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Learning: Graph Embeddings, Transfer Learning and
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Abstract—Cryptography is a ubiquitous tool in secure software
development in order to guarantee security requirements in gen-
eral. However, software developers have scarce knowledge about
cryptography and rely on limited support tools that cannot prop-
erly detect bad uses of cryptography, thus generating vulnerabili-
ties in software. In this work, we extend the scarcely use of machine
learning to detect cryptography misuse in source code by using a
state of the art deep learning model (i.e., code2vec) through transfer
learning to generate features that feed machine learning models. In
addition, we compare this approach to previous ones in different
types of binary models. Also, we adapt code obfuscation to serve as
data augmentation in machine learning source code related tasks.
Finally, we show that through transfer learning code2vec can be
a competitive feature generator for cryptography misuse detection
and simple code obfuscation can be used to generate data to enhance
machine learning models training in source code related tasks.

Index Terms—Code obfuscation, cryptography misuse, data
augmentation, machine learning, misuse detection, transfer
learning.

I. INTRODUCTION

S
OFTWARE services are consumed daily by people in dif-

ferent areas of activity. In each of these areas, security is

an aspect that underlies services in order to protect users’ data

in general. On modern software, in general, cryptography is

the tool used to achieve data protection. It provides require-

ments such as confidentiality, integrity, and authenticity, that

cannot be achieved without the use of cryptography primitives

in software development. However, the use of cryptography

is not a simple task. Most software developers have limited

knowledge of cryptography and do not use it properly. Also, most
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of the cryptographic application programming interfaces (APIs)

have poor usability, with a documentation that is difficult to

understand and to use [1], [2]. To address this problem, software

development companies rely on software development support-

ing tools in order to detect incorrect use of cryptography. These

tools, though, are limited and can only detect at most one-third

of incorrect uses of cryptography (or, cryptography misuses)

when including complex misuse cases [3] with little difference

in performance when including only simple cases [4], [5]. With

all this, these misuses persist in source code and, often, vulnera-

bilities are introduced. For example, it is estimated that most of

android applications have at least one cryptography misuse in

their source code [6]. These vulnerabilities can be exploited and

bring damage to software companies and users as well. That

said, there is an urgent need to improve cryptography misuse

detection tools, as they perform an important role supporting

secure software development. This will result in a reduction in

security breach incidents as there will be fewer vulnerabilities

to exploit. Finally, with robust cryptography misuse detection

tools, software developers that do not have proper knowledge of

cryptography will still be able to write secure software without

the need for an expert all the time.

Recent work shows a trend of machine learning support

in addressing the problem of detecting cryptography misuse

in source code, achieving very good results, with additional

room for improvements [7]. In this work, we expand the use of

machine learning techniques in cryptographic misuse detection

tasks. More specifically, we extend previous works applying

a state-of-the-art deep learning source code feature extraction

approach (namely, code2vec) through transfer learning. We do

this because previous works do not take advantage of deep

learning in cryptographic misuse detection and deep learning

techniques are widely known to produce very good results in a

diversity of areas [8], [9], [10]. In addition, we also implement

data augmentation applied to the context of our problem, through

the use of obfuscated source code. To the best of our knowledge,

this is the first time this approach is used and implemented

in this scenario. To evaluate our method, we build supervised

binary classifiers to detect cryptography misuses in both the

context of one classifier per misuse type and one classifier that

distinguishes between all misuses/good uses (ignoring misuse

types). Finally, we also evaluate a recent common detection tool,

namely Coverity Scan, in order to measure our improvements

compared to previous works.
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A. Summary of Contributions

We show that the use of transfer learning through code2vec

can outperform previous techniques in some misuse case

detection and in general misuse detection. Also, we provide evi-

dence that classifiers that use data augmentation in their training

step tend to have higher recall scores when compared to regular

training, thus resulting in fewer false negatives. In addition, we

show that the use of machine learning in cryptography misuse

detection still outperforms common detection tools.

B. Organization of This Article

The rest of this article is organized as follows. Section II

presents theoretical background and related work. Section III

explains the methodology used in this work. Section IV shows

the results obtained in the experiments described in Section III.

Section V discusses the implications of the results presented in

Section IV. Finally, Section VI concludes the article.

II. BACKGROUND AND RELATED WORK

In this section, we introduce concepts used in this work and

we discuss related work. Section II-A presents the concept of

cryptography misuse; Section II-B presents concepts on graph

representations of source code; Sections II-C and II-D show

the definitions of Bag of Graphs (BoG) and node2vec graph

embeddings techniques; Section II-E presents applications of

deep learning in source code-related tasks; Section II-F discusses

concepts on data augmentation and its use in source code-related

tasks.

A. Cryptography Misuse

As defined in [7], cryptography misuse, in a broad sense, is

the improper use of cryptography-related code. Examples of

cryptography misuse are the adoption of broken or obsolete

algorithms such as message-digest algorithm 5 and Data en-

cryption standard; the inclusion of hard-coded passwords or

static seeds when generating keys or other sensitive cryptog-

raphy material such as initialization vectors (IVs), message

authentication codes (MACs); the use of pseudorandom number

generators (PRNGs); the reuse of encryption keys in contexts

where they must be single-used; elliptic curve (EC) related prob-

lems; public key infrastructure (PKI) and certification authority

issues; transport layer security (TLS) and secure sockets layer

(SSL) misuse; and so on. Here, we are interested in misuse of

cryptography APIs. We chose Java cryptography architecture

(JCA) because it is a stable and well established API, one

of the most used cryptography APIs in industry and also in

literature [6], [11], [12], [13]. Fig. 1 displays an example of

insecure use of the Rivest–Shamir–Adleman (RSA) algorithm

with no padding, shown in lines 13 and 15. Padding, in the

context of cryptography, is a set of techniques that adds data to

an incomplete block of data [14]. This is applied to a message

prior to an encryption task, in order to avoid issues such as

malleability in the case of RSA.

On the other hand, Fig. 2 shows an example of secure use of

the RSA algorithm, now with the using of padding as showed

Fig. 1. Source code with a misuse. Here, the RSA algorithm is used with
insecure parameters.

Fig. 2. Source code with a correct use of the RSA algorithm with secure
parameters.

on line 18. This is the secure version of Fig. 1 source code.

Without the use of padding in RSA, an attacker can transform the

encrypted message into another encrypted message, leading to

a known transformation of the plain message [14]. For example,

if x is the amount of money to transfer to an account, an attacker

could double this amount by incorporating another encrypted

message into the original one. This is one of the consequences

of the malleability property of the RSA [14].

Many authors agree on what constitutes cryptography misuse;

however they may not agree completely on how to categorize

a cryptography misuse. The works of Braga and Dahab and

Braga et al. [2], [3], [12], [15] resulted in a taxonomy composed

of an extended list of different types of cryptography misuse,

shown in Table I: The Groups column lists misuse sources;

column Categories further details these sources; and Subtypes
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TABLE I
CLASSES OF CRYPTOGRAPHY MISUSE IN SOFTWARE (ADAPTED FROM [3])

are subgroups of misuses present in a given category. Braga

and Dahab’s works begin by mining cryptography misuses in

specialized programming forums and categorizing these misuses

by complexity. Also, they checked for the joint occurrence

of two or more different instances of cryptography misuse.

Next, they performed a longitudinal study, in order to analyze

the behavior of developers towards the use of cryptography in

software development. Finally, they evaluated the performance

of static code analysis tools (SCATs) in supporting the detection

of cryptography misuses in common coding tasks. SCATs are

support tools that do not need the execution of the source code

in order to evaluate it [15]. These tools can be used for different

activities from linting to misuse detection, and work at most on

the syntactic and semantic layers of compilation.

Several other works in the literature address the problem of

cryptography misuse. In [16], the authors conducted a study

that concludes that there are no significant security flaws on

cryptography APIs, but, rather, it is how developers use them

that introduce flaws. In [6], the authors downloaded 49 Android

applications from Google Play in order to find possible cryp-

tography misuses. They divide these into four categories (weak

cryptography, weak implementations, use of weak keys, and use

of weak cryptography parameters). They show that around 80%

of those applications have some kind of misuse, and also propose

countermeasures to reduce the impact of these issues. In [17],

a web platform called Crypto Explorer, with the objective of

teaching correct use of cryptography APIs, was presented. This

platform includes real world secure and insecure examples of

cryptography API usage, showing the importance of the correct

use of cryptography in software. In [1] and [13], the authors

presented CogniCrypt, a support tool that detects cryptography

misuse based on predefined strict rules. This tool is very good

in detecting simple misuses cases; however, it does not detect

those with temporal aspects. Also, there is the need to create

new rules every time a new misuse case is discovered, thus not

learning from data.

All that said, we contribute to cryptographic misuse detection

by taking advantage of machine and deep learning, building

models that can successfully detect misuses with temporal as-

pects by learning from data, without the need to create new rules

every time.

B. Graph Representations of Source Code

Programming languages’ source codes are frequently viewed

as just a sequence of text tokens that represent variable names,

function calls, loop instructions, data structures, and many other

source code intrinsic structures. However, treating source code

simply as linear sequences of tokens, regardless of their syntax

and structure, may not retain important characteristics of source

code that can be useful in machine learning tasks. As noted

by Alon et al. [18], there is a tradeoff between the degree of

program analysis required to extract a representation, and the

necessary effort needed by a machine learning model to learn this

representation. By using a representation like simple text may

result in a learning effort that is prohibitive given the amount of

data required. On the other hand, using a representation that

is too specific, requiring deeper program analysis, may lead

to language-specific/task-specific models [18]. Thus, a repre-

sentation with intermediate complexity is needed in order to

preserve important information about the source code, but also

remaining easily learned by machine learning models. Graph

representations of source code are a good example of this.

Common graph representations of source code include ab-

stract syntax trees (ASTs), control flow graphs, and program

dependency graphs. These representations vary on the degree

and type of information they contain about a source code. We

focus on ASTs because they are a well known representation that

contains syntactic and semantic information about source codes,

such as library/API method calls, control flows, and data flows,

which are used to classify cryptographic misuse [12]. With that
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Fig. 3. Sample of an AST. Here the nodes contain the label of a source code
grammar structure and the source code snippet related to it.

information, we can generate representative features of source

code that can be used to feed machine learning models.

An AST is a tree-shaped representation of source code struc-

tures. It is comprised of tokens that are generated from dec-

larations and expressions contained in the source code of a

programming language. Such tokens vary from language to

language according to the syntax. An AST describes the source

code according to details within the source code structure and

contents of variables, function calls, and others, as well as

information that can be added later when considering compiled

languages.

In an AST, each node represents a construction of the

source code and, thus, syntactic and semantic information from

the source code is preserved [19], as shown in Fig. 3. By

construction, we mean the terminal and nonterminal symbols

which characterize lexical elements of the grammar, that define

the production rules of a formal grammar of programming

languages [19].

C. Bag of Graphs

BoG [20] is a feature extraction and graph embedding tech-

nique that creates a vector representation of the local features and

relationships present in a graph. This is achieved by creating a

set of symbols known as graph bag items that represent elements

or subgraphs that are part of the original graph [21]. This way,

the intrinsic structure of the object (represented in graph form)

and relationships present in that object are preserved. A general

description of the BoG method is presented in [21].

Definition 1: Let G = (V,E) be a graph and wi = f(G, i)
a function that extracts a symbol defined as a sorted sequence

wi = (p1, ..., pm) of elements pj ∈ G (elements of G are sub-

graphs, which, in particular, can be edges, nodes, or a com-

bination of both). A BoG can be defined as a set of all sym-

bols B = {w1, ..., wm} extracted from G by f . The subgraphs

S ⊂ G can be described as a set of items W ⊂ G.

This technique was successfully used in feature extraction

for two distinct contexts: Images [22] and Android permission

files [21].

D. Node2vec

Node2vec [23] is a feature-generating graph embedding tech-

nique that tries to preserve the graph (or network) neighbor-

hoods of nodes in a d-dimensional space. Based on a flexible

neighborhood sampling strategy, this technique uses the concept

of random walks that learn features from edges and nodes

of a graph by interpolating between breadth-first search and

depth-first search. A random walk is described as a walk of

length l starting at vertex u and traversing the edges of the graph

based on a transition probability π and a search bias α. Both of

these parameters are used to guide the neighborhood sampling

mechanism that generates node embeddings. The search bias

influences the transitional probability that determines the next

step of each walk, allowing the account of the network structure

and the exploration of different neighborhoods in the graph [23].

E. Deep Learning and Code2vec

Deep learning is a field of artificial intelligence that uses

artificial neural network models composed of many layers, with

the objective of solving complex tasks that common machine

learning algorithms cannot solve [9], [10]. The first models

that were built using the deep learning approach were used in

image classification and automatic speech recognition problems.

Nowadays, deep learning can perform a range of different tasks,

from transfer learning, neural style transfer, automatic source

code generation, feature extraction, deep fakes, language transla-

tion, drug discovery, and many other applications from different

fields [9], [10].

The use of deep learning in code-related tasks is recent. By

code-related, we mean problems that use source codes (or a

source code representation like an AST) as its initial input.

Most of its applications are related to software engineering prob-

lems. Some applications are: Automatic patch correction [24];

software defect feature extraction [25]; software vulnerability

detection [26], [27], [28], [29], [30]; software defect predic-

tion [31]; and bug detection [8]. All of these applications use

source code in a graph representation, instead of treating it as text

and using natural language techniques to process it. It has been

shown that common natural language process techniques are not

well suited for machine/deep learning code-related tasks [18].

Alternative source code representations like ASTs as input to

feature extraction methods perform better than using source code

as text input.

1) Code2vec: Until 2019, there was no proposed deep neural

network architecture for general source code feature extraction

based on graph representations. Code2vec [18] is a deep neural

attention model that represents source code snippets as code

embeddings, i.e., continuous distributed vector representations

that preserve semantic properties of source code represented

as ASTs. This is a path-based approach that represents code

snippets based on the number of methods contained within them.

This approach can be summarized as follows.

1) Each method in a source code is parsed and an AST

is constructed from it. Then, each AST is traversed and

paths between its leaves are extracted, generating a tuple

representation called path-context.
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2) For each such path and its values in a path-context, a

mapping to a numeric vector representation is built and

an embedding is created. Then, three embeddings of each

context are concatenated into a single one to represent a

path-context as a vector.

3) Finally, a path-attention network using attention scores

aggregates multiple path-context embeddings into a sin-

gle vector that represents the body of the method. In

Code2vec, this code vector is used to predict the method

label. However, this architecture can also be used as a

feature extractor by not using its final layer (the label

prediction layer).

So, for a single source-code file, multiple embeddings can be

extracted depending on the number of methods present in the

file. Therefore, to generate a single vector representation of a

source code using this neural network as a feature extractor, an

aggregation mechanism is needed. One was proposed in [32].

F. Data Augmentation

Data augmentation is a set of techniques used in machine

learning tasks during the training step of a model, with the

objective of improving model generalization by reducing over-

fitting. These techniques work with the assumption that more

information can be obtained from the original dataset by using

augmentations [33]. One common use of data augmentation is

oversampling, which adds to the training set synthetic created

“copies” of its instances. This is mostly used in computer vision

tasks by flipping, rotating, shearing, cropping, and zooming

images of a small training set, with the objective of increasing its

size depending on the problem’s domain. The actual operations

will depend on what makes sense in a solution. For example,

if a model is trying to classify flowers, it does not make sense

to add images of a flower rotated upside down. As in the real

world, flowers are not often seen upside down. Every data

augmentation technique assumes that the added objects follow

the same semantics as the original ones [33].

In source-code machine learning-related tasks, to the best

of our knowledge, there is no standard way of applying data

augmentation to training sets. One way was suggested in [32].

The authors suggested using obfuscated source code as a data

augmentation operation in source codes. Code obfuscation is a

technique used by programmers with the objective of making

source codes difficult to read/understand, thus guaranteeing

security by obscurity, or hiding malicious code. Some obfus-

cation operations include: Indentation removal, variable name

changing to meaningless names, introduction of null operations,

and many others. With all of these operations, it is possible to

create copies of a source code and apply data augmentation, as

done with images in computer vision tasks.

III. METHODOLOGY

In this section, we briefly present the methodology used in this

work. First, we discuss the process of data collection and data

preparation to make our data suitable for machine learning tasks.

Then, we describe the feature extraction techniques applied to

our data in order to transform it into numeric form, which is then

TABLE II
DATASET INSTANCES DISTRIBUTION BY MISUSE CATEGORY[34]

used during the process of training and testing of the classifiers.

Last, we describe the four experiments that were done in order

to compare feature extraction techniques, evaluate the impact of

data augmentation, and briefly evaluate an updated SCAT.

A. Data Collection

For Data Collection, as there is no standard cryptography

misuse dataset, we decided to use the same dataset used in [34].

Table II shows the cryptography misuse categorization of the

dataset, as well its description and ratio of secure and insecure

code with respect to the entire code. Category is the type of cryp-

tography misuse; Usage pattern description is the description

of the misuse category; Secure (used) is the number of good

code instances used; Insecure (used) is the number of misuse

code instances used. Also, we used the same dataset because we

extended some of the experiments present in [7]. This dataset

is composed of Java JCA source code snippets collected from

stack overflow threads. JCA is one of the most used and evaluated

cryptography APIs in the literature. As a number of snippets are

not complete and thus, noncompilable code, we could not use the

full original dataset in our experiments. Only the source codes

that were compilable were used, and thus the ones that have an

AST representation.

B. Data Preparation

For data preparation, we have to transform our source codes

into a graph representation that will be used as input for the

feature extraction step. We use the software ANTLR4, which is a

parser software that can generate ASTs based on a programming

language grammar definition. With this, we generate a dot file

with the corresponding AST representation of a source code.

For code2vec, we only need to pass the source code as input

to the network. The code2vec architecture has a parser in its

implementation that already generates an AST from the source

code.

C. Feature Extraction

We have to divide the feature extraction step in two parts, one

for graph feature extraction techniques (BoG and node2vec), and

the other for transfer learning using code2vec neural networks.

In the first one, we use BoG and node2vec separately and

generate two distinct datasets, one for each feature extraction
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technique. The step-by-step application of the BoG technique is

as follows: First, we select nodes of interest (NoI) in the AST

based on the label of a node, which corresponds to a structure

defined by the language grammar (for example, literal in Java).

Next, for each NoI selected in the previous step, we generate

three graphs of interest (GoI) as follows:

1) the NoI itself;

2) the shortest path from the root of the AST to the NoI;

3) the tree generated from the NoI.

After that, we generate a hash representation for each of these

graphs and concatenate the three vectors. It is worth noting that

we have to do a random sampling of the selected NoIs in order to

limit their number. Next, we use a clustering algorithm (in this

case, K-Means) to generate our codebook of representations,

where each concatenated GoI is associated to a feature vector.

Finally, we calculate the histogram of the frequency of feature

vectors per source code and generate a representation for it.

For node2vec, the step-by-step application of this technique is

as follows: first, we label each AST node with its content, so as

to be able to use node2vec properly, taking into account the text

attributes of the graph. Next, we apply node2vec to each AST

source code file. The algorithm generates a node embedding for

each node in the AST graph, and we select only node embeddings

based on the node label as a filtering mechanism. Next, we

perform a random sampling on the filtered node embeddings in

order to limit the number of node embeddings per file. Finally,

we repeat the same final steps of the BoG application. We use

K-means to produce the embeddings codebook and we calculate

a histogram per file.

For code2vec, we apply transfer learning to generate code

embeddings for each source code file. Transfer learning is a

technique used in machine learning applications where a pre-

trained neural network is used as a feature extractor, generating

embeddings that represent the object used as input of the net-

work. We used the pretrained code2vec model presented in [35].

We also used its aggregation pipeline, as code2vec generates

multiple embeddings per file.

D. Training and Testing of Classifiers

Now, we describe our machine learning models’ training and

testing steps. It is worth noting that we use 80% of the dataset for

the training step and 20% for the testing step, with no intersection

between the splits. The test dataset is used only once to obtain

the final results. We use binary support vector machines (SVM)

and multilayer perceptron (MLP) classifiers.

1) Hyperparameter Tuning and Model Selection: For the

training step, we use k-fold cross-validation. This technique is

well-known and used in the context of machine learning applica-

tions in the training step to evaluate a trained model without the

explicit use of a validation dataset before hyperparameter tuning.

We use GridsearchCV for hyperparameter tuning and model

selection. This is an automated process, which incorporates

cross-validation and searches for the best parameters and models

giving a list of predefined parameters.

2) Data Augmentation Using Obfuscated Code: For one of

the experiments in this work, we use data augmentation with

obfuscated code. We use the obfuscation tool presented in [35],

with the random obfuscation technique, where the names of

the variables of a source code are changed to random names.

We apply data augmentation to our training sets by adding

obfuscated versions of the files in the train set, up to the point

where the less representative class reaches the size of the most

representative. We basically try to balance our training set, if

possible, never letting the less representative class become the

most representative.

E. Experiments

In this section, we describe the experiments that we have

performed in our work. All of the experiments use the setup

described in the previous sections for data preparation, feature

extraction, and training/testing of classifiers.

1) Experiment 1: In Experiment 1, we extend the experi-

ments in [7] and we use the set generated by the code2vec

network feature extractor. We train and test models for each

type of misuse, and we compare the results obtained by models

trained with code2vec features against the results obtained in [7]

and [15].

2) Experiment 2: In Experiment 2, we extend both Experi-

ment 1 and the experiments in [7] by adding the data augmenta-

tion step during the training step for all types of generated sets

(BoG, node2vec, and code2vec sets). We train and test models

for each type of misuse, and we compare the results obtained by

the models with data augmentation, with the results obtained in

Experiment 1.

3) Experiment 3: In Experiment 3 we use a different ap-

proach, in the sense of how models are created. Instead of

training a binary model for each type of misuse, we train a

binary model that tries to distinguish between misuse and secure

code. We generate models with data augmentation and with no

data augmentation for the three types of feature extractors. We

compare the obtained results with the previous experiments and

with previous works.

4) Experiment 4: In Experiment 4, we extend the analysis of

Braga et al. [15] by evaluating a tool called Coverity Scan [36]

that can be used to detect cryptography misuse. For this eval-

uation, we use its free version. We wanted to perform this

experiment to check if there is any improvement in SCATs over

the previous evaluations in the literature. Also, Coverity Scan

incorporates other SCATs in its analysis, so we do not need to

evaluate all of them. In addition, this tool also incorporates both

dynamic and static analysis to detect vulnerabilities in source

code. So, to be able to use this tool, we need compilable source

codes, their libraries and dependencies that the source code uses

within it. We used the same dataset as Braga et al. [15], which

uses the categorization in Table I, instead of the dataset used

in previous experiments, as later dataset libraries and project

dependencies are intractable.

IV. RESULTS

In this section, we present the results obtained in all of the

experiments described in Section III-E. Experiment 1 is the

evaluation of code2vec compared to other feature extraction
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TABLE III
RESULTS FOR EXPERIMENT 1 AND EXPERIMENT 2 PART ONE

TABLE IV
RESULTS FOR EXPERIMENT 1 AND EXPERIMENT 2 PART TWO

methods. Experiment 2 is the analysis of the impact of data aug-

mentation in different configurations of classifiers. Experiment

3 evaluates all feature extraction methods and data augmentation

in the context of a binary classifier for all misuses. Finally,

Experiment 4 is the evaluation of the Coverity Scan tool. Both

Table III and Table IV contain the results of Experiments 1 and 2,

where Table IV is the continuation of Table III; also, each of these

contains the results for four types of misuses. Table V contains

the results for Experiment 3, where we do not have a misuse

categorization, as in this experiment we just divided the whole

dataset into misuse and good uses, regardless of the type. In all of

the tables, we have the following columns: 1) feature extraction

method (FeM) which is the feature extraction method used (i.e.,

B for BoG, N for node2vec, or C for code2vec) plus the classifier

used (i.e., MLP for multilayer perceptron and SVM for support

vector machines), followed by “A”, if data augmentation was

used. For example, “BSVM-A” stands for Bag of Graphs (“B”)

using a SVM classifier (“SVM”) with data augmentation (“A”); 2)

metrics, which describes the metrics used in the experiment, i.e.,

Prec, Rec, and F1, which are Precision, Recall, and F1-Score,

TABLE V
RESULTS FOR EXPERIMENT 3

respectively [9]. Here, we are using two classifiers only to

verify the impact of data augmentation using obfuscation code in

misuse detection. We are not comparing two types of classifiers.
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Fig. 4. Precision results for Experiments 1 and 2. Each column color represents a configuration setting of the feature extraction method, classifier (one binary
classifier for each misuse category), and data augmentation (optional).

Fig. 5. Recall results for Experiments 1 and 2. Each column color represents a configuration setting of the feature extraction method, classifier (one binary
classifier for each misuse category), and data augmentation (optional).

Also, Figs. 4, 5, and 6 present a graphical comparison of all

feature extraction techniques in Precision, Recall, and F1-score,

respectively.

We first discuss Experiment 1, whose results are shown in

Tables III and IV. We show Precision, Recall, and F1-score for

code2vec combined with CSVM, the SVM classifier (we are not

taking into account the MLP classifier, as the work in [7] only

uses SVMs). We obtain the following outcomes for the three

metrics: Cipher (81.2%, 77.14%, 79.1%); Hash (85.5%, 76.7%,

80.9%); Key (83.3% 68.4%, 75.1%); IV (70.2%, 67.3%, 68.7%);

HNV (88.2%, 71.4%, 78.9%); HNVOR (92.3%, 80%, 85.7%);

TLS (95.9%, 91.4%, 93.6%); and TM (96.6%, 95.6%, 96.1%).

Here, we chose to present our comparison using the F1-score

metric because we need classifiers that have good performance in

both Recall and Precision. Also, F1-score is the harmonic mean

of these. By comparing these results with BSVM, regarding their

F1-Score, we notice that CSVM (code2vec) only outperforms it

at the HNV class (the first and fifth rows of the tables), and

performs virtually the same in most of the remaining classes.

By comparing CSVM with NSVM, we verify that CSVM only

underperforms it in the Hash class and performs equally or better

in the remaining classes. This shows that code2vec is a FeM

that can be used to detect different categories of cryptography

misuse.

Now, Experiment 2, whose results are shown in Tables III and

IV, highlights the effect of data augmentation in both MLP and
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Fig. 6. F1-Score results for Experiments 1 and 2. Each column color represents a configuration setting of the feature extraction method, classifier (one binary
classifier for each misuse category), and data augmentation (optional).

SVM classifiers. Here, we compare FeMs of the first six rows

with their augmented (“A”) version, as in BSVM with BSVM-A,

bag of graphs with SVM classifier. We are also using F1-score

as metric of comparison. In the case of BoG, the use of data

augmentation improves misuse detection in the cases of Hash,

key, HVN, and HNVOR; it underperforms in the cases of Cipher

and IV and performs equally for TLS and TM. For node2vec,

the use of data augmentation improves the misuse detection in

Hash, key, HNVOR, and TLS. It underperforms in IV and HNV,

and performs equally in Cipher and TM. For code2vec, the use

of data augmentation improves misuse detection in Cipher-svm,

Hash-mlp, IV, HNV-svm, and HNVOR-svm. It underperforms in

Cipher-mlp, Hash-svm, HNV-svm, HNVOR-mlp, TLS-mlp, and

TM-mlp; and performs equally in the remaining cases. In sum-

mary, for BoG, six out of eight categories have the same or better

results when data augmentation is used. For node2vec, we also

have six out of eight categories with equal or enhanced results.

In code2vec, our analysis uses higher granularity, considering

classifier types too, as the differences were more subtle. From

a general perspective, in code2vec data augmentation makes

virtually no difference, as the number of categories that benefit

from it in the F1-score is the same compared to those that do not.

On the other hand, we notice a difference when looking at the

type of classifiers, as data augmentation tends to work better with

SVM and worse with MLP. We could argue that those classifiers

have distinct approaches in the way they are trained. In general,

data augmentation makes classifiers perform equally or better.

Let us now consider Experiment 3, whose results are shown

in Table V. In the case of classifiers without augmentation, BoG

and code2vec’s performances are virtually the same on average,

if we use the F1-score as a metric of comparison. Code2vec

performs better if we use Precision as a comparison metric, and

BoG performs better if we use Recall as the metric. The same

pattern arises in the case of classifiers using data augmentation.

However, we note that both code2vec and BoG have better

TABLE VI
RESULTS FOR EXPERIMENT 4

Recall results and worse (but still good) Precision results. In

general, the classifiers that use data augmentation attain better

results with an improvement of 1.4 percentage points in average,

with code2vec having the biggest improvement, 2.15 percentage

points on average.

Finally, for Experiment 4, we used the Coverity Scan tool

to detect cryptography misuses in the dataset used in [15].

We achieve basically the same results as Braga et al.. Despite

an overall improvement of 9 percentage points, from 35% to

44%, the Coverity Scan was able to detect only 44% of the

cryptography misuses. This result is much worse than the 88%

result, achieved in [7]. This experiment’s results are shown in

Table VI. It is worth noting that the WC and PDF categories

achieve high Recall scores, but Coverity Scan falls behind in the

detection of the other misuse categories.

V. DISCUSSION OF FINDINGS

In this section, we briefly discuss some interesting aspects

of the results obtained in Section IV. We divide our discussion

in three sections. The first discusses the impact of code2vec

compared to previous works. The second section discusses the
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impact of the use of data augmentation combined with each

feature extraction method. Lastly, we consider implementation

aspects of each feature extraction technique, their pros and cons.

A. Code2vec x Previous Feature Extractors

Code2vec is a deep learning neural network trained in approx-

imately 14 million lines of Java source code with the purpose

of predicting Java method names. Also, its hidden layers can

be used to produce source code embeddings that can be used

as features for machine learning classifiers through transfer

learning. Thus, it is expected that its produced features would

capture meaningful information about source code. That said, by

analyzing our results, obtained in the case of one classifier per

misuse presented in IV, we see that code2vec only outperformed

BoG and node2vec (both at the same time) in one misuse cate-

gory, namely HNV, by 1.9 percentage points compared to BoG,

and 11.9 percentage points against node2vec. Compared to BoG

in the other cases, code2vec performed similarly or worse (not by

a great margin), and compared to node2vec, it performed worse

only in the Hash category and better in the other cases. Here we

argue that code2vec produces features that incorporate general

aspects of source codes in comparison to BoG, as code2vec was

not trained specifically in source code that contains cryptography

misuses, in contrast to BoG, that was specifically trained in

the cryptography misuse dataset. Also, as code2vec generates

embeddings from paths between terminal nodes from the AST

(literals), it does not filter structures based on their types; instead,

all structures in the path are taken into account in order to

produce embeddings. On the other hand, BoG produces specific

features based on the chosen AST structures within the code

and this reflects on the results obtained in Experiment 1, where

the datasets have a very small size. Compared to node2vec, it is

expected that code2vec performs better, as node2vec does not

leverage text attributes of the source code and its syntax and

semantics.

In Experiment 3, by dividing our dataset into misuses and

good uses (by this we mean group the misuses into one class,

and the good uses into another one), we ignore specific aspects

that characterize certain types of misuses/good uses. Thus, the

trained classifier looks for general patterns that can distinguish

cryptography misuses from good uses in a broader sense, ig-

noring misuse and good use categories. As a result, since the

amount of training and test instances was greater than in the case

of Experiment 1, the differences between the obtained results

are smaller. Still, the same best-to-worse order of the feature

extractors, regarding the F1-score, is maintained, with BoG be-

ing the best technique, code2vec the second best, and node2vec

the worst. However, we notice that each feature extraction tech-

nique give different priorities regarding false positives and false

negatives, as reflected in the Precision and Recall metrics. For

example, compared to the other two techniques, code2vec has the

higher precision metric, which implies a low false positive rate.

On the other hand, BoG has higher recall than code2vec, meaning

that it has lower false negative rates. Node2vec has a more bal-

anced score between recall and precision compared to the other

two techniques. Thus, each technique has a different influence

on the process of misuse detection and all of them can be further

enhanced to present better results. Still, the results presented are

very good and outperform common static analysis tools.

Finally, we have the results for Experiment 4. Although

this experiment does not use any feature extraction method,

using, instead, a free SCAT, its relevance is in showing how

SCATs improved from previous works and how they compare

to machine learning solutions previously proposed. As shown

in Table VI, SCATs do not perform well in general. Of course,

we can only compare them to the results of Experiment 3

as we used a different dataset. Here we argue that, although

comparing the results in different datasets, SCATs have a sta-

ble behavior as they use handcrafted pattern rules. Also, by

removing categorization in Experiment 3 and only training a

classifier to distinguish between misuse and good uses, we can

compare it to Experiment 4 results as we have a general misuse

classifier. By averaging the F1-score results of Table VI, we

observe that Coverity Scan obtains an average 54.7% F1-score,

a 4.7 percent point improvement over evaluated tools in [15].

However, machine learning classifiers perform much better, with

at least 13 percentage points of difference. Those results support

the conclusion that machine learning can be a powerful tool to

detect cryptography misuse. Nevertheless, it is worth noting that

SCATs perform really well in low-complexity misuse categories

like WCs. This suggests that hybrid approaches that use both

rules and machine learning could be effective in some scenarios.

B. Impact of Data Augmentation

Now, we discuss the results presented by classifiers that use

data augmentation as a tool to enlarge the training set, in order

to train better classifiers. We use the MLP classifiers only to

check the impact of data augmentation in the context of source

codes as instances of a dataset. We start by analyzing the results

obtained in Experiment 2, with the binary classifier for each

category of misuse. Here, we notice mixed results with some

cases of underperformance, but, in general, data augmentation

helps classifiers perform better or virtually the same as classifiers

that do not use it in the training step, as shown in Section IV.

As those datasets were unbalanced in most of the cases, the

predominance of enhanced results was expected, as we applied

data augmentation in order to balance the datasets whenever

possible. One example is the Hash category, where the unbalance

was in the ratio of misuse instances, as shown in Table II. We

were able to duplicate the good/bad use instances in the training

set and, with that, the Hash category has some of the best results

with data augmentation. On the other hand, misuse categories

that already have an almost balanced ratio like Cipher and IV,

tend to perform equally or worse than the normal classifiers,

as the small number of instances added to the training set can

confuse the classifiers’ decision boundaries.

For the classifiers of Experiment 3, we notice some interesting

effects on the application of data augmentation. As the size of

the dataset is larger in Experiment 3, the results presented in

Section IV show that we have little improvement with the use

of data augmentation. However, as also shown, all of the data-

augmented classifiers perform better than the normal classifiers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on October 19,2023 at 16:08:29 UTC from IEEE Xplore.  Restrictions apply. 



RODRIGUES et al.: DETECTING CRYPTOGRAPHY MISUSES WITH MACHINE LEARNING 11

Although some classifiers have a decrease in precision metrics,

they have a noticeable increase in the recall metric, such as in

the BSVM case, where we have 4.4 percentage point reduction

in Precision but a 9.5 percentage point increase in Recall; the

same goes for CSVM, with an 8.2 percentage point decrease

in Precision but a 16.3 percentage point in Recall. This means

that the number of false negatives is lowered in data-augmented

classifiers and this is a desired behavior in this kind of appli-

cation, where Recall is more important. Also, this could hint at

a possible effect of data argumentation in source-code-related

tasks.

C. Implementation Aspects

Now, we give some thought to the implementation aspects

of each of the techniques. First, we mention the issue of Java

versions that each implementation covers in the AST generation

phase. For BoG and node2vec, we were only able to generate

ASTs for Java 8 source code or lower versions, as ANTLR4 has

only these versions of the Java parser available, as far as we know.

As a consequence, we do not include test cases of newer versions

of Java in this specific situation. Of course, there is a variety of

Java parses that could replace ANTLR4 in this task of generating

ASTs. However, some adaptations need to be made in the source

code on the AST generation (the extractor part). Nevertheless,

code2vec can handle Java 12 or lower version source codes, so

it can handle the newer syntax and semantics of Java, with no

need for an adaptation.

For the feature generation part, we did not benchmark each

of the techniques. However, we notice that code2vec provides

a more straightforward and faster feature generation approach

than BoG and node2vec, as it does not need to train the network

through transfer learning to generate those features. As a neural

network approach, code2vec can take advantage of parallelism

and can be executed faster than BoG or node2vec. For both BoG

and node2vec, we need to train a clustering algorithm to generate

a codebook in order to generate features. However, code2vec

needs a GPU to be executed, which is not the case of BoG or

node2vec. So depending on the hardware available, code2vec

might not work.

Lastly, as we use a transfer learning approach, code2vec does

not need to retrain the way we use the technique. Both BoG

and node2vec would need retraining to expand their codebooks

if we gather more data. Code2vec would only need retraining

if we want to continue the training of a pretrained version of

the network to incorporate training with cryptography misuse

source code. These are some important implementation aspects

to take into account if one wants to use these techniques.

D. Limitations of This Work

We close this section by talking about the possible limitations

of this work. First, we talk limitations of our data augmentation

application. The used technique, however simple, has similari-

ties with widely used computer vision techniques such as image

rotation and cropping. The technique we used in our work could

be viewed as an analogy of the above in the source code context.

Other techniques could be tested, but it seemed to us that, being

simple enough and having produced the results it did, this would

be an indication that this obfuscation works satisfactorily.

Now, we talk about the limitations of using transfer learning.

In general, transfer learning is known to have the drawback of

negative transfer, i.e., when the initial problem on which the

model was trained is similar to the target problem [9]. In our case,

the initial model was trained to recognize method names that are

similar to ours in the sense that misuse detection depends also

on method calls. Such method calls depend on the derivations of

an AST, which extracts information about the source code itself.

For source code, in particular, the issue is the new architectures

that have not been tested enough.

Another possible limitation could be the size of the used

dataset. However, as we used deep learning through transfer

learning, by using a pretrained network trained in more than

14 million source code lines as a feature extractor, we do not

need to train the whole model again. We used this model to

generate features and, then, we trained SVM models to detect

cryptographic misuses. So, we do not need to increase the size

of the dataset as we did not train a deep learning Model.

Finally, we talk about the diversity of the used dataset. We

were, indeed, limited to one language. But the language in ques-

tion (Java) has the API that is the most studied language for the

topic of cryptographic misuse (JCA). Thus, we cover very rele-

vant data. Also, as each language has its grammar and we built

our features based on the AST (which is constructed according to

the language grammar), the method can be considered general.

Thus, it would not need a diversity of languages in the dataset,

but, instead, a diversity of misuses, which we currently have.

VI. CONCLUSION

We wish to conclude this work by saying that the use of

machine learning and data oriented approaches to detect cryp-

tography misuses is relatively new, so there is a lot to be done.

With this work, we explored different types of machine learning

approaches in order to detect cryptography misuses, each with

its own advantages. All of these approaches surpassed common

SCATs tools, in both previous and current analysis. It is im-

portant to note that we explored state-of-the-art methods, such

as code2vec, and we applied state-of-the-art techniques such as

transfer learning. We even adapted with success code obfus-

cation to serve as a source of data augmentation to source code

related tasks. With this, we can safely state that machine learning

can be used do detect cryptography misuse with a degree of

success.

For future work and improvements, we intend to explore other

machine learning paradigms such as unsupervised learning and

semisupervised learning to detect cryptography misuses. Also,

the creation of a standard dataset of cryptography misuses,

where machine learning models can be evaluated is needed to

better compare works in the literature. In addition, the possi-

ble combination of machine learning and other data oriented

methods could provide another way of detecting cryptography

misuses. Finally, the incorporation of explainable AI concepts is

something we need to tackle in order to transform this approach

into a tool that can easily support developers.
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