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Abstract— With the widespread adoption of deep learning,
reinforcement learning (RL) has experienced a dramatic increase
in popularity, scaling to previously intractable problems, such as
playing complex games from pixel observations, sustaining con-
versations with humans, and controlling robotic agents. However,
there is still a wide range of domains inaccessible to RL due to
the high cost and danger of interacting with the environment.
Offline RL is a paradigm that learns exclusively from static
datasets of previously collected interactions, making it feasible to
extract policies from large and diverse training datasets. Effective
offline RL algorithms have a much wider range of applications
than online RL, being particularly appealing for real-world
applications, such as education, healthcare, and robotics. In this
work, we contribute with a unifying taxonomy to classify offline
RL methods. Furthermore, we provide a comprehensive review
of the latest algorithmic breakthroughs in the field using a
unified notation as well as a review of existing benchmarks’
properties and shortcomings. Additionally, we provide a figure
that summarizes the performance of each method and class of
methods on different dataset properties, equipping researchers
with the tools to decide which type of algorithm is best suited
for the problem at hand and identify which classes of algorithms
look the most promising. Finally, we provide our perspective on
open problems and propose future research directions for this
rapidly growing field.

Index Terms— Batch reinforcement learning (RL), deep learn-
ing (DL), offline RL, RL.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a powerful learning

paradigm for control. In RL, an agent must learn to

maximize a specified reward signal through trial and error,

i.e., actively interacting with the environment by taking actions

and observing the reward. With the recent success of deep

learning (DL) in complex domains (e.g., natural language
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processing [1] and computer vision [2]), deep RL has become

increasingly popular due to its ability to leverage high-capacity

function approximators, allowing agents to make decisions

from unstructured inputs and with minimal feature engineer-

ing [3], [4]. A lot of the progress in DL can also be attributed

to the availability of large and diverse training datasets [5].

However, current deep RL methods still typically rely on active

data collection to succeed, hindering their application in the

real world [6].

In the online or on-policy RL settings, an agent is free

to interact with the environment and must collect a new set

of experiences after every update to its policy. In off-policy

RL, the agent is still free to interact with the environment.

However, it can update its current policy using experiences

collected from any previous policies. This increases the sample

efficiency of training since the agent does not have to discard

all of its previous interactions and can instead maintain a buffer

where old interactions can be sampled multiple times [7].

Offline RL (also known as batch RL) is a data-driven

RL paradigm concerned with learning exclusively from static

datasets of previously collected experiences [8]. In this setting,

a behavior policy interacts with the environment to collect a

set of experiences, which can later be used to learn a policy

without further interaction. This paradigm can be extremely

valuable in settings where online interaction is impractical,

either because data collection is expensive or dangerous

(e.g., in robotics [9], education [10], healthcare [11], and

autonomous driving [12]). Even if online interaction is viable,

one might still prefer to use previously collected data for

improved generalization in complex domains [8]. In Fig. 1,

we illustrate the key differences between each RL paradigm.

While online and off-policy RL constantly interact with the

environment to update their policy, offline RL learns an offline

policy from a static dataset of experiences collected by a

behavior policy. After learning an offline policy, one can still

opt to tune the policy online, with the added benefit that their

initial policy is likely safer and cheaper to interact with the

environment than an initial random policy [13].

While learning from a static dataset is one of the main

benefits of offline RL, it is also what makes it so challenging

for existing online RL algorithms. In theory, any off-policy

method could be used to learn a policy from a dataset

of previously collected experiences. However, these methods

often fail when exclusively working with offline data since

they were devised under the assumption that further online

interactions are possible, and algorithms can typically rely on

these interactions to correct erroneous behavior. Finding a bal-

ance between increased generalization and avoiding unwanted
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Fig. 1. Illustration of the different RL paradigms, including (a) online RL, (b) off-policy RL, and (c) offline RL. In online RL new experiences must be
collected with the latest policy before making an update. In off-policy RL, we reuse previous experiences but still rely on a continuous collection of new
experiences. In contrast, offline RL only uses previous experiences collected with a behavior policy πβ and stored in a static dataset D to learn a policy πoff.
After learning πoff, one can opt to fine-tune it using online or off-policy RL methods. This image is largely based on Levine et al.’s [8] pictorial illustration
of RL paradigms. Earth image made by Freepik from www.flaticon.com.

behaviors outside of distribution is one of the core problems of

offline RL. Moreover, this problem is further exacerbated by

the widespread use of high-capacity function approximators.

Most of the novel offline RL algorithms directly address this

issue by proposing different losses or training procedures

capable of mitigating distributional shift.

One of the simplest ways to address distributional shift is by

directly constraining the learned policy to the behavior policy

used to collect the dataset [14], [15], [16]. Other methods

constrain the learned policy by making conservative estimates

of future rewards, done by learning a value function that is

strictly a lower bound to the true value function [17], [18].

Some model-based methods estimate the model’s uncertainty

using ensembles, allowing one to penalize conflicting actions

and favor decisions that are consistent across the models [19],

[20]. A few strategies do not explicitly restrict the learned

policies but still address distributional shift by either using

some variation of behavior cloning (BC) [21] or avoiding it

entirely by taking a single step of policy evaluation and policy

improvement [22], [23]. In contrast, some strategies do not

address distributional shift at all, such as importance sampling

(IS) [24], [25], [26] and trajectory optimization [27], [28],

which are concerned with learning an optimal policy and an

optimal trajectory distribution, respectively.

Currently, a limited number of works have reviewed the

field of offline RL. Most notably, Levine et al. [8] published

a tutorial article highlighting the key challenges of the field,

reviewing seminal works, discussing their applications, and

presenting perspectives on open problems. However, the num-

ber of offline RL and RL publications has grown exponentially

over the past five years.1 With the dramatic increase in pop-

ularity of the field, several new methods have been proposed

using various strategies not discussed in Levine et al.’s [8]

work. With this in mind, we were motivated to propose a novel

taxonomy under a unified notation, identifying the different

modules and flows that may be combined to build an offline

RL algorithm. We wish to understand how these components

contribute to the performance of a method and where we

should focus our research in the upcoming years to advance

the field further.

1A figure comparing the number of publications in offline RL and RL
over the past five years is available in the Supplementary Materials. All
Supplementary Materials are available at https://github.com/larocs/offline-rl-
suvey

A. Contributions

This survey makes the following key contributions.

1) Taxonomy: We propose a novel taxonomy for clas-

sifying offline RL methods. Methods can belong to

different categories, including model-based, one-step,

and imitation learning methods. Furthermore, methods

can have several modifications to their losses, including

policy constraints, regularization, or uncertainty estima-

tion terms.

2) Algorithmic Review: We also provide the most updated

literature review of offline RL methods using a uni-

fied notation, including detailed discussions of semi-

nal works, recently published articles, and promising

preprints.

3) Dataset Review: We evaluate the current benchmarks

available in the literature and discuss how their datasets

satisfy some of the key desirable properties of offline RL

datasets. This allows fellow researchers to understand

where to evaluate their method to assess its ability to

address particular issues, e.g., which dataset should be

used to determine if their method works well with sub-

optimal data. Furthermore, it will allow one to classify

their dataset according to its dataset properties and learn

about common pitfalls.

4) Method Performance: We provide a figure with the

relative performance of each method and class of meth-

ods on each of the dataset properties we defined. This

will equip researchers with the tools to select the best

algorithm for a given problem and identify the classes

of algorithms with the most promising performance.

5) Open Problems: We also discuss our perspective on

some of the open problems of the field, including off-

policy evaluation (OPE) methods, a reliable offline RL

workflow, and the ability to dynamically modulate the

degree of conservatism of an algorithm.

B. Text Organization

The rest of this survey is structured as follows. In Section II,

we give a brief background of online and offline RL,

introducing the notation and the key concepts behind the meth-

ods. Section III introduces our proposed taxonomy with a brief

explanation of each class’ structure. In Section IV, we go over

each class of our taxonomy and review their main methods.

Section V introduces the concept of OPE and some of the
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best strategies used to evaluate policies without interacting

with the environment. In Section VI, we evaluate the different

offline RL benchmarks available in the literature and discuss

some of their properties and shortcomings. Section VIII gives

an overview of the open problems in the field, suggesting

promising future directions for research. Finally, Section IX

presents some concluding remarks.

II. BACKGROUND

Toward the end of 2013, Mnih et al.’s [3] published their

seminal work on deep Q-networks (DQN), an off-policy RL

algorithm capable of learning how to play multiple Atari

games at a level comparable or superior to professional

game-testers only from pixel observations. Silver et al. [29]

reached a new milestone in deep RL with AlphaGo, an agent

trained to play Go that became the first computer program

capable of beating a professional human Go player. Even with

its immense progress, most deep RL applications and test

environments are still limited to games and simulations [30].

Recently, to improve RL’s applicability to the real world, more

researchers have recognized the importance of learning from

static datasets of observations. Toward the end of 2018, offline

RL started to get some attention with Fujimoto et al.’s [14]

work on batch-constrained Q-learning (BCQ), after which the

field got significant traction and experienced an exponential

increase in its number of publications.

In this section, we go over key concepts and ideas of

offline RL. First, we define a Markov decision process (MDP)

and introduce the notation used to develop the mathematical

formalism of RL. Then, we formalize the problem of offline

RL and detail the properties and related challenges expected

from good offline RL.

A. Markov Decision Process

An MDP is a mathematical formulation to describe an ideal

environment in RL, which allows us to make theoretical state-

ments about our problem [7]. An MDP frames the problem

of learning from interactions to achieve a goal. In an MDP,

an agent in a state st ∈ S interacts with the environment by

taking an action at ∈ A, and the environment responds with

a new state st+1 ∈ S and a reward rt ∈ R, which signals how

beneficial that interaction was toward the agent’s goal.

The full MDP can be defined by a six-tuple M =
(S,A, T, d0, r, γ ), where S denotes the state space, A denotes

the action space, T (st+1|st , at ) denotes the transition distri-

bution, d0(s0) denotes the initial state distribution, r(st , at )

denotes the reward function, and γ ∈ (0, 1] the discount factor.

Within an MDP, our objective is to find a policy π(at |st ),

which denotes the probability of taking action at conditioned

on the current state st . From this definition, we can derive

a trajectory distribution, where a trajectory is a sequence of

H + 1 states and H actions, given by τ = (s0, a0, . . . , sH ),

where H may be infinite in nonepisodic environments. The

probability density function for a given trajectory τ and policy

π is given by

pπ (τ ) = d0(s0)

H−1∏

t=0

π(at |st )T (st+1|st , at ). (1)

In an MDP, the transition distribution T (st+1|st , at ) com-

pletely characterizes the environment’s dynamics. In other

words, the probability of a future state st+1, depends solely on

the present state st and action at , without any regard for the

past. The property that a state st must have all the information

required to infer st+1 after taking action at is known as the

Markov property.

However, in most cases, instead of working with states st ,

we have to work with observations ot of these states. When

we do not have access to a fully observable state, we can

define a partially observable MDP (POMDP), characterized

by the eight-tuple M = (S,A,O, T, d0, E, r, γ ), where O

is the observation space and E(ot |st ) is the emission function

that maps states to observations. Within a POMDP, we wish to

find a policy π(at |ot ), conditioned on observations. Although

more accurate, most offline RL works disregard the POMDP

formulation and assume the Markov property is valid for the

observations, which we also do throughout this survey.

B. Reinforcement Learning

In RL, we are concerned with finding an optimal policy

π∗(a|s) that maximizes the expected return for all trajectories

induced by the policy, such that

π∗ = argmax
π

Eτ∼pπ (·)[R0:H ] (2)

where Ri : j = 6
j

t ′=iγ
t ′−ir(st ′ , at ′) is the discounted cumulative

reward (i.e., return) of our policy from time step i to j . For

brevity, from now on, we denote Rt = Rt :H . Policy gradients

are one of the key RL methods that directly maximize this

objective to find π∗.

Methods like policy iteration and value iteration [7] rely

on different quantities of interest to find an optimal policy,

such as state-value and action-value functions. A state-value

function for a policy π , denoted by V π (st ), maps a state to

the expected return when starting from state s and following

π until termination, such that

V π (st )
.
= Eτ∼pπ (·|st )[Rt ]. (3)

Similarly, an action-value function for a policy π , denoted by

Qπ (st , at ), maps state-action pairs to their expected return.

The difference between Qπ (st , at ) and V π (st ) is a lower

variance alternative to the action-value function known as

the advantage function Aπ (st , at ) since it represents how

advantageous it is to take action at as compared with the

average performance we would expect from state st .

These quantities are used throughout the RL field,

which is conventionally subdivided into three classes of

methods: dynamic programming, model free, and model

based [31], [32]. Dynamic programming has its origins in

optimal control [33] and may be used to compute an optimal

policy based on a known MDP. In model-free methods,

we assume we do not know the MDP and instead need

to learn only from its samples. This can be done through

policy gradients that directly learn a policy, value iteration

methods that learn a value function used to extract a policy,

or actor–critic methods that learn both quantities by iteratively

alternating between policy evaluation and policy improvement.

Finally, in model-based methods, we attempt to learn a model

of the MDP, which can then be used for planning or to learn a
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policy by sampling from the MDP and training with a model-

free approach (e.g., Dyna-based methods [34]). For a more

comprehensive review of the RL field, we advise the reader

to Arulkumaran et al.’s [31] or Wang et al.’s [32] deep RL

survey.

C. Offline Reinforcement Learning

A big part of modern machine learning success relies

on large and diverse datasets. RL is an interactive machine

learning paradigm at its core, where an agent interacts with

the world, collects some experience, and uses that experience

to improve its policy. Compared with other ML paradigms,

we see a big gap in the generalization ability of RL, which

has been successful mainly in closed and relatively narrow

domains [3], [29]. The fundamental problem with an interac-

tive learning paradigm is that every time we change the policy,

we need to recollect the entire dataset, which is prohibitively

expensive in the real world. One of the main reasons RL makes

extensive use of simulated training [6], [35] is to avoid the cost

and danger of interacting with the real-world environment.

In the offline RL setting, we have a fixed dataset collected

by some unknown behavioral policy πβ , which is then used

to learn a new and improved policy πoff without further inter-

actions with the environment. Under this paradigm, we wish

to use datasets from many past experiences and generalize

beyond naive imitation learning, finding, and exploiting the

good parts of our behavior policy [8]. This paradigm would

allow us to apply RL to domains where it is currently infeasi-

ble or impractical to collect data online, such as healthcare

(e.g., medical diagnosis), robotics (e.g., robotics manipula-

tion), inventory management, and autonomous driving. Fig. 1

depicts the main differences between the online, off-policy,

and offline RL paradigms.

More formally, in the offline RL setting, we are given a

static dataset of transitions D = {(st , at , st+1, rt )i },
2 where

i indexes a transition in the dataset, the actions come from

the behavior policy at ∼ πβ(·|st ), the states come from a

distribution induced by the behavior policy st ∼ dπβ (·), the

next state is determined by the transition dynamics st+1 ∼
T (·|st , at ), and the reward is a function of state and action

rt = r(st , at ). In offline RL, the objective is still the same

as in the online case: to find a policy that maximizes the

expected return. However, we cannot evaluate this objective

under an arbitrary trajectory distribution pπ (τ ), since π might

experience distributional shift and visit states that we do not

have any information for from our static dataset.

In Sections II-C1 and II-C2, we outline some of the desir-

able properties and challenges of offline RL algorithms con-

sidering their inability to further interact with the environment.

1) Desirable Properties: The performance of offline RL

methods is often compared with a BC baseline, which tries to

mimic πβ from D in a supervised manner. Given that offline

RL only has access to a static dataset, we do not have the same

optimality guarantees we have in the online setting, where we

are free to explore any region of our state and action spaces.

However, there are still reasons why using the RL formalism

2We also refer to the transitions in D as (s, a, s′, r)i interchangeably.
Although we represent D as a dataset of transitions, the dataset is often
composed of a set of trajectories.

to learn a new policy πoff can be more beneficial than naive

supervised learning. Next, we list these reasons and explain

why they are desirable in a good offline RL method.

a) Generalization: Good behavior in one place may

suggest good behavior in another place. With offline RL,

we may use more extensive and diverse datasets that allow

for better generalization.

b) Filtering: Even if the dataset is full of good and bad

behaviors, finding the good ones would already result in offline

RL finding a better policy than the one used to generate the

data. Although selecting the good trajectories and discarding

the bad ones might seem simple, this task is far from trivial in

a stochastic setting. Differentiating between good and lucky

behaviors is complex, and RL allows us to reason about the

long-term consequences of our actions in expectation more

easily through value functions, for instance.

c) Compositionality: Parts of good behaviors can be

recombined, such that even if you have not seen good behavior

in a full trajectory, you may have seen parts of good behaviors

in different trajectories that can be stitched together.

2) Challenges: The most apparent reason why offline RL

is difficult is its inability to interact with the environment, i.e.,

explore new states and experiment with new actions to find

high-reward regions. Suppose D does not have transitions in

high rewards regions. In this case, it may be impossible to

learn a policy that can find such regions. Essentially, when

we use a learned model or policy to act, we will inevitably

see different things from what we trained on. Once the agent

finds a novel state outside of the training distribution, it will

make bigger mistakes that compound until the policy diverges

wildly from the one it was trained on. This behavior is a type

of distributional shift.

Here, we formalize the concept of distributional shift for

offline RL. Let our objective minimize the Bellman error

derived from the action-value Bellman equation. Under the

offline RL setting, this gives us

J (φ) = Es,a,s′∼D

[(
r(s, a)+ γEa′∼πoff(·|s)

[
Qπ
φ

(
s′, a′

)]

− Qπ
φ (s, a)

)2
]

(4)

where φ are the parameters of our learned Q-function. When

minimizing J (φ), we can only expect the objective to be

accurate when πβ(a|s) = πoff(a|s), since only then can we

ensure that the Q-function was trained under the actions a′

that it is being evaluated on. In practice, this should never be

true since we wish to find a new policy πoff that is better than

our behavioral policy πβ , leading us to inevitably experience

distributional shift under our actions. Furthermore, even if πoff

is able to accurately evaluate the objective on training data,

the policy-induced state distribution might still deviate due to

compounding errors from sampling or function approximation,

i.e., dπoff(s) ̸= dπβ (s). These errors are much more severe in

offline RL since we cannot correct them through continuous

interaction like in off-policy RL.

III. TAXONOMY

In this section, we present our taxonomy for offline RL.

Our objective is to devise a categorization that encompasses

all offline RL methods and allows one to easily make design

decisions about what to learn and how to learn it. However,
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this is a challenge in offline RL since several methods propose

changes that are not exclusive and could be combined to form

a new type of offline RL algorithm. Taxonomies are normally

represented as is-a relationships (e.g., a dog is a mammal), and

mereologies study has-a relationships (e.g., a dog has a tail).

Therefore, we propose a high-level taxonomy that allows us

to classify all offline RL algorithms. However, we still rely on

mereology to distinguish different elements of each algorithm.

In Fig. 2, we illustrate our offline RL taxonomy. At a high-

level, algorithms rely on an optionally filtered static dataset

of transitions D to either learn a dynamics model, learn a

trajectory distribution, or be used directly in a model-free

approach to learn a policy. Both the dynamics model and

trajectory distributions can be used for planning, where we

use either the trajectory distribution induced by the learned

dynamics model pψT
(τ ) or the trajectory distribution learned

directly from the dataset pπβ (τ ), respectively, to determine

the best set of actions to take at each given time step.

However, the dynamics model can also be used to rollout

extra interactions, which can then be used to learn a policy

πθ (a|s). When learning a policy, we have two main algorithms:

actor–critic and imitation learning methods. In actor–critic

methods, we choose between one-step and multistep meth-

ods, that modify the number of policy evaluation and policy

improvement steps in the algorithm. In imitation learning,

we just mimic the remaining samples from our behavior policy

to learn an optionally conditional policy.

The remaining modifications that can be made to offline RL

algorithms we consider to be has-a relationships and illustrate

them in Fig. 3. The idea is that one can optionally add any

of the loss terms in the diagram to either the policy evalua-

tion or policy improvement step of their actor–critic method.

Although not illustrated in the diagram, the uncertainty esti-

mation loss term is also used in model-based approaches to

capture the uncertainty between an ensemble of dynamics

models.

Finally, Table I gives an overview of the main types of

modifications that can be made in an offline RL algorithm,

listing their changes and extra requirements needed to imple-

ment each one. These changes are shown considering a vanilla

model-free multistep actor–critic method. Sections III-A–III-H

go more in-depth on the general formulations of each of these

changes, leaving the literature review to Section IV.

A. Policy Constraints

Policy constraint methods can be subdivided into direct

and implicit policy constraints. Direct methods estimate the

behavioral policy πβ and constrain the learned policy πθ to

stay close to πβ . Implicit methods do not rely on the estimation

of πβ and implicitly constrain πθ by using a modified objective

and relying strictly on samples from πβ .

More formally, direct policy constraint methods address the

distributional shift problem by modifying the unconstrained

policy improvement objective to the constrained objective we

wish to maximize

J (θ) = Es∼dπθ (·),a∼πθ (·|s)

[
Qπ (s, a)

]

s.t. D
(
πθ (·|s), π̂β(·|s)

)
≤ ϵ (5)

where D(·, ·) is some divergence metric that mea-

sures the distance between two probability distributions

Fig. 2. Illustration of the general structure of an offline RL algorithm,
where different paths represent possible algorithm design choices. Initially,
the behavior policy πβ interacts with the environment to collect experiences
for dataset D. The data are then optionally filtered to retain only experiences
from high-return trajectories. The remaining samples can then be used to
either directly learn a policy πθ , learn a dynamics model TψT

(s|s, a), or a
model of the trajectory distribution pπβ (τ ). Trajectory distributions are used
for planning, while dynamics models can be used either for planning or to
generate synthetic samples to learn a policy. To learn πθ , we can opt between
actor–critic and imitation learning methods. In the former, one can opt to use
single or multiple steps of policy evaluation and policy improvement, while
the latter typically relies on a good filtering process. Earth and globe images
made by Freepik from www.flaticon.com.

(i.e., f -divergence), ϵ is a divergence threshold we must

satisfy, and π̂β(·|s) is an estimate of the behavior policy [8].

These methods are referred to as direct methods since they

directly estimate the behavior policy πβ in order to compute

the divergence D and enforce the constraint.

This reliance on an estimate of πβ is also one of the

main limitations of these methods. The behavior policy can

come from human-provided data, hand-designed controllers,

or multiple policies, making it difficult to estimate. A few

ways to estimate πβ include training a parametric model with

behavioral cloning (e.g., maximum likelihood over D [16]) or

using a nonparametric naive estimator [17], such as π̂β(a|s) =
(6s,a∈D✶[s = s, a = a])/(6s∈D✶[s = s]). However, suppose

the behavior policy is incorrectly estimated, such as when we

fit a unimodal policy into multimodal data. In that case, policy

constraint methods can fail dramatically.
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TABLE I

SUMMARY OF OFFLINE RL MODIFICATION TYPES CONSIDERING A VANILLA MODEL-FREE MULTISTEP ACTOR–CRITIC METHOD. SOME MODIFICA-
TIONS CHANGE THE ALGORITHM’S CLASS IN TAXONOMY BY MODIFYING THEIR IS-A RELATIONSHIPS (E.G., ONE-STEP). OTHER MODIFICA-

TIONS (E.G., POLICY CONSTRAINTS) CAN BE SIMULTANEOUSLY PRESENT IN A METHOD AND MODIFY ITS HAS-A RELATIONSHIPS

Another issue with policy constraints is that these methods

can often be too pessimistic, which is always undesirable. For

instance, if we know that a certain state has all actions with

zero reward, we should not care about constraining the policy

in this state once it can inadvertently affect our neural network

approximator while forcing the learned policy to be close to

the behavior policy in this irrelevant state. We effectively limit

how good of a policy we can learn from our dataset by being

too pessimistic.

Implicit policy constraint methods enforce a constraint on

the learned policy πθ while avoiding the need to estimate

πβ . We can derive a solution to the constrained optimization

problem in (5) by enforcing the Karush-Kuhn-Tucker (KKT)

conditions [36], such that the Lagrangian is

L(π, λ) = Es∼d
πβ (·)

[
Ea∼π(·|s)

[
Âπ (s, a)

]

+ λ
(
ϵ − DKL

(
π(·|s)∥πβ(·|s)

))]
(6)

where Âπ (s, a) is an estimate of the advantage function.

Solving the Lagrangian for ∂L/∂π = 0 allows us to

obtain a closed form nonparametric solution π∗(a|s) ∝
πβ(a|s) exp(λ−1 Âπk (s, a)). Since we use parametric function

approximators to estimate πθ , we need to project our non-

parametric solution π∗ onto our policy space. One way to do

this is by minimizing the Kullback-Leibler (KL) divergence

between πθ and π∗ in expectation under the state marginal of

our data distribution. This allows us to derive the objective for

the policy improvement step we wish to maximize

J (θ) = Es,a∼D

[
logπθ (a|s) exp

(
1

λ
Âπ (s, a)

)]
. (7)

Notice how this amounts to a weighted maximum likelihood,

where the weights are given by the exponentiated advantage

function. Furthermore, in order to perform the update, we do

not need to learn a behavior policy explicitly and can simply

use samples (s, a) from our static dataset D.

Policy constraints are typically a loss term in the policy

evaluation or improvement step of actor–critic methods. They

come in two forms: distribution or support matching con-

straints. Distribution constraints restrict πθ ’s distribution to

match πβ . In contrast, support constraints only restrict the

actions selected from πθ to be within the support of the

actions selected by πβ , but not the probabilities of these

actions.3 Fig. 3 illustrates the difference between each type

of constraint.

B. Importance Sampling

IS is commonly used in RL to compute off-policy policy

gradients. Here, we formalize IS for offline RL as a means to

evaluate our policy πθ with samples from our behavior policy

πβ . We have that the importance-weighted policy gradient

∇θ J (θ) from online RL in offline RL notation is

Eτ∼pπβ (·)

[
w0:H

H∑

t=0

∇θγ
t logπθ (at |st )Q̂(st , at )

]
(8)

where Q̂(st , at ) is our estimated expected return for (st , at )

and wi : j is the product of importance weights. One of the

main issues with IS is that w0:H is exponential in H , making

it important to devise different strategies to reduce the variance

from the importance weights.

C. Regularization

There are times when we want to impose behaviors on our

learned policy that do not depend on πβ . The regularization is

a powerful tool that allows us to tune our learned function by

adding a penalty term. Let us denote by R our regularization

term. With policy regularization, we can rewrite our policy

gradient objective as

J (θ) = Es,a∼D

[
Qπθ (s, a)

]
+ R(θ) (9)

which we wish to maximize.

With value regularization, we penalize our learned value

function to make its estimates more conservative, which gives

us the modified value objective that we wish to minimize

J (φ) = Es,a,s′∼D

[(
r(s, a)+ γEa′∼πoff(·|s)

[
Qπ
φ

(
s′, a′

)]

− Qπ
φ (s, a)

)2
]

+ R(φ). (10)

Regularization terms tend to be less conservative than policy

constraints since we do not limit our policy to πβ . Typically

these terms are accompanied by other techniques, such as con-

servative models or policy constraints that effectively prevent

3The support of a function f : X → R is the set of points in its domain
where f is nonzero, i.e., supp( f ) = {x ∈ X : f (x) ̸= 0}.
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Fig. 3. Policy evaluation and policy improvement loss terms, including the policy constraints loss Lpc, uncertainty estimation loss Lunc, and regularization
loss Lreg. The policy constraints diagram showcases the difference between distribution and support matching constraints. Distribution constraints restrict πθ ’s
distribution to match πβ . In contrast, support constraints only restrict the actions selected from πθ to be within the support of the actions selected by πβ . In the
uncertainty estimation diagram, we show how an uncertainty measure can be extracted from the variance of predictions from an ensemble of Q functions.
In the regularization diagram, we illustrate how policy regularization can improve the stochasticity of the learned policy (e.g., entropy regularization), and
value regularization can ensure we do not overestimate Q-values.

us from taking out-of-distribution (OOD) actions. In Fig. 3,

we show how regularization terms can help enforce desirable

properties in our learned quantities, such as stochastic policies

and conservative value functions.

D. Uncertainty Estimation

Uncertainty-based offline RL methods allow us to switch

between conservative and naive off-policy RL methods, based

on how much we trust the generalization ability of our models.

By estimating the uncertainty of our approximation (e.g.,

policy, value function, or model), we can relax the constraints

on our learned policy in low-uncertainty regions.

One of the ways to define an uncertainty estimate is with

respect to our Q-function. Let PD(Q
π ) denote the distri-

bution of Q-functions for a dataset D. We can rewrite our

policy gradient objective penalizing the uncertainty captured

by PD(Q
π ), such that

J (θ) = Es,a∼D

[
EQπ∼PD(·)

[
Qπ (s, a)

]

−αUPD
(PD(·))

]
(11)

where UPD
(·) is an uncertainty measure for PD.

Uncertainty estimation methods are typically concerned

with defining the distribution PD(·) and the uncertainty esti-

mator UPD
(·) for this distribution, which is needed to evaluate

the objective. In Fig. 3, we showcase how the variance between

the different Q-value estimates from an ensemble of Q-

networks can be used as an uncertainty measure.

E. Model-Based Methods

Similar to online model-based methods, offline model-based

algorithms are concerned with first estimating the transition

dynamics TψT
(st+1|st , at ) and the reward function rψr

(st , at ).

These functions are typically estimated using standard super-

vised regression with the dataset D. We can then use the

dynamics and rewards model as proxies of the real environ-

ment, simulating transitions and then using them for planning.

Model-based methods often work well when the data distri-

bution has high coverage since it is easy to learn an accurate

model on this data.

Contrary to online RL, models learned offline cannot correct

their mistakes by interacting with the environment. One of

the ways to avoid model distributional shifts is to estimate a

conservative model that avoids transitioning to OOD states.

This can be done by using uncertainty estimation from

Section III-D and penalizing our model’s reward function in

these OOD states, such that

r̃ψr
(s, a) = rψr

(s, a)− λUr (s, a) (12)

where Ur (·, ·) is our state-action-dependent uncertainty mea-

sure, which we expect to be low for states and actions

present in D and high otherwise. For examples of Ur , refer to

Section IV-D.

F. One-Step Methods

Most of the methods we have covered until now use

actor–critic formulations to learn both a policy πθ (a|s) and an

action-value function Qπ
φ (s, a). The actor–critic methods are

normally implemented iteratively, alternating between policy

evaluation and policy improvement steps in rapid succession.

One of the issues with iteratively performing policy evaluation

is that we inevitably run into a distributional shift, as described

in Section II-C2 since we compute the target values concerning

actions from our updated policy πoff and train our Q-function

on actions from our behavior policy πβ .

It is important to distinguish between a step and an iteration

in policy improvement. An iteration consists of a single update

to our quantity of interest. Meanwhile, we perform multiple

iterations within a step until this quantity converges. Recent

methods avoid iteratively performing policy evaluation and

instead perform a single step of policy evaluation followed

by a single-policy improvement step. One-step or single-step

methods perform multiple state sweeps to learn an accurate

estimate of Qπβ (s, a), as opposed to most multistep methods

that continuously alternate between policy evaluation and pol-

icy improvement until Qπoff(s, a) converges. With an accurate

estimate of Qπβ (s, a), one-step methods then perform a single-

policy improvement step to find the best possible policy. This

means we never perform policy evaluation with actions outside

of our data distribution. Hence, we avoid adding constraints to

our loss functions since we do not have to worry about taking

OOD actions.

G. Imitation Learning

Imitation learning4 consists of a class of algorithms that,

at their core, mimic the behavior policy πβ . In its simplest

4Imitation learning methods are often classified as ones that do not make use
of the reward signal to learn a policy. We extend this category to include any
method that uses BC at its core, either through filtering undesirable behaviors
or learning a conditional policy.
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form, we have a BC method that exactly copies the behavior

policy. This can be accomplished through supervised learning

techniques, where the difference between the learned policy

and behavior policy is minimized concerning some metric,

i.e., we wish to minimize the objective

J (θ) = D
(
πβ(·|s), πθ (·|s)

)
(13)

where D(·, ·) is an f -divergence (e.g., cross-entropy). How-

ever, we have already seen in Section II-C2 how this type of

objective is subject to distributional shift since tiny mistakes

in our policy will inevitably lead us to query unseen states and

experience compounding errors. Despite this, BC can still be

successful if most of the data consists of expert behavior.

We often do not have access to an expert behavior policy in

offline RL. Therefore, imitation learning methods look to filter

out the bad behaviors in the dataset and only mimic the good

ones. To do so, these methods often use value functions and

heuristics to select only the good trajectories from the dataset

to train on.

Another strategy that does not require expert behavior is to

learn a conditional policy πθ (at |st , ω), where ω is an outcome

conditioned on the remaining trajectory, i.e., ω ∼ g(·|τt :H )

and τi : j = (si , ai , . . . , s j ) denotes a fragment of the trajectory.

By defining g and learning a conditional behavior policy

through BC, one can learn a powerful policy entirely offline.

More formally, we wish to maximize the objective

J (θ) = Eτ∼pπβ (·),t∼U(1,H)

ω∼g(·|τt :H )

[
logπθ (at |st , ω)

]
(14)

where U(·, ·) represents a discrete uniform distribution. One of

the key challenges of these methods is defining the appropriate

outcome function g we wish to condition our policy on, which

varies depending on the type of data and task at hand.

H. Trajectory Optimization

In trajectory optimization, we are concerned with training

a joint state-action model over entire trajectories, given by

pπβ (τ ) = pπβ (s0, a0, . . . , sH ). (15)

In other words, we wish to learn a model of the trajectory

distribution induced by our behavior policy πβ . With a good

model, we can then plan an optimal set of actions from an

initial state s0.

Using a sequence modeling objective makes us less prone

to selecting OOD actions. This occurs because multiple state

and action anchors throughout the trajectory prevent us from

deviating too far from πβ . Furthermore, the large models that

are required to train long sequence models (e.g., transform-

ers [37]) can work well in the offline RL setting since we can

avoid active data collection and update our model between

trials.

IV. ALGORITHMIC REVIEW

In this section, we will discuss some of the recent develop-

ments in offline RL. Here, we will go over the main methods

for each modification type defined in Section III. In Table II,

we classify the key offline RL methods under our taxonomy.

Although this classification is far from exhaustive, it gives us

a good view of the most popular methods and provides insight

Fig. 4. Timeline illustrating the key developments, by order and interval,
in the field of offline RL from the end of 2018 to the present day (2022). The
timeline includes methods, benchmarks, surveys, software, and analysis papers
published in the field. At the start of the timeline, we highlight DQN [3],
an off-policy RL method that proposed an agent capable of learning how to
play multiple Atari games from pixel observations and pioneered the field of
deep RL. We then jump toward the end of 2018, highlighting BCQ [14], one
of the seminal works in the field of offline RL that formally introduced some
of its challenges (e.g., distributional shift). The dates shown in the timeline
are the submission dates of the preprints, accessible by clicking on each event.

into what areas are currently underexplored. Furthermore,

in Fig. 4, we present a timeline with the key developments in

the field, allowing one to evaluate the novelty and popularity

of each class of methods.

A. Policy Constraints

One of the first policy constraint methods in offline RL was

BCQ [14], which uses a direct policy constraint, forcing πθ to

be close to πβ with a specific parameterization

πθ (a, s) = argmax
ai +ξθ (s,ai )

Qπ
φ (s, ai + ξθ (s, ai )),

for ai ∼ π̂β(·|s), i = 1, . . . , N (16)

where π̂β(·|s) is estimated using a parametric generative model

trained with supervised regression, ξθ (s, a) is a perturbation

model with outputs bound to a predetermined range [−8,8],
and N is the number of samples. BCQ constrains πθ by

making sure that it only chooses actions similar to what πβ
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TABLE II

CLASSIFICATION OF DIFFERENT METHODS’ MODIFICATION TYPES. IN THE TOP SECTION, WE USE A + SYMBOL TO SIGNAL THE TYPES OF HAS-A

RELATIONSHIPS OF EACH METHOD. IN THE BOTTOM SECTION, WE USE A ✓ TO SIGNAL THE CLASS OF METHODS EACH METHOD BELONGS TO,
WHERE NO CHECKMARKS DEFAULT TO A VANILLA MODEL-FREE MULTISTEP ACTOR–CRITIC METHOD

would choose. By using a single sample N = 1 and ignoring

the perturbation model (i.e., 8 = 0), we are effectively

restricting πθ = πβ . As N → ∞ and 8 = amax, we have

an unconstrained problem similar to what is used in online

RL. Although BCQ does not fit the divergence formulation

we presented in (5), it can still be considered a direct policy

constraint method since it relies on the estimation of πβ and

constrains πθ to be close to πβ .

After BCQ, Kumar et al. [15] argued that constraining πθ to

match πβ’s distribution would limit how good of a policy we

could learn since we would not be able to exploit the good

actions in πβ and ignore the poor ones. Kumar et al. [15]

distinguish between distribution and support matching diver-

gences, arguing that support matching is superior since we still

ensure that we do not take OOD actions in the learned policy

while not restricting ourselves to copying the poor behaviors in

πβ . They propose a novel method named bootstrapping error

accumulation reduction (BEAR), which uses the maximum

mean discrepancy (MMD) divergence DMMD with a Gaussian

kernel as the f -divergence in (5) to constrain πθ . Empirically,

they find that when computing DMMD over a small number of

samples, the sampled MMD between πβ and πθ is similar to

the MMD between πβ’s support and πθ . In their experiments,

they show how BEAR can find good policies even when πβ is

composed of several suboptimal behaviors, while BCQ has a

hard time filtering out poor behaviors. Since the sample-based

MMD can be computed directly through samples from πβ ,

we classify BEAR as an indirect policy constraint method.

In succession, Wu et al. [16] proposed behavior regular-

ized actor–critic (BRAC), a general framework for behavior-

regularized actor–critic methods. BRAC allows one to penalize

either the policy improvement or policy evaluation step by

subtracting a divergence term from either objective. In their

work, Wu et al. [16] show that many of the proposed changes

from BCQ and BEAR were not significant to each method’s

performance. Decisions like the type of divergence to use (e.g.,

MMD versus KL) were far less significant than performing

an extensive hyperparameter search. Overall, they found that

applying a value penalty was more beneficial than regularizing

the policy, where they achieved the best results with BRAC-v

and BRAC-p, which use DKL(πθ∥πβ) as the f -divergence

to constrain the policy in the policy evaluation step and

policy improvement step, respectively. Since BRAC relies on

a maximum log-likelihood estimate of πβ , it is considered a

direct policy constraint method.

Afterward, Kostrikov et al. [38] proposed Fisher-behavior

regularized critic (Fisher-BRC), which uses a Fisher diver-

gence [48] DF (πθ∥πβ) to constrain the entropy-regularized

learned policy. In the critic optimization objective, they pro-

pose using entropy-smoothed Q-values, such that Qπ
φ (s, a) =

Oπ
φ (s, a) + log π̂β(s, a), where Oπ

φ (s, a) is a state-action

offset function. Replacing these Q-values both in the TD

minimization objective from (4) and the policy learning

objective from (2) with entropy regularization yields the basic

actor–critic formulation for Fisher-BRC. To prevent the gradi-

ent from Oπ
φ from dominating the gradient from π̂β , they also

add a gradient penalty ∥∇a Oπ
φ (s, a)∥2 to the critic optimization

objective. Although this method could be interpreted as a value

regularization method, where a gradient penalty is used to

regularize the state-action offset function, Kostrikov et al. [38]

show that the same objective can be derived by adding a

Fisher divergence term between the entropy-regularized policy

(i.e., Boltzmann policy) and the behavior policy in the critic

objective.

Moving away from estimating the behavior policy,

Peng et al. [36] proposed the advantage-weighted regres-

sion (AWR) method (analogous to MARWIL [49]). This

actor–critic algorithm implicitly applies a KL divergence con-

straint in the policy improvement step. AWR uses Monte

Carlo rollouts to train a value function V π
φ (st ) with supervised

regression. In the policy improvement step, AWR uses the

Monte Carlo advantage function, i.e., Âπ = AπMC, as the

exponential weights of the weighted maximum log-likelihood

objective from (7), where AπMC is given by

AπMC(st , at ) = Rt − V π
φ (st ). (17)

Similar to AWR, Nair et al. [39] proposed the advantage-

weighted actor–critic (AWAC) method, which uses a

Q-function to estimate the advantage in order to reduce its

variance and increase sample efficiency. The Q-function is

fit using a bootstrapped regression, where we minimize the
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objective J (φ) given by

Es,a,s′∼D

[
1

2
(r(s, a) +γEa′∼πθk−1

(·|s′)

[
Qπ
φ

(
s′, a′

)]

− Qπ
φ (s, a)

)2

]
. (18)

Notice how this is slightly different from the value-based

objective, which takes the maximum Q-value over the next

actions instead of the expectation under the latest policy. In the

policy improvement step, AWAC uses the same advantage-

weighted maximum log-likelihood objective from (7) as AWR,

with an advantage estimate Âπ -based solely on the action-

value function, that is,

AπAWAC(s, a) = Qπ
φ (s, a)− Eã∼πθ (·|s)

[
Qπ
φ

(
s, ã

)]
. (19)

However, using an action-dependent baseline requires adding

an error term to the loss to correct for the bias, similar to

Q-Prop [50]. Interestingly, Jiang and Li [39] do not attempt

to correct this bias, likely because their advantage estimate

would still be biased due to its reliance on a bootstrapped

return.

Finally, in an effort to simplify increasingly complex offline

RL methods, Fujimoto and Gu [44] propose adding a behavior-

cloning regularizer to the policy improvement step of the twin

delayed DDPG (TD3) algorithm [51], such that

J (θ) = Es,a∼D,ã∼πθ (·|s)

[
λQπ

φ

(
s, ã

)
−

(
ã − a

)2
]

(20)

where λ controls the strength of the regularizer. By penalizing

the mean squared error (MSE) between actions sampled from

the learned policy πθ and actions sampled from πβ , TD3

+ BC applies a form of implicit policy constraint. Using

this simple method where they simply modify the TD3 [51]

algorithm by applying z-score normalization to the states

and using the BC regularizer earlier, Fujimoto and Gu [44]

achieve competitive results with SOTA methods on datasets

for deep data-driven reinforcement learning’s (D4RL’s) Gym-

MuJoCo suite, showing how performance is often not tied to

algorithmic complexity.

Implicit policy constraint methods, such as BEAR, AWR,

AWAC, and TD3+BC, are particularly promising for online

fine-tuning after offline training. Direct policy constraint meth-

ods have a hard time reestimating πβ every time the dataset

D changes as we collect more data online. By avoiding

this estimation, we can seamlessly switch between an offline

and online environment by simply appending the new online

transitions to our offline dataset D. In practice, according to

Nair et al. [39], we see that AWR and AWAC significantly

outperform BEAR and BRAC when fine-tuning online after

training offline with suboptimal data.

B. Importance Sampling

Precup et al. [40] propose some of the first strategies to mit-

igate the high variance in vanilla importance-weighted policy

gradients given in (8). If we use a Monte Carlo return estimate,

such that Q̂(st , at ) =
∑H

t ′=t γ
t ′−tr(st ′ , at ′), and observe that

present rewards do not depend on future states and actions,

we can rewrite our per-trajectory IS policy gradient as a per-

decision one, that is,

∇θ J (θ) = Eτ∼pπβ (·)

[
H∑

t=0

w0:t−1∇θγ
t logπθ (at |st )

·

H∑

t ′=t

wt :t ′γ t ′−tr(st ′ , at ′)

]
. (21)

This gives us an unbiased estimator of ∇θ J (θ) with lower

variance since we have wt :t ′ in place of wt :H weighing each

reward, which has a less than or equal to the number of

terms being multiplied per reward. Precup et al. [40] also

suggest using self-normalizing importance weights w̃i : j =
wi : j/Eτ∼pπβ (τ)

[wi : j ] in place of wi : j in (21), trading off additional

bias for a large reduction in variance.

To further reduce variance, Jiang and Li [41] propose

the doubly robust estimator, which incorporates Q-function

estimates as control variates into the importance-sampled

estimator, modifying the objective to

J (πθ )= Eτ∼pπβ (·)

[
V̂ πθ (s0)+

H−1∑

t=0

w0:t

·
(
r(st , at )+γ

t+1V̂ πθ (st+1)− Q̂πθ (st , at )
)
]

(22)

where V̂ πθ (st ) = Ea∼πθ (·|st )[Q̂πθ (st , a)]. If we are given an

estimate of Q̂πθ , possibly via regression with a different

dataset, we can use this unbiased estimator to reduce the

variance of our gradients. The estimator is considered doubly

robust since it is unbiased if either πβ is known or if Q̂πθ is

correctly estimated. Despite these variance reduction efforts,

all methods shown until now still rely on the product of

importance weights wi : j that are exponential in H and make

IS poorly conditioned.

To avoid these exponential weights, marginalized IS [52]

uses an estimate of the state-marginal importance ratio

ρπ (s) = (dπ (s))/(dπβ (s)) to weigh the rewards at each

time step. By definition, a state-marginal is dπ (st ) =
d0(s0)

∏t−1
t ′=0 π(at ′ |st ′)T (st ′+1|st ′ , at ′). Considering that d0(s0)

and T (st+1|st , at ) are part of the MDP and independent of the

policy, these terms cancel out in the state-marginal importance

ratio, such that ρπθ (st ) = w0:t . By estimating ρπθ (s) directly

and substituting it in (21), we eliminate the need to multiply

O(H) terms together, reducing the variance of our policy

gradient.

Furthermore, we have that the state-marginal importance

ratio satisfies the following Bellman equation:

dπβ
(
s′
)
ρπ

(
s′
)

= (1 − γ )d0

(
s′
)

+ γ
∑

s,a

dπβ (s)ρπ (s)π(a|s)T (s′|s, a) (23)

which we can leverage to perform temporal difference updates

and estimate ρπ (s) under our policy. To solve for ρπ (s),

we typically minimize the difference between both sides of the

equation, making sure the term dπβ (s) multiplies everything.

That way, we can approximate the value using samples from

our dataset D, without the need to estimate dπβ (s).
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Zhang et al. [24] propose the generalized stationary DIs-

tribution correction estimation (GenDICE) method, which

extends this constraint to state-action marginal importance

ratios, ρπ (s, a) = (dπ (s, a))/(dπβ (s, a)), and directly optimize

the residual error corresponding to its modified Bellman

equation. GenDICE uses the constraint

dπβ
(
s′, a′

)
ρπ

(
s′, a′

)
= (1−γ )d0

(
s′
)
π

(
a′|s′

)

+ γ
∑

s,a

dπβ (s, a)ρπ(s, a)π(a|s)T (s′|s, a)

(24)

and minimizes a divergence metric D f between the two sides

of the equation, subject to the constraint that ρπ (s, a) must

integrate to unity in expectation over the dataset D. There is

a wide range of marginalized IS methods proposed for offline

RL [25], [26], [53], which we will not cover in this survey for

brevity and since Levine et al. [8] already do a good job of

discussing.

C. Regularization

Regarding policy regularization, Haarnoja et al. [54] pro-

posed an entropy regularization term in their seminal work on

soft actor–critics (SACs). By adding the following regulariza-

tion term to the policy gradient objective from (9),

R(θ) = Es∼D[H(πθ (·|st ))]

= −Es∼D,a∼πθ (·|s)

[
logπθ (a|s)

]
(25)

one is able to control the stochasticity of the optimal policy.

Adding an entropy maximization term helps improve the

robustness and stability of our training procedure since it

avoids premature convergence of the policy variance. The

more weight we put into this regularization term, the more

stochastic we wish the policy to be.

Regarding value regularization, Nachum et al. [25] intro-

duce a term in the Bellman error objective from (10) that

pushes Q-values down for actions sampled from the learned

policy πθ to avoid the overestimation of values in OOD

actions, such that

R(φ) = Es∼D,a∼πθ (·|s)

[
Qπ
φ (s, a)

]
. (26)

Similarly, Kumar et al. [17] propose an offline RL method

named constrained Q-learning (CQL) that learns a lower

bound of the true Q-function by adding value regularization

terms to its objective. In its most general form, the CQL

regularizer is given by

R(φ) = max
µ

Es∼D,a∼µ(·|s)

[
Qπ
φ (s, a)

]

− Es∼D,a∼π̂β (·|s)

[
Qπ
φ (s, a)

]
+ R(µ) (27)

where µ(·|s) is a policy that visits the unseen actions in

D (i.e., OOD actions), π̂β(·|s) is an estimate of the behav-

ior policy πβ , and R(µ) is a regularization term for the

policy µ(a|s). In their work, Kumar et al. [17] show that

with this regularizer, CQL learns a state-value function that

strictly underestimates the values for all states in the dataset,

i.e., ∀s ∈ D, VCQL(s) ≤ V (s).

The intuition behind this regularization term is that it will

push up values that are seen in D, possibly overestimating

them, and pull down values in unseen actions. The Bellman

error in value regularization objective from (10) ensures

that in-distribution state-action values are accurate, while the

negative expectation term in the CQL regularizer in (27)

pushes these values up. The positive expectation term pulls

the values for OOD actions down, while the regularization

term helps shape the policy µ(a|s) to ensure it visits these

actions. The maximization term over µ ensures that µ(a|s)
approximates the policy that would maximize the current

Q-function iterate, giving rise to an online algorithm.

One of the drawbacks of this approach is that it has

a saddle point problem since we are both minimizing and

maximizing the Q-function, which can be unstable to solve in

practice. Although Kumar et al. [17] present several choices

for R(µ), one of the simplest options is to use H(µ), such

that the optimal solution to the maximization term is µ∗ =
1/Z exp(Qπ (s, a)), where Z is a normalizing factor. Plugging

this into the CQL regularizer from (27), we have that

R(φ) = Es∼D

[
log

∑

a

exp
(
Qπ
φ (s, a)

)

− Ea∼π̂β (·|s)

[
Qπ
φ (s, a)

]
]

(28)

which avoids the maximization term and offers more stability

in training. Although CQL achieves good performance in

the D4RL [6] benchmark, the log–sum–exp term in (28)

is intractable for continuous actions and must be computed

through numerical integration. Kumar et al. [17] opt to use

Monte-Carlo sampling [55] with importance weights, where

samples are drawn from the current training policy.

It is worth noting that this method typically outperforms

policy constraint methods in several challenging tasks, includ-

ing the AntMaze and Kitchen domains from D4RL [6]. These

domains require algorithms to learn how to stitch suboptimal

behavior, which policy constraint methods have difficulty

doing. Singh et al. [56] apply CQL to a complex environment

with prior image data of how to solve simple tasks like closing

a drawer and picking up an object using sparse rewards.

During the evaluation, Singh et al. [56] present the agent with

initial states unseen during training, where it can compose

different tasks learned on the prior data to close the drawer

and pick up an object, for instance.

D. Uncertainty Estimation

One way to estimate uncertainty is with an ensemble of

Q-functions. As a naive attempt, Agarwal et al. [57] train a set

of K Q-functions Qπ
φ1
, Qπ

φ2
, . . . , Qπ

φK
independently by using

disjoint partitions of the dataset for each Q-function. This

approach allows approximating the Q-function distribution as

PD(Q
π ) ≈

1

K

K∑

i=1

δ
[
Qπ = Qπ

φi

]
(29)

allowing us to use sample means and sample variances for

the expectation and uncertainty terms in uncertainty-based

objective from (11) (i.e., UPD
= Var). In practice, this

ensemble offers very little diversity, causing the uncertainty

to be underestimated and making us more prone to take OOD

actions [58].
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Agarwal et al. [57] also propose the random ensemble

mixture (REM) method, where they sample a random convex

combination of Q-functions and use them to estimate the

Q-value for a given state-action tuple, that is,

Qπ (s, a) =

K∑

i=1

αi Qπ
φi
(s, a)

s.t.
∑

i

αi = 1 and ∀i, αi > 0. (30)

This method can work well in datasets with high coverage

compared with a standard naive off-policy RL method, such

as a DQN [3], but still lags behind other approaches like policy

constraints.

E. Model-Based Methods

Like uncertainty estimation methods, several model-based

methods are also concerned with estimating uncertainty. How-

ever, model-based methods typically use an uncertainty mea-

sure to constrain their model. Kidambi et al. [20] propose a

method named model-based offline RL (MOReL), which mea-

sures their model’s epistemic uncertainty through an ensemble

of dynamics models. They use a measure of disagreement

between the dynamics given by

disi, j (st , at ) = Esi
t+1∼Tψi

(·|st ,at )

s
j

t+1∼Tψ j
(·|st ,at )

[
∥si

t+1 − s
j

t+1∥
]

(31)

to define the uncertainty measure as

Ur (s, a) =

{
rmax, if maxi, j disi, j (s, a) > threshold

0, otherwise.
(32)

Yu et al. [42] propose another method named model-based

offline policy optimization (MOPO), which uses the maximum

prediction uncertainty from an ensemble of models, where they

have the model dynamics given by

Tψi

(
s′|s, a

)
= N (µi (s, a),6i (s, a)) (33)

where µi and 6i are the mean and covariance matrices of

the multivariate Gaussian used to model the i th transition

dynamics from the ensemble, respectively. The uncertainty is

then defined as

Ur (s, a) = max
i

∥6i (s, a)∥F (34)

where ∥·∥F is the Frobenius norm.

With these modified reward functions in hand, we can

then use classic model-based approaches to tackle offline RL

problems, such as Dyna-based methods that sample transitions

from the model to train a model-free algorithm [19], [34].

We can also run trajectory optimization or planning under

the learned model with methods like linear-quadratic regulator

(LQR) [59] and Monte Carlo tree search (MCTS) [60].

Concurrently, Matsushima et al. [43] proposed the behavior-

REgularized model-ENsemble (BREMEN) method, which

learns an ensemble of models of the behavior MDP, as opposed

to a pessimistic MDP. In addition, it implicitly constrains

the policy to be close to the behavior policy through trust-

region policy updates [61]. BREMEN is a method akin to

direct policy constraint methods since it learns an estimate

of the behavior policy π̂β , using it to initialize the training

policy πθ0
as Gaussian policy with mean from π̂β and unit

variance. To update its training policy, at every iteration j ,

it samples a model from the ensemble of K learned dynamics

models Tψi
(·|ŝt , ât ) and uses it to obtain trajectory rollouts

with the current training policy, creating a new dataset D̂ j

with transitions (ŝt , ât , ŝt+1, r̂ t ), where ŝ0 ∼ d0(·), ât ∼
πθ j
(·|ŝt ), ŝt+1 ∼ Tψi

(·|ŝt , ât ), r̂ t = r(ŝt , ât ), and i ∼ U(1, K ).

After creating D̂ j , the policy is optimized by maximizing the

objective

J
(
θ j+1

)
= Eŝ,â∼D̂ j

[
πθ j+1

(
â|ŝ

)

πθ j

(
â|ŝ

) Â
πθ j

(
ŝ, â

)
]

s.t. Eŝ∼D̂ j

[
DKL

(
πθ j+1

(
·|ŝ

)
∥πθ j

(
·|ŝ

))]
≤ ϵ (35)

where Â
πθ j (ŝ, â) is the advantage of πθ j

computed with model-

based rollouts using the sampled dynamics model Tψi
for the

given iteration.

While BREMEN performs well in the offline set-

ting against policy constraint methods that preceded it,

Matsushima et al. [43] argue that its main benefit is its deploy-

ment efficiency when starting from a small dataset collected

with a random behavior policy. Deployment efficiency mea-

sures the number of distinct data-collection policies used to

train a given policy. While offline RL lies at one extreme

of deployment efficiency with a single data-collection pol-

icy (i.e., πβ), off-policy and online RL lie at the opposite

extreme with thousands or millions of different interactions

with the environment. BREMEN shows good results in lim-

ited deployment settings, obtaining successful policies from

initial random policies in 5–10 deployments, while the recur-

sive application of other offline RL methods shows limited

improvement in successive deployments. One caveat of this

measure is that we did not find any other works that benchmark

their deployment efficiency, making it difficult to compare

BREMEN to other offline RL methods.

More recently, Yu et al. [18] proposed a method dubbed con-

servative offline model-based policy optimization (COMBO),

which is a model-based version of CQL [17]. COMBO learns a

single-dynamics model TψT
(s′|s, a) as a Gaussian distribution

over the next state and reward trained via maximum log-

likelihood. This learned dynamics model induces a new MDP,

which we will denote by M̂.

In the policy evaluation step, it minimizes the following

objective J (φ) given by:

α
(
Es,a∼ρ(s,a)

[
Qπ
φ (s, a)

]
− Es,a∼D

[
Qπ
φ (s, a)

])

+
1

2
Es,a,s′∼d

µ

f

[(
Qπ
φ (s, a)−

(
B̂
π Qπ

φ

)
(s, a)

)2
]

(36)

where (B̂π Qπ
φ )(s, a) is the sample-based Bellman operator,5

and we highlight ρ(s, a) and d
µ

f in blue as they are the only

things that change from the CQL evaluation step. For ρ(s, a),

they choose

ρ(s, a) = dπ
M̂
(s)π(a|s) (37)

5The Bellman operator can be defined as (Bπ Qπ )(s, a)
.
= r(s, a) +

γEs′∼T (·|s,a),a′∼π(·|s′)[Qπ (s′, a′)]. The sample-based Bellman operator drops

the expectations and is defined as (B̂π Qπ )(s, a)
.
= r(s, a)+ Qπ (s′, a′), where

s′ ∼ D and a′ ∼ π(·|s′).
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where dπ
M̂
(s) is the discounted marginal state distribution

when executing π in the learned model M̂. For d
µ

f , they use

d
µ

f (s, a) = f d(s, a)+ (1 − f )d
µ

M̂
(s, a) (38)

where f ∈ [0, 1] is the ratio of data-points drawn from

the offline dataset and µ(a|s) is the rollout distribution used

with the learned model. We can see f as a hyperparameter

that allows us to tune how conservative we want to be.

Larger values of f mean we will sample more from our

offline dataset, and therefore, will have a more conservative Q

estimate in the end. Overall, these choices make it so we push

down Q-values on state-action tuples from model rollouts and

push up Q-values on state-action pairs from the offline dataset.

Furthermore, Yu et al. [18] show that this policy evaluation

step still provides a lower bound on the true Q-function,

which is an important property to avoid OOD actions due to

overestimated Q-values.

The main advantage of COMBO concerning MOReL and

MOPO is that it removes the need for uncertainty quantifi-

cation in model-based offline RL approaches, which is chal-

lenging and often unreliable. Intuitively, suppose the model

produces something that looks different from real data. In that

case, it is easy for the Q-function to make it look bad.

However, if the model produces very good states and actions

that are indistinguishable from the real ones, then the two reg-

ularization terms in (36) should balance out. Trabucco et al.

[62] argue that this regularization term is similar to adversarial

training, where we penalize OOD data with hopes of having

a generator that is eventually able to fool us.

F. One-Step Methods

One-step methods show great promise for offline RL due to

their simplicity and effectiveness. Brandfonbrener et al. [22]

propose the one-step framework and experiment with multiple

different policy improvement operators, ultimately showing

that one-step methods can outperform multistep and iterative

methods in several of OpenAI’s gym environments. They

attribute their success mostly to the ability to learn with very

weak regularization, allowing their function approximators to

fit the true Q-function more freely. In one of their experi-

ments, they show how most multistep methods diverge when

training with a low regularization weight, which is not able

to sufficiently constrain the learned policy. Multistep methods

exhibit their best performance with the smallest regularization

weight that does not diverge. Increasing regularization further

keeps the algorithm more stable, but results in too conservative

policies.

However, Brandfonbrener et al. [22] also show that one-

step methods still underperform multistep methods in some

scenarios, such as when the training dataset D is composed

largely of suboptimal behavior or when it has good coverage of

the state-action space. In these cases, multistep methods do not

suffer so much from iterative error exploitation and can gener-

ally fit better policies than one-step methods. Brandfonbrener

et al. [22] obtain the best results when using the traditional

policy evaluation objective, minimizing the Bellman error, and

using exponentiated advantage estimates with maximum log-

likelihood in the policy improvement step similar to (7).

Following this work, Kostrikov et al. [23] recently proposed

a novel one-step method dubbed implicit Q-learning (IQL).

Their contribution is in the policy evaluation step, where

instead of updating the Q-function with target actions sampled

from the behavior policy πβ , they use a function approximator

for V π as the target, such that

J (φ) = Es,a,s′∼D

[
r(s, a)+ V π

ψ

(
s′
)
− Qπ

φ (s, a)
]
. (39)

More critically, the state-value objective, which we also wish

to minimize, can be expressed as

J (ψ) = Es,a∼D

[
ℓ
(
V π
ψ (s)− Qπ

φ (s, a)
)]

(40)

where ℓ(·) is any error measure. If we were to use the MSE

loss for ℓ, then V π
ψ (s) will converge to Ea∼πβ (·|s)[Qπ

φ (s, a)],
which satisfies the Bellman equations for action-value func-

tions. However, ideally, we would want to satisfy the Bell-

man optimality equations, where V π
ψ (s) should converge to

maxa Qπ
φ (s, a). To address this, Kostrikov et al. [23] propose

using an expectile regression loss, so that we can think of

V π
ψ (s) as the best value from the actions within the support of

our data. The expectile loss is given by

ℓτ2(x) =

{
(1 − τ)x2, if x > 0

τ x2, otherwise
(41)

where τ ∈ [0, 1] is a parameter we can choose to penalize

negative errors much more than positive errors, making it

much better for V π
ψ (s) to be larger than Qπ

φ (s, a), than it is to

be smaller. Since this method only trains on states and actions

in the dataset, we do not have to worry about overestimating

Q-values of OOD actions. Essentially, at any given state s, this

method regresses to the best actions we have seen on similar

in-distribution states, such that

V π (s) = max
a∈�(s)

Qπ (s, a) (42)

where �(s) = {a : πβ(a|s) ≥ ϵ}. In the policy improvement

step, Kostrikov et al. [23] use a procedure similar to AWR [36],

with exponentiated advantage weights to extract a policy.

The key difference between IQL and the one-step methods

proposed by Brandfonbrener et al. [22] is that IQL per-

forms iterative dynamic programming. In the policy evaluation

step, the value updates are based on the Bellman optimality

equations, allowing us to improve the behavioral policy πβ .

In practice, IQL has shown to be one of the most successful

methods to date on the D4RL [6] benchmark, having a good

and reliable performance on multiple domains with varying

complexity from AntMaze to Adroit.

G. Imitation Learning

Most imitation learning methods are concerned with filter-

ing out suboptimal behavior to apply a traditional supervised

regression loss afterward. Chen et al. [21] propose a method

named best-action imitation learning (BAIL), that fits a value

function V π
φ (s) and then uses it to select the best actions to

train on. By fitting V π
φ (s) to the approximate upper envelope

of dataset D, one can approximate the optimal value function

that satisfies the Bellman optimality equations. To this end,

Chen et al. [21] propose to minimize the objective

J (φ) = Eτ∼pπβ (·)

[
H∑

t=0

(
V π
φ (st )− Rt

)2
w(st )

]
(43)
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where

w(st ) =

{
1, if V π

φ (st ) < Rt

K , otherwise.
(44)

Intuitively, when we set K ≫ 1, this objective will penalize the

value function much more heavily when it is further away from

good return samples Rt , approximating the upper envelope of

returns in D. After fitting V π
φ (s), BAIL selects the best state-

action pairs (s, a) from D with returns greater than a chosen

ratio of the estimated value-function, that is,

Rt > ρV π
φ (st ) (45)

where they use ρ = 0.25. Finally, they use the filtered state-

action pairs to learn a policy through BC.

Siegel et al. [46] propose a method that learns an

Advantage-weighted Behavior Model (ABM) and uses it prior

to performing maximum a posteriori policy optimization [63]

(MPO). Their algorithm consists of multiple iterations of

policy evaluation and prior learning until they finally perform a

policy improvement step with their learned prior to extracting

the best possible policy. The policy evaluation step fits a Q-

function using standard bootstrapped regression seen in (18).

The prior πθabm
is learned using an n-step advantage estimator

Aπn , such that

Aπn (st , at ) =

t+n∑

t ′=t

γ t ′−tr(st ′ , at ′)+ γ n V π
φ (st+n)− V π

φ (st ) (46)

where V π
φ (st ) is approximated as the sampled mean of the

learned action-value function Qπ
φ (st , at ). The advantage esti-

mator is used to filter out the suboptimal trajectories in a

manner akin to implicit policy constraints from (7), where

we use an indicator function instead of an exponential, such

that

J (θabm) = Es,a∼D

[
logπθabm

(a|s)✶
[
Âπ (s, a) > 0

]]
. (47)

After learning the ABM prior, Siegel et al. [46] use MPO

to learn an improved policy πθ , constrained to πθabm
through

a KL divergence. They show that this approach is able to

outperform methods that try to directly learn πθ using a KL

constraint with πβ since this penalizes the model when πβ is

comprised of suboptimal behavior.

Furthermore, Wang et al. [45] propose another method

named critic regularized regression (CRR), which also uses

the indicator function to aggressively filter out below-average

actions like in (47), but opts for a more pessimistic advantage

estimator

AπCRR(s, a) = Qπ
φ (s, a)− max

ã
Qπ
φ

(
s, ã

)
(48)

where we change the expectation to a max operator in

the AWAC advantage estimator from (19). According to

Wang et al. [45], this approach seems to outperform implicit

policy constraint methods on tasks that have a mix of expert

and suboptimal behavior, since policy constraint methods tend

to be too permissive and copy inferior actions as the policy

improves.

Toward learning conditional policies, Emmons et al. [47]

proposed RL via supervised learning (RvS), which uses the

common framework for conditional BC methods from (14).

They propose learning policies with two different types of

outcomes, a goal-conditioned policy and a reward-conditioned

one. The outcomes for the goal-conditioned policy are sampled

from

gg(ω|τt :H ) = U(st+1, sH ) (49)

while the reward-conditioned policy’s outcomes are sampled

from

gr (ω|τt :H ) = ✶

[
ω =

1

H−t + 1

H∑

t ′=t

r(st ′ , at ′)

]
. (50)

Surprisingly, Emmons et al. [47] show that this simple

formulation combined with an increased network capacity

and regularization is capable of learning policies that are as

good or better than more complex approaches (e.g., CQL) in

some domains. However, the choice of conditioning variable

is crucial for the method’s performance. Conditioning on

goals, as in gg , performs well in environments that benefit

from compositionality, such as AntMaze and FrankaKitchen.

In contrast, conditioning on rewards, as in gr , performs very

poorly in these domains but attains a good performance in the

Gym-MuJoCo suite, where gg is not applicable.

H. Trajectory Optimization

Janner et al. [28] recently proposed a trajectory optimization

method they call trajectory transformer (TT), that uses a trans-

former architecture [37] to model the trajectory distributions

pπβ (τ ). In their formulation, they represent a trajectory as a

sequence of states and actions interleaved by returns-to-go,

that is,

τ = (R0, s0, a0, R1, s1, a1, . . . , RH , sH ). (51)

During training, they sample trajectories from D and maximize

the log-likelihood of each token from the sequence (e.g., R0,

s0, a0, and so on) conditioned on all previous ones. Once they

learn a model of the trajectory distribution pψτ , they use beam

search [64] together with the reward-to-go estimates R̂t for

planning.

Concurrently, Chen et al. [27] proposed a trajectory opti-

mization method for offline RL named decision transformer

(DT), which is also based on transformers. Their formulation

uses a similar trajectory representation as Janner et al.’s [28]

in (51), but has a modified training procedure and opts for a

different planning strategy. During training, instead of increas-

ing the maximum log-likelihood of all tokens, they focus

exclusively on minimizing the MSE between the predicted and

ground-truth actions from the trajectory, arguing that learning

to predict states and returns-to-go are not necessary for good

performance. During the evaluation, instead of using beam

search for planning, Chen et al. [27] condition the trajectory

rollouts on a specified target return based on the desired per-

formance on a given task (e.g., the maximum possible return

to generate expert behavior). The DT then selects an initial

action based on the target return and initial state, observes the

new state and reward, and updates its reward-to-go target by

subtracting the observed reward. Although expensive to train,

these methods perform well in sparse reward settings, where

temporal-difference methods typically fail, since they rely on

dense reward estimates to effectively propagate Q-values over

long horizons.
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V. OFF-POLICY EVALUATION

One of the biggest open problems in offline RL is hyperpa-

rameter tuning [8]. Determining the set of hyperparameters

that yield the best possible policy in an offline manner is

extremely valuable, allowing us to save valuable resources

and avoid dangerous interactions from online interaction. OPE

is the task of evaluating a policy only through previous

experiences. Excessively training on the same offline dataset

can lead to poor solutions due to overfitting. Hence, it is

paramount to find good OPE methods that allow us to validate

our policy during training [65]. However, in practice, most

offline RL methods do not rely on OPE methods to evaluate

performance and instead train with a set of hyperparameters

for a fixed number of steps and use the policy from the

last iteration to evaluate online their quality. We consider the

development of OPE methods essential for the development

of offline RL and dedicate a part of this survey to discuss its

developments.

We detail three of the most popular OPE methods in

Sections V-A–V-C. Let Ĵ (π) denote the OPE objective used

to evaluate a policy π and De the static evaluation dataset.

We have the following OPE methods:

A. Model-Based Approach

In the model-based approach, we first fit the model dynam-

ics TψT
(st+1|st , at ) and reward function rψr

(st , at ) using De,

where ψT and ψr are the parameters of the learned dynamics

and rewards model, respectively. Let pψT
(τ ) denote the trajec-

tory distribution induced by following policy π with transition

dynamics TψT
. We can evaluate the policy by computing the

expected return under pψT
(τ ), such that

Ĵ (π) = Eτ∼pψT
(·)

[
H∑

t=0

γ trψr
(st , at )

]
. (52)

B. Importance Sampling

With IS, we first fit an estimate of the behavior policy

π̂β(a|s) using De. Then, we compute the expected return under

our policy π by evaluating the importance-sampling objective

Ĵ (π) = Eτ∼p
π̂β
(·)

[
w0:H

H∑

t=0

γ tr(st , at )

]
(53)

where wi : j = (
∏ j

t=i π(at |st ))/(
∏ j

t=i π̂β(at |st )) is the prod-

uct of the importance weights. Here, we can also use

any of the variance-reduction strategies for IS reviewed

in Section IV-B (e.g., weighted [40], doubly robust [41],

or marginalized IS [24], [25], [26]).

C. Fit Q Evaluation

In fit Q evaluation (FQE), we first train a Q-function Qπ
φ

by minimizing the Bellman error under the policy π . Then,

we evaluate the policy by computing the average expected

return over the states and actions from De, such that

Ĵ (π) = Es,a∼De

[
Qπ
φ (s, a)

]
. (54)

Toward determining the best OPE approach, Voloshin et al.

[66] present a comprehensive empirical study of several differ-

ent methods. They evaluate 33 different OPE methods using a

relative MSE metric between the estimated on-policy value and

the true on-policy value. Their study shows that FQE performs

surprisingly well, despite its simplicity.

In a different study, Paine et al. [65] review the effective-

ness of different OPE methods for hyperparameter selection.

They evaluate different strategies on complex environments

available in the RL Unplugged [35] benchmark. The work

shows that using policy constraint algorithms, like CRR [45],

reestimating the Q values using FQE, and using V̂ (s0) as a

ranking statistic is sufficient for performing offline hyperpa-

rameter selection. More recently, Fu et al. [67] conducted a

new study of OPE strategies and proposed the novel deep

OPE (DOPE) benchmark to help accelerate the development

of OPE methods. Despite all methods achieving suboptimal

performance, FQE seems to have the best overall performance

on benchmarks like RL Unplugged [35] and D4RL [6].

Ultimately, in real-world settings, we often cannot roll

out our policy to evaluate if it will work or not. This is a

considerable barrier to the practical use of offline RL methods

since we still rely too heavily on simulator rollouts to verify

that a method works. Therefore, having robust OPE methods

that work reliably across a wide variety of datasets is essential

for advancing the field.

VI. BENCHMARK REVIEW

In Sections VI-A and VI-B, we review the two most

widely accepted benchmarks for offline RL and the single

benchmark for OPE, respectively, discussing their properties

and limitations. In Section VI-C, we also cover the perfor-

mance of current methods on the D4RL benchmark to give

readers a better sense of which methods have shown the best

performance to date.

A. Offline RL Benchmarks

Prior work on offline RL [15], [16], [36], [57] has typically

used an online RL algorithm to train the behavior policy πβ
and opted to either use data from the replay buffer or rollouts

from the final policy to create the static dataset D. In practice,

data might come from non-Markovian policies, such as human

agents, or hand-engineered policies, making datasets based on

online RL algorithms unrepresentative of the situations we

might have to deal with in the real world. Ideally, we would

use real-world datasets to evaluate our offline RL algorithms.

However, evaluating a candidate policy is difficult since we

might have to take actions outside of the support of our dataset,

which can be dangerous in areas like autonomous driving

and medical diagnosis. Although one could use OPE methods

outlined in Section V, these methods are still too unreliable

for one to make confident predictions.

In Section VI-A1, we outline the properties offline datasets

must have to provide a meaningful measure toward progress

in realistic applications of offline RL. Section VI-A2 presents

the two largest offline RL benchmarks to date: D4RL [6] and

RL Unplugged [35], with an overview of the environments in

each benchmark and the properties that they satisfy. Finally,

in Section VI-A3, we summarize some of the missing proper-

ties of the current offline RL benchmarks.

1) Dataset Design Factors: In this subsection, we out-

line the desired properties for offline datasets, according to

Fu et al. [6] and Gulcehre et al. [35], to provide a meaningful
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measure toward progress in realistic applications of offline RL.

These properties include:

1) Narrow and Biased Data Distributions (NB): This can

arise in human demonstrations or when using hand-

crafted policies. It is important for offline RL not to

diverge in these cases and avoid visiting too many OOD

states.

2) Undirected and Multitask Data (UM): This is important

to assess the algorithm’s ability to perform stitching, i.e.,

combining portions of existing trajectories in order to

solve a task even if none of the individual trajectories

are solutions to the task at hand. This property can

naturally arise when data is passively logged or when

we want to propose goals to an agent different from

the ones used to collect the trajectories. Algorithms that

do not perform multistep dynamic programming and are

based on constrained or regularized approximation have

a particularly hard time recovering the optimal policy

from undirected data.

3) Sparse Rewards (SR): This can be challenging due to

the difficulty of credit assignment. Manually engineering

a reward function that aligns with the task is often

tricky and can lead to solutions that exploit local optima.

Designing sparse rewards is typically easier since it only

requires defining the criteria for solving a task, making

it an appealing property to address.

4) Suboptimal Data (SD): This is important to assess an

algorithm’s ability to generalize beyond imitation learn-

ing. Suboptimal data leaves room for improvement in the

learned policy and allows us to evaluate an algorithm’s

ability to generalize and filter out bad behaviors from

the dataset. Models typically have a hard time with gen-

eralization, which makes it difficult to improve beyond

the underlying suboptimal behavior policy.

5) Nonrepresentable Behavior Policies (NR): This arises

when the function approximator cannot fully capture the

underlying behavior’s complexity. Ultimately, we must

work with a projection of the optimal policy to our

policy space and must handle scenarios where our policy

space cannot represent the true policy. RL implemen-

tations typically default to networks with a few dense

layers to represent their policy. Experimenting with

different network architectures can be critical in datasets

with nonrepresentable behavior policies to obtain the

best possible projection.

6) Non-Markovian Behavior Policies (NM): This naturally

arises in behavior policies from human agents or hand-

engineered controllers. Offline RL algorithms should be

susceptible to violations of the Markovian property if we

expect to apply them to real-world datasets from human

agents in the future. One of the challenges with these

datasets is figuring out what state representation to use

that best approximates the Markov property.

7) Realistic Domains (RD): Using real-world environments

is infeasible for an RL benchmark since results would

be too hard to reproduce and likely inaccessible to

most of the public. It is important to have simulated

environments with high fidelity to real-world behaviors

to ensure that offline RL algorithms address issues that

come up in deployment. Models usually have difficulty

learning optimal policies when subject to noisy readings

or imperfect actuators, which can often occur in real

scenarios.

8) Nonstationarity (NS): An agent may experience settings

where sensors malfunction, actuators degrade or reward

functions are updated, causing perturbations in the MDP

that vary over time (e.g., as a pump’s efficiency degrades

over time). To account for this, models need a strategy

to select sub-policies and apply them in the correct time

step.

Besides these desirable properties, we also have environ-

ment characteristics that we wish to find in the datasets, includ-

ing continuous action and state spaces, stochastic dynamics,

and partial observability. Continuous spaces are often more

challenging than discrete ones since it is infeasible to visit

every state in a continuous domain, forcing an agent to

generalize beyond seen states and actions. Although pixel

observations are technically discrete, they are often considered

just as or even more challenging than continuous observations

due to the many dimensions. Stochastic dynamics are also

desirable since they are more common in the natural world,

where there is an inherent randomness to events normally due

to model limitations. Partial observability often arises when

we lack domain knowledge to observe the true state of an

environment. Ensuring offline RL works under POMDPs is

essential for its application in the real world.

2) Datasets Overview: Between the D4RL [6] and RL

Unplugged [35] benchmarks, we have environments and

datasets that tackle most of the properties that characterize

a good offline RL dataset. The D4RL benchmark includes

datasets for OpenAI’s Gym-MuJoCo tasks, mazes, dexterous

manipulation tasks (i.e., Adroit [68]), robotic manipulation

tasks (i.e., FrankaKitchen [69]), autonomous driving (i.e., car

learning to act (CARLA) [70]), and traffic simulation (i.e.,

flow [71]). The RL Unplugged benchmark consists of datasets

from four different suites, including the DeepMind control

Suite [72], DeepMind locomotion [73], arcade learning envi-

ronment [74] (ALE), and real-world RL suite [75]. In Table III,

we characterize all of the environments available in D4RL and

a few key ones from RL Unplugged, showing the types of

spaces, dynamics, MDPs, and properties from Section VI-A1

that each environment’s datasets satisfy.

Although RL Unplugged has a wide variety of tasks, one

fundamental issue with the benchmark is that all behavior poli-

cies come from actors trained online. While D4RL has policies

that are nonrepresentable by design (e.g., non-Markovian),

RL Unplugged has no such guarantee, making it likely that

the behavior policy is often representable due to the use of

similar network architectures in the field. Furthermore, since

the trajectories in the dataset are randomly sampled from the

replay buffer of an agent trained online, the datasets will

typically have trajectories that solve the task at hand and there

are no guarantees that the algorithm must perform stitching to

succeed in the environment.

Another difference between both benchmarks lies in their

evaluation protocols. While D4RL does not impose a particular

evaluation protocol, RL Unplugged separates the benchmark

environments into online and offline validation environments.

The online environments allow algorithms to use online sam-

ples for validation, which does not fully capture the essence of
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offline RL since one of the premises is that online interactions

are likely to be costly. Evaluating an algorithm trained with

online validation still makes sense in scenarios in which online

validations are not prohibitively expensive, and we still want

to leverage a large static dataset of previously collected data

for training. The offline validation environments require one to

use OPE strategies to evaluate the performance of their method

and perform hyperparameter tuning.

Additionally, D4RL makes sure to provide datasets collected

with random, medium, and expert policies in some envi-

ronments, allowing us to evaluate whether an algorithm can

extract meaning from noise. On the other hand, RL Unplugged

mostly limits its datasets to behavior policies that have been

successfully trained with an online agent, such that most of

the data comes from medium to expert policies.
3) Missing Properties: Current benchmarks still have insuf-

ficient datasets with stochastic dynamics in the environment

(except for the Atari suite), common in real-world settings

(e.g., economics, healthcare, education, and so on) and essen-

tial to evaluate. Environments that are nonstationary (i.e.,

change over time) are also very common in the real world

and still have limited coverage in current benchmarks, only

being present in the real-world RL suite. Furthermore, datasets

designed to have risky biases are also important. For instance,

if your driving data never shows a car crash, an offline RL

algorithm should still be able to learn how to avoid car

crashes. Finally, we have not found any offline RL datasets

for multiagent environments, which may arise in settings like

robot team navigation, smart grid operation, and control of

mobile sensor networks [76].

B. Off-Policy Evaluation Benchmarks

OPE is the problem of evaluating the expected performance

of a method using only offline data. This is important for

several reasons, including providing high-confidence guaran-

tees before deployment [77], performing hyperparameter tun-

ing [65], and determining when to stop training a given model

to avoid overfitting [78]. The DOPE [67] benchmark was

created to provide a standardized framework for comparing

OPE algorithms by providing tasks with a wide range of

difficulty that satisfy desirable design properties and a set of

policies with different behavioral patterns. In Section VI-B1,

we provide a brief overview of the DOPE benchmark. Then,

in Section VI-B2, we cover the evaluation metrics used to

compare different OPE methods.
1) Benchmark Overview: The DOPE benchmark is divided

into two domains: DOPE RL unplugged and DOPE D4RL,

each with its own set of datasets and policies. In the DOPE

RL unplugged domain, the datasets are generated from the

experiences collected from an online RL algorithm, as we

explained in Section VI-A2. The policies are generated from

offline RL algorithms trained on these datasets. The algorithms

are chosen to ensure that evaluation policies differ from the

behavior policies, and multiple policy snapshots are saved

at exponentially increasing intervals. In the DOPE D4RL

domain, the datasets are built from a mixture of random explo-

ration policies, human demonstrations, non-Markovian con-

trollers, and online RL algorithms, making it more reflective

of practical settings. Furthermore, the policies are generated

using online RL algorithms, making it less likely that the

evaluation policies will have similar state-action distributions

to the behavior policies and exacerbate distributional shifts.

This allows the DOPE benchmark to cover both idealized and

practical data settings with a wide range of difficulty for both.

The benchmark also provides six baseline OPE methods for

comparison, three of which we already discussed in Section V:

fit Q-evaluation (FQE), model-based (MB), IS), doubly robust

(DR), DICE, and variational power method (VPM). Across all

metrics and most datasets, MB and FQE have performed the

best. However, no method seems to perform consistently better

in all settings.

2) Evaluation Metrics: In OPE, we can have different

objectives we wish to meet. One is to estimate the perfor-

mance, or value, of a policy π , such that the estimated value

is as close as possible to the true value V π of our policy.

Another objective is to select the best possible policy among

a set of candidate policies. In this case, we are only interested

in estimating the relative value between policies instead of

their absolute value. This second objective is useful in hyper-

parameter tuning and early stopping during training. However,

when deploying our policy to the real world, we might still

need an absolute measure of its quality to assess the cost and

danger of such deployment. Here, we list the three evaluation

metrics from the DOPE benchmark that allow one to perform

OPE and selection.

a) Absolute error: This metric is intended for OPE

instead of selection. Fu et al. [67] opt to use the absolute

error instead of the MSE to increase robustness to outliers.

b) Regret@k: This metric is intended for off-policy

selection. It evaluates the difference in value between the best

policy among the estimated best k policies and the actual best

policy in the set.

c) Rank Correlation: This metric is intended for off-

policy selection. It computes the correlation between the

ordinal rankings according to OPE estimates and the true

ordinal rankings of the policies.

C. Method Performance

To determine which methods are the most promising,

we wish to evaluate their performance on the benchmarks from

Section VI-A. Since most of the works that we found do not

provide results for the datasets in RL Unplugged [35], we only

used the scores found for D4RL [6]. Fig. 5 provides the relative

scores of various methods and taxonomy classes on each of

the dataset properties from Section VI-A1. From the heatmap,

we can see that several methods do a poor job of evaluating a

variety of datasets, which hinders our ability to compare their

performance. The lack of datasets with nonstationarity data in

D4RL is also harmful to the field since most methods do not

bother evaluating datasets outside D4RL.

In general, given that the methods are ordered from left

to right by release date, we can observe from the left-

most heatmap that recent methods tend to outperform older

ones across all datasets. Methods like TT [28] and implicit

Q-learning [23] are currently among the best performing.

The rightmost heatmap shows the relative performance of

different taxonomy classes on each dataset property, where

the scores were aggregated by computing the max score of

any given method that belongs to such class. From the figure,

we can see that the best-performing classes are trajectory
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TABLE III

DIFFERENT RL ENVIRONMENTS USED TO CREATE OFFLINE RL DATASETS AVAILABLE IN THE D4RL [6] AND RL UNPLUGGED [35] BENCHMARKS.
WE CATEGORIZE EACH ENVIRONMENT WITHIN ITS TASK SUITE AND BENCHMARK, WHEN APPLICABLE. FOR EACH ENVIRONMENT, WE SPEC-

IFY WHETHER THE ACTION AND STATE SPACE ARE CONTINUOUS OR DISCRETE, WHETHER THE DYNAMICS ARE DETERMINISTIC OR

STOCHASTIC, WHETHER THE MDP IS FULLY OR PARTIALLY OBSERVABLE, AND EACH OF THE SATISFIED DESIRABLE PROPERTIES

OF OFFLINE RL DATASETS FROM SECTION VI-A1. FOR THE SUITES THAT HAVE TOO MANY ENVIRONMENTS (E.G.,
ADROIT), WE ONLY LIST THREE FROM EACH FOR BREVITY. FOR THE FULL LIST OF ENVIRONMENTS IN RL

UNPLUGGED, REFER TO GULCEHRE ET AL.’S [35] PAPER

Fig. 5. Relative performance of different offline RL methods (left) and offline RL taxonomy classes (right) on the dataset properties outlined in Section VI-A1.
Brighter colors signify a higher performance. Light gray indicates the method was not evaluated on any datasets that satisfy the given property. On the right, the
taxonomy classes show the aggregated performance of each classification from Table II. The class score on a given dataset property is given by the maximum
score of any algorithm belonging to that class on the same property. The relative score for a dataset property is computed based on the average normalized
D4RL scores on all datasets that satisfy such property. The normalized D4RL score is on a relative scale ∈ [0, 1], where these are lowest and highest scores
among all algorithms evaluated on a given dataset. Refer to the Supplementary Materials ( ) for more details on the raw scores used to generate this figure.

optimization and one-step methods combined with implicit

policy constraint and value regularization elements. Although

most methods and classes tend to perform similarly across

all types of datasets, we found that trajectory optimization

methods perform particularly well in scenarios with sparse

rewards and undirected and multitask data. This shows that

planning can be compelling in offline RL, especially when

combined with Q-functions trained via dynamic programming.

This is the case for TT [28], which uses a Q-function trained

with IQL [23] to guide the planning procedure.

VII. PRACTICAL APPLICATIONS

Most of the breakthroughs in online RL were developed in

simulation, where data is effectively unlimited, and there are
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no consequences for poor actions. Applying these algorithms

to the real world has proven incredibly challenging since many

interesting systems are typically too complex to simulate [79].

One of the appeals of offline RL is its ability to learn a

policy using previously collected data without the risk or

expense of interacting with the real world. Levine et al. [8] and

Fu and Di [80] have extensively covered multiple real-world

applications of offline RL, including robotics [9], autonomous

driving [12], [81], healthcare [11], [82], dialog systems [83],

and energy management systems [84].

Here, we highlight, through recent examples, a few reasons

one might use offline RL over online RL in a given application.

In healthcare, Emerson et al. [82] used offline RL to develop

a policy that selects the optimal insulin dose to maintain

blood glucose levels within a healthy range. They argue that

online RL is far too unstable to manage glucose levels and

could cause patients to go outside of their healthy threshold.

In energy management, Zhan et al. [84] propose a model-

based offline RL algorithm to optimize the combustion control

strategy for thermal power generating units (TPGUs). By com-

bining large amounts of historical data from TPGUs and low-

fidelity simulation data, they can learn a safety-constrained

policy that far surpasses BC. In this case, it was far less

expensive and time-consuming to leverage the existing data to

learn a policy instead of doing so interactively. Finally, Verma

et al. [83] propose using offline RL to train a task-driven dialog

agent named CHAI (CHatbot AI). Applying online RL to

dialog systems can be prohibitively expensive due to the cost

of interacting with a human, and using simulated human agents

typically requires strong priors to work. CHAI leverages the

vast amounts of unlabeled dialog data and labeled task-driven

data to learn a dialog agent that is more effective than those

previously trained with online RL.

VIII. OPEN PROBLEMS

Several of the open problems of the offline RL field listed in

Levine et al.’s [8] work remain to this date. However, some of

these problems have seen considerable progress. This section

provides an update on the open problems and future directions

of the field.

Hyperparameter tuning [65] and OPE are two problems

that still lack a satisfying solution. Currently, we either use

inaccurate OPE methods for hyperparameter tuning or train for

a fixed number of steps. These are both lackluster approaches

since we are often left with a suboptimal policy that might have

to overfit our data. Finding good ways to validate policies will

also benefit training, allowing us to early stop training that

exhibits degrading performance over time. Levine et al. [8]

argued that shifting toward off-policy selection instead of the

evaluation was a promising direction for OPE methods. While

we have seen this shift occur with the introduction of the

DOPE benchmark, we still lack a method that can consistently

outperform the others on most datasets.

Emerging areas in RL, like incremental RL [85], are being

developed in parallel and are promising for offline RL’s future

development. Incremental RL directly contributes to solving

offline RL problems with nonstationary datasets and develop-

ing online fine-tuning strategies that use offline policies.

Safety-critical RL is also an area we wish to see more people

tackle and benchmark in the future. Strategies like uncertainty

estimation and regularization have been used to avoid OOD

states, but a few works take into account avoiding safety-

critical in-distribution states. Toward this end, some works [86]

use a conditional value-at-risk (CVaR [87]) objective to learn

a risk-averse policy.

Finally, a promising future direction for the field is the use

of unsupervised RL techniques to leverage large amounts of

unlabeled data. In many cases, labeling large datasets with

rewards may be costly, especially if these require human

supervision [88]. Leveraging diverse unlabeled data in a simple

yet effective manner is still an open problem. Yu et al. [89]

show how it is possible to learn effective policies from large

amounts of suboptimal unlabeled data combined with a limited

amount of high-quality labeled data. Kumar et al. [90] present

a similar result when comparing offline RL to BC methods.

More surprisingly, Yarats et al. [91] show how one can use

diverse unlabeled datasets with downstream reward relabeling

to achieve better performance with vanilla off-policy RL meth-

ods [51] in offline settings. Although a lot of focus has been

placed on the development of new algorithms, these works

show how the data we use to train these algorithms can be just

as important for their performance. Finding new exploratory

techniques to collect the data and novel ways to leverage

unlabeled data can help extend offline RL’s applicability to

even more real-world domains.

IX. CONCLUSION

In this survey, we provide a comprehensive overview of

offline RL. First, we present a novel taxonomy to classify

all offline RL methods and a set of optional modifications

that can be made to each class. We also review the main

offline RL methods from each class in our taxonomy and the

main benchmarks in the field, including offline RL and OPE

benchmarks. Finally, we share our perspective on the open

problems of the field, including promising future directions

for research.
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