurrence of each RM (as 

provided by RMFinder 2.0). The objective function for the optimization process can be 

written as:  

 
 

𝑂𝐹' = 	1P(𝑅𝑀5) ∗ 𝐸𝑀𝑉5'
:

5;)

 
 

2-1 
 

 

where OF signifies objective function, i denotes the iteration, n signifies the total 

number of RMs and k denotes the index of RM.  

 Once an optimal strategy is obtained after using the freshly available information, the 

optimized strategy is finally applied to the reference case (very refined model that represents 

the real response – see Application Section) to evaluate the outcome of the six steps of CLFD. 

In this first activity, we use simulation models with a finer grid than Morosov and Schiozer 

(2016) with the objective to verify the impact of upscaling on negative results that the authors 

obtained.  

 Improving optimization (IO) 

 To improve the workflow using the bottom-up approach, we started with the last step 

of the workflow (Figure 2-1), i.e., optimization. Scrutinizing Equation 2-1 revealed that the 

equation merely focuses on the EMV of RMs. As long as EMV with a new PS is higher than 
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the initial EMV (with the initial PS), Equation 2-1 accepts the new PS as an optimized PS, 

even if one (or more) of the RMs observe an impaired EMV with this newly proposed PS. In 

short, Equation 2-1 has a good tendency to provide an optimized PS that works for some RMs 

and fails for others. As such, to overcome this shortcoming, we decided to elaborate Equation 

2-1 to ensure that the optimized PS works for the maximum possible number of RMs, while 

improving the weighted EMV (Equation 2-2). 

 
 

𝑂𝐹' = 	1𝐼𝑓	(𝐸𝑀𝑉5' − 𝐸𝑀𝑉5? > 0, 𝑃(𝑅𝑀5) ∗ 𝐸𝑀𝑉5', 0D
:

5;)

 

 

 
2-2 

 

 As suggested by Table 2-1, only the last component of the CLFD workflow was 

modified in this activity by replacing Equation 2-1 with Equation 2-2 as the objective 

function. Leaving the other five steps unchanged, CLFD was re-implemented for us to 

understand the impact of the sixth step as well as Equation 2-2. It is noteworthy that, although 

we are modifying the equation for calculating the objective function of all RMs, the objective 

function of the field (EMV) remains the same. The modified equation only diverts the focus 

on improving the likelihood of success of the PS on the reference case, assuming that the prior 

steps can assess the reservoir uncertainties properly and we can capture a representative set of 

reservoir scenarios. 

 Improving approved models (IAM) 

 Based on the work of Meira et al. (2017), we assumed that RMFinder 2.0 performed its 

characteristic task of selecting a good set of representative models out of the approved set of 

history-matched scenarios that honored dynamic and static information. As such, for this work, 

we skipped investigating the penultimate component of the CLFD workflow (Figure 2-1) and 

decided to investigate the fourth component of CLFD, i.e., approved models.  

 At the end of the first cycle of CLFD, limited information is available, especially in 

terms of production data. Given that this data can be limited, one can be intrigued to use a 

lenient tolerance value for filtering the ensemble of history-matched scenarios. However, a 

lenient tolerance also indirectly implies that the selected scenarios might not have been history-

matched very well. A badly history-matched model is not an acceptable scenario as it can 

always be associated with a bad forecasting scenario due to failure to even honor the past. One 

must note that, at the same time, we are not implying that an ensemble of excellent history-

matched scenarios ensures a perfect forecast. We also emphasize that the adjectives associated 
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with the scenarios, i.e., “excellent”, “bad”, etc. are subjective and may depend on the available 

data points, the objective of the study, etc. 

 Therefore, in order to improve the fourth component of the workflow, we decided to 

impose a stricter filter to accept only good scenarios, instead of just excluding the bad scenarios 

(Figure 2-2). For the sake of completeness, a scenario was considered acceptable if simulated 

data was observed within a strict band of ±30% of observed data. As suggested by Table 2-1, 

leaving the other three previous components of CFLD workflow unchanged, this new strict 

criterion of selecting approved models was executed to select a new ensemble of history-

matched models in this activity. Subsequently, a new subset of RMs is selected, based on the 

freshly selected ensemble of approved models and these RMs are optimized using Equation 

2-2 as the objective function. In short, with this experiment, we are able to seclude and 

understand the impact of the fourth step of CLFD individually, as well as its impact on the 

subsequent steps.  

 

 

(a) (b) 
Figure 2-2: (a) Example of NQDS visualization for different objective functions (oil rate and BHP) 

for well W1 and W2 (adapted from Avansi et al., 2016) and (b) the corresponding NQDS values. 

 
 Flexibility of drilling (FoD) 

 CLFD workflow can also fail in exceptional cases due to a latent and untoward problem 

associated with “unrealistic” drilling in the “true field”. For example, in practice, one would 

not start drilling a well from a non-reservoir zone even if the simulation models suggested 

otherwise. To understand the impact of this problem on CLFD, we decided to use the option 

of the flexibility of drilling (FoD) with ICM. FoD is a proposed pragmatic drilling approach 
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for the reference case to partially imitate the real-time decision-making process in the actual 

world. The method ensures that we drill the heel of the wells in a good reservoir zone by using 

the available information. 

 To describe FoD further, since we drilled vertical pilot wells at the heel of all wells, we 

decided to investigate the petrophysical property using these logs before drilling at the pre-

defined location, based on the simulation models. If the heel of a to-be-drilled well is located 

in a non-reservoir zone, we search for better zones in the vicinity with the help of the FoD 

approach. In our case, we tested FoD by looking at only the well-logs of the vertical pilot hole, 

drilled along the heel of the to-be-drilled well, and re-assessed the better locations for the heel 

of the to-be-drilled well. Porosity, permeability, depth of the reservoir and thickness of the 

reservoir zone are some of the properties that can be assessed to evaluate the better locations 

for the heel. Note that once the heel had been drilled, we did not modify the well locations even 

if the succeeding zones were non-reservoir. 

 Application 
 Motivated by the work of Morosov and Schiozer (2016), we implemented CLFD on 

UNISIM-I, a benchmark case based on the Namorado field in the Campos basin, Brazil (Gaspar 

et al., 2014 and Avansi and Schiozer, 2015). The benchmark case study consists of simulation 

models, built on a coarse-scale grid, as well as a “true field” with known properties in a fine-

scale grid. However, taking a cue from the conclusion of Morosov and Schiozer (2016) about 

the upscaling effect, we decided to use simulation models with a slightly higher-resolution grid, 

compared to the ones they used. The new simulations models have an average grid-block 

volume of 75 x 75 x 5 m3, discretized into a corner-point grid of 108 x 77 x 32 cells with 

approximately 94k active cells, originating from a geological model built using data from 4 

vertical exploratory wells (NA1A, NA2, NA3D and RJS19). Apart from the uncertainty 

associated with the grid properties, the ensemble attempts to quantify scalar uncertainties 

associated with rock compressibility, oil-water contact, existence and 

pressure/volume/temperature (PVT) tables of hydrocarbon in the eastern reservoir, vertical 

permeability multiplier, and relative permeability curves.  

 The reference case (UNISIM-I-R), on the other hand, is the fine-scale model 

epitomizing the “true field” in this controlled experiment with all known uncertainties. The 

average grid-block volume in the reference case is 25 x 25 x 1 m3, with approximately 3.4 

million active blocks. The geological model of UNISIM-I-R was built using the public 
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information of the field with data from 56 drilled wells in the Namorado field (Avansi and 

Schiozer, 2015). 

 
Figure 2-3: Initial PS (PS1) based on the optimal strategy proposed by Schiozer et al. (2019). 

  

 A set of 500 scenarios constituted an ensemble for quantifying the geological 

uncertainties (permeability, porosity and net-to-gross) of the field, for each cycle of CLFD 

(Table 2-2). Additionally, unlike Shirangi and Durlofsky (2015), the reference case was not in 

itself at all close to the simulation models, as expected in real-life. 

 The first 4 vertical wells (shown using green dots in Figure 2-3), that provided the 

information for building the original simulation models, were under production until the 1461st 

day. Based on this initial production data and other initial inputs, Schiozer et al. (2019) 

presented the optimized production strategy with 13 producer and 7 injector wells. The same 

strategy was used as the initial strategy by Morosov and Schiozer (2016). To be consistent, we 

started with the same well placement strategy as our initial strategy for field development. 

Table 2-2 highlights drilling chronology and Table 2-3 shows the economic parameters for 

EMV calculation. Figure 2-3 shows a top view of the initial well placement. 
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Table 2-2: Drilling chronology and acquired information during different cycles. 

Cycle Well Opening  

(days) 

Acquired Information 

1 

PROD023A 1857 

East bloc + PVT + Updated OWC + Well-logs PROD024A 1887 

INJ019 1918 

2 

PROD010 1948 

OWC + Well-logs PROD012 1979 

INJ010 2009 

3 

PROD009 2040 

Well-logs 

INJ021 2071 

PROD005 2099 

INJ022 2130 

PROD007 2160 

INJ006 2191 

PROD014 2221 

4 

NA1A 2252 

Well-logs 

INJ017 2283 

PROD025A 2313 

PROD026 2344 

INJ023 2374 

PROD021 2405 

PROD006 2436 
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Table 2-3: Economic parameters and their respective values for three economic scenarios. 

Parameters Units Scenario 

1 

Scenario 

2 

Scenario 

3 

Oil price USD/bbl. 50 70 40 

Discount rate % 9 9 9 

Royalties % 10 10 10 

Special taxes on gross revenue % 9.25 9.25 9.25 

Corporate taxes % 34 34 34 

Cost of oil production USD/bbl. 10 13 8 

Cost of water production USD/bbl. 1 1.3 0.8 

Cost of water injection USD/bbl. 1 1.3 0.8 

Abandonment cost (% well investment) % 7.4 9.2 6.5 

Drilling, completion and connection of vertical well USD Million 35 44 30.6 

Drilling, completion and connection of horizontal well USD Million 50 62.5 44.1 

Probability - 0.5 0.25 0.25 

 

 Results 

 Initial CLFD methodology (ICM) 

 Three new well-logs (PROD023A, PROD024A, and INJ019), along with the 4 

previously existing logs, were used to update the existing geological model and generate a new 

ensemble of 500 petrophysical properties. Production data of the wells consisting of oil, water, 

and gas rates and bottom-hole pressure (BHP) were carefully documented after adding noise. 

PROD023A confirmed the presence and PVT of hydrocarbon in the eastern reservoir. 

Furthermore, PROD023A and PROD024A also provided vital information to update the oil-

water contact in the eastern reservoir. 

 Similar to Morosov and Schiozer (2016), the new oil-water contact was considered to 

be at least 3163 meters deep. With the recorded production data and known locations of the 7 

already drilled wells, the Kalman-gain localization scheme was used with ES-MDA (a circle 

of 2000 meters radius) to include the dynamic data to the existing static data of the ensemble. 

The liquid production rates and water injection rates were used for conditioning the simulation 

models for the historical period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2-4: Prior and posterior result of history matching is shown by graphs (a) to (f). The prior 

results are shown on the left while the posterior results are presented by the graphs on the right. The 

measured data from the reference case, P50 of the ensemble and the ensemble are represented by 

red dots, green line and blue lines, respectively. 

 

 The results of computer-assisted history matching are presented in Figure 2-4. Figure 

2-5 shows the prior and posterior range and distribution of non-grid-based uncertainty 

attributes. The prior and posterior distribution remained unchanged for the oil-water contact 

(Figure 2-5c). 
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(a) (b) 

  
(c) (d) 

 
Figure 2-5: Prior and posterior histograms of uncertainty attribute (a) rock compressibility, (b) kz-

multiplier, (c) oil-water contact and (d) relative permeability curves. 

 
 Based on the production data for each well in the ensemble of history-matched 

scenarios, and using an acceptance range of ±2 for NQDS, we selected a smaller subset of 112 

approved models with 30% tolerance values for the 3 newly drilled wells. Successively, EMV, 

Np, Wp, ORF of the 112 models, observed for the entire life of the reservoir, were used to select 

9 RMs using RMFinder 2.0 software. Finally, PS1 (Figure 2-3) was optimized over the chosen 

RMs using Equation 2-1 as the objective function. Only the locations of the undrilled wells 

were modified to optimize the EMV via optimized PS (PSICM). We were able to improve the 

EMV of the 9 RMs by 3%, while the EMV of the whole ensemble was increased by 4%. 
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Figure 2-6: Risk Curves prior and posterior to application of ICM. 

 
 However, when this optimized PSICM strategy was implemented on UNISIM-I-R to 

evaluate the impact of CLFD, a -47% change in the EMV was observed (Figure 2-6). Similar 

to Morosov and Schiozer (2016), the contradictory result obtained by using simulation models 

and the real response highlights that perhaps the representative models did not depict the "true 

field", underscoring the need to observe the impact of individual steps of our methodology on 

the CLFD. This provided an excellent motivation to perform a bottom-up approach to 

understand the potential problems and propose solutions to improve the original CLFD 

workflow. As we used simulation models with a finer grid than Morosov and Schiozer (2016) 

and still attained negative results, we conclude that the upscaling, for this tested case, is not a 

critical factor for the bias encountered in the process.  

 Improving optimization (IO) 

 Based on the negative results obtained in the reference case with PSICM (obtained in 

ICM), we decided to test the IO and understand the impact of the optimization process on the 

overall CLFD workflow. To do that, Equation 2-1 was replaced by Equation 2-2 to obtain a 

new optimized PS (i.e., PSIO) while using the same nine RMs selected during ICM.  

 
Table 2-4: Comparing results obtained with ICM and IO. 

Application of optimized 
strategy on 

ICM IO 
∆ in EMV Improved 

Scenarios 
∆ in EMV Improved 

Scenarios 
RMs 3% 71% 2% 100% 
Ensemble 4% 68% 6% 76% 
Reference Model (UNISIM-I-R) -47% - -12% - 
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 Table 2-4 shows the direct consequence of Equation 2-2. Given that it improves the 

likelihood of success of the PSIO over the PSICM, as anticipated, we observe that for the same 

RMs used in ICM, the modified equation not only increased the total number of improved 

scenarios in the ensemble, but also provided better results after implementing the PSIO in the 

reference case.  

 Improving approved models (IAM) 

 In this activity, we continued with the bottom-up approach to analyze and improve the 

selection of approved models. Instead of continuing with the lenient tolerance defined in ICM, 

a stricter and standardized tolerance value of 10% was used to filter the ensemble of history-

matched scenarios to obtain a set of approved models. A history-matched scenario was 

considered good if the simulated data was observed within a strict band of ±30% of observed 

data (or ±3 NQDS range). Using this criterion, 132 models were approved. Using RMFinder 

2.0, 9 new RMs were re-selected out of the newly 132 approved models and re-optimized using 

Equation 2-2 as the objective function. 

 

 
Figure 2-7: Comparing the initial RMs selected using the lenient tolerance conditions of the ICM 

against the new RMs selected using the stricter tolerance conditions of the IAM. 

 
 Figure 2-7 shows the significance of improving the approved set of scenarios, using a 

stricter tolerance. A brief analysis of the initial RMs selected using the lenient tolerance 

conditions of the ICM revealed that the inflated tolerance values were making the RMs seem 

very reasonable for the next step of the CLFD workflow. The original RMs, picked from the 

set of 112 approved models during ICM, were composed of a few bad models according to the 

new tolerance conditions specified in IAM.  

 The new set of RMs of IAM was optimized using Equation 2-2 as the objective 

function. As shown in Table 2-5, using a better set of tolerance or, in other words, using a 
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better set of history-matched models, we were not just able to improve the results for simulation 

models but also the reference case. 
Table 2-5: Comparing results obtained with ICM, IO and IAM activity. 

Application of optimized 
strategy on 

ICM IO IAM 
∆ in 

EMV 
Improved 
Scenarios 

∆ in 
EMV 

Improved 
Scenarios 

∆ in 
EMV 

Improved 
Scenarios 

RMs 3% 71% 2% 100% 9% 100% 
Ensemble 4% 68% 6% 76% 7% 80% 
Reference Model (UNISIM-I-R) -47% - -12% - +3% - 

 
 As an interesting note, RM 1, RM 3 and, RM 6, which were adjudged as highly 

satisfactory models (Figure 2-7) by both lenient and strict tolerance conditions, were the RMs 

that ICM failed to optimize. As one would expect, failing to optimize highly satisfactory 

models while optimizing bad models can have a direct consequence on the optimized strategy 

(Table 2-5). 

 Flexibility of drilling (FoD) 

 In the face of negative result obtained during ICM activity, we analyzed the results 

obtained by implementing the original PS (PS1) and the optimized PSICM in the reference case.  

 
Figure 2-8: Comparing average reservoir pressure and cumulative water injection after 

implementing PS1 and PSICM in the reference case. 

 
 One of the first inferences drawn from the analysis (Figures 2-8 and 2-9) was that the 

injectors were placed at poorer locations in such a way that either led to:  
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• Impeding the water injectivity and, consequently, affecting the average reservoir 

pressure maintenance and/or,  

• A poorer connectivity between producers and injectors; an outcome of poor 

uncertainty assessment during ICM activity. 

 
Figure 2-9: Comparing cumulative oil and water production obtained after implementing PS1 and 

PSICM in the reference case. 

 
 Given that we were still able to improve the results during the IAM activity, we decided 

to attribute more significance to the first inference. Based on the first inference, we delved 

deeper into placement of injectors in PSICM. We observed that after the optimization process, 

the selected well locations indicated by the ensemble of RMs were adequate (Figure 2-10b). 

However, when the same well trajectories were drilled in the reference case, some of the wells 

were observed to be in non-reservoir region (Figure 2-10a). This can be attributed to the lack 

of proper geostatistical variability in relatively unknown and/or heterogeneous areas, as 

emphasized by the work of Morosov and Schiozer (2016). Figure 2-10b strengthens this 

statement by showing how all the RMs have a sufficiently variable but positively biased 

porosity map in the vicinity of INJ022. Although, only in terms of porosity map along the 

trajectory, RM 6 can be considered to be the closest to represent the reference case, it is 

noteworthy that the ICM failed to optimize the RM 6 due to lack of focus on the likelihood of 

success of all the RMs. 

 Due to a lack of perfect reservoir information, encountering unexpected regions while 

drilling a well is not an uncommon experience especially in a heterogeneous field. Generally, 
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a real-time decision-making process is a vital part of any drilling campaign. Also, the vertical 

pilot holes were drilled across the heel of all wells in our case study. Thus, we believe that 

ignoring this piece of information and continuing with the initial trajectory proposed by the 

optimization process, using a set of upscaled simulation models, is tantamount to rejecting a 

big chunk of important information. 

 

 
 

Porosity 
 

(a)  (b) 
 

Figure 2-10: Trajectory of INJ022 as proposed by PSICM in (a) the reference case and (b) the 9 RMs, 

which were used to obtain PSICM. Dashed orange box identifies better zones for the heel in the 

vicinity (FoD). 

 
 To accommodate the unforeseen heterogeneities in our controlled experiment, we 

introduce an option to redress such situations. We propose flexibility of drilling (FoD) 

approach to deal with such situations. The idea behind FoD is to use the existing information 

(vertical well-logs in our case) to modify only the heel of the drilled well. Although drilling 

engineers would not restrict to simply modifying the heel of the well as they continuously avail 

new information while drilling, we believe it is sufficient to minimize the bias associated with 

“unrealistically” drilling in non-reservoir zones. 

 If the heel of a to-be-drilled well was in a non-reservoir zone, we examined the vertical 

logs for better porous zones in the vicinity and drilled the heel of the well at that superior 

location. Table 2-6 shows the results obtained after implementing PS1 and PSICM with and 

without FoD. As anticipated, FoD improves the results without modifying the x and y 

coordinates of the to-be-drilled well (only the depth is modified). As anticipated earlier, inferior 
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locations of the injectors played a major role in the negative result during ICM activity (Table 

2-6). 

 
Table 2-6: Implementing different PS in the reference case. 

Implementation of PS in Reference Case EMV (Billion USD) 
PS1 1.47 (0%) 
PS1 (applying FoD for all wells) 1.62 (+ 10%) 
PSICM 0.78 (- 47%) 
PSICM (applying FoD only for injectors) 1.47 (+ 0%) 
PSICM (applying FoD for all wells) 1.49 (+ 1%) 
PSIO (applying FoD for all wells) 1.54 (+5%) 

   

 Discussion 
 The application of closed-loop approach in the first activity led to an increase in EMV 

based on simulation models, but we observed a decrease in EMV when we implemented this 

optimized strategy in the reference case. This result, being alike the one presented by Morosov 

and Schiozer (2016), motivated us to perform bottom-up analysis to improve the workflow and 

understand the negative result. The bottom-up analysis exposed that the individual steps need 

to be tailored, understanding the requirements of CLFD as well as the possible consequences 

of each output on the subsequent process of the workflow.  

 First, we would like to reiterate that improving the likelihood of success of a PS over a 

subset of adequately history-matched models, while performing a good uncertainty assessment, 

can provide a robust strategy to improve the objective function of the project using CLFD. 

Nevertheless, developing a heterogenous field with or without CLFD comes with its own set 

of challenges. A lack of appropriate geostatistical variability in relatively unexplored areas 

brings a challenge that was one of the main factors for the extremely negative result obtained 

during the first activity (ICM). Because of that, some well locations selected after the 

optimization process were not adequate for the “true field”. We highlight that, for this study, 

the geostatistical variability was introduced using well-logs only. We believe that the 

geostatistical images could have been further improved if we had constrained the images to 3D 

seismic information to generate more coherent petrophysical images. An image conditioned to 

good 3D seismic data can always assist in capturing the lateral and longitudinal connectivity 

of the reservoir, within the resolution of the seismic survey, and thus reducing the chances of 

failure as observed in Figure 10 and improving the CLFD process. 
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 However, one must note that we implemented the CLFD workflow on all the cases 

without conditioning our geostatistical uncertainties to 3D seismic data or any additional data 

that was acquired before drilling the first well. As CLFD implies developing a field using the 

information acquired in between the development cycles (Table 2-2), using any prior 

additional information that was not used to obtain the initial strategy (Schiozer et al., 2019) 

would have had created an artificial bias in the results affecting the evaluation of the CLFD 

workflow. 

 Nevertheless, while evaluating the graphs and well economic indicators for the "true 

field", it was quite evident that the exceedingly negative result during the first activity was 

unrealistic. It is an artifact, mainly due to drilling wells nonchalantly in the true field, and 

wrongly assuming that the well locations provided by upscaled simulation models are perfect. 

 Furthermore, considering that we have some operational flexibility to drill a horizontal 

well according to the information provided by pilot hole(s), we stress the importance of 

flexibility of drilling (FoD) approach as a way to redress the above described bias associated 

with drilling a well due to lack of information during field development. At the same time, one 

must note that FoD is a subjective assessment and better understanding of the reservoir can 

improve the sweep efficiency and drainage strategy. Seismic information is, generally, a 

commonly used source of information for improving the drilling decisions and thus, can 

improve FoD as well. 

 Whereas improving the optimization process and the process for approving history-

matched models helped us develop a better understanding of CLFD, the study would be 

incomplete without a concise discussion of the significance and potential improvements for 

other components of the workflow: 

1. Provided the uncertainty assessment is performed adequately, a better set of RMs can 

always improve the likelihood of success of a PS in the reference case. This is evident by 

a direct correlation between the number of scenarios being improved by a certain PS and 

change in EMV after implementing the same PS in the reference case. Based on the number 

of scenarios being improved (Table 2-5), we have ample indications that either the quality 

of RMs or the number of RMs need to be improved to increase the likelihood of success of 

the optimized strategy over the ensemble and consequently the reference case.    

2. Computer-assisted history matching plays an important role in indirectly improving the 

objective function of a project while maintaining reliable models (Jansen, et al., 2009 and 

Pettan and Stromsvik, 2013). Based on the importance of streamlines in defining the 
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localization volume (Soares et al., 2018), using them can further improve the data 

assimilation process. 

3. The first two steps in the CLFD are important for the quantification of uncertainties. Good 

uncertainty quantification forms a strong base for the next processes. Petrophysical models 

can be improved with better geological inputs. As mentioned before, other sources of 

information, such as seismic, could diminish the spatial variability in uncertainties and 

hence, could potentially decrease some of the biases of the closed-loop process. However, 

a discussion on this subject is out of the scope of this work. Updating inputs (range and 

probability distribution function of uncertainty attributes), for the simulation model, is 

solely based on the new information being provided and, at this moment, we consider this 

is to be perfect information.  

 Conclusions 
 This paper presents the framework of a systematic approach based on bottom-up 

analysis to improve workflow for model-based closed-loop field development, while 

evaluating the individual steps and asserting their significance. Some of the most important 

conclusions of our analysis are listed here: 

• Propagation of specious scenarios/outputs from the output of the preceding step to the 

input of the following step can lead to an overall bias in the results of CLFD. 

• Robustly optimized RMs, using a bi-criterion objective function focusing on EMV as 

well as improving EMVs of individual RMs, can improve the likelihood of success over 

the ensemble as well as the real response. 

• Accepting poorly history-matched scenarios can lead to an inferior set of RMs and, 

consequently, influence the optimization process and the likelihood of success of a PS 

in the reference case. 

• Similar to Morosov and Schiozer (2016), we obtained a negative result even when we 

used relatively fine-scaled simulation models compared to theirs. However, by 

improving the methodology, we were able to obtain a positive result with CLFD. Thus, 

upscaling, highlighted as one of the possible reasons for the pitfalls by Morosov and 

Schiozer (2016), was not a critical factor for the negative bias found in this case.  

• Given that we work with limited information during the field development process, a 

pragmatic drilling approach in the reference case must be exercised to partially imitate 

the real-time decision-making process in the actual world. The proposed FoD is one 
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such method to ensure that we do not start drilling wells in the non-reservoir zone by 

utilizing the available information. 

• Based on the different analyses conducted in this work, we improved the overall closed-

loop field development methodology by improving individual steps. 
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Nomenclature 
List of Abbreviations 

BHP Bottom-hole pressure 

CLFD Closed-loop field development 

DECE Designed exploration and controlled evolution 

EMV Expected Monetary Value 

ES-MDA Ensemble smoother multiple data assimilation 

FoD Flexibility of drilling 

HM History matching 

IAM Improving approved models 

ICM Initial CLFD methodology 

IO Improving optimization 

OF Objective function 

n Total number of representative models 

Np Cumulative Oil Production 

NQDS Normalized quadratic distance with sign 

ORF Oil recovery factor 

OSV Optimization with sample validation 
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P Probability value 

PS Production strategy 

PVT Pressure, volume, temperature 

RF Recovery factor 

RM(s) Representative Model(s) 

Wp Cumulative water production 

WBHP Well bottom-hole pressure 

WOPR Well oil production rate 

WWPR Well water production rate 

 

Superscript 

0 Initial value 

i Iteration 

 

Subscript 

1 Initial production strategy 

IAM Optimized Production strategy after activity 3 (improving approved 

models) 

ICM Optimized Production strategy after activity 1 (initial CLFD 

methodology) 

IO Optimized Production strategy after activity 2 (improving optimization) 

k Index of RM 
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Abstract 
 Closed-loop field development (CLFD) is an exhaustive combination of 

multidisciplinary tasks to use frequently acquired data for optimizing a pre-defined objective 

function of the field development plan (FDP). Although new information is bound to decrease 

the uncertainty around field development, previous studies have shown that CLFD could fail 

for several theoretical reasons. In this work, a risk-informed CLFD process is introduced to 

increase the chances of success of the optimized FDP in the true field. A risk-informed CLFD 

utilizes insights from a systematic approach for evaluating risks associated with field 

development to make robust decisions for the true field. We implemented the risk-informed 

CLFD methodology on two different case studies: (I) a scenario with mostly horizontal wells 

and, (II) a scenario with all vertical wells. While one of the previous studies has shown that 

CLFD can decrease the NPV by 2% for the presented case study I, our workflow validates the 

importance of the risk-informed CLFD by improving the net present value (NPV) of the project 

by 14%. Implementation of CLFD on case study II validates the workflow once again by 

improving the NPV by 40%. As with previous studies, we considered the project objective 

function (i.e., NPV) as the key performance indicator of the CLFD. While the performance 

indicator suffices the requirement of evaluating our methodology, in this work we delved 

deeper to understand how the intermittently acquired information influences the ensemble of 

simulation models and uncertainty assessment. We discuss that further fine-tuning the 

objective function of the optimization problem can improve the likelihood of success in the 
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true field. The paper presents two case studies that are based on a field-scale benchmark model 

in an attempt to answer the questions about the purport of a field development process with 

multiple phases while acquiring and utilizing information intermittently. Also, the work 

validates the risk-informed CLFD methodology to encourage tests on more complex fields. 

Some key observations to improve the CLFD methodology further are also discussed in the 

work. 

 

Keywords 

Field development; Optimization; Data assimilation; Reservoir simulation; Uncertainties; 

Decision-making 

 

 Introduction 
 A field development plan (FDP) for a greenfield is fraught with numerous critical 

decision-making processes (Schiozer and Mezzomo, 2003; Ahmed and Meehan, 2012). A 

dearth of information and copious technical and geological uncertainties around the field 

renders the task even more arduous. Despite these challenges, a multidisciplinary team is 

mandated to make several front-end investment decisions regarding infrastructure and wells to 

make the project as profitable as possible. Generally, this is performed by analyzing several 

hypothetical scenarios to forecast the long-term production of hydrocarbons and the 

corresponding monetary return. 

 However, this conventional field development process offers a suboptimal FDP due to 

a huge gap in information as well as uncertainties. To avoid such subpar FDP, this is where the 

feedback-based field development process comes into play. Similar to the objective of drilling 

an appraisal well, a feedback-based field development process attempts to obtain information 

through newly drilled development well(s) for improving the project objective function (net 

present value (NPV), recovery factor (RF), etc.) by modifying the flexible decision variables 

(number, type, and location of wells, etc.) in the FDP. Integrating new data with the existing 

information can potentially aid the multidisciplinary team to better understand the field for 

making well-informed decisions (Jansen et al., 2009). 

 While there is an extensive list of studies on conventional field development 

optimization (see Bittencourt, 1994; Beckner and Song, 1995; Nesvold et al., 1996; Cullick et 

al., 2005; Isebor et al., 2014a; Schiozer et al., 2015), very limited work has been done in the 

area of feedback-based field development. Although the concept of economically improving 
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reservoir performance with feedback-based field development and management process has 

existed for a long time (see Chierici, 1992), Shirangi and Durlofsky (2015) first successfully 

explored this idea under the label of closed-loop field development (CLFD). 

 Shirangi and Durlofsky (2015) defined CLFD as a cyclical process, based on three 

steps, starting with the optimization of FDP under the existing geological information, followed 

by drilling wells to obtain logs and production data and, eventually, using this new information 

to amend the ensemble of simulation models. The authors optimized FDP (controls for the 

existing wells and type, location, and controls for the to-be-drilled wells) using a hybrid particle 

swarm optimization-mesh adaptive direct search algorithm (Isebor et al., 2014b). They 

performed data assimilation (DA) using the adjoint method alongside the randomized 

likelihood procedure (Oliver et al., 1996) to update the ensemble in the third step. The authors 

also employed multilevel optimization with sample validation to test if the selected 

representative models (RMs) were representative of the entire ensemble. They tested their 

methodology on 2D synthetic field examples to prove that CLFD can help boost the project's 

objective function. Even though the reference case (or “true field”) was one of the models 

within the initial ensemble, they observed both positive and negative results. 

 On the other hand, Morosov and Schiozer (2016) identified data assimilation and 

optimization as the two critical components of the CLFD process. They performed history 

matching (HM) and FDP optimization (well location) using ensemble smoother with multiple 

data assimilation, ES-MDA (Emerick and Reynolds, 2013), and designed exploration and 

controlled evolution algorithm (Yang et al., 2007), respectively. The authors applied their 

workflow to the three-dimensional UNISIM-I benchmark case (Gaspar et al., 2015; Avansi and 

Schiozer, 2015). It is based on the Namorado Field in the Campos Basin, Brazil. Negative 

results obtained during the process prompted the authors to postulate the pitfalls associated 

with CLFD. Convergence of HM parameters to non-representative values, upscaled or low 

fidelity simulation models and lack of variability in petrophysical properties were hypothesized 

as the main reasons for the observed discrepancy. While the authors presented negative results 

with lesser information, we point out that they achieved positive results in the final cycle, which 

is in line with the idea that information plays a critical role in CLFD. 

 In their work, Hidalgo et al. (2017) presented a workflow based on four cyclical steps: 

HM, selection of RMs, optimization, and acquisition of new logs and production data. While 

the authors used ES-MDA to perform HM, they employed a genetic algorithm with nonlinear 

constraints-based method (Emerick et al., 2009) for optimizing the FDP (number, type, and 
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location of wells). The RMs were also selected using a genetic algorithm (Armstrong et al., 

2013). The application of the CLFD process on the UNISIM-I benchmark case provided an 

improved project objective function. However, they did not work under the same controlled-

environment as Morosov and Schiozer (2016). Additionally, while the observed monetary gain 

reached an optimal value after a certain number of cycles, it decreased towards the end cycles, 

contrasting the basic notion of CLFD (i.e., an increasing amount of information can reduce 

uncertainties to improve results). Although the number of wells is an important variable, it can 

create bias in evaluating a CLFD process. A strong correlation between the decreasing number 

of wells and the increasing monetary gains in Hidalgo et al. (2017) is a good example of such 

bias. This correlation makes it difficult to separate the overall monetary gain between the 

improvement caused by the decreasing wells and CLFD workflow. It is also interesting to note 

that the difference between the well locations in optimized FDP of cycle 0 and cycle 1 is 

minimal, even after performing more than 1000 experiments. These observations raise some 

important concerns about the methodology. 

 Instead of optimizing the complete FDP, Hanea et al. (2017) proposed a “drill and 

learn” workflow to optimize a strict drilling order for wells using the entire ensemble of 

simulation models. The latter part, however, was in direct contrast with the implied conclusions 

of Shirangi and Durlofsky (2015), who showed that using a large ensemble for FDP 

optimization could yield suboptimal results. Stochastic simplex approximate gradient 

(StoSAG) and ES-MDA were used for optimization and DA, respectively. To simplify further, 

the authors limited the scope of work by using production data assimilation as the only means 

of updating the simulation models. They observed a positive effect of the frequency of new 

information on the monetary gains using two different scenarios for the truth model. It is also 

noteworthy that the authors obtained a negative result in one of the case studies. The authors 

hypothesized that some realizations might be yielding negative results even when the mean of 

the ensemble was being optimized, leading to a negative result in such a case. Given that they 

worked with a simple 3D model while reducing the challenges of field development and 

working only with DA, the observed negative result raises the concern about the application of 

their methodology in a real field. Furthermore, it is interesting to note that although they 

introduced the “value of learning” as a new concept of evaluating the benefits of newly 

assimilated information, they presented four ambivalent measures to quantify it. 

 Kim et al. (2018) proposed a new CLFD workflow using ensemble Kalman filter for 

HM and particle-swarm optimization for optimizing the FDP. Apart from other FDP variables, 
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the authors proposed the conversion of suboptimal production wells to injection wells as a way 

to optimize FDP with the newly available information. Similar to Hanea et al. (2017), the study 

emphasized HM as the only way of introducing new information to the existing simulation 

models. The authors demonstrated the workability of CLFD results using a 2D synthetic case. 

 Prompted by the pitfalls postulated by Morosov and Schiozer (2016), Loomba et al. 

(2020) implemented their workflow on the benchmark case study (UNISIM-I). They worked 

with a higher fidelity of models, when compared to Morosov and Schiozer (2016), to minimize 

any bias associated with upscaling. However, their workflow yielded negative results, 

resounding with the conclusion of Botechia et al. (2018), i.e., the upscaling process had 

minimal impact on the adverse results reported by Morosov and Schiozer (2016). The authors 

performed three more activities to unravel other potential problems inherent in the workflow 

using a bottom-up approach. The authors introduced the concept of flexibility of drilling (FoD) 

to overcome the negative and unrealistic bias associated with well representation. With the 

FoD approach, they ensured that the heel of a well was not drilled in the non-reservoir zone, 

an unbiased and pragmatic attempt to replicate real-time decision-making processes. 

Nonetheless, the proposed ideas were not tested on a complete cycle, which begs the question 

of its applicability in field applications. 

 As endorsed by all previous studies, CLFD is an intuitive concept to assist 

multidisciplinary teams to maximize field objective function while working with uncertainties. 

Despite this, none of the work supports the employment of this concept in the real field. This 

is simply because both negative and positive results were observed in all the studies working 

on 3D field development using CLFD workflow. Furthermore, none of the previous work 

delved deeper and explained the impact of an individual step as well as all the steps of CLFD 

on uncertainties during the field development. We believe this description of the implicit 

working of steps is the key to highlight the changes observed in the explicit objective function 

being observed and optimized. Such descriptions would enthuse more confidence in the 

significance of CLFD and enable further improvements in the CLFD process. 

 Objectives 
 Understanding the gaps in the literature, the paper endeavors to discuss an improved 

and risk-informed CLFD workflow for real-field applications. In this work, we attempt to 

provide a diverse and all-inclusive perspective on the subject to address some of the previously 

unanswered questions. The specific objectives of the work include: 
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1. Bearing in mind that Morosov and Schiozer (2016) presented disagreeing results with a 

benchmark representative of a real field, repeat the same field development scenario to 

analyze the risk-informed workflow as well as systematically investigate the steps to further 

improve the CLFD workflow. 

2. Employ the CLFD workflow on another case study with only vertical wells to validate the 

applicability of the newly improved workflow in an alternative case and stressing any key 

differences while implementing CLFD for a field with vertical versus horizontal wells. 

3. Present the significance of using the flexibility of drilling (FoD) in a closed-loop workflow 

by avoiding “unrealistic” results obtained via knowingly completing the heel of a well in a 

non-reservoir zone. 

4. Present a comprehensive discussion on the evolution of uncertainties as individual 

components of the risk-informed workflow are being realized. As most of the previous 

work rarely focused on this aspect, we attempt to reinforce confidence in the feedback-

based field development process by providing an intuition into the working of the 

methodology by contemplating our evolving ensemble of models. 

5. Introduce the concept of the value of closed-loop (VoCL) as a way of quantifying the 

impact of new decisions on the monetary objective function of the project as well as 

analyzing the bias related to model-based decisions. 

 Methodology 
 As discussed in the previous sections, the main objective of implementing CLFD is to 

maximize the field’s objective function. Thus, the final decision based on the outcome of the 

CLFD process must be made wisely while considering the huge envelope of uncertainty. A 

poor decision will still improve the objective function for the simulation models but will fail 

to improve the true field, rendering the CLFD process futile. Therefore, it is vital to have a 

methodology that makes robust decisions under uncertainty, and in this section, we endeavor 

to elaborate on our risk-informed CLFD workflow to assist in making such robust decisions. 

 A risk-informed CLFD is a cyclical process that utilizes insights from a systematic 

approach for evaluating risks associated with field development to make robust decisions for 

the true field. Assuming the uncertainties are quantified properly, the process meticulously 

assesses the uncertainties and expels the scenarios that might hamper the optimization process. 

The FDP is optimized while maximizing the likelihood of success by using an ample set of 

RMs honoring the uncertainties. The workflow also uses different performance measurement 
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tools to make deliberate decisions. In the subsequent section, we present one cycle of the risk-

informed CLFD workflow as follows (Figure 3-1): 

 

 
Figure 3-1: Generalized CLFD workflow (adapted from Chapter 2). 

 
1. Action: The first step of CLFD workflow entails acquiring new hard data in the form 

of well logs, seismic interpretation, near-wellbore analysis, etc. using newly drilled 

wells, 3D and/or 4D seismic acquisition, well test and/or other forms of reservoir 

surveillance techniques. This newly acquired information can be used to build a new or 

update the existing geological model.  

 In this work, however, we restricted ourselves to using only new well logs as 

the source of information to update the initial ensemble of petrophysical inputs for 

reservoir simulation. We generated a set of 500 equiprobable and geologically 

consistent petrophysical properties using random seeds to capture the geological 

uncertainties. We also registered the field production data during this phase. Assuming 

that we do not have accurate measurement gauges on the field, we added noise to the 

production data to make it imperfect, which is similar to a real field data. 

2. Update Inputs: Aside from improving the geological model, the hard data acquired 

during the previous step can also provide supplemental information for updating the 

known and/or previously unknown uncertainty attribute (UA). This information can be 

either direct (existence and PVT of the hydrocarbon in the neighboring reservoir, the 

true vertical depth of oil-water contact, etc.) or indirect information (interpreted skin-

factor, interpreted oil-water contact, etc.). Updating the probability distribution 
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function of UAs, based on direct and/or indirect information, is a critical aspect for 

reducing uncertainty by updating the simulation models. 

At the end of this stage of work, we used discretized Latin hypercube combined with 

geostatistical realizations (DLHG), and this was used together with updated inputs of 

UAs and petrophysical images, to generate a new ensemble of 500 scenarios to capture 

the field uncertainties (Schiozer et al., 2017). 

3. Data Assimilation: Assimilation of available production, seismic, RFT/PLT data is the 

third component of the workflow. The main idea behind this step is to integrate the 

static knowledge of the field with dynamic information. To systematically integrate 

information, scalar uncertainty attributes (e.g., rock compressibility, oil-water contact, 

etc.), as well as grid-based petrophysical properties (e.g., porosity, permeability, etc.), 

are modified to minimize the mismatch between the measured field data and the 

simulated data of the ensemble. 

 The computer-assisted DA process enables expressing the mismatch between 

measured field data and simulated data as an optimization problem with the mismatch 

itself being the objective function of the problem (Evensen, 2007; Oliver et al., 2008). 

Ensemble smoother with multiple data assimilation (ES-MDA), an ensemble-based 

method introduced by Emerick and Reynolds (2013), is used to perform production 

data assimilation in this work. The objective function (𝑂") of the ES-MDA is the average 

normalized data mismatch, which can be written as:  
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where 𝑁H is the number of production data observations, 𝑁I denotes the size of the 

ensemble, 𝑑'	denotes the vector of predicted production data of the ith simulation 

scenario, 𝑑(L*,' is the vector of perturbed observations corresponding to the ith 

simulation scenario, and 𝐶I is the covariance matrix of the measurement errors. In this 

work, 𝐶I was built by assuming BHP measurement error as a constant value of 10 

kgf/cm2. In parallel, we consider the rate measurement error to be the maximum value 

between 10% of the measured rate and the constant value of 10 m3/day.  

 Furthermore, the Kalman gain localization scheme is used with ES-MDA 

(Soares et al., 2018) to perform data assimilation by modifying the grid-properties in 
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the pre-defined neighborhood of producers and injectors. In other words, only the 

localized areas influenced by respective wells are modified, while the rest of the grid 

properties are left unchanged. Unlike Chapter 2, the geometry of the localization 

volume is selected, based on the streamlines obtained by simulating with averaged grid-

properties of the complete ensemble (Soares et al., 2018), and average normalized data 

mismatch (𝑂") was used as a performance measurement tool. 

4. Approve Scenarios: A smaller subset of scenarios ought to be selected from the entire 

ensemble to save costs associated with expensive simulations and exclude very bad 

scenarios. In this work, we used the normalized quadratic distance with sign (NQDS) 

method (Avansi et al., 2016) to filter the scenarios, which is ratio of the quadratic 

distance with signal (𝑄𝐷𝑆) and acceptable quadratic distance (𝐴𝑄𝐷): 
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where 𝑠𝑖𝑚[ and 𝑜𝑏𝑠[ are the simulated and measured field data at time 𝑗, respectively; 

𝑛 denotes the total number of time-steps for which field data was recorded; 𝛾 is the 

tolerance value, while 𝛿 denotes the constant to avoid a division by 0. 𝑆𝐷	stands for 

simple distance (Avansi et al., 2016) and calculates the difference between measured 

and simulated field data summed over the 𝑛 time-steps.  

 Selecting bad or implausible scenarios for the optimization process can have a 

direct and, potentially, undesirable impact on the optimization of the FDP (see Chapter 

2). As such, a tolerance value of 10% was deemed appropriate in our work to account 

for errors in the simulation model.  

5. Select RMs: Even though a smaller subset is picked by the end of the previous step, it 

is infeasible to work with a large number of approved scenarios (AS) for further 

analysis, especially in the optimization process. Schiozer et al. (2004), Armstrong et al. 



  61 

 

 

(2013), and Sarma et al. (2013) presented different methods for selecting a smaller 

subset from the original ensemble of scenarios while ensuring a good representation of 

the original set.  

 In this work, we use RMFinder 2.0 software developed by Meira et al. (2017) 

which provides a set of RMs with the individual probability of each RM. To obtain a 

set of RMs, firstly, the approved models were simulated for the entire lifetime of the 

field to obtain the net present value (NPV), cumulative oil production (Np), cumulative 

water production (Wp), and oil recovery factor (ORF). RMFinder 2.0 selects RMs and 

their probabilities to represent the NQDS approved models by expending the above-

mentioned objective functions. Since the main idea is to represent the uncertainties with 

RMs as adequately as possible, the number of RMs can be deliberately increased or 

reduced based on engineering judgement. In this work, we selected nine RMs based on 

the work of Meira et al. (2017) and Schiozer et al. (2019). 

6. Optimize: One of the main purposes of integrating multiple and non-additive 

information sources is to optimize FDP. CLFD provides ample opportunity to update 

flexible decision-variables, including but not limited to: number, type, location, 

opening schedule, control and trajectory of to-be-drilled wells, and control and 

conversion of existing wells. Furthermore, there are several gradient-based (Wang et 

al., 2007; Zandvliet et al.,2008; Sarma et al., 2008; Loomba, 2015) and gradient-free 

algorithms (Yeten et al., 2002; Badru and Kabir, 2003; Emerick et al., 2009) to optimize 

FDP. Moreover, optimization of decision variables can be performed either 

simultaneously or sequentially (Shirangi and Durlofsky, 2015). 

 Based on the selected RMs, in this work, we optimize the FDP by modifying 

the well locations of the undrilled wells only. We perform the optimization using a 

gradient-free algorithm based on iterative discrete Latin hypercube (IDLHC), proposed 

by Hohendorff Filho et al. (2016). The algorithm uses the correlation between prior 

frequency distribution of discrete variables (e.g., location of the heel of a well, 

direction, etc.) and the objective function to update the posterior frequency distribution 

of the variables to maximize the objective function. The RMs, selected in the prior step, 

were robustly optimized (van Essen et al., 2009; Silva, 2018) utilizing a new bi-criterion 

objective function, which focuses on improving the likelihood of success of the 

optimized FDP over the ensemble and, consequently, the “true field”:  
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where 𝑁𝑃𝑉5' and 𝑁𝑃𝑉5? stand for the NPV of the ith scenario and the initial scenario of 

the kth RM, which has a probability of occurrence 𝑃(𝑅𝑀5). Unlike Chapter 2, we added 

𝑓c  as the cut-off frequency to ensure that the 𝑂𝐹 is non-zero. This provides a good set-

up to penalize the scenarios in which all the RMs are not being improved above the cut-

off NPV. In our work, we ensured that 𝑓c  was close to 1 by the end of the optimization 

process to pick the best scenario in which all the RMs were being improved.  

 To make the process even more risk-informed, we test the economic viability 

of the individual systems of the FDP at the end of the optimization. Based on Botechia 

et al. (2013), we calculate the economic viability of the wells by re-calculating the NPV 

without the to-be-drilled well, one at a time, and comparing it with the optimized NPV 

of the field. If an increase in NPV is observed when removing a given to-be-drilled 

well, we modify the well type and/or location of that well to further improve the NPV 

while still considering uncertainties revolving around the selected RMs. Although one 

could simply delete the economically unreasonable wells in such a case and continue 

with a reduced well count, we wanted to ensure that the final NPV improvement in the 

“true field” is not biased by this decreasing well count. 

 Finally, we apply the optimized strategy to the reference case UNISIM-I-R (the model 

emulating "true field"), to evaluate the CLFD workflow. However, given that we work with 

imperfect information during field development, Chapter 2 suggested exercising a pragmatic 

drilling approach in the reference case to partially imitate the real-time decision-making 

process in the real world. An automatic procedure for optimization may suggest a good region 

to drill a well based on the RMs, but the same might not be a good region in the reference case 

due to intrinsic failure to capture uncertainties entirely. Therefore, unlike the original 

methodology, we include the flexibility of drilling (FoD) as a supplementary tool to ensure that 

we do not drill the heel of the wells in a non-reservoir zone using the available information. 

Furthermore, to restrict unconscious bias, we implemented the FoD approach on the to-be-

drilled wells during the subsequent cycle of CLFD only. 

 In this work, we also introduce the value of closed-loop (𝑉𝑜𝐶𝐿) as a new performance 

indicator tool to empirically evaluate the significance of a CLFD workflow. Since we acquire, 

include, and utilize new information during each cycle and these steps account for improved 
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understanding of the field, the value of closed-loop workflow also represents the maximum 

amount of resources a decision-maker would be willing to invest before applying the closed-

loop workflow.  

 To quantify the value of improved understanding of our project, based on updated FDP, 

we present two definitions: 

1. The expected value of closed-loop (𝐸𝑉𝑜𝐶𝐿) provides a projected improvement in the 

project’s objective function (𝑃𝑂𝐹) when an optimized FDP is implemented on 

simulation models. This value is always positive, as the main objective of any field 

development is to optimize the FDP: 

 
 

𝐸𝑉𝑜𝐶𝐿' = 	1𝑃(𝑆5) ∗ e𝑃𝑂𝐹fghijk − 𝑃𝑂𝐹fghil5

:

5;)

 
 

3-7 
 

  
 In Equation 3-7, 𝐸𝑉𝑜𝐶𝐿' represents the expected 𝑃𝑂𝐹 value improvement 

during cycle 𝑖 alone. 𝑃(𝑆5) represents the probability of the kth simulation scenario. 

𝐹𝐷𝑃'm) and 𝐹𝐷𝑃' denote the optimized strategy (FDP) for the given cycle 𝑖 and 

optimized strategy for the prior cycle, respectively. We calculate the 𝐸𝑉𝑜𝐶𝐿 for each 

cycle independently as the ensemble keeps evolving for each cycle 𝑖. 𝐸𝑉𝑜𝐶𝐿 also 

provides an excellent criterion to assist in deciding the application of optimized FDP 

in the true model.  

2. The actual value of closed-loop (𝑉𝑜𝐶𝐿nnnnnnn) measures the true impact of the updated 

decisions (optimized FDP) on the project NPV. As seen in the previous work, 𝑉𝑜𝐶𝐿nnnnnnn 

can be negative for several reasons. Such results are, however, good indications to 

either improve the methodology or include more information to improve the essential 

value of CLFD.  

 
𝑉𝑜𝐶𝐿nnnnnnn(op-Oop)) = 	𝑃𝑂𝐹	fghqrs

tIu − 𝑃𝑂𝐹fghqrk
tIu  
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 In Equation 3-8, 𝑉𝑜𝐶𝐿nnnnnnn(op-Oop)) represents the value of closed-loop in between two 

cycles, 𝐶𝑦1 and 𝐶𝑦2 (𝐶𝑦2 > 𝐶𝑦1), by comparing the value of the project’s objective function 

𝑃𝑂𝐹 attained by implementing the optimized decision for 𝐶𝑦2 (i.e. 𝐹𝐷𝑃op-), against the value 

of 𝑃𝑂𝐹 using the best decision for 𝐶𝑦1 (i.e. 𝐹𝐷𝑃op)). One must note that Equation 3-8 only 

applies to the reference case (𝑅𝑒𝑓). 
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 Application 
 We used the UNISIM-I benchmark model (Figure 3-2) to build our case studies. This 

synthetic benchmark case is based on the Namorado Field in the Campos Basin of Brazil. It 

was prepared for oil field management and development applications (Gaspar et al., 2015; 

Avansi and Schiozer, 2015) and it consists of a reference case UNISIM-I-R and an ensemble 

of simulation models UNISIM-I-D. 

 

  
(a) (b) 

Figure 3-2: The benchmark UNISIM-I case consists of a true field presented by the (a) reference 

case (UNISIM-I-R) and (b) lower fidelity models (UNISIM-I-D) for simulation (we present one of the 

scenarios here). Note how different the true field is to a random seed of UNISIM-I-D as the initial 

ensemble is devoid of important information. 

 
 Reference case (UNISIM-I-R) 

 UNISIM-I-R, or the reference case, was built with the primary objective of emulating 

a “true field” scenario. The geological model of the reference case was created using publicly 

available information on the Namorado Field, using as many as 56 logs from wells drilled on-

site. This fine-scaled simulation model for the reference case consists of approximately 3.4 

million active grid-blocks with an average block volume of 25 x 25 x 1 m3. As the reference 

case represents the “true field”, the model defines the true geological and petrophysical 

properties. One must also note that production data, in addition to new well logs, were obtained 

using UNISIM-I-R simulation and geological model, respectively. 
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 Simulation models (UNISIM-I-D) 

 The ensemble of simulation models, UNISIM-I-D are built on a coarse-scale grid with 

an average grid-block volume of 100 x 100 x 8 m3. Discretized into a corner-point grid with 

37k active grid-blocks, the geological model of UNISIM-I-D was built regardless of any 

influence from UNISIM-I-R. Assuming a greenfield development process, only exploration 

wells, namely NA1A, NA2, NA3D, and RJS19 were used to populate the geostatistical 

properties. These four vertical wells also provided production data until the 1461st day. 

Furthermore, depth of oil-water contact (OWC), pressure-volume-temperature (PVT) of 

hydrocarbon (HC) as well as its existence in the eastern reservoir, rock compressibility, 

relative-permeability curves, and vertical permeability (𝑘y) multiplier all characterize the 

major uncertainties related to developing this synthetic model. Apart from the uncertainty 

associated with the scalar properties, each simulation model consists of distinct facies, porosity, 

permeability, and net-to-gross rock volume map in an endeavor to also capture the 

geostatistical variability. Finally, we used an ensemble of 500 scenarios combining all the 

scalar and grid uncertainties (Schiozer et al., 2017) to represent the field.  

 Table 3-1 depicts the drilling schedule and the information acquired within each cycle 

of CLFD. Table 3-2 highlights the economic scenario used for calculating the objective 

function of the project, i.e., NPV. The NPV of the project is being calculated with the help of 

Equation 3-9 (Schiozer et al., 2019): 

 
 

𝑁𝑃𝑉 =1
[(𝑅 − 𝑅𝑇 − 𝑆𝑇 − 𝑂𝑃𝐸𝑋) × (1 − 𝑇)] − 𝐶𝐴𝑃𝐸𝑋 − 𝐴𝐶

(1 + 𝑖)+

:

+;)

	 
 

3-9 
 

 
where 𝑅 is the gross revenue, 𝑇 stands for corporate tax rate and, 𝑅𝑇 and 𝑆𝑇 denote the amount 

paid toward royalties and social taxes, respectively. 𝑂𝑃𝐸𝑋 and 𝐶𝐴𝑃𝐸𝑋 are operational 

expenditure and investment in infrastructure, respectively, and 𝐴𝐶 stands for the abandonment 

costs. The net cash flow computed is discounted with the rate 𝑖 and 𝑡 denotes the time period. 

 Results 
 In this section, we start by presenting the implementation of the CLFD workflow on 

the same case study presented by Morosov and Schiozer (2016), under a similar controlled 

environment, to validate our methodology. In sequence, we also present the results obtained 

after the implementation of the workflow on a second case study with all vertical wells. Apart 
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from validation, both studies provide a better insight into the CLFD workflow to improve it 

further and realize the impact of FoD. 

 
Table 3-1: Drilling chronology and information acquisition. 

Cycle Well Opening 

(Days) 

Acquired Information 

1 

PROD023A 1857 
Existence of HC in the eastern reservoir 

+ PVT of HC in the eastern reservoir  

+ Revised OWC in the eastern reservoir  

+ logs from 5 wells*  

PROD024A 1887 

INJ019 1918 

PROD010 1948 

PROD012 1979 

2 

INJ010 2009 

OWC in the eastern reservoir  

+  

logs from 5 wells* 

PROD009 2040 

INJ021 2071 

PROD005 2099 

INJ022 2130 

3 

PROD007 2160 

Logs from 4 wells (previously drilled well NA1A was 

reopened in this cycle) * 

INJ006 2191 

PROD014 2221 

NA1A 2252 

INJ017 2283 

4 

PROD025A 2313 

Logs from 5 wells* 

PROD026 2344 

INJ023 2374 

PROD021 2405 

PROD006 2436 
* The number of logs depended on the trajectory of the wells. For each horizontal well, we acquired one 

vertical pilot hole log and one horizontal log. 
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Table 3-2: Economic parameters (adapted from Chapter 2). 

Parameters Values 

Oil price 50 USD/bbl. 

Discount rate 9% 

Royalties 10% 

Special taxes on gross revenue 9.25% 

Corporate taxes 34% 

Cost of oil production 10 USD/bbl. 

Cost of water production 1 USD/bbl. 

Cost of water injection 1 USD/bbl. 

Abandonment cost (% well investment) 7.4% 

Drilling, completion and connection of vertical well 35 USD Million 

Drilling, completion and connection of horizontal well 50 USD Million 

 

 Case study I: Repeating Morosov and Schiozer (2016) 

 The initial FDP (FDP1) consists of seven horizontal water-injection wells and thirteen 

producers (ten horizontal and three vertical). Figure 3-3 provides a glimpse of the top view of 

initial FDP. 

 

 
Figure 3-3: Initial FDP (FDP1) based on the optimal strategy proposed by Schiozer et al. (2015) that 

was also used as the initial strategy by Morosov and Schiozer (2016). 
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 We drilled and obtained horizontal and vertical well logs for the first five wells (Table 

3-1) in the action phase of Cycle 1. Figure 3-4 shows some examples of well logs that were 

extracted from the UNISIM-I-R geological model (or true field) and used to update the 

geological model of the UNISIM-I-D so that improved petrophysical images could be 

generated.  

 On top of that, we also obtained new information during the next phase of Cycle 1 (C1). 

PROD023A confirmed the presence of HC and PVT in the eastern reservoir. PROD023A and 

PROD024A, newly drilled wells in the eastern reservoir, also provided sufficient information 

to update the uncertainty related to the depth of OWC. Similar to Morosov and Schiozer (2016), 

we updated the OWC to at least 3163 meters. 

 Once we updated the uncertainties and their probabilities of occurrence, we performed 

DA with Kalman gain localization scheme. Figure 3-5 provides a preview of the localization 

volume for two of the five wells that were used during DA. 

 

 

 
  

(a) (b) (c) (d) 

Figure 3-4: Obtained well logs for: (a) PROD023A horizontal section, (b) PROD023A vertical pilot 

hole, (c) INJ019 horizontal section and (d) INJ019 vertical pilot hole. 



  69 

 

 

 
(a) 

 
(b) 

Figure 3-5: Streamlines and localization volume for (a) PROD010 and (b) PROD024A during Cycle 

1 of the case study I. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3-6: Prior and posterior histograms of uncertainty attribute (a) rock compressibility, (b) kz-

multiplier, (c) OWC and (d) relative permeability curves. 
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 ES-MDA provided a revised ensemble of simulation models (prior ensemble, 

𝑀%&'(&
) was updated to posterior ensemble, 𝑀%(*+

) ) by coherently updating the grid-based and 

scalar uncertainties (Figure 3-6) to reduce the average normalized data mismatch, 𝑂" (Figure 

3-7). Figure 3-8 provides a secondary analysis to confirm the functioning of DA, showing an 

improvement in well and total objective function posterior to DA (𝑀%&'(&
)  to 𝑀%(*+

) ). 

 

 
Figure 3-7: Reduction of average normalized data mismatch (𝑶�) along multiple data assimilations 

(or iterations) to minimize the disparity between observed and simulated data. 

 
Well 𝐵𝐻𝑃 𝑄� 𝑄( 𝑄� 𝑄�'  Total 

INJ019 32.8 - - - 94.6 27.4 

NA1A 80.2 100 100 100 - 80.2 

NA2 88.8 93.6 99.8 25 - 23.2 

NA3D 86.6 98.4 98.4 97 - 85.4 

PROD010 100 25.4 22.4 100 - 22.4 

PROD012 100 - - 100 - 100 

PROD023A 0 100 100 100 - 0 

PROD024A 61.8 100 100 100 - 61.8 

RJS19 99.6 100 100 100 - 99.6 

Total 0 21.6 22 24 94.6 0 
 

Well 𝐵𝐻𝑃 𝑄� 𝑄( 𝑄� 𝑄�'  Total 

INJ019 79.2 - - - 99 78.2 

NA1A 100 100 100 100 - 100 

NA2 100 99.8 100 86 - 86 

NA3D 100 100 100 100 - 100 

PROD010 100 97.6 94 100 - 94 

PROD012 100 - - 100 - 100 

PROD023A 62.2 100 100 100 - 62.2 

PROD024A 99.8 100 100 100 - 99.8 

RJS19 100 100 100 100 - 100 

Total 49.8 97.4 94 86 99 39.6 
 

(a) (b) 

Figure 3-8: NQDS analysis of (a)	𝑴𝒑𝒓𝒊𝒐𝒓
𝟏  and (b) 𝑴𝒑𝒐𝒔𝒕

𝟏 , presenting the percentage of models within 

acceptable range for individual well objective functions. 
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 Subsequently, with the help of NQDS, we approved 198 models from 𝑀%(*+
)  (Figure 

3-8) while preserving the grid-based and scalar UAs. Unlike Morosov and Schiozer (2016), we 

used a stricter tolerance and constant values of 10% and 0 for all the well objective functions, 

respectively. We made an exception for the constant value for the entire well water production 

rate (𝑄�) objective functions, which was set to 20. As 𝑄� was almost zero for all the wells, we 

assumed this exception to be fair enough for ensuring NQDS values are finite.   

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-9: NPV-Np cross plot, (b) NPV risk curves and (c) rock compressibility probability 

distribution function showing the fitness of RMs in Cycle 1. 

  
 Next, in order to work efficiently with optimization, nine RMs were obtained from the 

smaller subset of approved scenarios (AS). Figure 3-9 attempts to show the suitability of the 

selected RMs, based on one of the cross-plots, risk curves and uncertainty attribute 

distributions that we used for getting RMs.  

 Finally, we optimized FDP using Equation 3-6 as the objective function, aiming on 

improving the likelihood of success of the optimized FDP over the ensemble and, 

consequently, the “true field” (or the reference case). Figure 3-10 provides a preview of the 
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optimization result. After robust optimization, we also tested the economic viability of all the 

wells. During C1, we observed that all the RMs were individually improved and all the wells 

were also observed to be economically viable for the collective set of RMs. 

 

  
(a) (b) 

Figure 3-10: (a) Evolution of EMV of the 9 RMs with IDLHC iterations and (b) risk curves showing 

the result of optimization with approved scenarios (AS) and the reference case (without FoD). 

 
 In succession, we implemented the optimized FDP (FDP2) on the reference case to 

evaluate the impact of the revised decision on the objective function of the project (Figure 

3-10b). Altogether, new well logs, updated probabilities of inputs and computer-assisted 

history matching process increased the NPV by 8% and 1%, without and with the FoD 

approach, respectively.   

 Alike C1, two more cycles, namely Cycle 2 (C2) and Cycle 3 (C3), were executed using 

the CLFD workflow. With the help of Table 3-3, we present comprehensive results of all the 

cycles of CLFD in detail as well as 𝐸𝑉𝑜𝐶𝐿 and 𝑉𝑜𝐶𝐿nnnnnnn for consecutive cycles. 
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Table 3-3: A detailed account of implementation of CLFD on case study I. 

 Cycle 1 (C1) Cycle 2 (C2) Cycle 3 (C3) 

Results obtained using simulation models 

Action Drilled 5 new wells; Used 

a total of 14 well logs (9 

vertical + 5 horizontal) for 

generating updated 

petrophysical images for 

𝑀%&'(&
)  

Drilled 5 new wells; Used 

a total of 24 well logs (14 

vertical + 10 horizontal) 

for generating updated 

petrophysical images for 

𝑀%&'(&
-  

Drilled 4 new wells; Used 

a total of 31 well logs (18 

vertical + 13 horizontal) 

for generating updated 

petrophysical images for 

𝑀%&'(&
,  

Updating inputs PROD023A confirmed the 

existence of HC and PVT 

in the eastern bloc. OWC 

was updated for the 

eastern bloc ≥ 3163 meters 

OWC (≈ 3174 meters) - 

Data assimilation1 4 months of data was used 

to obtain 𝑀%(*+
)  

9 months of data was used 

to obtain 𝑀%(*+
-  

14 months of data was 

used to obtain 𝑀%(*+
,  

Approving scenarios 198 239 315 

Selecting RMs 9 RMs (~5% of the AS) 9 RMs (~4% of the AS) 9 RMs (~3% of the AS) 

Optimization All RMs were improved; 

FDP1 was optimized to 

obtain FDP2 

All RMs were improved; 

FDP2 was optimized to 

obtain FDP3 

All RMs were improved; 

FDP3 was optimized to 

obtain FDP4 

Range of 𝑬𝑽𝒐𝑪𝑳 

(considering RMs 

individually) 

+0.1 to 0.73 Billion USD 

(10 to 772%) 

+0.01 to +0.16 Billion 

USD (1 to 14%) 

0.01 to +0.28 Billion USD 

(5 to 20%) 

𝑬𝑽𝒐𝑪𝑳 (based on RMs) +0.36 Billion USD (25%) +0.08 Billion USD (+6%) +0.16 Billion USD 

(+10%) 

𝑬𝑽𝒐𝑪𝑳 (based on AS) +0.22 Billion USD (15%) +0.05 Billion USD (+3%) +0.14 Billion USD (+8%) 

Results obtained using the reference case (true field) 

𝑽𝒐𝑪𝑳nnnnnnn (without FoD) + 0.1 Billion USD (+8%) + 0.13 Billion USD 

(+10%) 

- 0.17 Billion USD (-11%) 

𝑽𝒐𝑪𝑳nnnnnnn (FoD applied on 

to-be-drilled wells) 

+0.06 Billion USD (+1%) +0.17 Billion USD (+12%) +0.01 Billion USD (+1%) 

1 Unlike Morosov and Schiozer (2016), production data was collected every month 

2 Inflated values exist where the initial FDP yielded very low NPVs 
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 The evolution of FDP, a consequence of CLFD, can be best interpreted by studying the 

evolution of the project’s objective function, i.e., NPV. Figure 3-11 shows the changing NPV 

and corresponding parameters as new information is acquired and exploited within each cycle. 

Figure 3-12 shows the evolution of FDP.  C3 is the only cycle where the FoD approach played 

an important role in ensuring positive results by revising the location of heels for the wells 

drilled in the non-reservoir region. Despite this, one must note that the NPV obtained by the 

end of the C3, even without FoD, is 5% better than the benchmark, which exhibits two things: 

firstly, CLFD is beneficial and secondly, placement of a well in a non-reservoir zone by CLFD 

is an erratic error (and an inevitable element of developing a heterogeneous field). To be fair, 

one must note that we implemented FoD on all the wells of our initial FDP (FDP1) to make it 

a benchmark for statistical comparisons like the one above. 1.399 Billion USD was the 

benchmark NPV with FoD implemented on all the wells (see Figure 3-17 in the discussion 

section).  

 Major changes in well placement can already be seen between FDP2 and FDP1. We also 

point out that the PROD025A, initially drilled in the eastern reservoir, was deemed beneficial 

if drilled in the western reservoir (illustrated by FDP4). 

 

 
(a) 

 
(b) 

Figure 3-11: Evolution of (a) NPV and cumulative oil production (Np) and (b) cumulative water 

production (Wp) and water injection (Wi) in the reference case. 
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Figure 3-12: From top left and in clockwise direction, the pictures illustrate the evolution of FDP 

(FDP1 to FDP4). The wells being completed, already producing and to-be-drilled, using the proposed 

FDP, are highlighted in black, gold, and red italic texts, respectively. 

 
 Case study II: All vertical wells 

 Unlike case study I, we did not have an optimized FDP for case study II. As such, the 

initial well trajectories (Figure 3-3) proposed by Morosov and Schiozer (2016) were used to 

define an engineering estimation of the vertical well placement (Figure 3-13). We optimized 

the FDP defined by this well-placement using the concepts of Schiozer et al. (2019) to obtain 

the benchmark initial FDP, i.e., the reference strategy for evaluating the CLFD implementation 

in case study II. 

 The initial ensemble of petrophysical images, generated with the help of the existing 4 

wells (NA1A, NA2, NA3D, and RJS19), were used with the initial probability density function 

of the uncertainties to generate 500 scenarios using DLHG. With the known historical 
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production data and using a strict tolerance of 10%, we approved 105 scenarios within ±2 range 

of NQDS. We used RMFinder 2.0 to obtain a set of nine RMs along with their probabilities. 

 
Figure 3-13: Proposed preliminary FDP (FDP0) used for the pre-CLFD optimization to obtain the 

benchmark initial FDP (FDP1). 
 

 We also used the selected RMs to perform robust optimization of the FDP (well 

placement only) using IDLHC algorithm with bi-criterion objective function (Equation 3-6). 

The optimization yielded a 24% (1.35 to 1.67 billion USD), 20% (1.34 to 1.61 billion USD), 

and 17% (1.32 to 1.54 billion USD) increase in expected monetary value (EMV) of the RMs, 

the 105 approved scenarios and the ensemble, respectively. Apart from that, the improved 

percentage scenarios were 100%, 97% and 94% for the RMs, the approved scenarios and the 

ensemble, respectively, stressing that the initial strategy was good enough based on the 

available knowledge at the given moment. 

 Similar to Cycle 1 of case study I, we implemented all the three cycles in case study II. 

With the help of Table 3-4, we present comprehensive results of all the cycles as well as 𝐸𝑉𝑜𝐶𝐿 

and 𝑉𝑜𝐶𝐿nnnnnnn for consecutive cycles. 

 Figure 3-14 provides a glimpse of the evolution of FDP within each cycle of CLFD. 

We emphasize the conversion of producer PROD014 to injector INJ014 during the 

optimization process of Cycle 1, as we observed that PROD014 was economically unviable. 

During Cycle 2, we observed that INJ014 was shifted to the western reservoir, modifying the 

producer to injector ratio again. By the end of Cycle 3, only four wells were deemed adequate 

for the eastern reservoir. 
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Table 3-4: A detailed account of implementation of CLFD on case study II. 
 Cycle 1 (C1) Cycle 2 (C2) Cycle 3 (C3) 

Results obtained using simulation models 

Action Drilled 5 new wells; Used 

a total of 9 vertical well-

logs for generating 

updated petrophysical 

images for 𝑀%&'(&
)  

Drilled 5 new wells; Used 

a total of 14 vertical well-

logs for generating 

updated petrophysical 

images for 𝑀%&'(&
-  

Drilled 4 new wells; Used 

a total of 18 vertical well-

logs for generating 

updated petrophysical 

images for 𝑀%&'(&
,  

Updating inputs PROD023A confirmed the 

existence of HC and PVT 

in the eastern bloc. OWC 

was updated for the 

eastern bloc ≥ 3163 meters 

(similar to case study I)  

OWC (≈ 3174 meters) - 

Data assimilation1 4 months of data was used 

to obtain 𝑀%(*+
)  

9 months of data was used 

to obtain 𝑀%(*+
-  

14 months of data was 

used to obtain 𝑀%(*+
,  

Approving scenarios 370 2402 602 

Selecting RMs 9 RMs (~2% of the AS) 9 RMs (~4% of the AS) 9 RMs (~15% of the AS) 

Optimization All RMs were improved; 

FDP1 was optimized to 

obtain FDP2. A producer 

was converted to an 

injector while ensuring 

economic viability. 

All RMs were improved; 

FDP2 was optimized to 

obtain FDP3 

8 of  9 RMs were 

improved; FDP3 was 

optimized to obtain FDP4 

Range of 𝑬𝑽𝒐𝑪𝑳 

(considering RMs 

individually) 

0.11 to 0.65 Billion USD 

(10 to 803%) 

0 to 0.15 Billion USD  

(0 to 10%) 

-0.01 to 0.24 Billion USD 

(-1 to 19%) 

𝑬𝑽𝒐𝑪𝑳 (over RMs) + 0.38 Billion USD (32%) + 0.06 Billion USD (+4%) + 0.05 Billion USD (+3%) 

𝑬𝑽𝒐𝑪𝑳 (based on AS) + 0.36 Billion USD (30%) + 0.08 Billion USD (+5%) + 0.04 Billion USD (+3%) 

Results obtained using the reference case (true field) 

𝑽𝒐𝑪𝑳nnnnnnn + 0.41 Billion USD (37%) 0 Billion USD (0%) + 0.03 Billion USD (+2%) 

1 Alike Morosov and Schiozer (2016), new production data was collected every 5th day;  

2 A stricter tolerance value of 5% was used for the BHP to improve the efficiency;  

3 Inflated values exist for those RMs where the initial FDP yielded very low NPVs 
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 Figure 3-15 shows how the project’s objective function increases as we acquire and 

utilize the new information using the CLFD framework. 

 

  

  
Figure 3-14: From top left and in clockwise direction, the pictures illustrate the evolution of FDP 

(FDP1 to FDP4). The wells being completed, already producing and to-be-drilled, using the proposed 

FDP, are highlighted in black, gold, and red italic texts, respectively.  
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(a) (b) 

Figure 3-15: Evolution of (a) NPV and cumulative oil production (Np) and (b) cumulative water 

production (Wp) and water injection (Wi) in the reference case. 

 
 Discussion 

 One of the primary objectives of working on case study I was to reacquaint ourselves 

with the pitfalls addressed by Morosov and Schiozer (2016) to improve the CLFD 

methodology. However, a contrarily positive result, both with and without FoD, and under the 

same controlled environment as theirs, promoted our confidence in the workflow. We validated 

this confidence by testing the workflow on case study II, where once again we observed a 

positive result. Some of the key differences between these two case studies are mentioned in 

Table 3-5. 

 
Table 3-5: Observed differences between case study I and II. 

 Case study I (with horizontal wells) Case study II (all vertical wells) 

Action 1 Horizontal + 1 Vertical log per well 1 Vertical well log for each well 

Update Inputs No difference 

Data Assimilation Fewer scenarios were observed to be 

history matched aptly within 

acceptable range 

More scenarios were observed to be 

history matched aptly within 

acceptable range 

Approve Scenarios No difference 

Select RMs No difference 

Optimize More variables for optimization Fewer variables for optimization 
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 Alike previous work, we considered the project objective function (NPV) as the key 

performance indicator of the CLFD. While the performance indicator suffices the requirement 

of evaluating our methodology, in this work we delved deeper to understand how the 

intermittently acquired information influences the ensemble of simulation models and 

uncertainty assessment. Following a typical cycle, we start our analysis from the action phase: 

1. Action: A first and direct influence of the new well logs on the reduction of uncertainty can 

be observed in Figure 3-16. As anticipated, the well logs shift the volume of oil in place 

(VOIP) towards the true VOIP (from "true field") while reducing the range of P10-P90. 

Table 3-6 provides a detailed analysis of the subject.  

 Concerned with the huge reduction of VOIP uncertainty range (at least 65% in both 

cases) with increasing number of wells, while still falling short of true VOIP by the end of 

CLFD (»9%), we tried to test the impact of additional wells on the VOIP reduction. The 

first 54 well-logs, which were used to build the "true field" geological model, were used 

with the 36 well-logs extracted until Cycle 3 of case study I to generate 𝑀%&'(&
+I*+  (Figure 

3-16a). Not surprisingly, we obtained an almost deterministic VOIP, while still being 6% 

away from true VOIP. 

 

  
(a) (b) 

Figure 3-16: Risk curves of VOIP reflecting the reduction in uncertainty as new information from 

action phase is being implemented in case study (a) I and (b) II. 
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Table 3-6: Changing statistics of VOIP for case study I and II. 

VOIP  Pre-CLFD 
Case Study I Case Study II 

C1 C2 C3 C1 C2 C3 

Minimum (Million m3) 78 106 100 112 104 106 117 

Maximum (Million m3) 163 150 130 135 139 133 137 

Range (Million m3) 85 44 30 23 35 27 21 

Median (Million m3) 114 126 114 125 122 121 127 

P90 (Million m3) 92 118 108 119 114 117 123 

P10 (Million m3) 140 136 120 130 129 126 132 

P90-P10 (Million m3) 48 18 13 10 15 10 8 

 
 We also observed the VOIP shifting away and then towards the true VOIP during C2 

and C3, respectively, in case study I (Figure 3-16a). This behavior is in line with our 

expectation as the quality of the well logs also has a dominant and direct influence on 

geostatistical properties. To affirm this hypothesis, we investigated case study I again and 

reproduced 𝑀%&'(&
)

 using the well logs obtained during Cycle 3. Anticipated improvement 

in the VOIP (»12%) confirmed that the new geostatistical images are more optimistic as 

better-quality regions were encountered by the wells drilled in Cycle 3. 

 These observations revealed two things: Firstly, the geostatistical images must be 

generated while maintaining larger variability, especially when the ratio between the 

explored spatial volume to the extensively unexplored volume of the field is small. 

Secondly, well logs alone are not sufficient to determine the uncertainties (e.g., porosity 

and NTG for VOIP). We believe that constraining the geostatistical images to 3D seismic 

data can reduce the variability of the images while ensuring geological consistency so that 

the uncertainties shift more towards the “true field” value. Better usage of variograms can 

also improve the quality of petrophysical images. However, a comprehensive investigation 

on these subjects and their direct impact on the field development process is out of the 

scope for this study. 

2. Update Inputs: Figures 3-15a and 3-17 reveal the impact of up-to-date inputs on the 

outcome of CLFD. Whereas, we obtained Figure 3-11 by implementing FoD for the wells 

to-be-drilled during the subsequent cycle of CLFD only (to avoid unconscious bias) and 

Figure 3-17 was obtained by applying FoD for all the wells. A strong correlation between 
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NPV and updated information in both cases shows that including vital and definite 

information can help reduce uncertainty to promote our understanding of the "true field" 

and, consequently, the FDP. Apart from this, similitude in the NPV evolution pattern, 

corresponding to the similar magnitude of updated inputs, reveals that new and substantial 

information could be the most important parameter for the success of CLFD. A study on 

this subject will be performed in the future to confirm the premise. 
  

 
Figure 3-17: Evolution of NPV in the reference case after implementing FoD approach on all the 

wells. 

 
Table 3-7: NQDS values obtained for the ensemble prior and posterior to the data assimilation 

process for both the case studies. 

NQDS 
Case study I Case study II 

Before DA (Prior) After DA (Posterior) Before DA (Prior) After DA 
𝑀%&'(&
)  𝑀%&'(&

-  𝑀%&'(&
,  𝑀%(*+

)  𝑀%(*+
-  𝑀%(*+

,  𝑀%&'(&
)  𝑀%&'(&

-  𝑀%&'(&
,  𝑀%(*+

)  𝑀%(*+
-  𝑀%(*+

,  

±1 0 0 0 198 239 315 12 1 0 370 328 483 
±2 0 0 0 368 399 431 80 50 6 456 429 492 
±3 0 0 0 438 460 456 166 145 47 484 472 498 
±5 0 0 2 489 488 485 243 241 136 493 492 500 
±10 43 12 74 499 493 497 423 338 283 496 500 500 

 
3. Data Assimilation: Table 3-7 shows the number of scenarios within different NQDS 

ranges, before and after the computer-assisted history matching. As observed in case study 

I, having 0 scenarios within the ±10 range of NQDS already signifies that the scenarios 
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were not good enough. Despite this complication, ES-MDA, a popular data assimilation 

technique, assimilated data satisfactorily to generate cogent scenarios (Table 3-7). 

 It is fair to assume that all the post DA scenarios are comparable to the real field when 

history matching has been performed effectively. Given that our prior ensembles were 

adequately history matched (Table 3-7), we performed a simple test to evaluate how 

representative they were of the “true field” in case study I. In other words, we presumed 

that each scenario represents the real field and we ran simulations for each scenario the 

same way as for the “true field” model by removing the constraints (i.e., liquid production 

rate and water injection rate) that conditioned the scenarios during the historical period. 

Table 3-8 provides the first glimpse of the result. 

 Failure to even predict the history period properly (Table 3-8) reveals that good history 

matched scenarios (with conditions) do not necessarily mean that the scenarios “represent” 

the field. This result should not come as a surprise as all models are imperfect, according 

to Oliver and Alfonzo, 2018, Rammay et. al., 2019 and Neto et al., 2020.  

 However, the important takeaway is that CLFD could be improved further by refining 

the DA process. Even if the historical period can be naturally stimulated (without history 

conditions) within a decent acceptable range, this will already ensure that we do not have 

fallible scenarios. Consequently, such models can significantly improve our understanding 

of the field. We will limit our discussion on this topic as improving imperfect models with 

DA is out of the scope for this study. 

 
Table 3-8: Evaluating the performance of DA after removing the historical constraints reveals 

the existing discrepancy between the ensemble and the real field. 

NQDS 

Case study I 

Before DA  

(Prior) 

After DA  

(without historical constraints) 

𝑀%&'(&
)  𝑀%&'(&

-  𝑀%&'(&
,  𝑀%(*+

)  𝑀%(*+
-  𝑀%(*+

,  

±1 0 0 0 0 0 0 

±2 0 0 0 0 0 0 

±3 0 0 0 0 0 0 

±5 0 0 2 0 0 0 

±10 0 0 74 117 3 3 
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4. Approve Scenarios: In order to appreciate this step, one must refer to Figure 3-18 to 

understand how the quality of the history-matched model sways the FDP. As shown, not 

excluding bad scenarios, prior to selecting RMs, can yield a suboptimal FDP. 

 Another advantage of this step is that it reduces the number of expensive simulations 

while maintaining the average and standard deviation of geological UAs. Since as little as 

60 scenarios were selected during the second case study, we randomly selected a layer and 

evaluated the statistics around porosity and permeability. Figure 3-19 provides a preview 

of the qualitative comparison of porosity and how similar the history-matched scenarios 

are to the AS. 

 

 
(a)  

 
(b) 

Figure 3-18: A 2D model showing different optimal locations for an injector in: (a) good history 

matched model (representing the “true field” in this case), and (b) poorly history matched model. 

The orange box represents the history matching area and all properties are the same outside this 

region. 

 

5. Select RMs: Since Meira et al. (2017) allows the selection of RMs based on quantitative 

data alone, the RMs were observed to have a qualitative bias as shown by Figure 3-20 (a, 

b, d, e). Assuming that AS represent the field well, ignoring their standard deviation can 

potentially lead to a negative bias towards risk-informed decision making. 

 Furthermore, Figure 3-20 (c, f) demonstrates the impact of increasing the number of 

RMs to overcome this bias and maintain the qualitative uncertainty attributes. Based on 

empirical pieces of evidence, we believe that maintaining good quality RMs becomes a 

necessity, especially when drilling in a previously unexplored area. However, one must 

note two things when considering increasing the number of RMs: (a) its trade-off with the 

number of simulations and, (b) its relative impact on the decision-making process (e.g., it 

may be more advantageous in the early phase of field development only). Select RMs: 

Since Meira et al. (2017) allows the selection of RMs based on quantitative data alone, the 
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RMs were observed to have a qualitative bias as shown by Figure 3-20 (a, b, d, e). 

Assuming that AS represent the field well, ignoring their standard deviation can potentially 

lead to a negative bias towards risk-informed decision making. 

 Furthermore, Figure 3-20 (c, f) demonstrates the impact of increasing the number of 

RMs to overcome this bias and maintain the qualitative uncertainty attributes. Based on 

empirical pieces of evidence, we believe that maintaining good quality RMs becomes a 

necessity, especially when drilling in a previously unexplored area. However, one must 

note two things when considering increasing the number of RMs: (a) its trade-off with the 

number of simulations and, (b) its relative impact on the decision-making process (e.g., it 

may be more advantageous in the early phase of field development only). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-19: Mean porosity for (a) the 𝑴𝒑𝒐𝒔𝒕
𝟑 , (b) the approved 60 scenarios from 𝑴𝒑𝒐𝒔𝒕

𝟑  and 

standard deviation of porosity for (c) the 𝑴𝒑𝒐𝒔𝒕
𝟑 , (d) the approved 60 scenarios from 𝑴𝒑𝒐𝒔𝒕

𝟑  for layer 3 

of case study II. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3-20: Mean porosity for (a) the approved 315 scenarios from 𝑴𝒑𝒐𝒔𝒕
𝟑 , (b) 9 RMs selected for 

optimization, and (c) 16 RMs selected for observation, and standard deviation of porosity for (d) the 

approved 315 scenarios from 𝑴𝒑𝒐𝒔𝒕
𝟑 , (e) 9 RMs selected for optimization, and (f) 16 RMs selected for 

observation for layer 3 of case study I. 

 
6. Optimize: Given that the models explicitly represent the UAs, robust optimization of the 

RMs is an appropriate way to optimize FDP with regard to improving decisions. It also 

ensures easy applicability of the bi-criterion function to enhance the likelihood of success 

of an FDP. To understand the scope of improving this step, from the perspective of the 

feedback-based field development process, we conducted a small test using the 

optimization results of Cycle 2 of case study II as we had the lowest improvement (0%) in 

that case (Figure 3-15a). For that case, we examined our best solution (𝐹𝐷𝑃,) with an 

alternative solution (𝐹𝐷𝑃,,��+) for that cycle. The main difference between these two 

solutions is that, while our best solution tends to be more focused on the EMV of the RMs, 

the second-best solution is focused on both the objective function and maximizing the 

minimum NPV improvement for each RM. Table 3-9 presents a comparison of the two 

alternative solutions, showing the benefit of the latter approach. 
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Table 3-9: Improving the minimum NPV improvement for each RM can potentially improve the 

chances of success of the FDP. 

RMs #1 #2 #3 #4 #5 #6 #7 #8 #9 All True Field 
(𝑭𝑫𝑷𝟑 − 𝑭𝑫𝑷𝟐) 𝑭𝑫𝑷𝟐⁄  (%) 9 6 1 10 9 3 0.12 0.27 1 4.3 -0.2 
J𝑭𝑫𝑷𝟑,𝒂𝒍𝒕 − 𝑭𝑫𝑷𝟐D 𝑭𝑫𝑷𝟐⁄  (%) 5 4 1 9 8 2 0.34 2 3 3.6 1.7 

 
 A good decision-making process, in general, would discuss the potential alternative 

solutions to overcome any technical hitches (e.g., non-existence of HC in the eastern 

reservoir) in the field development process. Although it might seem that the robust 

optimization can fall short in this area, using specific scenarios (e.g., using 3/9 RMs 

showing no HC in the eastern reservoir) for developing alternative solutions side-by-side 

can come in handy in such vulnerable situations. Therefore, an obvious extension of this 

work would be to include such scenarios in order to devise better alternatives and 

demonstrate the benefit of risk-informed workflow. 

 Finally, a stricter criterion for checking the economic viability of all the decision 

variables must be employed to improve the chances of success of the FDP. All decision 

variables must contribute sufficiently to be of practical significance in the FDP.  

 At this stage of understanding, we believe that it would be more appropriate to say that 

all models have a certain degree of accuracy, bias, and error. In our work, we observe these 

traits in different forms. For example, a good correlation between 𝐸𝑉𝑜𝐶𝐿 and 𝑉𝑜𝐶𝐿nnnnnnn in both 

case studies represented the accuracy of the representation. However, this correlation was 

imperfect due to several model errors, including but not limited to the error in pay-zone 

representation, which necessitated the application of FoD. The bias of the model is the third 

important attribute that is best illustrated by the improvement in NPV even when the VOIP 

was negatively biased. As our analyses show, the proportion of these three traits constantly 

vary from initial until the end of the field development, as new information is acquired and 

utilized.  

 
Table 3-10: An improved correlation between simulation models and the reference case as accrued 

information is utilized in case study II. 

Application of strategy on (𝑭𝑫𝑷𝟒 − 𝑭𝑫𝑷𝟏) 𝑭𝑫𝑷𝟏⁄  (%) RMs Improved 

Pre-CLFD models, 𝑴𝒑𝒓𝒊𝒐𝒓
𝟎  -1% 41% 

Cycle 1 models, 𝑴𝒑𝒐𝒔𝒕
𝟏  +30% All 

True field (UNISIM-I-R) +39% - 



  88 

 

 

 As far as we are concerned with observing positive results with our process, we attribute 

it to three important aspects: (1) actual and assumed similarity between the simulation models 

and the reference case (Table 3-10), (2) the large subset of models to envelope the reservoir 

uncertainty, and (3) the increased likelihood of success in FDP with the bi-criterion objective 

function. This can be best illustrated by comparing our original models (prior to CLFD) with 

the C1 models and their performance with a randomly selected FDP strategy (FDP4 in this 

case). Furthermore, one must note that FoD accommodates for the error related to placing a 

well in a non-reservoir zone and improves the chances of success of the FDP. While we stress 

the importance of FoD, the associated error with the process is quite inconsistent in nature. 

This statement is further bolstered by examining the first case study (Figure 3-11). Only Cycle 

3 demonstrates differing results with and without FoD. One must note that we did not execute 

FoD for the vertical wells, as we believe that FoD plays an important role in planning a 

horizontal well only for the discussed case studies. This is also reflected in our results. 

 To enthuse confidence in the workflow, we aptly chose the initial FDP before executing 

the three cycles of CLFD using the limited first-hand information at the early stage of 

development. In case study I, we used carefully optimized FDP by Schiozer et al. (2015, 2019). 

In case study II, we again used the well-informed methodology of Schiozer et al. (2015, 2019) 

to optimize and obtain the initial strategy for the CLFD cycles. To reiterate that it was adequate 

at that stage, we underscore that 100%, 97%, and 94% for the RMs, the approved scenarios, 

and the ensemble, respectively, were improved using this optimized strategy using their 

workflow. Combining this evidence with the results observed in Table 3-10, one can appreciate 

that the CLFD cycles do not suffer from any optimization bias. With minimal knowledge in 

the early stage of field development, it is unlikely to obtain a significant improvement in the 

reference case in that stage. However, supposing we start with a higher objective function of 

the reference case prior to CLFD, a robust CLFD workflow must still ensure an improvement 

by the end of cycles.  

 The outcome of the CLFD process (or its sub-processes) solely depends on two factors; 

reliability of the input and robustness of the methodology to quantify and assess uncertainty, 

followed by reduction of scenarios and optimization. It can be improved further by ensuring 

that the prior ensemble (𝑀%&'(&) is robust, with a good endeavor to represent the geology of the 

field. A thorough probabilistic risk assessment of the simulation inputs can help make the 

process more risk-informed. While there is a huge scope of improvement in the DA process, 

alternative HM approaches like the one presented by Zakirov et al. (2015) are quite interesting 
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ways to perform the DA while maintaining geological consistency, by adjusting the anisotropic 

variogram and petrophysical parameters simultaneously. In addition, Toledo et al. (2017) also 

suggested that assimilating well test data can further improve the reservoir models. Prudently 

eliminating irrelevant scenarios to select an appropriate subset of RMs forms the penultimate 

segment to make the CLFD process feasible for industry applications. Finally, a robust 

optimization technique offering alternative solutions for unforeseen circumstances must be 

adapted to boast a risk-mitigating decision. We recommend that CLFD must be implemented 

with emphasis to improve the project’s objective while reducing the chances of failure.  

 Conclusions 
 In this paper, we provide a comprehensive and improved closed-loop field development 

workflow to obtain risk-informed decisions. The application of the risk-informed CLFD 

workflow on both the case studies provided several interesting insights on the topic. Some of 

the most significant conclusions of our study are listed here: 

• We present and validate the functioning of CLFD in an actual field-scale benchmark model, 

based on the risk-informed CLFD methodology. We successfully implemented the 

workflow in two different case studies: 

• Case study I (Morosov and Schiozer, 2016):  

§ Contrary to their results, we were able to improve the initial NPV, both with 

and without FoD, by 5% and 14%, respectively. 

§ Given that we worked with the same level of fidelity (grid size) of models as 

Morosov and Schiozer (2016), this work shows that upscaling was not a critical 

factor for their contrasting result. 

§ While Morosov and Schiozer (2016) concluded that one possible pitfall was a 

lack of geostatistical variability in the representative models, we demonstrate 

an improvement in the result, even without including FoD, under similar 

controlled environment as theirs.  

§ Comparing the results of our first cycle with Morosov and Schiozer (2016), we 

also revealed that convergence to non-representative parameters during data 

assimilation was not a source of their negative result during the first cycle as we 

had similar trends in uncertainty reduction. 

§ We observe a good correlation between the expected and the actual value of the 

closed-loop for all the cycles. 
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§ We stress flexibility of drilling (FoD) as an important component to minimize 

the chances of “unrealistic drilling”, as bolstered by the results of Cycle 3. 

Pragmatic implementation of CLFD is important to avoid drilling “unrealistic 

wells” as the engineers would not drill in non-reservoir zones in a real-life 

situation, despite the output of simulation models suggesting otherwise.   

• Case study II (all vertical wells):  

§ We were able to improve the initial NPV by 40%. 

§ We performed this to illustrate that the CLFD also works in the vertical-wells 

scenario, where the flexibility of drilling cannot be practiced as conveniently as 

for horizontal wells. 

§ We observe a good correlation between the expected and the actual value of the 

closed-loop for all the cycles. 

• Amending the conclusion of Morosov and Schiozer (2016), we assert that a large set of 

geologically consistent models is a vital component to attempt a reliable coverage of 

geological uncertainty as the field develops. 

• The quality of initially drilled wells (in terms of well-bore logs) can sway the optimism or 

pessimism in an ensemble. To safeguard a good variability of the uncertainties in the 

ensemble, one must pay attention to these factors as well. 

• As observed in both the case-studies, we exhibit that the amount of new and significant 

inputs to update the uncertainty attributes plays a critical role in the field development 

process. 

• We identify the need for a better data assimilation process to improve assessment of 

uncertainties, while appreciating the existing bias and error in simulation models. 

• While reservoir studies struggle to predict the reservoir performance adequately due to their 

inherent characteristic of accuracy, bias, and error, a risk-informed CLFD provides an ideal 

opportunity to include new information from time to time and improve the understanding 

of the field, which is visible in the form of improved decisions. 

• Among other things, the work also exhibits the significance of expelling the relatively poor 

scenarios and improved optimization process to maximize the likelihood of success. 

Further improvements in this section, as well as a selection of a better ensemble of RMs, 

can improve the workflow. 

• The introduced VoCL is a good way to quantify the value of a closed-loop based workflow 

as well as biases related to model-based decisions. While the expected VoCL is always 
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positive due to the optimization process, actual VoCL can be negative due to bad 

decision(s). 

 The work affirms the potential benefits of a CLFD methodology based on the different 

analyses conducted. We also provide a systematic analysis of the complete workflow to 

elucidate the evolution of uncertainties and enthuse more confidence in the implementation of 

such workflows in field applications. To conclude, we present a validated risk-informed closed-

loop field development workflow for testing in more complex field development challenges. 
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Nomenclature 
List of Abbreviations 

2D Two-dimensional space 

3D Three-dimensional space 

𝐴𝐶 Abandonment costs 

AQD Acceptable quadratic distance 

AS Approved scenarios 

BHP Bottom-hole pressure 

C1 Cycle 1 

C2 Cycle 2 

C3 Cycle 3 

𝐶𝐴𝑃𝐸𝑋 Capital expenditure 

𝐶I Covariance matrix of the measurement errors 
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CLFD Closed-loop field development 

𝑑' Vector of predicted production data of the ith simulation scenario 

𝑑(L*,' Vector of perturbed observations corresponding to the ith simulation 

scenario 

DA Data assimilation 

DECE Designed exploration and controlled evolution 

DLHG Discretized Latin hypercube combined with geostatistical realizations 

EMV Expected monetary value 

ES-MDA Ensemble smoother with multiple data assimilation 

𝐸𝑉𝑜𝐶𝐿 Expected value of closed-loop 

𝑓c  Cut-off frequency 

FDP Field development plan 

FoD Flexibility of drilling 

HC Hydrocarbon 

HM History matching 

𝑖 Discount rate 

IDLHC Iterative discrete Latin hypercube 

k Permeability 

𝑀 Ensemble of scenarios 

OF Objective function 

𝑂" Average normalized data mismatch 

𝑜𝑏𝑠[ Measured field data at time 𝑗 

OWC Oil-water contact 

n Total number (time-steps, representative models, etc.) 

𝑁H Number of production data observations 

𝑁I Size of the ensemble 

Np Cumulative oil production 

NPV Net present value 

NQDS Normalized quadratic distance with sign 

NTG Net-to-gross ratio 

𝑂𝐹 Objective function 

𝑂𝑃𝐸𝑋 Operational expenditure 
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ORF Oil recovery factor 

OWC Oil-water contact 

P Probability value 

PLT Production logging tool 

𝑃𝑂𝐹 Project’s objective function 

PVT Pressure-volume-temperature 

𝑄 Rate 

QDS Quadratic distance with signal 

𝑅 Gross revenue 

RF Recovery factor 

RFT Repeat formation tester 

RM(s) Representative model(s) 

𝑅𝑇 Amount paid in royalties 

𝑆 Simulation scenario 

SD Simple distance 

𝑠𝑖𝑚[ Simulated field data at time 𝑗 

𝑆𝑇 Amount paid in special taxes 

StoSAG Stochastic simplex approximate gradient 

𝑡 Time period 

𝑇 Corporate tax rate 

UA(s) Uncertainty attribute(s) 

𝑉𝑜𝐶𝐿 Value of closed-loop 

𝑉𝑜𝐶𝐿nnnnnnn Actual value of closed-loop 

VOIP Volume of oil in place 

Wi Cumulative water injection 

Wp Cumulative water production 

𝛾 Tolerance value 

𝛿 Constant 
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Superscript 

0 Initial value 

i Iteration/Cycle 

Ref Reference case (or true field) 
 

Subscript 

𝐹𝐷𝑃op� Optimized FDP for Cycle x  

𝐹𝐷𝑃'm) Optimized FDP for ith cycle 

i (1,2,3..etc.) # of FDP 

k Index of RM 

g Produced gas 

o Produced oil 

post Ensemble posterior to DA 

prior Ensemble prior to DA 

w Produced water 

wi Injected water 

z z-direction 
 

 



  95 

 

 

4 A Comparative Study to Accelerate Field Development 

Plan Optimization 
 

 

Authors: 

Ashish Kumar Loomba 

Vinicius Eduardo Botechia 

Denis José Schiozer 

 

Abstract 
 Rigorous and continual advancement in the computational domain have drastically 

reduced the time consumed for simulations. Despite this, the heterogeneity and requirement to 

use compositional models, among constraints such as field size, can still thwart the 

optimization of the field development plan (FDP) in terms of time spent. To address this, we 

proposed and compared different techniques to underscore how to optimize FDP efficiently 

under uncertainty using an example of a giant benchmark field. We compared four workflows 

to improve the efficiency of the optimization process. Method 1 uses a full-field model (FFM) 

approach with an intelligent selection process to eliminate the poorest FDPs. As it is usual to 

divide a field into sectors for risk-aversion and strategic purposes, Method 2 uses an isolated-

sector approach to reduce average simulation time. Method 3 employs the FFM approach to 

perform the optimization using only the monetary value of the partial life of the field. Method 

4 uses a cluster-based search space reduction technique for a predictive analysis from the 

technical results obtained with partial simulations, which are similar to Method 3. To ensure 

good decisions, the optimized FDP was always implemented in the FFM with complete field-

life at the end of all methods. All proposed workflows are promising in terms of efficiency, 

acknowledge the entire envelope of uncertainty, and consider multiple scenarios to improve 

the chances of success of the optimized FDP in the real field. Aside from obtaining good results 

when compared to traditional methods, we also saved 80–93% of the computational time with 

these methods. Thus, one can reduce exorbitant costs and delays in performing the FDP 

optimization. As anticipated, we observed a generic trade-off between decreasing 
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computational time and increasing field objective function. Despite this, using a new algorithm 

with predictive analytics in Method 4 produced the best improvement within the shortest 

timespan, which demonstrates that one can use shorter-term data to understand a field’s non-

linear response. Numerous authors have already presented various algorithms to optimize an 

FDP. Despite the existing computational capabilities, these algorithms are still inept at 

developing a field with time-consuming simulation models. Unlike previous studies, this work 

presents practical solutions to assist field development, considering probabilistic scenarios to 

capture associated uncertainty. We also discuss the advantages and disadvantages of the 

methods to establish their application in different situations.  

 

Keywords 

Distributed Computing; Efficiency; Field development plan; Giant field; Isolated sector; 

Optimization; Partial simulations; Predictive analytics; Propagation of best experiments; 

Reservoir simulation; Time-consuming models; Uncertainties 

 

 Introduction 
 Development decisions are a critical component of any oil and gas project. The advent 

of numerical simulation models, continuously evolving seismic and well-testing procedures, 

systematic workflows, and perpetually improving computational capabilities, among other 

technologies, has enabled multidisciplinary teams to appraise a field more efficiently. A 

subsequently proposed field development plan (FDP) will impact the field’s contractual life, 

with a vast number of significant decision variables. These variables include (but are not 

limited to) the number, type, location, schedule, and operational settings of wells, as well as 

the platform capacity and inflow control valves (ICVs). In summary, advancing technologies 

have been very helpful for the development of oil and gas fields.  

 Developing a complex and giant field, on the other hand, is still fraught with challenges. 

Rigorous and continual advancement in the computational domain has drastically reduced the 

time to simulate a full-field model (FFM) of such fields. Despite this feat, the numerical 

simulations can become demanding and impractical due to various constraints and boundary 

conditions. In addition, the requirement of using a compositional model, operation of ICVs, 

and enhanced oil recovery techniques are potential reasons that can perturb the convergence of 

the physics-based mathematical models. Consequently, a substantial simulation time combined 
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with a giant field renders the use of multiple representative FFMs impractical for the FDP 

optimization.  

 Volz et al. (2008) presented a workflow for optimizing such fields using multiple 

FFMs. The authors optimized a clastic reservoir in Siberia. Despite working with a giant field, 

the FFMs only consumed ~2.5 hours (Litvak and Angert, 2009). Such modest simulation time 

for FFMs allowed the authors to explore an extensive range of field development options using 

six equally probable FFMs. One of the authors’ focus was on the optimum water injection 

pattern to assist with the injectors’ placement. However, considerable heterogeneity would 

misplace the injectors in a more inferior location in such an optimization problem. Also, such 

an objective leaves the producers vulnerable to suboptimal sites. Even if the producers were 

placed optimally, this would have required a very high number of simulations. In short, the 

workflow focused on dealing with the extensive amount of decision variables but failed to 

reduce the number of simulations and total time consumption.  

 Azoug and Patel (2014) also presented the above-mentioned problem in their real-field 

example. Drastically contrasting with Volz et al. (2008), their FFMs consumed 5–6 days for a 

relatively small field (0.6 times Volz et al., 2008). Due to time-consuming simulation models, 

they revised the FDP of a mature giant field located offshore Abu Dhabi using a combination 

of 2D and 3D sector models. The models were extracted from a single history-matched and 

base-case FFM, making the process deterministic in geological uncertainty. The authors 

studied the impact of injecting water in 2D models. They then used these results to test 3D 

models for extending the plateau production. However, deterministic sector models come at 

the cost of ignoring subsurface uncertainty and boundary conditions, which can misguide FDP 

optimization. 

 To improve efficiency of an optimization process, Wang et al. (2012) introduced a 

retrospective optimization framework for optimizing the location of new wells using all the 

geological realizations. This intelligent procedure addresses consecutive subproblems at each 

step. In their work, the authors increased the number of realizations in each successive iteration. 

The authors also demonstrated that using k-means rather than a random clustering procedure 

could further improve the performance of their proposed method. They validated their work by 

optimizing the well placement in a 3D synthetic model. A total of 104 realizations were used 

with an average simulation time of 3 minutes. As the models were swift, the authors ran 

approximately 200,000 simulations with all realizations. They subsequently ran 20 times lesser 

simulations with their method and proved its worth. One must note that only five producers 
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were optimized using as many as 10,000 simulations with their new method. However, with 

time-consuming models, even 2000 FFMs can be too expensive, as we will present in this 

work. 

 Numerous authors have already presented various algorithms to optimize an FDP. 

Despite the existing computational capabilities, these algorithms are still inept at developing a 

field with time-consuming FFMs using multiple geological realizations. As previous studies 

high- lighted, FFMs are an asset but only serve their purpose when they are not time-

consuming. Using a single model is unequivocally damaging for the FDP as it assumes that 

there are no geological and reservoir un- certainties. Thus, using a deterministic model to 

optimize an FDP, fraught with uncertainty, may still leave vast room for improvement.  

 Considering this, we propose new workflows to improve the efficiency of the 

optimization process using multiple representative models (RMs). We compare the efficiency 

of the proposed workflows with an iterative discrete Latin hypercube (IDLHC) based method 

(Hohendorff Filho and Schiozer, 2018) as this method was concluded to be as good but faster 

than the well-established methods (like genetic algorithm). Most importantly, this research 

introduces two novel concepts; (a) a cluster-based search space reduction for optimization and 

(b) use of partial simulations for evaluating a field’s response over contractual life. 

 Objectives 
 This work presents a number of practical solutions to assist a complex/giant field 

development while also considering probabilistic scenarios to capture and reproduce 

uncertainty. The specific objectives of this work are:  

1. Define workflows to expedite the process of FDP optimization.  

2. Implement and compare these workflows in a giant benchmark field.  

3. Discuss the advantages and disadvantages of all workflows to establish their 

applicability in different situations.  

4. Underscore that intermediate results can be used to make the optimization process 

efficient.  

 Methodology 
 This section presents the four workflows created to optimize FDP under the broad scope 

of uncertainties. Firstly, we propose a two-step iterative discrete Latin hypercube (2S-IDLHC) 

algorithm for performing robust optimization (Algorithm 4-1). The proposed algorithm is 

based on Latin hypercube sampling (LHS) to optimize decision variables (Hohendorff Filho 
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and Schiozer, 2018). We introduced 2S-IDLHC to make the process more efficient. Typically, 

the lower iterations in an optimization process fall short of delivering an optimal solution. This 

stems from the fact that the frequency distribution of the decision variables is still amorphous 

during the early set of iterations. As a consequence, we observe a monotonous trend with 

evolving iterations. Considering this cue, 2S-IDLHC seeks to solve an optimization problem 

by breaking it into two steps (Algorithm 4-1).  
 

Algorithm 4-1: Two-step iterative discrete Latin hypercube (2S-IDLHC) 
Input: : Objective function (𝒇), decision variables with PMF, LHS method 
Output : Optimized decision variables 
Define 𝒊𝟏, 𝒏𝟏, 𝒓𝟏, 𝒊𝟐, 𝒏𝟐, 𝒓𝟐 
/* 𝒊𝟏 and 𝒊𝟐: max. no. of iterations for the 1st and 2nd steps of 2S-IDLHC, respectively */ 
/* 𝒏𝟏 and 𝒏𝟐: sample size for the 1st and 2nd steps of 2S-IDLHC, respectively */ 
/* 𝒓𝟏 and 𝒓𝟐 are total no. of RMs for the 1st and 2nd steps of 2S-IDLHC, respectively */ 
begin 

𝒊𝒕𝒆𝒓 ← 0 
while 𝒊𝒕𝒆𝒓 < 𝒊𝟏 do 

Run all 𝒏𝟏 ∗ 𝒓𝟏 simulations 
Select best 𝒙𝟏 experiments 
Update PMF of the decision variables to generate 𝒏𝟏 FDPs using LHS 
𝒊𝒕𝒆𝒓 ← 𝒊𝒕𝒆𝒓 + 𝟏 

end do 
while 𝒊𝒕𝒆𝒓 < 𝒊𝟐 do 

Run all 𝒏𝟐 ∗ 𝒓𝟐  simulations 
Select best 𝒙𝟐 experiments 
Update PMF of the decision variables to generate 𝒏𝟐 FDPs using LHS 
𝒊𝒕𝒆𝒓 ← 𝒊𝒕𝒆𝒓 + 𝟏 

end do 
end 

	 	

 In the first step, we use fewer realizations to build a pragmatic probability mass function 

(PMF). Next, this updated PMF of decision variables is robustly used with all the RMs to obtain 

the best solutions. 

 The four workflows are developed on the groundwork of 2S-IDLHC to expedite the 

FDP optimization process. Accordingly, the proposed workflows are presented here in 

descending order of time-consumption: 

 Full-field model – Propagation of best experiments (FFM-PBE) 

 Due to demanding FFMs, this workflow consists of the following stages to reduce the 

dissipated time without affecting the optimized solution: 

1. The initial FDPs designed by a stochastic optimization method are more chaotic than 

those in later stages. As such, we execute the first step of the 2S-IDLHC with FFMs 
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using partial life as the proxy. One must note that the partial life must be a practical one 

that lowers the elapsed time and tries to capture a significant part of the field’s monetary 

value, or other objective functions. 

 We used a bi-criterion objective function to evaluate the FDPs (see Chapter 3) 

to improve the likelihood of success of the optimized strategy within the ensemble of 

FFMs:  

 

 𝑂𝐹' =£¤
𝑃(𝑅𝑀5) ∗ 𝑁𝑃𝑉5'													, 	𝑁𝑃𝑉5' ≥ 𝑓c ∗ 𝑁𝑃𝑉5?

																0																									, 𝑁𝑃𝑉5' < 𝑓c ∗ 𝑁𝑃𝑉5?

:
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where 𝑁𝑃𝑉5? and 𝑁𝑃𝑉5' are net present value (NPV) with the initial and the 𝑖+§ FDP for 

the 𝑘+§ RM, which has a probability of occurrence 𝑃(𝑅𝑀5). To ensure a non-zero 

objective function (𝑂𝐹) while penalizing the RMs, a cut-off frequency (𝑓c) is used with 

each RM to calculate their contributions. 

2. In the second step, we simulate the FFMs for the contractual life. However, we 

introduce the concept of “propagation of best experiments” to limit the number of 

simulations intelligently. The idea is to select the best FDPs over a gradually 

incrementing subset of RMs (Algorithm 4-2). Therefore, it improves the likelihood of 

success of the optimized FDP over the ensemble, while drastically reducing the total 

number of simulations. 

 
Algorithm 4-2: Propagation of best experiments 
Input : Objective function (𝒇), Experiments (𝒏𝟏) 
Output : A subset of experiments and their objective functions 
/* 𝒓𝒊 : RMs that will be evaluated in iteration 𝒊 of PBE*/ 
Define 𝒓𝒊 and cut-off for selecting the best experiments for each iteration 𝒊 of PBE 
begin 

𝒊 ← 𝟏 
𝒓 ← 𝒓+ 𝒓𝒊 
while 𝒓. 𝒍𝒆𝒏𝒈𝒕𝒉 ≤ (Total RMs) do 

Obtain 𝒇(𝒏𝒊, 𝒓𝒊) 
Select the best experiments (𝒏𝒊m𝟏) from 𝒇(𝒏𝒊, 𝒓) 
𝒊	 ←  𝒊 + 𝟏 
Update 𝒓 ← 𝒓 + 𝒓𝒊 

end do 
Select final subset of best experiments with their objective functions  

end 
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After completing the optimization process, we recommend performing an intuitive 

evaluation of the FDP over the ensemble of RMs to extract the most of the proposed FDP. If 

necessary, one can also use the wells’ economic viability test (Botechia et al., 2013) to improve 

the FDP further. 

 Isolated sector model (ISM) 

 It is a usual practice to divide a field into sectors, as it is a risky venture to develop the 

complete greenfield forthrightly (Volz et al., 2008; Litvak and Angert, 2009; Azoug and Patel, 

2014). This approach is more common and appealing for developing giant fields due to their 

magnitude and concomitant risks. Such an approach is also necessary for offshore fields to 

strategize the location, number and type of wells, as well as the production systems’ capacity. 

 The underlying theory behind the isolated sector model (ISM) workflow is that the 

optimal FDP in a sector can improve the complete field’s response to a reasonable extent. This 

sector-based field development provides a direct and indirect approach to optimize the sector 

and the entire field, respectively. In other words, improving the to-be-optimized sector’s 

economic response can improve the field’s economic response.  

Following this idea, we use Algorithm 4-1 to optimize the FDP in the isolated and to-be-

optimized sector with Equation 4-1 as the objective function in the proposed ISM workflow. 

Due to a shorter simulation time for the sector, we test all the wells’ economic viability after 

obtaining the best possible FDP from the optimization process. A subsequently proposed final 

strategy is imposed on the FFM to observe its response and evaluate its applicability in the real 

field. 

 Full-field model – partial life – monetary results (FFM-PL-MR) 

 While “time” is an inevitable part of the optimization process, this workflow questions 

the necessity of the entire contractual period for optimizing an FDP. The FFM-PL-MR 

workflow is based on the principle that improving the economic response of the FFMs over a 

sufficiently long partial life can, in turn, help approximate a good FDP for the field’s 

contractual life. 

 Like the previous workflow, FFM-PL-MR also uses Algorithm 4-1 to perform the FDP 

optimization. As the name indicates, we partially simulate the FFMs in this workflow over a 

shorter and pre-defined field life. We use Equation 4-1 to calculate the objective function at 

the end of this period with the partial simulations’ financial results. At the end of the process, 

the optimized FDP is imposed on the FFMs with complete life. Based on the outcome, we 

implement the FDP in the real field. 
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 Full-field model – partial life – technical results (FFM-PL-TR) 

 The workflow’s basic premise is that relevant technical results can help approximate 

the field’s non-linear behavior. A multi-objective function optimization (MOFO) is performed 

in this workflow using the technical results (e.g., three-dimensional saturation/flux maps and 

production data) obtained at the end of the partially simulated FFMs. This partial knowledge 

of the field can then be used to execute a predictive analysis and estimate a good FDP for the 

field’s contractual life. With efficiency in mind, we also introduce an iterative cluster-based 

search space reduction technique, with the following sequential steps: 

1. Define search space and constraints: Due quantification and assessment of the initial 

problem space (𝕏) can eliminate unnecessary solution candidates (𝑥) to define search 

space (𝔾) with eligible candidates (𝑔). We propose using reservoir engineering insights 

to define the search space and logical constraints. For example, one can define search 

space for producers by eliminating all grid blocks with statistically low drainage 

volume in the neighbourhood.  

2. Define clusters and centroids: Even when using the 2S-IDLHC algorithm and the 

comparatively smaller search space (𝔾), one is compelled to test many permutations to 

find an optimal solution (Volz et al., 2008; Litvak and Angert, 2009). To overcome this 

issue without affecting the optimal solution, we cluster the search space and only the 

centroids of these clusters are investigated during the first exploratory phase. 

3. Employ Algorithms 4-1 and 4-2: We perform MOFO using the 2S-IDLHC algorithm 

(Algorithm 4-1) with selective FDPs (Algorithm 4-2). The multi-objective function is 

calculated using: 

 
𝑂𝐹' = 	1𝑃(𝑅𝑀5) ∗ J𝐖𝐓 ∗ 𝐓𝐑𝒌𝒊 D´

:

5;)

 
 

4-2 
 

 

  where 𝐓𝐑𝒌𝒊  is a vector of normalized technical results for the	𝑖+§ FDP of the 𝑘+§ RM 

 and 𝐖𝐓 is the transposed weight matrix. 

4. Fine Tuning: With the gradually increasing iterations of 2S-IDLHC, the number of 

clusters starts decreasing. At this stage, fine-tuning becomes an inevitable component 

of the cluster-based search space reduction and optimization technique. We gradually 

increase the number of centroids within the pre-defined clusters. This step ensures the 

reduction of the eligible candidates (𝑔) while slowly fine-tuning around the best values 
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of the decision variables. We recommend repeating this process until all the eligible 

candidates of the search space are duly explored. 

 One of the main objectives of this work is to present four alternative workflows to 

accelerate the FDP optimization process. To estimate the efficiency of the workflows, we 

compare them against the IDLHC method proposed by Hohendorff Filho and Schiozer, 2018. 

The authors concluded that the IDLHC method yields comparable but faster results than a well-

established genetic algorithm-based optimization method. As such, this comparison validates 

the benefit of using the presented workflows to accelerate the process, especially when working 

with time-consuming physics-based simulation models. 

 Application and Results 
 In this section, we discuss the results obtained after employing the methodologies. We 

used a giant-field benchmark case study (UNISIM-III) to test them. The benchmark consists 

of simulation models under the label of UNISIM-III-2022 (U3-22) and a reference model 

(UNISIM-III-R) with a high level of geological details emulating the actual field. Correia et al. 

(2020) created the models using typical reservoir characteristics of Brazilian pre-salt fields. 

The karstic reservoir models with a carbonate-depositional environment provide a suitable 

heterogeneous giant-field for testing our methodologies as the FFMs consume ~8 hours for 

simulations. These also require a compositional model due to high CO2 content. Additionally, 

the plateau oil production rate is constrained by the gas production rate at all times.  

 Given its magnitude, Correia et al. (2020) divided the field into four sectors to 

streamline the surface and subsurface operations. They also defined water alternating gas 

(WAG) as the enhanced oil recovery (EOR) mechanism. To promote sustainable development, 

the gas produced has to be completely re-injected. Figure 4-1a shows the initial FDP in U3-

22 with 33 producers and 32 injectors scattered across the field. 

 In this work, we focus on improving the “true” field’s NPV using a single sector of the 

field to identify the advantages and disadvantages of all four workflows. Table 4-1 includes 

the chronological activities. 
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(a) 

  
(b) 

Figure 4-1: (a) Initial FDP in U3-22 (pink grid blocks highlight Sector-2) and (b) a simple 

topographic map of the field highlighting the fixed wells in Sector-2. 

 
Table 4-1: Relevant field activities and information. 

Period (days) Drilling, completion and connection activity Remarks 

0-1219 6 producers (P11 … P16) and 7 injectors (I11 … I17) in S1 Extended well test 

1765-1887 2 producers (P21 and P22) and 2 injectors (I21 and I22) in S2 End of history 

1887-2131 4 producers (P23 … P26) and 4 injectors (I23 … I26) in S2  

2131-2496 6 producers and 6 injectors in both S3 and S4  

3014-3134 2 producers and 2 injectors in S1 All wells drilled in S1 

3835-3957 2 producers (P27 and P28) and 2 injectors (I27 and I28) in S2 All wells drilled in S2 

4200-4444 2 producers and 2 injectors in both S3 and S4 ~40% contractual life 

5540 - ~50% contractual life 

6636 - ~60% contractual life 

11019 - Field Abandonment 

 
 At the end of the history period (i.e., 1887 days), 52 of 100 scenarios for U3-22 could 

be adequately history-matched. We used those scenarios (𝑀.-) to select a set of 10 RMs (𝑀)?) 

using RMFinder 2.0 (Meira et al., 2017). Also, three scenarios (𝑀,) were selected using the 

min-mean-max of the selected 𝑀)? for working with the first step of 2S-IDLHC. The same 

RMs and scenarios were used throughout this work to focus entirely on comparing the proposed 
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workflows. Furthermore, all simulations were executed using parallel solvers in a distributed 

simulations environment. A total of 100 processors were allotted for the optimization process, 

with ten processors for each simultaneous simulation. 

 The optimization problem can be defined as maximizing the EMV of the 10 RMs 

(Equation 4-1) at the end of the field’s contractual life using 24 decision variables. These 

variables are positive integers and represent the (i,j) block of the twelve to-be-drilled wells in 

Sector 2 (S2). Four of the sixteen vertical wells have already been drilled in S2 by the end of 

the history period (Table 4-1). All wells are subject to shut down after reaching a maximum 

gas-oil ratio of 1600 m3/m3 at surface conditions. Although one can use all the four presented 

workflows with any underlying optimization algorithm, we only used IDLHC in this work. 

Furthermore, all decision variables are constrained to be within S2, and all grid blocks within 

S2 compose the problem space for the optimization process.  

 Full-field model – Propagation of best experiments (FFM-PBE) 

 FFM-PBE is initiated by partially simulating the 𝑀, during the first step of the 2S-

IDLHC. We considered 40% of the field’s contractual life adequate for this purpose due to four 

reasons: 

1. It makes the process efficient by saving ~46 days. 

2. It encapsulates all significant events (Table 4-1). 

3. It contributes a sizeable portion to field NPV (>50%). 

4. It acts as a suitable proxy in the early phase of the stochastic-based 2S-IDLHC 

algorithm. 

  Using the PMF obtained at the end of the first step of 2S-IDLHC, we continued with 

the second step of 2S-IDLHC by completely simulating the 𝑀)?. 

 At the end of the optimization, we reviewed the optimized FDP for any potential 

discrepancy to make necessary adjustments. Gas production is a limiting factor in the model 

and increased gas production further lowers the oil production rate. As the time value of money 

is much higher in the initial production phase, higher gas production in the early phase can thus 

lower the EMV. The optimization process placed three injectors close to P21 (Figure 4-4a). 

Such a scenario would lead to an early shutdown of P21 due to increasing gas production in 

the early phase (Figure 4-2). Hence, P21 was shut down to deliver a better alternative. 

Otherwise, P21 would have been shut down in a couple of years while depreciating the EMV. 
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Figure 4-2: Observed gas per unit area - total (meters) in one of the RMs within two years of 

opening well I24. 

 
 Table 4-2 summarizes the results. Figure 4-3 and Figure 4-4a highlight the evolution 

of the objective functions and the optimized FDP obtained using FFM-PBE, respectively. 

 

  
(a) (b) 

Figure 4-3: Evolution of the (a) EMV of the 10 RMs and (b) the minimum % improvement of 

individual RMs using the FFM-PBE workflow. 

 
 Isolated sector model (ISM) 

In ISM workflow, we isolated the S2 and executed three iterations with the 𝑀,. 

Subsequently, we implemented five iterations with the isolated S2 of the 𝑀)?. The optimization 

process improved the EMV of the 𝑀)? (with isolated S2) by 21%. A total of 12% was the 

observed minimum percentage improvement of NPV within this ensemble. We then performed 

an economic viability test to further improve the FDP, which substantially increased the EMV 
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of the 𝑀)? (with isolated S2). Overall, the EMV was improved to 24%, and the minimum 

percentage improvement of NPV was 15%.  

The obtained strategy was implemented in the 𝑴𝟏𝟎 FFMs to evaluate its adequacy. 

Table 4-2 presents the results. Figures 4-5 and 4-4b highlight the evolution of the objective 

functions and the optimized FDP obtained using FFM-PBE, respectively. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 4-4: Optimal FDP bred by the four workflows (a) FFM-PBE, (b) ISM, (c) FFM-PL-MR and 

(d) FFM-PL-TR. Note that P21, I21, P22, and I22 have exactly same locations as their positions were 

considered fixed along with the wells in the remaining sectors. 
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Table 4-2: Summary of time consumed and results yielded by different workflows [1]. 

 

 FFM-CL [2] with 1 2 3 4 

 10 RMs + 

IDLHC 

10 RMs + 

2S-IDLHC 

3 RMs 

+IDLHC 
FFM-PBE ISM FFM-PL-MR FFM-PL-TR 

2S
-I

D
L

H
C

 

St
ep

 1
 

Total 

Simulations 

6000 1800 1800 1800 1800 1800 1050 

Mean 

Simulation 

Time (hours) 

7.7 7.7 7.7 1.6 1.7 1.6 1.4 

St
ep

 2
 

Total 

Simulations 

5000 5000 1500 1800 5000 5000 1800 

Mean 

Simulation 

Time (hours) 

7.7 7.7 7.7 7.7 1.7 1.6 2.3 

Adjustments 

(Intuitive/Economic 

viability) [3] 

10 10 10 10 480+

10 

10 10 

Total simulations for 

the workflow 

11010 6810 3310 3610 7050 6810 2860 

Total time consumed 

(days) 

353 218 106 70 52 46 24 

% Time saved [4] 0% 38% 70% 80% 85% 87% 93% 

Efficiency [4] 1 2 3 5 7 8 15 

% change in 

EMV(𝑀)?) 

- - - 3.7% 3.4% 2.5% 4.2% 

Min. % improvement 

(𝑀)?) 

- - - 2.6% 2.4% 1.4% 1.7% 

[1] With the same processing capacity for all the workflows in the same distributed computing system 

[2] FFM-CL = Full-field model – Complete lifecycle (i.e., traditional method of performing optimization) 

[3] In ISM, 480 simulations were run to evaluate the economic viability (improving S2 results by 14%). All RMs were run 

once at the end of the optimization process for a final evaluation/adjustment. 

[4] Compared to the traditional approach of using 10 RMs with the available IDLHC algorithm proposed by Hohendorff Filho 

and Schiozer (2018). This method was selected as the authors presented their workflow faster than the well-established genetic 

algorithm. 
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(a) (b) 

Figure 4-5: Evolution of the (a) EMV of the 10 RMs and (b) the minimum percentage improvement 

of individual RMs with isolated S2 using the ISM workflow. 

 
 As ISM uses the isolated S2, it finds the best setup by placing the injectors as far apart 

as possible from the producers. Consequently, it places the injectors on the eastern side of the 

field and the producers on the western side of the field, closer to the crest. While this setup is 

excellent for the box-type isolated sector model, it certainly hampers the field recovery process, 

as shown in Figure 4-10. 

 Full-field model – partial life – monetary results (FFM-PL-MR) 

Like FFM-PBE, 40% of the field’s contractual life was considered adequate in the 

FFM-PL-MR workflow. We simulated the 𝑀, and the 𝑀)? during the first and second steps 

of the 2S-IDLHC, respectively. At the end of the optimization process, we reviewed the 

optimized FDP for any potential discrepancy and made intuitive adjustments. Finally, the 

optimized strategy was simulated for the contractual life in the 𝑀)? to evaluate its adequacy. 

Figures 4-6 and 4-4c highlight the evolution of the objective functions and the 

optimized FDP obtained using FFM-PL-MR, respectively. As expected, FFM-PL-MR attempts 

to place the injectors closer to the producers to maintain pressure and improve sweep efficiency 

over the defined time frame. Table 4-2 presents the complete results.  
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(a) (b) 

Figure 4-6: Evolution of the (a) EMV of the 10 RMs and (b) the minimum percentage improvement 

of individual RMs with partially simulated FFMs using the FFM-PL-MR workflow. 

 
 Full-field model – partial life – technical results (FFM-PL-TR) 

To employ the cluster-based search space reduction for optimization, we initiate this 

workflow by redefining the search space and constraints: 

1. Define search space and constraints: A total of 772 grid blocks are valid solution 

candidates (𝑥) of the problem space (𝕏) in the optimization problem. To extract the best 

FDPs from a massive number of solutions (a permutation of 12 wells out of 772 locations), 

we start by defining search space for producers and injectors. 

• Producers: The search space for producers is defined based on the movable oil in the 

vicinity. To approximate movable oil, we discretized the three-phase relative 

permeability diagram (Figure 4-7). Using this and 3D saturation maps at the end of the 

history period, one can obtain the oil’s movability in each grid block at that particular 

time. We sequentially eliminated the grid blocks with the lowest movable oil within the 

9 km2, 4.8 km2, and 1 km2 using a 30% cutoff value (Figure 4-8a). Next, we ensured 

that none of the eligible candidates of the search space is close to the existing wells. A 

total of 230 eligible candidates (Figure 4-8b), roughly covering a third of the sector, 

were considered adequate for the subsequent step. 

• Injectors: To ensure 100% reinjection of the gas produced while curbing the chances of 

an early breakthrough, we eliminated the solution candidates of the problem space 

based on the mean horizontal permeability across the vertical depth (Figure 4-9a). We 

also removed the solution candidates, which had a very high horizontal permeability in 



  111 

 

 

one or more blocks across the vertical extent. This step ensured that the injection 

process would not be inefficient. We also confirmed that none of the eligible candidates 

of the search space were close to the existing wells in the field. A total of 520 eligible 

candidates (Figure 4-9b) covering roughly 2/3 of the sector were considered adequate 

for the subsequent step. 

 

  
(a) 

 
(b) 

Figure 4-7: An example of the (a) original and (b) discretized three-phase relative 

permeability diagram. 

 

  
(a) 

 
(b) 

Figure 4-8: (a) An example of reducing problem space by evaluating the movable oil within 9 km2 of 

each grid block and (b) well-defined 230 eligible candidates for selecting producers with defined 

clusters and centroids. 

Soil = 1.0 Soil = 1.0 Swater = 1.0 

Sgas = 1.0 

Swater = 1.0 

Sgas = 1.0 
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(a) 

 
(b) 

Figure 4-9: (a) Example of reducing problem space by evaluating the mean of horizontal 

permeabilities across the vertical depth and (b) well-defined 520 eligible candidates for selecting 

injectors with defined clusters and centroids. 

 
• Constraints: The following constraints and simplifications were implemented to 

improve efficiency: 

o To-be-drilled injectors must be placed at least 1000 meters away from to-

be-drilled producers to control the early gas breakthrough. 

o Like previous workflows, 40% of the contractual life was considered 

adequate for the first step of the 2S-IDLHC algorithm. However, for greater 

efficiency, we opened all wells at the end of the history period while 

maintaining WAG cycles. 

o For the second step of the 2S-IDLHC, we used 50% of the contractual life 

to simulate the field partially. However, we extracted the technical results 

at the end of both 40% and 50% of the contractual life. 

2. Define clusters and centroids: Once the search space is defined using engineering 

insights, all eligible candidates are treated equally. At this step, we used them to define 20 

and 40 clusters/centroids for the producers and injectors using k-means clustering based on 

distance (Figures 4-8b and 4-9b). This step forms the base of the subsequent steps to 

gradually explore each cluster’s neighborhood and cover the entire search space. 

3. Employ Algorithms 4-1 and 4-2: We used these centroids as the only available eligible 

candidates during the first step of 2S-IDLHC. Table 4-3 defines the technical results and 

their respective weights used during this process. For calculating the “net flux oil - 

directional,” we multiplied the net flux oil with its Gini index. Gini index is a statistical 
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tool to capture the inequality in a frequency distribution. Thus, “net flux oil - directional” 

improves the EMV by acknowledging the potential oil movement from all directions 

beyond PL. All grid parameters were calculated for the neighboring area of ~5 km2. By the 

end of the first step of 2S-IDLHC, there were only 17 and 18 eligible candidates for 

producers and injectors, respectively (~42% reduction of eligible candidates). 

 
Table 4-3: Technical Results and their assigned weights for the simulations with PL = 40% of 

the contractual life [1]. 

Scalar Parameters [2] Weights Grid Parameters [3] Weights 

Cumulative oil produced 1 Net flux oil - directional 0.15 

Gas oil ratio -0.045 Net Gas in vicinity -0.25 

Water oil ratio -0.025 Net Water in vicinity -0.1 
[1] Similar to NPV calculations, the weights are also discounted over time. 
[2] Weights of scalar parameters were selected based on the proportion of oil/water/gas production cost. 
[3] Existing simulations of the 𝑀)? with initial FDPs were used to estimate a logical set of weights using linear 

regression. 

 
4. Fine Tuning: We employed fine-tuning with the changing PMF of the decreasing 

centroids. This was performed in two discrete phases during the second step of the 2S-

IDLHC:  

• Expansion of the surviving clusters: We defined three distinct clusters/centroids 

within the surviving clusters and executed two iterations. Only 39 and 37 eligible 

candidates for producers and injectors, respectively, withstood by the end of these 

iterations (~27% reduction of eligible candidates).  

• Inclusion of complete search space: Finally, we broke down all surviving clusters 

(39+37) into individual eligible candidates to perform further fine-tuning. In other 

words, we considered all possible locations within the surviving clusters during the last 

three iterations of the process. As we started with an initial ensemble of clusters 

representing the search space, we can affirm that the entire search space was explored 

by the end of this step.  

Lastly, the optimized strategy was simulated for the contractual life in the 𝑀)? to 

evaluate its adequacy. Figure 4-4d illustrates the optimized FDP. The FFM-PL-TR attempts 

to consider the contractual life by placing the injectors to improve the flow over the entire 

period. Unlike FFM-PBE, it does not try to shut down any existing well and places more wells 
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in the deeper eastern peripheral to minimize breakthrough. Also, unlike FFM-PL-MR, it 

distances the injectors from the producers even when we used partial-life-based simulations 

like FFM-PL-MR. 

Nevertheless, it is always possible to optimize the objective function to attain a globally 

optimal solution, but the main goal of this work is to emphasize practical methodologies to 

accelerate the optimization problems without affecting the objective function, while keeping 

in mind that all models are inherently imperfect. 

By re-evaluating the optimized strategies, one can observe that all the workflows 

attempt to place the producers as close to the crest as possible to minimize breakthrough, as 

shown in Figures 4-1b and 4-4. The injectors, on the other hand, are placed very differently. 

FFM-PBE tries to improve sweep by placing three injectors on the southwestern side of the S2 

near an existing well, P21. The other injectors are placed on the relatively deeper peripheral on 

the eastern side of the field. Such a setup also helps sweep more oil towards the producers in 

the S3 (Figure 4-10). As we defined minimum inter-well spacing at 400 meters, one can also 

observe wells being placed nearby in some instances. 

 

  
Figure 4-10: (a) Comparing the improvement in Field’s EMV (nominal value and percentage) with 

the time consumption of the workflows and, (b) comparing the improvement in EMV (relative value) 

and approximating the role of isolated S2 and remaining sectors in entire field improvement. 

 
 Table 4-2 summarizes the results and Figure 4-10 presents the efficiency of the 

workflows. The improvement appears to be small as we only optimize one sector of the field. 

This leads to deflated values as we optimize only a quarter of the field to evaluate its impact 

on the entire field. For example, we obtained a 3.4% improvement in the field’s EMV using 

the ISM workflow. In terms of nominal value, however, a 3.4% increment is equivalent to 650 
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Million USD. This value is also equivalent to a substantial 24% improvement in the isolated 

S2.  

 Discussion 
In the previous sections, we defined and implemented four workflows to expedite the 

FDP optimization process. In this section, we discuss the advantages and disadvantages of the 

workflows to establish their applicability in different situations. As the optimization process is 

more pertinent for revising the FDP with continuously accrued information over time, it is vital 

to discuss the workflows in that context too. Thus, we compare and evaluate all the workflows 

to recognize their practicality for revising FDPs with the closed-loop field development and 

management workflows.  

 Full-field model – Propagation of best experiments (FFM-PBE) 

 The FFM-PBE can expedite the process fivefold using FFMs while considering all 

temporal and spatial boundary conditions. The newly introduced concept of "propagation of 

best experiments" in this workflow also outperforms some ML-based methods in reducing the 

number of simulations (Santos et al., 2020). This quality also renders it fit for optimizing the 

operational settings of the wells and ICVs throughout the contractual life. However, performing 

several closed-loop field development/management cycles with this expensive workflow can 

sometimes render the process unfeasible. For an even more extensive or complicated giant field 

(Azoug and Patel, 2014), this method may not serve the purpose of FDP optimization. Due to 

the FFM simulations’ impracticality in such instances, one should reconsider the following 

elements: 

1. Processing power: Increasing the total number of processors in the distributed 

simulation environment can reduce the total time consumed. 

2. Representative models: Reducing the number of RMs would also accelerate the 

workflow. Such a trade-off, however, comes at the cost of overlooking uncertainty. 

3. Employing cluster-based search space reduction technique for optimization: This 

technique can also improve the final solution while reducing the required simulations. 

4. Substituting the first three iterations with the FFM-PL-TR ones can also help increase 

efficiency of the workflow six-fold. 

 Isolated sector model (ISM) 

This workflow made the optimization process sevenfold faster while focusing on the 

isolated sector itself. At the end of the workflow, we tested the optimized strategy on the FFMs. 
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Nevertheless, this step only helps ensure the final strategy’s workability instead of playing any 

role in its evolution. This inference is best shown by Figure 4-10b. As expected, the ISM 

workflow better optimizes the isolated S2. However, as it fails to acknowledge other sectors, 

we negatively impact the results for the entire field (as shown by the bar graph in Figure 

4-10b). It thus requires a better test to generate a more robust FDP from the perspective of the 

entire field.  

Therefore, one of the biggest concerns with the ISM workflow is the negligence of the 

boundary conditions. Boundary conditions are vital for any physics-based simulation model. 

While other workflows honor the spatial boundary conditions, ISM downplays its importance 

by isolating itself from the neighbouring blocks (Figures 4-10b and 4-11). Depending on 

reservoir characteristics, this can harm the entire field with effects ranging from trivial to 

significant, as shown in Figure 10b. 

 

 
 

Figure 4-11: Two FDPs (Strategy 1 and Strategy 2) in a single FFM can yield contrasting total oil 

flow rate (influx) from all sectors surrounding S2. However, the ISM workflow assumes a constant 0 

influx at all times as it ignores the boundary conditions.   

 
Such disregard of the boundary conditions also makes the optimized strategy 

insensitive to any changes outside the isolated sector. New intermittent information acquired 

and assimilated in the adjacent sectors during closed-loop field development/management will 

not affect the ISM’s final strategy. Even if the well placement or operational settings were very 

different outside the isolated sector, these would still have zero impact on the final strategy 

obtained using the ISM workflow. Likewise, the referred insensitivity also invokes 

misinformed decisions. The workflow also does not serve the purpose of optimizing the 
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decision variables across the entire field. Optimizing the FDP for the entire field using this 

method would be more time-consuming and questionable than other workflows. 

Using Algorithm 4-2, this workflow can become more than twice as efficient and 

therefore very helpful for defining an initial FDP. However, the gaps discussed above still 

make it a poor workflow for closed-loop field development and management methodologies, 

especially in developing the entire field.  Nevertheless, one can thoroughly test the workflow’s 

sensitivity to ponder its use. As the location of development wells generally has greater impact 

than their operational settings, this workflow may still be applicable to revise FDPs in the 

management and revitalization phase of a particular sector.  

 Full-field model – partial life – monetary results (FFM-PL-MR) 

Apart from the boundary conditions, time is another inevitable part of the optimization 

process. Regardless, this workflow attempts to only use partial simulations to define FDPs for 

the longer run. 

Firstly, one must adequately propose the partial time to control the trade-off between 

time consumed and results. The partial life must capture a significant part of the total NPV and 

include the field’s response to the most critical spatial boundary conditions (e.g., wells and 

operational settings). We used 40% of the contractual life in the presented result as it covered 

~55% of the total NPV of the RMs, while expediting the optimization process eightfold. 

However, it fails to capture the newly drilled wells’ response in the second development phase 

of S2 to a large extent, as those wells were only opened in the penultimate year before the end 

of the 40% contractual life (Table 4-1). This lack is one reason for its poor performance in 

terms of objective function. To obtain better results with this workflow, while improving the 

efficiency nine-fold, we recommend using at least 60% of the contractual life combining 

Algorithms 4-1 and 4-2. 

Most importantly, this workflow yields a very intuitive FDP (Figure 4-4c) that only 

boosts the monetary value over the partial life without considering the contractual life (Figure 

4-12). The workflow in itself is incapable of capturing the field’s non-linear response for the 

residual term. This indifference is why such shorter simulations cannot be relied upon for 

approximating FDPs for the contractual life. One can also notice the passive evolution of the 

EMV (Figure 4-6), which derive from the fact that limited solutions exist for the mid-term 

optimization (which also helped yield the best solution over the partial life, as shown in Figure 

4-12a). 
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(a) (b) 

Figure 4-12: Cumulative oil production with the optimized FDPs yielded by the four workflows for 

(a) mid-term (~2 years before the partial life of 40%) and (b) long-term (5 years before the 

contractual life). The best FDP for the mid-term (obtained with FFM-PL-MR) becomes the poorest 

candidate in the long run.  

 
As suggested above, this workflow is unfit for closed-loop field development and 

management, despite being efficient. Such partial objective functions are more apt for 

integration with the contractual life to yield a multi-objective and robust strategy over both the 

short- and long-term (van Essen et al., 2011). However, we included this approach for two 

reasons: 

1. To mitigate the common misconception; improving the financial results for the partial 

life also implies a continuous improvement for the contractual life.   

2. To generate benchmark results for comparing FFM-PL-TR; this comparison is essential 

to underscore the importance of intermediate technical results for efficient optimization 

process, even when one disregards time. 

 Full-field model – partial life – technical results (FFM-PL-TR) 

Due to the drawbacks presented in the previous subsection, engineers hardly consider 

partial simulations for optimizing the complete lifecycle’s objective function. For this reason, 

we introduced the FFM-PL-TR workflow to overcome those drawbacks and enthuse 

confidence in such partial simulations for efficient optimization. Aside from introducing 

shorter simulations for approximating the FDP for the contractual life, we introduced a new 

optimization technique in this workflow. Cluster-based search space reduction technique for 

optimization can help evaluate a giant problem space efficiently using both gradient-based and 

gradient-free algorithms. 

The scalar technical results attempt to mimic the NPV for the partial life (Table 4-3). 

We assigned their weights using the cumulative production/injection and the cost of 

commodities up to the partial life. In other words, using scalar technical results alone would 

FFM-PL-MR 
FFM-PBE 
ISM 
FFM-PL-TR 
 

FFM-PL-MR 
FFM-PBE 
ISM 
FFM-PL-TR 
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have had generated results like the ones obtained using the FFM-PL-MR workflow. This 

ineptitude is where the grid-based technical results come into play. This set focuses on the 

field’s residual life (Figure 4-12b), but the weights must be carefully assigned to meet the 

field’s objectives. Using the ten initial simulations with the original FDP, a regression model 

was used to derive a logical ensemble of weights and mimic the contractual life of NPV. 

Continuous improvement of these weights with each iteration would definitely help obtain 

better FDPs. 

Our results also indirectly implied two things: The selection of RMs is still a vulnerable 

process (Table 4-4) that needs to be improved for closed-loop field development and 

management. Asides that the objective function of Method 4 needs further improvement to 

make it even more risk-averse.  

Unlike the last two chapters, we did not implement the optimized strategies in the 

reference case (or “true field”). This refraining is mainly because the results in the reference 

case do not dictate the final recommendation for the best technique among the four proposed 

methods. The main focus of this work was to improve the EMV of the simulation models only 

rather than the results in the reference case. Nonetheless, we stress that one can improve the 

results in the reference case by working on the likelihood of success over the ensemble and 

risk-informed procedures, among other steps. 

 
Table 4-4: Results obtained after implementing optimized strategies in 𝑴𝟓𝟐. 

Objective functions evaluated 

for 𝑴𝟓𝟐 

Method 1 

FFM-PBE 

Method 2 

ISM 

Method 3 

FFM-PL-MR 

Method 4 

FFM-PL-TR 

EMV of the ensemble 3.3% 2.9% 2.2% 3.4% 

Minimum % improvement 0.6% -0.4% -0.8% -4.1% 

 
Finally, a stepwise increment of the partial life will help optimize the financial 

objectives via operational settings of wells and ICVs of the entire field throughout its 

contractual life. Though it might consume more time, it would still be the most efficient among 

the other proposed or even existing workflows. 

A globally optimal solution is one of the targets of optimization. However, all reservoir 

models are inherently imperfect (Oliver and Alfonzo, 2018; Rammay et al., 2019; Neto et al., 

2020; Loomba et al., 2021). Thus, the likelihood of the final solution being a global one in the 

ensemble (and the actual field) is very low (Table 4-4). This axiom, in turn, signifies that one 
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needs to reduce time on optimization and focus more on reservoir/fluid characterization to 

address disparities. 

From that perspective, we proposed four workflows to improve efficiency while 

approximating a good FDP that works well for the entire ensemble (𝑀)?). Having an efficient 

workflow, one can develop giant fields and revise the FDP for complex fields requiring high 

simulation time. It also paves the way to develop a typical field using high-fidelity models to 

capture the critical aspects and uncertainties at a relatively finer scale. 

Based on the results, we advise using FFM-PL-TR as an excellent replacement for the 

traditional workflows. Using FFM-PL-TR, one can reduce simulation time and improve the 

project’s objective function. Skeptical about search space definition, we repeated the whole 

workflow by using the entire problem space as the search space. Again, the FFM-PL-TR 

workflow outperformed the ISM and FFM-PL-MR workflows. This repetition further 

strengthened the applicability of this workflow. 

Coupling the newly introduced optimization technique from FFM-PL-TR, FFM-PBE 

would be our second preference. This integration would widen the gap between the results 

obtained using FFM-PBE and ISM. Though FFM-PBE consumes more time than ISM, this 

increased gap would be a good reason to use it. This workflow also respects boundary 

conditions, unlike ISM. Without a proper understanding of the impact of other sectors on the 

isolated sector, the ISM workflow is quite vulnerable for applications.  

Finally, the success of FFM-PL-MR is directly proportional to the simulation time 

under consideration. Meanwhile, increasing the simulation time comes at the risk of losing 

efficiency and this trade-off renders it unfit for very time-consuming models. 

 Conclusions 
This work presents four practical workflows to optimize a field development plan 

(FDP) efficiently, while considering the probabilistic scenarios to capture uncertainty. Method 

1 (FFM-PBE) uses a full-field approach to eliminate the inferior FDPs using an intelligent 

selection process (PBE). Method 2 (ISM) uses an isolated-sector approach. In Method 3 (FFM-

PL-MR), we perform the optimization using only the monetary value of the partial life of the 

field. As an alternative, Method 4 (FFM-PL-TR) uses a cluster-based search space reduction 

technique to analyze the technical results and predict the non-linear response of the field. The 

optimized FDP was always implemented in the full-field model (FFM) with complete field-

life at the end of all methods to ensure good decisions.  
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The workflows were proposed to aid the FDP optimization for time-consuming models 

(e.g., giant fields, higher fidelity models, and compositional models) and typical fields. We 

implemented the workflows in a giant benchmark field with a very expensive full-field model 

(FFM) to understand their advantages and disadvantages. The relevant conclusions are listed 

below: 

• The presented workflows can expedite the FDP optimization process 5 to 15 times. We 

achieved similar results to traditional workflows by running 36-74% less simulations. 

• Full-field model – partial life – technical results (FFM-PL-TR) is a good replacement 

for conventional full-field simulations. We observed the best improvement in the 

objective function using FFM-PL-TR.  

• The technical results obtained with the partial life-based simulations can contribute 

information for approximating FDPs. At the same time, this study emphasizes that 

intermediate results can be used for efficiency in the optimization process. FFM-PL-

TR workflow improved the efficiency of the FDP optimization process 15 times while 

using 74% less simulations. 

• The newly proposed cluster-based search space reduction technique for optimization 

eliminates the worst candidates of the problem space faster to improve the field 

objective functions. 

• Although the full-field model – propagation of best experiments (FFM-PBE) workflow 

provided the second-best results in terms of the objective function, it can still be very 

time-consuming. Enhancing this workflow with the cluster-based search space 

reduction and other proposed workflows would help make it more attractive for 

practical applications. 

• The presented isolated sector model (ISM) workflow is slightly less time-consuming 

than the FFM-PBE workflow, but the results are relatively inferior. 

• Full-field model – partial life – monetary results (FFM-PL-MR) workflow is as fast as 

the ISM workflow but yields the lowest improvement among all workflows. Due to its 

total disregard for the contractual time, this workflow is only best suited for a quicker 

evaluation of the initial FDP. 

• Finally, model error is an inherent component within the simulation models. As such, 

this research promotes the idea of developing a field with risk-averse techniques and 

select an appropriate FDP efficiently that works for the entire ensemble. 
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Nomenclature 
 
List of Abbreviations 

 

2D Two-dimensional space 

2S-IDLHC Two-step iterative discrete Latin hypercube 

3D Three-dimensional space 

CL Contractual life 

EMV Expected monetary value 

EOR Enhanced oil recovery 

𝑓c  Cut-off frequency 

FDP Field development plan 

FFM Full-field model 

𝑔 Eligible candidates 

𝔾 Search space 

IDLHC Iterative discrete Latin hypercube 

ICV Inflow control valve 

ISM Isolated sector model 

LHS Latin hypercube sampling 

ML Machine learning 

MOFO Multi-objective function optimization 

MR Monetary results 

𝑀 Ensemble of scenarios 

n Total number (time-steps, representative models, etc.) 
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NPV Net present value 

𝑂𝐹 Objective function 

P Probability value 

PBE Propagation of best experiments 

PL Partial life 

PMF Probability mass function 

RM(s) Representative model(s) 

S2 Sector-2 

TR Technical results 

𝐓𝐑 Vector of technical results 

U3-22 UNISIM-III-2022 simulation model 

𝐖 Weight matrix 

WAG Water alternating gas 

𝑥 Solution candidates 

𝕏 Problem space 

 

Superscript 

0 Initial value 

i Number of FDP/RMs 

𝐓 Transpose 

 

Subscript 
k Index of RM 
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Abstract 
 A field development plan (FDP) is fraught with uncertainties. Its optimization is critical 

for successfully developing an oil and gas field using the accrued information over time. 

However, computational expense and heterogeneities, among other factors, can render such 

tasks infeasible for complex and giant fields considering the time to implement decisions. To 

tackle this inadequacy, we present an efficient and risk-informed closed-loop field 

development (CLFD) workflow for recurrently revising the FDP using the accrued 

information. CLFD is a feedback-based field development process that assimilates the accrued 

information within the models to improve decision-making processes. To make the process 

more efficient, we integrated multiple concepts of machine learning, an intelligent selection 

process to discard the worst FDP options and a growing set of representative models (RMs). 

These concepts were combined and used with a recently introduced optimizer to efficiently 

explore the search space of decision variables. Unlike previous work, we also added the 

execution time of the CLFD workflow and worked with more realistic timelines to confirm the 

utility of a CLFD workflow. Given the importance of data assimilation and new well-logs in a 

CLFD workflow, we also worked with rigorous conditions without a reduction in uncertainty 

attributes. The proposed CLFD workflow was implemented on a benchmark analogous to a 

giant field with extensively time-consuming simulation models. We demonstrated that the 

presented workflow can improve the efficiency of the CLFD workflows by >85% compared to 

the previously validated workflow. The results underscore that an ensemble with as few as 100 

scenarios is sufficient to gauge the geological uncertainty, despite working with a giant field 
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with highly heterogeneous characteristics. Finally, we also presented some acute insights and 

potential pitfalls of a CLFD workflow. As with the development of a real field, we also present 

problems related to data assimilation. These observations are critical to providing the necessary 

recommendations for the practical application of a CLFD workflow. To summarize, we present 

a validated, efficient, and risk-informed CLFD workflow for revising FDPs to optimize the 

objective function of an oil and gas field. 

 

Keywords 

Efficiency; Field development plan; Giant field; Optimization; Machine Learning; Partial 

simulations; Predictive analytics; Propagation of best experiments; Reservoir simulation; 

Time-consuming models; Uncertainties 

 

 Introduction 
 Drilling wells in an oil and gas field is an inevitable step for extracting natural 

resources. As it is a cost-intensive process, geoscientists and engineers must drill wells at 

limited and calculated locations to improve the predefined objective function of the FDP. 

However, each well perforates only a few square feet of the total formation. With a limited 

number of wells, one can extract information from only a few square kilometers. Thus, 

reservoir formation is largely unknown as the ratio of the volume of drilled area to the entire 

reservoir is negligible. It is thus vital to work with uncertainty to make the best decisions for 

the FDP. 

 Incorporating uncertainty allows the operators to embrace the situation more 

competently and mitigate the risk of failure. It is common to appraise a field to extract new 

information. Assimilating such information is helpful to update the uncertainty quantification 

and further improve decision-making under uncertainties. However, obtaining new information 

during the appraisal phase also comes at an exorbitant cost. Therefore, most decisions relevant 

to the FDP (number, locations and types of wells, operational settings, and other decision 

variables) are made using the information before drilling the first development well. 

Consequently, this process yields a sub-optimal FDP (Loomba et al., 2021). 

 With this in mind, numerous workflows have been developed to revise FDP under 

uncertainty and improve the objective function of the project. Closed-loop field development 

(CLFD) (Shirangi and Durlofsky, 2015; Morosov and Schiozer, 2016; Hidalgo et al., 2017; 

Kim et al., 2018; Loomba et al., 2021) is one such workflow. CLFD is a feedback-based field 
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development process that uses data on newly drilled wells and their production over time. Such 

new wells and their well-testing results, among other sources of information, provide new 

insights into the fluid flow and reservoir characteristics. CLFD systematically accrues and 

assimilates such information in multiple phases to update reservoir scenarios. Finally, these 

scenarios are used to optimize the project’s objective function by revising the FDPs. 

 In Chapter 3, we described the limitations of all prior studies on CLFD. We highlighted 

that ambiguity in results, limited tests on field-scale models, and incomplete explanation of the 

evolution of uncertainties are some of the shortcomings of prior studies. We attempted to 

bridge the gap by validating their risk-informed workflow on two examples. We also addressed 

the importance of improving the field rather than the simulation models. However, the 

workflow is very time-consuming and unrealistic for practical applications. We generated 500 

petrophysical images to perform data assimilation before selecting representative models 

(RMs). We also simulated 1600 scenarios per RM during the optimization process. But, unlike 

theoretical studies, even a single reservoir model of an actual oil and gas field can consume 

long hours for simulation (Volz et al., 2008; Litvak and Angert, 2009; Azoug and Patel, 2014). 

It is thus infeasible to simulate tens of thousands of full physics-based simulations using the 

CLFD workflow of Chapter 3. The study also presumed that CLFD workflow does not require 

any time for its execution, like previous studies. 

 To summarize, current workflows are infeasible for a realistic oil and gas asset while 

completely discounting the critical decision-making period. We therefore present a workflow 

to enthuse confidence in CLFD for practical applications. This work aims to introduce an 

efficient CLFD workflow to maximize the benefits of developing a giant and heterogeneous 

field, using a pragmatic time frame. Unlike most theoretical studies, we work on an extensively 

time-consuming model. A machine learning (ML) assisted optimization process is also 

presented in this work to predict the behavior of the partially simulated scenarios. We use it to 

demonstrate that partial simulations can be used to predict the field’s behavior and drastically 

reduce computational time. 

 Objectives 
 Identifying the gaps in the literature, this article presents a unique case study. We 

implement an efficient and risk-informed CLFD workflow in rigorous conditions to expose 

pitfalls and guidelines for its applications. While the general objective of this work is to 

recurrently revise FDP optimization under uncertainty, the specific objectives are listed below: 
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1. Present an efficient CLFD workflow for practical applications. As a CLFD workflow 

consists of multiple steps, it is important to strike a balance to ensure that uncertainty 

quantification and assessment are done effectively. 

2. Validate the workflow on a giant benchmark field, with extensive time-consuming 

physics-based simulation models. As most studies only use simple synthetic models, it 

is essential to validate the workflow on a time-consuming and field-scale example to 

understand its utility. 

3. Introduce an ML-assisted technique to accelerate optimization process. Unlike 

conventional methods, we present the advantage of using intermediate results obtained 

by running simulations over partial life to optimize the project’s objective function. We 

also use the newly proposed cluster-based learning and evolution optimizer or CLEO 

(Appendix C) algorithm to explore the problem space intelligently for such complex 

applications. 

4. Introduce a routine for working with multiple approved scenarios to maximize the 

likelihood of success and expedite the CLFD workflow. We use the concepts of 

propagation of best experiments and increasing RMs with iterations for the same. 

5. Establish the benefit of a CLFD workflow by including its execution time and working 

with realistic timelines. 

6. Revise the FDP without any uncertainty reduction. In other words, data assimilation 

using historical production data and well-logs are the only components providing new 

understanding about the reservoir. Such rigorous conditions provide an excellent setup 

to understand the benefit of data assimilation (DA) process in a CLFD workflow. 

7. Discuss the key observations, potential pitfalls of CLFD workflow and provide 

necessary recommendations for practical applications. 

 Methodology 
 In Chapter 3, we introduced a comprehensive and validated CLFD workflow. The 

workflow requires a large ensemble of geologically consistent models to work with field 

uncertainty. We used 500 petrophysical images to assure a reliable coverage of geological 

uncertainty as the field develops. However, using as many as 500 scenarios can be impractical 

for real applications, as presented by several authors (Volz et al., 2008; Litvak and Angert, 

2009; Azoug and Patel, 2014; Loomba et al., 2022). These facts raise two riveting questions 

regarding: (a) the number of scenarios and if 500 is the formula for the success of CLFD and 

(b) how to revise FDP for real applications that are extensively time-consuming.   
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 Ideally, a CLFD workflow must be as efficient as possible as it serves to improve prior 

decisions during the highly uncertain development phase. Bearing this in mind, we present an 

efficient and risk-informed workflow to make CLFD workflow viable for real applications. We 

present a cycle of practical and risk-informed CLFD, as follows: 

1. Action: Generate petrophysical realizations to capture the geological uncertainties during 

this active phase of acquiring first-hand information. 

2. Update inputs: Prepare the initial ensemble of scenarios combining updated uncertainty 

attributes along with geologically consistent petrophysical images. 

3. Data Assimilation: Assimilate the noisy production data and minimize its mismatch with 

the simulated ensemble. 

4. Approved Scenarios: Carefully examine the ensemble of posterior scenarios to discard the 

unlikely scenarios to mitigate their negative impact on the decision-making process. 

5. Select RMs and optimize: Efficiently optimize using the concepts of ML propagation of 

best experiments (PBE) and growing RMs with iterations (see Algorithm 5-1). The process 

uses cluster-based learning and evolution optimizer (CLEO) as the core optimization 

algorithm. We discuss the critical elements of Algorithm 5-1 below: 

Machine learning (ML) model: An ML model is a program trained with a dataset 

using one of the countless learning algorithms (for example, linear regression, logistic 

regression, decision tree, random forest algorithm). A trained ML model can perceive 

patterns and predict the behavior of a previously unseen dataset. 

 
Table 5-1: List of scalar and grid parameters extracted. 

Scalar Parameters Grid Parameters [1] 

Cumulative oil produced Net flux oil (directional) 

Gas oil ratio Net Gas 

Water oil ratio Net Water 
[1] Grid parameters are calculated in the vicinity of the wells. We refer readers to Chapter 4 for details. 

 
 In this work, we simulate approved scenarios and obtain their net present value 

(NPV) to prepare the dataset. We extract technical results (Table 5-1) from the 

simulated approved scenarios at different time steps. Structuring this labeled data 

together, we train our ML model. Such an approach is also known as supervised ML, 

as we train the ML model by providing it with a labelled dataset. 
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Algorithm 5-1 - FDP optimization (using CLEO and ML model) 

Input: : Problem statement, approved scenarios 

Output : Optimized decision variables 

Define : Stop criteria 

begin 

1. Identify problem space, partial life and technical results to be used 

2. Using reservoir engineering insights, define search space 

3. Define the initial clusters of search space using k-means clustering 

4. Select representative eligible candidates for each cluster 

5. Simulate approved scenarios to obtain NPV and technical results 

6. Make a ML model using extracted data 

7. Select 𝒓 RMs 

8. 𝒊𝒕𝒆𝒓 ← 0 

9. while Stop criteria is False do  

10.           Generate 𝒏 FDPs with the PMF of clusters 

11.           Use PBE; partially simulate scenarios and extract technical results 

12.           Predict the NPV using ML model 

13.           Update PMF of the clusters using best 𝒃 FDPs 

14.           if Expansion is True then 

15.                Expand the clusters 

16.                Select representative eligible candidates for each cluster 

17.           else 

18.                Break 

19.           end if 

20.           Use the best FDP to simulate approved scenarios 

21.           Update the ML model using new data generated in previous step 

22.           𝒊𝒕𝒆𝒓 ← 𝒊𝒕𝒆𝒓 + 𝟏 

23.           Update 𝒏, 𝒓 

24. end while 

end 
 

 During each iteration, we simulate the reservoir scenarios over a limited life of 

the field rather than the complete lifecycle. We extract the technical results for this 
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partial period and prepare them for the ML model. Our trained ML model predicts the 

NPV for the lifecycle of the field for this unseen data.  

We then use the best FDP in the iteration to simulate the approved scenarios again for 

the complete lifecycle and extract the labelled dataset. Finally, we update our ML 

model using this dataset before moving on to the next iteration. The main purpose of 

using an ML model is to exponentially improve the efficiency of the optimization 

process. 

Propagation of best experiments (PBE): To limit the number of simulations, we 

introduced the idea of PBE in Chapter 4, which selects the best FDPs over a gradually 

incrementing subset of RMs within an iteration of the optimization process. Only these 

selected FDPs are tested with the next subset of RMs. The process is repeated until all 

RMs have been considered (for more information, the readers are referred 

to Algorithm 4-2 in Chapter 4). The main objectives of using PBE are (a) to reduce the 

total simulations and (b) improve the likelihood of success of the optimized FDP over 

the ensemble. 

Increasing RMs with iterations: We also integrate the concept of growing RMs with 

each iteration (Wang et al., 2012; Loomba et al., 2022) in conjunction with the risk-

averse objective function presented by Chapters 2 and 3. While the former reduces the 

number of simulations, the latter is a risk-averse approach to maximize the chances of 

success in the real field. 

Cluster-based learning and evolution optimizer (CLEO): In this work, we used 

CLEO as the core optimization algorithm (Appendix C). CLEO is a user-friendly 

optimization algorithm that deftly deals with extensive decision variables and problem 

space. 

 As we built our workflow on the fundamentals of Chapter 3, we only described the 

main differences in this work. We direct the readers to Chapter 3 for a better insight into each 

step. We stress that the workflow presented in Chapter 3 lacks features to make it practical for 

real field applications. In the next section, we examine these differences and implement the 

proposed workflow on a giant-field benchmark case. Unlike other studies, we use an 

extensively time-consuming model to elaborate the indispensable changes made in the 

complete workflow. 
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 Application and Results 
 In this work, we used UNISIM-III, a giant-field benchmark case study (Figure 5-1). 

This synthetic reservoir was created to understand and work with Brazilian pre-salt fields 

(Chaves, 2018; Correia et al., 2020). The giant field consists of karsts and volcanic rocks, 

within a carbonate-depositional environment. The benchmark case study includes an ensemble 

of simulation models (UNISIM-III-2022) to capture uncertainty; and a reference case 

(UNISIM-III-R) which emulates the “true field”. Such a benchmark case study, with mutually 

exclusive models, allows engineers and geoscientists to test their methodology. For a detailed 

explanation of the simulation and reference models, we refer the readers to Correia et al. 

(2020). 

 
(a) 

 
(b) 

Figure 5-1: (a) UNISIM-III-2022 was divided into four sectors (pink blocks highlight Sector-2) and 

(b) grid-top map (in meters) of the UNISIM-III-2022 highlighting the field topography (adapted 

from Chapter 4). 

 
 This giant field is divided into four sectors (Figure 5-1a) so as to streamline the 

subsurface operations and sequentially develop the sectors (Table 5-2). The sectors 

communicate with each other and each one corresponds to a production platform. For 

sustainable development, 100% of the gas produced is re-injected into the reservoir. The 

authors also defined water-alternating gas for maximizing oil recovery. Figure 5-1a shows an 

meters 
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FDP in UNISIM-III-2022 with 33 producers and 32 injectors scattered across the field. 

Fourteen of these wells (shown in Figure 5-1b) were drilled within the first 1219 days of field 

development. 

 In this work, we only focus on optimizing the field’s net present value (NPV) using the 

decision variables from sector-2 (S2):  

1. Thirteen out of seventeen development wells of Sector-1 are already operational before the 

first cycle of CLFD (Table 5-2). 

2. Despite working with limited decision variables from only a quarter of the field (i.e., S2), 

we worked with full-field models to include the impact of neighboring sectors for making 

a well-informed decision (Chapter 4). One must note that the locations of the wells of other 

sectors are considered fixed for all three cycles. Only to-be-drilled wells of S2 are revised 

using the accrued information over time. 

3. Although we are optimizing decision variables of S2, we assimilate newly acquired 

information (well-logs, production data, etc.) from all four sectors. 

4. Since we are working with the entire field, taking one or all sectors for employing CLFD 

renders little difference, but there is a small difference in execution time. Taking a quarter 

of the gigantic field (i.e., S2), with limited non-drilled wells as the decision variables only 

exposes the true merit of CLFD. 

5. Sector-2 is the only sector with maximum influence from neighboring sectors (Figure 

5-1a). Thus, it is a good sector for testing our predictive analytics-based optimization 

process.  

 It is also prudent to start with an optimized FDP to gauge the benefit of CLFD 

workflow. In Appendix C, we assimilated data until t =1219 days to optimize the NPV of the 

“true field” by 13%, using non-drilled wells (of all four sectors) as the decision variables. We 

used their optimized FDP as our initial strategy. 

 Table 5-2 chronologically summarizes the major activities in the field with additional 

information on the execution of each cycle of CLFD.  
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Table 5-2: Relevant field activities and information. 

Period 
(days) 

Drilling, completion and commission 
activity in the field [1] 

Remarks 

0-1219 6 producers (P11 … P16) and 7 injectors (I11 
… I17) in S1; producer P21 in S2 

Extended well test performed in 
S1 in the first year followed an 

idle 1.4 years 
At t = 1219, Cycle 0[2] (pre-CLFD) was executed 

1308-2039 4 producers (P22 … P25) and 4 injectors (I21 
… I24) in S2; 2 producers and 2 injectors in 

both S3 and S4 

 

At t = 1978, Cycle 1 was executed (revised (i,j) blocks of 7 to-be-drilled wells in S2) 
2039-2315 1 producer (P26) and 2 injectors (I25, I26) in 

S2; 2 producers and 2 injectors in both S3 and 
S4 

 

At t = 2404, Cycle 2 was executed (revised (i,j) blocks of 4 to-be-drilled wells in S2) 
2404-2769 2 producers and 2 injectors in both S3 and S4  
2769-3134 2 producers and 2 injectors in S1 All wells drilled in S1 

At t = 3531, Cycle 3 was executed (revised (i,j) blocks of 4 to-be-drilled wells in S2) 
3592-3957 2 producers and 2 injectors in S2, S3, and S4 

each 
All wells drilled in S2, S3, and S4 

4322 - ~39% contractual life 
5053 - ~46% contractual life 
11019 - Field abandonment 

[1] We considered a period of 3 months to drill, complete, and commission each well. Only one well per sector is drilled at a given time. 

[2] Synonym to pre-CLFD optimization. For details, readers are referred to Appendix C. 

  
 In the following subsections, we share our results in further details. In the first 

subsection, we present the implementation of the methodology discussed in Cycle 1. This 

subsection is followed by some important observations in Cycle 3. Finally, we discuss the 

results of all the cycles in the form of a comprehensive table and additional figures. 

 Cycle 1 of CLFD 

 The first cycle of CLFD uses the information until the end of the 1978th day (Figure 

5-2). Provided we used ensemble-smoother with multiple data assimilation or ES-MDA 

(Emerick and Reynolds, 2013), we limited our work to 100 scenarios. The highlights are 

provided below: 

• We generated 100 images of porosity, permeability and rock-types using 27 well-logs 

(including 13 new logs from wells drilled after 1219 days). 

• Using noisy production data over these 5.4 years, we performed data assimilation for 100 

scenarios, combining uncertainty attributes and geostatistical images.  

• We approved 44 scenarios from the posterior ensemble of scenarios.  

• We used Algorithm 5-1 to efficiently revise the FDP using the accrued information. 
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• We executed the optimization process using multiple RMs over ten iterations to improve 

all 44 simulation scenarios by a median value of 2.3%.  

 

 
 

Figure 5-2: Chronology of the CLFD cycles (scaled to dates). 
  
 The initial and optimized FDP are illustrated in Figures 5-6a and b. By implementing 

the optimized strategy in the reference case, we improved the NPV by 0.8%. Major 

improvement in oil recovery comes from Sector-3 (1%) and Sector-2 (0.5%). A larger change 

in recovery factor of Sector-3 demonstrates how the revised decision helped the neighboring 

sector. Meanwhile, it stresses the importance of working with the entire field rather than 

isolated models when making a holistic decision for the complete field. We present the 

percentage change in oil recovery (at the end of Cycle 1) for individual wells in Figure 5-3. 

We observe a similar trend between expected and actual percentage change in cumulative 

production, with some exceptions (producers P45, P16, P42, P47, and P25). Such differences 

may occur because of various factors, including the uncertainty attributes, like faults close to 

such wells, which may or may not compartmentalize the area (see producer P25 in Figure 

5-6b). It is intriguing to observe how even limited changes made in Sector-2 can affect the 

wells in Sector-4 (several kilometers away). 

 It is also vital to maximize the likelihood of success and measure it with the number of 

improved scenarios, especially when working with huge envelope of uncertainty. In Cycle 1, 

we improved all the scenarios, which enthuses confidence to implement the optimized strategy 

in the reference case to obtain successful changes. 

Time (days) 



  135 

 

 

 
[1] To make the graph legible, we truncated the result of producer P27 as the maximum change was observed as high as 1500% 

Figure 5-3: Percentage change in cumulative oil production of respective wells at the end of 

Cycle 1 (the first and second numbers in the well’s nomenclature refer to the sector and drilling 

sequence, respectively). Boxplot and red circles represent the expected and actual % change in 

cumulative oil production using 𝑴𝒑𝒐𝒔𝒕
𝟏 , respectively. 

 
 Benchmarking the efficiency of this cycle against the first cycle of Chapter 3, we 

observed that this workflow is nine folds faster (or 89% more efficient). In Table 5-3, we 

present a simplified comparison to appreciate the results of this work. Table 5-4 presents 

detailed results of this cycle, including the total time consumed. 

 
Table 5-3: Estimated time consumed for Cycle 1 using the workflow in Chapter 3 and this article. 

# Step Chapter 3 This work 

Action + Update Info 7.5+0.5 days 1.5+0.5 days 

Data assimilation 30 days 6 days 

Approve scenarios 1 day 1 day 

Select RMs + Optimize 243 days [1] 22.5 days 

Total time 282.5 days [2] 31.5 days 
[1] Executing 1600 simulations (10 processors/simulation) with 9 RMs using 200 processors with average sim. time of FFM = 8.1 hours.  
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 Practical problems in Cycle 3 

 Like Cycle 1, we implemented CLFD workflow on subsequent Cycles 2 and 3. 

However, we came across a notable obstacle in Cycle 3. In this subsection, we expose this 

critical problem, which resembles practical concerns in the real field development. Some key 

highlights of this cycle are emphasized below:  

• Unlike previous cycles, we assumed that fault transmissibility uncertainty is reduced by 

this period (9.7 years ≅ 32% of the field’s life). We therefore used a range of 0 to 0.5 for 

faults transmissibility across the field (rather than 0 to 1). 

• An extremely high gas-oil ratio (GOR) was observed in producer P17 (well from Sector-1) 

since it started producing (~1.5 years before the execution of Cycle 3). Since the well had 

been active for a considerable time, we did not consider this observation as an outlier.  

• Given that well P17 is drilled in proximity to Sector-2, it is vital to ensure that our models 

depict this behavior. However, the simulated GOR of the well P17 was perceived to be 

much lower than the observed GOR (Figure 5-4) even after assimilating production data 

with ES-MDA.  

 

 
Figure 5-4: For the same oil production, difference in gas production is almost double even 

after data assimilation (Red dots and blue lines denote the production data of true field and 

simulated models, respectively). 
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• Assuming good connectivity between injectors and well P17 as a solution to this problem, 

we proposed a channel connecting producer P17 and injector I17 to find a workable 

solution (Figure 5-5a). 

 
(a) 

 
(b) 

Figure 5-5: (a) Consideration of a thief zone connecting wells P17 and I17, without 

disturbing the neighboring well P12 and, (b) gas production rate of well P17 after revising 

data assimilation process. 

 
 Poorly history-matched models constrained us to repeat the data assimilation process 

in this cycle, leading to extra time. To accommodate these necessary changes, time spent on 

the data assimilation process was commensurate to the optimization process. As such, Cycle 3 

took the longest time among the three cycles. In Figure 5-6, one can also observe the 

corresponding changes. Well P27, placed in proximity to the unbeknownst channel in Cycle 2, 

was moved further away by the end of Cycle 3. 

 Outcome  

 Table 5-4 presents detailed results of all three CLFD cycles with the total time 

consumed. We exhibit the best FDPs obtained at the end of each cycle in Figure 5-6. The 

updated workflow is much more efficient (>85%) than the previously validated workflow. 
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(a) 

 
(b) 

 
(d) 

 
(c) 

Figure 5-6: From top left and in clockwise direction, the pictures illustrate the evolution of FDP: (a) 

FDP0 (initial strategy), (b) FDP1 (cycle 1), (c) FDP2 (cycle 2) and, (d) FDP3 (cycle 3). Faults (F4 and 

F6), producers and injectors are shown using bold pink, green, and blue, respectively. To-be-drilled 

wells are highlighted in red italics. Filled circles, squares, and triangles are used to segregate the 

existing wells and to-be-drilled wells in Cycle 1 and Cycle 2/3, respectively. 
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Table 5-4: A detailed account of implementation of CLFD. 

 Cycle 1 Cycle 2 Cycle 3 

Implementation of workflow to revise FDP using simulation models for respective cycles 

Action Obtained 0+7+3+3 new 

well logs (from S1, S2, S3, 

and S4, respectively); 

Generated  𝑀%&'(&
)  using a 

total of 27 vertical well-

logs. 

Obtained 0+4+5+5 new 

well logs (from S1, S2, S3, 

and S4, respectively); 

Generated  𝑀%&'(&
-  using a 

total of 41 vertical well-

logs. 

Obtained 4+0+4+4 new 

well logs (from S1, S2, S3, 

and S4, respectively); 

Generated  𝑀%&'(&
,  using a 

total of 53 vertical well-

logs. 

Updating inputs - - Range of fault 

transmissibility was 

modified from 0-1 to 0-0.5 

for all four faults. 

Data assimilation Noisy production data over 

a period of 1,978 days 

(18% of the field’s life) 

was used to obtain	𝑀%(*+
) . 

Noisy production data over 

a period of 2,404 days 

(22% of the field’s life) 

was used to obtain	𝑀%(*+
- . 

Noisy production data over 

a period of 3,531 days 

(32% of the field’s life) 

was used to obtain 𝑀%(*+
, . 

Approved scenarios 

(AS) 

44 48 40 

Optimization FDP0 was optimized to 

obtain FDP1. We used 26 

(59% of the AS) scenarios 

to optimize using 10 

iterations of CLEO. 

Complete ensemble was 

improved. 

FDP1 was optimized to 

obtain FDP2. We used 30 

(62.5% of the AS) 

scenarios to optimize using 

7 iterations of CLEO. 94% 

of the ensemble was 

improved. 

FDP2 was optimized to 

obtain FDP3. We used 24 

(60% of the AS) scenarios 

to optimize using 7 

iterations of CLEO. 93% 

of the ensemble was 

improved. 

Execution time 32 days 27 days 34 days 

Range of 𝑬𝑽𝒐𝑪𝑳 0.03 to 0.5 Billion USD  

(0.3 to 5.5%) 

-0.04 to 0.18 Billion USD  

(-0.3 to 1.6%) 

-0.03 to 0.16 Billion USD  

(-0.3 to 1.4%) 

𝑬𝑽𝒐𝑪𝑳 (for ensemble 

of AS) 

+ 0.25 Billion USD  

(+2.3%) 

+ 0.07 Billion USD  

(+0.7%) 

+ 0.05 Billion USD  

(+0.5%) 

Results obtained by implementing the finalized FDP in UNISIM-III-R (true field) for respective cycles 

𝑽𝒐𝑪𝑳nnnnnnn + 0.08 Billion USD  

(+0.8%) 

+ 0.11 Billion USD  

(+1%) 

 + 0.07 Billion USD  

(+ 0.7%) 
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 Working with only limited decision variables from a quarter of this giant field, we were 

able to improve the field’s NPV by 0.27 Billion USD (~2.5%) to emphasize the merits of 

implementing an efficient CLFD workflow. Figure 5-7a shows the evolving NPV over cycles. 

Examining the box plots for all 𝑀%(*+
'  (set of history-matched simulation models, where ‘i’ is 

the number of the cycle), we have: 

1. Very high uncertainty in the models at the initial phase of field development. 

2. Growing sense of confidence in the evolving ensemble with sizeable reduction in 

variability. 

3. Growing optimism in the evolving ensemble implied by a sharply increasing median 

NPV compared to the true field’s NPV. 

4. Assimilating newly accrued information over multiple phases of field development can 

be beneficial to decrease uncertainty and improve predictive capability. 

 Figure 5-7b depicts the histogram of changing oil recovery factor at the end of all 

cycles. Given limited variables were modified to optimize the field’s NPV, we also observe 

limited improvements in individual sectors. 

 

 
(a) 

  
(b) 

Figure 5-7: Graphs showing the evolution of (a) NPV (𝑴𝒑𝒐𝒔𝒕
𝒊 ) refers to the set of history-matched 

simulation models, where ‘i’ is the cycle number) and, (b) oil recovery factor (for each sector) over 

the cycles. 

 
 Discussion and Recommendations 

 The main focus of this work is to revise an FDP with newly accrued information using 

CLFD workflow. We restrict our analysis to its two essential attributes: efficiency and risk-

informedness. We also extend our discussion to include (a) its ability to include realistic 
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timelines for explaining its efficacy in real life, and (b) previously undisclosed observations to 

enthuse confidence in the workflow. 

 All previous studies showed CLFD as an integral concept to improve the objective 

functions over multiple phases. Yet, their workflows are unusable for real field applications 

due to inefficiency. One of the primary reasons for this drawback is that they only tested their 

workflows on simple and fast synthetic models (less than five minutes per simulation). In 

contrast, reservoir models of actual fields can be very time-consuming (Volz et al., 2008; 

Litvak and Angert, 2009; Azoug and Patel, 2014). Table 5-5 summarizes the key differences 

between the workflow presented in Chapter 3 and this article to appreciate one of the key 

objectives of this work, i.e., efficiency of CLFD. 

 
Table 5-5: Key differences between the workflow presented in Chapter 3 and this article. 

# Step Chapter 3 This work Remarks 

Action Generated 500 images Generated 100 images 80% reduction in time 

Update info Generated 500 scenarios 

with updated info 

Generated 100 scenarios 

with updated info 

80% reduction in time 

Data assimilation Performed DA of 500 

scenarios using ES-MDA 

We performed DA using 

100 scenarios 

80% reduction in time 

Approve scenarios ~50% scenarios approved ~45% scenarios approved A larger ensemble of 

approved scenarios is 

only justified if RMs can 

be selected without any 

simulation 

Select RMs Selected 9 RMs; Only 

these 9 RMs were used 

for optimization 

We selected 3-12 RMs 

per iteration; different 

subset of RMs per 

iteration 

Varying RMs helps 

reduce time and include 

more scenarios to make 

better decisions 

Optimize IDLHC was used to 

optimize well-placement 

using 1600 experiments 

per RM 

We combined ML model 

with CLEO algorithm to 

optimize with 80% lesser 

simulations 

Together with previous 

step, we achieved >90% 

reduction in time during 

optimization process 
 [1] We compared our work with Chapter 3, where we successfully validated a comprehensive workflow on two case studies.  
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 In a CLFD workflow, results propagate from one step to another. One must be mindful 

of the quality of these results to avoid failure of the complete workflow (see Chapter 2). On 

this note, drastically improving the efficiency using only one of the steps can mislead the 

outcome. Thus, only tweaking the number of scenarios is also insufficient as optimization is 

the most demanding step in the workflow. A long optimization process can render the CLFD 

workflow unfeasible for time-consuming applications.  

 Hence, we presented a holistic solution to make the workflow more efficient (>85%). 

Using this efficient workflow, we recurrently revised the FDP of an extensively time-

consuming model in a month, a much acceptable timeframe. We reduced the ensemble size to 

improve the efficiency of the CLFD workflow (Table 5-5) until approving scenarios. For 

maximizing the likelihood of success and improving the efficiency of the final steps, we 

combined multiple concepts with CLEO as the core optimization algorithm. 

 The quality of being risk-informed is equally critical in a CLFD workflow. Adding to 

the discussion of Chapter 3, we present some insights for practical implementation of a risk 

informed CLFD workflow:  

• Action: The depositional sequence plays a dominant role in the recovery process. 

Hence, one should construct the ensemble of geostatistical images using multiple 

geologically consistent scenarios.  

 Considering efficiency, the number of geostatistical realizations generated and 

used for subsequent steps is another concern. In Chapter 3, we used 500 realizations in 

their work, asserting that a large ensemble is necessary to capture the geological 

uncertainty. However, using as many as 500 realizations to develop a time-consuming 

model can be impractical. As such, this work uses only an ensemble of 100 realizations 

to work with time-consuming models while honoring the need for a large ensemble. 

Despite using an 80% smaller ensemble on a highly heterogeneous and giant field 

fraught with various complexities, our revised workflow worked. This fact boosts 

confidence in using 100 realizations rather than 500. At the same time, it raises the 

question regarding the apt size of the ensemble for a successful understanding of 

geological uncertainty. Depending on the complexity, one can further adjust the size of 

this initial ensemble. 

• Update inputs: In this work, we revised the FDP without including any direct 

information (Loomba et al., 2021) to test the workflow in a challenging environment 

(Table 5-4). Regardless, this step is key to reducing uncertainty during the field's 
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development phase. One should estimate the impact of all unknown uncertainties. 

Accordingly, this knowledge can be used to make an informed decision for subsequent 

steps. For example, one should focus to approve the scenarios that include more 

impactful uncertainty attributes. Such a risk-informed step bolsters the likelihood of 

success of the final outcome, particularly when one improves all scenarios. 

• Data assimilation: Theoretical studies fail to highlight that several subsea processing 

activities are involved to separate the extracted commodities. While the total 

hydrocarbon extracted from the field is measured more accurately after such processes, 

the well production data is bound to suffer with higher noise. Also, depending on the 

availability of gauges, only limited well parameters (for example, total liquid rate and 

bottom-hole pressure) may be available to perform data assimilation. it is therefore 

important to include more subjective knowledge of the field to improve the data 

assimilation process under such complications. 

 In practice, one does not know the true reservoir characteristics of an oil and 

gas field. But using a benchmark case gives us the advantage of studying the "true 

answer" in a controlled environment after executing all three cycles of CLFD. We also 

revisited the problem of DA in Cycle 3 (see Figure 5-4). Re-evaluating the uncertainty 

parametrization, we realized that non-mapped fractures running along the fault were 

the primary reason for the observed discrepancy. This observation highlights the 

following: 

1. Unknown uncertainty attributes can cause mismatched production data. 

2. As the reference case was built independently of the simulation model, it is common to 

encounter differences. Such differences helped us demonstrate problems from real life 

situations. 

3. Such non-mapped fractures only ran along the fault (within a close proximity).  

However, as the scale of the reference and simulation models is quite different, 

simulation models are not able to capture this behavior, even after DA. With the large 

differences in the scale, it is quite unrealistic to portray this behavior accurately as the 

DA cannot identify such instances. We can affirm this further based on the results 

obtained, despite using channel to mimic the faults (Figure 5-5a). In that instance, we 

observed that it was still difficult to perform DA with lower mismatch. 

4. Presenting a functioning workflow under such strenuous conditions enthuses 

confidence in the concept of CLFD as well as our workflow.  
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 As learned from Cycle 3, a better DA technique is also required to work with a 

much larger noise and, without experiencing any collapsing uncertainty attributes. To 

improve DA in such problematic instances, one could also use local grid refinement in 

addition to new uncertainty parameterization to understand the mismatched area better. 

Given that solutions are based on the knowledge and experience of the engineer, we 

believe that the presented solution is subject to further improvement based on aptitude, 

time, and motivation. As the focus of this work is CLFD, we limit our discussion on 

this topic. 

• Approving scenarios to select and optimize RMs: In this work, we used reservoir 

engineering insights alongside the CLEO algorithm. One of its benefits in the CLFD 

workflow is that it helps prevent drilling a well in an unproductive region by using the 

data of the approved scenarios. These insights also help mitigate the need for 

correctional steps, like flexibility of drilling (FoD – Chapters 2 and 3). Meanwhile, to 

improve reservoir engineering insights, we need better ways to include the impact of 

different factors, like faults. For example, if we have a sealing fault close to the well, 

we need better techniques to incorporate this information and use zero oil flux from 

that direction. 

 We also reiterate the necessity to maximize the likelihood of success over the 

approved scenarios to ensure success in the "true field". Maximizing the expected 

monetary value (EMV) of the RMs alone does not endorse its success in the "true field". 

One must maximize the percentage improvement in the EMV as well as the scenarios 

improved. Using a growing set of RMs in conjunction with a risk-averse objective 

function is a good way to efficiently reach that objective.  

 There are perceived similarities between the concept of (a) growing RMs with 

iteration and, (b) propagation of best experiments (PBE). As such, we provide a 

description of their similarities and dissimilarities in Table 5-6. In short, both 

frameworks supplement rather than substitute each other. 

 As Appendix C highlights, one can achieve a globally optimal solution with 

simulation models. But, as model error is always prevalent, the solution may be far 

from a globally optimum solution when applied in a real case. As such, we endorse 

using predictive analytics to make the optimization process faster. For a better 

prediction model, one could also use a more detailed feature matrix and effective 
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learning algorithms. Learning feature importance to pick the best features for the 

feature matrix is another important step to improve the prediction model. 

 
Table 5-6: Difference between growing RMs over iterations and Propagation of best experiments. 

Growing RMs over iterations Propagation of Best Experiments (PBE) 

Similarities 

Both improve efficiency of the optimization process 

Both work with multiple realizations 

For a given subproblem, total number of realizations are fixed 

Dissimilarities 

It solves a series of subproblems, with 

increasing RMs 

It works with only one optimization 

subproblem 

Number of realizations are increased as we 

advance from one subproblem to the next 

Number of realizations are increased within 

the subproblem only 

It was designed to handle as many 

realizations as possible, irrespective of how 

many of them are actually being improved 

PBE was developed to obtain a solution 

which improves all realizations within the 

subproblem 

It runs all simulations within a subproblem; 

thus, it does not improve efficiency within a 

subproblem 

PBE runs only a selected simulation; thus 

improving efficiency within a subproblem 

This framework has a high overall efficiency 

as it steers all subproblems (Wang et al., 2012) 

The efficiency of PBE (as a standalone) is 

relatively lower as it only acts as a 

supplementary tool within a subproblem 

 
 Depending on the size of the field, number of processors, average simulation time per 

model, and other computational capabilities, it can take weeks to months to revise the FDP. 

Nevertheless, one must ensure that FDPs can be revised within a realistic time frame. For a 

practical implementation of the workflow, it is also vital to include decision-making time as 

delays in oil production can directly impact the NPV and, at times, render the changes in FDP 

useless. As none of the previous works included this decision-making period, we included it to 

exhibit the practicality of our workflow. While, roughly 30 days were required by all the cycles 

for revising FDP, we added an extra 30 days to include the unforeseen managerial and 
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engineering decisions. This extra buffer period also serves to explain the benefit of CLFD 

workflow in case of additional unexpected delays. 

 The execution time of the workflow also raises the concern of it being a continuous 

process. Assuming that it takes 30 days to simulate the whole CLFD workflow, the only 

additional information at this point, in most of the cases, would be a single noisy production 

data per well. As this additional information may not be value-additive, we stress that CLFD 

requires deliberate planning to maximize its value. 

 In addition, the number and size of cycles are two independent variables of CLFD. 

Although all authors highlight the benefit of increasing the number of cycles in CLFD, they 

overlook mentioning that this behavior is more in line with the value of money. Using many 

cycles increases the number of controls over the initial period (which more heavily impacts 

NPV than the later ones). One must also increase the number of cycles cautiously. Doing this 

can be disadvantageous in certain cases. For example, in the presented example, no new well 

logs are acquired between 1219-1756 days. In other words, no new spatial and temporal 

information is acquired for the to-be-developed Sectors 2, 3, and 4, so ill-informed decisions 

may be taken, which can arbitrarily lead to success or failure. On the other hand, cycle size 

depends on the quantity of information it puts forward. So, for a successful implementation of 

CLFD (with adequate size and number of cycles), we recommend that one should carefully 

recognize the amount of information, time consumed by CLFD workflow, objective function, 

and time of executing the workflow, among other things. 

 Finally, we highlight some key observations. Updated ensemble of each cycle 

demonstrated similar characteristics (see Figure 5-8): 

1. Reduction in volatility: Decreasing coefficient of variation highlights the lower 

dispersion around the mean NPV. For a given FDP, we observed sharply decreasing 

standard deviation in evolving data-assimilated ensemble. 

2. New information reduces uncertainty: Increasing minimum and decreasing 

maximum values led to a continually decreasing range of NPVs. Unrealistically 

optimistic and pessimistic values were ruled out from subsequent ensembles. 

3. Growing optimism: For a given FDP, we observed the median NPV always starting 

less than true value in the initial ensemble and ending up over the true value in the final 

ensemble, as shown in Figure 5-8. This observation suggests that the ensembles are 

evolving to become more optimistic. This is an intriguing behavior provided that the 

initial and final ensembles were built with data of 18% and 32% of the field’s life, 
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respectively. Though it is difficult to infer with current knowledge, Figure 5-8 also 

raises a pivotal question about the possibility of the true NPV falling outside the range 

of predicted NPV using new models built on newly accrued information. 

4. Improved forecast: Despite growing optimism and large uncertainty reduction, the 

actual value of the field always falls within the bracket of simulated models. This boosts 

confidence in the predictive capability of evolving ensembles. At the same time, this 

does not necessarily mean that an individual cycle would always induce a positive 

change as it depends on the percentage of scenarios improved, among other things. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-8: (a) FDP0, (b) FDP1, (c) FDP2 and, (d) FDP3 in	𝑴𝒑𝒐𝒔𝒕
𝟏 ,	𝑴𝒑𝒐𝒔𝒕

𝟐 , 𝑴𝒑𝒐𝒔𝒕
𝟑  and reference case. 

 
 In this work, we only use a few wells (within a sector) as decision variables to optimize 

the objective function (NPV) of the entire field. Thus, it is understandable that the 

improvements are not very large in percentage as the decision variables in other sectors that 

play a critical role in the field behavior are not altered. At the same time, this unique set-up 

helps us expose the benefit of CLFD as a consequence of limited changes on the giant field’s 

NPV. This setup also helps indicate the benefits of the ML-assisted CLFD workflow more 

clearly. The results also demonstrate the benefit of new information coming in the form of 
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noisy production data. Even without updating new inputs in the simulation model during the 

earlier cycles, one can observe an ample change. 

 Similar to Chapter 3, we also mitigated any bias in the optimization process by starting 

with an optimized strategy from the beginning. Given the large amount of uncertainty and 

dearth of information, this FDP is not good enough for updated scenarios. At the same time, 

the optimized FDPs from later cycles are not the best for initial ensembles. This highlights that 

the initially optimized strategy was good enough for the provided information at that point of 

time and lack of adequate information in the early phase of development can mislead to 

suboptimal decisions. 

 With the passage of each cycle, one expects the new information to reduce uncertainty 

(also seen in Figure 5-8). However, this reduction should be moderate rather than drastic. For 

practical implementation of a CLFD workflow, we recommend using performance indices to 

ensure model variability. Descriptive statistics and image processing can be used to measure 

the variability at each phase of the cycle and maintain diversity in models. This step is essential 

to embrace key insights and differences from multiple scenarios. Maximizing the likelihood of 

success over such a variable ensemble would guide the geoscientists and engineers to select a 

more robust FDP. 

 Conclusions 
 By identifying the research gaps in closed-loop field development (CLFD), we 

presented an efficient and risk-informed workflow to make robust decisions while evaluating 

risks and grasping systematic insights. We list the main contributions of this work in this 

section. 

           Without an efficient workflow, it can be exorbitantly time-consuming to develop a field-

scale example. Thus, we presented an efficient workflow (>85%) for realistic and field 

applications. We achieved this feat using multiple factors. We demonstrated that an ensemble 

of as low as 100 scenarios is sufficient to capture the geological uncertainty. We used an ML 

model and employed a simple learning algorithm for the optimization process. Unlike 

conventional methods, we extracted intermediate technical results and used them to (a) 

understand the unseen pattern and (b) forecast the final objective function.  We introduced a 

routine for working with multiple approved scenarios to expedite the CLFD workflow and 

maximize the likelihood of success, and we also integrated the concept of propagation of best 

experiments. We also used the newly proposed cluster-based learning and evolution optimizer 

algorithm to explore the problem space intelligently. 
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           We tested this workflow on a highly heterogeneous and giant field. This benchmark 

case manifests an extremely challenging environment with spatial and temporal complexity. it 

is a perfect testing ground for investigating the proposed workflow. To study the impact of 

CLFD and affirm its proper functioning, we also worked with limited decision variables in a 

quarter of a giant field and considered practical timelines. Within this controlled environment, 

we improved the NPV by 0.2 Billion USD (2%) to demonstrate the functioning of the CLFD 

workflow in complex conditions. 

 Apart from working with a giant field, we also worked with a realistic timeline. Unlike 

previous work, we established the benefit of the workflow by including its execution time and 

buffer period to stress that CLFD works in a delayed environment. Meanwhile, the results 

indicate that deliberately planning can be beneficial for the successful implementation of 

CLFD.  

           As presented, it is usual to encounter problems while minimizing the mismatch between 

observed and simulated data during the data assimilation process. While there is a degree of 

subjectivity in the data assimilation process, one must conduct experiments while restricting 

the total time for a cycle of CLFD and covering uncertainty. Yet, based on the controlled 

experiments, assimilating data using noisy production data provided a good understanding of 

the reservoir.  

           While the evolving ensemble improved the forecasts with reduced volatility, we also 

observed growing optimism in the models. In our work, we also observed that FDP is quite 

sensitive. Small changes seemed to affect wells even several kilometers away. One should be 

wary of such behavior while performing data assimilation or optimization processes. 

 Talking about potential pitfalls, lack of diversity, or poorly selected subsets of reservoir 

scenarios for the optimization process can impact the outcome of the workflow. Although 

reservoir engineering insights helped us drill the wells in productive regions, one could drill 

the wells in unproductive zones in some rare cases. We must stress that the initial strategy 

proposed at the beginning of development is more likely to have wells in unproductive zones 

than the later ones. One must select the CLFD workflow carefully to maximize the value of the 

closed loop. Inefficient workflows can engender unnecessary delays. 

 To summarize some of the recommendations for practical applications, one must 

maximize the likelihood of success using a risk-averse objective function. One should strive to 

generate and approve a diverse set of scenarios while considering the sensitivity analysis of 

uncertainty attributes. Being wary of reservoir features and possibly non-mapped uncertainties 
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can also be helpful for better predictions. In this sense, the use of information sources, such as 

time-lapse seismic, can help us better understand reservoir characteristics. Finally, spending 

more time to improve the quality of models, rather than spending extra time on the optimization 

process, would be an ideal way forward to generate robust outcomes. 
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List of Abbreviations 

CLFD Closed-loop field development 

CLEO Cluster-based learning and evolution optimizer 

DA Data assimilation 

EMV Expected monetary value 

ES-MDA Ensemble-smoother with multiple data assimilation 

FDP Field development plan 

FoD Flexibility of drilling 

GOR Gas-oil ratio 

IDLHC Iterative discrete Latin hypercube 

ICV Inflow control valve 

LHS Latin hypercube sampling 

ML Machine learning 

𝑀 Ensemble of scenarios 

NPV Net present value 

PBE Propagation of best experiments 

PMF Probability mass function 

RM(s) Representative model(s) 
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S1/2/3/4 Sector-1/2/3/4 

WAG  Water alternating gas 

Superscript 

i Cycle 

Subscript 

i # of FDP (1, 2, 3 ... etc.) 
post Ensemble posterior to DA 
prior Ensemble prior to DA 
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6 Conclusions 
 This thesis presents efficient, comprehensive, and improved closed-loop field 

development (CLFD) workflows to obtain risk-informed decisions. We begin the work by 

addressing the existing pitfalls in the existing workflows. Exercising this knowledge, we 

developed a risk-informed CLFD workflow and validated it using two case studies. Given that 

practical applications can be time-consuming, we presented four methods to optimize 

considerably faster while considering the probabilistic scenarios to capture uncertainty. 

Finally, we integrated all findings to obtain an efficient and risk-informed CLFD workflow, 

validated using a giant field with time-consuming models. We summarize the key contributions 

of this thesis below: 

1. This thesis emphasizes the functioning of the concept of model-based CLFD. 

2. We presented two risk-informed workflows. While the first workflow is comprehensive 

and equipped for faster models, the latter is more efficient and applicable for time-

consuming and practical applications. Without an efficient workflow, a cycle of the CLFD 

workflow can be extensively time-intensive, rendering its implementation impractical. 

3. We successfully validated the functioning of both workflows in three-dimensional and 

field-scale benchmark models. 

4. We demonstrated that a large ensemble of geologically consistent models is vital for 

reliable coverage of geological uncertainty. While we used 500 realizations in the initial 

work, we also tested an 80% smaller ensemble (only 100 realizations) in a highly 

heterogeneous field to conclude it is adequate for capturing geological uncertainty. 

5. We also observed that the quality of the well-logs influences the quality of the ensemble of 

simulation models (swaying the optimism or pessimism). To preserve good variability of 

simulation models, one must also pay attention to this factor. 

6. We showed that the initial ensemble bred using static information alone struggles to depict 

the historical period. Hence, it requires the assimilation of dynamic data before using them 

to make well-informed decisions. 

7. We exhibited that the quality and quantity of new inputs in the simulation models play a 

significant role in the field development process. Quantifying the uncertainty attributes 

more correctly decreases the information gap, which helps improve the reliability for 

making better decisions.  
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8. We identified the need for better data assimilation (DA) process to improve the assessment 

of uncertainties while considering the existing bias and error in simulation models. 

9. It is frequent to observe mismatched production data post-DA process in real life. From the 

perspective of CLFD, one must be cautious of outliers and conduct appropriate experiments 

(for instance, mapping new uncertainty attributes) while staying mindful of the execution 

time of a CLFD’s cycle. 

10. Using high tolerance values can lead to accepting poorly history-matched scenarios, 

generating an inferior ensemble of an approved ensemble. Ideally, one must discard the 

implausible scenarios to mitigate the influence on the optimization process. 

11. As presented, the selection of RMs is a vulnerable process that needs to be improved for a 

CLFD workflow. To select an apt number of RMs, one needs to be wary of the qualitative 

and quantitative aspects of the approved scenarios, while maintaining proper variability in 

the unexplored area. 

12. Maximizing the likelihood of success of the optimized strategy over the approved ensemble 

of history-matched scenarios improves the probability of success in the actual field. 

13. We introduced a bi-criterion objective function focusing on EMV and individual NPVs of 

the RMs. Using this objective function, we improved the likelihood of success over the 

"true field" by maximizing the number of scenarios improved. 

14. As the optimization process is the most taxing component of the CLFD workflow, we 

proposed four methodologies to make it efficient. The presented methodologies expedited 

the optimization process multiple folds by running fewer simulations. Compared to 

traditional methods, the proposed workflows also yielded similar results in much less 

consumed time. 

15. We introduced the concept of propagation of best experiments (PBE) and tested it in the 

framework of CLFD to limit the number of simulations intelligently. As PBE selects the 

best FDPs over a gradually incrementing subset of RMs, it improves the likelihood of 

success of the optimized FDP over the ensemble while drastically reducing the total number 

of simulations. 

16. Using a growing set of RMs over the iterations can significantly improve the efficiency of 

the optimization step while ensuring that a maximum number of approved scenarios are 

considered for making the final decision. 

17. We also presented and implemented a machine learning (ML) model using a simple 

learning algorithm (linear regression) to improve the efficiency of a CLFD workflow. 
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18. The technical results obtained with the partial life-based simulations can contribute 

information for estimating FDPs. At the same time, this thesis emphasizes that intermediate 

results can be used to improve the efficiency of the optimization process by multiple folds. 

19. We introduced the value of closed-loop (VoCL) as a performance index. This index assists 

the decision-makers in selecting the final strategy while quantifying the benefits. While the 

expected VoCL is always positive due to the optimization process, actual VoCL can yield 

a negative result due to poor decision(s). 

20. A pragmatic drilling approach must be exercised in the “true field” to emulate the real-time 

decision-making process. This step avoids drilling “unrealistic wells” as the engineers 

would not drill in non-reservoir zones in a real-life situation, despite the output of 

simulation models suggesting otherwise. We proposed flexibility of drilling (FoD) to 

minimize the chances of drilling a well in non-reservoir zones. However, the presented 

concept of FoD is only applicable to horizontal wells.  

21. Considering real-life challenges, we also worked with a realistic timeline of field 

development to confirm the practical application of a CLFD workflow. We established the 

benefit of the efficient and risk-informed workflow by including its execution time and 

buffer period to stress that CLFD works in a delayed environment. At the same time, the 

results indicate that deliberately planning can be beneficial for the successful 

implementation of CLFD. 

22. We introduced a systematic framework based on bottom-up analysis to improve workflow 

for model-based CLFD while evaluating the individual steps and asserting their 

significance. 

23. We demonstrated how the propagation of specious scenarios/outputs leads to an overall 

bias in the results of CLFD. As CLFD is a cyclical process, one needs to be wary about the 

results of the preceding step to the input of the next step. Concurrently, we also learned 

how to mitigate the propagation of misleading outputs. 

24. We provided a systematic analysis of the complete workflow to elucidate the evolution of 

uncertainties and enthuse more confidence in its implementation in field applications. 

25. As observed in different forms, all models have a certain degree of accuracy, bias, and error 

compared to the actual field. The proportion of these three traits varies from the initial until 

the end of the field development, as new information is acquired and utilized. The actual 

and assumed similarity between the simulation models drives the results of the CLFD 

workflow. Consequently, this research promotes the idea of developing a field with risk-
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averse techniques and selecting an appropriate FDP efficiently that works for the entire 

ensemble. 

 While reservoir studies struggle to predict the reservoir performance adequately due to 

their inherent characteristic of accuracy, bias, and error, a risk-informed and efficient CLFD 

provides an ideal opportunity to assimilate new information over specified phases and improve 

the understanding of the field, which is visible in the form of improved decisions.  
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7 Suggestions for Future Studies 
 Based on the methodical observations made throughout this work, some of the potential 

topics for research are listed below: 

1. In Chapter 2, we discussed the role of 3D seismic information in generating more coherent 

petrophysical images. An image conditioned to good 3D seismic data can always assist in 

capturing the lateral and longitudinal connectivity of the reservoir within the resolution of 

the seismic survey. In Chapter 3, we also discussed that constraining the geostatistical 

images to seismic data can reduce the variability of the images while ensuring geological 

consistency so that the uncertainties shift more towards the “true field” value. Future 

studies could address how 3D/4D seismic information impacts the spatial variability of 

realizations and thus reduce the chances of failure of the optimized FDP and improve the 

CLFD process. 

2. As seen in Chapter 3, we observed qualitative bias in the RMs. Assuming that the approved 

ensemble of scenarios represents the uncertainty in the field well, ignoring their standard 

deviation can potentially lead to a negative bias toward risk-informed decision-making. 

Based on the several other observations made in Chapters 2-4, future research can focus on 

improving the quality and quantity of the RMs so that we can represent the entire ensemble 

more efficiently to bolster confidence in the optimized result. 

3. In Chapter 3, we discussed how the quality of the well-logs has a dominant and direct 

influence on geostatistical properties. Future studies could expose how to generate images 

with good variability, especially when the ratio of the explored and unexplored spatial 

volume is minute. As hypothesized, better usage of variograms can improve the quality of 

petrophysical images. 

4. All models are imperfect and error-prone. As discussed in Chapter 3, failure to predict the 

history period properly reveals that good history-matched scenarios (with conditions) do 

not necessarily mean they “represent” the field. Even if the historical period can be 

naturally stimulated (without forced conditions) within a reasonable acceptable range, this 

will already ensure that we do not have fallible scenarios. Consequently, such models can 

significantly improve our understanding of the field. In conjunction with other observations 

made in Chapters 3 and 5, future work must focus on developing better data-assimilation 

techniques to minimize the differences between the predicted and actual properties. 
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5. Chapter 3 discusses an essential characteristic of a good decision-making process. 

Typically, it should address alternative solutions to overcome technical hitches in the field 

development process. Although it might seem that robust optimization can fall short in this 

area, using selected scenarios for developing alternative solutions side-by-side can come in 

handy in such vulnerable situations. Therefore, an extension of this work would be to devise 

better alternatives and demonstrate their benefit from the perspective of CLFD. 

6. In Chapter 2, we verified that upscaling was not the main reason for the negative results in 

Morosov and Schiozer (2016). At the same time, this thesis does not investigate the role of 

upscaled models on the results of CLFD workflow. It would be intriguing to understand 

how different fidelity of simulation models can impact the outcome of CLFD. While the 

conventional wisdom suggests that a higher fidelity model can capture the flow behavior 

better, it may also imbibe a relatively large model error. More investigation is needed to 

unravel the impact of the grid size and the fidelity of the models.  

7. Some other relevant topics for research are: 

a. Propose an FoD method for vertical wells. 

b. To evaluate the quality and the quantity of information accrued over time to make 

an objective decision of implementing CLFD workflow. 

c. To find new ways to conduct economic feasibility tests of individual wells in the 

FDP before its implementation in the actual field, especially in a time-consuming 

reservoir model. 

d. To assess the number of geostatistical realizations while considering the complexity 

of the given field. 

e. To find ways for guiding the well-scheduling to acquire vital information much 

earlier to maximize the impact of CLFD. One should also study the benefits of 

CLFD over the concept of the value of information in such circumstances. 

f. To recognize a way for selecting the number and size of cycles while considering 

the amount of information, time consumed by CLFD workflow, and objective 

function, among other things. 

g. To develop new performance indices to quantify the benefit of optimized strategy 

and its probability of success in the actual field, to enthuse confidence in the concept 

of the CLFD. 

h. To test a case study that uses geostatistical realizations built using multiple 

depositional settings.  
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8.  In future studies, one could also examine the impact of the following factors: 

a. Well-tests 

b. Higher noise levels in the production data with outliers 

9. Future studies can include more control variables to mimic a real field development 

scenario. Control, placement, type, schedule, and the number of wells, platform, and ICV 

constraints can be combined to yield better results.  
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Appendix A : Concept of Risk-informed Decision-making 
 

 In this appendix, we expound on the risk-informed CLFD workflow for decision-

making. The concept of risk-informed decisions has been exploited in the process industry 

and business models for a long time.  In 2012, Zio and Pedroni described in detail the risk-

informed decision-making approach adopted by the National Aeronautics and Space 

Administration (NASA) and by the United States (US) Nuclear Regulatory Commission. We 

used this concept with CLFD workflow in this thesis.  

 Zio and Pedroni (2012) differentiated between a risk-based and risk-informed 

decision-making process in their work. The authors defined a risk-based decision-making as: 

“A risk-based decision-making process provides a defensible basis for making decisions and 

helps to identify the greatest risks and prioritize efforts to minimize or eliminate them. It 

generally does not lead much space for interpretation.”  

 As a risk-based process is a strict workflow without room for individual 

interpretation, Dezfuli et al. (2010a, b) and NASA (2008) defined a risk-informed approach 

to mitigate performance shortfalls in the outcome. Contrarily to a risk-based process, risk-

informed decision-making is a calculated, cautious and contemplative process to “inform” 

decision-making using a set of key performance indicators, in combination with additional 

considerations used during a risk-based process (Zio and Pedroni, 2012). Unlike a risk-based 

decision-making process, the authors stressed that technical information is not the sole basis 

for decision-making and identified the significance of human judgment in the risk-informed 

decision-making process. They attributed this to vast uncertainty and gaps in technical 

information, as well as the intrinsic nature of the decision-making process being a subjective 

and value-based task.  

 Reflecting on the previous studies in the niche area of CLFD, this thesis promotes a 

deliberate implementation of CLFD using a risk-informed and efficient workflow. Rather than 

an automatic process, the thesis asserts that technical benefits of a CLFD workflow can only 

be exploited by understanding the true nature of the problem. Technical components (for 

example: reservoir characteristics, uncertainty attributes and their overall impact, geophysics 

and geology, fidelity of simulation models, commercial analysis, infrastructure development, 

etc.) and non-technical components (for example: time-consumption, software knowledge, and 

its internal parameters’ handling skills, mitigating specious outputs at the end of each step to 
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thwart the overall negative impact, learning when to modify sub-steps to accomplish overall 

goals, etc.) must be successfully integrated for each cycle of a CLFD workflow. We list three 

examples to appreciate the risk-informed nature of the presented work: 

1. Data assimilation: History-matching is an ill-posed and inverse problem with multiple 

solutions. In Chapter 5, we presented a practical problem related to this step (Figure 

5-4) and its solution based on our subjective interpretation (Figure 5-5a). The mean of 

the simulated output of the problematic well was still lower than the observed output 

(Figure 5-4) even after data assimilation. However, weighing the efficiency, updated 

models, and subjective knowledge of the associated risk, we decided to continue with 

the subsequent steps of the CLFD. 

2. Approved models: Usually, one picks the best scenarios from the subset of history-

matched reservoir models. Based on the analyses in this thesis, we stress that this step 

must focus on discarding poorer scenarios rather than accepting the best ones (see 

Table 3-8). Furthermore, this step is imperative to reduce the computational cost for 

the subsequent step (selection of RMs), where one needs to run the ensemble of 

approved scenarios to select RMs. For instance, in the third cycle of Chapter 3, we 

saved 423 simulations (see Tables 3-4 and 3-7) without thwarting the outcome of 

CLFD. Similarly, this step improved the efficiency in Chapter 5 by working with a 

smaller set of approved models for all the cycles, thus saving several months. 

3. Improving the results in the reference case: Unlike previous studies, our thesis does not 

emphasize maximizing the EMV of the RMs. We studied the impact of each step on 

the subsequent stages and thus understood how to mitigate the specious outputs. In 

Chapters 2 and 3, we observed the importance of maximizing the likelihood of success 

over the RMs. Table 3-9 extended this conclusion and revealed the impact of 

maximizing the minimum improvement over the RMs on the outcome in the reference 

case. In Chapter 5, we extended the idea by attempting to maximize the ensemble of 

approved scenarios rather than just RMs, while maximizing the minimum improvement 

over this ensemble. Even though some FDPs yielded higher EMV over this ensemble, 

we did not use them in the reference case as they presented a relatively higher chance 

of failure.   

 At multiple stages, the thesis encourages end-users to identify more performance 

indicators along with the sensitivity analysis to understand the impact of various 

parameters/steps for improving the final decision using subjective interpretation.  
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 To conclude, cumulative knowledge of the reservoir engineers and geoscientists is 

fundamental for assimilating technical and non-technical elements for mitigating the risks of 

failure of the revised decisions or FDP at the end of each cycle (NASA (2008); Dezfuli et al. 

(2010a, b); Zio and Pedroni, 2012). We promote the idea of a risk-informed workflow to 

highlight its significance and impact on CLFD. One of the inherent goals of this work is to 

encourage engineers to use CLFD as a beneficial technique in a more “well-informed” 

environment rather than push-button automation. 
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Appendix B : Using “Flux Boundary Option” for Well 

Location Optimization: A Feasibility Study 
 

B.1 Introduction 
 In 2019, Computer Modelling Group Ltd. (CMG) introduced the “flux boundary 

option” in GEM. As CMG explains in their manual:  

 “It enables writing out of flux boundary conditions from full field run to designated 

boundaries of a potential reduced run. The reduced runs can then be performed on a smaller 

set of grid blocks using the flux boundary information written during the full field run.” 

 In this appendix, we present the feasibility of using the “flux boundary option” for 

optimizing the NPV of a deterministic reservoir scenario using ith and jth grid blocks of 

vertical wells as the control variables.  

B.2 Objective 
 We examine the applicability of the flux boundary option (FBO) in terms of its function 

for performing production strategy optimization in a giant field like UNISIM-III-22 (see 

Section 4.4). 

B.3 Methodology 
In this section, we report the methodology followed for studying the feasibility of the FBO: 

1. Define the flux boundary in the simulation file(s):  

a. Define the name and number of the flux-boundary sector using *FLXB-NAMES 

keyword. This needs to be followed by defining the grid-blocks under the flux-

boundary sector using *FLXB-DEF *ALL (or *IJK) keyword. An example: 

  *FLXB-NAMES 'flxb-S2' 1 (*FLXB-NAMES keyword must appear only once) 

  *FLXB-DEF *ALL 

  3267*0 2*1 61*0 2*1 56*0 7*1 48*0 15*1 46…and so on. 

b. After defining the flux boundary (required for both full field and reduced simulation 

models), define the flux type (*FLUX or *PRESSURE) and select the *FLXB-OUT 

option in the full-field simulation model. An example: 

  *FLXB-OUT (This part is necessary for outputting the flux boundary) 

  *FLXB-TYPE *FLUX (not a mandatory keyword as *FLUX is default option) 
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c. For the reduced run simulation, these 2 keywords must be replaced with: 

  *FLXB-IN ‘name_of_dat_file.flxb’ 

  *FLXB-ACTIVE 'flxb-S2' (multiple flux boundary sectors can be activated 

simultaneously) 

Important notes: 

• Changing the NULL blocks definition for the reduced run simulation neither affects 

the simulation time nor results. 

• Use *SRFORMAT *SR3_IMRF in the I/O section to obtain the *.sr3, *.irf and 

*.mrf files in 2019/2020 versions of CMG. 

2. Generate .flxb file: After editing and placing the necessary keywords and flux-boundary 

definition in the full field and reduced simulation model, one needs to run the full field 

model to generate the *.flxb file. 

3. Run the reduced model with the same strategy and features as the whole model to verify 

the working of the *.flxb file. 

4. Use the generated *.flxb file to run the reduced field model with a different strategy. 

5. Compare and analyze the results of the reduced field model (with and without FBO) with 

the full field simulation model. Simulation time, output, and potential problems are the 

assessment criteria. 

B.4 Application and Results 
 In this section, we discuss the application of the methodology on a simulation model of 

UNISIM-III-2022 (U3-22). While U3-22 run was considered the full field simulation model, 

isolated Sector-2 was considered for the reduced field simulation runs. Within reduced field 

simulation runs, we also have: (1) S2-22F, i.e., the reduced model considering the flux 

boundary option (FBO) and, (2) S2-22, i.e., isolated Sector-2 model without FBO (Table B-1). 

Two well-location strategies were tested (labelled as Strategy1 and Strategy2). 10 processors 

were used with GEM 2019.10 in high performance computing (HPC) cluster. 

 
Table B-1: Description and name of the models used in this appendix. 

Description of Model Name 

Full Field Model U3-22 

Isolated Sector 2 with FBO [1] S2-22F 

Isolated Sector 2 without FBO S2-22 
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[1] One does not need to isolate sector when using FBO 

 
 After executing Step#1 of the methodology, we performed the full field simulation of 

U3-22 model using Strategy1 to obtain the Strategy1.flxb file. Next, we used this file for 

running the S2-22F with Strategy1 to verify the similarity in results. Simultaneously, we 

simulated the S2-22 with Strategy1 to compare the results.  

 Subsequently, we ran the S2-22F and S2-22 models with Strategy2. One must note that 

the S2-22F with Strategy2 was run using Strategy1.flxb file as one would use while performing 

optimization. Table B-2 compares time consumption by these runs. 

 
Table B-2: Comparing the simulation time for the full field and reduced field model (with 

original and modified strategy). 

  Strategy 1 (Same as FBO) in Strategy 2 in 

Simulation time (hrs.) U3-22 S2-22F S2-22 U3-22 S2-22F S2-22 

HPC cluster 8.6 3.8 2 8 40* 2.5 
* Simulation stopped due to numerical tuning error. 

 
 Figure B-1 shows the results obtained after applying Strategy-1 in U3-22, S2-22F and 

S2-22. The simulated output of S2-22F is similar to U3-22. On the other hand, the output of 

S2-22 is different as it does not consider the boundary conditions: 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

Figure B-1: a) Oil production rate, b) gas production rate, c) water production rate, d) water 

injection rate and, e) average pressure in Sector 2 after simulating U3-22, S2-22 and S2-22F 

with Strategy 1. 

 
 Gas Production and injection rates were same for the Strategy1, so the latter was not 

shown in Figure B-1. Average pressure was one parameter where higher differences were 

observed between S2-22 and S2-22F. FBO helped S2-22F (with Strategy1) to imitate the same 

behavior as seen in U3-22 model (with Strategy1) using 56% lesser time. 

 Figure B-2 shows the results obtained after applying Strategy2 in U3-22, S2-22 and 

S2-22F models.  

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure B-2: a) Oil production rate, b) gas production rate, c) gas injection rate, d) water 

production rate, e) water injection rate and, f) average pressure in Sector 2 after simulating U3-

22, S2-22 and S2-22F (using Strategy1.flxb) with Strategy 2. 

 
 The simulated output of S2-22F, S2-22, and U3-22 was observed to be dissimilar when 

new strategy (Strategy2) was implemented. Due to numerical tuning error, the simulation of 

S2-22F also failed around the year 2040.  

B.5 Discussion 
 Flux boundary option (FBO) is a tool to perform a reduced field simulation and evaluate 

the flux-boundary sector. In this appendix, we studied how to exploit this new tool and its 

feasibility in the field development stage when performing strategy optimization. Below, we 

discuss a few more observations to deliver a well-informed conclusion on this subject: 



  180 

 

 

1. As Figures B-1 and B-2 suggest, performing optimization with S2-22 (i.e., isolated sector 

without FBO) can yield sub-optimal results for U3-22. S2-22 is prone to bias and tends to 

exhibit disparity with the full-field model as it does not consider the boundary conditions 

(same as concluded in Chapter 4). 

2. Compared to Figure B-1, Figure B-2 shows a stark difference between the simulation 

results of U3-22 and S2-22F (both run using Strategy2). Reviewing Figure B-2, we can 

also observe that well-locations had a dominant impact to sway the simulation results of 

S2-22F closer to the results of S2-22. FBO did not help to imitate the results of the full-

field simulation. On the other hand, the results are more similar to the isolated-sector 

simulation results. 

3. In addition, numerical errors can occur when a different strategy (Strategy2) is run with the 

same *.flxb file. This can lead to multiple problems like incomplete simulations (see 

Figure B-2), convergence errors, extremely long simulation time (see Table B-2), etc. 

4. Comparing the gas production and injection rates in Figure B-2 (b and c), we notice 

another discrepancy; S2-22F model was unable to inject 100% gas using *.flxb. Within the 

same period, both U3-22 and S2-22 models were able to do the same. Thus, it is fair to say 

that using *.flxb can lead to such errors as well (due to numerical errors/failures). 

5. Figure 4-11 reveals that strategies can have huge and differing impact on inflow behavior. 

Note that Sector 2 has a positive influx with Strategy2 while it is consistently negative with 

Strategy1. 

6. To justify the use of FBO for optimization, we used Strategy1.flxb to run the reduced 

simulation model with Strategy2. By doing this, we ignored the influx change that we 

observed in the U3-22 using Strategy2 (Figure 4-11). This makes the use of FBO moot as 

it will only lead to propagation of uncontrolled uncertainty. 

7. For these strategies, the influx from a *.flxb file acts as a noise which needs to be adjusted 

by cutting timestep. This is corroborated by the large simulation time observed in Table 

B-2. Since this noise is almost zero with the original strategy, we observe a much faster 

simulation compared to the full field. But, this noise changes with the Strategy2 (Figure 

4-11) and thus, the simulator is required to cut timestep to adjust pressure and saturation. 

Due to higher mobility of gas as well as its extensive presence in our models, the saturation 

changes associated with gas can be more challenging to deal with when there is a huge 

difference in influx. 
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 We recommend performing a preliminary analysis to determine if FBO can be used for 

data assimilation. If necessary, this test can be extended to see if it is feasible for control 

variables optimization. One can also study influx and re-sectorization of flux boundary to 

reduce time and make this tool attractive, while ensuring the models are completely simulated 

within a smaller time-frame compared to full-field model. 
B.6 Conclusions 
 “Flux boundary option” is not recommended for performing well-location 

optimization. It is very important to have the same dates and features in the RUN section of 

the *.dat file to avoid having a huge simulation time, which cannot be done for a new 

production strategy. 

• FBO replicates field behavior within a good tolerance for the same strategy. 

Otherwise, it may not replicate field behavior. The simulated output of reduced 

model (with and without FBO) and full-field model can be dissimilar when new 

strategies are tested during the optimization process. 

• Depending on the influx variation, different sectors of U3-22 may behave 

differently. With the limited test we performed, we can conclude that it is not 

appropriate for performing optimization of well-location in Sector-2.  

B.7 Remarks 
1. To validate the results, we tested different strategies (besides Strategy1 and Strategy2) 

to confirm the problems observed in this report. 

2. FBO does not work with wells drilled on the edge of “flux boundary”. It can strongly 

affect the solution space unless the “flux-sector” definition is differentiated from the 

“sector” definition. 

3. “Flux boundary” cannot be same as “flux sector”. GEM will crash with an error 

message. 

4. The results were tested using CMG 2019.10 and CMG 2020.10.  

5. All simulation files and results are also available for download here. 
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Appendix C : Cluster-based learning and evolution 

algorithm for optimization 
 

Abstract 
 In this work, we present a cluster-based learning and evolution optimizer (CLEO) for 

solving optimization problems. CLEO is a metaheuristic algorithm that uses cluster-based 

manipulation of the problem space during the exploration phase, followed by fine-tuning 

solutions in the exploitation phase using updated knowledge of the problem space. We propose 

two approaches based on this new algorithm: one using only Latin hypercube sampling (LHS) 

and the other using LHS in combination with reservoir engineering insights. In addition to 

ensuring realistic simulation scenarios, we employed intuitive engineering insights to reveal 

how empirical knowledge enhances efficiency. Also, we propose simulating the partial life 

instead of the complete lifespan in the second approach. Technical results obtained at the end 

of this period are processed and used to find the optimized field development plan (FDP). We 

conducted both deterministic and probabilistic studies to assess the performance of the 

proposed approaches for various decision variables, both numerous and restricted. We 

validated the algorithm by optimizing the FDP for a simple numerical simulation model and a 

giant field-scale model, and compared our approaches to four well-established optimizers 

(particle swarm optimization (PSO), differential evolution (DE), designed exploration 

controlled evolution (DECE), and iterative discrete Latin hypercube sampling method 

(IDLHC)) in terms of simulation time and objective function results. Overall, the comparison 

demonstrates the advantages of the newly proposed algorithm.  

 The results indicate that our first approach performs as well as any well-established 

optimizer, notably when working with large scale optimization problems. The second approach 

has slightly lower objective function results than the first one, but it is the most efficient among 

the compared algorithms, as the best FDP can be obtained by covering as little as 40% of the 

field's life. This attribute makes it an excellent alternative for developing oil and gas fields, 

which are fraught with uncertainty and errors in time-consuming simulation models. 
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C.1   Introduction 
 In reservoir engineering, one needs to work on numerous optimization problems with 

multiple decision variables throughout a field’s life. These variables constitute a significant 

part of the FDP, a technical guide that mandates the process of developing the asset. It also has 

a defined objective function to mathematically represent the overall objective of the field 

development. Due to diverse and sensitive decision variables in it, optimizing the objective 

function of an FDP is a challenging task. Thus, manually improving a field’s objective function 

can be a daunting task. This complexity compels geoscientists and engineers to use computer-

assisted optimization algorithms for optimizing an FDP. 

 Optimization algorithms can be classified based on different traits. One way to classify 

them is based on their numerical approach: gradient-based or gradient-free. Gradient-based 

algorithms calculate the gradient of the objective function with respect to decision variables to 

define search direction (Wang et al., 2007; Zandvliet al., 2008; Sarma et al., 2008; Loomba, 

2015). The main difference between all gradient-based algorithms is how they use gradients to 

compute the search direction. Though gradient-based algorithms are less demanding in 

computational time, they cannot differentiate between global and local optimum. Moreover, it 

requires intricate coding to obtain gradients from commercial simulators. 

 In contrast, gradient-free algorithms are easy to use. In theory, these algorithms can 

converge to the global optimum. However, this outcome comes at a cost of considerably more 

simulation runs. Several gradient-free algorithms have been presented over time for optimizing 

an FDP. Genetic algorithm (Yeten et al., 2002; Badru et al., 2003; Emerick et al., 2009), particle 

swarm optimization (Onwunalu and Durlofsky, 2010), differential evolution (Awotunde, 

2014), simulated annealing (Beckner and Song, 1995), and ant colony optimization (Janiga et 

al., 2017) are a few examples of widely used gradient-free optimization algorithms. 

 Asides from choosing an apt optimization algorithm, geoscientists and engineers are 

also challenged by the substantial number of decision variables. Platform constraints, setting 

and control of inflow control valves (ICVs), and various parameters of a well (e.g., type, 
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location, operational settings) are a few examples of decision variables. Each decision variable 

also has its own problem space, ranging from trivial to huge. Due to this additional complexity, 

it is common to optimize variables either sequentially (Gaspar et al., 2016) or simultaneously 

(Forouzanfar and Reynolds, 2014). Although sequential optimization may provide a sub-

optimal result in some of the simple examples (Bellout et al., 2012), it makes the whole process 

simpler compared to the latter approach. 

 Apart from algorithms and problem space, one needs to work with substantial 

uncertainty as well as inaccuracy. Model error is an inherent component of any simulation 

model (Oliver and Alfonzo, 2018; Rammay et al., 2019; Neto et al., 2020; Loomba et al., 2021). 

As a result, seeking a global optimum with such models does not imply a globally optimal 

result in the actual field. Thus, one should strive to improve the quality of models rather than 

spending an enormous time on the optimization process. This axiom furthers the necessity to 

have efficient algorithms to optimize an FDP.  

 In this work, we introduce a metaheuristic optimization algorithm named CLEO, which 

stands for cluster-based learning and evolution optimizer. It explores and exploits the problem 

space of decision variables. But, unlike existing algorithms, cluster-based manipulation is used 

to thoroughly search for the solution. We introduce this derivative-free algorithm to deal with 

a large problem space and multiple decision variables that impede the joint optimization 

process. We compare a simple CLEO-based approach with well-established algorithms to show 

its applicability to simultaneously optimize numerous decision variables. Keeping efficiency 

in mind, we also introduce another approach that saves a tremendous amount of time and 

money. We study the use of technical results obtained from partial simulations in this second 

approach. Using predictive analytics, we provide first-hand evidence of how short-term results 

can be used to develop long-term field objectives. 

 We begin this work by outlining the theory of CLEO. Next, we present the two 

approaches built on the groundwork of CLEO and their pseudocodes. These approaches are 

first applied to a simple synthetic model with vast and limited decision variables. Deterministic 

and probabilistic tests are performed to compare them with well-established algorithms. 

Particle swarm optimization (PSO), differential evolution (DE), iterative discrete Latin 

hypercube sampling method (IDLHC), and designed exploration controlled evolution (DECE) 

have been used for comparison. Fast and simple synthetic models are inept at reflecting the 

true worth of the second approach. Thus, we tested it again on a real and giant-field model to 

demonstrate the adeptness of the second approach based on partial simulations. Finally, we 
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discuss the results and recommendations for future work before concluding all significant 

observations made throughout this work. 

C.2   Objectives 
 The main objectives of this work are: 

1. To present a new gradient-free optimization algorithm, CLEO, and its conceptual 

framework. Unlike existing algorithms, CLEO uses cluster-based manipulation to 

search the problem space efficiently. 

2. To present a simple approach for using CLEO with the Latin hypercube sampling 

(LHS) technique for sampling (CLEO-M1). This approach is presented for two reasons: 

(a) to compare the performance of well-established algorithms that use the LHS method 

and (b) to demonstrate that LHS works sufficiently well. 

3. To present a second approach for using CLEO with predictive analytics to optimize 

more efficiently (CLEO-M2). This approach is presented to work with time-consuming 

simulation models without compromising the objective functions, considering the 

model error and uncertainty. 

4. To present an in-depth discussion and recommendations for improving CLEO-based 

approaches to make them more beneficial than existing algorithms. 

 The next sections describe the concept of the optimization algorithm and introduce two 

approaches built on the foundation of CLEO. 

C.3   Conceptual Framework 
 It can be challenging to perform an exhaustive search due to a vast problem space and 

decision variables. This problem is tackled in distinct ways by existing optimizers. Here, we 

provide a broad picture of our cluster-based learning and evolution optimizer (CLEO) to show 

how it works and deals with the vastness of problem space and variables.  

 CLEO is a metaheuristic algorithm that performs efficient exploration by manipulating 

problem space (Figure C-1). First, we define an objective function (𝑦) and problem space (𝕏) 

for the given problem statement. However, instead of working with the entire problem space 

(𝕏), CLEO groups the solution candidates (𝑥 ∶ 	𝑥 ∈ 𝕏) based on their similarities. Each cluster 

picks a representative solution candidate (𝑥&I%) to create a vector of possible solutions (𝐱). In 

other words, all clusters are represented by 𝐱 and their probability mass function (PMF). 
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Figure C-1 - A simple optimization problem to illustrate the concept of CLEO. 

 
 Employing an appropriate sampling method, CLEO generates a sample only using 𝐱. It 

is a crucial step to deal with large problem space or decision variables. These samples are used 

to obtain the corresponding 𝑦 to evaluate the quality of results. At this stage, CLEO correlates 

𝐱 and 𝑦 to update the PMF of each cluster. Using this updated PMF, CLEO gradually starts 

expanding the existing clusters as well as updating 𝐱. This step assists in exploring the entire 

problem space as we gradually learn more about each cluster and the nested clusters within it. 

New samples are generated using the updated PMF, and the objective functions are re-

evaluated. The process is repeated until one reaches the stopping criteria (maximum simulation 

runs or convergence criterion). Thus, learning and continuously evolving the samples by 

manipulating the clusters lead to exploration of the entire problem space. 

 Figure C-1 presents a minimization problem with problem space defined by real 

numbers (ℝ) between -20 to 20. In this hypothetical example, one can observe that after 

evaluating the initially defined clusters, we obtained a fair enough knowledge of the problem 

space so as only to accept 𝑥 ∶ {	𝑥 ∈ ℝ	and − 10 < 𝑥 < 10}. Also, as we are only working with 

a single decision variable in this example, the number of generated samples equals the number 

of clusters. In summary, CLEO attempts to optimize the objective function by performing a 

quick global search and gradual local refinement. 
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C.4   Methodology 

C.4.1 CLEO-Method 1 (CLEO-M1) 
 As mentioned earlier, sampling technique is the main component of CLEO. While 

many sampling techniques exist, Dige and Diwekar (2018) conducted experiments to identify 

the best sampling technique for different variable sizes. However, we restricted ourselves to 

using the Latin hypercube sampling (LHS) method (McKay et al., 1979 and Iman et al., 1981) 

in CLEO-M1. This was done for two reasons: 

1. A fair comparison with two established optimizers that are based on the LHS method. 

2. Establish that LHS works sufficiently well, even with sizable decision variables. 

 The pseudocode of CLEO-M1 is presented in Algorithm C-1. The problem space for 

each decision variable is clustered based on their similarities. For example, well-controls are 

grouped solely based on their values, and their respective representative values are selected 

using Euclidean distance. The benefit of using only representative values is that it drastically 

reduces the sample size. This is implied from the fact that a larger search space requires a 

commensurately larger sample to evaluate eligible candidates. 

 
Algorithm C-1 - FDP optimization using CLEO-M1 
Input: : Problem statement, simulation models 
Output : Optimized decision variables 
Define : Stop criteria 
begin 

1. Identify 𝕏 
2. Define the initial clusters of 𝕏 using k-means clustering 
3. Select representative eligible candidate (𝒙𝒓𝒆𝒑) for each cluster 
4. 𝒊𝒕𝒆𝒓 ← 0 
5. while Stop criteria is False do  
6.           Use LHS to generate scenarios with the PMF of clusters 
7.           Run the scenarios 
8.           Correlate the objective function with the scenarios 
9.           Update posterior PMF of the clusters using best 𝒃 scenarios 
10.           if Expansion is True then 
11.                Expand the clusters 
12.                Select 𝒙𝒓𝒆𝒑 for each cluster 
13.           else 
14.                Break 
15.           end if 
16.           𝒊𝒕𝒆𝒓 ← 𝒊𝒕𝒆𝒓 + 𝟏 
17. end while 

end 
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 Using these initial representative values, we create and run the first set of simulation 

runs. We calculate their respective objective function. The best ones are used to update the 

PMF of the clusters. One must note that with a larger cluster, in the beginning, CLEO-M1 only 

attempts to identify and explore the search space. As new clusters are defined within the 

existing clusters using the updated PMF, the algorithm gradually starts fine-tuning solutions. 

C.4.2 CLEO-Method 2 (CLEO-M2) 
 Working with the entire problem space can be unrealistic, particularly when dealing 

with time-consuming physics-based simulations. Meanwhile, reservoir engineering insights 

(REIs) are always available to help math-based optimizers. Thus, we use such REIs in CLEO-

M2. 

 One can evaluate the whole problem space based on reservoir engineering concepts. 

This allows the engineers to use REIs in multiple forms to eliminate unfeasible solution 

candidates from the problem space (𝕏). While REIs can be subjective and vary with experience, 

they can be easily quantified and implemented to boost the efficiency of the optimization 

process. Five simple examples of REIs are listed here: 

1. Avoid drilling producers in non-pay zone to boost production.  

2. Select the problem space for producers based on the amount of movable oil in its 

neighborhood. 

3. Avoid scheduling wells at a much later phase to make them economically feasible. 

4. Using a feasible upper and lower bound of tubing head pressure (THP)/bottom-hole 

pressure (BHP) to define the well-operational settings.  

5. Eliminating unfeasible values which may lead to unintentional fracking or lowering the 

reservoir pressure below the bubble-point pressure. 

 Using such REIs, one can define a search space (𝔾:𝔾 ⊆ 𝕏) with eligible candidates 

(𝑔). A smaller search space (𝔾) prepared by eliminating unnecessary candidates helps to 

explore the optimal solutions faster. 

 One can also add empirical constraints to ensure that the generated samples are 

adequate. For example, inter-well distance and unique values can be used during well-

placement optimization. Such constraints ensure that only a feasible reservoir scenario is 

generated using quality-controlled samples, unlike other optimizers. 

 Asides from using REIs and LHS in this method, a different idea is presented in CLEO-

M2 (Algorithm C-2). In this method, instead of using the complete field’s life-cycle period in 

the simulation, we propose using only a partial life for optimization, in which only a part of 
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field’s timeline is run. However, as using the partial life can yield a suboptimal FDP, we also 

use an additional tool to perform predictive analytics. Predictive analytics denotes using 

intermediate results obtained at the end of the partial life to predict the best FDP for the 

complete life.  

 In this work, we used a regression model to perform predictive analytics and mimic the 

objective function of the optimization problem. The regression model can be built using the 

accrued information over the partial life and comparing it with the objective function of the 

optimization problem (considering the complete life). This regression model is used to address 

a multi-objective function (MOF), which needs to be maximized in CLEO-M2. 

 
Algorithm C-2 - FDP optimization using CLEO-M2 
Input: : Problem statement, simulation models 
Output : Optimized decision variables 
Define : Stop criteria 
begin 

1. Identify 𝕏 , partial life and technical results to be used 
2. Using REI, define 𝔾 
3. Define the initial clusters of 𝔾 using k-means clustering 
4. Select 𝒈𝒓𝒆𝒑 for each cluster 
5. Prepare regression model using already simulated models 
6. Define multi-objective function using technical results and regression model 
7. 𝒊𝒕𝒆𝒓 ← 0 
8. while Stop criteria is False do  
9.           Use LHS to generate scenarios with the PMF of clusters 
10.           Run the scenarios 
11.           Correlate the MOF with the scenarios 
12.           Update posterior PMF of the clusters using best 𝒃 scenarios 
13.           if Expansion is True then 
14.                Expand the clusters 
15.                Select 𝒈𝒓𝒆𝒑 for each cluster 
16.           else 
17.                Break 
18.           end if 
19.           𝒊𝒕𝒆𝒓 ← 𝒊𝒕𝒆𝒓 + 𝟏 
20. end while 

end 
 
 For instance, a MOF for a simple black-oil model with only two fluids (oil and water) 

can be built using scalar and 3D grid values at the end of the partial life. Scalar values can 

entail cumulative production of commodities, while grid values can consist of the 3D saturation 

maps. The primary purpose of scalar and grid properties is to maximize the objective function 

until and beyond the history period, respectively. 
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 In summary, CLEO-M2 replaces the complete life-cycle with partial life, and uses the 

MOF instead of the initially defined objective function of the problem. One must note that due 

to this trade-off, CLEO-M2 is not adequate to find globally optimal solution (at least in its 

currently presented form). However, it enjoys the employment of a simple regression model to 

drastically improve the efficiency of the optimization process without having any significant 

impact on the final solution. 

C.5   Application and Results 
 We applied the proposed methods to three different examples. In Cases I and II, we 

applied the methods on a simple synthetic model. In Case III, we used a giant-scale benchmark 

case to establish the applicability and benefit of CLEO-M2 in real applications. 

 

 
Figure C-2 - 3D synthetic Egg model for Case I. 

 
Case I: Deterministic test with numerous decision variables 

 We first applied CLEO-M1 to a simple 3D reservoir model, i.e., the Egg model (Jansen 

et al., 2014). It is a channelized reservoir model with no aquifer and gas cap (see Figure C-2). 

It is composed of 25.2k grid blocks with a dimension of 8 x 8 x 4 m3. Only 18.5k blocks are 

active. The initial reservoir pressure is 40 MPa. Four producers and eight water injectors are 

being used to produce this 4 km deep oil reservoir over 3,600 days. 

 We set the placement and controls of all the 12 wells as the decision variables. A total 

of 372 decision variables were obtained, composed of x and y positions of the 12 wells, and 

their BHPs every 120th day. The optimization problem is to maximize the net present value 

(NPV) using 372 decision variables by identifying an optimal FDP within a vast problem space 

(3,600 for well-positions and 21 for operational settings). The problem statement is defined as 

follows:  
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where 𝒥 is the objective function (i.e., NPV) and depends on output vector (𝐲), which in turn 

is a function of the decision variables (𝐮). Equations C-4 and C-5 provide a detailed 

description to compute 𝒥 over the discrete time series ranging from 1 to 𝐾. We calculate the 

discounted objective function (𝒥5) by multiplying cumulative injection (𝑁�') and production 

(𝑁�% and 𝑁%) of the commodities (oil and water) with their respective net cost (𝑟�,':[ , 𝑟�,%&  

and 𝑟(,%&) for each discrete time-step 𝑘, with a discount rate of 𝑑 for the reference time 𝜏. The 

cost of all injectors (𝑁':[) and producers (𝑁%&) is included by summing their construction costs 

(𝑟) when they are drilled in the reservoir (𝑡=0 in Case I and II). 

 We defined clusters and selected a representative value for each cluster. Figure C-3 

presents the initial centroids defined using the problem space for producers. As we do not use 

REIs in CLEO-M1, same clusters and centroids are used for injectors. 

 

 
Figure C-3 - Initial, first and second phase centroids for selecting producers (blue, red and teal 

squares, respectively). 
 
 Figure C-4 presents the initial centroids of the producers’ BHPs (in MPa). The initial 

centroids of the injectors’ BHPs are 1,000 kPa higher than the ones presented in this figure. 
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Figure C-4 - Initially, 21 operational settings for the producers were divided in 3 clusters (in MPa). 

 
 We used four well-established optimizers to work on this optimization problem. 

Besides CLEO-M1, we optimized using: 

1. Particle swarm optimization, PSO (Kennedy and Eberhart, 1995) with: 

a. Population Size = 50 

b. Inertial weight = 0.7298 

c. Cognition component (C1) = 1.49618 

d. Social component (C2) = 1.49618 

e. Treating discrete values equally probable  

2. Differential evolution, DE (Storn and Price, 1997) with:  

a. Population Size = 50 

b. Crossover rate = 0.8 

c. Scaling factor = 0.5 

d. Treating discrete values equally probable  

3. CMG’s designed exploration & controlled evolution, DECE (Yang et al., 2007) with 

well-defined internal parameters set by CMG. 

4. Iterative discrete Latin hypercube sampling method, IDLHC (Hohendorff Filho et al., 

2016) with: 

a. Population Size = 100 

b. Cut-off = 20% 

c. Treating discrete values equally probable 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure C-5 - Evolution of NPV using (a) PSO, (b) DECE, (c) DE, (d) IDLHC and, (e) CLEO-M1 and 

finally, (f) comparing their evolution of the optimum NPV (stop criterion = 2000 simulations). 
 
 Figure C-5 presents the evolution of the objective function (NPV) for each test. CLEO-

M1 starts the process with a gradual exploration and learning phase (Figure C-5e). However, 

it ends providing the best solution compared to other optimizers. Around the 800th run, DE and 

PSO start to catch up with it to provide better FDPs. Despite this, CLEO continues to constantly 

evolve FDPs to supersede all results by the end of the 1300th run. The fine-tuning step boosts 

this NPV growth (Figure C-5f). 

 Figure C-6 shows the total oil per unit area maps at the time of breakthrough (𝑡ßM), at 

𝑡 = 2520 days (70% of the field's life), and 𝑡 = 3600 days (final time) for the initial FDP and 

optimized FDPs obtained using all optimizers. All optimized FDPs try to maximize sweep 

before the breakthrough by optimizing the wells and their BHPs. One can observe that even 

though waterflooding is critical in the model, early breakthroughs can thwart oil recovery. This 

fact can also be inferred from Figures C-7 and C-8. We show that all the optimized FDPs 

improve the recovery factor by controlling the injection rates, lowering the average reservoir 

pressure, and thus, delaying breakthrough and/or minimizing water production. 
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Figure C-6 - Observed total oil per unit area (m3) using the initial and optimized FDPs. The bubbles 

represent the cumulative oil (green) and water (blue) produced from each well, and their varying 

sizes is proportional to the total amount of production. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
Figure C-7 - % change in (a) recovery factor, (b) cumulative water production, (c) average reservoir 

pressure and, (d) cumulative water injection compared to the initial FDP. 

 
 Figure C-8 shows a few wells and their initial and CLEO-optimized operational 

settings and dependent outputs. Unlike the initial FDP, all wells have their BHPs adjusted to 

improve their productivity. Even though the CLEO-optimized Producer 4 is the worst amongst 

others, it still delays the breakthrough by at least a year. On the other hand, the remaining 

CLEO-optimized producers extend the production plateau and delay the breakthrough by a 

much larger margin. The optimized injectors operate with multiple stops for a much-controlled 

sweep. 
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Figure C-8 - Initial and optimal control settings for Producers 1, 2 and 4 (top, left to right) and 

Injectors 1, 4, 8 (bottom, left to right) as obtained using CLEO-M1. 
  
 Table C-1 summarizes the results obtained in Case I using all the optimizers. CLEO-

M1 provides the best FDP compared to other well-established optimizers in Case I. 

 
Table C-1 - Summary of Results (Case I) when optimized using stop criterion = 2000 simulations. 

 Optimizers 

Parameters PSO DECE DE IDLHC CLEO-M1 

Final NPV (MM USD) 59.1 59.2 59.8 59.4 62.0 

% NPV improvement 8.8% 9.1% 10.1% 9.5% 14.2% 

Oil recovery factor (%) 53.5 53.3 53.7 53.2 54.6 

Cum. water prod. (MMm3) 0.171 0.187 0.194 0.218 0.187 

Cum. water inj. (MMm3) 0.629 0.643 0.653 0.673 0.654 

 

 The process was also repeated until 4000 iterations for the other optimizers to observe 

their best outcomes (see Table C-2). 
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Table C-2 – Testing the repetitiveness of all algorithms in Case I. 

 Optimizers 

Parameters PSO DECE DE IDLHC CLEO-M1 

Minimum NPV (MM USD) 59.2 58.6 60.4 60.0 62.0 

Maximum NPV (MM USD) 60.4 59.5 60.9 61.7 62.1 

Mean NPV (MM USD) 59.9 58.9 60.6 60.8 62.0 

Approximate simulations run 

until convergence 

4000 4000 4000 4000 2000 

 

Case II: Stochastic test with limited decision variables 

 Having established that a CLEO-based optimizer works well as any established 

optimizer in the deterministic study, we take a step further to investigate the performance of 

CLEO-M1 in a stochastic environment (see Figure C-9). We also optimized the problem using 

DE and IDLHC in Case II to benchmark the performance of CLEO-M1 again, while using 

limited decision variables. We used DE and IDLHC as these algorithms provided the second 

and third best results in Case I (with extensive decision variables and problem space). However, 

the main goal of this probabilistic study is to use CLEO-M2 and validate its performance 

against the two optimizers mentioned above. 

 

     

     
Figure C-9 - Ten egg models with completely different channels (bird’s-eye view) to highlight the 

challenge of optimizing a channelized reservoir. A probabilistic optimization becomes a necessity to 

mitigate a biased solution obtained using a deterministic model. 
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 The optimization problem in Case II can be described as following: 

max
𝐮k:Æ

1 𝒥J𝐲):É(𝐮):É)D × 𝑃(𝑗)
tæ*

[;)

	 
 

C-6 

where 𝑷(𝒋) denotes the probability of occurrence of the 𝒋𝒕𝒉 Egg model to compute the expected 

mean of the objective function (𝓙) as described by Equations C-4 and C-5. In other words, our 

aim is to maximize the expected monetary value (EMV) of the ten Egg models in Case II. 

However, as we use predictive analytics in CLEO-M2, we used multiple linear regression 

(MLR) to obtain MOF for the problem statement in Case II: 

 

max
𝐮k:Æéê

1 𝒥æëf Ô𝐲):ÉéêJ𝐮):ÉéêD´ × 𝑃(𝑗)
tæ*

[;)
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𝒥æëf Ô𝐲):ÉéêJ𝐮):ÉéêD´ ≝ 1
𝛃𝐓 ∗ 𝐓𝐑	

(1 + 𝑑)
∆Ö× ØÙ

Ééê
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where 𝒥æëf  is the discounted MOF of each RM calculated at discrete time steps (1…𝐾hí). 𝐓𝐑 

is a vector of normalized technical results obtained by executing simulation over partial life 

and 𝛃𝐓 is the transposed slope coefficients for each technical result. Existing simulations of the 

ten models with the initial FDP were used to estimate a logical set of weights (Table C-3) 

using MLR (Loomba et al. 2022).  

 
Table C-3 - Technical Results and their slope coefficients (Case II). 

Scalar Parameters Slope coefficients Grid Parameters Slope coefficients 

Cumulative oil produced 1 Net flux oil - directional 0.7 

Water oil ratio -0.035 Net water in vicinity -0.6 

 
 We selected weights of scalar parameters based on the proportion of commodities cost 

at the end of partial life. Once these weights were set, the weights for the grid-based parameters 

were estimated. We used Pearson’s correlation coefficient to identify the best weights for the 

grid-based parameters (Figure C-10). 
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Figure C-10 - A 3D plot to estimate the weights of the grid parameters. 
 
 To work with CLEO-M2, we started by reducing the unwanted solution candidates 

using REIs: 

• Placing an injector where one or more blocks along depth have extremely high 

horizontal permeabilities can lead to an inefficient sweep. We observed that the 

maximum horizontal permeability in the seven vertical blocks for each solution 

candidate ranged from 200 to 9900 mD. Based on this fact, we discarded 25% of the 

blocks with extreme values (Figure C-11a). 

• We noted the mean horizontal permeability of the seven layers for the remaining 

solution candidates (160-2400 mD). To mitigate early water breakthrough, we 

eliminated the grid blocks with higher mean horizontal permeabilities (Figure C-11b). 

 As this synthetic channelized model has a flat top and equally saturated blocks across 

the whole field, we did not exclude any solution candidates from the problem space of 

producers. The BHPs of the producers and injectors were maintained lower than the fracture 

pressure. In a more realistic case, it would be pertinent to set a lower bound for BHPs based on 

the bubble point pressure of the reservoir. 
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(a) 

 
(b) 

Figure C-11 - (a) 25% of the active blocks were deleted by assessing the maximum of horizontal 

permeabilities along the depth of each candidate space. (b) An additional 29% of the remaining 

blocks were considered inadequate as they had a higher mean permeability along depth compared to 

the other blocks. 

 
 In CLEO-M2, we set the partial life equal to 40% of the complete life (simulated 1440 

days out of 3600 days). This makes the process highly efficient (as proven in Case III), while 

encompassing all major events as well as contributing a major chunk (>50%) to the field’s 

objective function. Four technical outputs (Table C-3) obtained over three discrete time-steps 

(𝑡 = 720,1080	and	1440) were used to evaluate the MOF presented in Equation C-7. While 

the scalar parameters are self-explanatory, we obtained net flux oil directional by multiplying 

net flux oil in the vicinity of the producers with their Gini coefficient (Loomba et al. 2022). 

Net water in the vicinity was estimated by subtracting connate water volume from gross water 

volume in the neighborhood of the producers.   

 Using Algorithms C-1 and C-2, we proceeded further to optimize the decision 

variables in Case II using CLEO-M1 and CLEO-M2, respectively. Also, we used DE and 

IDLHC to benchmark their performance in this stochastic environment. Figure C-12 presents 

the evolution of the objective function (EMV) for each test. Theoretically, one would not obtain 

the EMV evolution for CLEO-M2 as only partial simulations are run. However, to understand 

the process, we simulated all the simulations over their complete life to get the graph presented 

in Figure C-12c.  

 CLEO-M1 performs as well as the established DE optimizer (Figure C-12e) again. For 

a method that runs all models for only 40% of the complete life, CLEO-M2 also performs well 

in identifying reasonable solutions by the end of the simulation runs. The fine-tuning process 
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is relatively poor in CLEO-M2 compared to CLEO-M1. This shortfall can be amended by 

reforming the MLR model, and discussed in more details in the subsequent section.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 (e) 
Figure C-12 - Evolution of EMV using (a) DE, (b) IDHC, (c) CLEO-M1 and, (d) CLEO-M2 and 

finally, (e) comparing their evolution of the optimum EMV (stop criterion = 1000 simulations). 
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Figure C-13 - Observed total oil per unit area (m3) in the 5th petrophysical realization using the 

initial and optimized well-placements. Well bubbles represent the cumulative oil (green) and water 

(blue). 

Total oil per unit area (m
3) 
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 Figure C-13 shows the oil per unit area (total) maps at different times; 𝑡hí (or 1440 

days), 𝑡 = 2520 days (70% of the field's life), and 𝑡 = 3600 days (final time). Similar to Case 

I, we observe that waterflooding is quite critical in the Egg model. This validates the 

requirement of a higher negative slope coefficient for the net water in the vicinity (Table C-

3). On the other hand, a higher slope coefficient for the net flux oil – directional is difficult to 

justify using these graphs as early breakthroughs completely impede the recovery process. 

However, one can note that changes in oil saturation are minimal over the last 30% of the 

field’s contractual life. 

   

  

  

 
Figure C-14 - (From top left in clockwise direction) % change in recovery factor, cumulative water 

production, cumulative water injection and average reservoir pressure compared to the initial FDP 

(as observed in the 5th petrophysical realization). 

 

 In Figure C-14, we present the impact of optimized FDPs on the field recovery process. 

We observe a dominant impact of well placement in Case II to minimize the water 
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breakthrough and subsequent production, unlike Case I, where well-controls played a 

prominent role. 

 
Table C-4 - Summary of Results (Case II) when optimized using stop criterion = 1000 simulations. 

 Optimizers 

Parameters DE IDLHC CLEO-M1 CLEO-M2 

Final NPV (MM USD) 59.3 56.6 59.2 57.6 

% NPV improvement 16% 11% 16% 13% 

% Field life simulated  100% 100% 100% 40% 

Oil recovery factor (%) 53.6 52.6 53.3 52.0 

Cum. water prod. (MMm3) 0.255 0.264 0.258 0.269 

Cum. water inj. (MMm3) 0.714 0.714 0.714 0.714 

  

 Table C-4 summarizes the results obtained in Case II using all the optimizers. We 

observed the optimizers improving the objective function between 8.8 to 14.2% (Table C-1) 

in Case I. The minimum NPV improvement was just 62% of the best result. In Case II, we 

observe CLEO-M1 and DE performing equally well. CLEO-M2, on the other hand, improves 

the objective function by 13%. This improvement is equivalent to just 80% of the best result 

observed in Case II. However, we derived this result just using 40% of the field's life to make 

the optimization process efficient (Figure C-15). 

 
 

Figure C-15 - Normalized improvement in EMV versus total normalized time consumed (stop 

criterion = 1000 simulations). 

 DE 

ID
LHC 

CLEO-M
1 

CLEO-M
2 
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 The process was also repeated for the optimizers to observe their best outcomes until 

convergence (see Table C-5). 

 
Table C-5 – Testing the repetitiveness of all algorithms in Case II. 

 Optimizers 

Parameters DE IDLHC CLEO-M1 CLEO-M2 

Minimum NPV (MM USD) 58.2 57.7 59.7 57.6 

Maximum NPV (MM USD) 60.6 59.0 60.6 58.2 

Mean NPV (MM USD) 59.8 58.2 60.2 57.8 

Approximate simulations run 

until convergence 
1400 1865 1370 1000 

 

Case III: Application on a giant-field benchmark case 

 In previous cases, we demonstrated the working of both approaches. Yet, it is 

challenging to validate the true benefit of CLEO-M2 using a simple synthetic model. Thus, we 

optimize a time-consuming and giant-scale model in Case III using CLEO-M2. We used a set 

of simulation models representing a giant field under the name of UNISIM-III-2022. Like a 

typical Brazilian pre-salt reservoir, these models are highly heterogeneous with karsts (Correia 

et al., 2020). Composed of a total of 2.3MM blocks, each simulation takes more than 8 hours. 

Consequently, it is impractical to run thousands of simulations using conventional optimization 

algorithms. 

 A topographic map of the field with already-drilled wells is shown in Figure C-16. 

With 33 injectors and 32 producers planned to be drilled across the four sectors of the field, 

each well needs to be drilled at least three blocks apart. Of these 65 wells, 14 wells have already 

been drilled, leaving 51 wells to be optimized. 
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Figure C-16 - A 3D grid-top map of the UNISIM-III-2022 highlighting the field topography (in 

meters) and the 14 wells already drilled. 

 
 A total of 102 decision variables were obtained, composed of discrete x and y locations 

of to-be-drilled wells. Equation C-6 describes the optimization problem. To include the 

challenges of a real field, we use a more comprehensive description of the discounted objective 

function (Loomba et al., 2021): 

 

𝒥J𝐲):É(𝐮):É)D = 1¤ñ
[(𝑅 − 𝑅𝑇 − 𝑆𝑇 − 𝑂𝑃𝐸𝑋) × (1 − 𝑇)] − 𝐶𝐴𝑃𝐸𝑋 − 𝐴𝐶

(1 + 𝑑)
Ö× ØÙ

ò × ∆t5ó
É

5;)

	 
 

C-9 

 
 In Equation C-9, gross revenue, corporate tax rate, royalties and social taxes are 

denoted by 𝑅, 𝑇, 𝑅𝑇 and 𝑆𝑇, respectively. 𝐶𝐴𝑃𝐸𝑋 and 𝑂𝑃𝐸𝑋 stand for capital and operational 

expenditures, respectively. Abandonment costs are denoted by 𝐴𝐶. 

 Alike Case II, we define search space using REIs. We defined the search space for 

producers by measuring the amount of movable oil in the neighbourhood. To simplify its 

estimation, we discretized the three-phase relative permeability diagram (Figure C-17b). One 

can use the oil’s movability around each grid block using this discretized value and 3D 

saturation map to calculate movable oil at a given time-step 𝑘. Next, we sequentially eliminated 

meters 
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the grid blocks with the lowest movable oil within the 9 km2 (±7 blocks), 4.8 km2 (±5 blocks), 

and 1 km2 (±2 blocks) to ensure that the selected grid-blocks are a subset of a productive zone. 

Keeping the efficiency of injectors in mind, we defined their search space the same way as in 

previous examples. Once the search space was defined for both injectors and producers, we 

defined clusters and selected a representative value for each cluster. 

 

  
(a) 

 
(b) 

Figure C-17 - An example of the (a) original and (b) discretized three-phase relative permeability 

diagram (Chapter 4). 
 
 Production data of 1,219 days was used to get history-matched models. To use CLEO-

M2, we set the partial life equal to 39% of the remaining complete life (i.e., additional 3,834 

days were simulated out of the remaining 9,800 days). This was done for two reasons:  

(a) Ensure average simulation time of the partially-simulated models is less than 2.2 hours. 

Consequently, this helped us complete the optimization process in ~40 days using an 

ensemble of ten RMs. From an alternative perspective, we saved ~120 days by not using 

the complete life. 

(b) Emphasize that ~40% of the complete life provides acceptable results for optimizing 

the FDP with a simple MLR model. 

 Six technical results (Table C-6), obtained over three discrete time-steps (every 2nd 

year prior the end of partial life), were used to evaluate the MOF presented in Equation C-7.   

 
Table C-6 - Technical Results and their slope coefficients (Case III). 

Scalar Parameters Slope coefficients Grid Parameters Slope coefficients 

Cumulative oil produced 1 Net flux oil - directional 0.1 

Gas oil ratio -0.05 Net Gas in vicinity -0.15 

Water oil ratio -0.02 Net Water in vicinity -0.05 
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 Figure C-18 shows the initial and optimized wells superimposed over total oil per unit 

area maps at the end of contractual life for an arbitrarily selected RM. Figure C-19 presents 

the initial and optimized recovery factor in individual sectors, while Figure C-20 presents a 

detailed comparison of different field parameters as observed in RM#6. 
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Figure C-18 - Observed oil per unit area (total) in the 6th RM using initial and optimized FDPs at the 

end of the contractual field-life. 

 
 This field has an anticline structure and light oil with high gas content, requiring the 

minimization of gas-oil ratio (GOR) to maximize oil production. Despite this, some injectors 

are placed in relatively higher topographical regions to support the neighboring producers. We 
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observe this behavior as faults play a pivotal role in the field’s production. By 

compartmentalizing the whole field, they influence the flow across the heterogeneous field 

(Figure C-18). Yet, we observe that the optimized FDP lowers water production rate and GOR 

(Figure C-20). 

 

  

  
Figure C-19 - Improved oil recovery as seen in the 6th RM for Sector 1-4 (clockwise direction from 

top left). 

  
 Production rates are a function of average reservoir pressure.  Most of the time, water 

is injected to maintain the reservoir pressure and avoid unnecessary gas production. During the 

initial years of production, we observe the average reservoir pressure being maintained at a 

slightly lower value than the one obtained using the initial FDP. Yet, it is higher than the bubble 

point pressure. This, in turn, helps boost the oil production rates as well as cumulative oil 

production over the initial period. We also observe an improved oil recovery factor in all the 

sectors except Sector 3. This observation unveils that optimizing the whole field sector-by-

sector can be, in some instances, a deterrent for optimizing the whole field. 
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Figure C-20 - Comparing field parameters obtained using the initial and optimized FDP in the 6th 

RM. 

 To summarize, 900 scenarios were tested to obtain the best FDP using ten RMs. Not 

only we saved 120 days using this novel approach, we also improved the EMV of the ensemble 

of the RMs by 9%, as shown in Figure C-21. All the RMs were improved by 3 to16%, with 

nominal values improved by 0.5 to 1.9 Billion USD. 

 
Figure C-21 - Cumulative distribution function with initial and optimized FDP. 
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C.6   Discussion and Recommendations 
 In this section, we discuss its strengths and flaws to render a complete view of the 

subject. We also compare our work with machine learning (ML) based methods and provide 

recommendations to improve the work for practical applications. 

 Cluster definition is one of the first steps in our algorithm. One can use any of the 

myriad of clustering algorithms to group the solution candidates based on their similarities. A 

subtle but vital benefit of using clusters is that it can reduce the dimensionality of the problem. 

For example, one can halve the dimensions by assigning X-Y coordinates of a well to a single 

value. At any point, the minimum number of clusters must be greater than the total number of 

corresponding and dependent decision variables. For instance, it would be reasonable to have 

at least 𝑛 clusters for optimizing the schedule of 𝑛 wells (drilled one at each unique time). 

 Even though we can slightly reduce dimensions as discussed, we still need better 

techniques to deal with huge problem space and decision variables. This is one of the reasons 

why a CLEO-based approach strongly depends on a sampling method. In this context, Dige 

and Diwekar (2018) analyzed the best sampling techniques for large-scale stochastic problems. 

They concluded that LHS-SOBOL is a better technique compared to LHS when dealing with 

variables > 100. In our work, we presented LHS as an integral component of both approaches 

for a fair comparison with DECE and IDLHC. Despite using LHS (Figure C-22), we obtained 

results as good as any well-established optimizer. Thus, one can only infer that using superior 

methods like LHS-SOBOL can help converge faster and make CLEO-based algorithms even 

more efficient. 

  
Figure C-22 - 200 samples generated using LHS. Both figures reveal that multi-dimensional samples 

lose uniformity same as presented by Dige and Diwekar (2018). 
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 On the other hand, simulation models are imperfect (Oliver and Alfonzo, 2018; 

Rammay et al., 2019; Neto et al., 2020; Loomba et al., 2021). As a corollary, a globally optimal 

solution obtained from simulation models is only a locally optimal solution in the real field. 

This fresh outlook should prompt engineers to adopt agile methods that deliver results more 

efficiently than the existing optimization algorithms. We introduced CLEO-M2 under the same 

premise. 

 

 

Figure C-23 - A 3D plot to estimate the weights of the grid parameters using the Spearman’s rank 

correlation coefficient. 

 
 In CLEO-M2, we used a simple proxy function to replicate the objective function. Such 

proxy functions lack exactness due to limited data. Even though including more RMs with 

different FDPs can help improve it, this improvement comes at the cost of more time. We 

presented simple and perceptive parameters in our work to prepare this proxy. Their weights 

were ascribed based on the Pearson correlation coefficient (Figure C-10). On the other hand, 

Spearman rank correlation Figure C-23 serves to provide a rank-based relationship rather than 

a linear one. For this reason, it can provide a more intuitive set of weights. In short, using a 

rank correlation method to quantify ordinal association can improve CLEO-M2 further.  

 CLEO-M2 is not problem-specific. However, as we do not run simulations until the 

end of the field’s life, we must determine a suitable partial time to reap benefits from the 

predictive analytics. If any key flow behavior occurs beyond the selected partial time, it would 

hinder the optimization process. At the same time, if the objective function of the project is 

NPV, latter flow behaviors would only play a trivial role. 
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 Furthermore, running 5-10 best FDPs from the final and, if possible, penultimate 

iterations can help select a superlative FDP. However, an alternate and better recommendation 

would be to run RMs with 3-5 FDPs during each iteration. This process can significantly 

improve the accuracy and reliability of the MLR model to select better FDPs and improve the 

quality of scenarios being tested in the subsequent iterations. 

 It is vital to assess the repeatability of the CLEO-based approaches to understand their 

practical applicability. Increasing the number of samples per iteration or using a more robust 

sampling technique can ensure repetitiveness. Despite this, we generated samples three times 

in the first iteration to evaluate the statistics and final PMF before endorsing the repetitiveness 

of CLEO-based approaches.  

  
 

Figure C-24 - Three different scenarios exhibiting faults and their respective transmissibility values. 

For the same well locations, varying uncertainties compels for better quality and quantity of data to 

improve prediction using data-driven techniques. 

 To summarize, CLEO-M1 is a classic optimization method. We only used physics-

based simulation models to optimize an FDP with CLEO-M1. With increasing computing 

power and the volume of data, data-driven optimization methods have gained prevalence these 

days (Nwachukwu et al., 2018 and Kim et al., 2020). As the name suggests, such methods 

depend on the quality and quantity of data. The quantity of data is significant since changes as 

small as one discrete block can significantly impact the outcome. For example, the presence of 

karsts can drastically impact the flow through subsurface. On the other hand, data quality varies 

with each iteration, as observed in Figures C-5 and C-12. It also depends on the number of 

RMs used to build the feature matrix of the ML-based method. For instance, let us assume that 

three different scenarios exist, as shown in Figure C-24. To get a robust result, one would 

recommend using all scenarios in such a case. Such quintessential situations from real field 

applications, in turn, increase the number of physics-based simulations. Assuming a time-
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consuming model which takes half a day for simulation, it would be ill-advised to run 500 x 3 

simulations to obtain sufficient data for optimizing FDP using data-driven techniques. For the 

same number of simulations, however, CLEO-M2 can provide an excellent result. It enjoys a 

perfect balance by partially simulating the full-physics-based model and integrating it with a 

data-driven technique to predict the nonlinear response of the field.  

 CLEO-based approaches have an equally broad scope of improvement with REIs and 

ML algorithms, respectively. One such recommendation would be to use already finished 

simulations to update ML models to curb the bad scenarios and boost convergence. Lastly, 

from the perspective of field applications, new methods should always encourage ML to work 

with time-consuming simulation models that can capture uncertainties at a finer scale. 

C.7   Conclusions 
 Due to a vast problem space and decision variables, it can be challenging to perform an 

exhaustive search for an optimized field development plan (FDP). In light of this problem, we 

introduced a new optimization algorithm, CLEO (Cluster-based learning and evolution 

optimizer). CLEO divides the problem space into large clusters to deal with its size. With each 

iteration, CLEO keeps learning and updating the probability mass function (PMF). At the same 

time, all the clusters are gradually expanded to fine-tune solutions. A good sampling technique 

is another vital component of this algorithm to select a good sample. To sum it up, such a 

cluster-based manipulation helps to search the problem space deftly. 

 CLEO offers several advantages. It is user-friendly, easy to code and implement, 

straightforward, good at handling numerous decision variables and problem space, adaptable 

and, unique in terms of cluster-based approach for optimization. As it is quite flexible, we 

introduced two approaches using the conceptual framework of CLEO. Subsequently, we used 

both these approaches to optimize FDP under different settings. 

 In Method 1, we presented a simple approach for using CLEO with the Latin hypercube 

sampling (LHS) technique for sampling. We tested this method in simple synthetic models 

(Case I and II). Method 1 outperformed well-established algorithms (DE, PSO, DECE, and 

IDLHC) for huge optimization problems, as seen in Case I. Although we selected LHS for a 

fair comparison against DECE and IDLHC, a better sampling technique can improve its 

performance further. We strongly recommend that one should choose the best sampling method 

depending on the size of decision variables. 

 Model error is an inherent component of any simulation model. Thus, finding a global 

optimum with such models does not necessarily mean globally optimal results in the actual 
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field. For this reason, one should strive to improve models rather than spending an enormous 

time on the optimization process. Hence, CLEO-M2 was introduced to improve efficiency 

without hampering the objective functions. We used reservoir engineering insights (REIs) as 

heuristics to aid the optimization process in addition to simple predictive analytics. We 

presented this method to optimize an FDP using as low as 40% of the complete life of the field 

(Case II and Case III). We used predictive analytics in Method 2 to promote the notion that one 

can even work with intermediate results to identify an FDP on a par with any good algorithm 

(that uses the field's contractual life). 

 Although we tested Method 2 on a simple model to validate its performance, a giant 

field-scale model (Case III) presents the true worth of using Method 2. It made the FDP process 

75% more efficient while improving the objective function by 9%. In terms of real-time, 120 

days were saved using this novel approach in Case III. At the same time, one needs to include 

more practical aspects to make Method 2 more reliable and efficient for field applications. 

 Both the proposed methods have an excellent aptitude for handling huge problem space 

as well as decision variables. Nevertheless, results obtained using Method 2 will always be less 

than or equal to those obtained using Method 1. Improving the regression model of Method 2 

can boost its predictive capability to provide better results. 

 Finally, an optimization algorithm only uses mathematics. However, combining it with 

REIs can reduce the problem space while improving the efficiency of the whole process. For 

example, one would never drill a well in a low permeability zone. Reducing such zones can 

indirectly decrease the number of simulations. However, it is crucial to ensure that correct REIs 

are considered to avoid convergence to suboptimal solutions.  
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Nomenclature 

List of Abbreviations 

3D Three-dimensional space 

𝐴𝐶 Abandonment cost 

𝑏 Best scenarios 

BHP Bottom-hole pressure 

𝐶𝐴𝑃𝐸𝑋 Capital expenditures 

CLEO Cluster-based learning and evolution optimizer 

𝑑 Discount rate 

DE Differential evolution 

DECE Designed exploration controlled evolution  

EMV Expected monetary value 

FDP Field development plan 

𝑔 Eligible candidates 

GOR Gas-oil ratio 

𝔾 Search space 

ICV Inflow control valve 

𝑖𝑡𝑒𝑟 Iteration 

𝒥 Objective function 

𝑘 kth time-step  

LHS Latin hypercube sampling 

M1 / M2 Method 1 / Method 2 

MLR Multiple linear regression 

MOF Multi-objective function  

𝑁':[ Number of injectors 

𝑁% Cumulative oil production 

𝑁%& Number of producers 

𝑁�' Cumulative water injection 

𝑁�% Cumulative water production 

NPV Net present value 

𝑂𝑃𝐸𝑋 Operational expenditure 

𝑃(𝑗) Probability of 𝑗 
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PMF Probability mass function 

PSO Particle swarm optimization 

𝑟' Construction cost of the ith well 

𝑟(,%&  Net oil cost per unit production 

𝑟�,':[  Net water cost per unit injection 

𝑟�,%& Net water cost per unit production 

𝑅 Gross revenue 

ℝ Real numbers 

REI Reservoir engineering insight 

RM Representative model 

𝑅𝑇 Royalty tax 

𝑆𝑇 Social tax 

𝑡 Time 

𝑇 Corporate tax rate 

THP Tubing head pressure 

𝐓𝐑 Vector of technical results 

𝐮 Vector of decision/control variables 

𝑥 Solution candidates 

𝐱 Vector of possible solutions 

𝕏 Problem space 

𝑦 Objective function 

𝐲 Output vector (e.g., production and injection rates of wells) 

𝛃 Slope coefficients matrix 

𝜏 Reference time 

Superscript 

𝐓 Transpose 

Subscript 

BT Breakthrough 

𝑘 Time-step 

𝑀𝑂𝐹 Multi-objective function 

𝑃𝐿 Partial life 
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Appendix D : License Agreements 
 Following license agreements grant permission to publish the published manuscripts in 

this thesis. 

D.1 Bottom-up analysis to unravel potential problems and emphasize the 

impact of individual steps in closed-loop field development 
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D.2 Application of risk-informed closed-loop field development workflow to 

elucidate the evolution of uncertainties 
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D.3 A comparative study to accelerate field development plan optimization 

 


