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ABSTRACT Coding conventions are a means to improve the reliability of software systems, and they

are especially useful to avoid the introduction of known bugs or security flaws. However, coding rules

typically come in the form of text written in natural language, which makes them hard to manage and

to enforce. Following the model-driven engineering principles, in this paper we propose an approach for

the management and enforcement of coding conventions using structured models. We define the Coding

Conventions Specification Language (CCSL), a language to define coding rules as structured specifications,

from which checkers are derived automatically by code generation. To evaluate our approach, we run a

thorough experiment on 8 real open-source projects and 77 coding rules for the Java language, comparing

the violations identified by our checkers with those reported by the PMD static analysis tool. The obtained

results are promising and confirm the feasibility of the approach. The experiment also revealed that textual

coding rules rarely document all the necessary information to write a reliable checker.

INDEX TERMS Coding standards, coding conventions, model-driven engineering, domain-specific

languages, static analysis.

I. INTRODUCTION

C
ODING conventions [1], also termed as coding stan-

dards, are guidelines for software development that

impose constraints on how to write source code in a certain

programming language. Depending on their purpose, coding

conventions may cover different aspects of software devel-

opment, including file organization, indentation, comments,

naming conventions, but also recommend programming prac-

tices and principles, architectural best practices, etc.

Besides recommendations that do not affect the software

behavior (e.g., naming of variables), many rules are intro-

duced to enforce non-functional properties like security or

performance. For example, attackers often exploit known

vulnerabilities introduced by poor usage of programming

constructs or system calls. Similarly, performance bottle-

necks can be avoided by preferring certain programming

constructs instead of others (e.g., see [2]). In general, the

adherence to precise coding rules avoids introducing known

bugs, and it is a fundamental practice for ensuring the relia-

bility of complex software systems.

Coding conventions are not static artifacts; rather, they

evolve over time, following the introduction of new language

features or the discovery of new vulnerabilities. Some coding

conventions may be specific to a single company [3] or

application domain [4], while others may be published as

formal standards. It has been argued that coding conventions,

in their current shape, offer limited benefit because of the

difficulties in actually enforcing and managing them [5].

Like many other artifacts in the development process, coding

conventions mostly come in the form of textual documents

written in natural language, possibly complemented with

code examples. Therefore, they cannot be processed automat-
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ically, and implementing a reliable checker for a new rule is

often a complex development effort in itself. In fact, tasks

like understanding whether a tool can check a certain rule, or

writing a checker for a new rule, must be done manually.

Model-Driven Engineering (MDE) [6] advocates that all

the artifacts in the software development process should

be represented as structured models. These models should

be precise enough to be used for the automated generation

of lower-level artifacts (e.g., source code), thus increasing

automation and reducing the possibility of human mistakes.

This paper proposes an approach to manage and enforce cod-

ing conventions through structured, machine-readable mod-

els. The main benefit of this approach is that checkers for

new or customized coding rules are automatically generated

based on a high-level specification of the rule. To the best of

our knowledge, little work has been done in this direction.

In more details, the contributions of this paper are the fol-

lowing: i) we introduce a MDE-based approach for managing

coding conventions as structured specifications; ii) we define

the Coding Conventions Specification Language (CCSL), a

Domain-Specific Language (DSL) to specify coding rules for

the Java language; iii) we realize the automated generation of

checkers from CCSL specifications; and iv) we evaluate our

approach against rules supported by a popular static analysis

tool.

The initial idea of this work was proposed in [7]; that

work is expanded here with i) a refined version of the CCSL

metamodel, ii) the addition of transformations that actually

generate checkers, and iii) a detailed experimental evalua-

tion, in which we compare the violations identified by our

generated checkers with those identified by an existing static

analysis tool.

The rest of the paper is organized as follows. We introduce

the necessary background and motivation in Section II, fol-

lowed by the the related work in Section III. In Section IV,

we present the overall idea of our proposal. We define our

specification language, the CCSL, in Section V, while usage

examples are given in Section VI. In Section VII, we discuss

the generation of checkers from CCSL specifications, and in

Section VIII we briefly introduce the prototype implementa-

tion. The experimental evaluation is reported in Section IX,

followed by a discussion on the obtained results in Section X.

Finally, Section XI concludes the paper.

II. BACKGROUND AND MOTIVATION
A. CODING CONVENTIONS

As mentioned in [8], the term code conventions or coding

conventions is used as a broad umbrella term for different

kind of rules applying to source code. Other terms like

“coding standard”, “coding rules”, etc., are frequently used

as well. To avoid ambiguity, we give here a brief definition of

these terms for the context of this paper.

A (programming) language L is a subset of all the possible

strings over a certain alphabet A, that is, L ⊆ A∗. We use

the term code portion to refer to any string that is admissible

according to the language, i.e., any ω ∈ L. We use this term

to emphasize that the string may be part of a larger source

code base.

A coding rule is a restriction on the source code that is

not imposed by the grammar of the programming language.

It states the conditions under which a code portion ω must

be considered invalid for the purpose of a software project. A

coding rule represents therefore a restriction on the possible

ways to program software. More formally, a coding rule

specifies a function f : L → {valid, invalid}. Some rules

only have a formatting purpose, e.g., naming of variables or

placement of brackets, and do not alter the behavior of the

software; we call them coding style rules [9]. In this work we

focus instead on rules that affect non-functional properties,

like security or performance. Note that the border is somehow

blurred: in some languages (e.g., Python) formatting can alter

the semantics of the code; similarly, naming of methods and

variables can affect the functioning of libraries and frame-

works1.

A coding convention is a set of coding rules, usually having

a specific purpose, e.g., improving security or performance.

Many coding conventions are created for a single project

or company, e.g., see [10], and they never reach the public

domain. Conversely, we consider a coding convention to be a

coding standard when it is widely recognized in its reference

community, or when it is actually published as a technical

standard (e.g., MISRA C++ [11] or the JPL Java Coding

Standard [12]).

B. LIMITATIONS IN CURRENT PRACTICE

In current practice, a wealth of coding rules exists. For

example, in the study in [8], an interview among 7 software

engineers about the most important practices for software

maintainability resulted in 71 different coding rules, and

different opinions on their priority. Furthermore, many com-

panies define their own coding conventions, which may differ

among different teams or even for individual developers.

Reasons include different programming languages, different

project requirements, or simply a client imposing specific

restrictions.

Even established collections of coding rules like the SEI

CERT Coding Standards [13] are continuously evolving, fol-

lowing changes to the agreed best practices due, for example,

to the discovery of new vulnerabilities or the introduction

of new programming constructs. In fact, even the last minor

update to the Common Weakness Enumeration (CWE)2 in-

volved the addition of 29 new vulnerabilities and 142 major

changes to existing ones3; many of those will lead to the

definition of new or updated coding rules as a prevention.

1https://pmd.github.io/latest/pmd_rules_java_errorprone.html#
junitspelling (Accessed January 18, 2023)

2The CWE is a database of weaknesses of software. However, in most
cases it also provides coding rules that should be followed to avoid introduc-
ing the weakness itself. Actually, many rules in existing coding standards
refer to CWE entries for justification.

3https://cwe.mitre.org/data/reports/diff_reports/v4.6_v4.7.html
(Accessed January 18, 2023)
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Typically, coding rules are specified using the natural

language. In some cases, they are complemented with code

examples to demonstrate the problem being addressed. While

the support of automated tools has improved in recent years

(as discussed later in Section III), many limitations still exist.

First, tool support is fragmented: each static analysis tool

(SAT) checks a different set of rules, often for a specific pro-

gramming language. Except for very well-established coding

standards, verifying all the rules of a certain set requires the

combined application of multiple tools, and rarely all the

rules can be verified automatically at all. Most often, a tool

implements some kind of adaptation of an ambiguous coding

rule described in natural language. Even if the documenta-

tion provides some clarification, inspecting the code of the

checker is sometimes the only reliable information source.

This also means that it is often difficult to understand which

rules a tool can check, and vice versa.

Tool support is especially challenging when customized

rules need to be enforced. The authors of [14] interviewed

20 developers, and 17 of them complained that many tools

are not trivial to configure, even to the point of being “so

hard to configure, they prevent you from doing anything”.

The need for a simplified way to define customized checks

has also been highlighted in [15], as a way to improve

the “crowdsourcing” of source code analysis. The authors

mention that in an attempt to integrate the formerly known

FindBugs (currently SpotBugs) at Google, only a small num-

ber of employees understood how to write new checkers,

because of the kind and depth of knowledge needed for the

task. Furthermore, the code implementing static analysis is

often complex and may itself contain bugs, to the point that

specialized debugging platforms are needed [16].

In this paper we provide a first step towards the specifica-

tion of coding rules in a structured way, enabling the auto-

mated generation of checkers and other artifacts. Differently

from tools that allow adding new rules by explicitly writing

the checker code, we adopt a model-driven approach, by

targeting a more abstract specification of rules and automated

generation of checkers.

III. RELATED WORK
The basic way to verify adherence to coding rules is to

perform manual code review. This is, of course, a costly

process. Over the years, tools to automate the verification

of coding rules have emerged. Typically, they are based on

static code analysis, which consists in analyzing the source

code for common defects and known bug patterns, without

executing the software itself.

One of the first tools targeting the Java language was

FindBugs (now SpotBugs) [17], which was initially created

to detect null pointer defects. It has then evolved with the

support of additional rules, and it features a plugin module

that can be used to write customized detectors. Similarly,

QJ-Pro [18] checks conformance to a predefined set of for-

matting rules, misuses of the Java language, code structure,

etc. Unfortunately, from the available documentation, it has

not been possible to precisely determine which rules are

supported by this tool. The development of QJ-Pro seems to

have stopped several years ago.

Several other tools exist; a survey on static analysis tech-

niques and tools can be found in [19]. While most tools pro-

vide some kind of extension mechanism, adding or modify-

ing rules is typically a complex task, which requires low-level

manipulation of the abstract syntax tree (AST) of the code

under analysis. PMD [20] and CheckStyle [21] are two of the

most configurable tools for Java. In CheckStyle, customized

checks are defined using the APIs provided by the tool, which

basically consists in implementing the visitor pattern on the

AST using Java code4. PMD offers a similar possibility,

while also allowing the definition of customized checkers

through XPath queries [22] on a XML-based representation

of the AST5. XPath is a query language for XML documents;

besides being very verbose, this solution still operates on

the syntax of the Java language, meaning that the developer

has to explicitly take into account every possible syntactical

variation that leads to a violation of the rule.

The SonarQube platform [23] has become increasingly

popular in recent years, mainly due to its superior report-

ing capabilities and integration with build tools. It can be

considered more as an aggregator, providing a standardized

interface to different kinds of plugins. However, extensions

need still to be provided as XPath queries or Java plugins6,

thus requiring considerable development effort.

Starting from similar motivations as ours, the work in

[24] defines a DSL for specifying coding rules for CSS

(Cascading Style Sheets), a simple language for web design.

The work in [25] introduced Naturalize, a tool based on Nat-

ural Language Processing (NLP), which can analyze a code

base to first recognize naming and formatting conventions

adopted in the project and then to identify possible violations.

Naturalize only addresses coding style rules, and there is

no way to specify customized rules that address security,

for example. There is however a growing trend in applying

machine learning for static analysis. For example, the authors

of [3] use algorithms based on decision trees to identify

violations to coding style rules for Java.

The work in [26] benchmarks different SATs with respect

to their ability to identify vulnerabilities. The results high-

lighted that the best solution depends on the deployment

scenario and on the class of vulnerability being targeted, thus

confirming the need for specialized coding rules depending

on the project or application domain. In [27], the same au-

thors show that combining multiple SATs does not necessar-

ily improve the results over using a single tool. The authors

of [28] focus on structuring the relations between rules and

vulnerabilities across different repositories However, they do

not provide a structured specification of the rules themselves.

4https://checkstyle.sourceforge.io/writingchecks.html (Accessed January
18, 2023)

5https://pmd.github.io/pmd/pmd_userdocs_extending_writing_rules_
intro.html (Accessed January 18, 2023)

6https://docs.sonarqube.org/latest/extend/adding-coding-rules/
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Figure 11: Architecture of the Acceleo transformation to

generate OCL queries from CCSL specifications.

vides an implementation of the MOFM2T [45] specification

defined by the OMG.

The Acceleo language is not a traditional object-oriented

language. Instead, it is based on modules that expose tem-

plates. Templates, as the name implies, are sets of statements

used to generate text. Basically, they constitute of static text

interleaved with control-flow instructions and access to the

information contained in the source model (in this case,

CCSL specifications).

Our transformation is organized in five main components

(Figure 11): OCLBuilder, CCSL2ModiscoMapper, Element-

ConditionsBuilder, FilterConditionsBuilder, and Utils.

The main module and entry point of the transformation is

the OCLBuilder module, which receives as input the CCSL

specification for which the OCL query should be generated.

The generation flow can be summarized in three steps, as

follows.

1) Mapping of CCSL Metaclasses
Based on the kind of element used as subject of the CCSL

specification, we identify the constructs that can represent

it in the Java metamodel. Such information is obtained by

accessing the CCSL2ModiscoMapper module, which stores

the possible correspondencies. For example, the CCSL Loop-

Statement is mapped to multiple classes in the Java meta-

model, corresponding to the for, while, or do-while

statements.

With this information, we generate a skeleton of the OCL

query to select all the source code elements that are instances

of the mapped metaclasses, and we then proceed to the next

step.

2) Generation of Subject Conditions
In this stage, we generate all the OCL constraints for the

conditions that must be satisfied by the subject of the rule.

These constraints filter the instances that are selected by the

base OCL skeleton, based on the properties and relations

given in the context of the CCSL specification.

In this step, the module ElementConditionsBuilder works

as a Façade [39], iterating on the elements related to the rule

subject, and delegating the generation of OCL constraints for

each CCSL Element to a specific (sub-)module. The iteration

algorithm is based on a depth-first search on the graph of the

CCSL specification, starting at the element pointed by the

rule subject. OCL conditions are then recursively appended

to the query while navigating the attributes and relations

declared in the CCSL specification received as input.

When an element of the CCSL specification is visited, the

following actions are performed. 1) We mark the element as

visited to avoid infinite loops: if an element has already been

visited, we do not generate its OCL condition again. 2) Using

the let construct [36], we declare a new variable in the OCL

query to hold a reference to the element being visited, in case

we need to refer to it later in the rest of the query being

generated. 3) We generate the conditions for the attributes

of the visited element, and we add them to the OCL query. In

this step, we also define which new nodes should be visited.

In general, this includes all the elements referenced by any

relation of the element, including its container if it exists.

The operations to get all the elements visited are provided

by the Utils module. The same module also takes care of

generating a unique name for each visited element, which is

used for creating the variable in the let block in the second

step.

3) Generation of Filters Conditions
In this stage, the transformation generates all the OCL con-

straints for all the filters that are specified in the CCSL

rule, if any. The constraints are appended to the OCL query

being generated, thus further reducing the instances that are

selected by the final query. Each filter has its own strategy for

generating the corresponding OCL code, since each one has

its specific behavior.

The source code of the transformation is publicly available

in the GitHub repository of the project [38].

C. RUNNING EXAMPLE

Figure 12 illustrates the OCL query generated from the spec-

ification of the AvoidInstanceOfCheckInCatchClause rule of

Figure 6b. According to the algorithm described in the previ-

ous section, the query is generated as follows.

1) Mapping of CCSL Metaclasses. The subject of the rule

is a CCSL InstanceofExpression element. In this case,

it is directly mapped to the MoDisco InstanceofExpres-

sion metaclass (incidentally they have the same name).

The base query skeleton then selects all the instances of

the InstanceofExpression metaclass in the Java model

(line 1).

2) Generation of Subject Conditions for “ie: Instance-

ofExpression”. We now create the OCL conditions to

satisfy the attributes and relations declared within the

subject. We first generate a variable to hold the Instance-

ofExpression instance (instanceOfExp_1, line 2),

and then we navigate the relation objectExpression,

declared in the context, thus visiting the node “ref:

VariableAccess”.

3) Generation of Subject Conditions for “ref: Vari-

ableAccess”. The visited element is referenced as
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1 InstanceofExpression.allInstances()

2 ->select(instanceofExp_1: InstanceofExpression |

3 let varAccess_1: ASTNode =

4 instanceofExp_1.leftOperand->asOrderedSet()

5 ->closure(v: ASTNode |

6 if v.oclIsKindOf(ParenthesizedExpression) then

7 v.oclAsType(ParenthesizedExpression).expression

8 else v endif

9 )->last()

10 in varAccess_1 <> null

11 and varAccess_1.oclIsKindOf(SingleVariableAccess)

12 and let paramVar_1: ASTNode = varAccess_1

13 .oclAsType(SingleVariableAccess).variable

14 in paramVar_1 <> null and paramVar_1

15 .oclIsKindOf(SingleVariableDeclaration)

16 and let catchClause_1: OclAny =

17 paramVar_1.oclContainer()

18 in catchClause_1 <> null

19 and catchClause_1.oclIsKindOf(CatchClause)

20 and catchClause_1.oclAsType(CatchClause)

21 .exception = paramVar_1

22 )

Figure 12: The OCL query generated from the CCSL spec-

ification of the AvoidInstanceofInCatchClause rule (see Fig-

ure 6).

varAccess_1 in the OCL query (line 3). Note that the

query by default skips parentheses (lines 5–9). Hence,

it does not matter if the instanceof expression is

formatted as “ee instanceof Type” or instead,

for example, as “(ee) instanceof Type”.

In general, a CCSL VariableAccess element can be

mapped to the SingleVariableAccess, FieldAccess, and

SuperFieldAccess metaclasses in the Java model. How-

ever, because the VariableAccess is referencing a Pa-

rameterVariable in the CCSL specification (refer to

Figure 6b), we know that only SingleVariableAccess is a

valid match (line 11). We now visit the element “v: Pa-

rameterVariable”, by navigating the variable relation.

4) Generation of Subject Conditions for “v: Parame-

terVariable”. The ParameterVariable CCSL metaclass

is mapped to the SingleVariableDeclaration metaclass

in the Java model. This instance is referenced as

paramVar_1 (lines 12–13). We then create a type

check condition to ensure the element is the expected

one (lines 14–15), and we finally proceed to the next

step by visiting the container of the ParameterVariable

element (lines 16–17).

5) Generation of Subject Conditions for “catch: Catch-

Clause”. This is the last step for the processing of the

AvoidInstanceofInCatchClause specification, as all the

other CCSL elements have been visited already, and the

rule does not contain filters.

The CCSL CatchClause metaclass is directly mapped

to the CatchClause metaclass in the Java model. We

generate a unique variable name to reference the Catch-

Clause object (catchClause_1, line 18), and we also

generate a type check condition, since the oclContainer

returns an OclAny type (line 19). The last condition to

be generated is to ensure that the catchClause_1

Figure 13: Main window of the CCSL Checker.

and the paramVar_1 elements are connected through

the exceptionVariable relation as specified in Figure 6b

(line 20–21).

VIII. PROTOTYPE IMPLEMENTATION
The transformation algorithm described in the previous

section is integrated into our prototype implementation of

CCSL. This section describes its current status and our future

plans; the source code is available on GitHub [38].

A. CCSL CHECKER PROTOTYPE

The current version of the CCSL Checker can verify one or

more CCSL specifications against a Java project opened in

the Eclipse workspace. The tool has been implemented as an

Eclipse plugin because of its Eclipse-based dependencies, in

particular EMF, MoDisco, Eclipse OCL, and Acceleo.

The tool accepts as input the coding rules defined as CCSL

specifications or, alternatively, the generated OCL queries to

be reused. CCSL specifications must be provided in XMI

[41] format, which is the serialization format adopted by

EMF. Figure 13 illustrates the main window of the prototype,

where the user should select: i) the Java project(s) on which

to run the rules; ii) the rules to be executed; and iii) the folder

in which the resulting report will be saved.

When the user presses the “Run CCSL Checker” button,

the prototype executes the following steps: i) it extracts the

Java model of all selected projects; ii) it generates the OCL

queries of selected rules; iii) it executes the OCL queries in

each selected project; and iv) it generates one file for each

rule, containing the identified violations with the file name

and line number where they occurred.

B. TOWARDS A TEXTUAL NOTATION

One of the limitations of the current implementation is that

CCSL rules are stored in XMI format. Although an expert

EMF developer can easily read an XMI specification, the

format is not intended to be directly manipulated by humans.
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That is: i) there is no false positive reported by CCSL

only and no true positive reported by PMD only (G ∪
E) = ∅; and ii) there is at least one true positive reported

by CCSL only or one false positive reported by PMD

only, (A ∪ D) 6= ∅; or alternatively iii) PMD did not

report any violation, and CCSL reported at least one true

positive (final part of the equation).

• PMD+. PMD performed better than the CCSL checker.

A rule is classified in this category when the following

condition is met:
(

(A∪D) = ∅∧(G∪E) 6= ∅
)

∨
(

VCCSL = ∅∧E 6= ∅
)

.

That is: i) there is no false positive reported by PMD

only and there is no true positive reported by CCSL

only, (A ∪ D) = ∅; and ii) there is at least one true

positive reported by PMD only or there is at least one

false positive reported by CCSL only, (G ∪ E) 6= ∅; or

alternatively iii) CCSL did not report any violation and

PMD reported at least one true positive (final part of the

equation).

• Partial. A rule is classified as partial when there is

only a partial overlap between the violations reported

by the two tools and, therefore, no clear winner. More

precisely, when CCSL reported at least one true posi-

tive that PMD did not report and vice versa, and both

reported at least one violation. That is:
(

VCCSL 6= ∅ ∧A 6= ∅
)

∧
(

VPMD 6= ∅ ∧ E 6= ∅
)

.

• NoViolations. Neither CCSL nor PMD did report any

violation for the rule, that is:

VCCSL = ∅ ∧ VPMD = ∅.

• NoSpecification. Independently of the violations re-

ported by PMD, we classify a rule in this category when

we could not provide a CCSL specification for it.

3) Aggregate Classification of Rules
The above classification is established per project, i.e., a

rule can be classified in different categories depending on

the project under analysis. Actually, some rules have been

classified as either CCSL+ or PMD+ depending on the project

(see the appendix). To obtain an aggregate view of the

performance of our CCSL Checker with respect to PMD, we

assign a final classification to each rule, based on the results

obtained on the different projects.

Excluding the NoSpecification class, which is independend

from the project, we establish the following aggregate classi-

fication for coding rules:

• Same: For all the analyzed projects the rule has been

classified as either Exact or NoViolations.

• Better: For at least one of the analyzed projects the

rule has been classified as CCSL+, and as Exact or

NoViolations for all the other projects.

• Worse: For at least one of the analyzed projects the

rule has been classified as PMD+, and as Exact or

NoViolations for all the other projects.

• Inconclusive: All the remaining cases. When a rule is

classified as inconclusive it means in some projects

CCSL found violations that were not identified by PMD,

and vice versa.

B. EXPERIMENT SETUP

As mentioned earlier, we based our analysis on version 6.21.0

of PMD, which was the latest one at the time we started our

experiments. We selected a subset of the Java rules in the

PMD documentation; in particular all those in the categories

Error Prone, Performance, and Multithreading, yielding a

total of 139 rules. We selected these three set of rules because

they address different characteristics of software, namely

reliability, performance, and parallelism.

Then, we selected 8 real Java projects publicly available

on GitHub, on which the rules shall be verified. The selected

projects are listed in Table 2, including their names (linked

to their GitHub repository), the version that we analyzed,

and a short description. Three of those projects (WebGoat,

TeaStore, and WSVDBench) were selected for a preliminary

evaluation of this work, and then retained in the final exper-

iments. They are mock implementations used for testing and

benchmarking of web applications. The remaining 5 projects

have been selected among the most “starred” projects on

GitHub with a size less than 30MB, among the categories

Cryptography, Security, and Artificial Intelligence. The size

limit of 30MB has been applied to obtain an experiment of

manageable size.

We first executed PMD on the 8 projects, configured to

verify the previously selected rules, and recorded the results.

Based on this, we excluded from the rest of the experiment all

the rules for which no violation was reported in any of the 8

projects. This reduces the number of analyzed rules in a way

fair to the experiment. Note that we only removed rules for

which PMD did not find any violation, thus essentially re-

moving rules that were going to be classified as NoViolations

or CCSL+. After this filtering, we retained 77 rules.

For each of these rules, we created a specification using

CCSL, generated the OCL-based checker, and then executed

it on the 8 projects. When we could not provide a CCSL spec-

ification of the rule, we classified it as NoSpecification. Then,

we compared the results obtained with PMD and with CCSL,

according to the methodology discussed in Section IX-A.

We note that, in this experiment, we did not know the

ground truth; that is, we did not know a priori if a certain Java

file contained violations of a given rule, nor where those vio-

lations were located. However, when the two tools produced

different results, we needed to know if those differences were

true positives or not, to differentiate between the CCSL+,

PMD+, and Partial classes. In this case, we proceeded to a

manual investigation of the reported violations, to understand

if they had to be classified as true positive or false positive.

This was not necessary for rules classified as Exact, NoSpec-

ification, or NoViolations.
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Table 2: Software projects selected for the evaluation.

GitHub Repository Commit Description

cryptomator/cryptomator a6e680e Multi-platform transparent client-side encryption of files hosted in the cloud.
libgdx/gdx-ai 1e4973c Artificial Intelligence framework for games based on libGDX.
microsoft/malmo e79632b Platform for Artificial Intelligence experimentation and research built on top of Minecraft.
DescartesResearch/TeaStore 5cab414 A micro-service reference and test application to be used in benchmarks and tests.
google/tink bbc2f36 Multi-language, cross-platform, open source library that provides cryptographic APIs.
WebGoat/WebGoat edd6b7d A deliberately insecure web application maintained by OWASP designed to teach web application security

lessons.
nmsa/wsvd-bench 95f08bb Services that serve as workload of a benchmark for tools that detect SQL injection vulnerabilities in web

services.
Netflix/zuul b9f517c Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.

Better (14.3%)

11

Same (45.5%)

35

Inconclusive (14.3%)

11

Worse (18.2%)

14
NoSpec. (7.8%)

6

Figure 16: Aggregate classification of rules.

C. RESULTS

During the experiment, we were able to specify and generate

checkers for 71 of the 77 selected rules (92.2%). The gener-

ated checkers have been executed on the 8 selected projects

and the results compared with the output produced by PMD,

as previously discussed. A summary of the obtained results is

shown in Figure 15; for each rule, the figure shows the num-

ber of projects that resulted in a certain rule classification.

For example, the rule AvoidLiteralsInIfCondition has been

classified as Exact on 3 projects, as CCSL+ on 2 projects,

and as PMD+ on the 2 remaining projects. Note that for

many rules alerts were raised only on a subset of the selected

projects.

The data used to draw the figure is available in the Ap-

pendix. The source of such data (raw tools output) is available

on a separate GitHub repository of the experiment [50],

together with OCL queries generated from CCSL specifica-

tions.

Table 3 shows the same data, in this case organized per

project. As before, note that a project typically contains

violations only for a small subset of the analyzed rules.

For each project, rules that did not generate violations are

reported separately in the table (NoViolations column), to

focus the comparison of the two tools on relevant rules.

In all the projects, for the majority of relevant rules we

obtained equal or better results than PMD. In fact, most rules

were classified as Exact (47% on average) or CCSL+ (14.4%

on average). On the other hand, there are also cases for which

we could not specify a rule using CCSL (6 rules out of

77), and cases where the PMD implementation has achieved

better results than our approach (17.6% on average). For a

small set of rules (1.5% on average) the two tools reported

different violations.

While the results per project give an indication of the

performance of the CCSL Checker in a real setting, they

do not provide a clear view of the general behavior of the

generated checkers. For example, a rule could behave as

CCSL+ only in one project, or the rules that are classified as

Exact across different projects could, in fact, be always the

same ones.

As explained in Section IX-A, the final classification step

of our methodology classifies rules according to the behavior

of the checkers across all the different project. Figure 16

shows the final aggregate results, in which each rule is

classified as Better, Same, Inconclusive, Worse, or NoSpecifi-

cation according the results obtained across all the analyzed

projects.

The results show that more than half of the rules are

classified as Same (45.5%) or Better (14.3%), meaning that

almost 60% of the checkers generated from CCSL specifi-

cations performed equal or better than the corresponding

PMD implementation. We registered only 14 rules (18.2%)

in which the PMD tool consistently performed better across

the projects, and 6 rules (7.8%) that we could not specify

with CCSL. The remaining 11 rules (14.3%) are classified

as Inconclusive, meaning that the results were not consistent

across the projects. Note that this also means that, for all

these 11 rules, the generated CCSL Checkers found more

true positives or less false positives than PMD, at least in one

project. Detailed results are available in the Appendix.

D. THREATS TO VALIDITY

The experiment we performed is subject to some threats to

validity, discussed in the following, together with the adopted

mitigations.

As mentioned before, we do not know the ground truth for

the analyzed projects. When the results between the two tools

were different, we had to analyze whether the reported alerts

were true positives or not. This is somehow subjective due to

the ambiguity in the textual description of rules. We mitigated

this threat by using the PMD documentation as a reference

and, when needed, by analyzing the implementation of the

PMD checker. The two tasks of i) specifying the selected

rules with CCSL and ii) analyzing the reported violations;

were performed by two different authors separately. Doubts
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Table 3: Results of the experimental comparison between our CCSL Checker and PMD. Classification of rules, organized per

project. Please see Section IX-A for the adopted methodology.

RULES EXCLUDING NoViolations
NoViol.

PROJECT CCSL+ PMD+ Exact Partial NoSpec. TOTAL

Cryptomator 4 [13%] 7 [23%] 11 [37%] 2 [7%] 6 [20%] 30 47
gdxAI 3 [13%] 6 [25%] 8 [33%] 1 [4%] 6 [25%] 24 53
Malmö 4 [10%] 9 [22%] 20 [49%] 2 [5%] 6 [15%] 41 36
TeaStore 7 [18%] 7 [18%] 20 [50%] 0 6 [15%] 40 37
Tink 8 [22%] 8 [22%] 14 [38%] 1 [3%] 6 [16%] 37 40
WebGoat 10 [21%] 5 [11%] 26 [55%] 0 6 [13%] 47 30
WSVDBench 1 [4%] 1 [4%] 17 [63%] 2 [7%] 6 [22%] 27 50
Zuul 7 [14%] 8 [16%] 26 [51%] 4 [8%] 6 [12%] 51 26

in the classification of rules were solved by discussion among

all three authors.

For the same reason (lack of ground truth), the quality of

our checkers was not analyzed in absolute terms, but only in

comparison with PMD. This is of course a threat in case PMD

results are of poor quality. However, PMD is one of the most

popular SATs for Java, it has been under active development

for more than 20 years, and it is used by hundreds of real

projects. Furthermore, we applied the tools on real projects

from GitHub; obtaining comparable results in such a real

setting confirms the feasibility of the proposed approach.

In the experiment we only analyzed a limited set of rules.

The analysis of results is extremely time consuming, espe-

cially when violation alerts differ between the tools. Typ-

ically, this involves analyzing corner cases, understanding

why the two tools are reporting different results, what the

rule actually prescribes for that situation, and if there are

ambiguities in the rule description. We mitigated this threat

by selecting multiple projects, so that different rules were ac-

tivated in each of them and in different situations. Also, note

that only a few rules present violations in a typical project,

thus reducing the practical benefit of including additional

rules to the experiment.

X. DISCUSSION
The checkers generated from CCSL specifications showed

an accuracy comparable to that of the popular PMD tool.

The results demonstrate that the proposed MDE approach is

feasible and that it can generate checkers of good quality.

We note that our transformations are still part of a prototype,

while on the other hand the PMD implementation of rules

has been refined through more than 20 years of open source

development.

The main takeaways from this experiment reinforce our

initial motivation for this work. Coding rules described in

natural language seldom describe all the conditions that

should be taken into account, so SAT developers need to be

aware of possible special cases, which often lead to mistakes

and omissions. In the analysis of mismatching reports, we

encountered several cases caused by corner cases not consid-

ered in the rule description.

For example, rule NullAssignment says that one should not

directly assign null to a variable, except in its initialization.

In the implementation of this rule, PMD ignores variables

marked as final, because their value cannot change after

initialization. However, it also ignores arrays that are marked

as final. In this case, the reference to the array itself cannot

be changed, but the references to the individual elements of

the array can still be set to null. This is what causes the

rule to be classified as CCSL+ for project gdxAI. Note that

ignoring variables marked as final was not mentioned in the

rule documentation.

Similarly, the rule ConstructorCallsOverridableMethod

mandates that a constructor should not invoke methods that

can be overridden, because it “poses a risk of invoking

methods on an incompletely constructed object”. In the Tink

project, the CCSL Checker reported a violation in the con-

structor of an abstract class; this violation was not reported

by PMD. The constructor could not be invoked because the

class is abstract; however, subclasses could call the construc-

tor with the super keyword. Still, they would also be in

control of the overridden method, thus potentially reducing

the risk of introducing defects. We decided to consider this

case a violation, because nothing about abstract classes was

mentioned in the rule description.

Finally, it should be mentioned that some of the violations

that were missed by our CCSL Checkers are due to a lim-

itation of the underlying MoDisco tool that we use for the

extraction of the model of the source code (see Figure 10). In

fact, MoDisco is not aware of some constructs introduced in

recent Java versions, and it simply discards such information

from the model. In particular, this affected some violations

that appeared inside lambda expressions [51]. Possibly, some

of the rules classified as Worse (due to PMD+ occurrences)

would turn into Same if the model of the source code could

be extracted correctly. In future versions of our tool we

will investigate alternatives to MoDisco for the extraction of

a model of source code. Projects like MLIR (Multi-Level

Intermediate Representation) [52] look promising for this

purpose.

XI. CONCLUSION
This paper proposed an approach for the management and

enforcement of coding conventions based on model-driven

engineering techniques. To the best of our knowledge, there

is little work in such direction. We defined a language, CCSL,
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that is used to specify coding rules as structured models, from

which checkers are derived by automated transformations.

One of the benefits of this approach is that checkers can be

automatically generated from any rule that can be specified

using our language.

We analyzed the effectiveness of the approach in a thor-

ough experiment in which we applied 77 coding rules on

8 real open source projects written in Java. The experiment

compared the violations reported by checkers generated from

CCSL with those reported by the popular PMD tool. Overall,

the results are promising and show the feasibility of the

approach. In about 74% of the analyzed rules (57 out of 77),

the checkers generated from CCSL specifications performed

comparably or even better than PMD. Note that for many

rules, the PMD checker consists of imperative code written

in Java, and no high-level specification is available.

As future work, we plan to provide a simple textual nota-

tion to define CCSL specifications and integrate the checkers

in the Eclipse IDE with inline notification of violations, thus

providing a complete environment to developers. Further-

more, we plan to investigate the adaptation of the approach

to other programming languages.
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APPENDIX A

Cryptomator gdxAI Malmö TeaStore Tink WebGoat WSVDBench Zuul Rule Classification

Error Prone

AssignmentInOperand Exact PMD+ PMD+ Exact PMD+ Exact Exact Exact Worse

AvoidBranchingStatementAsLastInLoop ∅ Exact ∅ ∅ ∅ Exact ∅ Exact Same

AvoidCatchingNPE ∅ ∅ ∅ Exact PMD+ ∅ ∅ ∅ Worse

AvoidCatchingThrowable ∅ Exact ∅ ∅ Exact ∅ ∅ PMD+ Worse

AvoidDecimalLiteralsInBigDecimalConstructor ∅ ∅ CCSL+ ∅ ∅ ∅ ∅ ∅ Better

AvoidDuplicateLiterals PMD+ PMD+ PMD+ PMD+ PMD+ PMD+ ∅ PMD+ Worse

AvoidFieldNameMatchingMethodName Exact Exact Exact Exact Exact Exact ∅ Exact Same

AvoidFieldNameMatchingTypeName Exact ∅ ∅ Exact ∅ Exact ∅ ∅ Same

AvoidInstanceofChecksInCatchClause ∅ ∅ ∅ Exact ∅ ∅ Exact ∅ Same

AvoidLiteralsInIfCondition PMD+ CCSL+ Exact PMD+ Exact CCSL+ Exact CCSL+ Inconclusive

BeanMembersShouldSerialize —- —- —- —- —- —- —- —- —-

CheckSkipResult ∅ ∅ ∅ ∅ Exact ∅ ∅ ∅ Same

CloneMethodMustBePublic ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

CloneMethodMustImplementCloneable ∅ ∅ ∅ ∅ ∅ ∅ ∅ CCSL+ Better

CloneMethodReturnTypeMustMatchClassName ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

CloneThrowsCloneNotSupportedException ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

CloseResource —- —- —- —- —- —- —- —- —-

CompareObjectsWithEquals ∅ PMD+ PMD+ PMD+ Exact PMD+ ∅ Partial Inconclusive

ConstructorCallsOverridableMethod Partial Partial Partial CCSL+ CCSL+ Exact ∅ Partial Inconclusive

DataflowAnomalyAnalysis —- —- —- —- —- —- —- —- —-

DetachedTestCase ∅ ∅ ∅ Exact ∅ Exact ∅ ∅ Same

DoNotCallGarbageCollectionExplicitly ∅ ∅ Exact ∅ ∅ ∅ ∅ ∅ Same

DoNotCallSystemExit Exact ∅ Exact ∅ Exact Exact ∅ Exact Same

DoNotHardCodeSDCard ∅ ∅ ∅ ∅ Exact ∅ ∅ ∅ Same

EmptyCatchBlock Exact ∅ Exact CCSL+ CCSL+ Exact CCSL+ Exact Better

EmptyFinallyBlock ∅ ∅ ∅ ∅ ∅ Exact Exact ∅ Same

EmptyIfStmt ∅ Exact Exact ∅ ∅ Exact Exact Exact Same

EmptyStatementNotInLoop ∅ ∅ PMD+ ∅ PMD+ Exact ∅ ∅ Worse

EqualsNull ∅ ∅ ∅ Exact ∅ ∅ ∅ ∅ Same

ImportFromSamePackage Exact Exact ∅ Exact ∅ Exact Exact ∅ Same

InvalidLogMessageFormat —- —- —- —- —- —- —- —- —-

JUnitSpelling PMD+ ∅ ∅ CCSL+ ∅ CCSL+ ∅ CCSL+ Inconclusive

MissingBreakInSwitch ∅ ∅ Exact ∅ ∅ ∅ ∅ Exact Same

MissingSerialVersionUID PMD+ ∅ ∅ ∅ ∅ Exact Exact PMD+ Worse

MissingStaticMethodInNonInstantiatableClass ∅ ∅ ∅ ∅ PMD+ Exact ∅ ∅ Worse

MoreThanOneLogger ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

NonCaseLabelInSwitchStatement ∅ CCSL+ ∅ ∅ ∅ ∅ ∅ ∅ Better

NullAssignment PMD+ CCSL+ PMD+ Exact Partial ∅ Exact Partial Inconclusive

OverrideBothEqualsAndHashcode ∅ ∅ ∅ Exact ∅ ∅ ∅ Exact Same

ProperCloneImplementation ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

ReturnEmptyArrayRatherThanNull CCSL+ ∅ Exact ∅ CCSL+ Exact ∅ CCSL+ Better

ReturnFromFinallyBlock ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

SimpleDateFormatNeedsLocale ∅ ∅ ∅ ∅ ∅ Exact Exact ∅ Same

TestClassWithoutTestCases ∅ ∅ ∅ CCSL+ ∅ CCSL+ ∅ CCSL+ Better

UnnecessaryBooleanAssertion ∅ ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

UnnecessaryCaseChange ∅ ∅ ∅ ∅ Exact Exact ∅ ∅ Same

UnusedNullCheckInEquals ∅ ∅ PMD+ ∅ ∅ ∅ ∅ ∅ Worse

UseEqualsToCompareStrings ∅ ∅ Exact ∅ ∅ Exact ∅ ∅ Same

UseLocaleWithCaseConversions Exact ∅ Exact Exact Exact Exact Exact Exact Same

UseProperClassLoader ∅ ∅ Exact ∅ ∅ Exact ∅ Exact Same

Multithreading

AvoidSynchronizedAtMethodLevel Exact ∅ ∅ Exact Exact ∅ Exact Exact Same

AvoidUsingVolatile Exact ∅ ∅ ∅ ∅ ∅ ∅ Exact Same

DoNotUseThreads Partial ∅ CCSL+ CCSL+ CCSL+ CCSL+ ∅ Partial Inconclusive

NonThreadSafeSingleton —- —- —- —- —- —- —- —- —-

UnsynchronizedStaticFormatter ∅ ∅ ∅ Exact ∅ ∅ Exact ∅ Same

UseConcurrentHashMap PMD+ ∅ PMD+ CCSL+ PMD+ CCSL+ ∅ PMD+ Inconclusive

Performance

AddEmptyString ∅ ∅ Exact PMD+ Exact PMD+ Exact Exact Worse

AppendCharacterWithChar ∅ ∅ Exact ∅ CCSL+ Exact Exact Exact Better

AvoidArrayLoops —- —- —- —- —- —- —- —- —-

AvoidFileStream ∅ ∅ Exact PMD+ Exact Exact ∅ Exact Worse

AvoidInstantiatingObjectsInLoops Exact PMD+ PMD+ PMD+ PMD+ Exact Exact PMD+ Worse

AvoidUsingShortType ∅ Exact ∅ ∅ ∅ ∅ ∅ Exact Same

BigIntegerInstantiation ∅ ∅ Exact ∅ ∅ ∅ ∅ ∅ Same

ConsecutiveAppendsShouldReuse CCSL+ ∅ Exact Exact CCSL+ CCSL+ Partial CCSL+ Inconclusive

ConsecutiveLiteralAppends CCSL+ ∅ Exact ∅ CCSL+ PMD+ PMD+ Exact Inconclusive

InefficientStringBuffering ∅ ∅ ∅ Exact ∅ CCSL+ ∅ ∅ Better

InsufficientStringBufferDeclaration CCSL+ ∅ Partial PMD+ CCSL+ PMD+ Partial CCSL+ Inconclusive

IntegerInstantiation ∅ ∅ Exact ∅ ∅ ∅ ∅ ∅ Same

LongInstantiation ∅ PMD+ ∅ ∅ ∅ ∅ Exact ∅ Worse

RedundantFieldInitializer PMD+ PMD+ PMD+ Exact PMD+ Exact ∅ PMD+ Worse

SimplifyStartsWith ∅ ∅ ∅ Exact ∅ Exact ∅ Exact Same

StringInstantiation ∅ ∅ Exact ∅ ∅ CCSL+ ∅ ∅ Better

StringToString ∅ ∅ ∅ ∅ ∅ CCSL+ ∅ ∅ Better

TooFewBranchesForASwitchStatement Exact Exact ∅ Exact ∅ ∅ ∅ ∅ Same

UseIndexOfChar ∅ ∅ CCSL+ Exact Exact CCSL+ ∅ Exact Better

UselessStringValueOf ∅ ∅ Exact Exact ∅ ∅ ∅ PMD+ Worse

UseStringBufferForStringAppends ∅ Exact CCSL+ CCSL+ Exact Exact Exact PMD+ Inconclusive

—-: NoSpecification ∅: NoViolations
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