oBL

SISTEMA DE BIBLIOTECAS DA UNICAMP

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP
REPOSITORIO DA PRODUGAO CIENTIFICA E INTELECTUAL DA UNICAMP

Versao do arquivo anexado / Version of attached file:

Versao do Editor / Published Version

Mais informacoes no site da editora / Further information on publisher's website:
https://ieeexplore.ieee.org/document/10068210/

DOI: https://doi.org/10.1109/access.2023.3256886

Direitos autorais / Publisher's copyright statement:
©2023 by Institute of Electrical and Electronics Engineers. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAGCAO

Cidade Universitaria Zeferino Vaz Barao Geraldo
CEP 13083-970 — Campinas SP
Fone: (19) 3521-6493
http://www.repositorio.unicamp.br

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886 l E E E A

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.0092316

A Model-Driven Approach for the
Management and Enforcement of Coding
Conventions

ELDER RODRIGUES JR.!, JOSE D’ABRUZZO PEREIRA?, (Student Member, IEEE), and
LEONARDO MONTECCHI'?,

nstitute of Computing, University of Campinas, Campinas, SP, 13083-85, Brazil
2cIsuc, Department of Informatics Engineering, University of Coimbra, Coimbra, 3030-290, Portugal
3Department of Computer Science, Norwegian University of Science and Technology, Trondheim, 7034, Norway

Corresponding author: Leonardo Montecchi (e-mail: leonardo.montecchi @ntnu.no).
This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No 823788 “ADVANCE”. This work has received funding from the Sdo Paulo Research Foundation

(FAPESP) with grants #2018/11129-8 and #2019/06799-7. This work was partially funded by the Portuguese “Fundagéo para Ciéncia e
Tecnologia” (FCT) grant 2020.04503.BD.

ABSTRACT Coding conventions are a means to improve the reliability of software systems, and they
are especially useful to avoid the introduction of known bugs or security flaws. However, coding rules
typically come in the form of text written in natural language, which makes them hard to manage and
to enforce. Following the model-driven engineering principles, in this paper we propose an approach for
the management and enforcement of coding conventions using structured models. We define the Coding
Conventions Specification Language (CCSL), a language to define coding rules as structured specifications,
from which checkers are derived automatically by code generation. To evaluate our approach, we run a
thorough experiment on 8 real open-source projects and 77 coding rules for the Java language, comparing
the violations identified by our checkers with those reported by the PMD static analysis tool. The obtained
results are promising and confirm the feasibility of the approach. The experiment also revealed that textual
coding rules rarely document all the necessary information to write a reliable checker.

INDEX TERMS Coding standards, coding conventions, model-driven engineering, domain-specific
languages, static analysis.

. INTRODUCTION constructs instead of others (e.g., see [2]). In general, the
adherence to precise coding rules avoids introducing known
bugs, and it is a fundamental practice for ensuring the relia-

bility of complex software systems.

ODING conventions [1], also termed as coding stan-

dards, are guidelines for software development that
impose constraints on how to write source code in a certain
programming language. Depending on their purpose, coding
conventions may cover different aspects of software devel-
opment, including file organization, indentation, comments,
naming conventions, but also recommend programming prac-
tices and principles, architectural best practices, etc.

Coding conventions are not static artifacts; rather, they
evolve over time, following the introduction of new language
features or the discovery of new vulnerabilities. Some coding
conventions may be specific to a single company [3] or
application domain [4], while others may be published as

Besides recommendations that do not affect the software
behavior (e.g., naming of variables), many rules are intro-
duced to enforce non-functional properties like security or
performance. For example, attackers often exploit known
vulnerabilities introduced by poor usage of programming
constructs or system calls. Similarly, performance bottle-
necks can be avoided by preferring certain programming

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

formal standards. It has been argued that coding conventions,
in their current shape, offer limited benefit because of the
difficulties in actually enforcing and managing them [5].
Like many other artifacts in the development process, coding
conventions mostly come in the form of textual documents
written in natural language, possibly complemented with
code examples. Therefore, they cannot be processed automat-

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

ically, and implementing a reliable checker for a new rule is
often a complex development effort in itself. In fact, tasks
like understanding whether a tool can check a certain rule, or
writing a checker for a new rule, must be done manually.

Model-Driven Engineering (MDE) [6] advocates that all
the artifacts in the software development process should
be represented as structured models. These models should
be precise enough to be used for the automated generation
of lower-level artifacts (e.g., source code), thus increasing
automation and reducing the possibility of human mistakes.
This paper proposes an approach to manage and enforce cod-
ing conventions through structured, machine-readable mod-
els. The main benefit of this approach is that checkers for
new or customized coding rules are automatically generated
based on a high-level specification of the rule. To the best of
our knowledge, little work has been done in this direction.

In more details, the contributions of this paper are the fol-
lowing: 1) we introduce a MDE-based approach for managing
coding conventions as structured specifications; ii) we define
the Coding Conventions Specification Language (CCSL), a
Domain-Specific Language (DSL) to specify coding rules for
the Java language; iii) we realize the automated generation of
checkers from CCSL specifications; and iv) we evaluate our
approach against rules supported by a popular static analysis
tool.

The initial idea of this work was proposed in [7]; that
work is expanded here with 1) a refined version of the CCSL
metamodel, ii) the addition of transformations that actually
generate checkers, and iii) a detailed experimental evalua-
tion, in which we compare the violations identified by our
generated checkers with those identified by an existing static
analysis tool.

The rest of the paper is organized as follows. We introduce
the necessary background and motivation in Section II, fol-
lowed by the the related work in Section III. In Section IV,
we present the overall idea of our proposal. We define our
specification language, the CCSL, in Section V, while usage
examples are given in Section VI. In Section VII, we discuss
the generation of checkers from CCSL specifications, and in
Section VIII we briefly introduce the prototype implementa-
tion. The experimental evaluation is reported in Section IX,
followed by a discussion on the obtained results in Section X.
Finally, Section XI concludes the paper.

Il. BACKGROUND AND MOTIVATION

A. CODING CONVENTIONS

As mentioned in [8], the term code conventions or coding
conventions is used as a broad umbrella term for different
kind of rules applying to source code. Other terms like
“coding standard”, “coding rules”, etc., are frequently used
as well. To avoid ambiguity, we give here a brief definition of
these terms for the context of this paper.

A (programming) language L is a subset of all the possible
strings over a certain alphabet A, that is, L C A*. We use
the term code portion to refer to any string that is admissible
according to the language, i.e., any w € L. We use this term

2

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

to emphasize that the string may be part of a larger source
code base.

A coding rule is a restriction on the source code that is
not imposed by the grammar of the programming language.
It states the conditions under which a code portion w must
be considered invalid for the purpose of a software project. A
coding rule represents therefore a restriction on the possible
ways to program software. More formally, a coding rule
specifies a function f: £ — {valid, invalid}. Some rules
only have a formatting purpose, e.g., naming of variables or
placement of brackets, and do not alter the behavior of the
software; we call them coding style rules [9]. In this work we
focus instead on rules that affect non-functional properties,
like security or performance. Note that the border is somehow
blurred: in some languages (e.g., Python) formatting can alter
the semantics of the code; similarly, naming of methods and
variables can affect the functioning of libraries and frame-
works'.

A coding convention is a set of coding rules, usually having
a specific purpose, e.g., improving security or performance.
Many coding conventions are created for a single project
or company, e.g., see [10], and they never reach the public
domain. Conversely, we consider a coding convention to be a
coding standard when it is widely recognized in its reference
community, or when it is actually published as a technical
standard (e.g., MISRA C++ [11] or the JPL Java Coding
Standard [12]).

B. LIMITATIONS IN CURRENT PRACTICE

In current practice, a wealth of coding rules exists. For
example, in the study in [8], an interview among 7 software
engineers about the most important practices for software
maintainability resulted in 71 different coding rules, and
different opinions on their priority. Furthermore, many com-
panies define their own coding conventions, which may differ
among different teams or even for individual developers.
Reasons include different programming languages, different
project requirements, or simply a client imposing specific
restrictions.

Even established collections of coding rules like the SEI
CERT Coding Standards [13] are continuously evolving, fol-
lowing changes to the agreed best practices due, for example,
to the discovery of new vulnerabilities or the introduction
of new programming constructs. In fact, even the last minor
update to the Common Weakness Enumeration (CWE)? in-
volved the addition of 29 new vulnerabilities and 142 major
changes to existing ones’; many of those will lead to the
definition of new or updated coding rules as a prevention.

Thttps://pmd.github.io/latest/pmd_rules_java_errorprone.html#
junitspelling (Accessed January 18, 2023)

2The CWE is a database of weaknesses of software. However, in most
cases it also provides coding rules that should be followed to avoid introduc-
ing the weakness itself. Actually, many rules in existing coding standards
refer to CWE entries for justification.

3https://cwe.mitre.org/data/reports/diff_reports/v4.6_v4.7.html
(Accessed January 18, 2023)

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

Typically, coding rules are specified using the natural
language. In some cases, they are complemented with code
examples to demonstrate the problem being addressed. While
the support of automated tools has improved in recent years
(as discussed later in Section III), many limitations still exist.
First, tool support is fragmented: each static analysis tool
(SAT) checks a different set of rules, often for a specific pro-
gramming language. Except for very well-established coding
standards, verifying all the rules of a certain set requires the
combined application of multiple tools, and rarely all the
rules can be verified automatically at all. Most often, a tool
implements some kind of adaptation of an ambiguous coding
rule described in natural language. Even if the documenta-
tion provides some clarification, inspecting the code of the
checker is sometimes the only reliable information source.
This also means that it is often difficult to understand which
rules a tool can check, and vice versa.

Tool support is especially challenging when customized
rules need to be enforced. The authors of [14] interviewed
20 developers, and 17 of them complained that many tools
are not trivial to configure, even to the point of being “so
hard to configure, they prevent you from doing anything”.
The need for a simplified way to define customized checks
has also been highlighted in [15], as a way to improve
the “crowdsourcing” of source code analysis. The authors
mention that in an attempt to integrate the formerly known
FindBugs (currently SpotBugs) at Google, only a small num-
ber of employees understood how to write new checkers,
because of the kind and depth of knowledge needed for the
task. Furthermore, the code implementing static analysis is
often complex and may itself contain bugs, to the point that
specialized debugging platforms are needed [16].

In this paper we provide a first step towards the specifica-
tion of coding rules in a structured way, enabling the auto-
mated generation of checkers and other artifacts. Differently
from tools that allow adding new rules by explicitly writing
the checker code, we adopt a model-driven approach, by
targeting a more abstract specification of rules and automated
generation of checkers.

lll. RELATED WORK

The basic way to verify adherence to coding rules is to
perform manual code review. This is, of course, a costly
process. Over the years, tools to automate the verification
of coding rules have emerged. Typically, they are based on
static code analysis, which consists in analyzing the source
code for common defects and known bug patterns, without
executing the software itself.

One of the first tools targeting the Java language was
FindBugs (now SpotBugs) [17], which was initially created
to detect null pointer defects. It has then evolved with the
support of additional rules, and it features a plugin module
that can be used to write customized detectors. Similarly,
QJ-Pro [18] checks conformance to a predefined set of for-
matting rules, misuses of the Java language, code structure,
etc. Unfortunately, from the available documentation, it has

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

not been possible to precisely determine which rules are
supported by this tool. The development of QJ-Pro seems to
have stopped several years ago.

Several other tools exist; a survey on static analysis tech-
niques and tools can be found in [19]. While most tools pro-
vide some kind of extension mechanism, adding or modify-
ing rules is typically a complex task, which requires low-level
manipulation of the abstract syntax tree (AST) of the code
under analysis. PMD [20] and CheckStyle [21] are two of the
most configurable tools for Java. In CheckStyle, customized
checks are defined using the APIs provided by the tool, which
basically consists in implementing the visitor pattern on the
AST using Java code*. PMD offers a similar possibility,
while also allowing the definition of customized checkers
through XPath queries [22] on a XML-based representation
of the AST?. XPath is a query language for XML documents;
besides being very verbose, this solution still operates on
the syntax of the Java language, meaning that the developer
has to explicitly take into account every possible syntactical
variation that leads to a violation of the rule.

The SonarQube platform [23] has become increasingly
popular in recent years, mainly due to its superior report-
ing capabilities and integration with build tools. It can be
considered more as an aggregator, providing a standardized
interface to different kinds of plugins. However, extensions
need still to be provided as XPath queries or Java plugins®,
thus requiring considerable development effort.

Starting from similar motivations as ours, the work in
[24] defines a DSL for specifying coding rules for CSS
(Cascading Style Sheets), a simple language for web design.
The work in [25] introduced Naturalize, a tool based on Nat-
ural Language Processing (NLP), which can analyze a code
base to first recognize naming and formatting conventions
adopted in the project and then to identify possible violations.
Naturalize only addresses coding style rules, and there is
no way to specify customized rules that address security,
for example. There is however a growing trend in applying
machine learning for static analysis. For example, the authors
of [3] use algorithms based on decision trees to identify
violations to coding style rules for Java.

The work in [26] benchmarks different SATs with respect
to their ability to identify vulnerabilities. The results high-
lighted that the best solution depends on the deployment
scenario and on the class of vulnerability being targeted, thus
confirming the need for specialized coding rules depending
on the project or application domain. In [27], the same au-
thors show that combining multiple SATs does not necessar-
ily improve the results over using a single tool. The authors
of [28] focus on structuring the relations between rules and
vulnerabilities across different repositories However, they do
not provide a structured specification of the rules themselves.

“https://checkstyle.sourceforge.io/writingchecks.html (Accessed January
18,2023)

Shttps://pmd.github.io/pmd/pmd_userdocs_extending_writing_rules_
intro.html (Accessed January 18, 2023)

Shttps://docs.sonarqube.org/latest/extend/adding-coding-rules/

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

<
% " Comparison

§ oo

Platform-Specific
-* Information
] Structured Rules
Textual Coding Rules (CCSL Specification)
Other Approaches
5 for Rules Verification
Configuration of — !
Existing Tools (e 1| Ad-Hoc Checker |}
'__________1/ @ —:‘ (Java Program) :
1| CheckStyle \‘1 '
I| Configuration |} I
: : : QL Query H
| —— - | \ |
PMD | | [
! ; ! Natural Language |
1| Configuration |1 ! . ! OCLQueryon |!
=== _g_ — ' Description 1 I|_ Source M?)Idel '
Gt T Leeomm—=ee=- '

Figure 1: The proposed workflow for a the management of
coding conventions.

Other works in the literature focused on modeling different
aspects of source code. Some of them focused on the formal-
ization of code smells [29], [30], which however are only one
of the reasons that drive the definition of coding conventions.
Most of these works are related to the specification of rules
for the reverse engineering of software; a survey of MDE
techniques for reverse engineering can be found in [31].

In this respect, the Knowledge Discovery Metamodel
(KDM) [32] is of particular relevance. KDM is a metamodel,
defined by the Object Management Group (OMG), for repre-
senting existing software: it considers the physical and logi-
cal elements of software at various levels of abstraction, and
the relations between them. The primary purpose of KDM is
to act as an interchange format for interoperability between
tools. MoDisco [33] provides a concrete implementation
of the metamodel, and it supports the extraction of KDM
models from software. However, KDM has been thought for
modeling an entire software project in its details, while our
objective is to model coding conventions at a higher level of
abstraction.

The QL language [34] is a query language that has been
mostly applied to the specification of queries on source code.
QL is considered a general-purpose query language [34],
while our objective is to define a DSL for the specification
of coding conventions. While QL is very powerful and sup-
ports arbitrary queries on source code, it is also necessarily
verbose; conversely, we aim at a concise specialized language
for coding conventions. Finally, we are proposing a complete
MDE workflow, in which our metamodel is the basis for
deriving other more detailed artifacts, of which QL queries
could be an example.

IV. THE PROPOSED METHODOLOGY
In this section, we describe our proposal for the management
and enforcement of coding convention, which is summarized
in Figure 1.

Instead of using the natural language, coding rules are
specified using a DSL especially tailored to define such

4

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

structured specifications; we call this language the Coding
Conventions Specification Language (CCSL). Textual de-
scriptions of existing coding rules are translated into spec-
ifications in such language, while new rules can be created
directly as CCSL models.

Having coding rules defined as machine-readable specifi-
cations means that they can be processed automatically. For
example, before adopting a certain coding convention, the set
of rules can be analyzed to identify those that are conflicting
or redundant, thus reducing the number of alerts and avoiding
inconsistencies. While this kind of analysis is possible, we do
not focus on this aspect in the rest of the paper and leave it as
a further research direction.

The main benefit of having CCSL specifications of cod-
ing rules is that they enable the automated generation of
checkers, without the need to manually implement them
or configure a SAT for the task. More in general, model
transformations [35] can be applied to automatically derive
different kinds of artifacts from CCSL specifications, for
example configuration files for existing SATs.

As mentioned before, tools like CheckStyle or PMD can
be configured to check custom rules. However, their configu-
ration is complex and it requires deep knowledge of the tool.
For example, in PMD custom rules are defined by writing
XPath queries over the AST extracted from the source file, or
by directly implementing a Java class that realizes the check.
By defining a model transformation that generates such arti-
facts it is ensured that new coding rules that are specified with
CCSL can be automatically checked, by deriving the proper
configuration file for one of the existing tools.

However, this approach is limited by the capabilities and
technical requirements of the target SAT. More in general, if
coding rules are specified in a structured way, generators can
be defined to verify them according to different strategies,
as needed. This include for example i) deriving source code
to perform the verification programmatically, or ii) deriving
queries in some specialized language, to be applied on an
abstract representation of the code. In this paper we will
derive checkers based on the Object Constraint Language
(OCL) [36], a query language for models, published as an
OMG standard. Deriving OCL queries is especially interest-
ing when considering a MDE context and the capabilities of
a platform like MoDisco [33], which can extract a structured
model from the source code of an existing application.

Other kinds of artifacts could be derived from CCSL rules
by automated generation, e.g., an explanation of the rule in
natural language, or examples of source code portions that
violate it. The element “Platform-Specific Information” in
Figure 1 represents any additional information that may be
required to generate a certain kind of artifact or to con-
textualize the rule to a given platform. For example, rule
TSMOO0-J in [13] mentions “thread-safe methods”. Properly
verifying such rule requires the knowledge of which methods
are thread-safe in the target platform, or which language
constructs make a method thread-safe (e.g., the synchronized
keyword in Java). The simplest form to provide such informa-

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

tion is a mapping between CCSL metaclasses and keywords
of the target platform.

We demonstrate the feasibility of the approach by gener-
ating OCL-based checkers for Java source code. Details are
given in Section VIIL.

V. CODING CONVENTIONS SPECIFICATION LANGUAGE
In this section we describe the metamodel of the CCSL
language, which is used to provide structured specifications
of coding rules. As mentioned above, in this paper we mainly
focus on Java.

A. OVERVIEW

A CCSL specification of a coding rule describes the patterns
that would violate the rule in the source code. That is, given
arule f: £ — {valid, invalid}, our objective is to give
a specification of the subset of the programming language
Ly C Lsuchthat f(w) = {invalid} <= w € L;.

We identified the core concepts that need to be included
in the language by analyzing multiple sources, including:
i) existing coding conventions, in particular, those for the
Java language; ii) existing query languages; iii) concepts
of object-oriented programming; and iv) existing models
of source code, in particular the aforementioned KDM, the
MoDisco Java metamodel, and the Eclipse JDT DOM (an
API to manipulate Java source code elements).

Differently from these languages, our metamodel is not a
model of the source code. Instead, it is a model of coding
rules, operating at a different level of abstraction. To under-
stand the difference, consider for example that the name of a
method is not mandatory in our language, while it is clearly
needed in a detailed model of source code. This is because
we may need to specify rules that apply to any instance of
the “Method” concept, independently of its name.

After identifying the constituting concepts, we defined
the actual metamodel of our CCSL using the Ecore meta-
modeling language, which is part of the Eclipse Modeling
Framework (EMF) [37]. The CCSL metamodel is organized
in 6 main packages: Core, NamedElements, DataTypes, Ex-
pressions, Statements, and Filters, which are discussed in
the following. The complete definition of the metamodel is
available in the GitHub repository of the project [38].

B. CORE PACKAGE

This package contains the core concepts of the metamodel,

which are illustrated in Figure 2 using the EMF notation. In

CCSL, a coding rule is represented by the Rule metaclass,

which can be either atomic or composite.

An AromicRule is defined by three properties:

Context. The Context describes the pattern to be searched
in the source code, e.g., a class with name “Foo” that
contains at least one method named “bar”. The context
of a rule must contain at least one Element and may
contain a certain number of Filter instances.

Subject. The subject of a rule identifies the main element
to which the rule applies, and it is always one of the

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

] Rule |

l = negated : Boolean = false ’

[2..%] rules |

[1..1]

[: Y S

| (] CompositeRule [[AtomicRule] | [Context |
| = operator : LogicOperator = AND |
[1..1]subject [0 +] contextElements
|] Filter | [Element |

= unigueName : String
&2 annotations : Annotation

‘ © negated : Boolean = false

T [0..*] filters

Figure 2: Core Package.

elements defined in the context. In practice, the subject
defines the element on which an alert is raised in case a
violation is identified.

Filters. Filters are used to retain only elements of the con-
text that fulfill specific conditions, e.g., classes whose
name is matched by a regular expression. Filter is an
abstract metaclass, and it is extended by several concrete
filters. A filter can be negated, which means that only
elements not fulfilling the filter are selected.

The Element metaclass (Figure 2) is the top of a hierarchy
of metaclasses that represent different elements of the source
code, e.g., classes, interfaces, methods, invocations, assign-
ments, etc. The elements appearing in the rule’s context (and
their relations) specify the base pattern to be found in the
code.

Complex rules can be specified as a CompositeRule, which
is essentially a connector that combines multiple rules using
Boolean logic operators.

C. NAMEDELEMENTS PACKAGE

The NamedElements package is shown in Figure 3. A
NamedElement is an Element that has a name assigned
by the programmer (e.g., variables, classes, methods, inter-
faces, etc.). The metaclasses in this package can be logically
grouped in three categories: Custom Types, Variables, and
Methods.

1) Custom Types

This category includes the metaclasses representing custom
types specified by the programmer (i.e., classes, interfaces,
annotations, and enumerations). The TypeDeclaration meta-
class is the top of the custom type hierarchy. The attribute
“inheritance” defines whether a TypeDeclaration should be
“final”, “abstract”, or “ANY”, the latter meaning that it does
not matter for the rule being specified. A TypeDeclaration
can be a ComplexTypeDeclaration or an AnnotationType.

A ComplexTypeDeclaration represents custom types that
can hold fields, variables, and methods, and that can imple-
ment/extend interfaces. An AnnotationType basically repre-
sents Java annotations. A ComplexTypeDeclaration can be
a JInterface or a ConstructComplexTypeDeclaration. The

5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

= name : String

[} NamedElement

| [Element |

© uniqueName : String
42 annotations : Annotation

[simpleMethod |

'47 = paramsKind: CollectionKind = ANY’ ’

T T

[0..#] params

[0..*] nestedTypes

[Package

[Variable

[TypeDeclaration | | [Method

| [[Constructor]

= final: BooleanObject

© static : BooleanObject

3 static : BooleanObject

I

= type: DataType © inheritance : Inheritance = ANY © inheritance : Inheritance = ANY
= visibility : Visibility = ANY = returnType : DataType
&3 imports : ImportStatement
[0..*] declaredTypes
[InitializableVariable [] ParameterVariable lﬁ |
= initialValue : Expression | I [} ComplexTypeDeclaration | | [AnnotationType |
I 32 fields : AnnotationField I
[0..#] fields T [0..#] methods
*
| B Localvariable | | B Fieldvariable | 10" superlnterfpces
e el | [Jinterface] | [ConstructComplexTypeDeclaration | [0..¥] constructors
= visibility : Visibility = ANY

~

| H Jciass

| [JEnum |

[0..1] superClass

&7 enumConstants : EnumConstant I

Figure 3: NamedElements package.

latter represents complex types that can hold constructors,
and it is extended by the JClass and JEnum metaclasses.

2) Variables

The Variable metaclass is the superclass for all meta-
classes representing variables. InitializableVariable repre-
sents a variable that can be initialized upon declaration,
while the ParameterVariable metaclass represents a local
variable corresponding to the parameter of a method. Initial-
izableVariable is extendend by the FieldVariable and Local-
Variable, corresponding to class attributes (fields) and local
variables, respectively.

3) Methods

The SimpleMethod metaclass abstracts concepts that are
common to the Method and Constructor metaclasses. The
attribute “params” defines the parameters that must exist in
the method being specified. Detailing the name and kinds of
the parameters is not mandatory: if no information is given
on parameters, all the methods in the source code will be
selected.

When the attribute “params” is specified, it means that we
are looking for methods having those parameters in their sig-
nature. The semantics is that at least those parameters must
exist in the method signature. To specify that a method must
have exactly the given list of parameters, the “paramsKind”
attribute should be set to “EXACT”.

D. DATATYPES PACKAGE

The DataTypes package is shown in Figure 4; its elements
are used to define rules related to type specifications that can

6

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

C_ Jio.lltype
Y

[0..1] bound

[objectType g PrimitiveType

[[wildCardType] [B ParameterlzedType] [[ArrayType]_
() () \)

[TypeParameter

[0..*] bounds

[0..*] typeArguments

| [TypeDeclaration

| = visibility : Visibility = ANY

L7

[0..1] type

Figure 4: DataTypes Package.

be found in a Java program. We consider two main kinds of
DataType: PrimitiveType and ObjectType.

The PrimitiveType metaclass is extended by metaclasses
representing Java primitive types (int, double, etc.); for sim-
plicity, these metaclasses are not displayed in the figure.
On the other hand, the ObjectType metaclass is extended by
different metaclasses, each one representing a more specific
kind of non-primitive type in Java.

The ArrayType metaclass represents the specification of
an array type. The actual type of the elements of the array
is given by a reference to another instance of DataType.
The TypeDeclaration has been already introduced in the
previous section, and it represents a custom type defined by
the programmer (e.g., classes, interfaces, etc.).

The ParameterizedType metaclass represents the decla-

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

ration of a type that is parameterized according to some
other type, also known as generic types or generics in
Java terminology. The actual type used as a parameter
is specified by the typeArguments property. For example,
ArrayList<String> is a ParameterizedType having a
JClass with name “String” as its typeArguments.

The last two metaclasses, TypeParameter and WildCard-
Type, are also related to generic types. TypeParameter repre-
sents the declaration of a generic type in methods or classes.
For example, in the declaration of a method “public <T>
void foo (T wvar)”, the type T can be represented in
CCSL as a an instance of TypeParameter. Finally, the Wild-
CardType metaclass represents a wildcard of a type parame-
ter, e.g., the question mark in ArrayList<?>.

E. EXPRESSIONS PACKAGE

This package contains language elements that return a value
when evaluated, for example, method invocations, assign-
ments, cast expressions, strings concatenation, etc. The root
of the package is the Expression metaclass; like all the meta-
classes that define a CCSL package, the Expression metaclass
is a specialization of Element.

Most of the elements of the Expressions package can be
directly mapped to expressions available in the Java lan-
guage, and are thus self-explanatory (e.g., CastExpression
represents a cast expression). The full list of classes in this
package is available in the project repository [38]. However,
a few of them deserve a more detailed description.

The Invocation metaclass is the common superclass of
MethodInvocation and Constructorlnvocation. The generic
concept of Invocation is useful when it is not necessary
to specify whether a “normal” method or a constructor
is invoked. Note that, contrary to intuition, the Invocation
metaclass is not abstract. In fact, the concept of Invocation
is supposed to be concretely used in CCSL specifications,
and thus the metaclass is meant to be instantiated. The same
applies to the other CCSL metaclasses that represent generic
concepts, like the Element metaclass itself.

VariableAccess represents the access to the reference of
a variable. For example, the variable declaration “int b
* accesses the c variable to obtain its value. DataTy-
peAccess represents the access to a class (or enumeration).
For example, the invocation “ClassA. foo () ” accesses the
ClassA, and then invokes its (static) method “foo () ”. In this
context, CCSL considers ClassA an expression that returns
the class itself.

Arraylnitializer represents the specification of an array of
values, which is typically used in Java as alternative way to
initialize an array. For example, the right-hand side of the as-
signment “String[] array = {"a", "b", "c"}”
is represented in CCSL as an instance of the Arraylnitializer
metaclass.

>
= C

F. STATEMENTS PACKAGE
The Statements package includes metaclasses to represent
commands that are executed in the source code. This also

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

[1..#] filters |

T] Filter |

‘ 3 negated : Boolean = false I

7
I |

| ‘E CompositeFilter \ | ‘E AtomicFilter

e

‘ = operator : LogicOperator = AND ’ 5 targets : Element

| [HasSuperClassFilter | [TemplateFilter

5* targetTemplate : Element J
= superClass : JClass

@ includesTarget : Boolean = true ’

[} RegexFilter

Figure 5: Excerpt of the Filters Package.

includes control flow instructions, i.e., “if”, “while”, “for”,
“try-catch”, etc. As the other metaclasses at the top of a
package, the Statement metaclass is an extension of Element.

Similarly to what has been discussed for the Expressions
package, the CCSL metamodel includes a metaclass almost
for all the statements that can appear in Java code. The com-
plete list can be found in the documentation in the repository
[38].

G. FILTERS PACKAGE

Filters can be used to identify specific elements within those
selected by the context of the rule. Instances of filters are
added to the filters attribute of the Context metaclass (refer to
Figure 2).

The Filter metaclass is abstract, and it the superclass
of all the filters available in CCSL. To improve flexibility,
filters adopt the idea of the Composite design pattern [39]:
a CompositeFilter represents a list of filters combined by a
Boolean operator, and AtomicFilter is an abstract metaclass
that represents an entry-point to define new filters. A filter
can also be negated or not.

Every AtomicFilter contains a list of elements to which
the filter will be applied (fargets attribute). Concrete filters
are created by extending the AromicFilter abstract metaclass.
Figure 5 shows an excerpt of the Filters package, detailing
the main structure of a filter and three of the filters available
in the current version of CCSL. The full list of available
filters, together with a brief description of their behavior, is
reported in Table 1.

CCSL also includes a generic filter called TemplateFilter,
designed to improve the flexibility of the metamodel. When
none of the existing filters can specify the desired condition
explicitly, the TemplateFilter can be configured with a “sam-
ple” of the kind of elements that should be selected. The filter
then selects only the target elements that can be matched to
the provided template.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

Table 1: Filters that are currently available in the CCSL metamodel, with a brief explanation of their semantics. For each filter,

the corresponding metaclass is [NameJFilter.

Name Description

Count Counts how many times a sample element s appears in a target element obyj.

BlockFirstStatement Checks if an element e appears as the first element in a target Block instance b.

BlockLastStatement ~ Checks if an element e appears as the last element in a target Block instance b.

HasSameReference ~ Checks if two elements are the same element in the source code.

HasSubclass Checks recursively if a class ¢ has a sub subclass.

HasSuperclass Checks recursively if a class ¢ has a super superclass.

ImplicitContainer Checks recursively if an element e is contained by another element c, at any level of depth.

ImplicitContent Checks recursively if an element e contains another element c, at any level of depth.

IsKindOf Checks if a DataType or an Expression can be considered as being of type ¢. For example, an object of class “Foo”
can be considered as being of type “Bar”, if class “Foo” extends class “Bar”.

IsTypeOf Checks if a DataType or an Expression is exactly of type .

Regex Checks if the name of a NamedElement element matches a specific regular expression.

SameName Checks if its target elements have the same name.

Template Checks if the target element matches the provided template. See also the extended descripion in the text

(Section V-G).

VI. WRITING A CCSL SPECIFICATION

We provide now concrete usage examples of the CCSL
metamodel. We use real rules from the SEI CERT Coding
Standard [13] and from the PMD documentation [20], both
for Java. Note that those rules are continuously evolving
(which is one of the motivations behind this work); in this
paper, we refer to version 6.21.0 of the PMD documentation’.
Unfortunately, no version information is available for the SEI
CERT Coding Standard.

As it is commonly done, we use a notation inspired to the
UML Object Diagram [40] to display metamodel instances
(i.e., CCSL specifications). We use colors to facilitate the
interpretation of specifications: we indicate with red the root
of the rule, with green its subject, with yellow the rest of the
context, and with cyan the filters.

In the concrete implementation, CCSL specifications are
Ecore models, which are by default stored in XMI (XML
Metadata Interchange [41]) format, an XML-based format
oriented towards automated processing. Our prototype im-
plementation is further dicussed in Section VIII.

A. BASICS OF A CCSL SPECIFICATION
The main part of a rule is its subject, which identifies the
Element to which it applies. While an Element may have
various attributes (see Section V), in a typical specification,
only a few of them will actually hold a value.

Consider the rule AvoidInstanceOfChecksInCatchClause
from the PMD “Error Prone” ruleset:

AvoidInstanceOfChecksInCatchClause.

“Each caught exception type should be handled in

its own catch clause.”
Figure 6a illustrates a Java code that violates such rule: it
catches a generic expression and then it checks the type of
the exception with the instanceof operator. This means that

"https:/pmd.github.io/pmd-6.21.0/pmd_rules_java.html (Accessed Jan-
uary 18, 2023)

8

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

O 0NN AW —

try {
/% code x/
} catch (Exception ee) {

/+ code */

if (ee instanceof IOException) {
/% code =/

}

/% code =/

}

//violation

a Violation example for AvoidInstanceOfChecksInCatchClause, ac-

cording to PMD.
rule: AtomicRule
contextElements[0]

context

contextElements[1]

catch: CatchClause

objectExpression exceptionVariable

ref: VariableAccess v: ParameterVariable

b CCSL specification of the rule.

ie: InstanceofExpression

variable

Figure 6: Specification with CCSL of the Avoidlnstance-
OfChecksInCatchClause rule, from the PMD Error Prone
ruleset. Example of violation a, and the corresponding CCSL
specification b.

the same catch block is being used to handle different kind
of exceptions.

Following the checker implementation and examples pro-
vided by PMD itself, we consider a code portion invalid when
an instanceof operator is applied to a variable declared as a
parameter of a catch clause. Note that this is not exactly what
is described in the textual description of the rule, as there are
other ways to verify the type of an object at runtime (e.g.,
reflection).

The CCSL specification is given as an AtomicRule, whose
context is composed of an InstanceofExpression and a Catch-
Clause (see Figure 6b). The latter contains a ParameterVari-

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

| rule; AtomicRule |,%| ruleCtx: Context |

 — |
filters
contextElements
f: TemplateFilter

'methods

subject

target

negated = true

YCDHIEXI

| filterCtx: Context

equals: Method
hashCode: Method

template

name = "equals"”

name = "hashCode"

contextElements

templ: JClass

Figure 7: MET09-J CCSL specification.

methods

able v, which represents the variable holding the exception
being caught. The subject of the rule is the InstanceofEx-
pression, where its left-hand side (objectExpression) is the
access (VariableAccess) to the ParameterVariable declared
in the CatchClause.

B. USING FILTERS

Similarly to rules, filters can have their own context. The
context of a filter specifies elements that are used in the
definition of the filter condition, but that are not part of the

context of the rule itself.
Consider the rule METO09-J from SEI CERT [13]:

METO09-J: “Classes that define an equals() method
must also define a hashCode() method. [...] The
equals() method is used to determine logical equiv-
alence between object instances. Consequently, the
hashCode() method must return the same value
for all equivalent objects. Failure to follow this
contract is a common source of defects.”

Note that the actual coding rule is only the first sentence of
the text, while the rest is an explication of the rationale. In
fact, for the general case, determining whether the hashCode
method actually returns the same value for all the equivalent
objects is not feasible with static analysis, and it is actually
an undecidable problem [42].

Figure 7 illustrates the specification of the above rule
using CCSL. The element to be searched, which defines the
subject of the rule, is a JClass that contains a method named
“equals”. However, only classes that define an “equals”
method and do not define a “hashCode” method must be
matched as violations. This can be achieved by applying a
TemplateFilter on the JClass subject. The template in this
case is a JClass that contains the “hashCode” method, and the
filter is negated, meaning that it will exclude all the classes
that do not match the template.

Rule MET09-] is also a good example of how rules defined
in natural language may be ambiguous and thus be inter-
preted in different ways. There are at least two aspects that
make this rule ambiguous.

The first one concerns with the signatures of the equals
and hashCode methods. The traditional signature of the
equals method in Java is “boolean equals (Object

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

subject [rie: AtomicRule

o 2next ruleCtx: Context I*&s_ . TemplateFiter
superClass

_— negated = true
objClass: JClass —

contextElements[1]
- target]
‘ContextElements[3]
bType: BooleanPrimitiveType
retumType

equals: Method

contextElements[0]
contextElements[1]

int: IntPrimitiveType| | super: JClass
L 1L 1

methods

name = "equals”
paramsKind = Collection. EXACT

hashCode: Method

returnType

name = "hashCode"
paramsKind = Collection.EXACT methods
params = [|

parameters

type -
param: ParameterVariable

Figure 8: MET09-] refined CCSL specification.

for ex-

29

obj)”, but it is possible to overload it,
ample as “boolean equals (CustomClass obj)
Whether the rule MET(09-J should apply only to the original
equals method or not is up to the interpretation of the reader.
On the one hand, the problem addressed by the rule occurs
on data structures from Java collections, which would call
the first signature only. On the other hand, the rule does not
specify the signature of the method. Actually, the original
(verbatim) text of the rule mentions the “equals()” method,
i.e., one without any parameters.

Secondly, the hashCode method could have been defined
in a superclass rather than in the same class that defines the
equals method. This would also prevent introducing the bug
mentioned by the rule, but it is not clear if in this case a
warning should be raised or not.

Figure 8 illustrates a revised specification of the MET09-J
rule, considering these two aspects. This specification con-
siders a violation if a class defines a method with sig-
nature “boolean equals (Object obj)”, and neither
the class itself nor its superclasses define a method with
signature “int hashCode ()”. The filter being applied
is the HasSuperClassFilter, which recursively checks if its
target does not have (it is negated) a super class that defines
the method “int hashCode ().

In this case, which specification is the correct one is de-
batable. Such ambiguity, however, highlights the importance
of providing a structured specification of coding rules as
opposed to textual ones.

The same rule exists in PMD with a more precise word-
ing®, corresponding to the CCSL specification in Figure 8:

OverrideBothEqualsAndHashcode.

“Override both public boolean Object.equals(Object
other), and public int Object.hashCode(), or over-
ride neither. Even if you are inheriting a hash-
Code() from a parent class, consider implementing
hashCode and explicitly delegating to your super-
class.”

Note, however, that PMD itself does not provide any struc-
tured specification of this rule (not even an XPath query), but

8https://pmd.github.io/pmd-6.21.0/pmd_rules_java_errorprone.html#
overridebothequalsandhashcode (Accessed January 18, 2023)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

context contextElements

rule: AtomicRule

subject

ctx: Context

inv: Constructorlnvocation |ﬂ.| loop: LoopStatement
|

context

a
ctx: Context

contextElements

rule: AtomicRule

filters

constr: Constructorlnvocation |e«—————— f: ImplicitContainerFilter

target

negated = true

loop: LoopStatement contextElements filterCtx: Context context

1‘ implicitContainer

b

Figure 9: Two possible CCSL specifications of the AvoidIn-
stantiatingObjectsInLoops PMD rule.

only a Java class that implements the checker®.

C. CONTAINMENT RELATIONS

An important feature of the CCSL is the possibility to specify
complex relations between elements in the context of the
rule. A particular case is the containment relation: when an
element is contained by another element of the context, the
derived checkers will look for an immediate containment
relation between these objects. However, in some cases a
weaker relation is needed.

Consider the PMD rule AvoidlnstantiatingObjectsInLoops
from the “Performance” coding convention:

AvoidInstantiatingObjectsInLoops.

“New objects created within loops should be
checked to see if they can [be] created outside them
and reused.”

A possible CCSL specification of this rule is illustrated in
Figure 9a, where a composition relation between a Loop-
Statement and a ConstructorInvocation is established. How-
ever, this specification is not accurate because it will recog-
nize a violation only if a constructor call is directly contained
by the loop and not, for example, by an if block that is in turn
contained by the loop statement.

To specify that an element must be contained in another
one at any level of depth, the ImplicitContainerFilter can be
used. This filter specifies that, recursively, all the containers
of its target should be compared with the sample element
passed to the filter. Figure 9b illustrates the correct CCSL
specification of the AvoidlnstantiatingObjectsInLoops rule,
using the ImplicitContainerFilter.

https://github.com/pmd/pmd/blob/master/pmd-java/src/
main/java/net/sourceforge/pmd/lang/java/rule/errorprone/
OverrideBothEqualsAndHashcodeRule.java (Accessed January 18, 2023)

10

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

5] TEXT (Our Transformation)
IS => :Z; /> =

CCSL Specification
Textual pec Q
Coding Rules @ Rule
Verification
(MoDisco)
Project Source Code Structured Model
of Java Code

Figure 10: The workflow for the automated verification of
rules specified with CCSL. OCL queries are automatically
generated, and then applied to a structured model of the Java
application.

VIl. GENERATION OF CHECKERS FOR JAVA SOURCE
CODE

This section is organized into three parts: we first discuss the
approach adopted for the generation of checkers, we then
detail the actual transformation algorithm, and finally we
discuss an example based on a concrete CCSL specification.

A. OVERVIEW

The objective is to demonstrate the feasibility of our pro-
posal, through a proof-of-concept tool able to automatically
check CCSL specifications against Java code. Among all the
possibilities highlighted in Figure 1, we decided to follow the
OCL path: generating OCL queries that are then applied to a
structured model of the Java source.

This choice was driven by both practical and strategi-
cal reasons. The first is that OCL has powerful querying
contructs, as opposed to general-purpose programming lan-
guages. Generating an OCL query gives us greater flexibility
for identifying specific elements in the source code. The sec-
ond is the possibility to reuse existing MDE tools, in particu-
lar MoDisco [33] and the Eclipse OCL implementation [43].
Finally, we believe that this approach can simplify adapting
the toolchain to other programming languages, because the
generated checkers do not depend on the concrete syntax of
the Java language.

The concrete workflow is illustrated in Figure 10. Verifica-
tion of a CCSL rule involves three steps. First, an OCL query
that identifies violations of the rule is automatically generated
by model-to-text transformation. The generated query does
not depend on the project to be checked: it can be generated
once and applied multiple times on different projects. In the
second step, a structured model of the project’s source code is
extracted using MoDisco. The model of the project extracted
by MoDisco is also independent of the rule to be checked,
and therefore it needs to be extracted only once. Finally, the
OCL query is executed on the model of the target project.

B. TRANSFORMATION ALGORITHM

The generator of OCL queries from CCSL specifications has
been developed using the Acceleo framework [44]. Acceleo
is a tool to develop model-to-text transformations, which pro-

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

ElementConditionsBuilder

Ccsl2ModiscoMapper ‘
)

uses ‘ TemplateConditionBuilder ‘ __uses
uses ‘ HasSuperClassConditionBuilder ‘ v
: : ‘ ‘ Utils
OCLBu”der H markElementAsVisited
(main module) uses
T H getElementsVisited
FilterConditionsBuilder

‘ TemplateConditionBuilder ‘

Lot ‘ HasSuperClassConditionBuilder ‘ ——————————— !

Figure 11: Architecture of the Acceleo transformation to
generate OCL queries from CCSL specifications.

vides an implementation of the MOFM2T [45] specification
defined by the OMG.

The Acceleo language is not a traditional object-oriented
language. Instead, it is based on modules that expose tem-
plates. Templates, as the name implies, are sets of statements
used to generate text. Basically, they constitute of static text
interleaved with control-flow instructions and access to the
information contained in the source model (in this case,
CCSL specifications).

Our transformation is organized in five main components
(Figure 11): OCLBuilder, CCSL2ModiscoMapper, Element-
ConditionsBuilder, FilterConditionsBuilder, and Utils.

The main module and entry point of the transformation is
the OCLBuilder module, which receives as input the CCSL
specification for which the OCL query should be generated.
The generation flow can be summarized in three steps, as
follows.

1) Mapping of CCSL Metaclasses

Based on the kind of element used as subject of the CCSL
specification, we identify the constructs that can represent
it in the Java metamodel. Such information is obtained by
accessing the CCSL2ModiscoMapper module, which stores
the possible correspondencies. For example, the CCSL Loop-
Statement is mapped to multiple classes in the Java meta-
model, corresponding to the for, while, or do-while
statements.

With this information, we generate a skeleton of the OCL
query to select all the source code elements that are instances
of the mapped metaclasses, and we then proceed to the next
step.

2) Generation of Subject Conditions

In this stage, we generate all the OCL constraints for the
conditions that must be satisfied by the subject of the rule.
These constraints filter the instances that are selected by the
base OCL skeleton, based on the properties and relations
given in the context of the CCSL specification.

In this step, the module ElementConditionsBuilder works
as a Facade [39], iterating on the elements related to the rule
subject, and delegating the generation of OCL constraints for
each CCSL Element to a specific (sub-)module. The iteration

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

algorithm is based on a depth-first search on the graph of the
CCSL specification, starting at the element pointed by the
rule subject. OCL conditions are then recursively appended
to the query while navigating the attributes and relations
declared in the CCSL specification received as input.

When an element of the CCSL specification is visited, the
following actions are performed. 1) We mark the element as
visited to avoid infinite loops: if an element has already been
visited, we do not generate its OCL condition again. 2) Using
the 1et construct [36], we declare a new variable in the OCL
query to hold a reference to the element being visited, in case
we need to refer to it later in the rest of the query being
generated. 3) We generate the conditions for the attributes
of the visited element, and we add them to the OCL query. In
this step, we also define which new nodes should be visited.
In general, this includes all the elements referenced by any
relation of the element, including its container if it exists.

The operations to get all the elements visited are provided
by the Utils module. The same module also takes care of
generating a unique name for each visited element, which is
used for creating the variable in the 1et block in the second
step.

3) Generation of Filters Conditions
In this stage, the transformation generates all the OCL con-
straints for all the filters that are specified in the CCSL
rule, if any. The constraints are appended to the OCL query
being generated, thus further reducing the instances that are
selected by the final query. Each filter has its own strategy for
generating the corresponding OCL code, since each one has
its specific behavior.

The source code of the transformation is publicly available
in the GitHub repository of the project [38].

C. RUNNING EXAMPLE

Figure 12 illustrates the OCL query generated from the spec-
ification of the AvoidInstanceOfCheckinCatchClause rule of
Figure 6b. According to the algorithm described in the previ-
ous section, the query is generated as follows.

1) Mapping of CCSL Metaclasses. The subject of the rule
is a CCSL InstanceofExpression element. In this case,
it is directly mapped to the MoDisco InstanceofExpres-
sion metaclass (incidentally they have the same name).
The base query skeleton then selects all the instances of
the InstanceofExpression metaclass in the Java model
(line 1).

2) Generation of Subject Conditions for ‘‘ie: Instance-
ofExpression”. We now create the OCL conditions to
satisfy the attributes and relations declared within the
subject. We first generate a variable to hold the Instance-
ofExpression instance (instanceOfExp_1, line 2),
and then we navigate the relation objectExpression,
declared in the context, thus visiting the node “ref:
VariableAccess™.

3) Generation of Subject Conditions for “ref: Vari-
ableAccess”. The visited element is referenced as

11

N=lieBEN e R R O S

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

InstanceofExpression.alllnstances ()
—->select (instanceofExp_1l: InstanceofExpression |
let varAccess_1l: ASTNode =

instanceofExp_1l.leftOperand->asOrderedSet ()

->closure (v: ASTNode |
if v.oclIsKindOf (ParenthesizedExpression) then
v.oclAsType (ParenthesizedExpression) .expression
else v endif

)—>last ()
in varAccess_1 <> null
and varAccess_1l.oclIsKindOf (SingleVariableAccess)

and let paramVar_1l: ASTNode = varAccess_1l
sType (SingleVariableAccess) .variable
in paramVar_1l <> null and paramVar_1l
.0clIsKindOf (SingleVariableDeclaration)
and let catchClause_1l: OclAny =
paramVar_1l.oclContainer ()
in catchClause_1 <> null
and catchClause_1l.o0clIsKindOf (CatchClause)
and catchClause_1l.oclAsType (CatchClause)
.exception = paramVar_1

Figure 12: The OCL query generated from the CCSL spec-
ification of the AvoidiInstanceofInCatchClause rule (see Fig-
ure 6).

varAccess_1 inthe OCL query (line 3). Note that the
query by default skips parentheses (lines 5-9). Hence,
it does not matter if the instanceof expression is
formatted as “ee instanceof Type” or instead,
for example, as “ (ee) instanceof Type’.

In general, a CCSL VariableAccess element can be
mapped to the SingleVariableAccess, FieldAccess, and
SuperFieldAccess metaclasses in the Java model. How-
ever, because the VariableAccess is referencing a Pa-
rameterVariable in the CCSL specification (refer to
Figure 6b), we know that only SingleVariableAccess is a
valid match (line 11). We now visit the element “v: Pa-
rameterVariable”, by navigating the variable relation.

4) Generation of Subject Conditions for “v: Parame-
terVariable”. The ParameterVariable CCSL metaclass
is mapped to the SingleVariableDeclaration metaclass
in the Java model. This instance is referenced as
paramVar_1 (lines 12-13). We then create a type
check condition to ensure the element is the expected
one (lines 14-15), and we finally proceed to the next
step by visiting the container of the ParameterVariable
element (lines 16-17).

5) Generation of Subject Conditions for “catch: Catch-
Clause”. This is the last step for the processing of the
AvoidlnstanceoflnCatchClause specification, as all the
other CCSL elements have been visited already, and the
rule does not contain filters.

The CCSL CatchClause metaclass is directly mapped
to the CatchClause metaclass in the Java model. We
generate a unique variable name to reference the Catch-
Clause object (catchClause_1, line 18), and we also
generate a type check condition, since the oclContainer
returns an OclAny type (line 19). The last condition to
be generated is to ensure that the catchClause_1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

Target Projects

Sample ~ Add Project

Sample

“Press delete key t remove a selected project from the list

Cosl Rules (=.ccsl, *.octy
Di\ccsl-rules\AvoidInstanceofChecks InCatchCl
Di\cesl-rules\OverrideBothEqualsAndHashcode

< >

Output Settings
Output folder: | D:\ccsl-violations

Choose...

Run Ccsl checkers Cancel

Figure 13: Main window of the CCSL Checker.

and the paramVar_1 elements are connected through
the exceptionVariable relation as specified in Figure 6b
(line 20-21).

VIIl. PROTOTYPE IMPLEMENTATION

The transformation algorithm described in the previous
section is integrated into our prototype implementation of
CCSL. This section describes its current status and our future
plans; the source code is available on GitHub [38].

A. CCSL CHECKER PROTOTYPE

The current version of the CCSL Checker can verify one or
more CCSL specifications against a Java project opened in
the Eclipse workspace. The tool has been implemented as an
Eclipse plugin because of its Eclipse-based dependencies, in
particular EMF, MoDisco, Eclipse OCL, and Acceleo.

The tool accepts as input the coding rules defined as CCSL
specifications or, alternatively, the generated OCL queries to
be reused. CCSL specifications must be provided in XMI
[41] format, which is the serialization format adopted by
EMF. Figure 13 illustrates the main window of the prototype,
where the user should select: i) the Java project(s) on which
to run the rules; ii) the rules to be executed; and iii) the folder
in which the resulting report will be saved.

When the user presses the “Run CCSL Checker” button,
the prototype executes the following steps: i) it extracts the
Java model of all selected projects; ii) it generates the OCL
queries of selected rules; iii) it executes the OCL queries in
each selected project; and iv) it generates one file for each
rule, containing the identified violations with the file name
and line number where they occurred.

B. TOWARDS A TEXTUAL NOTATION

One of the limitations of the current implementation is that
CCSL rules are stored in XMI format. Although an expert
EMF developer can easily read an XMI specification, the
format is not intended to be directly manipulated by humans.

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

For any metamodel defined with EMF, the framework pro-
vides a basic treeview editor that can be used to create model
instances, ensuring that metamodel constraints are respected.
While we used that editor to provide the CCSL specifications
used in this paper, it is not adequate for the casual user.

The EMF ecosystem features several tools to define a cus-
tomized syntax for DSLs, either a graphical one (e.g., Sirius
[46]) or a textual one (e.g., Xtext [47]). We are planning to
use such facilities to provide a more user-friendly syntax to
specify CCSL rules. We believe that a textual concrete syntax
would have several advantages [48], for example, easier
interaction with version control systems. Such developments
are however improvements to the usability of the prototype,
and not to its basic funcionality.

IX. EVALUATION

In this section we evaluate our proposal. The objective is to
demonstrate the feasibility of the approach, that is, that it is
possible to automatically derive reasonably efficient checkers
from coding rules specified using CCSL.

A. METHODOLOGY

To evaluate the checkers generated from CCSL specifica-
tions, we compare their results with those of a popular SAT
for Java, namely PMD [20]. The main reason for choosing
PMD is its extensive documentation of the rules that are
implemented. The evaluation approach can be summarized
as follows: 1) we selected a subset of the PMD rules for Java,
ii) we specified them using CCSL, iii) we ran both the tools
on different Java projects, and iv) we compared the results.

The results are compared by first classifying the individual
violation reports (see subsubsection IX-A1), then classifiying
rules based on how they are handled by the tools in individual
projects (see subsubsection IX-A2), and then classifiying
rules according to the aggregated results on all the analyzed
projects (see subsubsection IX-A3).

Note that we do not aim to show that our tool is better
than PMD at detecting violations, but instead that checkers
generated with our method are comparable in performance
to those of a widely-used, established, tool. PMD is being
developed since at least 20 years ago (the first commit in
its repository is from 2002), and it has been tested by a
wide community on thousand of projects. Furthermore, it
is known that different SATs often produce different results
[26], [49], and judging the quality of alerts would require a
deep analysis of each violation in the context of the analyzed
project.

1) Classification of Violation Reports

We discuss the evaluation methodology with the aid of a Venn
diagram (Figure 14). Given a certain coding rule applied on
a certain source code, the set of True Violations (f/) is the
set of actually existing violations that should be reported by
the tools. CCSL Violations (Vocosy) is the set of violations
reported by our CCSL Checker. Ideally, Voesr = V., but in
reality it may contain false positives and omit false negatives.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

CCSL
Violations

f'\\ Violations
\\7//

a Possible regions in which a violation report can be classified.

Violations Vemp

Class Formula

A (VN Veese)\ Veup

Description

True positives reported by CCSL that are
not reported by PMD (i.e., they are false

negatives for PMD)

B Vn Veesr N"Veub True positives reported by both CCSL
and PMD

C (Veesr, NVpup) \ V False positives reported by both CCSL
and PMD

D Vemp \ (\7 UVeeser) False positives reported by PMD only

E (\7 NVepup)\ Vecst True positives reported by PMD that are
not reported by CCSL (i.e., they are false
negatives for CCSL)

F \% \ (Vecst U Vpup) False negatives for both CCSL and PMD

(i.e., existing violation that are not re-
ported by neither tool)

G Veest \ (\7 UVpub) False positives reported by CCSL only

b Definition of the different regions.

Figure 14: The classification of violation reports that will be
used in our experiment.

Similarly, PMD Violations (Vpyrp) is the set of violations
reported by the PMD tool. With “false positive” we mean the
event for which the tool reports a nonexistent violation of
the rule. Note that this definition may be different from other
interpretations; for example, a tool reporting an intentional,
harmless violation of the rule is sometimes considered a false
positive.

As seen in the diagram (Figure 14a), the report of a
violation can fall in one of seven distinct sets, depending on
whether the violation actually exists, and which tool raises it.
A full description of these areas is given in Figure 14b.

2) Classification of Rules

Based on the violations reported by the two tools on a given
Java project, a certain rule can be classified in one of the
following categories.

o Exact. The violations reported by CCSL and PMD are
exactly the same, and at least one violation is reported
by both tools. That is:

(Veest = Veup) A (Veest U Veup) # 0.

o CCSL*. The CCSL Checker performed better than
PMD. A rule is classified in this category when the
following condition is met:

((GUE) =0A(AUD) #0)V (Veup = DNA #0).

13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

That is: 1) there is no false positive reported by CCSL
only and no true positive reported by PMD only (G U
E) = (); and ii) there is at least one true positive reported
by CCSL only or one false positive reported by PMD
only, (AU D) # 0; or alternatively iii) PMD did not
report any violation, and CCSL reported at least one true
positive (final part of the equation).

o PMD*. PMD performed better than the CCSL checker.
A rule is classified in this category when the following
condition is met:

((AUD) = 0N (GUE) #£0)V (Vecst = OAE #0).

That is: i) there is no false positive reported by PMD
only and there is no true positive reported by CCSL
only, (AU D) = 0; and ii) there is at least one true
positive reported by PMD only or there is at least one
false positive reported by CCSL only, (G U E) # (; or
alternatively iii) CCSL did not report any violation and
PMD reported at least one true positive (final part of the
equation).

« Partial. A rule is classified as partial when there is
only a partial overlap between the violations reported
by the two tools and, therefore, no clear winner. More
precisely, when CCSL reported at least one true posi-
tive that PMD did not report and vice versa, and both
reported at least one violation. That is:

(Veesr #0NA#0) A (Verp #0AE #0).

« NoViolations. Neither CCSL nor PMD did report any
violation for the rule, that is:

Veest =0 A Vpup = 0.

« NoSpecification. Independently of the violations re-
ported by PMD, we classify a rule in this category when
we could not provide a CCSL specification for it.

3) Aggregate Classification of Rules

The above classification is established per project, i.e., a
rule can be classified in different categories depending on
the project under analysis. Actually, some rules have been
classified as either CCSL* or PMD* depending on the project
(see the appendix). To obtain an aggregate view of the
performance of our CCSL Checker with respect to PMD, we
assign a final classification to each rule, based on the results
obtained on the different projects.

Excluding the NoSpecification class, which is independend
from the project, we establish the following aggregate classi-
fication for coding rules:

o Same: For all the analyzed projects the rule has been

classified as either Exact or NoViolations.

o Better: For at least one of the analyzed projects the
rule has been classified as CCSL*, and as Exact or
NoViolations for all the other projects.

o Worse: For at least one of the analyzed projects the
rule has been classified as PMD™, and as Exact or
NoViolations for all the other projects.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

e Inconclusive: All the remaining cases. When a rule is
classified as inconclusive it means in some projects
CCSL found violations that were not identified by PMD,
and vice versa.

B. EXPERIMENT SETUP

As mentioned earlier, we based our analysis on version 6.21.0
of PMD, which was the latest one at the time we started our
experiments. We selected a subset of the Java rules in the
PMD documentation; in particular all those in the categories
Error Prone, Performance, and Multithreading, yielding a
total of 139 rules. We selected these three set of rules because
they address different characteristics of software, namely
reliability, performance, and parallelism.

Then, we selected 8 real Java projects publicly available
on GitHub, on which the rules shall be verified. The selected
projects are listed in Table 2, including their names (linked
to their GitHub repository), the version that we analyzed,
and a short description. Three of those projects (WebGoat,
TeaStore, and WSVDBench) were selected for a preliminary
evaluation of this work, and then retained in the final exper-
iments. They are mock implementations used for testing and
benchmarking of web applications. The remaining 5 projects
have been selected among the most “starred” projects on
GitHub with a size less than 30MB, among the categories
Cryptography, Security, and Artificial Intelligence. The size
limit of 30MB has been applied to obtain an experiment of
manageable size.

We first executed PMD on the 8 projects, configured to
verify the previously selected rules, and recorded the results.
Based on this, we excluded from the rest of the experiment all
the rules for which no violation was reported in any of the 8
projects. This reduces the number of analyzed rules in a way
fair to the experiment. Note that we only removed rules for
which PMD did not find any violation, thus essentially re-
moving rules that were going to be classified as NoViolations
or CCSL*. After this filtering, we retained 77 rules.

For each of these rules, we created a specification using
CCSL, generated the OCL-based checker, and then executed
it on the 8 projects. When we could not provide a CCSL spec-
ification of the rule, we classified it as NoSpecification. Then,
we compared the results obtained with PMD and with CCSL,
according to the methodology discussed in Section IX-A.

We note that, in this experiment, we did not know the
ground truth; that is, we did not know a priori if a certain Java
file contained violations of a given rule, nor where those vio-
lations were located. However, when the two tools produced
different results, we needed to know if those differences were
true positives or not, to differentiate between the CCSL*,
PMD™, and Partial classes. In this case, we proceeded to a
manual investigation of the reported violations, to understand
if they had to be classified as true positive or false positive.
This was not necessary for rules classified as Exact, NoSpec-
ification, or NoViolations.

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

AssignmentinOperand
AvoidBranchingStatementAsLastinLoop
AvoidCatchingNPE
AvoidCatchingThrowable
AvoidDecimalLiteralsInBigDecimalConstructor
AvoidDuplicateLiterals
AvoidFieldNameMatchingMethodName
AvoidFieldNameMatchingTypeName
AvoidinstanceofChecksInCatchClause
AvoidLiteralsInlfCondition
BeanMembersShouldSerialize [TR
CheckSkipResult
CloneMethodMustBePublic
CloneMethodMustlmplementCloneable
CloneMethodReturnTypeMustMatchClassName
CloneThrowsCloneNotSupportedException
CloseResource
CompareObjectsWithEquals
ConstructorCallsOverridableMethod
DataflowAnomalyAnalysis [
DetachedTestCase
DoNotCallGarbageCollectionExplicitly
DoNotCallSystemExit
DoNotHardCodeSDCard
EmptyCatchBlock
EmptyFinallyBlock
EmptylfStmt
EmptyStatementNotinLoop
EqualsNull
ImportFromSamePackage
InvalidLogMessageF ormat
JUnitSpelling
MissingBreakInSwitch
MissingSerialVersionUID
MissingStaticMethodInNonlInstantiatableClass
MoreThanOnelLogger
NonCaseLabellnSwitchStatement
NullAssignment
OverrideBothEqualsAndHashcode
ProperClonelmplementation
ReturnEmptyArrayRatherThanNull
ReturnFromFinallyBlock
SimpleDateFormatNeedsLocale
TestClassWithoutTestCases
UnnecessaryBooleanAssertion
UnnecessaryCaseChange
UnusedNullCheckInEquals
UseEqualsToCompareStrings
UselLocaleWithCaseConversions
UseProperClassLoader
AvoidSynchronizedAtMethodLevel
AvoidUsingVolatile
DoNotUseThreads
NonThreadSafeSingleton KRR R R R RRRRRRKR
UnsynchronizedStaticFormatter
UseConcurrentHashMap
AddEmptyString
AppendCharacterWithChar
AvoidArrayLoops
AvoidFileStream
AvoidInstantiatingObjectsinLoops
AvoidUsingShortType
BigIntegerinstantiation
ConsecutiveAppendsShouldReuse
ConsecutiveLiteralAppends
InefficientStringBuffering
InsufficientStringBufferDeclaration
Integerinstantiation

.
<4
.
<4

[oex3

N +7S00

b
=
=]
¥

[|eved

— VTN

Longlnstantiation §

RedundantFieldInitializer 5

SimplifyStartsWith S

Stringlnstantiation 8

StringToString 5

TooFewBranchesForASwitchStatement >
UselndexOfChar
UselessStringValueOf
UseStringBufferForStringAppends

0 1 2 3 4 5 6 7 8
Projects

Figure 15: Results of the experimental comparison between our CCSL Checkers and PMD. Classification of rules across
different projects.

VOLUME 10, 2022 15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

Table 2: Software projects selected for the evaluation.

GitHub Repository Commit Description

cryptomator/cryptomator a6e680e Multi-platform transparent client-side encryption of files hosted in the cloud.

libgdx/gdx-ai 1e4973c Artificial Intelligence framework for games based on libGDX.

microsoft/malmo €79632b Platform for Artificial Intelligence experimentation and research built on top of Minecraft.

DescartesResearch/TeaStore Scab414 A micro-service reference and test application to be used in benchmarks and tests.

google/tink bbc2f36 ~ Multi-language, cross-platform, open source library that provides cryptographic APIs.

WebGoat/WebGoat edd6b7d A deliberately insecure web application maintained by OWASP designed to teach web application security
lessons.

nmsa/wsvd-bench 95f08bb Services that serve as workload of a benchmark for tools that detect SQL injection vulnerabilities in web
services.

Netflix/zuul b9f517c Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.

Same (45.5%)
Better (14.3%)

' NoSpec. (7.8%)

Inconclusive (14.3%) Worse (18.2%)

Figure 16: Aggregate classification of rules.

C. RESULTS

During the experiment, we were able to specify and generate
checkers for 71 of the 77 selected rules (92.2%). The gener-
ated checkers have been executed on the 8 selected projects
and the results compared with the output produced by PMD,
as previously discussed. A summary of the obtained results is
shown in Figure 15; for each rule, the figure shows the num-
ber of projects that resulted in a certain rule classification.
For example, the rule AvoidLiteralsInlfCondition has been
classified as Exact on 3 projects, as CCSL* on 2 projects,
and as PMD™* on the 2 remaining projects. Note that for
many rules alerts were raised only on a subset of the selected
projects.

The data used to draw the figure is available in the Ap-
pendix. The source of such data (raw tools output) is available
on a separate GitHub repository of the experiment [50],
together with OCL queries generated from CCSL specifica-
tions.

Table 3 shows the same data, in this case organized per
project. As before, note that a project typically contains
violations only for a small subset of the analyzed rules.
For each project, rules that did not generate violations are
reported separately in the table (NoViolations column), to
focus the comparison of the two tools on relevant rules.

In all the projects, for the majority of relevant rules we
obtained equal or better results than PMD. In fact, most rules
were classified as Exact (47% on average) or CCSL* (14.4%
on average). On the other hand, there are also cases for which
we could not specify a rule using CCSL (6 rules out of
77), and cases where the PMD implementation has achieved
better results than our approach (17.6% on average). For a
small set of rules (1.5% on average) the two tools reported

16

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

different violations.

While the results per project give an indication of the
performance of the CCSL Checker in a real setting, they
do not provide a clear view of the general behavior of the
generated checkers. For example, a rule could behave as
CCSL* only in one project, or the rules that are classified as
Exact across different projects could, in fact, be always the
same ones.

As explained in Section IX-A, the final classification step
of our methodology classifies rules according to the behavior
of the checkers across all the different project. Figure 16
shows the final aggregate results, in which each rule is
classified as Better, Same, Inconclusive, Worse, or NoSpecifi-
cation according the results obtained across all the analyzed
projects.

The results show that more than half of the rules are
classified as Same (45.5%) or Better (14.3%), meaning that
almost 60% of the checkers generated from CCSL specifi-
cations performed equal or better than the corresponding
PMD implementation. We registered only 14 rules (18.2%)
in which the PMD tool consistently performed better across
the projects, and 6 rules (7.8%) that we could not specify
with CCSL. The remaining 11 rules (14.3%) are classified
as Inconclusive, meaning that the results were not consistent
across the projects. Note that this also means that, for all
these 11 rules, the generated CCSL Checkers found more
true positives or less false positives than PMD, at least in one
project. Detailed results are available in the Appendix.

D. THREATS TO VALIDITY

The experiment we performed is subject to some threats to
validity, discussed in the following, together with the adopted
mitigations.

As mentioned before, we do not know the ground truth for
the analyzed projects. When the results between the two tools
were different, we had to analyze whether the reported alerts
were true positives or not. This is somehow subjective due to
the ambiguity in the textual description of rules. We mitigated
this threat by using the PMD documentation as a reference
and, when needed, by analyzing the implementation of the
PMD checker. The two tasks of i) specifying the selected
rules with CCSL and ii) analyzing the reported violations;
were performed by two different authors separately. Doubts

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

Table 3: Results of the experimental comparison between our CCSL Checker and PMD. Classification of rules, organized per
project. Please see Section IX-A for the adopted methodology.

RULES EXCLUDING NoViolations

NoViol.

PROJECT CCSL* PMD* Exact Partial NoSpec. TOTAL

Cryptomator 4[13%] T7[23%] 11[37%] 2[7%] 6[20%] 30 47
gdxAl 3[13%] 6[25%] 8[33%] 1[4%] 6[25%] 24 53
Malmo 4[10%] 91[22%] 20[49%] 2[5%] 6[15%] 41 36
TeaStore 7[18%] 7[18%] 20[50%] O 6 [15%] 40 37
Tink 8[22%] 8[22%] 14[38%] 1[3%] 6[16%] 37 40
WebGoat 10[21%] S5[11%] 26[55%] O 6 [13%] 47 30
WSVDBench 1 [4%] 1 [4%] 17[63%] 2[7%] 6[22%] 27 50
Zuul 7 [14%] 8[16%] 26[51%] 4[8%] 6[12%] 51 26

in the classification of rules were solved by discussion among
all three authors.

For the same reason (lack of ground truth), the quality of
our checkers was not analyzed in absolute terms, but only in
comparison with PMD. This is of course a threat in case PMD
results are of poor quality. However, PMD is one of the most
popular SATs for Java, it has been under active development
for more than 20 years, and it is used by hundreds of real
projects. Furthermore, we applied the tools on real projects
from GitHub; obtaining comparable results in such a real
setting confirms the feasibility of the proposed approach.

In the experiment we only analyzed a limited set of rules.
The analysis of results is extremely time consuming, espe-
cially when violation alerts differ between the tools. Typ-
ically, this involves analyzing corner cases, understanding
why the two tools are reporting different results, what the
rule actually prescribes for that situation, and if there are
ambiguities in the rule description. We mitigated this threat
by selecting multiple projects, so that different rules were ac-
tivated in each of them and in different situations. Also, note
that only a few rules present violations in a typical project,
thus reducing the practical benefit of including additional
rules to the experiment.

X. DISCUSSION

The checkers generated from CCSL specifications showed
an accuracy comparable to that of the popular PMD tool.
The results demonstrate that the proposed MDE approach is
feasible and that it can generate checkers of good quality.
We note that our transformations are still part of a prototype,
while on the other hand the PMD implementation of rules
has been refined through more than 20 years of open source
development.

The main takeaways from this experiment reinforce our
initial motivation for this work. Coding rules described in
natural language seldom describe all the conditions that
should be taken into account, so SAT developers need to be
aware of possible special cases, which often lead to mistakes
and omissions. In the analysis of mismatching reports, we
encountered several cases caused by corner cases not consid-
ered in the rule description.

For example, rule NullAssignment says that one should not
directly assign null to a variable, except in its initialization.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

In the implementation of this rule, PMD ignores variables
marked as final, because their value cannot change after
initialization. However, it also ignores arrays that are marked
as final. In this case, the reference to the array itself cannot
be changed, but the references to the individual elements of
the array can still be set to null. This is what causes the
rule to be classified as CCSL* for project gdxAl. Note that
ignoring variables marked as final was not mentioned in the
rule documentation.

Similarly, the rule ConstructorCallsOverridableMethod
mandates that a constructor should not invoke methods that
can be overridden, because it “poses a risk of invoking
methods on an incompletely constructed object”. In the Tink
project, the CCSL Checker reported a violation in the con-
structor of an abstract class; this violation was not reported
by PMD. The constructor could not be invoked because the
class is abstract; however, subclasses could call the construc-
tor with the super keyword. Still, they would also be in
control of the overridden method, thus potentially reducing
the risk of introducing defects. We decided to consider this
case a violation, because nothing about abstract classes was
mentioned in the rule description.

Finally, it should be mentioned that some of the violations
that were missed by our CCSL Checkers are due to a lim-
itation of the underlying MoDisco tool that we use for the
extraction of the model of the source code (see Figure 10). In
fact, MoDisco is not aware of some constructs introduced in
recent Java versions, and it simply discards such information
from the model. In particular, this affected some violations
that appeared inside lambda expressions [51]. Possibly, some
of the rules classified as Worse (due to PMD™* occurrences)
would turn into Same if the model of the source code could
be extracted correctly. In future versions of our tool we
will investigate alternatives to MoDisco for the extraction of
a model of source code. Projects like MLIR (Multi-Level
Intermediate Representation) [52] look promising for this
purpose.

XI. CONCLUSION

This paper proposed an approach for the management and
enforcement of coding conventions based on model-driven
engineering techniques. To the best of our knowledge, there
is little work in such direction. We defined a language, CCSL,

17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

I E E E A content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

that is used to specify coding rules as structured models, from
which checkers are derived by automated transformations.
One of the benefits of this approach is that checkers can be
automatically generated from any rule that can be specified
using our language.

We analyzed the effectiveness of the approach in a thor-
ough experiment in which we applied 77 coding rules on
8 real open source projects written in Java. The experiment
compared the violations reported by checkers generated from
CCSL with those reported by the popular PMD tool. Overall,
the results are promising and show the feasibility of the
approach. In about 74% of the analyzed rules (57 out of 77),
the checkers generated from CCSL specifications performed
comparably or even better than PMD. Note that for many
rules, the PMD checker consists of imperative code written
in Java, and no high-level specification is available.

As future work, we plan to provide a simple textual nota-
tion to define CCSL specifications and integrate the checkers
in the Eclipse IDE with inline notification of violations, thus
providing a complete environment to developers. Further-
more, we plan to investigate the adaptation of the approach
to other programming languages.

18 VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

APPENDIX A
\ Cryptomator gdxAl Malméo TeaStore Tink WebGoat ~ WSVDBench Zuul \ Rule Classification

Error Prone
AssignmentInOperand Exact PMD+ PMD+ Exact PMD+ Exact Exact Exact Worse
AvoidBranchingStatementAsLastInLoop 0 Exact] 0 0 Exact 1] Exact Same
AvoidCatchingNPE 0 0 0 Exact PMD+ 0 0 0 Worse
AvoidCatchingThrowable 0 Exact 0 0 Exact] 0 PMD+ Worse
AvoidDecimalLiteralsInBigDecimal Constructor 0 1] CCSL+ 0] 1] 0 0 Better
AvoidDuplicateLiterals PMD+ PMD+ PMD+ PMD+ PMD+ PMD+ 0 PMD+ Worse
AvoidFieldNameMatchingMethodName Exact Exact Exact Exact Exact Exact 0 Exact Same
AvoidFieldNameMatchingTypeName Exact 0 0 Exact 0 Exact 0 0 Same
AvoidInstanceofChecksInCatchClause 0 0 0 Exact 0 0 Exact 0 Same
AvoidLiteralsInIfCondition PMD+ CCSL+ Exact PMD+ Exact CCSL+ Exact CCSL+ Inconclusive
BeanMembersShouldSerialize — — — — — — — — —
CheckSkipResult 0] 0 0 Exact 0 0 0 Same
CloneMethodMustBePublic 0 0 0 0 0] 0 Exact Same
CloneMethodMustImplementCloneable 0 0 0 0 0 0 0 CCSL+ Better
CloneMethodReturnTypeMustMatchClassName 0 0 0 0 0] 0 Exact Same
CloneThrowsCloneNotSupportedException 0 0 0 0 0 0 0 Exact Same
CloseResource — — — — — — — — —
CompareObjectsWithEquals 0 PMD+ PMD+ PMD+ Exact PMD+] Partial Inconclusive
ConstructorCallsOverridableMethod Partial Partial Partial CCSL+ CCSL+ Exact 1] Partial Inconclusive
DataflowAnomalyAnalysis — — — — — — — — —
DetachedTestCase 0 0 0 Exact 0 Exact 0 0 Same
DoNotCallGarbageCollectionExplicitly 0 0 Exact 0 1]] 0 0 Same
DoNotCallSystemExit Exact 0 Exact 0 Exact Exact] Exact Same
DoNotHardCodeSDCard 0 0 0 0 Exact 0 0 0 Same
EmptyCatchBlock Exact 0 Exact CCSL+ CCSL+ Exact CCSL+ Exact Better
EmptyFinallyBlock 0 0 0 0 0 Exact Exact 0 Same
EmptyIfStmt 0 Exact Exact 0 1] Exact Exact Exact Same
EmptyStatementNotInLoop 0] PMD+ 0 PMD+ Exact 0 0 Worse
EqualsNull 0 0 0 Exact 0 0 0 0 Same
ImportFromSamePackage Exact Exact 0 Exact 0 Exact Exact 0 Same
InvalidLogMessageFormat — — — — — — — — —
JUnitSpelling PMD+ 0 0 CCSL+ 0 CCSL+ 0 CCSL+ Inconclusive
MissingBreakInSwitch 0 0 Exact 0 0 0 1] Exact Same
MissingSerial VersionUID PMD+ 0 0 0 0 Exact Exact PMD+ Worse
MissingStaticMethodInNonInstantiatableClass 0 0] 0 PMD+ Exact 0 0 Worse
MoreThanOneLogger 0 0] 0 []] Exact Same
NonCaseLabelInSwitchStatement 0 CCSL+ 0 0 0 0 [0 Better
NullAssignment PMD+ CCSL+ PMD+ Exact Partial 0 Exact Partial Inconclusive
OverrideBothEqualsAndHashcode 0 0 0 Exact 0 0 Exact Same
ProperClonelmplementation 1] 0 0 0 1] 0 0 Exact Same
ReturnEmptyArrayRatherThanNull CCSL+] Exact 0 CCSL+ Exact] CCSL+ Better
ReturnFromFinallyBlock 0 0 0 0 [0 4 Exact Same
SimpleDateFormatNeedsLocale] 0 0 0 Exact Exact 0 Same
TestClassWithoutTestCases 0 0 0 CCSL+ 0 CCSL+ 0 CCSL+ Better
UnnecessaryBooleanAssertion 0 0 0 0 0 0 0 Exact Same
UnnecessaryCaseChange 0] 0 0 Exact Exact] 0 Same
UnusedNullCheckInEquals 0 0 PMD+ 0 0 0 [0 Worse
UseEqualsToCompareStrings 0 0 Exact 0 1] Exact 1] 0 Same
UseLocaleWithCaseConversions Exact 0 Exact Exact Exact Exact Exact Exact Same
UseProperClassLoader 0 0 Exact 0 0 Exact 0 Exact Same
Multithreading ‘
AvoidSynchronizedAtMethodLevel Exact 0 0 Exact Exact 0 Exact Exact Same
AvoidUsingVolatile Exact 0 0 0 1]] 0 Exact Same
DoNotUseThreads Partial 0 CCSL+ CCSL+ CCSL+ CCSL+ 0 Partial Inconclusive
NonThreadSafeSingleton — — — — — — — — —
UnsynchronizedStaticFormatter 0 0] Exact 1]] Exact 0 Same
UseConcurrentHashMap PMD+ 0 PMD+ CCSL+ PMD+ CCSL+ 0 PMD+ Inconclusive
Performance |
AddEmptyString 0 0 Exact PMD+ Exact PMD+ Exact Exact Worse
AppendCharacterWithChar 0 0 Exact 0 CCSL+ Exact Exact Exact Better
AvoidArrayLoops — — — — — — — — —
AvoidFileStream 0 0 Exact PMD+ Exact Exact 0 Exact Worse
AvoidInstantiatingObjectsInLoops Exact PMD+ PMD+ PMD+ PMD+ Exact Exact PMD+ Worse
AvoidUsingShortType 0 Exact] 0] 0] Exact Same
BigIntegerInstantiation 0 0 Exact 0 0 0 [0 Same
ConsecutiveAppendsShouldReuse CCSL+ 0 Exact Exact CCSL+ CCSL+ Partial CCSL+ Inconclusive
ConsecutiveLiteral Appends CCSL+] Exact 0 CCSL+ PMD+ PMD+ Exact Inconclusive
InefficientStringBuffering 0 0 0 Exact 0 CCSL+ 0 0 Better
InsufficientStringBufferDeclaration CCSL+ 0 Partial PMD+ CCSL+ PMD+ Partial CCSL+ Inconclusive
IntegerInstantiation 0 0 Exact 0 0 0 [0 Same
LonglInstantiation 0 PMD+ 0 0 1]] Exact 0 Worse
RedundantFieldInitializer PMD+ PMD+ PMD+ Exact PMD+ Exact 0 PMD+ Worse
SimplifyStartsWith 0 0 0 Exact 0 Exact 0 Exact Same
StringInstantiation 0 0 Exact 0 0 CCSL+ 0 0 Better
StringToString 0 0 0 0 0 CCSL+ 0 0 Better
TooFewBranchesForASwitchStatement Exact Exact] Exact 0 0 0 0 Same
UselndexOfChar 0] CCSL+ Exact Exact CCSL+ 0 Exact Better
UselessString ValueOf 0 0 Exact Exact 0 0 PMD+ Worse
UseStringBufferForStringAppends 0 Exact CCSL+ CCSL+ Exact Exact Exact PMD+ Inconclusive
—-: NoSpecification 0: NoViolations

VOLUME 10, 2022 19

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

IEEE Access

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

References

[1]

[2]

[3]

[4]

[5]
[6]
[71

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

20

M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia. Code convention adher-
ence in evolving software. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM), pages 504-507, 2011.

Ye Henry Tian. String Concatenation Optimization on Java Bytecode.
In Proceedings of the International Conference on Software Engineering
Research and Practice, SERP 2006, Volume 2, pages 945-951, Las Vegas,
Nevada, USA, 2006.

Miroslaw Ochodek, Regina Hebig, Wilhelm Meding, Gert Frost, and
Miroslaw Staron. Recognizing lines of code violating company-specific
coding guidelines using machine learning. Empirical Software Engineer-
ing, 25(1):220-265, nov 2019.

Rodrigo Teixeira, Eduardo Guerra, Phyllipe Lima, Paulo Meirelles, and
Fabio Kon. Does it make sense to have application-specific code conven-
tions as a complementary approach to code annotations? In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Meta-Programming
Techniques and Reflection - META 2018, Boston, MA, USA, 2018. ACM
Press.

G. J. Holzmann. The power of 10: rules for developing safety-critical code.
IEEE Computer, 39(6):95-99, 2006.

D. C. Schmidt. Guest editor’s introduction: Model-driven engineering.
IEEE Computer, 39(2):25-31, 2006.

Elder Rodrigues Jr. and Leonardo Montecchi. Towards a Structured Spec-
ification of Coding Conventions. In 24th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2019), pages 168-177,
Kyoto, Japan, 2019.

M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia. Maintainability and
source code conventions: An analysis of open source projects. Technical
Report TR11-06, University of Alberta, Department of Computing Sci-
ence, June 2011.

Naoto Ogura, Shinsuke Matsumoto, Hideaki Hata, and Shinji Kusumoto.
Bring your own coding style. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
Campobasso, Italy, 3 2018. IEEE.

Gerard J. Holzmann. Mars code. Communications of the ACM, 57(2):64—
73, feb 2014.

MIRA Limited. Guidelines for the use of the C++ language in critical
systems. MISRA-C++:2008, June 2008.

JPL Java Coding Standard — JPL Institutional Coding Standard for the
Java Programming Language. Technical report, Jet Propulsion Laboratory
(JPL), March 2014.

SEI CERT Coding Standard, 2022. https://wiki.sei.cmu.edu/confluence/
display/seccode/SEI+CERT+Coding+Standards/ (Accessed January 18,
2023).

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. Why don’t software developers use static analysis tools to find
bugs? In 2013 35th International Conference on Software Engineering
(ICSE), San Francisco, CA, USA, may 2013. IEEE.

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. Lessons from building static analysis tools at google.
Communications of the ACM, 61(4):58-66, mar 2018.

Lisa Nguyen Quang Do, Stefan Kruger, Patrick Hill, Karim Ali, and Eric
Bodden. Debugging static analysis. IEEE Transactions on Software
Engineering, 46(7):697-709, July 2020.

David Hovemeyer and William Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92-106, December 2004.

QJ-Pro, 2022. http://qjpro.sourceforge.net/ (Accessed January 18, 2023).
Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques
and tools. In Intelligent Computing and Applications, pages 581-591,
2015.

PMD, 2022. https://pmd.github.io/ (Accessed January 18, 2023).
CheckStyle, 2022. http://checkstyle.sourceforge.net/ (Accessed January
18, 2023).

W3C. XML Path Language (XPath) 3.1. World Wide Web Consortium,
‘W3C Recommendation, March 2017.

G. Ann Campbell and Patroklos P. Papapetrou.
Manning Publications Co., USA, 1st edition, 2013.
Boryana Goncharenko and Vadim Zaytsev. Language design and imple-
mentation for the domain of coding conventions. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2016), pages 90-104, 2016.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton.
Learning natural coding conventions. In Proceedings of the 22nd ACM

ACM

SonarQube in Action.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

[27]

(28]

[31]

[32

[33]

[34

[35

(37

[38]

[39]

[43]

[44

[45]

[46

[47]

SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 281-293. ACM, 2014.

P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and M. Vieira.
Benchmarking static analysis tools for web security. IEEE Transactions
on Reliability, 67(3):1159-1175, Sep. 2018.

Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia,
and Marco Vieira. An empirical study on combining diverse static analysis
tools for web security vulnerabilities based on development scenarios.
Computing, 101(2):161-185, February 2019.

Yan Wu, Robin A. Gandhi, and Harvey Siy. Using semantic templates
to study vulnerabilities recorded in large software repositories. In Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Secure
Systems (SESS 2010), pages 22-28, Cape Town, South Africa, 2010.
ACM.

N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. Le Meur. DECOR: A
Method for the Specification and Detection of Code and Design Smells.
IEEE Transactions on Software Engineering, 36(1):20-36, 2010.

Huiging Li and Simon Thompson. A domain-specific language for
scripting refactorings in erlang. In Fundamental Approaches to Software
Engineering (FASE 2012), pages 501-515. Springer Berlin Heidelberg,
Tallinn, Estonia, 2012.

Claudia Raibulet, Francesca Arcelli Fontana, and Marco Zanoni. Model-
driven reverse engineering approaches: A systematic literature review.
IEEE Access, 5:14516-14542, 2017.

Architecture-Driven Modernization: Knowledge Discovery Meta-Model
(KDM). Object Management Group, formal/16-09-01, September 2016.
Version 1.4.

Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
MoDisco: a generic and extensible framework for model driven reverse
engineering. In Proceedings of the 25th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’10), pages 173-174,
2010.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schifer.
QL: Object-oriented Queries on Relational Data. In 30th European
Conference on Object-Oriented Programming (ECOOP 2016), volume 56,
pages 2:1-2:25, Dagstuhl, Germany, 2016.

Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel,
and Daniel Varrd. Survey and classification of model transformation tools.
Software and Systems Modeling, (18):2361-2397, August 2019.

Object Constraint Language. Object Management Group, formal/2014-
02-03, February 2014. Version 2.4.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley
Professional, Boston, MA, USA, December 2008.

Elder Rodrigues Jr. and Leonardo Montecchi. CCSL Metamodel, 2022.
https://github.com/Elderjr/Coding- Conventions- Specification- Language
(Accessed January 18, 2023).

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. In European
Conference on Object-Oriented Programming, pages 406—431. Springer,
1993.

OMG Unified Modeling Language (OMG UML). Object Management
Group, formal/2017-12-06, December 2017. Version 2.5.1.

XML Metadata Interchange. Object Management Group, formal/15-06-
07, June 2015. Version 2.5.1.

H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358—
358, feb 1953.

Eclipse Modeling Project. Eclipse OCL (Object Constraint Language),
2022. https://projects.eclipse.org/projects/modeling.mdt.ocl (Accessed
January 18, 2023).

Acceleo. https://www.eclipse.org/acceleo/, 2022. (Accessed January 18,
2023).

MOF Model to Text Transformation Language, v1.0. Object Management
Group, formal/2008-01-16, Janaury 2008.

Frédéric Madiot and Marc Paganelli. Eclipse sirius demonstration. In
Vinay Kulkarni and Omar Badreddin, editors, Proceedings of the MoD-
ELS 2015 Demo and Poster Session co-located with ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2015), volume 1554 of CEUR Workshop Proceedings,
pages 9-11, Ottawa, Canada, September 27th 2015. CEUR-WS.org.
Moritz Eysholdt and Heiko Behrens. Xtext: implement your language
faster than the quick and dirty way. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems

VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3256886

IEEE Access

Rodrigues Jr. et al.: A Model-Driven Approach for the Management and Enforcement of Coding Conventions

languages and applications companion - SPLASH’10, page 307-309,
Reno/Tahoe, Nevada, USA, 2010. ACM Press.

[48] Markus Voelter. Best Practices for DSLs and Model-Driven Development.
Journal of Object Technology, 8(6), 2009.

[49] Andrei Arusoaie, Stefan Ciobaca, Vlad Craciun, Dragos Gavrilut, and
Dorel Lucanu. A Comparison of Open-Source Static Analysis Tools for
Vulnerability Detection in C/C++ Code. In 2017 19th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), Timisoara, Romania, sep 2017. IEEE.

[50] Elder Rodrigues Jr., J. D’Abruzzo Pereira, and Leonardo Montec-
chi. CCSL vs. PMD Experiment, 2022. https:/github.com/Elderjr/
ccsl-vs-pmd-experiment (Accessed January 18, 2023).

[51] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig.
Understanding the Use of Lambda Expressions in Java. Proc. ACM
Program. Lang., 1(OOPSLA), October 2017.

[52] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. MLIR: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Seoul, South
Korea, feb 2021. IEEE.

ELDER RODRIGUES JR. holds a Master’s De-
gree in Computer Science from the University
of Campinas, Brazil (2020). His master’s work
was primarily focused on formalizing coding stan-
dards using model-driven engineering techniques.
Currently, he works as a Senior Java Developer
leading a team at Inter, a digital bank in Brazil.
Contact him at elder.rod.jr@gmail.com

JOSE D’ABRUZZO PEREIRA is a Ph.D. stu-
dent in Information Science and Technology at
the University of Coimbra (UC), and member
of the Software and System Engineering (SSE)
group at CISUC. His research interests include
security and vulnerability detection, static code
analysis, software project management, software
quality, and self-adaptive systems. He received
a MSc in Information Technology and Software
Engineering from the University of Coimbra and
Carnegie Mellon University, and a BSc. in Computer Science from the State
University of Campinas - Brazil (Unicamp). Contact him at josep@dei.uc.pt.

LEONARDO MONTECCHI is an associate pro-
fessor at the Norwegian University of Science
and Technology, Trondheim, 7034, Norway. His
research focuses on modeling as a support to the
verification and validation of safety-critical and
mission-critical systems. Montecchi received his
Ph.D. in computer science, systems, and telecom-
munications from the University of Florence. Con-
tact him at leonardo.montecchi @ntnu.no.

VOLUME 10, 2022 21

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

