®
g

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Jesamin Melissa Zevallos Quispe

UpKG: A Framework to Insert New Domains in
Knowledge Graphs

UpKG: Um Framework para Inserir Novos Dominios
em Grafos de Conhecimento

CAMPINAS
2023

Jesamin Melissa Zevallos Quispe

UpKG: A Framework to Insert New Domains in Knowledge
Graphs

UpKG: Um Framework para Inserir Novos Dominios em Grafos
de Conhecimento

Dissertacao apresentada ao Instituto de
Computacao da Universidade Estadual de
Campinas como parte dos requisitos para a
obtencao do titulo de Mestre em Ciéncia da
Computagao.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor /Orientador: Prof. Dr. Julio Cesar dos Reis

Este exemplar corresponde a versao final da
Dissertacao defendida por Jesamin Melissa
Zevallos Quispe e orientada pelo Prof. Dr.
Julio Cesar dos Reis.

CAMPINAS
2023

Ficha catalogréfica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Zevallos Quispe, Jesamin Melissa, 1997-
Z61u UpKG a framework to insert new domains in knowledge graphs / Jesamin
Melissa Zevallos Quispe. — Campinas, SP : [s.n.], 2023.

Orientador: Julio Cesar dos Reis.
Dissertagédo (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacéao.

1. Grafo de conhecimento. 2. Comércio eletrdnico. 3. Web semantica. 4.
Ontologias (Recuperacao da informacéo). 5. Framework (Programa de
computador). I. Reis, Julio Cesar dos, 1987-. Il. Universidade Estadual de
Campinas. Instituto de Computagéo. Ill. Titulo.

Informacdes Complementares

Titulo em outro idioma: UpKG um framework para inserir novos dominios em grafos de
conhecimento

Palavras-chave em inglés:

Knowledge graph

Electronic commerce

Semantic Web

Ontologies (Information retrieval)

Framework (Computer program)

Area de concentragéo: Ciéncia da Computacéo
Titulacdo: Mestra em Ciéncia da Computacdo

Banca examinadora:

Julio Cesar dos Reis [Orientador]

Veruska Carretta Zamborlini

André Santanche

Data de defesa: 29-11-2023

Programa de Pé6s-Graduacao: Ciéncia da Computacao

Identificag@o e informagdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0009-0006-6419-4694
- Curriculo Lattes do autor: https:/lattes.cnpq.br/8205783809953362

N
»

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Jesamin Melissa Zevallos Quispe

UpKG: A Framework to Insert New Domains in Knowledge
Graphs

UpKG: Um Framework para Inserir Novos Dominios em Grafos
de Conhecimento

Banca Examinadora:

e Prof. Dr. Julio Cesar dos Reis
Instituto de Computagao, Universidade Estadual de Campinas (UNICAMP)

e Prof. Dr. Andre Santanche
Instituto de Computagao, Universidade Estadual de Campinas (UNICAMP)

e Profa. Dra. Veruska Carretta Zamborlini
Departamento de Informéatica, Universidade Federal do Espirito Santo (UFES)

A ata da defesa, assinada pelos membros da Comissao Examinadora, consta no
SIGA /Sistema de Fluxo de Dissertagao/Tese e na Secretaria do Programa da Unidade.

Campinas, 29 de novembro de 2023

Acknowledgements

First of all, I thank God for guiding me during these two years of study.

I thank my parents and grandparents for their unconditional love and support given
all this time, despite the distance I always felt close and present at this stage of my life.

I am especially grateful to my advisor Prof. Dr. Julio Cesar dos Reis for giving me
the opportunity to be his student. In addition, his help was very important to finish this
research work, since with his knowledge and patience they showed me many times the
way to follow with this M.Sc. dissertation.

I would like to thank in particular my friend, partner and boyfriend Percy Maldonado,
for his love, patience and understanding at this stage of my life, for being my emotional
support to carry out this research work.

I thank the Institute of Computing of the University of Campinas (IC-UNICAMP),
for opening the doors and giving me the opportunity to advance in my professional career.

A special thanks to GoBots company and all its members who supported me with
their knowledge.

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de
Nivel Superior — Brasil (CAPES) - Finance Code 001. This work was partially supported
by the Sdo Paulo Research Foundation (FAPESP) (Grant #2022/15816-5)]

!The opinions expressed in this work do not necessarily reflect those of the funding agencies.

Resumo

Nos ultimos anos, a criacdo de Knowledge Graphs (KGs) tem avancado significativa-
mente. Eles se tornaram essenciais em varios dominios, como o e-commerce. Aplicativos
de e-commerce os aplicam na busca e recomendacao de produtos, sistemas de questoes e
respostas e chatbots (assistentes) virtuais, entre outras tarefas. No entanto, o e-commerce
deve cobrir constantemente novos dominios/ categorias para responder as novas necessida-
des dos usuérios. Esse processo requer uma analise rigorosa para abranger novos dominios,
adicionando novos conhecimentos nao armazenados no KG em uso. Esta Dissertacao de
Mestrado propoe, constréi e avalia um framework que nomeamos UpKG para inserir
novos dominios em KGs existentes dentro de um contexto de e-commerce. Nossa abor-
dagem se baseia em perguntas e respostas coletadas. Nosso framework foi aplicado no
contexto real da empresa GoBots para facilitar o processo de inser¢ao de novos dominios,
empresa especializada em solugoes de e-commerce na América Latina. O caso realizado
considerou um KG existente, utilizado para uma aplicacao de questoes e respostas no
dominio Automotivo. No estudo de caso conduzido, nosso trabalho abrangeu e inseriu
novas triplas relacionadas ao dominio de Eletrodomésticos, obtendo um KG que suporta
o dominio Automotivo e Eletrodomésticos. O KG gerado foi preenchido por 3382 novas
instancias que foram extraidas de 1338 perguntas e respostas reais do banco de dados da
GoBots. Realizamos dois tipos de avaliacoes: o primeiro focado na avaliacao da ontologia,
e a segunda para a avaliagao do KG gerado. Para a avaliagao da ontologia utilizamos trés
ferramentas: Reasoner Pellet, OOPS! e OntoDebug, que nos permitiu garantir a consis-
téncia e coeréncia da estrutura dos conceitos e propriedades modelados. Para a avaliacao
do KG, exploramos trinta Questoes de Competéncia (15 do dominio Automotivo e 15 do
dominio Eletrodomésticos). Isso permitiu avaliar se as instancias atendem ao requisito
da aplicacao, que é responder a questoes de compatibilidade entre produtos inseridos por
usuérios em plataformas de e-commerce. A avaliacao realizada demonstrou a viabilidade
e aplicabilidade do nosso framework UpKG em diferentes dominios no e-commerce. Nossa
contribuicao permite a expansao do KG para novos dominios.

Abstract

In recent years, the creation of Knowledge Graphs (KGs) has advanced significantly. They
have become essential in several domains, such as e-commerce. E-commerce applications
apply them in the search and recommendation of products, question-answering systems,
and virtual chatbots, among other tasks. However, e-commerce must constantly cover
new domains/categories to respond to new user needs. This process requires rigorous
analysis to cover new domains, adding novel knowledge not stored in the KG under use.
This MS.c Dissertation proposes, builds, and evaluates a framework we named UpKG to
insert new domains in existing KGs within an e-commerce context. Our approach relies
on questions and answers collected. We applied our study in the real-world context of the
GoBots, company specialized in e-commerce solutions in Latin America, to facilitate the
new domain insertion process in a KG. The conducted case study was on an existing KG,
whose triples were dominated by the Automobile domain. Our investigation by applying
the UpKG framework covered and inserted new triplets related to the Appliances domain,
obtaining a KG that supports the Automobiles and Appliances domain. The final KG was
populated by 3382 new instances, extracted from 1338 real-world questions and answers
from the GoBots database. In addition, we carried out two types of evaluations: the
first was focused on evaluating the ontology, and the second on evaluating the KG. To
evaluate the ontology, we explored three tools: Reasoner Pellet, OOPS!, and OntoDebug,
which allows us to ensure the consistency and coherence of the modeled ontology. To
evaluate the KG, 30 Competency Questions were used (15 from the Automobiles domain
and 15 from the Appliances domain), which allowed us to evaluate whether the instances
align with the application, which is to answer compatibility questions. The evaluation
showed the viability and applicability of the UpKG framework in different domains within
e-commerce. Our contribution allows the expansion of the KG to new domains.

List of Figures

(1.1 Example in a chatbot problem|. 15
(1.2 Example of domain insertion problem at the KGs level| 16
(1.3 Overall research methodologyl 20
[2.1 Structure of a triple].o 23
[2.2 Representation of the composition of Knowledge Graph| 24
2.3 Example of a SPARQL query that aims to return products that have the |
[Oster brand| 25
[2.4 Example of URI, URL and URN| 26
[3.1 Overview of the UpKG Framework{ 30
[3.2 Flow of steps to understand the current KG in placel. 32
[3.3 Flow of steps to identity new domain| 33
[3.4 Analysis of a question and answer pair from the Technology domain.|. . . . 34
[3.5 Flow of steps to restructure the ontology| 34
[3.6 Flow of steps to populate the KG| 36
[4.1 Flow used by GoBots to answer customer questions using their KG| 39
[4.2 Ontology vO that represents the compatibility knowledge between a Prod- |
[uct and a Consumer [tem| 40
[4.3 Results in understanding the current KG in GoBots,| 41
[4.4 Diagram showing the result of identifying a new domain in GoBots.| 44
[4.5 Histogram from the root categories with their number of questions.| .45
[4.6 Results in restructuring the GoBots ontology with the “Appliance Domain".| 46
[4.7 Metrics of the ontology v1| 0oL 47
[4.8 Ontology structure v1. This represents the compatibility between products |
| and an object of Car or Appliance type.| 48
[4.9 Object Property of the ontology v1f 48
[4.10 Data Property of the ontology v1| 49
[4.11 Results in populating the KG with Appliance Domain.| 50
[>.1 Approaches to the evaluation ot ontology and KG| 62
(5.2 UpOntology, an iteration-based approach to evaluating ontology| 62
5.3 UpOntology instantiated with Pellet, OOPS! and Ontodebug evaluation |
[methods). e 63
[b.4 Flow to evaluate KG through CQs 66
[5.5 Ontology vO.1|. 67
6.6 Reasoner Pellet inconsistentl 68
[5.7 Reasoner Pellet inconsistent summary|{. 68
[5.8 List of pitfalls detected in the ontology vO.1 applying OOPS! 69

(5.9 The debug output of the UpKG ontology v0.1 from OntoDebug tool show-

| ing that there are two faulty axioms.| 69
[5.10 T'he two faulty axioms in the ontology v0.1 — OntoDebug tooll 70
[5.11 Logs of applying the Pellet in the second evaluation iteration|. 70
[5.12 Outcome of the second iteration in applying the OOPS! tool| 70
(.13 The debug output of the UpKG ontology shows that it is consistent and |

[coherent - in the second iteration| 71
[5.14 Response to CQ1 from KG within the GraphDB|. 73
[5.15 Response to CQ2 from KG within the GraphDB|. 73
[5.16 Response to CQ3 from KG within the GraphDB|. 74
[5.17 Response to CQ4 from KG within the GraphDB|. 75

List of Tables

[2.1 Comparison in three scopes of studies in KG connected to our present |
investigation in this article.] 000000 29

[4.1 Prompts used for extracting entities within a question.| 53
[4.2 "Table of questions and answers pairs for the “Appliances” domain from 5 |

[merchantsl e e 56
[4.3 Questions and answers pairs for the “Automobiles” domain from five mer- |

[chantsl 57
[4.4 Compatibility type in the “Appliance” and “Automobile” domain.| 58
[>.1 Summary ot the behavior of the executions for the ontology evaluation. . . 71
(5.2 Summary table of CQ executed in KG v1|. 76

Contents

[1.3 Objectives and Research Questions|
(1.4 Synthesis of Our Methodology and Findings|
(1.5 Dissertation Organization|

Literature Review: Background and Related Studies|

[2.1 Fundamental Concepts| Lo
2.2 Explored Tools|

Our Proposed UpKG Framework|

[3.1 Understand the current KG in place].
[3.2 Identity new domain| oo
[3.3 Restructure the ontology|
[3.4 Populate the KG| oo oo
B5 Discussion]

Applying the UpKG Framework in a Case Study|

[4.1 Context of Application and Methods|
[4.2 Results Applying the UpKG Frameworkl
[4.2.1 Results in understanding the current KG|
[4.2.2 Result in identifying new domain|
[4.2.3 Result in restructuring the ontology|{.
[4.2.4 Result in populating the KG|.
M3 Discussion]

Evaluating the Outcomes from the UpKG Framework|

[>.1 Evaluation Approaches| Lo
[>.1.1 Ontology Evaluation|
[5.1.2 Knowledge Graph Evaluation|

H.2 Bvaluation Methodsl o
[.2.1 Ontologyl.
[5.2.2 Knowledge Graphl o000

[5.3 Experimental Setup|.

[>.4.1 Results of the Ontology Evaluation| 67

[5.4.2 Results of the Knowledge Graph Evaluation| 71

[H.0 Discussionl 75
(.6 Fimal Remarkd. 75

6 _Conclusion| 78
[6.1 Synthesis of Achievements 78
6.2 Contributions 79
6.3 Future Studies. 80
(Bibliography| 82
(A Competency Question| 86

(B KEOD Copyright Acceptance| 100

13

Chapter 1

Introduction

1.1 Context and Motivation

In recent years, the creation of Knowledge Graphs (KGs) has made significant progress.
With the rapid growth of data in different fields, KGs play a vital role in transferring large
amounts of data to actionable knowledge. They are essential in various domains, including
e-commerce [22] [29] [11] because several applications related to online commerce explore
them in different areas, such as product searches, product recommendations, and virtual
chats, question answering, among others. Several big-player companies have used KGs in
e-commerce, including Alibaba [22], Walmart [38], and Farfetch [4], among others.

Due to constant changes, e-commerce systems must be updated to continue providing
better customer service. They must constantly cover new domains to increase knowl-
edge of KG and update KGs, inserting knowledge through triples based on a new do-
main/category to respond to the novel users’ needs. However, updating a KG involves
expanding it and inserting domains such as appliances, furniture, and automobiles.

The insertion of new domains into a KG is not so trivial as it relates to the com-
plexity of domain knowledge. Each domain, such as Clothing, Furniture, Automobiles,
Appliances, etc. presents its terms, relationships, and features. Inserting a new domain
is as important as understanding this domain and its specific terms to represent it in an
ontology properly. A lack of understanding of the domain can lead to building incorrect
ontology and not capturing key relationships and features of products. In addition, en-
suring that information is represented in a consistent and standardized manner is very
important because inconsistency may result in ambiguity and confusion in the interpre-
tation of data. Therefore, A robust approach is needed to structure and standardize
information consistently in ontology.

The literature presents research studies related to KGs in e-commerce [22] [1T] [29].
Some studies explore the extension of domains in KGs [3, BI] and ways of populating
triples in KGs [19] [29]. However, none of the analyzed studies explores these three
critical aspects together of inserting new domains into e-commerce KGs, which are (i)
KG in e-commerce, (ii) Populating KG, and (iii) Extending KG. The difference between
Populating KG and Extending KG is that Extending KG is expanding the KG at the
domain level and Populating KG is populating the KG with data in a specific domain.

Currently, this research is condicted in a real e-commerce scenario within the GoBots

14

company, which presents solutions to answer user compatibility questions using a KG as
can be seen in Figure|l.1

1.2 Problem Characterization

E-commerce systems constantly evolve and seek to cover new domains to improve users’
needs. This expansion of domains is essential to improve the user experience, increase
sales, and provide high-quality responses, among other aspects. However, the need to
cover new domains leads to the KG update. This task is not trivial, as it requires a
thorough analysis of the KG structure and ontology to ensure proper integration of the
new domain. We present two cases in which these challenges become evident in the
following.

Case 1. Figure[l.1]shows a scenario in which a customer communicates with a chatbot
of an online store that uses various solutions, including a KG. Initially, the customer
queries about the compatibility of a product with his Ford Fiesta car, to which the
chatbot responds affirmatively, generating customer satisfaction. However, the situation
changes when the customer asks another question about a different domain. In this case,
technology. The chatbot’s response indicates that it “cannot understand" and generates
frustration in the customer.

This case shows a knowledge gap in the online store, showing that while it can answer
car-related questions, it cannot provide answers regarding technology questions. Ad-
dressing this deficiency is crucial to improving the quality of responses and customer
satisfaction.

This case shows that the online store has a superior ability to handle automobile
queries since its current KG has information in this domain. However, it shows a lack of
knowledge regarding technology-related questions, as the existing KG does not cover this
domain.

This lack of cross-domain knowledge directly impacts the quality of responses and
customer satisfaction. This requires addressing the expansion of KG to include the domain
related to technology, similar to how the domain of automobiles is handled. This might
allow the chatbot to provide more complete and accurate answers in both domains, thus
providing a more satisfying experience to users.

Case 2. Figure presents two different KGs, one dedicated to technology and
another focused on automobiles. KG online store shows the structure of the same with
focus to the domain of Automobiles and the KG of the new identified domain shows the
structure of the ontology with focus to the domain of Technology. If our goal is for the
online store to answer questions from the technology domain, it means that the KG with
the Automobiles domain must cover the Technology domain.

However, this process is not simple, as these two domains present properties and
relationships that are not directly compatible. Therefore, the challenge must consider
how adapting the automobile KG’s ontology to host the technology domain effectively.
This task is essential to ensure the consistency and integrity of the resulting KG.

On the other hand, we have another challenging aspect, which is the extraction and

15

9:45

< Online Store

Is the timing belt kit
compatible with the 2012
Ford Festa?

It's compatible

o0
~—

Is USB Type-C Charging
Cable compatible with the
Huawei Mate 20 Lite ?

| can't understand

Figure 1.1: Example in a chatbot problem

generation of information necessary to populate our KG, taking into account the newly
inserted domain in addition to the existing domains. To generate such information, ex-
tracting intents and entities with a high confidence level is necessary according to the
relationships in ontology. The entity represents a term with a relevant meaning to un-
derstand the context of the sentence. For example, “brand", “model", “year", are present
in the Automobiles domain. Identifying entities is important as it allows understanding
of questions related to this domain. The intent is to identify the intents of the ques-
tion, whether the question refers to compatibility between entities, comparison between
products, product information, etc.

Each new domain brings additional development to extract all the entities relevant to
the domain, as is the case of new properties that were not mapped in previously existing
domains. Extracting triplets from questions and answers is challenging due to the question
variability, ambiguity in meaning, and the need to understand the context. For example,
Figure presents the need to recognize the property size and store it in the existing
KG that only supports the domain of the automobile, where such property does not exist
in the ontology of the KG.

To better visualize the problem to be solved, we propose two pairs of questions and an-
swers in the following, one of them related to an existing domain in the KG (Automobiles)
and the other related to a potential new domain (Technology):

e Automobile Domain.

— Question: Is the product X compatible with the Nissan Qashqai 20127

— Answer: Hello, yes it is compatible.
e Technology Domain.

— Question: Does Y work for the Huawei P30 Pro 6.47" cell phone?

16

KG online store

KG new domain /

USB Type-C y 5 —
Charging i ! Car Year
Cable i ; /
. i E i Ford
Compatlble/]Compatible ; : Nissan Ty;% Ty;R Conts Brand
: : 2012
Huawei) ' Brand
P30 Pro Huawei ! | Nissan
Size Mate 20 ' | Qashqai ;
/ Brand Lite Size ' HOW? 2021 Compatible
6.47 ran Aran d T ! E Year]
inches Mogdel 6.3 inches i i Kiompanble Compatible
Huawei Model i 1o 2012 Timing
; i Car floor Belt Kit
P30 Pro f ! i mats
Mate 20 Lite ! ' non-slip - Type
___ Type

(a) Technology Domain

(b) Automobiles Domain

Figure 1.2: Example of domain insertion problem at the KGs level. (a) KG of the new
Technology domain; (b)KG of the online store that covers the Automobiles domain.

— Answer: Good afternoon, unfortunately the product is not compatible with
Huawei.

As the current KG is focused on questions and answers related to the Automobile
domain, it is possible to extract the necessary information from the question with every-
thing previously developed to populate the current KG, such as the brand, model, and
year. However, the problem begins when we aim to analyze a question from a domain
different from automobiles, for which we would have to be able to recognize all the new
entities present in the question that are useful for our new KG.

From the second question, we can easily obtain the following triplets (not trivial for
a computer to address it automatically). Of which, the size property cannot be inserted
directly into the KG, and this would generate information loss.

<Huawei P30 Pro>, <brand>, <Huawei>
<Huawei P30 Pro>, <model>, <P30>
<Huawei P30 Pro>, <size>, <6.47">
<Huawei P30 Pro>, <type>, <Technology>
<Y>, <no-compatible>, <Huawei P30 Pro>
<Y>, <type>, <Product>

<Y>, <gtin>, <123456789>

Our examples showed that adding a new property entails a restructuring of the existing
KG regarding:

e Modeling (ontology) efficiently all the relationships of the new domain;

e Combining the new properties with the existing properties of the current domain;

e Extract new entities from the question (challenging);

17

e Generating triplets following the ontology developed to retrieve the information
through SPARQL queries finally. A triple is an element <s, p, o> where “object o
stands in relationship p with subject s". The first component s is called the subject
of the triple; p is called the predicate; and o is called the object [15]

Inserting new domains into an existing KG is challenging due to the need to address
ontological modeling, entity relating, conflict resolution, consistency across instances, scal-
ability and performance, and evaluation of the ontology and the KG. Inserting new triples
and relationships must be carefully managed to preserve the coherence and semantic in-
tegrity of the existing KG. We further detail each of these challenges in the following:

¢ Ontological modeling: KGs are usually based on ontologies that define the re-
lationships and properties between entities. The introduction of a new domain
involves the potential creation or extension of existing ontology classes and proper-
ties, which requires careful modeling to ensure consistency with existing knowledge
structures.

« Knowledge Graph stands for a graph of data intended to accumulate and convey
real-world knowledge, where nodes represent entities of interest and edges represent
different relationships between these entities [17]. »

« Ontology [35] refers to the shared understanding of some domain of interest, which
may be used as a unifying framework. Ontologies are formal models that define con-
cepts, properties, and relationships in a specific domain. These ontologies provide
a unified knowledge structure that improves the understanding and processing of
information. »

e Entity relationship: The KG depends on the relationship between entities. Intro-
ducing a new domain involves establishing relationships between entities in the new
domain and existing ones. Identifying and creating these relationships consistently
can prove to be challenging.

e Conflict resolution: Inserting new domains can lead to modeling conflicts when
properties or terms used in the new domain conflict with existing ones. Resolving
these conflicts without compromising the coherence of the ontology is crucial.

e Consistency in instances: Consistency in instances is essential. Inserting new
data into the KG must ensure that the instances comply with the ontological con-
straints and do not lead to inconsistencies.

On the other hand, it is crucial to highlight that the incorporation of a new domain
in KG arises as a solution to the current problem in the GoBots company, which has a
specific KG for a given task and domain. The identification of this limitation was made
through internal GoBots metrics designed to evaluate the tools that support the answers
to questions asked by users in an e-commerce environment.

Similarly, we note that the main purpose of the current GoBots KG is to answer
questions that are intended for compatibility. For this reason, the application of our
proposal in Chapter 4| is focused on a KG that reflects knowledge related to compatibility.

18

1.3 Objectives and Research Questions

In this M.Sc. Dissertation, we propose the UpKG framework, which allows inserting

new domains in an existing KG in an e-commerce context based on the input from users’

questions and answers. Our study aims to attain the following specific objectives:

e Conceptually develop UpKG focusing on e-commerce context based on users’ natural

language questions and answers as one type of data input.

e Evaluate the proposed UpKG framework in the real-world context of a company;

e Ensure that our framework is flexible enough to add new domains focusing on e-

commerce.

We present two research questions that drive our research in this Dissertation.

1.

How can the UpKG framework can be suited to the constant information evolution
in e-commerce, allowing the insertion of new domains without compromising the
coherence and integrity of the underlying KG in place?

How does inserting new KG domains through our proposed UpKG framework impact
end-user queries on e-commerce platforms?

1.4 Synthesis of Our Methodology and Findings

Figure presents the synthesis of our research methodology and how this is connected

to the Chapters in this Dissertation as follows:

e Understanding the literature (Figure (a)). We reviewed essential concepts

to comprehend the scope of our research. We studied fundamental terms such
as Triples, Ontologies, Knowledge Graphs (KG), RDF, and SPARQL, which are
essential to understanding the foundations of our study. In addition, we investigated
previous studies focusing on research directly linked to our challenges. We observed
the weaknesses presented in the state of the art in expanding domains within a KG.
Chapter [2| presents the results of this step.

Proposing the UpKG framework (Figure (b)). At this stage, we design
our UpKG framework, which focuses on inserting new domains into an existing
Knowledge Graph (KG), focusing on e-commerce using Natural language questions
and answers from users as input. The framework is composed of four modules: (i)
Understand the current KG; (ii) Identify new domains; (iii) Restructure the ontol-
ogy; and (iv) Populate the KG. UpKG provides a step-by-step guide to expanding a
KG consistently and efficiently and can adapt to a variety of domains, with a focus
on e-commerce. Chapter |3| presents the results of this step with all the modules
within the framework.

19

1. Understand the current KG. The structure of the existing KG is analyzed
in detail, including its relationships and ontology. This module provides a solid
foundation for understanding how the current KG is built.

2. Identify new domains. The goal is to find new domains where the cur-
rent KG cannot answer questions. This is achieved by identifying unanswered
questions, and unmapped relationships and determining the domain with the
largest number of unanswered questions.

3. Restructure the ontology. This emphasis is on modifying the existing on-
tology to adapt the new relationships related to the domain identified in the
previous module. This involves selecting a base ontology and combining prop-
erties mapped to the current ontology.

4. Populate the KG. This aims to insert triplets into the current KG. This
involves extracting intents and entities from the questions and answers, followed
by creating RDF triples that are stored in an RDF store.

e Applying the framework in a Case Study in an Industrial Setting (Fig-
ure (c)). At this stage of our methodology, we apply the implementation of
the UpKG framework in a real scenario. The application context is in the company
GoBotsE], where UpKG was applied to add a new domain to their existing KG. Our
obtained results expand the KG’s capacity to answer questions in different domains
and improve the user experience in e-commerce. The process of applying the UpKG
framework reached the following results:

1. Understood the current GoBots KG in place (in production), its structure,
properties and relationships.

2. Identified a new domain, in this case it was the “Appliances" domain.
3. Restructured the ontology to allow the inclusion of the new domain.

4. Populated the KG with questions and answers related to the Automobiles and
Appliances domains.

5. The final result was creating a new version of the KG considering further 1338
question and answer pairs from the Automobiles and Appliances domains.

e Evaluating the generated Assets from the Application (Figure (d)).
At this step, we evaluated two key assets generated in our research: the ontology
and the Knowledge Graph (KG).

1. For the ontology evaluation, we applied three methods of validation: Rea-
soner Pellet [2], 20] 26], OntoDebug [34], 21], 26], and OntOlogy Pitfall Scanner
(OOPS!) [37, 36 34], 14], 26]. We decided to apply these three validation meth-
ods due to being present in the validation of several studies in the literature.
In addition, all three methods contribute to a more complete and accurate

Lyww.gobots.ai — This study is under the context of a formal Partnership between UNICAMP and
GoBots.

www.gobots.ai

r Weaknesses ‘l I—> Modules j » Results

|
= 4 o
— 'R EB Bots
(iii) (iv)

(i)~ (iv)

o

a) Related Work b) UpKG Framework c) Applying the UpKG in a Case d) Ontology and KG Evaluation
Figure 1.3: Overall research methodology

validation of the ontology. Reasoner Pellet is an inference engine and allows
to infer new information from the ontology, it is also used to check the general
consistency of the same ontology. OntoDebug is a plugin that allows to iden-
tify inconsistent axioms of greater complexity which could be difficult for the
reasoner to identify. OntoDebug allows you to identify whether the ontology
is coherent and consistent in structure and logic. OOPS! allows you to check
the ontology online and provides a detailed list of common ontology pitfalls.
This tool helps identify and correct possible pitfalls, improving the quality of
the ontology. Our results showed that the initial ontology presents inconsis-
tencies and errors. We solved it in a second iteration, resulting in a coherent
ontology. Overall, these evaluations were crucial to ensure the ontology’s and
KG’s quality and usefulness for the real-world applications.

2. To evaluate the KG, Competency Questions (CQs) were used, which aimed
to assess to which extent the generated KG can provide accurate answers to
questions related to a specific domain.

1.5 Dissertation Organization

This M.Sc. Dissertation is organized as follows.

Chapter [2] presents the fundamental concepts that serve as the basis for our research
work. We present the related studies that are relevant topics for our research. We carry
out a comparison in three areas of studies related to our study: (i) KG in e-commerce,
we reviewed the existing literature on KGs present in e-commerce; (ii) Extending KG,
we reviewed the existing literature on extending domains in a KG; and (iii) Populating
KG, we reviewed the existing literature on methods or approaches used for popular a
KG.

Chapter [3| describes in detail our proposed UpKG framework. UpKG framework aims
to insert new domains into an existing KG, focusing on e-commerce from existing users’
questions and answers. We details its four modules: (i) Understand the current KG; (ii)
Identify a new domain; (iii) Restructure the ontology; (iv)Populate the KG. Each module
consists of a series of steps that represent the processes necessary for the module to reach
its objective. These steps are described in detail to provide a complete understanding of
their functionality and contribution to each module.

21

Chapter [] presents the application of the UpKG framework in the context of GoBots,
which offers solutions to structure the knowledge of compatibility between products. This
Chapter shows the results of applying our UpKG framework in each designed module.
We present our obtained findings in each step that composes a module, describing the
development process and the results of each module of our framework. The documented
details of our Case Study provide a complete overview of the application process of our
UpKG framework.

Chapter 5| describes the methods and results for assessing the final outcomes (arti-
facts) of applying the UpKG framework. In particular, we demonstrate how the obtained
ontology and the entire KG are soundness.

Chapter [] presents our contributions and conclusions from our research work. In ad-
dition, we describe planned future studies.

22

Chapter 2

Literature Review: Background and
Related Studies

This Chapter aims to provide a background for understanding the context of our research
work.

Section describes the fundamental concepts essential to understanding our study
proposal. These terms include, among others, fundamental concepts such as Triples,
Ontology, Knowledge Graph(KG), RDF, and SPARQL.

Section [2.2] describes the explored tools in our research. The tools used in our research
are: (i) Protégé; allows to visualize and edit ontologies; (ii)Reasoner Pellet; allows to infer
new information from ontology; (iii)OntoDebug; allows to identify inconsistent axioms of
greater complexity; and (iv)OOPS!; provides a detailed list of common pitfalls in ontology.

Section [2.3] describes related studies directly linked to our study. In this section, an
analysis of studies is carried out, which provides a foundation and literature positioning
for our research. The related studied focused on three important scopes connected to
our study: (i) KG in e-commerce, the application of KG in an e-commerce context; (ii)
Extending KG, the modification of the KG by adding new instances and relationships to
cover new domains of knowledge; and (iii) Populate KG, the addition of new knowledge
in the KG based on the structure defined by the ontology. Our study aims to address
these three scopes to expand the reach and effectiveness of the KG in new domains within
the e-commerce environment.

2.1 Fundamental Concepts

In inserting new domains within an existing KG, the following concepts are intrinsically
interconnected and play a crucial role in the representation, storage, retrieval, and evalu-
ation of knowledge.

Triples. Triples are essential elements in the representation of information within a
KG. These triplets are used to express semantic relationships between different elements.
Formally, a triple is an element <s, p, o>, typically interpreted as a statement where
“object o stands in relationship p with subject s". The first component s is called the
subject of the triple; p is called the predicate; and o is called the object [15].

23

The triple components are used to express semantic relationships between different
elements of information. The subject represents an entity or resource, the predicate de-
notes a property or relationship that links the subject, and the object represents the value
or description associated with that property. The triples are the basis of the Knowledge
Graph (KG) and allow the representation of data in a semantic and structured way.

Figure [2.1] shows the structure of a triple.

Predicate
Subject > Object

Figure 2.1: Structure of a triple

Resource Description Framework (RDF). Triples are combined to build RDF, a
standard that provides a framework for semantic data representation. RDF uses triples
to describe resources and their relationships. RDF [12] is a fundamental standard in the
Semantic Web [13] used to represent and model data in a way that is understandable to
humans and machines.

RDF aims to provide a framework for describing relationships between web resources
through triples, consisting of a subject, a predicate, and an object. These triples combine
to form KGs, allowing the representation of Linked Data [7], which facilitates interoper-
ability and reasoning on information. In addition, RDF is used to represent and exchange
data on the Web, allowing machines to understand information more meaningfully.

Ontology. According to Uschold and Gruninger [35], Ontology refers to the shared
understanding of some domain of interest, which may be used as a unifying framework.
Ontologies are formal models that define concepts, properties, and relationships in a
specific domain. These ontologies provide a unified knowledge structure that improves the
understanding and processing of information. An ontology necessarily entails or embodies
some sort of worldview with respect to a given domain. The worldview is often conceived
as a set of concepts (e.g., entities, attributes, processes), their definitions, and their inter-
relationships. This is referred to as a conceptualization. Therefore, ontology is a semantic
model syntactically defined that models the things that exist in our domain and models
general things that have common characteristics.

Ontologies [6] are used to standardize and give meaning to data, facilitating interoper-
ability and understanding of information. An ontology is structured around a hierarchy of
classes and properties, where classes represent concepts or types of entities, and properties
define the relationships between these entities. In addition, ontology plays an important
role in data search, reasoning, and enrichment, which enables applications to understand
and use information effectively.

Web Ontology Language(OWL). OWL is a standard that allows the representa-
tion and definition of ontologies in the Semantic Web, being essential to model concepts,
properties and relationships. OWL [24] is an ontology language developed as a World
Wide Web Consortium (W3C) standard for ontology representation on the Semantic

24

Web. OWL is used to define and represent knowledge in a formal and structured way in
various domains, which allows modeling concepts, properties, and relationships within a
specific domain.

The elements included in OWL are classes, properties, individuals, and restrictions.
Classes are used to define concepts or categories in the domain, properties describe rela-
tionships between classes or individuals, individuals represent specific instances of classes,
and constraints define rules that maintain the structure and behavior of ontology. OWL
captures the semantics and structure of knowledge in a format that is interpretable by
both humans and machines. OWL has an important role in the representation of ontolo-
gies and in the creation of knowledge systems in the Semantic Web, which allows greater
efficiency in the search, integration, and processing of information.

Knowledge Graph (KG). Ontologies and RDF data form a Knowledge Graph,
which organizes and stores information semantically. KG stands for a graph of data
intended to accumulate and convey real-world knowledge, where nodes represent entities
of interest and edges represent different relationships between these entities [17]. A KG is
the representation of knowledge based on an ontology. Therefore, a KG is created when
they apply an ontology to a dataset (cf. Figure .

Figure shows how ontology and data are related to compose a KG, where the
data is integrated into the KG following the definitions and structures established by the
ontology. Each entity and relationship in the KG is supported by concepts defined in the
ontology. Therefore, the ontology establishes the rules and conceptual structure, the data
conforms to these rules and the KG visualizes and organizes this information graphically,
creating relationships that facilitate the representation and analysis of knowledge.

Representing information in the form of a graph allows the precise capture of the
relations and semantic connections between the data, which facilitates the search and
reasoning of the information. KGs are important because they allow a structured repre-
sentation of knowledge and improve information retrieval and automatic inferences.

Some key KGs entities are Google E| and DBpedia E| These KGs are essential to
organize and enrich knowledge on the web.

O / Automobiles ® @
\. — . Books Computing 9 Py *
/
\ Home Personal
/ : Appliances Care . PV 9

Ontology Data Knowledge Graph

Figure 2.2: Representation of the composition of Knowledge Graph

SPARQL Protocol and RDF Query Language (SPARQL). SPARQL [2§] is a

"https://developers.google.com/knowledge-graph/
’https://www.dbpedia.org/

https://developers.google.com/knowledge-graph/
https://www.dbpedia.org/

25

query language that aims to retrieve and manipulate data stored in RDF format, which
facilitates searching and retrieving information in databases and KGs. SPARQL allows
flexible querying; it can also search for and extract specific information from a dataset,
essential for building a web where data is interconnected and enriched with semantic
meaning.

SPARQL has a syntax similar to the Structured Query Language(SQL) but it was
specifically designed for semantic data querying [23]. SPARQL queries can search for pat-
terns in RDF graphs, filter data, join multiple data sets, and perform complex operations
on data, making it an essential tool for extracting meaningful knowledge and relationships
on the Semantic Web.

Figure 2.3 shows an example of a SPARQL query, which seeks to retrieve up to 100
products that are brand “Oster" in an RDF dataset. The UPkg prefix was defined to
abbreviate long URLs and facilitate query writing. In addition, the query looks for re-
sources (in this case, products) that have a property called “‘UPkg:hasBrand" with the
value “Oster" and limits the result to a maximum of 100, and avoids the query returns
too large a result set.

PREFIX UPkg: <http://www.semanticweb.org/jesaminzev/UPkg#>

select ?product where {
?product UPkg:hasBrand "Oster".
} limit 100

Figure 2.3: Example of a SPARQL query that aims to return products that have the
Oster brand

Universal Resource Identifiers (URI). Resources in the Semantic Web are identi-
fied by URIs, which provide a unique schema for resource identification, including concepts
in ontologies and triples in RDF.

URI [5] is a central component in the Semantic Web that provides a unique and
uniform identification for resources on the World Wide Web. In addition, the URIs
aim to identify resources on the Web uniquely and uniformly; their initial purpose is to
constitute a universal standard that enables the identification of various resources, such
as web pages, documents, images, web services, videos, and any other elements present
on the Internet.

URIs can take various forms, such as Uniform Resource Locators (URLs) that are
used to locate specific resources on the Web, and Uniform Resource Names (URNs) that
are used to name resources regardless of their physical location. Figure [2.4] presents an
example of the URI, URL, and URN structure.

URIs are important for hyperlink operation, web browsing, and Semantic Web data
interconnection. For this reason, URIs have an important role in constructing the Seman-
tic Web because they allow different sources of information to be linked and related in a
significant way, which contributes to the creation of an interconnected knowledge graph
rich in knowledge.

26

URI
A

' Y
\http:llwww.semanticweb.orglupkg.html#hasBrand

iy
N URL ,

v
URN

Figure 2.4: Example of URI, URL and URN

2.2 Explored Tools

Protégé. Protégé [25] is a popular and widely used knowledge modeling software tool
developed at Stanford University. This tool offers functionalities for the modeling and
management of ontologies in different formats and facilitates the creation, visualization,
and manipulation of ontologies efficiently. In addition, Protégé supports framework-based
ontologies and follows the Open Knowledge Base Connectivity (OKBC) protocol [10] to
ensure data interoperability.

Protégé has an intuitive user interface that allows you to define classes, properties,
instances, and relationships within an ontology visually. This tool supports multiple
ontology languages, including OWL, which is important for knowledge representation.
Protégé allows users to provide logical reasoning to infer new knowledge from relationships
and constraints defined in an ontology. In addition, it offers a variety of plugins that
expand its functionality and allow addressing different requirements and scenarios.

A reasoner like Pellet allows logical reasoning in ontologies, which enriches the ability
of applications to understand and use knowledge. To ensure the quality of ontologies,
OntoDebug and OntOlogy Pitfall Scanner! are debugging tools that detect problems and
ensure ontological consistency. Our study explored these instruments as a way of assessing
our generated ontology as a result of this investigation.

Reasoner Pellet. Pellet [32] is an open-source Java-based reasoner developed by
Mind Swap group. It is based on the tableaux algorithm and supports expressive de-
scription logics. In addition, Pellet reasons ontologies through Jena as well as OWL-
API interfaces and supports the explanation of bugs. Pellet provides various interfaces,
including a command-line interface, an interactive Web form for zero-install use, DIG
server implementation, and API bindings for RDF/OWL toolkits Jena and Manchester
OWL-APL

The Reasoner Pellet acts as an engine that enriches the understanding of data by
discovering new relationships, inferring properties, and validating compliance with re-
strictions defined in an ontology. This tool was designed to manage complex ontologies
and works by processing RDF' triples. In addition, it uses logical rules and reasoning
algorithms to infer additional information. It is optimized for efficient and scalable per-
formance, which is important for semantic web applications involving large data sets.

OntoDebug. OntoDebug [30] is a Protégé plugin that implements an interactive ap-
proach to ontology debugging; by having a faulty ontology, the tool finds a set of faulty

27

axioms that explain the problem. Through interactive ontological debugging, the ontode-
bug [I] plugin helps detect and identify axioms that cause inconsistent or incoherency
ontological mismatches.

Interactive ontological debugging is achieved by raising iterative questions in the form
of axioms that the ontological engineer must answer. A query can be read as a question:
Should the axioms given be included in the ontology?. This iterative process reduces the
set of possible false axioms until the final set is identified. The plugin provides a repair
interface to help fix axioms.

OntOlogy Pitfall Scanner! (OOPS!). OOPS! [27] is a web-based tool for detecting
ontological problems that could lead to modeling errors. This software tool aims to help
ontology developers detect errors and provides mechanisms to diagnose the forty errors
described in the OOPS! pitfall catalog. OOPS! | has a Web page interface in which the
user enters the URI of the ontology or its code. Once the ontology is parsed using the
Jena API, the Pitfall Scanner inspects the declared ontology, looking for pitfalls among
those available in the catalog. This software tool has the pitfall catalog and ontology as
input data, and as a result, a list of pitfalls is obtained.

This tool applies predefined rules and heuristics to identify problems in ontology.
OOPS! provides detailed descriptions or suggests corrections to improve ontology quality
once possible problems have been identified.

2.3 Related Work

There are several studies related to the use of KGs for e-commerce. Some of them are
based on specific tasks to insert a new domain.

KG in E-commerce context. Li et al. [22] proposed AlimeKG, an e-commerce KG
representing knowledge about user problems, item information, and item relationships.
AlimeKG helps to understand users’ needs, answer pre-sales questions, and generate ex-
planatory texts. This KG was applied to various business scenarios, such as buying
guidance, answering property questions, and generating recommendation reasons. In ad-
dition, Li et al. [22] described how the domain KG comprises free text and tested it with
various applications in e-commerce categories.

Xu et al. [38] proposed an approach based on a Product Knowledge Graph (PKG) to
learn the inherent relationships between products, in which they make use of a method
of learning distributed representation enhanced with self-attention. However, this study
does not consider a customer’s information as part of e-commerce because it is focused
on products and how their information can be used for recommendation and classification
tasks.

Populating KG. The T2KG [I9] creates an automatic KG from natural language
texts and fills an existing KG with new knowledge. Natural language context entities are
assigned to the corresponding uniform resource identifier in the KG, which is usually the
subject or object of the triples. They combined rule-based and similarity-based techniques
to map the predicate of a triple generated from text in an existing KG. The experimental

3https://oops.linkeddata.es/index. jsp

https://oops.linkeddata.es/index.jsp

28

part showed that the T2KG framework can successfully generate a KG and populate an
existing one with new text knowledge. However, the framework does not work correctly
when mapping predicates containing many compound words since the triplet extraction
step is not perfect due to the complexity of the text in open domains.

Sant’Anna et al. [29] proposed a method to populate a KG from a collection of pairs
of questions and answers, in which they performed an extraction of entities and intents to
generate triples supported by the ontology defined in its KG. The knowledge generated
and obtained from the pairs of questions and answers is stored in the KG. However, the
method requires that the attendants answer the questions correctly through a manual
process. Similarly to our work, the method proposed by Sant’Anna et al. [29] focused
on the e-commerce domain.

Integroly [16] is a framework that automates the KG populating. It collects data
from digital media sources to populate a KG focusing on the political marketing domain.
They used a set of Natural Language Processing (NLP) techniques to extract knowledge
from political marketing texts written in Spanish. In their experiments, the authors used
Twitter and political news. They found problems with synonyms, ambiguities, and the
connections made in the KG.

Extending KG. KBot [3] is a multilingual chatbot that understands user queries.
KBot has automated learning based on classifying intents. In addition, KBot can add
a new dataset to the existing knowledge base, allowing the expansion of the chatbot’s
capabilities and thus having a greater understanding of queries.

KGs have many applications and are important in the medical sector. It is challenging
to build a KG for all diseases. For this reason, DEKGB [31] proposed an efficient and
extensible framework to build KG for specific diseases based on doctors’ knowledge. They
described the process by extending an existing health KG to include a new disease.

Table[2.1{shows the organization and conceptual analysis we performed for the existing
exploratory literature review conducted.

We considered three scopes. Our study aims to cover these three scopes: (i) KG in
e-commerce, use of KG in an e-commerce platform; (ii) Populating KG, populating a KG
with new knowledge based on the ontology; and (iii) Extending KG, modifying the KG
by adding new instances with their relations. The goal is to build our framework to insert
new domains in a KG with an e-commerce context based on users’ questions and answers
from GoBots, which owns a set of objects that contain the user’s question and the human
assistant’s answer.

In our proposal, we base our research on [29], focusing specifically on the stage of pop-
ulating KG. We apply the conceptual process proposed by this author in our framework.
This approach allows us to take advantage of the methodologies and strategies presented
in their work, adapting them to the needs and objectives of our framework.

2.4 Final Remarks

The Chapter aimed to present the background context of our research, where we present
the fundamental concepts to understand our proposal and evaluations conducted and

29

Table 2.1: Comparison in three scopes of studies in KG connected to our present investi-

gation in this article.

KG in Extending | Populating
e-comimerce KG KG
[19] X
[31] X
[38] X
3] X
[22] X
29] X X
|16 X
Our proposal X X X

review the investigations related to our study. The Chapter aimed to establish a solid

basis for our research work. The following Chapter focuses on a detailed description of our

proposed framework, considering each module that makes up our framework, as well as a

description of the steps involved in each of these modules, providing a complete overview

of our UpKG framework.

30

Chapter 3

Our Proposed UpKG Framework

This Chapter provides a detailed description of our UpKG framework. We propose a
framework to insert new domains in an existing KG focused on e-commerce from questions
and answers. Figure [3.1| presents the overview of our UpKG framework. This consists of
four modules: (i) Understand the current KG; (ii) Identify new domain; (iii) Restructure
the ontology; (iv) Populate the KG. This Chapter is organized into four main sections,
devoted to describing each module of our framework.

= E

Question/Answers New_domain Specific
collection 1o insert questions/answers
for the new domain Knowledge
Graph (v1)
0} (ii) l
) P
7 Understand Identify new
g = the current KG ‘ domain 's
4 o
Knowledge f 1 i
Graph (v0)
o\ /. o
_®
| .//‘\ [) *
g O L]
. Ontology
Domains (v0) L—» Ontology (v1)

in the KG

Figure 3.1: Overview of the UpKG Framework. (i) Understand the current KG: Module
focused on understanding the current KG and its base ontology; (ii) Identify new domain:
Module focused on discovering the new domain that will be inserted; (iii) Restructure the
ontology: Critical module in which the base ontology is combined with the new properties;
(iv) Populate the KG: Final module focused on generating the triples to insert the KG

Section [3.1] is focused on understanding the existing KG. This module involves how
we propose a thorough analysis of the structure of a KG, considering the analysis of
relationships and the structure of ontology.

Section is focused on identifying new domains that a KG in place is not able to
cover. This module consists of identifying questions that cannot be answered by the KG
and identifying domains with a high incidence of unanswered questions. In addition,

31

relationships that were not mapped in the ontology should be identified for this new
domain.

Section is focused on restructuring existing ontology to cover the new domain
identified in Section This module consists of selecting a base ontology that is related
to the new domain to be inserted and combining mapped properties with the existing
ontology. In this way, the creation of a final ontology is obtained that comprehensively
covers the new domain previously identified in Section [3.2]

Section is focused on inserting triples to a KG from existing questions and answers
collected from users. This module includes extracting intentions and entities from ques-
tions and answers related to the domain previously identified in Section In addition,
it is carried out the creation of RDF triples that are later inserted in an RDF Store,
allowing the construction of a populated KG that significantly covers the new domain.

3.1 Understand the current KG in place

Our framework works on an existing KG where the module at this stage aims to under-
stand the shape and structure of the initial KG. Figure|3.2|shows the flow of steps involved
in this module. Understanding the KG structure is necessary as our first step, which al-
lows us to identify and analyze how the existing KG is structured and constructed, which
we denote as vO0.

A person with knowledge of ontologies can perform this step by observing data proper-
ties and attributes. For the second step, we analyze the structure of the existing ontology,
which represents all the existing relationships in the KG. The comprehension of the ontol-
ogy is as critical as that of the KG. In this step, one can use some tools to understand the
ontology structure; one of the most popular tools of ontology visualization is Protégé [33].
This understanding is realized through the visualization and manipulation of ontology,
for example we can use Protégé to make modifications and understand how ontology was
developed, in the same way we can deepen and understand of the best way the relations
between the entities that has the ontology.

In the third step, the relationships of the KGs are identified; this consists of observ-
ing all the possible relationships that the ontology allows and how it helps achieve the
objective of the KG (e.g., answering users’ questions).

The fourth step is to identify the domains currently supported by the KG v0 and thus
map the domains that are necessary to insert. In this step, one can access the current
KG information and discern which domains the KG covers. At the end of the third step
we have a list of all the ontology relationships and we can infer the domain that covers
the KG thanks to the set of relations and properties obtained in the previous steps.

The development of this module can be performed manually since all the processes
described require the intervention of human reasoning.

32

N\ / ™
o &
/ \ .
(¢] @) 1 Set of properties |
Omology } and attributes of !
(Vw_g ontology _)'
o B c]
& Understand the Understand reLIJart]i(i?\rssr:iansdin Identify the current
Y structure of KG current Ontology p domains in the KG
Q- ontology ..

o

Knowledge {f} o) i
Graph(v0)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
i Set of properties | | Setof relations i
and attributes of ! E—— of ontology 1
| i
i

KG L 2

Domains

CHIQ))

Figure 3.2: Flow of steps to understand the current KG in place. (A) Understand the
structure of KG: First step focused on identifying the structure of KG, at the bottom
right shows a man’s icon this means that this step can be performed manually; (B)
Understanding current ontology: The second step focused on understanding the structure
of ontology; (C) Understanding relationships in the ontology: The third step focused on
identifying the relationships that composes the ontology; (D) Identify the current domains
in the KG: Fourth step focused on identify the domains covered by the KG.

3.2 Identify new domain

The objective of the second module is to identify a new domain where the KG in place
cannot perform its task, in this case, answering questions that are not mapped in the
current KG. Figure [3.3| shows the flow of steps involved in this second module.

The first step is to identify all the compatibility questions not answered by the existing
KG. This step can be performed automatically through a script, which has as its input a
collection of user questions and answers. The script has the function of obtaining the total
number of questions for each main category or domain, this can be developed according
to how the clients’ questions are stored together with their respective answers by human
assistants, in other words we can say that this step consists of grouping the number of
questions for each category, excluding the domains covered by the current KG. A person
with programming knowledge can execute this script supported by a query language or a
programming language.

The second step identifies relationships that the ontology vO cannot map, making it
impossible to respond to the KG according to its intent.

The third step identifies the domain with the highest number of unanswered ques-
tions from the current KG. To this end, a solution as an automatic script can generate a
histogram of the main categories with the number of questions associated with each cat-
egory. The resulting histogram shows the root categories with the number of unanswered
questions, this histogram helps us to visualize the domain that has the largest number of
unanswered questions and thus identify the new domain to be inserted in the KG. It is
important to note that the histogram does not take into account the domain or domains
covered by the current KG

This histogram allows a graphical presentation of domains not covering the current

33

KG; one can decide which domain to include based on the analysis of the histogram
generated.

This module can be developed fully automatically, unlike the previous module (cf.
Subsection , because each step can be applied using a software script.

P 4 " Setof unmapped |
> relations J,—
______________ 14
Domains A B C Y.
in the KG . . .
Identify unanswered Relation not mapped Domain with the most
2 questions , in the ontology] unanswered questions , New domain
AP 9 o A
é X 7 T S, v to insert

Question/Answers >
collection

Unanswered
questions
collection

Figure 3.3: Flow of steps to identify new domain. (A) Identify unanswered questions:
The first step focused on identifying questions not supported by KG, at the bottom right
shows a blue icon this means that this step can be done automatically; (B) Relation not
mapped in the ontology: The second step focused on identifying relationships not mapped
by ontology; (C) Domain with the most unanswered questions: The third step focused on
identifying the domain with the highest number of questions not answered by KG.

3.3 Restructure the ontology

The goal of the third module is to restructure the existing ontology with the relationships
not mapped to the domain found in the previous module (Sectio.

The input data to be used in this module is the new domain to be inserted and the
existing ontology denoted as vO. Usually, an ontology is modified based on the new
needs of a system. Therefore, it is essential to modify the structure of ontology and this
process is done through the manual modification of ontology, using tools that facilitate
the visualization and editing of classes and properties. Protégé is an important tool for
visualizing and editing ontologies.

The data from this module is the ontology with the new domain to which we denote
it by the version v1. Figure 3.5 shows the flow of steps involved in this third module.

The first step in this process is to search for available ontologies in the selected domain
to reference to understand how this knowledge is structured. This search can be carried
out through a literature review or searching in ontology repositories available on the Web.
The second step consists in selecting a base ontology which becomes the starting point
for modeling the new ontology. For example, we can select Schema.org, which presents
properties widely used in different areas of knowledge, such as Products, Health, Persons,
etc.

The third step aims to obtain the new ontology properties necessary for the new do-
main(s) identified and the type of questions to ask. For example, if our current domain

34

is Automobiles, we could not answer questions about Technology. In this step, the in-
tervention of human knowledge is necessary to combine the existing properties with the
new ones; it is possible to find new properties necessary to store knowledge based on the
set of questions and answers. For example, Figure [3.4] presents the analysis based on the
recognition of entities and intentions in a question and answer pair. This analysis allows
to identify the existing properties in the question, in this case we have properties such
as Brand, Model and Size. The Brand and Model properties already exist in Automobile
ontology. However, the Size property is not present, which leads to restructuring the
Automobiles ontology to include the Size property. In addition, this question and answer
analysis allows to identify the type of question intention, the product, and the type of
compatibility of the answer.

Consurner Iltem

I N
Q: Is USB Type-C Charging Cable compatible with the Huawei Mate 20 Lite 6.3 inches ?
N J W_JH_/

Pro\auct Intent Brand Model Size

A: D(es, this product is compatiblg.

"
Full Compatibility
Figure 3.4: Analysis of a question and answer pair from the Technology domain.

The fourth step manually combines the properties that were previously mapped with
our ontology v0. In this step, one can use a software tool that facilitates ontology modeling
(e.g. Protégé [[) to obtain our ontology v1 as output.

This module can be developed manually because, in all the steps, human intervention
is necessary to restructure the ontology.

« : ‘, °
Ra a/’ L e
" e

[J / \
Human logical °c 0
reasoning Ontology (vO0)

!

Perform a D . g
. . Select a base . Combine the °
- literature review ontolo New properties properties]—» ° ®
New domain of ontologies @ 9y Q:
to insert e {6} A i
Ontology (v1)
Property

List

Figure 3.5: Flow of steps to restructure the ontology. (A) Perform a literature review
of ontologies: The first step focused on identifying ontologies available in the selected
domain; (B) Select a base ontology: The second step focused on selecting the base ontology
to support the new domain; (C) New properties. Third step focuses on obtain the new
ontological properties needed for the new domain; (D) Combine the properties: The fourth
step focused on combining previously detected properties with our ontology vO0.

Thttps://protege.stanford.edu/

35

3.4 Populate the KG

The last module aims to insert (or populate) the KG with new triples extracted from a
collection of specific questions and answers. These triples have to follow the structure of
the new ontology v1 to be added to the KG. Figure [3.6] presents the flow of steps involved
in this fourth module.

This module is based on the research carried out by Sant’Anna et al. [29], which
addresses the insertion of triplets based on questions and answers. In our proposal, we
conceptually adopt the theoretical steps proposed in such research as part of the process
of populate a KG. However, it is important to highlight that the application of each of
these steps differs significantly from the implementation proposed by [29].

The first step refers to obtaining all the necessary information about the product,
such as the GTIN, name, category, SKU, among others. To obtain this information
we execute an additional query for each question, this information is retrieved from the
database where the product information is stored. A Product refers to an item offered in
an e-commerce.

The second step consists of extracting the intents and entities from the questions and
answers entered. In our solution, this process is based on the work of Sant’Anna et al. in
a conceptual way [29], who proposed their own Natural Language Understanding (NLU)
process, where they defined the concepts of entity and intent.

Sant’Anna et al. [29] defines that the entity represents a term or expression with a
known meaning relevant to understanding the sentence. In addition to having names and
values, for example, the “brand", “model", “voltage", “volume" present in an appliance
The intent is to identify whether the question refers to compatibility between entities.
This step is responsible for processing the stored set of questions answered manually by
human assistants and product information, a key source of knowledge to update the KG
and answer new similar questions. This extraction process is necessary to structure the
knowledge through RDF triples. It is relevant to note that [29] uses RASA NLU [§] for
the extraction of entities and intents, unlike our proposal that uses GPT-3 LLM to carry
out this task.

The third step is the creation of RDF triples, which is a key factor in updating the
current KG. This knowledge extraction process is based on extracting intents and enti-
ties from each pair of questions and answers (input in our framework) to structure the
extracted knowledge in RDF triples.

For example, in the question “Is USB Type-C Charging Cable compatible with the
Huawei Mate 20 Lite 6.3 inches ¢" and the answer “ Yes, this product is compatible ”,
we can observe the presence of 3 entities such as Brand, Model and Size. Additionally,
we have information about the product, the intention of the question and finally the type
of compatibility present in the answer. In this way we can generate triplets necessary to
be inserted later in the KG. Below we show the generated triplets:

<USB Type-C Charging, compatible, Huawei Mate 20 Lite 6.3 inches>
<USB Type-C Charging, type, Product>

<Huawei Mate 20 Lite 6.3 inches, brand, Huawei>

<Huawei Mate 20 Lite 6.3 inches, model, P30>

36

o <Huawei Mate 20 Lite 6.3 inches, size, 6.3 inches>
o <Huawei Mate 20 Lite 6.3 inches, type, Technology>

The fourth step is to store the collection of triplets in a triplestore; this can be local
or remote. This step aims to access information through SPARQL queries. In this step,
one can use software tools that store RDF data, as well as GraphDBEL Virtuosdﬂ, among
others. The process of storing the triplets can be carried out using a Python script, which
is presented in greater detail in the Algorithm [7]

Finally, the output data of this last step is the KG v1. This module can be developed
automatically because each step can be executed by a script.

8

Intents/Entities

collection K ed
nowledge
Graph (v1)
B C |
Product Intents/Entities
Informatlon Extraction l Create tnples ‘ RDF Store
Specmc \; f 0/4 (o} v
questions/answers A J
for the new domain
L I ° L JE—
Product o 9® : Triples
Information collection
collection Ontology (v1)

Figure 3.6: Flow of steps to populate the KG. (A) Product Information: The first step
focused on obtaining the information of each question and answer; (B) Intents/Entities
Extraction: Second step focused on extracting the intention and entity of the questions;
(C) Creation of triples: Third step focused on create triples to update the KG; (D) RDF
Store: Fourth step focused on store the generated triples.

Chapter [4] describes in detail the application of our UpKG framework applied to the
context of an Al startup in Latin America.

3.5 Discussion

This Chapter introduces our UpKG framework and describes in detail the insertion of
new domains into an existing KG from pairs of questions and answers. The framework
consists of four interconnected modules, each with a specific purpose.

The first module focuses on understanding KG, including a thorough analysis of its
existing structure, relationships, and ontology, and provides a basis for KG extension. The
second module identifies the new domains to be incorporated, which involves identifying
unanswered questions in the KG and detecting missing relationships. Once these gaps are
identified, the third module restores existing ontology to accommodate new relationships.
This process ensures that ontology is consistent and adapts to the new domain you want to

2https:/ /www.ontotext.com /products/graphdb/
3https://virtuoso.openlinksw.com/

37

insert. Finally, the fourth module is responsible for populating the KG. For this purpose,
it extracts the intentions and entities of the pairs of questions and answers, creating triples
inserted in the KG.

This framework presents a well-defined methodology and step-by-step for the expan-
sion of KG to offer a guide for those looking to incorporate new knowledge into their KG,
ensuring that the new knowledge is integrated coherently and efficiently. In addition, one
of the highlights of our framework is its ability to adapt to various domains with a focus
on e-commerce.

Our proposal originates initially for the insertion of new domains in an existing KG.
However, UpKG can be applied without problems for the creation of a KG from scratch,
considering that not all modules will be applied in their entirety, as is the case of the first
module, or some steps of the third module. Therefore, we can say that, despite its initial
objective, this framework can be used in various scenarios.

3.6 Final Remarks

This Chapter described our UpKG framework, which aims to insert new domains in KG
in the context of e-commerce. Our framework is based on four different modules, and
each module is integrated coherently to ensure that the domain insertion process in the
KG is efficient. The next Chapter describes the application of our UpKG framework in a
real scenario focusing on e-commerce.

38

Chapter 4

Applying the UpKG Framework in a
Case Study

In this Chapter, we describe the application of our UpKG framework in a real scenario,
specifically in e-commerce. Our framework was applied in the company GoBots E], spe-
cialized in Artificial Intelligence solutions for e-commerce platforms in Latin America.
GoBots offers solutions to structuring compatibility knowledge between products using a
KG based on an ontology. In addition, it provides a question-and-answer solution designed
to improve the user experience on e-commerce platforms.

This Chapter is organized into three main sections. First, Section further presents
the case study context and the methods applied in this case. Section describes the
results obtained from applying our UpKG framework, detailing the results achieved in
each framework module. Section discusses our research findings and analyzes the
results obtained, contributing to a better understanding of our research work.

4.1 Context of Application and Methods

We contextualize where we applied our UpKG framework instantiation. This research was
fully carried out within the company GoBots. The main objective of GoBots is to bring
Knowledge Graphs and Artificial Intelligence solutions closer to e-commerce systems,
allowing more effective interaction with customers.

Currently, GoBots has a KG-based solution that stores information from a specific
domain, in this case, “Automobiles". This KG is deployed and in execution. The existing
KG was designed to answer client questions related only to this domain. GoBots KG
currently answers customer questions through its own service, which receives a question
and proceeds to perform two sequential steps as described below:

e Stage one: This stage consists of processing the question by a component called
Query Construction, which consists of encoding the question in triplets that the
current KG supports, all following the structure of the ontology current [4.2] where
the response to the generated query is given by the following attributes:

"https://gobots.ai/

https://gobots.ai/

39

— A boolean variable that indicates whether the knowledge was found, indicating
the existence of compatibility between the product and the consumer item.

— The type of compatibility found between the product and the consumer item.

— The human assistant’s complete answer to the question that generated the
retrieved knowledge.

This stage one is performed without human intervention, as it is a completely au-
tomatic process for generating questions.

e Stage two: In this stage a human assistant proceeds to answer the question asked,
this question with its answer is stored in the GoBots database, in addition the ser-
vice saves the information of the product that is being asked, such as the ID and
product category. Once the assistant’s task is completed, the service proceeds to
analyze the question. This analysis consists of extracting intentions and entities
from the question, then creating triplets based on their ontology as shown in Fig-
ure [4.2] Finally, the triples created are stored within a triplestore. The stage two is
performed if and only if stage one was not able to answer the question.

Stage 1
Knowledge Query — SPARQL Query

Query
‘ l Knowledge Answer Construction

Stage 2 Vv >
ouest A RDF Store
uestion
‘g. Answer not Unanswered Questions &
Found Question Answer

GoBots A
service

Answer
O Answer Found
[R —

Client

4

Intents & Entities
Extraction

Creation of
Triples

SPARQL Update

Database

O
[

Attendant

Figure 4.1: Flow used by GoBots to answer customer questions using their KG. The
diagram presents two stages, where stage one is the retrieval of information from the KG
to answer the question, while stage two is the update of the KG with new knowledge
thanks to the response of a human assistant.

Currently the GoBots KG in production consists of 1,430,133 instances of type Com-
patibility, of which 125,646 are of type NoCompatibility and 1,304,488 are FullCompati-
bility. The number of Product instances is 269,862 and the number of Car type instances
is 25,636. All this information stored within the KG was obtained from the Automobiles
domain.

The KG in place uses the ontology v0 shown in Figure 1.2, where Compatibility is the
class that represents the type of compatibility between a Product and a Consumerltem,
it also has two compatibility subclasses, FullCompatibility being the one that represents
the existence of compatibility between the Consumerltem and the Product; while the

40

NoCompatibility subclass is the opposite, this subclass represents that there is no com-
patibility between the Product and Consumerltem classes. The Product refers to the
product about which the question is being asked, which generally has a unique identifier
in addition to its category. On the other hand, the Consumerltem class represents the
item related to the question. In the current KG we can only observe the presence of the
Car class, which represents the Automobiles domain.

Full No
Compatibility Compatibility
subClassOf subClassOf
Compatibility compatible With———>| Coﬂzl:nmer <«——subClassOf Car
has Compatibility has Year has Model
has Brand
Product String String String

has Product ID has Category

String String

Figure 4.2: Ontology vO that represents the compatibility knowledge between a product
(a car seatbelt, for instance) and a consumer item (an Audi TT, for instance) [29].

To effectively address potentially more customer questions, we applied our UpKG
framework to add a new domain to the KG and to apply UpKG was important the
support of the developers of the current KG in GoBots since they are the main experts
of the KG and its structure. We also had access to the KG documentation and the
GoBots database where they store the questions and answers asked by all the clients.
This implementation was carried out within the existing GoBots KG.

With this initiative, we seek to expand the capacity of the KG in place and allow it to
answer questions from various domains. This must contribute significantly to improving
the user experience and the solution’s effectiveness in the e-commerce field.

4.2 Results Applying the UpKG Framework

This section shows the results of applying our UpKG framework in the GoBots company.
Section [4.2.1] presents the result of applying the first module, where the understanding
of the current KG of Gobots is shown. Section [£.2.2] presents the result of applying
the second module which is to identify the new domain to be inserted in the GoBots
KG. Section [4.2.3] presents the result of restructuring the ontology, where the process of
inserting the properties of the Appliances domain into the Automobiles domain is shown.
Section [£.2.4] presents the resulting KG population from the UpKG framework. This

41

section shows the process of how the final KG accepts the Appliances and Automobiles
domains.

4.2.1 Results in understanding the current KG

Figure |4.3| presents the application of the first module, which is to understand the current
KG where we have as input the KG of GoBots, which we denote as v0.

In step A (Figure[4.3)), it is required to understand the structure of the KG. In our case,
we had access to GoBots documentation and the current KG in production to perform this
step. With the documentation, we conceptually understood how the KG was structured,
the objective by which the KG was designed, and how this was used to answer questions
in an e-commerce environment.

Ny
Ngl o
./.\

/ P
o O
GoBots

A1 TEET -
o Ontology i Set of properties |
(vO0) i and attributes of ! GoBots

|

N 1 theontology Documentation

Q: B Q: - Q: % b
umonts = Understan [+ '
Understand the Understand relationshios in Identify the current L4 ¢
structure of KG Current Ontology p domains in the KG
ontology 0

Documentation
. | Setof properties | M;"ggt‘o;;a;tio;;“:
@ , and attributes of ! ' of the ontology
|

! Automobiles
GoBots ! Ke P ﬁpmtégé """""""" Domain
Knowledge ~ TTTTTTTTTTTTTT
Graph(v0)

Figure 4.3: Results in understanding the current KG in GoBots.

As a result of understanding the structure of KG, we have a set of properties and
attributes of the KG v0, these properties refer to all the existing relationships in the
KG vO0, in the same way we map all the attributes that belong to each class within the
KG v0. Figure [4.2] shows the initial ontology, in which we observe the existing classes,
properties, and attributes to store the compatibility knowledge between a product and a
Car type object.

In step B (Figure [£.3), we used the initial ontology vO proposed in [29]. In this step,
we used the tool Protégé to visualize and understand how the ontology was structured.
As a result of understanding current KG, we figure out a set of properties and attributes
in the ontology vO.

In step C (Figure , like the previous step, we used the Protégé tool to understand
the relationships presented in the initial ontology, which contains the following classes:
Compatibility (FullCompatibility and NoCompatibility), Consumerltem, Product and Car.
Where the Product class represents a product in an e-commerce system, Consumerltem
is an abstract class representing an item that is related to the product; this relationship
is given by the Compatibility class, either of the FullCompatibility and NoCompatibility
types. As a result of understanding relationships in ontology, we have a set of relations
of ontology v0, at this moment we have mapped all the existing relationships in the

42

ontology v0 as well as in the KG v0, these relationships for example are: compatible With,
hasCompatibility, hasProductID, hasYear, hasBrand, etc.

In step D (Figure 4.3), we defined the domain(s) that cover the current KG. In this
case, the current domain is the Automobile only, which was represented by the Car class,
keeping the following attributes: hasYear, hasBrand and hasModel, which represent the
year, brand, and model of an object Car.

4.2.2 Result in identifying new domain

GoBots collected question-answer pairs related to a product that human attendants an-
swered, these question and answer pairs are stored in the GoBots database each time a
question is asked to the GoBots service as shown in Figure [4.I] This collection is stored
in a MongoDB database. Figure [£.4] shows the process of identifying the new domain to
be inserted in the new version of the KG.

In step A (Figure , we identified all the questions that the current KG v0 cannot
answer. This task was carried out with a Python script that connects directly to the
GoBots dataset to extract the question collection within a delimited date range. Addi-
tionally, we do not consider the questions related to the domain of Automobiles. In this
evaluation, the date range was two months, specifically from March 1, 2022 to May 1,
2022. The output of step A is a collection of questions the KG v0 did not answer. For
this reason, we perform a filter obtaining all the questions related to categories different
to Automobiles.

Below we show the Algorithm to extract the total number of questions grouped by
their root category (domain). In the GoBots database, each product is associated with a
daughter category and not directly with the root category, and each question is associated
with a product. Having this information it is possible to obtain the total number of ques-
tions asked for each root category. For example, the categories Air and_Ventilation
and Washing Machines are subcategories of the category Appliance, and each subcat-
egory has a number of questions, so this Algorithm shows the steps necessary to group
and get all the root categories with their total number of questions.

The Algorithm [1| receives four input parameters described below:

1. Parameter database: It is the instance with the necessary access to enter the GoBots
database, in this case we will specifically use the collection pergunte aqui that
contains all the questions asked by clients.

2. Parameter range date: Range of dates in which the domains are extracted with
their associated total number of questions.

3. Parameter categories: Set of all the categories present in GoBots, this set has the
necessary information to determine the hierarchy between the categories.

4. Parameter excludes: Categories not to be considered, in this case it is the root
category of Automobiles.

43

Algorithm 1 Grouping of questions according to their root category.
Require: database

Require: range date

Require: categories {All categories hierarchy}

Require: exclude {Automobile category root}

1: collection < database.pergunte _aqui

2: pipeline < get pipeline_category(range date)
3: results < collection.aggregate(pipeline)

4: group <— 0

5. for all result € results do

6: category < categories.get(result.id)

7. root < category.root

8: if root.id & exclude then

9: if root.id € group then

10: group|root.id] < group(root.id] + result.count
11: else

12: group[root.id| < result.count

13: end if

14: end if

15: end for

16: return group

In summary, the Algorithm [I| performs a search for the total number of questions
for each root category within a date range and returns which are the domains with the
greatest number of questions not answered by the KG vo0.

In step B (Figure , we identified manually the relations that are not mapped in the
ontology and, therefore, are impossible to answer by the KG. In this step, we analyzed
the structure of the questions and compared them with the properties contained in the
GoBots KG v0. This analysis is carried out manually, and human intervention is necessary
to understand the relationships and properties present in the questions from a different
domain than automobiles. This analysis is carried out based on recognizing the intentions
and entities present in the question as shown. previously in Figure[3.4] In addition, these
relationships are necessary to be adapted and inserted into the current ontology, this step
refers to the step

Among them, we have questions like “Is it compatible with LSE09 220v?", where LSE09
refers to a Washing Machine (Appliance domain) that works with a voltage of 220V. This
example shows that the KG cannot store this knowledge using the Car class defined in
the ontology v0. As a result of step B, we have a set of relationships not mapped by the
current ontology.

In step C (Figure [4.4)), we created a script in Python to identify the domains (cate-
gories) with the largest number of questions not answered by KG v0 sorted descending;
the three domains with the most questions and answers were Appliances, Home Furniture,
and Tools.

The Algorithm [2] shows the necessary steps to graphically obtain a histogram of all
the root categories, it also returns the category (domain) with the greatest number of

44

unanswered questions, which in our case is Appliance. The histogram obtained from
applying [2] is the one shown in Figure 4.5 It is important to mention that the process
of identifying the new domain is carried out automatically using the Algorithms [I] and [2]
To obtain the new domain it is necessary to execute the Algorithms sequentially.

®
@ @ python

A= Script with 0 F
mongoDB i Set of unmapped !
ﬁ Q Python 8 > relations J'—

Au(tjomo@les Identify unanswered Relation not mapped Domain with the most E | o
omain questions in the ontology unanswered questions . s
S |
r—)\ T . !
& .
B Appliances
— —_— 5 /. @ python’
GoBots \./. o
question/answers Unanswered .// N Script with
collection questions Jd 0 Python

collection GoBots

Ontology
(v0)

Figure 4.4: Diagram showing the result of identifying a new domain in GoBots.

Algorithm 2 Histogram of categories based on the number of questions.
Require: group

1. ordering < sort(group)

2: plot _histogram(ordering)

3: first_domain < ordering|0]

4: return first _domain

In the next module, we present the insertion of the Appliances domain to the new
version of the ontology and later to KG. Figure [4.5/shows the domain that has the highest
number of questions not answered by the KG v0 is Appliances. For this reason, we
inserted this new domain with the intention of covering the greatest number of questions
not answered by the KG. In a new application of our framework we take the domain with
the highest number of unanswered questions, which is different from Automobiles and
Appliances.

4.2.3 Result in restructuring the ontology

The ontology v0 is limited to the Automobiles domain, which does not allow receiving
queries from other domains. That is why when applying our UpKG framework, the need
to insert the “Appliances" domain was identified to cover a large part of the questions not
answered by the current KG.

In addition, we decided to maintain the Compatibility intent between a product and
an object from the Automobile domain, this decision was made to maintain the behavior
of the initial ontology. The ontology obtained from applying our framework was denoted
as v1, which can cover two domains of questions users ask in an e-commerce system.

45

200001 19975

17500

150001

12500

10000 1

9745

7500

5000+

2500+

Informatics

(%]
i}
(9]
c
8
o
o
<

Sports and Fitness
Construction

Cellphones and Telephones
Industry and Commerce

o
O
=
>
kel
c
©
o
T
=;
I
n)
i
c
o
=
=
9]
i
w

Home, Furniture and Decoration
Footwear, Clothing and Bags

Figure 4.5: Histogram from the root categories with their number of questions.

Figure [4.6shows the process of restructuring the GoBots ontology to accept the Appliance
domain.
In step A (Figure , we performed an ontology search in literature, specifically in

46

works previously published by the scientific community; in our case, it is to carry out
a literary search for ontologies that cover the domain of appliances, or also ontologies
focused on products. A search for publicly available product ontologies was carried out
because it is intended to expand the KG to several e-commerce categories. We explored
Schema.orgﬂ, which provides a list of properties in Product and allows us to identify the
properties needed for the new domain.

In step B (Figure , we selected Schema.org as the base for our ontology because
this source provides a set of standard properties that align perfectly with the domain we
want to insert.

<€pmtégé
Voltage Volume

] o | Q: ®
=107 Perform a = 7) o
(e . . Select a base Combine the o
= {52 literature review niol roperti o
Appliance of ontologies ontology properties
Domain Ontology
GoBots
schema.org o] ° V)
L—p» o — | — O\ /
o — _®
°o— /0\
Property o/ @)
List GoBots
Ontology

(v0)

Figure 4.6: Results in restructuring the GoBots ontology with the “Appliance Domain".

In step C (Figure , we identified the new properties necessary for our ontology,
these new properties are identified by human reasoning, taking into account the proper-
ties that are necessary to store new knowledge supported by ontology. This analysis is
done manually to a collection of questions from the domain of Appliances, as shown in
Figure 3.4l In this case, we used standard properties present in Schema.org regarding
Product, such as Model, Brand, and Material. Schema.org presents properties to rep-
resent entities that are widely used by different applications, entities such as Products,
Events, Health, etc.

We propose new properties that was not found in Schema.org. These are proposed
from human reasoning to map the relationships in the Appliances domain, that is, the
ontology developer’s criteria are used to propose properties that are necessary to cover new
knowledge of the Appliance domain. These new properties proposed by the developer’s
criteria are: Voltage and Volume questions.

In step D (Figure |4.6), we combined the properties of the new Appliances domain
with the Automobiles domain, this step is carried out completely manually; in this step,
we used the Protégé tool to combine our property list with the existing GoBots ontology
v0. Our list of new properties to insert is the result of using the properties present in
Schema.org that are not within the initial ontology, in this case we manage to represent the
knowledge of the Appliances domain adding the property Material, Voltage and Volume.
The final result of this step is a new version of the GoBots ontology that accommodates
two domains: Automobiles and Appliances. We denoted this ontology as v1.

2https://schema.org/Product

47

We added an Appliance class that is a subclass of Consumerltem just like the Car
class to our initial ontology, in which we added all the attributes mapped as: hasMaterial
hasVolume and hasVolts.

Figure [4.10] shows in Protégé tool visualization all the Data Properties that connect
to the “Automobiles" and “Appliances" domains, some of which present independent at-
tributes for each domain.

Regarding the Object Properties, our ontology maintains the two existing relationships
between the Product and the Consumerltem through a Compatibility type proposed in
[29]. These are represented by compatible With and hasCompatibility, where compatible-
With ranges to a Consumerltem and domain to a Compatibility type. However, hasCom-
patibility has a Compatibility type as range and a Product domain.

Figure [£.7] shows the metrics of the ontology structure in terms of classes, properties,
and axioms. The ontology vO presented seven classes, while our ontology v1 presented
eight classes. This shows that inserting a new domain in ontology was not complex
regarding new classes added, considering that ontology vO was already well-designed to
accept other domains.

Ontology metrics:

Metrics
Axiom 13.259
Logical axiom count 9,850
Declaration axioms count 3.409
Class count 8
Object property count 2
Data property count 17
Individual count 3.382
Annotation Property count 0

Figure 4.7: Metrics of the ontology v1

Figure 4.8 presents how the ontology v1 was structured, which was obtained at the end
of the ontology restructuring phase as explained in Section [4.2.3] This new ontology v1
consists of a new class Appliance that is a subclass of Consumerltem, where the class
Appliance is responsible for storing the new knowledge extracted from the questions asked
by users. In addition, the compatibility relationships between the classes remain the same,
thanks to the advantage that Consumerltem is the class with which the Compatibility class
is related. This ontology was designed as an extension of the ontology proposed in [29].
This choice was made in order to simplify the migration from the previous KG to the new
KG, thus avoiding significantly compromising the initial structure.

Figure presents the Object Property of the ontology vi. The compatible With
property represents the relationship that exists between the class Compatibility and Con-
sumerltem, where the compatibility type is represented as FullCompatibility or NoCom-
patibility. Additionally, we have the property hasCompatibility, which indicates whether a
product has some type of compatibility. Having these two Object Properties we can make
queries between Product and Consumerltem. This relationship is important for answering
compatibility questions.

48

PropertyDescription

4
I P75 """~"==-====~
NoCompatibility ~ ! FullCompatibility 1 string :
i
—— — . 1 .
K ! 7 Applian 1
Subclass of Sp ance SHlie X
N | L omain I schema:hasAppliance |
Subclass of : Subclass of 1 Material) |
\ ! , 1 schema:hasAppliance
. g | /Model :
Q e p — 1 |
Compatibility ompatibleWi > Consumerltem)<1-- - -Subclass of---:v Appliance ,-“'\}elmaihas* string |
‘olume
A 1 :
| I schema:has |
|
lasCompatibility Subclass of ! schema:hasAppliance ¥olis 1
i ! Brand] 1
fm———=———=———t - — == |: string 1
1
1 1 !
Product 1 Car 1 string :
/ N I I S ——
hasSKU ’ hasProductID ' hasCarModelDesign hasCarModel I
1 1
hasGTIN \ 1 |
! : | 4 hasCarYear hasCarBrand -
string Literal . ‘ string ‘ J string ! Automobile
1 1 Domain
string 1 string string 1
- 1 S S 1

Figure 4.8: Ontology structure vi. This represents the compatibility between products
and an object of Car or Appliance type.

Importantly, the existing KG of GoBots was developed for the purpose of represent-
ing the compatibility relationship between a buyer’s product (Consumerltem) and an
e-commerce product (Product), thus being easier to represent compatibility between two
different classes even though both represent a product. For this reason, we have kept
these two classes for each type of product in our proposal.

Object property hierarchy:
X

V-l owl:topObjectProperty
-l compatibleWith
- M hasCompatibility

Figure 4.9: Object Property of the ontology v1

Figure[4.10|shows Data Property of the ontology v1. As the classes Car and Appliance
share attributes such as Brand and Model, we consider creating sub-properties for the
different domains and thus maintain the properties directly with the Consumerltem. This
way of representing knowledge allows us to easily update the ontology without losing the
relationships already built with the DataProperty

4.2.4 Result in populating the KG

To populate our KG, we collected a set of client questions and attendant answers from 10
merchants from the GoBots database between September 18, 2023 and October 02, 2023,
obtaining a total of 7557 questions. We automatically filtered out those questions with
compatibility intent, because the real purpose of the KG is to answer questions that have

49

Data property hierarchy:
(%)

B owl:topDataProperty
¥ hasBrand
Pbe mm hasApplianceBrand
----- B hasCarBrand
m hasMaterial
- mm hasApplianceMaterial
hasModel
----- B hasApplianceModel
----- M hasCarModel
® hasModelDesign
: ‘~mmhasCarModelDesing
T hasProductiD
R S B hasGTIN
----- B hasSKU
hasVolts
il hasVolume
v-mm hasYear
.l hasCarYear

Figure 4.10: Data Property of the ontology v1

the intention of compatibility, obtaining 1,338 questions. A merchant within GoBots is a
seller who owns multiple stores, and each store has its own unique ID.

The questions and answers pairs are obtained from the GoBots database following
the following Algorithm [3] specifically from merchants that have stores within Brazil, for
which these questions were asked and answered in their original language, in Portuguese.
These questions and answers pairs are mostly short, as shown in the following examples:

e QQ1: Boa noite. Serve no Eletrolux Eco turbo?.
e ()2: Boa tarde Serve panela oster modelo 8030.
e (Q3: Boa tarde. Serve na Frontier Attack 20197
e Q4: Serve na geladeira CRA3408ANA CONSUL 340 LITROS 110V?

The Algorithm [3] shows how the questions and answers necessary in this module are
obtained to be processed and inserted in the new KG. The Algorithm [3| receives 4 input
parameters, which are described below:

1. Parameter database: This parameter represents the connection to the GoBots database.

2. Parameter merchant id: 1d of the merchant, necessary to extract all the questions
that were asked to the merchant.

3. Parameter range date: Date range in which the questions were asked.

4. Parameter category: All questions are obtained with the domain in the module [4.4]
in this case it is the domain Appliance.

The main task of the Algorithm [3]is to obtain all the questions and answers of the
selected domain (Appliances). Line 1, refers to the collection where the questions asked

20

Algorithm 3 Extracting questions and answers related to a merchant
Require: database

Require: merchant id

Require: range date

Require: category {Domain (Automobiles or Appliances)}

collection < database.question

store_ids < get_stores by merchant(database, merchant id)
category ids < get child _categories(category)

pipeline _question <— pipeline question(range date, category ids, store ids)
pipeline _attributes < pipeline _attribute()

questions _answer < collection. find(pipeline _question, pipeline _attributes)
return questions answer

by users are stored. Line 2, we have the variable store;ds that represents the ids of all the
stores that the merchant has. A merchant has at least one store available. The function
get _stores by merchant() makes a connection to the GoBots database to obtain all the
ids of the stores that the merchant has. Line 3, we obtain all the ids of the subcategories
of the Appliance domain. Line 5, refers to the function that obtains the filter of the
questions based on the date range, subcategories and stores, while Line 6 represents the
attributes that we want to obtain from the collection of questions and answers. Finally,
Line 8 is where we execute the query based on the two previously defined pipelines.
Figure presents the automatic process of populating the KG.

@ python @
Script with

Python Intents/Entities o
collection .-»GraphDB

Ve ~ \ Ve ~ v Ve ~ Ve N~
r— o 1% o L —
Produqt Intents/Er)tltles Create triples RDF Store
Information Extraction
Questions/Answers y \ @

for the Appliances b [}
Domain GoBots KG
L » — s — (v1)
& . .
Product o @ Triples
Information GPT-3 collection
collection GoBots
Ontology

(v1)
Figure 4.11: Results in populating the KG with Appliance Domain.

In step A (Figure , we obtained the product information related to the question.
This extraction of information was carried out by a POST request, which returns the
necessary attributes such as SKU, GTIN or ProductID, which are unique identifiers of
a product. This information is required to create a product in our ontology v1 (cf.
Figure 4.8). The Algorithm [| shows the sequence of steps necessary to obtain essential
information for each question and answer. Until now we have all the questions related to
the Appliances domain along with its product information.

ol

Algorithm 4 Extraction of product information
Require: service url
Require: questions
1: for all question € questions do
url < service _url 4+ question.productl D
response <— request.get(url)
for all attribute € question.attributes do
if attribute.name == GTIN then
questions.gtin = attribute.value
else if attribute.name == SKU then
questions.sku = attribute.value
end if
10: end for
11: end for
12: return questions

In step B (Figure , we extracted the intents and entities of the questions and
answers collected previously in step A. This collection of questions and answers is related
to the domain of Appliances and Automobiles. In this step, we defined and created a solu-
tion via a Python Script to automatically identify the questions with the “Compatibility"
intent type. This script is represented by the following Algorithm [5] which consists of
filtering only the questions that have the intent of compatibility, in addition to guarantee
that the question is compatible we use a reliability minimum of 80%.

Algorithm 5 Filter the compatibility questions

Require: service wurl

Require: questions
1: questions__compatibility < ()
2: for all question € questions do
3: payload < question.text

4: response < request.post(service url, payload)

5. intents <— response.intents

6: if intents[0].name == “Compatibility” and intents|0].con fidence > 0.8 then
7 questions__compatibility.append(question)

8 end if

9: end for

10: return questions compatibility

We obtained 7557 questions and answer pairs from ten merchants, distributed equally
between five appliance domain merchants and five automobile domain merchants. Once
the questions were filtered with the compatibility intention, we obtained 1338 questions
and answer pairs, of which 241 were related to the Appliances domain and 1097 to the
Automobiles domain.

After we proceed with the automatic extraction of the entities involved, for example,
the question "Is it compatible with LSE09 220v?", from which we extract the entities in
place, such as the “Model" and “ Voltage". To perform this extraction, we developed a

o2

script that receives a natural language question as input and returns all identified entities
(domain, model, brand, volume, volts, design, and material).

At this stage, our solution used the OpenAlI[9] company API EI to extract entities
from the question collection via the use of the GPT-3 large language model (GPT-3
LLM) and the use of a prompt. We use GPT-3 LLM as a model to extract entities within
a question, this is because entity extraction is a complex task taking into account that
the application is carried out in different domains. However, GPT-3 LLM can be replaced
by some other method that implies greater reliability in the extracted entities. In this
solution, we defined the function Prompt, which aims to send text to the model to request
a response; that is, the function Prompt acts as the initial indication for the model, and
the response generated by the model is based on the content and context of that Prompt,
in our case we provide the context in which we are making a query to the API GPT-3
LLM, as seen in Table [£.1] The Prompt is an important part of the interaction with the
model via API because it defines the query you aim apply to the model. Defining a clear
and specific Prompt for accurate and relevant answers is important.

The following Algorithm [6] represents all the steps performed for the extraction of the
entities within the question, as well as the answer to the question that was given by a hu-
man assistant. This Algorithm has 2 input parameters, the first questions compatibility
refers to all questions that have the intention of compatibility, the second parameter
promptyype is a variable that indicates to which domain the question belongs.

Algorithm 6 Extract the entities from the question
Require: questions compatibility
Require: prompt_type
1: questions_entities < ()
2: for all qa € questions _compatibility do
3: prompt < get prompt(prompt _type)
4: new_prompt < prompt + str_prompt(prompt_type, ga.question, qa.answer)
5. response < query to_model openai(new prompt)
6: if validate(response) then
7 questions _entities.append(response)
8 end if
9: end for
10: return questions entities

The Prompt defined in our solution is as shown in Table [4.T] this is used through a
Python script and aims to identify and structure questions related to products and extract
information relevant to the questions. It should be noted that we use two Prompts, one
of them is for the Automobiles domain and the second for the Appliances domain. The
information to be extracted includes the question category, make, model and year for
questions related to the Automobiles domain; while for the Appliances domain we use
the second Prompt, which has the function of extracting the category of the question, the
model, the brand, the voltage and the weight of the appliance.

In addition, three examples of appliance-related questions were described in the prompt,

3https://platform.openai.com/docs/api-reference

https://platform.openai.com/docs/api-reference

93

0EVNVAVITAMNE ‘PPOIN
duoyserq puerg
oouerddy :A10893€))
o[quyeduwo)) :jusjuf

{ SOM6 IySom

‘AQTT :98R)OA

60dMD [PPOIN

‘[nsuo)) :puerq

‘oouerddy :A10899R))

‘Orqrredwo) joN :juou]

‘Orqryeduon jou SI ST} jUOOWIdYR POOL) IoMSUY

SHI0M 97 594 ‘SUIMIOW POOE) 1MUY eysem AQTT € SDM6 609D [msue) oy yya | souerddy
: i 22[q1yeduIod St [opoul SIY) JT oUW [[0) NOA P[NOD ‘SUTLIOW POOX) :uoIsen() }
om<Z<wm<Zm>wm [OpOTL ouroR "JRULIOJ PaJeIIPUL 9} SUIMO[[0] o[duIexs [1IN0J o) WInjal 1snul NoA pue sojdurexs ¢
q e E@umfm. O IR OAIS M T -, 9[qryeduwo)) JoN],, 10 ,o[qryedwo)), odA) Jo st osuodsor o) IoTjoym
OLqryedion pIeoq sty ST :uoHsoNY joeIjxe pue asuodsor o) joxdiojur ‘osyy -eourridde oY) JO JYSom oY) JORIJX
‘ooureridde o) Jo o8e)joa o1} 10rIIX0 ‘Youridde oy} Jo opow o) joeIixo ‘vouridde
oY) JO puRI(Q 9} JORIIXS ‘SAIIIIUL SIT JORIJXD Jsnul NoA souerdde ue jo ssed
o) uy ‘uorjsenb oy Jo A10893eD 91} JoRIIXS pUR UOI)seNh oY) ozATeUR 0} 9ARY NOX
{ ¢10g :1eax
‘I8 :ojerduaf,
100g :TedX ‘“19[0IADTD puRIg
0QIN,:[OPOIN ‘aATjomIoNy :AI108930))
[05) :purig ‘arquyeduo)) :juoju]
aATIoOmoINY :AI10893R)) ‘SHIOM 11 SOA ‘SUTLIOUWL POOL) :IOMSUY

o[qryeduio) JON :Jueju[‘2107 O[3V 10101407 M o[qlyedwion 41 ST :woiyseny) } | s[rqomwoiny
o[qryeduroo "JRULIOJ POJRIIPUL 9} SUIMO[[0] o[duIeXs [IINOJ o) WINJI 0) NOA Juem
10U ST ST} [UOOWIdJe POOK) IoMSUuy [pue sojdurexe ¢ noA oAIS [[m [*,o1qryeduwo)) J0N,, 10 ,o[qreduwo)), odA) jo
L100C 09Ing, A9T ST osuodsor o) Ia1ayMm JoeIIXd pue asuodsor o) jo1disjur ‘Os[y oAljomOINE
[05) Y3m o[qryedurod 91 S| UOIISAN() 9} WOIJ IRAA S} 1ORIIXS ‘[DPOUWL SAIJOWOINE I JORIIXD ‘PURI(SAIIOWOINR
9} 1ORIIXS ‘SOIIIIUS 9] 10RIIXD JSNU NOA ‘DATJOTOIN ST 11 JI ‘poy uorysenb oy
uy -uorsenb oy woiy A10591RD S} JoRIJXS pue UOoIsanb o) dzA[RUR 0) dARY NOX

odurexry jduorg UTRWO(]

‘uor)senb e UM SorjIjue SuIporIIXS 10J pasn syduwior :1°F 9[qe],

54

along with the details expected to be extracted from the questions, these details refer-
ring to the entities present in the Appliance domain. In the same sense, we performed a
Prompt for the domain of Automobiles.

Extracting information via LLMs might return hallucinating responses and interfere
with correct information processing [I8]. These hallucinations can change the original
question, as well as define the question as another category other than “Appliances" or
“Automobiles". To combat this difficulty, we carry out a double check validating if the
question that the LLM is processing is the same one that was asked, this to prevent
the original question from being changed; If it is different from the original, we discard
the entire response generated by said LLM model. On the other hand, we compare the
category of the original question (the domain) with the category extracted by the model,
if they are different we proceed to remove these questions, in this way we ensure that all
the questions processed are from the domain to insert.

As a result of this extraction, we obtained a collection of questions with compatibility
intent and the entities extracted from those questions.

In general, the Algorithm [0] is responsible for extracting the entities within the ques-
tion, Line one, represents an empty list that will store the entities extracted by GPT-3
LLM. Line two, we perform an iteration through all the compatibility questions, each
iteration is responsible for obtaining the prompt designed depending on the domain of
the question [4.1] Line four, we add a new question within the prompt that does not have
its entities, this new record will be completed with the response from the OpenAl GPT-3
LLM API following the structure of the designed prompt. Line six, we perform a vali-
dation to avoid inconsistencies and hallucinations by GPT-3 LLM. If the validations are
passed satisfactorily, we proceed with the storage of the entities for each question. Once
all the iterations are finished, we return the questions response list of all the questions
with their entities and compatibility type.

In step C (Figure , we created the RDF triples; it is necessary to emphasize
that this step was performed automatically, like the previous two. The creation of triples
follows the flow developed in the Algorithm[7] This step generated all the relationships al-
lowed by our ontology v1 for the different domains, generating instances of “Automobiles"
and “Appliances" by triples.

The Algorithm [7]is responsible for creating the triplets from the entities found in the
previous step. That is why we perform a loop to generate the triplets of all the questions
that have mapped entities. X represents the instance of Consumerltem, in this case it
can be from the Automobiles or Appliances domain. In line 3-5 we have the creation
of all the triplets with respect to the previously extracted entities. Finally we have the
creation of instances of the Product, Compatibility type and their relationship through
hasCompatibility and compatible With.

In step D (Figure [d.11)), we stored the data in the RDF Stores. In this step, for imple-
mentation purposes, we explored GraphDBE], a database that stores RDF graphs. This
tool was used to store the collected triples and execute SPARQL queries, thus populating
the new KG v1 with questions and answers from the Appliances and Automobiles domain.

To populate our KG, we processed the questions of ten merchants: five are domain

Yhttps://www.ontotext.com/products/graphdb/

95

Algorithm 7 Generation of RDF triples

Require: questions compatibility

Require: questions entities

Require: new kg

Require: domain

1. for all compatibility, entities € (questions compatibility, questions _entities) do

9:

X <« instance(ConsumerItem(domain, entities))
for all entity € entities do
new _kg.newTriples(X, entity.name, entity.value)
end for
P < instance(Product(compatibility.product))
C < instance(Compatibility(entity.intent))
new _kg.newTriple(P, hasCompatibility, C)
new _kg.newTriple(C, compatibleWith, X)

10: end for
11: return questions response

Appliances, and five are domain Automobiles. The Automobile domain was also explored

together with the Appliance domain to guarantee that the entity extraction process can
be carried out by the same approach, which is to make use of LLM models, as is the case
of GPT-3 LLM. Table [4.2] shows the number of questions and answers processed for each

merchant in the appliance domain. Please note that the questions and answers collected
from the GoBots database were from September 18, 2023 to October 02, 2023. This table
consists of the following columns:

(i)

(vi)

N° of stores: This column represents the number of stores available for each mer-
chant.

Total QA.: This column shows the number of question and answer pairs collected
from the GoBots database.

Compatibility: The questions in the previous column were filtered based on com-
patibility intent type, and those with a value greater than 0.8 confidence have been
selected.

Error: This column shows the number of questions that presented problems, either
because the LLM explored could not process them or due to lack of information in
the input question.

QA to insert: This column shows the total number of questions to be inserted
into the new KG, and is the result of the column difference between the column
Compatibility(iii) and Error(iv).

QA without type: This column performs a filter to remove questions with hal-
lucination generated by the LLM API query, eliminating questions with categories
other than “Appliances" and “Automobiles" to clean the information and process the
right questions. This filtering is done based on the Algorithm [0, we can eliminate

o6

the questions and answers that have hallucinations taking into account the answer
obtained by GPT-3 LLM using the prompt developed, since we have answers where
the question that returns the model is totally different from the original question,
we also apply a double verification of the category of the question, since in some
cases the model GPT-3 LLM gives us categories that are totally different from what
they should be.

(vii) QA for KG v1: This column shows the number of questions to be entered into

KG v1 and these values are the results of the difference between QA to insert(v)

and QA without type(vi).

Table presents results for five merchants processed in the “Appliances" domain,
with 2753 questions and answers pairs extracted. These pairs were then filtered by com-
patibility intent type and had a confidence value greater than 0.8, it is important to note
that we kept the acceptable minimum proposed by [29], obtaining 481 pairs. Finally, the
QA pairs that presented errors during the extraction of entities and intents and did not
have a type were removed so as not to affect the KG’s quality, obtaining 241 QA pairs to
be inserted into the KG v1.

Table 4.2: Table of questions and answers pairs for the “Appliances" domain from 5
merchants. Where the second column represents the number of stores of each merchant,
the third column the number of questions and answers collected, the fourth column the
number of questions that have the intent of compatibility with confidence greater than
0.8, the fifth column the number of questions that could not be processed correctly and
that present errors, the sixth column the number of questions processed to be inserted,
the seventh the number of questions without type or category Appliances and finally the
eighth column represents the final number of questions to be inserted to the new KG v1.

N° of | Total | Compat. Error QA to | QA w/o | QA for

stores | QA (>0.8) insert type KG vi
Merchant 1 1 1205 90 52 38 4 34
Merchant 2 2 471 59 24 35 7 28
Merchant 3 3 121 23 4 19 1 18
Merchant 4 2 248 83 11 72 13 59
Merchant 5 1 708 226 99 127 25 102
Total 9 2753 481 190 291 50 241

Table shows the results for the number of questions and answer pairs processed
for each merchant in the “Automobiles" domain. Table was processed in the same
date range as Table |4.2/ and presents the same columns. Table presents five merchants
processed in the Automobiles domain, with 4804 questions and answer pairs extracted.
These pairs were then filtered by compatibility intent type and have a confidence value
greater than 0.8, obtaining 1452 pairs. Finally, the QA pairs that presented errors during
the intents or entity extraction, and did not have a type were removed so as not to affect
the KG’s quality, obtaining 1097 QA pairs to be inserted into the same KG v1. Common

57

errors refer to questions that the GPT LLM model is not able to extract the entities,
another error is that the category of the original question does not match the category
obtained through GPT-LLM.

Table 4.3: Questions and answers pairs for the “Automobiles" domain from five merchants.
Where the second column represents the number of stores of each merchant, the third
column the number of questions and answers collected, the fourth column the number of
questions that have the intent of compatibility with confidence greater than 0.8, the fifth
column the number of questions that could not be processed correctly and that present
errors, the sixth column the number of questions processed to be inserted, the seventh the
number of questions without type or category Automobiles and finally the eighth column
represents the final number of questions to be inserted to the new KG v1.

N° of | Total | Compat. | Error | QA to | QA w/o | QA for
stores | QA (>0.8) insert type KG v1
Merchant 1 4 184 41 7 34 2 32
Merchant 2 1 437 71 35 36 > 31
Merchant 3 2 229 89 46 43 6 37
Merchant 4 5 3677 1146 160 986 62 924
Merchant 5 1 277 105 23 82 9 73
Total 13 4804 1452 271 1181 84 1097

At the final stage, the KG v1 was populated with 1338 questions and answer pairs
from the Automobiles and Appliances domain, totaling 3382 instances. This KG v1 results
from applying our UpKG framework, allowing the “Appliances" domain to be integrated
into the “Automobiles" domain.

Table [.4] shows the compatibility type in each domain of KG v1. There are 856 ques-
tions and answers pairs of type “Full Compatibility" and 482 of type “No Compatibility".
Automobiles domain has the largest number of compatibility type questions, and in this
domain a greater number of instances can be obtained thanks to the answers given by
the assistants, which does not happen with the new domain of Appliances. However, the
application of our framework shows the viability of extending the domain to others, and
consequently provides greater robustness and knowledge in the resulting KG.

o8

Table 4.4: Compatibility type in the “Appliance" and “Automobile" domain. The second
and third columns show the number of questions and answers that are compatible and
not compatible between a Product and a Consumerltem. A total of 1338 Q& A pairs were
inserted into their particular domains.

Full No Total
Compatibility | Compatibility
Appliances Domain 136 105 241
Automobiles Domain 720 377 1097
Total 856 482 1338

4.3 Discussion

This Chapter described the application of our UpKG framework in the e-commerce con-
text, where each module of our framework was applied based on the context, data and
documentation provided by GoBots company.

The application of our framework demonstrated that it is possible to insert new do-
mains in a KG, achieving an expansion of knowledge. However, this domain expansion
using our UpKG framework brings with it the investment of a reasonable time to carry out
the entire framework, since we have two modules that need human intervention, necessary
and mandatory time to understand and improve the structure of knowledge. On the other
hand, we have that the continuous application of our UpKG framework would lead to a
reduction in the execution time of the same. This is relevant because it facilitates the
adaptation and updating of the KG to the new needs of a constantly changing market
and improves the response capacity in customer service. Each module of our framework
has a main objective and has its results.

Each module comprising our UpKG framework has its main objective and challenges.
Module 4, which is to populate the KG, was the one that presented the most challenges
because automatically identifying intentions and entities from users’ questions and answers
pairs refers to a complex and difficult task.

Our study explored the use of LLMs for this purpose. This tool successfully allowed
us to extract entities from the collection of questions and answers. However, some ques-
tions and answer pairs returned hallucinations, which interfered with the integrity of the
information. This problem did not affect the population stage of our KG v1, since the
questions that were altered and different from the accepted domains were removed, in this
case Automobiles and Appliances.

As a result of applying our framework, we achieved a KG v1 further populated with
more 1338 questions and answer pairs from the “Automobile" and “Appliance" domains.

As next steps we have the continuous and constant improvement of the automated
modules, in the same way looking for and proposing alternatives that allow us to reduce
the time of application of our framework, either in improving automated processes such
as the automation of processes that are still manual. On the other hand, we consider
that the execution of our framework is replicable by other people than the author without

29

presenting difficulties, since we try to make the modules as simple as possible. Addition-
ally, while our framework arises within the context of e-commerce, UpKG can be used
in other contexts outside of GoBots, since the four main modules of our framework have
conceptual bases, and its implementation is adaptable to other contexts.

4.4 Final Remarks

This Chapter detailed the implementation and application of our UpKG framework in
GoBots context, we also show how the GoBots KG currently works and how this is used
to answer questions from the Automobile domain. This Chapter provided a detailed
description of the application of each of its all modules end to end in the process. The
entire process, from the detection of the new domain, the restructuring of the ontology
of GoBots, and the insertion of the “Appliance" domain in the KG. We provided detailed
information on the number of questions and answer pairs newly inserted in the new version
of the KG, this new inserted knowledge was extracted from questions and answers of the
two domains that currently covers the KG v1. The following Chapter aims to evaluate
both ontology and KG outcome, which are the final products of the application of our
framework.

60

Chapter 5

Evaluating the Outcomes from the
UpKG Framework

To ensure the viability and applicability of our UpKG framework, conducting a series of
evaluations is mandatory. These evaluations are critically important, as they are designed
to ensure that the outcome of UpKG implementation can be materialized effectively and
efficiently. In this context, it is important to evaluate the result itself, i.e., the generated
new ontology and KG. These two artifacts are essential outputs from the framework
execution, and consistency and coherence must be rigorously validated. In addition,
evaluating the output of our UpKG framework is important to measure its consistency,
and the quality of the response returned from its use.

This Chapter presents two distinct approaches to evaluation: (i) Evaluation of the
ontology, which aims to ensure consistency and coherence of this artifact, and (ii) Evalu-
ation of the Knowledge Graph, which aims to measure the quality of the triples encoded
in the KG considering the accuracy of the responses generated by it. We clarify that this
evaluation relies on the generated results (ontology and KG) achieved from Chapter
(applying the framework in the GoBots company context).

In the first approach, we propose UpOntology which is a new evaluation approach and
allows evaluating ontology through iterations. UpOntology aims to obtain a continuous
improvement of the ontology in each iteration. Each iteration is composed of a series
of evaluation methods, and the result of each of these evaluation methods determines
whether ontology needs improvement. If problems are identified, the improvement phase
begins and its objective is to solve the problems identified when executing the evaluation
methods. During this improvement phase, the errors identified in the under-evaluation
ontology are addressed and resolved, which leads to a substantial improvement in the
quality and coherence of the ontology. If we do not identify problems in the execution of
each evaluation method, we can affirm that our ontology is consistent and coherent. This
iterative process is performed by the ontology developer, who repeats such evaluation
methods to ensure that the resulting ontology meets established high quality standards
and requirements. This iterative approach is based on constant and continuous ontology
improvement.

Note that this ontology evaluation approach is applied after the Third Module (cf.
Section3.3)) of the UpKG framework. The result of this ontology evaluation approach

61

allows continuing with the Fourth Module [3.4] because ensuring that our ontology is
coherent and consistent allows to populate the KG correctly, representing knowledge in
the best possible way. Therefore, the Fourth Module is applied if the evaluation of
the ontology is coherent and consistent.

The evaluation methods used to evaluate our ontology are Reasoner Pellet, OOPS! and
OntoDebug. We decided to apply these three validation methods because these methods
contribute to a more complete and accurate validation of ontology. Reasoner Pellet is
an inference engine, OntoDebug is a plugin that allows to identify inconsistent axioms of
greater complexity, and OOPS! provides a detailed list of common ontology pitfalls.

The application of our approach UpOntology has as main objective to evaluate the
quality of our ontology developed, where the input data in this approach is the first
version of our ontology, which is naturally the result of the third step , this ontology
before applying UpOntology is shown in Figure 5.5l The individual evaluation methods
were applied sequentially as it was applied only by the ontology developer. However, this
approach can be applied in parallel by different developers or experts, since each method
has no dependence on the other methods. The improvement process within UpOntology,
it is completely manual, where we make all the necessary improvements based on the
errors found by each evaluation method.

In the KG evaluation approach, we propose to evaluate via Competency Questions
(CQs), which allows us to guarantee the quality of the data encoded in the KG from
an application perspective. Evaluating a KG with CQs allows us to verify if the KG can
provide accurate and consistent answers to key questions related to a certain context. This
ensures that the final KG of our framework meets its purpose of answering compatibility
questions in some domain or other. This evaluation approach was applied after the Fourth
Module of our framework (cf. Section , which corresponds to the KG population
process.

5.1 Evaluation Approaches

To evaluate the ontology and the KG generated through the application of the UpKG
framework, we proposed two evaluation approaches: (i) Ontology Evaluation; and (ii)
KG Evaluation. Figure presents these two assessment approaches. It is essential to
highlight the context in which these evaluations were carried out. In the case of ontology
evaluation, the third module of our framework was completed. On the other hand, the
KG evaluation was performed at the end of the execution of all modules of the UpKG
framework (in our case study). This distinction is important, as it highlights the timing
of each component and gives us a clear view of the evaluation process in developing and
applying our approach.

We highlight that the decision was made to evaluate ontology and KG separately
because creating ontology is a preliminary and fundamental step to continue knowledge
insertion in the KG.

62

@

o]
Understand the
4 current KG
@
KG v (ii) ¢ . =
Identify new
! []
domain @
KG Vj+1
iy v () Y
Populate the
Restructure the i
KG with new KG Evaluation
\ ontology J [triples } ‘

!

5 o [
N / e Ontology °
.//.\ Evaluation ® ®
o O
Ontology v; Ontology V.,

Figure 5.1: Approaches to the evaluation of ontology and the generated KG. The ontology
evaluation was performed at the end of the third module of UpKG, whereas the KG
evaluation was performed at the end of the framework execution.

R
I
R
=

o P 4
R
./\.\/. K M2) ® e)
o/ @]
Ontology v; R Ontology Vi.;
:

R
8

Iteration i+1

Figure 5.2: UpOntology is a new approach to ontology evaluation, the diagram represents
an evaluation of ontology by iterations, where each iteration applies M previously selected
methods. In addition, an improvement process is performed in each iteration to alleviate
the errors found for each method M.

5.1.1 Ontology Evaluation

The evaluation of an ontology is a fundamental process within the ontology engineering
and knowledge management fields. Its importance lies in several key aspects that directly
affect the effectiveness and usefulness of created ontology in various applications. Evalu-
ation ensures the quality and accuracy of the ontological model. A well-defined ontology
must accurately and consistently represent the knowledge of the domain it encompasses.
Evaluating ontology can identify potential errors, which is essential to maintain the in-
tegrity of the information stored.

63

In addition, the usability of ontology is a critical factor and helps determine its ability
to be used in practical applications. This includes ease of search and retrieval of informa-
tion. A valid and coherent ontology is essential for applications based on it to be effective
and useful in real-world contexts. In other words, evaluating an ontology is critical to
ensure its quality, coherence, consistency, and usefulness in real-world applications.

First, the coherence and consistency of ontology are key elements to evaluate. This
means ensuring no contradictions or ambiguities in the definitions of concepts and relation-
ships. Coherence and consistency are essential to maintain the integrity of the represented
knowledge and avoid conflicting interpretations. Properly classifying concepts in the on-
tological hierarchy is also crucial to evaluate. Each concept must be in the right category
and connected consistently with other ontology-related concepts.

As we observed earlier, ontology evaluation is a fundamental process to ensure the
quality of our ontology. We propose UpOntology, an new evaluation approach based on
iterations as shown in Figure |5.2

This approach takes as input an initial ontology vi, which is evaluated by M evaluation
methods in parallel, where each evaluation method ()/;) gives us results according to the
characteristics we are evaluating independent of the other methods. Once we have the
results I?; from each method M; used, the next step in our UpOntology approach is
to perform an improvement step. The improvement step shown in Figure [5.2] consists
of making all the necessary improvements to the ontology vi depending on the results
obtained by each evaluation method. As a result of this improvement process, we have a
new ontology version updated vi+1 that is returned as input for a new iteration.

We emphasize that this approach takes N iterations, where N represents the number of
iterations necessary to ensure that our ontology is coherent and consistent, while ensuring
the correct knowledge representation within the ontology.

We used three evaluation methods studied in the literature to evaluate our ontology,
resulting from the third module using UpOntology. The methods used are the Reasoner
Pellet, OOPS!, and OntoDebug as shown in Figure |5.3|

R1

Reasoner Pellet
«
‘B
S

o ? P

R2

./\./o 0oPS! . > Improvement o« @ ¢
/ AN N H H

o O 4 Q/\ 1 (

Ontology V0.1 S Ontology V0.2

A 4

\ J

&

R3

Y

OntoDebug

2y
27

Iteration N

Figure 5.3: UpOntology instantiated with Pellet, OOPS! and Ontodebug evaluation meth-
ods. Flow to evaluate ontology [5.5] using the UpOntology approach.

64

5.1.2 Knowledge Graph Evaluation

Evaluating a KG is important because it guarantees the quality of the structured data
and the precision of the relations between entities. The KG must be able to represent the
information in a coherent and precise manner, which in turn improves understanding and
interoperability between systems and applications.

The lack of evaluation can lead to incorrect data or ambiguous relationships in the
KG, which could harm the decision-making and reliability of applications that depend on
this data. The KG evaluation allows us to measure its relevance, coverage, and response
level for a specific domain. This allows us to determine if it meets its specifications and
provides accurate answers.

The purpose of evaluating the KG resulting from the application of the UpKG frame-
work allows us to verify the quality of the answers generated by the new version of the
KG, ensuring that it can provide accurate and relevant answers to users’ questions. In
addition, this approach seeks to validate that the “Appliance" domain was inserted (en-
coded) accurately in the KG, maintaining its integrity in relation to the existing domain
of “Automobiles".

Competency Questions (CQ) [35] are questions in natural language that describe the
level of knowledge represented by an ontology. An ontology should represent these ques-
tions using its own terminology and describe the answers using axioms and definitions.
Competence Questions define the requirements for an ontology and are mechanisms that
characterize the search space for the design of an ontology. In addition, CQs are used to
evaluate ontological relationships and identify if ontology meets the desired requirements.
Questions are asked to assess capacity, ability or knowledge in relation to a specific domain
set. We apply CQ in our KG evaluation approach to verify that the responses returned
by KG are similar to the expected responses.

5.2 Evaluation Methods

In this section, we proceed to detail the methods used in evaluating our ontology and KG.

5.2.1 Ontology

e Reasoner Pellet [32]: This tool is a logic-based reasoning engine. Pellet aims
to process and infer semantic data represented in the OWL ontology language. In
addition, this tool implements advanced reasoning algorithms that extract logical
conclusions from semantic data and ontologies, which is important for constructing
knowledge systems and applications in the semantic web. This tool enriches the
semantic meaning of data, facilitates the resolution of more complex queries, and
can make deductive inferences.

e OntOlogy Pitfall Scanner! (OOPS!) [27]: This tool was designed to identify
and detect common errors in ontologies automatically. Its main function is to help
ontologists and ontology designers refine and improve their semantic models by
highlighting existing ontologies’ possible problems, inconsistencies, or ambiguities.

65

OOPS! uses reasoning and logical analysis techniques to evaluate ontologies and
generate detailed reports on problem areas, allowing users to correct and optimize
their ontologies for better performance and understanding.

e OntoDebug [30]: It is a Protégé plugin to debug and improve ontologies and
knowledge models. This plugin provides a set of specific tools and functionalities
for detecting and solving common problems in ontologies. This allows ontologists
and ontology designers identify inconsistencies, modeling errors, and ambiguities in
their ontologies, which is essential to ensure the quality and usability of knowledge
models on the Semantic Web field.

5.2.2 Knowledge Graph

e Competency Questions (CQs): We proposed to apply Competency Questions
(CQ) [14], which are questions designed to evaluate whether the KG can correctly
respond to queries related to a specific domain. To conduct this evaluation, we
first defined a collection of CQs covering key aspects of the domain the KG aims to
represent. Afterwards, we constructed and applied SPARQL queries (one mapped
to each CQ) to retrieve from the KG responses to the collection of CQs raised
beforehand. The responses obtained are compared with expected responses for each
CQ. This allows us to evaluate the quality and precision of the KG responses.

To perform the evaluation of the KG through CQs it is necessary to follow a defined
flow in Figure [5.4] from obtaining the questions to generating SPARQL queries
related to the question. Below we show the necessary steps to carry out the KG
evaluation:

1. Manually collect a sample of questions and answers representing the knowledge
stored in the KG.

Automatic extraction of entities based on the question domain.
Generate SPARQL queries manually using the extracted entities.

Automatic execution of the query in the triplestore (GraphDB).

A

Manually compare the answer obtained from triplestore with the real answer
given by a virtual assistant.

6. Validation taking into account the number of questions that KG can answer.

5.3 Experimental Setup

We detail the design and configuration of our experimental setup to assess the effectiveness
of our UpKG framework.

To evaluate our ontology several evaluation methods were taken into account (cf.
Figure [5.3). It is important to clarify the state of ontology v0.1. Ontology v0.1 is
the result of applying the third module of our UpKG framework. This ontology version

66

Questions/Answers
Collection

Collect sample List with comparison
guestions and . of answers (KG and
answers «*GraphDB Virtual Assistant)

l T

Compare triple store's
response with the virtual
assistant's response
Lk

{03

Y

Generate SPARQL
query manually using
the extracted entities

Extract entities Execute the
from question,

/)

Figure 5.4: Flow to evaluate KG through CQs. In the first step we collect a sample of
questions and answers with which we will evaluate the KG, the second step is responsible
for extracting the entities of the question, in the third step we generate the SPARQL
queries, in the fourth step we execute the queries generated in the triplestore and finally
we compare the responses obtained with the real answers.

already has defined the properties and relations which are essential to encompass the new
domain to be newly inserted in the KG. In addition, this ontology is fully integrated with
the existing ontology of GoBots, which guarantees a connection between the different
domains already defined and contributes to a unified and enriched knowledge base.

While the third module of the UpKG framework generates a new version of an ontology,
as exemplified in Figure [5.1, we cannot ensure that this is completely correct despite
following the best practices when developing such ontology. To this end, we applied the
UpOntology approach with two iterations to evaluate our initial ontology, which we denote
as v0.1. It is important to highlight that the application of the UpOntology approach
makes use of N iterations necessary to guarantee the quality of the ontology, knowing this
number in advance is impossible, but it is only known when all the evaluation methods do
not present errors in the ¢ — th iteration. For example, all evaluation methods presented
errors in the first iteration. However, once the errors are corrected in the improvement
stage, we proceed to evaluate the ontology with a second iteration, and in this execution
we no longer present errors. That is why in our evaluation approach only two iterations
were necessary to guarantee the coherence and consistency of our ontology.

It is important to note that the Pellet and OntoDebug evaluation methods were carried
out within the Protégé software and the OOPS! [[] within its Web system.

The evaluation of the KG was taken into account through CQs. It is important to
clarify the status of KG. The final KG is the result of applying the fourth module of our
UpKG framework. This KG is already populated with information (triples) from various
pairs of questions and answers that have been transformed into triples and inserted at the
stage of this fourth module.

In particular, this KG version contains information from different domains as previ-

"https://oops.linkeddata.es/index. jsp

https://oops.linkeddata.es/index.jsp

67

ously explained in section m (considering the context of our case study), specifically
were processed pairs of questions and answers of five merchants “Appliances" domain and
five merchants “Automobiles" domain, having a total of 3382 new instances.

This KG was hosted on an instance of the GraphDB EL a semantic graph database
(RDF Store). GraphDB allows us to perform SPARQL queries easily and is where we run
the assessment of CQs.

5.4 Results

We present the results of the ontology evaluation and the KG evaluation.

5.4.1 Results of the Ontology Evaluation

We present the results of applying Pellet, OOPS! and Ontodebug to evaluate coherence
and consistency using the UpOntology approach. We considered N iterations when ap-
plying this approach (cf.Figure ; the output of the first iteration was the input for the
second iteration.

In the following, we present the results of the two executions for Pellet, OOPS! and
OntoDebug.

First execution

We show the results of applying the first iteration of the evaluation module by iterations.
We had as input the ontology v0.1 shown in Figure 5.5 Ontology v0.1 was the result of
applying our proposed UpKG framework to the third module (cf. Figure . For this
reason, ontology v0.1 is used as input for each evaluation method below.

string

PropertyDescription string string
)
i
NoCompatibility ! FullCompatibility - hasApplianceModel ~ hasVolume hagyoits string
i string
< i .
Subclass of
)
\ i s/ hasApplianceMaterial hasApplianceBrand
Subclass of ' Su/bclass of
\ | . .
\ i K Appliance
4 ! V4 ==
Compatibility) compatibleWith ‘Subclass of. . __
Rt
Consumerltem
h ibility N e taee e =
asCompatibility __Subclass of =~
Car
> Product hasCarModelDesign hasCarModel
hasSKU
’ hasRroductiD > hasCarYear hasCarBrand :
hasGTIN string il
string Literal ’ -
string string

string

Figure 5.5: Ontology v0.1

’https://graphdb.ontotext.com/

https://graphdb.ontotext.com/

68

1. Reasoner Pellet

Figure [5.6) presents the results of applying Pellet to evaluate the consistency of the
input ontology, which is indicating that the evaluated ontology still has errors and
it is not consistent under this reasoner. Additionally, Figure [5.6| presents a message
indicating that the error is due to the fact that an instance of type Car cannot be
of type Appliance at the same time.

An error occurred during reasoning

e InconsistentOntologyException: Cannot do reasoning with inconsistent ontologies!

Reason for inconsistency: Individual http:/jwww.semanticweb.org/jesaminzev/UPkg#cooktop-keStp is forced to belong to class http:/fwww.semanticweb.orgfjesaminzev/UPkg#Appliance and its complement

oK

Figure 5.6: Reasoner Pellet inconsistent

For a better understanding of the inconsistency error, it is possible to access the logs
that Protege gives us when we start the reasoner. Figure shows such logs, a list
of all instances that make ontology inconsistent. Figure [5.7] presents several cases
of the error found, where an instance of the Compatibility type is related to the
“Appliance" class. However, the reassignment infers that this relationship can also
be with the ‘Car’ class of ontology v0.1. That is where our ontology is inconsistent
because the ‘Appliance’ and ‘Car’ classes are disjointed. For example, the instance
gaxeta-drunk/forno-eletrico-clean is compatible with the instance Appliance
forno-eletrico-clean. Still, the reasoner infers that forno-eletrico-clean may
be of the type ‘Car’.

Inconsistent ontology explanation

® Show regular justifications ® All justifications
Show laconic justifications Limit justifications to
Explanation 1 Display laconic explanation

Explanation for: owl: Thing SubClassOf owl Nothing
compatibleWith Range Appliance
mg-pecas/picanto-2016-2017 compatibleWith picanto-2016-2017
Appliance Disjointwith Car
compatiblewith Range Car

Explanation 2 Display laconic explanation

Explanation for: owl:Thing SubClass0Of owl:Mothing
compatibleWith Range Appliance
gaxeta-borrachafforno-eletrico-clean compatibleWith forno-eletrico-clean
Appliance Disjointwith Car
compatibleWith Range Car

Figure 5.7: Reasoner Pellet inconsistent summary

2. OOPS!

To evaluate our ontology vO.1, we used the ontology error scanner (OOPS!). Fig-
ure [5.8 shows the result of the evaluation executed by the OOPS! tool. There is

69

a critical alert in multiple domains or ranges in the list of detected pitfalls. This
alert concerns the compatibleWith property causing ontology inconsistency. In ad-
dition, there is an important alert due to the lack of domain or range in properties,
and finally two minor alerts are the creation of disconnected ontology elements and
undeclared inverse relationships.

Evaluation results

There are three levels of importance in pitfalls according to their impact on the ontology:
« [EEEE It is crucial to correct the pitfall. Otherwise, it could affect the ontology consistency, reasoning, applicability, etc.
« [EEEE Though not critical for ontology function, it is important to correct this type of pitfall.
Itis not really a problem, but by correcting it we will make the ontology nicer.

Pitfalls detected:

Results for P04: Creating unconnected ontology elements. 2 cases
Results for P11: Missing domain or range in properties. 6 cases m
Results for P13: Inverse relationships not explicitly declared. 2 cases
Results for P19: Defining multiple domains or ranges in properties. 1 case 1 case m

Figure 5.8: List of pitfalls detected in the ontology v0.1 applying OOPS!

3. OntoDebug
The structure and relationships of the ontology v0.1 were validated using Protégé
built-in debugging tool OntoDebugf] The main goal of OntoDebug is to help find
those axioms in ontologies, giving information if an ontology is inconsistent. Fig-
ure [5.9| presents the OntoDebug output of ontology v0.1. The results show that
there are two faulty axioms for this reason our ontology is inconsistent.

Set OF Faulty Axioms Found!

@. The faulty axioms corresponding to your preferences (test cases) are found!

The debugger identified 2 faulty axioms in the UPkg (http:/jwww.semanticweb .orgfjesaminzev/UPkg) ontology

OK

Figure 5.9: The debug output of the UpKG ontology v0.1 from OntoDebug tool showing
that there are two faulty axioms.

Figure [5.10|shows the two faulty axioms present in the ontology v0.1. The inconsis-
tency of the ontology is due to the fact that an instance is inferred as compatibleWith
Range ‘Appliance’ and compatibleWith Range ‘Car’, but at the same time
Appliance disjointWitth Car and Car disjointWith Appliance. In other words,
the instance has ‘Appliance’ and ‘Car’ classes as range. Nevertheless, the instance
cannot be both classes simultaneously because these classes are disjoint.

3http:/ /isbi.aau.at /ontodebug/

70

Possible Ontology Repairs: INEEE
According to vour given answers these 2 axioms are faulty. Press the repair button to fix them. @

compatibleWith Range Appliance

mcompatiblewith Range Car

Figure 5.10: The two faulty axioms in the ontology v0.1 — OntoDebug tool

Second execution

We present the results of applying the second iteration of the ontology evaluation. For
this iteration, the input data was the ontology v0.2, which contains all the corrections
performed from the first iteration.

1. Reasoner Pellet

In this iteration, the Pellet reasoner shows that the ontology v0.2 is consistent since

it does not present errors when evaluating it (cf.Figure [5.11]).

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

23
23:
23:
23:
23
23:
23:
23:
23
23:

34:
34:
34:
34
34:
34:
34:
34
34:
34:

26
26
26
26
26
26
26
26
26
26

Show log file

Pre-computing inferences:
- class hierarchy
- object property hierarchy
- data property hierarchy
- class assertions
- object property assertions
- same individuals
Ontologies processed in 12 ms by

Preferences Time stamp

Log

Running Reasoner

Pellet

Clear log

0OK

Figure 5.11: Logs of applying the Pellet in the second evaluation iteration

2. OOPS!

Figure [5.12] shows the evaluation results of the OOPS! tool. The result shows that
ontology v0.2 does not present pitfalls in this second execution.

Evaluation results

Congratulations! No pitfalls detected.

Your ontology does not contain any bad practice detectable by OOPS!. Remember that there are pitfalls that depend on the domain being modelied or the
requirements specified for each particular ontology. Up to now, OOPS! can identify semi-automatically those pitfalls in the catalogue with the title in bold. We
encourage you to keep an eye of those pitfalls that OOPS! is not able to detect yet. Itis a good idea to revise the ontology manually looking for them.

It your ontology is free of errors, you can use the following conformance badge in your ontology documentation:

PITFALL FREE

Figure 5.12: Outcome of the second iteration in applying the OOPS! tool

71

3. OntoDebug

Figure [5.13] presents our ontology v0.2 validated with OntoDebug. We obtained as
a result of the execution, that our ontology is coherent and consistent.

@ atuador-treio-com

Coherent (& Consistent) Ontology!

g;-;' The ontology "UPkg (http:/fwww.semanticweb.orgjfjesaminzew/UPkg)" is coherent and consistent.

oK

& homba-comhustiv

Figure 5.13: The debug output of the UpKG ontology shows that it is consistent and
coherent - in the second iteration

At the end of the second iteration, we can affirm that our ontology was consistent and
coherent (Figure and Figure . In addition, our ontology did not present pitfalls
(cf. Figure[5.12).

Table represents a behavior summary during executions used in ontology evalua-
tion. This table provides key information on ontology performance and quality.

Table 5.1:
The second column shows the results obtained in the first execution applying the
Pellet, OOPS! and OntoDebug methods. The third column shows the results obtained in
the second execution after improving ontology with the observations of the first execution.

Summary of the behavior of the executions for the ontology evaluation.

First Second
Execution | Execution
Pellet X v
OOPS! X v
OntoDebug X v

5.4.2 Results of the Knowledge Graph Evaluation

This section shows the results of applying our evaluation to the resulting KG, which
contains 1324 instances of the Compatibility type; 995 instances of the Consumerltem
type; and finally, 1063 of the Product type.

Competency Questions

To evaluate our KG v1 using the CQs, it was necessary to have a set of questions that
SPARQL queries might answer.
that populated our KG in the fourth module of our UpKG framework to verify if the
KG responds adequately to these previously inserted questions. The CQs were compiled

These CQs were extracted from the same questions

72

manually, in which we extracted three random questions from each merchant. In addi-
tion, the generation of SPARQL queries was performed manually taking into account the
extraction of entities from questions that were randomly chosen. These SPARQL queries
were then executed in the environment where the KG v1is stored, then we compared
the actual response of the human assistants with the response obtained from the KG v1.
Table presents the thirty questions that were satisfactorily answered.

Our updated KG v1 stores information from two domains (‘Car’ and ‘Appliances’),
which were extracted from ten different merchants presented in Gobots client base; five
merchants contain questions and answers to the ‘Appliances’ domain; and the other five
merchants contain questions and answers of ‘Automobiles’ domain.

In the following, we present four questions out of thirty CQs, of which two were
intended to demonstrate that information can be extracted from the ‘Appliances’ domain
and another two from the ‘Automobiles’ domain. This information extraction was done
through SPARQL queries.

Each item presented describes five parts within each CQ:

e Question is the question asked by a customer in the e-commerce system;

e Answer is the answer given by a smart human assistant from each store;

e Product is the product information from which they are asking the question;
e SPARQL is the query generated from the question asked;

e GraphDB is the KG’s response to the generated SPARQL.

1. Competency Question #01:

Question: Serve na geladeira CRA3408ANA CONSUL 340 LITROS 110V?
e Answer: Sim, serve no compressor Embraco de sua Consul, sim.

e Product: MLB1632141487

e Sparql:

select 7product 7“compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1632141487"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Consul";
UPkg:hasApplianceModel "CRA3408ANA";
UPkg:hasVolts "110V".

product E compatibility_type = appliance
UPkg:relé-e-protetor-compressor-embraco- UPkg:FullCompatibility UPkg:consul-cra3408ana-110v
em30-emi30-110hp-127v

Figure 5.14: Response to CQ1 from KG within the GraphDB

GraphDB:

2. Competency Question #02:

Question: Boa tarde serve no LG 9.000 inverter 280 v.
Answer: B tarde. Para LG é outro o modelo, de tensao maior.
Product: 7897738500192

Sparql:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7897738500192"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.

?compatibility_type rdfs:subClass0f UPkg:Compatibility.

7appliance UPkg:hasApplianceBrand "LG";
UPkg:hasApplianceModel "9.000 inverter";
UPkg:hasVolts "280v".

GraphDB:

L13

product E compatibility_type appliance

UPkg:compressor-rotativo-inverter-9.000-btu- UPkg:NoCompatibility UPkg:lg-9.000inverter-280v
para-split-vce

Figure 5.15: Response to CQ2 from KG within the GraphDB

3. Competency Question #03:

Question: Serve na KIA BONGO 20,217
Answer: Boa tarde, serve sim.

Product: MLB2719751431

Sparql:

73

49

L1

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2719751431"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.

7compatibility_type rdfs:subClass0f UPkg:Compatibility.

?car UPkg:hasCarBrand "kia";
UPkg:hasCarModel "Bongo";
UPkg:hasCarYear "20/21".

e GraphDB:

car

“

product E compatibility_type

UPkg kit-de-embreagem-kia-bongo-k2500-2020 | UPkg:FullCompatibility UPkg:kia-bongo-20/21

Figure 5.16: Response to CQ3 from KG within the GraphDB

4. Competency Question #04:

Question: Serve na HYUNDAI HR 20107777
Answer: Boa tarde! esse nao serve.

Product: MLB2761007508

Sparql:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB3387033577"}
?7compatibility UPkg:compatibleWith 7car;
rdf:type 7“compatibility_type.

?compatibility_type rdfs:subClass0f UPkg:Compatibility.

?car UPkg:hasCarBrand "hyundai";
UPkg:hasCarModel "HR";
UPkg:hasCarYear "2010".

e GraphDB:

74

L13

75

L13
49

product E compatibility_type car

UPkg:amortecedor-dianteiro-kia-bongo-k2500- UPkg:NoCompatibility UPkg:hyundai-hr-2010
2.5-8v-20052012-(par)

Figure 5.17: Response to CQ4 from KG within the GraphDB

Table summarizes the CQs executed in KG v1. This Table includes the questions
and answer pairs used to populate our KG v1 and the answers obtained from KG v1. In
addition, Table has the Status column that verifies if the KG v1 response equals the
response collected from the GoBots database.

Appendix [A] presents the complete results for the other CQs.

5.5 Discussion

This Chapter described an important aspect of our research work: the evaluation of
ontology and KG resulting from applying the UpKG framework. This evaluation process
was essential to ensure the quality and usefulness of the knowledge represented and stored
in the KG, especially in e-commerce, where accuracy and responsiveness are critical.

This study proposed two evaluation approaches: (i) Ontology Evaluation and (ii)
KG Evaluation. These approaches were important because they might ensure that the
structure of ontology as the data encoded in the KG are consistent and of high quality.

Ontology Evaluation focused on verifying the consistency and coherence of the ontol-
ogy structure, whereas the KG Evaluation emphasized evaluating the quality of the data
that make up the KG and the quality of the responses provided by it via SPARQL queries.

To evaluate the ontology, we implemented UpOntology, an iterative approach incorpo-
rating three evaluation methods: Pellet, OOPS! and OntoDebug. In the first execution
of the evaluation of our ontology, all three methods showed inconsistencies. This result
served to improve the model and corrections were made. In the second execution (itera-
tion), the three methods did not identify any inconsistencies. This result indicated that
our ontology achieved a satisfactory level of consistency and consistency, which validates
the effectiveness of our UpOntology approach.

Regarding the KG evaluation, we applied a set of CQs in the ‘Appliances’ and ‘Auto-
mobiles” domains, representing critical and relevant questions. These CQs were derived
from the original questions that populated the KG in the ‘Appliances’ and ‘Automobiles’
domains and were used to assess the KG’s ability to respond accurately and adequately.

The evaluation process allowed us to identify which parts require improvements and
adjustments and, in turn, contribute to a precise and effective updated KG.

5.6 Final Remarks

This Chapter described the evaluation of our UpKG framework. We developed two eval-
uation approaches, one focused on ontology and the other on KG, allowing us to evaluate
the consistency of ontology and the quality of KG responses. Through these evaluations,

76

Table 5.2: Summary table of CQ executed in KG v1. The second and third column
are the question and answer pairs collected from the Appliances and Automobiles
domain, the fourth column shows the answer obtained from the KG v1 which is stored
in GraphDB, the fifth column shows if the answer obtained from the KG v1 is the same

to the answer of the assistant.

. Answer
ID Question Answer KG v1 Status
Boa tarde. Essa escova serve para o Sim, esta escova serve .
! modelo ERG22? e é compativel com erg22 Compatible 4
Serve na electrolux 1108s? caso negativo, Sim serve para o modelo .
2 ve teria modelo que sirva na 1108s? LLO8S. Compatible v
3 | Serve no Eletrolux Eco turbo? Sim, compativel. Compatible v
4 | Serve Mr Coffee VB35 ? R,e31stencla‘127\/ compaftlvel Compatible v
com Cafeteira Programavel.
Boa tarde! Esta Jarra é compativel Boa tarde. anunciado é compativel
5 | ao Liquidificador Oster Modelo com o m(;delo infornnc(lol pative Compatible v
BVLB07-L00-057 i
6 Boa tarde Serve panela oster modelo Nao é compativel com o Incompatible 4
8030 modelo 8030 patibie
Boa tarde, esse copo serve para o . . .
7 modelo T-1000 BI 12V 2 Sim, compativel. Compatible v
O copo de liquidificador serve no . " . "
8 Mondisl L 1000W ? Sim, compativel. Compatible v
9 ﬁlg serve no modelo special line Néo & compativel. Incompatible 4
. Sim, serve no compressor
Serve na geladeira CRA3408ANA ' o .
10 CONSUL 340 LITROS 110V? Eiizbmco de sua Consul, Compatible v
Boa tarde serve no LG 9.000 Para LG ¢é outro o modelo, .
11 | - . Incompatible v
inverter 280 v de tens@o maior.
12 Bom dia!l Serve no compressor A linha EM utiliza outro Ine atible 4
Embraco EM2X3134U (127V)? modelo. neompanbie
13 | Serve para Gaggia Anima Panarello? Sim, serve. Compatible v
Boa tarde, esse interruptor serve no
14 | ASPIRADOR CYCLONE ELECTROLUX | Boa tarde! Sim, serve. Compatible v
TIT10 1450 W ?
Da certo no processador Philips
15 | série 3000 Potencoa Sim, serve Compatible v
600w Ri73007
16 | Serve na KIA BONGO 20/217 Boa tarde , serve sim. Compatible v
Ela serve para bomho k2700 . .
17 Jxd ano 20097 Serve sim. Compatible v
a tarde! aQ F3
18 | Serve na HYUNDAI HR 20107 l?ﬁ:dldﬂ €55¢ nao Incompatible v
DQS.CUIPEL -+ ndo sel se corresponde. Ola PIUNTL. F adequado ‘
19 | Seria para o pneu fino de estepe i Compatible v
do HB20 2019. para o uso em um HB20 2019.
Boa tarde Esse pneu pode ser utilizado Se as medidas do produto
20 | na Santa Fé 2008 Os que eu tenho correspondem as utilizadas Compatible v
na Santa Fé sdo 235 60 18 atualmente devera atender sim.
Boa tarde. Serve na Frontier Attack Se as medidas fio pl.'o'duto .
21 20197 correspondem as utilizadas Compatible v
) atualmente devera atender sim.
Vi i s ?
22 Serve 1o slena fire 1.4 8v 20157 Ola! Tudo bem? Nao serve. Incompatible v
Obs nao ¢ motor evo
serve na palio weekend adventure £ 9 Qe o R
23 1.6 16v ano 2002/03? grato 0Ola! Tudo bem? Serve sim. Compatible v
Serve na ranger 2008 2.3 Sim, serve na Ranger .
2 gasolina 7 2008 2.3 gasolina. Compatible 4
9bwab45udkt047833 serve Bom dia, infelizmente nao
25 | para este gol 2018/19. da certo e nao temos a Incompatible v
1.6 msi pega correta.
Esse comando serve no gol . .
26 | g5 2010 1.0 chassi ;?hsjl %‘Ziﬁfgmeme Compatible v
9BWAAO5UOBT136830 ’
27 | Serve na Titan 2007 es? Serve sim Compatible v
Essa pega da certo na Titan . " .
28 150 /2007 Serve perfeitamente! Compatible v
29 | Serve na g310 20217 Serve perfeitamente! Compatible v
Esse quite serve pra Negativo. Serve para -
30 Twister 2021 Todas CB 300 Apenas. Incompatible v

7

we demonstrated the consistency and coherence of our updated ontology and that our
outcome KG could provide accurate answers in the two defined domains. The next Chap-
ter presents the contributions and conclusions of this Dissertation and explores directions
for future research.

78

Chapter 6

Conclusion

This Chapter presents the conclusions of this M.Sc. dissertation around our UpKG frame-
work and its implementation (application) in the context of e-commerce. In addition, the
contributions arising from this study and future studies are highlighted.

Section focuses on describing the achievements reached in our study. We provide
a review of our achievements at each stage of our study, highlighting the theoretical and
practical aspects that contribute to our research work. In addition, research questions
defined in chapter [I] are answered. Section presents and analyzes the contributions
obtained as a result of the exhaustive development of this research. Section dis-
cusses future studies that arise from the findings and results obtained in this research
work. These future studies describe new opportunities to improve and expand the UpKG
framework.

6.1 Synthesis of Achievements

This research work obtained significant achievements in the conceptualization, design,
application, and evaluation of the UpKG framework to insert new domains in a KG.

Our study focused on a comprehensive review of the literature related to KGs in the
context of e-commerce. Existing methodologies and tools were identified and analyzed,
highlighting the limitations and challenges they face. This review of related studies pro-
vided the necessary conceptual basis to justify the need for a new approach, such as the
UpKG framework.

We presented a detailed description of the UpKG framework. This description of the
framework was cornerstone as it allowed us to understand the architecture of the UpKG,
highlighting the essential modules from understanding the current KG to populating the
updated version of a KG. The conceptualization and integration of these modules were
addressed in depth, providing a clear view of how our UpKG framework allows inserting
a new domain.

We developed a practical application of the UpKG framework in a real scenario, specif-
ically in the GoBots company. We managed to detect the new domains to insert the KG,
restructure the existing ontology, and successfully insert triples of ‘Appliances’ domain in
the KG. In addition, the results obtained during the application show the effectiveness of

79

the UpKG in practice.

Finally, we conducted an ontology and KG evaluation resulting from the UpKG frame-
work. We applied two approaches focused on ontology and KG to evaluate the consistency
and coherence of ontology, as well as the quality of KG responses. The evaluation results
confirm the coherence and consistency of our ontology. These findings were derived from
the application of three different evaluation methods: Pellet, OOPS!, and OntoDebug. In
addition, the KG evaluation results demonstrated that the KG v1 was capable of providing
accurate answers in the Appliance and Automobile domains.

We presented two research questions in Chapter I}, and we provide the following answer
relying on the research conducted in this Dissertation:

1. How can the UpKG framework can be suited to the constant information evolution
in e-commerce, allowing the insertion of new domains without compromising the
coherence and integrity of the underlying KG in place?

UpKG framework adapts to the evolution of information in e-commerce and the
insertion of new domains, without compromising the coherence and integrity of the
existing KG. Our framework has a modular design which allows easy adaptation to
changes. The flexibility of the KG ontology is achieved by identifying the entities
and relationships associated with new domains. This approach ensures that the
introduction of these elements does not compromise the coherence of the KG. In
addition, UpKG framework has a sequential approach to evaluating and improving
the KG. Updates are made in a controlled manner, which allows for correction and
adjustment in case coherence problems arise during the insertion of new domains.

2. How does inserting new KG domains through our proposed UpKG framework impact
end-user queries on e-commerce platforms?

Inserting new domains into a KG through the UpKG framework has a major impact
on end-user queries on e-commerce platforms. This impact is an improvement in
KG’s ability to provide more accurate and relevant answers to queries related to
new domains. Adapting to the evolution of information, the UpKG framework
facilitates the user experience and makes it more enriching by ensuring that the KG
is updated and aligned with the constant needs of consumers. The insertion of new
domains allows to cover of diverse and complex queries, improving the efficiency of
the e-commerce platforms that use this framework.

6.2 Contributions

Our M.Sc. Dissertation achieved significant results. Our main contribution refers to the
UpKG framework that guide us to insert new domains in an existing KG with a focus on
e-commerce based on users’ questions and answers as input. The results we obtained show
that our framework allows inserting a domain to an existing KG, without compromising
the coherence and consistency of the same. In summary, we present the key contributions
of this research work in the following:

80

e The conceptual development of the UpKG framework is a key contribution as it
addresses the problem of inserting new domains in KGs in the specific context of
e-commerce. The proposal offers a novel solution based on the efficient management
of ontologies and KGs.

e UpKG framework has an adaptability to the constant changes of information in
e-commerce and this represents a significant contribution since it allows to update
of the KG to accept/accommodate new domains.

e The application of the UpKG framework in the GoBots company allows us to observe
the behavior of our framework in each proposed module in a real-world setting. In
addition, it allowed us to ensure that our framework is flexible to accept other
domains under the context of e-commerce.

e We propose an ontology evaluation methodology called UpOntology, which allows us
to validate the applicability of the framework, as well as the flexibility and coherence
of the resulting ontology. This evaluation proposal was shown as an important
component of understanding the effectiveness of the framework in practical cases
and real-world situations.

e This research resulted in a scientific publication as a full article at the International
Conference on Knowledge Engineering and Ontology DevelopmentE] (KEOD), where
we contribute to the knowledge to the scientific community. Below is our published
article:

— Zevallos-Quispe, J.; Regino, A.; Chico, V.; Hochgreb de Freitas, V. and Dos
Reis, J. C. (2023). UpKG: A Framework to Insert New Domains in Knowledge
Graphs. In Proceedings of the 15th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowledge Management - Volume

2: KEOD, ISBN 978-989-758-671-2, ISSN 2184-3228, pages 85-95.

6.3 Future Studies

In this section, we propose the following future studies.

e We aim to bring the KG v1 to a production environment to make a more rigorous
and consistent evaluation. This will allow us to analyze the questions asked by users
in real-time and improve KG’s ability to provide accurate and contextually relevant
answers. As part of this process, we plan to incorporate new domains that have
been identified in the framework (module two), further enriching the knowledge in
our KG.

e We will focus on the improvement of the entity’s extraction step. Although the pro-
posed tools have demonstrated solid results in this aspect, we observed that the use

"https://keod.scitevents.org/Home.aspx

https://keod.scitevents.org/Home.aspx

81

of GPT family models via API in some scenarios generates questions with inaccu-
racies or misunderstandings, which can affect the quality of the answers. Therefore,
one of our objectives in future work is to refine this tool, ensuring accurate ex-
traction and improving the understanding of questions generated by users. This
progress will allow us to provide a more effective and accurate experience in the
interaction between users and KG.

Our mission is to develop accurate and appropriate metrics that allow a thorough as-
sessment of KG responses in varied contexts. This involves considering the accuracy,
consistency, relevance, and depth of responses based on the specific characteristics
of each domain. Creating robust and tailored metrics ensures that we can effectively
measure the quality of responses and ultimately raise the KG performance standard.

The application of our framework focused on user questions with the intention of
Compatibility, which means a limitation when processing other types of questions.
However, expanding this element to accept questions with other intentions is pre-
sented as an important direction for improvement. This expansion of intentions
allows the framework to cover a greater number of questions and provide richer and
more precise answers.

Apply another evaluation technique which consists of someone else applying our
UpKG framework. The main objective of adopting this evaluation technique is
to determine the ease of use of our framework by external users. By providing
access to individuals not previously familiar with the UpKG framework, we will
be able to obtain an important evaluation of the tool’s usability from a variety of
perspectives. This approach will allow us to identify possible areas for improvement
in the proposed stages, ensuring that the UpKG framework is accessible. In addition,
the outcome of this evaluation will contribute to improving the implementation of
the UpKG framework.

We will focus on automating processes that currently require manual intervention
within our UpKG framework. The objective is to minimize the dependence on man-
ual tasks in the process, which will help optimize the efficiency of the framework.
This approach seeks to not only streamline operations, but also improve accuracy
and consistency by eliminating potential human errors associated with manual in-
terventions.

We will focus on exploring various methodologies for ontological design, among
which the use of fundamental ontologies stands out. This approach involves consid-
ering solid and well-established conceptual structures, to provide a robust foundation
for our representation of knowledge in UpKG.

82

Bibliography

1]

2l

13l

4]

[5]

6]

17l

8]

19]

[10]

[11]

Ontodebug - interactive ontology debugging in protégé, 2015. http://isbi.aau.
at/ontodebug/| [Accessed: 2023-10-11].

Sunitha Abburu. A survey on ontology reasoners and comparison. International
Journal of Computer Applications, 57(17), 2012.

Addi Ait-Mlouk and Lili Jiang. Kbot: a knowledge graph based chatbot for natural
language understanding over linked data. IEFEE Access, 8:149220-149230, 2020.

Joao Barroca, Abhishek Shivkumar, Beatriz Quintino Ferreira, Evgeny Sherkhonov,
and Joao Faria. Enriching a fashion knowledge graph from product textual descrip-
tions. arXiv preprint arXiw:2206.01087, 2022.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource identifier
(uri): Generic syntax. Technical report, 2005.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
american, 284(5):34-43, 2001.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The story so far.
In Semantic services, interoperability and web applications: emerging concepts, pages
205-227. 1GI global, 2011.

Tom Bocklisch, Joe Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open source
language understanding and dialogue management. ArXiv, abs/1712.05181, 2017.

ChatGPT. ChatGPT: Optimizing Language Models for Dialogue. https://openai.
com/blog/chatgpt/ [Accessed: 2023-10-25].

Vinay K Chaudhri, Adam Farquhar, Richard Fikes, Peter D Karp, and James P Rice.
Okbc: A programmatic foundation for knowledge base interoperability. In Proceed-
ings of the fifteenth national/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, pages 600-607, 1998.

Shigian Chen, Chenliang Li, Feng Ji, Wei Zhou, and Haiqing Chen. Driven answer
generation for product-related questions in e-commerce. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pages 411-419,
2019.

http://isbi.aau.at/ontodebug/
http://isbi.aau.at/ontodebug/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

22]

23]

83

Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J Car-
roll, and Brian McBride. Rdf 1.1 concepts and abstract syntax. W3C recommenda-
tion, 25(02):1-22, 2014.

Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,
Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The semantic web: The roles
of xml and rdf. IEEE Internet computing, 4(5):63-73, 2000.

Fernanda Farinelli. Ontologias biomédicas: uma abordagem pratica. Fronteiras da
Representagao do Conhecimento, 1(2):22-50, 2021.

David C Faye, Olivier Cure, and Guillaume Blin. A survey of rdf storage ap-
proaches. Revue Africaine de la Recherche en Informatique et Mathématiques Ap-
pliquées, 15:11-35, 2012.

Héctor Hiram Guedea-Noriega and Francisco Garcia-Sanchez. Integroly: Automatic
knowledge graph population from social big data in the political marketing domain.
Applied Sciences, 12(16):8116, 2022.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Se-
bastian Neumaier, et al. Knowledge graphs. Synthesis Lectures on Data, Semantics,
and Knowledge, 12(2):1-257, 2021.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang,
Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey
on hallucination in large language models: Principles, taxonomy, challenges, and
open questions, 2023.

Natthawut Kertkeidkachorn and Ryutaro Ichise. An automatic knowledge graph
creation framework from natural language text. IEICE TRANSACTIONS on Infor-
mation and Systems, 101(1):90-98, 2018.

Aditya Khamparia and Babita Pandey. Comprehensive analysis of semantic web
reasoners and tools: a survey. FEducation and Information Technologies, 22:3121—
3145, 2017.

Navya Martin Kollapally, Yan Chen, Julia Xu, and James Geller. An ontology for
the social determinants of health domain. In 2022 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 2403-2410. IEEE, 2022.

Feng-Lin Li, Hehong Chen, Guohai Xu, Tian Qiu, Feng Ji, Ji Zhang, and Haiqing
Chen. Alimekg: Domain knowledge graph construction and application in e-
commerce. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pages 2581-2588, 2020.

Shaily Malik, Anisha Goel, and Saurabh Maniktala. A comparative study of various
variants of sparql in semantic web. In 2010 International Conference on Computer

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

32|

33

[34]

84

Information Systems and Industrial Management Applications (CISIM), pages 471—
474. TEEE, 2010.

Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

Mark A Musen, Ray W Fergerson, William E Grosso, Natalya F Noy, Monica
Crubezy, and John H Gennari. Component-based support for building knowledge-
acquisition systems. In Conference on intelligent information processing (IIP 2000)

of the international federation for information processing world computer congress

(WCC 2000), volume 194, 2000.

Vikram Pandey. Evaluation and evolution of naonto-a profile ontology of native
american diabetes patients. 2020.

Maria Poveda-Villalon, Asuncion Goémez-Pérez, and Mari Carmen Suérez-Figueroa.
Oops!(ontology pitfall scanner!): An on-line tool for ontology evaluation. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), 10(2):7-34,
2014.

Eric Prud’hommeaux and Andy Seaborn. SPARQL Query Language for RDF.
https://www.w3.org/TR/sparqlll-query/ [Accessed: 2023-10-20].

Diogo Teles Sant’Anna, Rodrigo Oliveira Caus, Lucas dos Santos Ramos, Victor
Hochgreb, and Julio Cesar dos Reis. Generating knowledge graphs from unstructured
texts: Experiences in the e-commerce field for question answering. volume 2722 of
CEUR Workshop Proceedings, pages 56—71. CEUR-WS.org, 2020.

Konstantin Schekotihin, Patrick Rodler, and Wolfgang Schmid. Ontodebug: Inter-
active ontology debugging plug-in for protégé. In Foundations of Information and
Knowledge Systems: 10th International Symposium, FolKS 2018, Budapest, Hun-
gary, May 1418, 2018, Proceedings 10, pages 340-359. Springer, 2018.

Ming Sheng, Yuyao Shao, Yong Zhang, Chao Li, Chunxiao Xing, Han Zhang, Jingwen
Wang, and Fei Gao. Dekgb: an extensible framework for health knowledge graph. In
International Conference on Smart Health, pages 27-38. Springer, 2019.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical owl-dl reasoner. Journal of Web Semantics, 5(2):51-53,
2007.

R Sivakumar and PV Arivoli. Ontology visualization protégé tools—a review. Inter-
national Journal of Advanced Information Technology (IJAIT) Vol, 1, 2011.

Serge Sonfack Sounchio, Bernard Kamsu-Foguem, and Laurent Geneste. Construc-
tion of a base ontology to represent accident expertise knowledge. Cognition, Tech-
nology € Work, pages 1-19, 2023.

https://www.w3.org/TR/sparql11-query/

85

[35] Mike Uschold and Michael Gruninger. Ontologies: Principles, methods and applica-
tions. The knowledge engineering review, 11(2):93-136, 1996.

[36] Anusha Indika Walisadeera, Athula Ginige, and Gihan Nilendra Wikramanayake.
Ontology evaluation approaches: a case study from agriculture domain. In Compu-
tational Science and Its Applications—ICCSA 2016: 16th International Conference,
Beijing, China, July 4-7, 2016, Proceedings, Part IV 16, pages 318-333. Springer,
2016.

[37] RSI Wilson, JS Goonetillake, WA Indika, and Athula Ginige. A conceptual model
for ontology quality assessment. Semantic Web, (Preprint):1-47, 2022.

[38] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
Product knowledge graph embedding for e-commerce. In Proceedings of the 13th
international conference on web search and data mining, pages 672—680, 2020.

86

Appendix A

Competency Question

1. CQL:

a)
b)
(¢) Product: 7909569301920
(d) SPARQL:

(a) Question: Boa tarde. Essa escova serve para o modelo ERG227 Obrigada.
(

Answer: Sim, esta escova serve e é compativel com erg22.

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7909569301920"}
?7compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Electrolux';
UPkg:hasApplianceModel "ERG22".
b

2. CQ2:

(a) Question: Serve na electrolux 1108s? caso negativo, vc teria modelo que sirva
na 1108s?

(b) Answer: Sim serve para o modelo LLOSS.

(¢) Product: 7896584071887

(d) SPARQL:
select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;

UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7896584071887"}

87

?compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "electrolux';
UPkg:hasApplianceModel "LLO8S".
b

3. CQ3:

(a) Question: Boa noite. Serve no Eletrolux Eco turbo?

(b) Answer: Ola, Muito obrigado pelo interesse em nossos produtos. Sobre sua
duavida: Sim, o Conjunto Adaptador Janela Com Furo 650mm Para Ar Condi-
cionado é da marca Electrolux e serve para complementar ou substituir o con-
junto adaptador janela que acompanha o produto, adequando-se ao tamanho
que vocé precisa.

(¢) Product: 7896584066173
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7896584066173"}
?compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Electrolux';
UPkg:hasApplianceModel "Eco Turbo".
b

4. CQ4:

(a) Question: Serve Mr Coffee VB35 ?

(b) Answer: Boa tarde. Resisténcia 127V compativel com Cafeteira Programavel,
BVSTDC4401, BVSTDC4401RD, BVSTDC4402.

(¢) Product: MLB1469992909
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1469992909"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.

38

?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?appliance UPkg:hasApplianceBrand "Mr Coffee";
UPkg:hasApplianceModel "VB35".
}

5. CQb5:

(a) Question: Boa tarde! Esta Jarra é compativel ao Liquidificador Oster Modelo

BVLBO07-L00-057

(b) Answer: Boa tarde. anunciado é compativel com o modelo informado.
(¢) Product: 7898615987624
(d) SPARQL:

select 7product 7“compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7898615987624"}
7compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Oster";
UPkg:hasApplianceModel "BVLBO7-LOO-057".
b

6. CQ6:

(a)
(b)

Question: Boa tarde Serve panela oster modelo 8030

Answer: Ol4, Infelizmente, a al¢a da tampa de vidro é compativel apenas com
o modelo de panela elétrica Oster Gran Taste 004731R, nao sendo compativel
com o modelo 8030.

Product: MLB1694470731
SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1694470731"}
7compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?7appliance UPkg:hasApplianceBrand "Oster";
UPkg:hasApplianceModel "8030".

7. CQT:

(a)

(b) Answer: Sim, compativel.
(¢) Product: MLB2625390411
(d) SPARQL:

Question: Boa tarde, esse copo serve para o modelo L-1000 BI 12V ?

select 7product 7“compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2625390411"}
?compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceModel "L-1000 BI";
UPkg:hasVolts "12V".
b

8. CQ8:

a)
b)
(¢) Product: MLB2625390411
(d) SPARQL:

(a) Question: O copo de liquidificador serve no Mondisl L. 1000W 7
(

Answer: Sim, compativel.

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2625390411"}
?7compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Mondisl";
UPkg:hasApplianceModel "L 1000W".
b

9. CQY:

a) Question: Ele serve no modelo special line 148

(¢) Product: MLB2185511558

(a)
(b) Answer: Ol4, tudo bem? Nao ¢ compativel.
)
(d) SPARQL:

89

90

select 7product “compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2185511558"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Mondial";
UPkg:hasApplianceModel "L48".
+

10. CQ10:

(a) Question: Serve na geladeira CRA3408ANA CONSUL 340 LITROS 110V?

(b) Answer: Sim, serve no compressor Embraco de sua Consul, sim. Aguardamos
sua compra conosco! A disposicao.

(¢) Product: MLB1632141487
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
7product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1632141487"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?7appliance UPkg:hasApplianceBrand "Consul";
UPkg:hasApplianceModel "CRA3408ANA";
UPkg:hasVolts "110V".
b

11. CQ11:

(a) Question: Boa tarde serve no LG 9.000 inverter 280 v

(b) Answer: B tarde. Para LG é outro o modelo, de tensao maior. Segue link para
compra: Aguardamos sua compra conosco! A disposicao.

(¢) Product: 7897738500192
(d) SPARQL:

select 7product 7“compatibility_type 7appliance

where {

?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.

91

{?product UPkg:hasGTIN "7897738500192"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?7appliance UPkg:hasApplianceBrand "LG";
UPkg:hasApplianceModel "9.000 inverter";
UPkg:hasVolts "280v".
}

12. CQI12:

(a) Question: Bom dia! Serve no compressor Embraco EM2X3134U (127V)?

(b) Answer: B tarde. A linha EM utiliza outro modelo. Segue link para compra:
Sim, temos em estoque, a pronta entrega para envio imediato. Aguardamos
sua compra conosco! A disposicio.

(¢) Product: 7891921307315
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7891921307315"}
?compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Embraco";
UPkg:hasApplianceModel "EM2X3134U";
UPkg:hasVolts "127V".
b

13. CQ13:
(
(

a) Question: Serve para Gaggia Anima Panarello?

b) Answer: Boa tarde ! Sim, serve. Ficamos a disposigao!
)
)

(¢) Product: 8710103073079
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "8710103073079"}
?compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.

92

?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?7appliance UPkg:hasApplianceBrand "Gaggia";

UPkg:hasApplianceModel "Anima Panarello".
by

14. CQ14:

(a) Question: Boa tarde, esse interruptor serve no ASPIRADOR CYCLONE ELEC-
TROLUX TIT10 1450 W 7.

(b) Answer: Boa tarde! Sim, serve. Ficamos & disposi¢do! ELETRON SERVICE.
(¢) Product: 7896347123631
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7896347123631"}
7compatibility UPkg:compatibleWith 7appliance;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Electrolux";
UPkg:hasApplianceModel "TIT10".
b

15. CQ15:

(a) Question: Da serto no processador Philips série 3000 Potencoa 600w Ri73007

(b) Answer: Ola ! Sim, serve. Qualquer outra duvida, basta nos contatar nova-
mente!.

(c¢) Product: 8710103054665
(d) SPARQL:

select 7product 7compatibility_type 7appliance
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "8710103054665"}
?compatibility UPkg:compatibleWith 7appliance;
rdf :type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7appliance UPkg:hasApplianceBrand "Philips";
UPkg:hasApplianceModel "Série 3000 Potencoa 600w Ri7300".
b

16. CQ16:

93

(a) Question: Serve na KIA BONGO 20/217

(b) Answer: Boa tarde , serve sim . ZND PECAS Agradece o contato e aguarda
sua compra

(¢) Product: MLB2719751431
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2719751431"}
7compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "kia";
UPkg:hasCarModel "Bongo";
UPkg:hasCarYear "20/21".
}

17. CQ17:

) Question: Ela serve para bomho k2700 4x4 ano 20097
b) Answer: Serve sim

(¢) Product: MLB956925197

(d) SPARQL:

(a
(

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB956925197"}
7compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "bomho";
UPkg:hasCarModel "K2700";
UPkg:hasCarYear "2009".
}

18. CQI18:

(a) Question: serve na HYUNDAI HR 20107

(b) Answer: Boa tarde! esse nao serve, segue o link correto, marca japonesa com
qualidade superior a cofap.

94

(¢) Product: MLB3387033577
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB3387033577"}
?compatibility UPkg:compatibleWith 7car;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "hyundai";
UPkg:hasCarModel "HR";
UPkg:hasCarYear "2010".
+

19. CQ19:

(a) Question: Desculpa... nao sei se corresponde. Seria para o pneu fino de estepe
do HB20 2019, no pneu diz q a velocidade maxima é de 80 km.

(b) Answer: E adequado para o uso em um HB20 2019.
(¢) Product: MLB1717002883
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1717002883"}
?compatibility UPkg:compatibleWith 7car;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "Hyundai";
UPkg:hasCarModel "HB20";
UPkg:hasCarYear "2019".
+

20. CQ20:
(a) Question: Boa tarde Esse pneu pode ser utilizado na Santa Fé 2008 Os que eu
tenho na Santa Fé sao 235 60 18.

(b) Answer: Boa tarde. Se as medidas do produto correspondem as utilizadas
atualmente deverd atender sim.

(¢) Product: MLB2761007508
(d) SPARQL:

95

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2761007508"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7car UPkg:hasCarModel "Santa Fé";
UPkg:hasCarYear "2008".
+

21. CQ2L:

(a) Question: Boa tarde. Serve na Frontier Attack 20197

(b) Answer: Boa tarde. Se as medidas do produto correspondem as utilizadas
atualmente devera atender sim.

(¢) Product: MLB1771694609
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
7product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1771694609"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "nissan";
UPkg:hasCarModel "Frontier";
UPkg:hasCarYear "2019".
b

22. CQ22:

a) Question: Serve no Siena fire 1.4 8 20157 Obs nao é motor evo.

(a)
(b)
(c¢) Product: MLB1131399755
(d) SPARQL:

Answer: Ola! Tudo bem? Nao serve.

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1131399755"}

96

?compatibility UPkg:compatibleWith 7car;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
7?car UPkg:hasCarBrand "fiat";
UPkg:hasCarModel "Siena";
UPkg:hasCarYear "2015".
+

23. CQ23:

(a) Question: serve na palio weekend adventure 1.6 16v ano 2002/037 grato.
(b) Answer: Ola! Tudo bem? Serve sim.

(¢) Product: 7897483464145
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "7897483464145"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "fiat";
UPkg:hasCarModel "Palio Weekend Adventure";
UPkg:hasCarYear "2002/03".
}

24. CQ24:

a) Question: Serve na ranger 2008 2.3 gasolina ?

(¢) Product: MLB1148231448

(a)
(b) Answer: Ola! Tudo bem? Sim, serve na Ranger 2008 2.3 gasolina.
)
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1148231448"}
7compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "Ford";
UPkg:hasCarModel "Ranger";

97

UPkg:hasCarYear "2008".
b

25. CQ25:
(
(

a) Question: 9bwab45udkt047833 serve para este gol 2018/19. 1.6 msi

b) Answer: Bom dia, infelizmente nao da certo e nao temos a pega correta.
)
)

(¢) Product: MLB1670791125
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1670791125"}
?compatibility UPkg:compatibleWith 7car;
rdf :type 7compatibility_type.
7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "VW";
UPkg:hasCarModel "Gol";
UPkg:hasCarYear "2018/19".
+

26. CQ26:

(a) Question: Esse comando serve no gol gh 2010 1.0 chassi 9IBWAAO5UOBT136830
(

)
b) Answer: Boa noite! Aplica perfeitamente em seu veiculo.
(¢) Product: MLB2730966123

(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2730966123"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarModel "Gol";
UPkg:hasCarYear "2010".
b

27. CQ2T:

(a) Question: Serve na Titan 2007 es?

98

(b) Answer: Serve sim amigo perfeitamente produto na medida correta para sua
moto!!

(¢) Product: MLB1446591954
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB1446591954"}
7compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarBrand "honda";
UPkg:hasCarModel "Titan";
UPkg:hasCarYear "2007".
}

28. CQ28:

(a) Question: Essa peca da certo na Titan 150 /2007

(b) Answer: Boa tarde tudo bom ? Serve perfeitamente! Produto de 6tima quali-
dade, nota fiscal e garantia!

(¢) Product: MLB2016966667
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2016966667"}
?7compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarModel "Titan 150";
UPkg:hasCarYear "2007".
b

29. CQ29:

(a) Question: Serve na g310 20217

(b) Answer: Boa tarde tudo bom ? Serve perfeitamente! Produto de otima quali-
dade, nota fiscal e garantia!

(¢) Product: MLB2750979998

(d) SPARQL:

select 7product 7compatibility_type 7car
where {
7product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2750979998"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarModel "g310";
UPkg:hasCarYear "2021".
}

30. CQ30:

a) Question: Esse quite serve pra Twister 2021

(¢) Product: MLB2794025012

(a)
(b) Answer: Bom dia. Negativo. Serve para Todas CB 300 Apenas.
)
(d) SPARQL:

select 7product 7compatibility_type 7car
where {
7?product rdf:type UPkg:Product;
UPkg:hasCompatibility 7compatibility.
{?product UPkg:hasGTIN "MLB2794025012"}
?compatibility UPkg:compatibleWith 7car;
rdf:type 7compatibility_type.
?7compatibility_type rdfs:subClass0f UPkg:Compatibility.
?car UPkg:hasCarModel "Twister";
UPkg:hasCarYear "2021".

99

100

Appendix B

KEOD Copyright Acceptance

11/10/23, 1:45 PM Gmail - Authorization to include the paper

M Gma" Jesamin Zevallos <jesaminzev@gmail.com>
Authorization to include the paper

2 mensajes

Jesamin Zevallos <jesaminzev@gmail.com> 8 de noviembre de 2023, 21:50

Para: keod.secretariat@insticc.org

Dear editors of KEOD,
I'm writing this email because | need your authorization to include the paper "UpKG: A Framework to Insert New
Domains in Knowledge Graphs" in my master dissertation, supervised by my advisor Prof Dr. Julio Cesar dos Reis.

The rules of my institution (Unicamp) states that: "In case of a published paper, the student should collect the editorial

board/committee authorization to include it in his/her dissertation/thesis."

The mentioned paper is a key part of the whole dissertation and without it, the work would be incomplete. Could you

provide this in the next few days?

Best regards,
Jesamin Zevallos.

KEOD Secretariat <KEOD.Secretariat@insticc.org> 9 de noviembre de 2023, 06:54

Responder a: KEOD.Secretariat@insticc.org
Para: jesaminzev@gmail.com

Dear Jesamin Zevallos,

Thank you for your e-mail. You can include the KEOD paper in your thesis, as long as you include a reference
where it was previously published. You can use any version, but we prefer that the published version included in
the Proceedings is the one used.

Best regards,
Ana Rita Paciéncia
KEOD Secretariat

INSTICC Office

Avenida de S. Francisco Xavier, Lote 7 Cv. C,
2900-616 Setubal, Portugal

Tel: +351 265 520 185

Fax: +351 265 520 186
http://www.keod.scitevents.org/

On Thursday, November 9th 2023, 1:50 am CET (+0100), Jesamin Zevallos wrote:

Dear editors of KEOD,

I'm writing this email because | need your authorization to include the paper "UpKG: A Framework to Insert New
Domains in Knowledge Graphs" in my master dissertation, supervised by my advisor Prof Dr. Julio Cesar dos
Reis.

The rules of my institution (Unicamp) states that: "In case of a published paper, the student should collect the
editorial board/committee authorization to include it in his/her dissertation/thesis."

The mentioned paper is a key part of the whole dissertation and without it, the work would be incomplete. Could
you provide this in the next few days?

Best regards,
Jesamin Zevallos.

https://mail.google.com/mail/u/0/?ik=ccf20dcOc4&view=pt&search=all&permthid=thread-a:r2600986096656025630&simpl=...

1/2

	Introduction
	Context and Motivation
	Problem Characterization
	Objectives and Research Questions
	Synthesis of Our Methodology and Findings
	Dissertation Organization

	Literature Review: Background and Related Studies
	Fundamental Concepts
	Explored Tools
	Related Work
	Final Remarks

	Our Proposed UpKG Framework
	Understand the current KG in place
	Identify new domain
	Restructure the ontology
	Populate the KG
	Discussion
	Final Remarks

	Applying the UpKG Framework in a Case Study
	Context of Application and Methods
	Results Applying the UpKG Framework
	Results in understanding the current KG
	Result in identifying new domain
	Result in restructuring the ontology
	Result in populating the KG

	Discussion
	Final Remarks

	Evaluating the Outcomes from the UpKG Framework
	Evaluation Approaches
	Ontology Evaluation
	Knowledge Graph Evaluation

	Evaluation Methods
	Ontology
	Knowledge Graph

	Experimental Setup
	Results
	Results of the Ontology Evaluation
	Results of the Knowledge Graph Evaluation

	Discussion
	Final Remarks

	Conclusion
	Synthesis of Achievements
	Contributions
	Future Studies

	Bibliography
	Competency Question
	KEOD Copyright Acceptance

